ac: make ballot and umsb capable of 64bit inputs
[mesa.git] / src / amd / common / ac_llvm_build.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sub license, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
15 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
17 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
18 * USE OR OTHER DEALINGS IN THE SOFTWARE.
19 *
20 * The above copyright notice and this permission notice (including the
21 * next paragraph) shall be included in all copies or substantial portions
22 * of the Software.
23 *
24 */
25 /* based on pieces from si_pipe.c and radeon_llvm_emit.c */
26 #include "ac_llvm_build.h"
27
28 #include <llvm-c/Core.h>
29
30 #include "c11/threads.h"
31
32 #include <assert.h>
33 #include <stdio.h>
34
35 #include "ac_llvm_util.h"
36 #include "ac_exp_param.h"
37 #include "util/bitscan.h"
38 #include "util/macros.h"
39 #include "util/u_atomic.h"
40 #include "sid.h"
41
42 #include "shader_enums.h"
43
44 #define AC_LLVM_INITIAL_CF_DEPTH 4
45
46 /* Data for if/else/endif and bgnloop/endloop control flow structures.
47 */
48 struct ac_llvm_flow {
49 /* Loop exit or next part of if/else/endif. */
50 LLVMBasicBlockRef next_block;
51 LLVMBasicBlockRef loop_entry_block;
52 };
53
54 /* Initialize module-independent parts of the context.
55 *
56 * The caller is responsible for initializing ctx::module and ctx::builder.
57 */
58 void
59 ac_llvm_context_init(struct ac_llvm_context *ctx, LLVMContextRef context,
60 enum chip_class chip_class, enum radeon_family family)
61 {
62 LLVMValueRef args[1];
63
64 ctx->chip_class = chip_class;
65 ctx->family = family;
66
67 ctx->context = context;
68 ctx->module = NULL;
69 ctx->builder = NULL;
70
71 ctx->voidt = LLVMVoidTypeInContext(ctx->context);
72 ctx->i1 = LLVMInt1TypeInContext(ctx->context);
73 ctx->i8 = LLVMInt8TypeInContext(ctx->context);
74 ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
75 ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
76 ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
77 ctx->intptr = HAVE_32BIT_POINTERS ? ctx->i32 : ctx->i64;
78 ctx->f16 = LLVMHalfTypeInContext(ctx->context);
79 ctx->f32 = LLVMFloatTypeInContext(ctx->context);
80 ctx->f64 = LLVMDoubleTypeInContext(ctx->context);
81 ctx->v2i16 = LLVMVectorType(ctx->i16, 2);
82 ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
83 ctx->v3i32 = LLVMVectorType(ctx->i32, 3);
84 ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
85 ctx->v2f32 = LLVMVectorType(ctx->f32, 2);
86 ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
87 ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
88
89 ctx->i32_0 = LLVMConstInt(ctx->i32, 0, false);
90 ctx->i32_1 = LLVMConstInt(ctx->i32, 1, false);
91 ctx->i64_0 = LLVMConstInt(ctx->i64, 0, false);
92 ctx->i64_1 = LLVMConstInt(ctx->i64, 1, false);
93 ctx->f32_0 = LLVMConstReal(ctx->f32, 0.0);
94 ctx->f32_1 = LLVMConstReal(ctx->f32, 1.0);
95 ctx->f64_0 = LLVMConstReal(ctx->f64, 0.0);
96 ctx->f64_1 = LLVMConstReal(ctx->f64, 1.0);
97
98 ctx->i1false = LLVMConstInt(ctx->i1, 0, false);
99 ctx->i1true = LLVMConstInt(ctx->i1, 1, false);
100
101 ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
102 "range", 5);
103
104 ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
105 "invariant.load", 14);
106
107 ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);
108
109 args[0] = LLVMConstReal(ctx->f32, 2.5);
110 ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);
111
112 ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context,
113 "amdgpu.uniform", 14);
114
115 ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
116 }
117
118 void
119 ac_llvm_context_dispose(struct ac_llvm_context *ctx)
120 {
121 free(ctx->flow);
122 ctx->flow = NULL;
123 ctx->flow_depth_max = 0;
124 }
125
126 int
127 ac_get_llvm_num_components(LLVMValueRef value)
128 {
129 LLVMTypeRef type = LLVMTypeOf(value);
130 unsigned num_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
131 ? LLVMGetVectorSize(type)
132 : 1;
133 return num_components;
134 }
135
136 LLVMValueRef
137 ac_llvm_extract_elem(struct ac_llvm_context *ac,
138 LLVMValueRef value,
139 int index)
140 {
141 if (LLVMGetTypeKind(LLVMTypeOf(value)) != LLVMVectorTypeKind) {
142 assert(index == 0);
143 return value;
144 }
145
146 return LLVMBuildExtractElement(ac->builder, value,
147 LLVMConstInt(ac->i32, index, false), "");
148 }
149
150 int
151 ac_get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
152 {
153 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
154 type = LLVMGetElementType(type);
155
156 if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind)
157 return LLVMGetIntTypeWidth(type);
158
159 if (type == ctx->f16)
160 return 16;
161 if (type == ctx->f32)
162 return 32;
163 if (type == ctx->f64)
164 return 64;
165
166 unreachable("Unhandled type kind in get_elem_bits");
167 }
168
169 unsigned
170 ac_get_type_size(LLVMTypeRef type)
171 {
172 LLVMTypeKind kind = LLVMGetTypeKind(type);
173
174 switch (kind) {
175 case LLVMIntegerTypeKind:
176 return LLVMGetIntTypeWidth(type) / 8;
177 case LLVMFloatTypeKind:
178 return 4;
179 case LLVMDoubleTypeKind:
180 return 8;
181 case LLVMPointerTypeKind:
182 if (LLVMGetPointerAddressSpace(type) == AC_CONST_32BIT_ADDR_SPACE)
183 return 4;
184 return 8;
185 case LLVMVectorTypeKind:
186 return LLVMGetVectorSize(type) *
187 ac_get_type_size(LLVMGetElementType(type));
188 case LLVMArrayTypeKind:
189 return LLVMGetArrayLength(type) *
190 ac_get_type_size(LLVMGetElementType(type));
191 default:
192 assert(0);
193 return 0;
194 }
195 }
196
197 static LLVMTypeRef to_integer_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
198 {
199 if (t == ctx->f16 || t == ctx->i16)
200 return ctx->i16;
201 else if (t == ctx->f32 || t == ctx->i32)
202 return ctx->i32;
203 else if (t == ctx->f64 || t == ctx->i64)
204 return ctx->i64;
205 else
206 unreachable("Unhandled integer size");
207 }
208
209 LLVMTypeRef
210 ac_to_integer_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
211 {
212 if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
213 LLVMTypeRef elem_type = LLVMGetElementType(t);
214 return LLVMVectorType(to_integer_type_scalar(ctx, elem_type),
215 LLVMGetVectorSize(t));
216 }
217 return to_integer_type_scalar(ctx, t);
218 }
219
220 LLVMValueRef
221 ac_to_integer(struct ac_llvm_context *ctx, LLVMValueRef v)
222 {
223 LLVMTypeRef type = LLVMTypeOf(v);
224 return LLVMBuildBitCast(ctx->builder, v, ac_to_integer_type(ctx, type), "");
225 }
226
227 static LLVMTypeRef to_float_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
228 {
229 if (t == ctx->i16 || t == ctx->f16)
230 return ctx->f16;
231 else if (t == ctx->i32 || t == ctx->f32)
232 return ctx->f32;
233 else if (t == ctx->i64 || t == ctx->f64)
234 return ctx->f64;
235 else
236 unreachable("Unhandled float size");
237 }
238
239 LLVMTypeRef
240 ac_to_float_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
241 {
242 if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
243 LLVMTypeRef elem_type = LLVMGetElementType(t);
244 return LLVMVectorType(to_float_type_scalar(ctx, elem_type),
245 LLVMGetVectorSize(t));
246 }
247 return to_float_type_scalar(ctx, t);
248 }
249
250 LLVMValueRef
251 ac_to_float(struct ac_llvm_context *ctx, LLVMValueRef v)
252 {
253 LLVMTypeRef type = LLVMTypeOf(v);
254 return LLVMBuildBitCast(ctx->builder, v, ac_to_float_type(ctx, type), "");
255 }
256
257
258 LLVMValueRef
259 ac_build_intrinsic(struct ac_llvm_context *ctx, const char *name,
260 LLVMTypeRef return_type, LLVMValueRef *params,
261 unsigned param_count, unsigned attrib_mask)
262 {
263 LLVMValueRef function, call;
264 bool set_callsite_attrs = !(attrib_mask & AC_FUNC_ATTR_LEGACY);
265
266 function = LLVMGetNamedFunction(ctx->module, name);
267 if (!function) {
268 LLVMTypeRef param_types[32], function_type;
269 unsigned i;
270
271 assert(param_count <= 32);
272
273 for (i = 0; i < param_count; ++i) {
274 assert(params[i]);
275 param_types[i] = LLVMTypeOf(params[i]);
276 }
277 function_type =
278 LLVMFunctionType(return_type, param_types, param_count, 0);
279 function = LLVMAddFunction(ctx->module, name, function_type);
280
281 LLVMSetFunctionCallConv(function, LLVMCCallConv);
282 LLVMSetLinkage(function, LLVMExternalLinkage);
283
284 if (!set_callsite_attrs)
285 ac_add_func_attributes(ctx->context, function, attrib_mask);
286 }
287
288 call = LLVMBuildCall(ctx->builder, function, params, param_count, "");
289 if (set_callsite_attrs)
290 ac_add_func_attributes(ctx->context, call, attrib_mask);
291 return call;
292 }
293
294 /**
295 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
296 * intrinsic names).
297 */
298 void ac_build_type_name_for_intr(LLVMTypeRef type, char *buf, unsigned bufsize)
299 {
300 LLVMTypeRef elem_type = type;
301
302 assert(bufsize >= 8);
303
304 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
305 int ret = snprintf(buf, bufsize, "v%u",
306 LLVMGetVectorSize(type));
307 if (ret < 0) {
308 char *type_name = LLVMPrintTypeToString(type);
309 fprintf(stderr, "Error building type name for: %s\n",
310 type_name);
311 return;
312 }
313 elem_type = LLVMGetElementType(type);
314 buf += ret;
315 bufsize -= ret;
316 }
317 switch (LLVMGetTypeKind(elem_type)) {
318 default: break;
319 case LLVMIntegerTypeKind:
320 snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
321 break;
322 case LLVMFloatTypeKind:
323 snprintf(buf, bufsize, "f32");
324 break;
325 case LLVMDoubleTypeKind:
326 snprintf(buf, bufsize, "f64");
327 break;
328 }
329 }
330
331 /**
332 * Helper function that builds an LLVM IR PHI node and immediately adds
333 * incoming edges.
334 */
335 LLVMValueRef
336 ac_build_phi(struct ac_llvm_context *ctx, LLVMTypeRef type,
337 unsigned count_incoming, LLVMValueRef *values,
338 LLVMBasicBlockRef *blocks)
339 {
340 LLVMValueRef phi = LLVMBuildPhi(ctx->builder, type, "");
341 LLVMAddIncoming(phi, values, blocks, count_incoming);
342 return phi;
343 }
344
345 /* Prevent optimizations (at least of memory accesses) across the current
346 * point in the program by emitting empty inline assembly that is marked as
347 * having side effects.
348 *
349 * Optionally, a value can be passed through the inline assembly to prevent
350 * LLVM from hoisting calls to ReadNone functions.
351 */
352 void
353 ac_build_optimization_barrier(struct ac_llvm_context *ctx,
354 LLVMValueRef *pvgpr)
355 {
356 static int counter = 0;
357
358 LLVMBuilderRef builder = ctx->builder;
359 char code[16];
360
361 snprintf(code, sizeof(code), "; %d", p_atomic_inc_return(&counter));
362
363 if (!pvgpr) {
364 LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
365 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "", true, false);
366 LLVMBuildCall(builder, inlineasm, NULL, 0, "");
367 } else {
368 LLVMTypeRef ftype = LLVMFunctionType(ctx->i32, &ctx->i32, 1, false);
369 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "=v,0", true, false);
370 LLVMValueRef vgpr = *pvgpr;
371 LLVMTypeRef vgpr_type = LLVMTypeOf(vgpr);
372 unsigned vgpr_size = ac_get_type_size(vgpr_type);
373 LLVMValueRef vgpr0;
374
375 assert(vgpr_size % 4 == 0);
376
377 vgpr = LLVMBuildBitCast(builder, vgpr, LLVMVectorType(ctx->i32, vgpr_size / 4), "");
378 vgpr0 = LLVMBuildExtractElement(builder, vgpr, ctx->i32_0, "");
379 vgpr0 = LLVMBuildCall(builder, inlineasm, &vgpr0, 1, "");
380 vgpr = LLVMBuildInsertElement(builder, vgpr, vgpr0, ctx->i32_0, "");
381 vgpr = LLVMBuildBitCast(builder, vgpr, vgpr_type, "");
382
383 *pvgpr = vgpr;
384 }
385 }
386
387 LLVMValueRef
388 ac_build_shader_clock(struct ac_llvm_context *ctx)
389 {
390 LLVMValueRef tmp = ac_build_intrinsic(ctx, "llvm.readcyclecounter",
391 ctx->i64, NULL, 0, 0);
392 return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2i32, "");
393 }
394
395 LLVMValueRef
396 ac_build_ballot(struct ac_llvm_context *ctx,
397 LLVMValueRef value)
398 {
399 LLVMValueRef args[3] = {
400 value,
401 ctx->i32_0,
402 LLVMConstInt(ctx->i32, LLVMIntNE, 0)
403 };
404
405 /* We currently have no other way to prevent LLVM from lifting the icmp
406 * calls to a dominating basic block.
407 */
408 ac_build_optimization_barrier(ctx, &args[0]);
409
410 args[0] = ac_to_integer(ctx, args[0]);
411
412 return ac_build_intrinsic(ctx,
413 "llvm.amdgcn.icmp.i32",
414 ctx->i64, args, 3,
415 AC_FUNC_ATTR_NOUNWIND |
416 AC_FUNC_ATTR_READNONE |
417 AC_FUNC_ATTR_CONVERGENT);
418 }
419
420 LLVMValueRef
421 ac_build_vote_all(struct ac_llvm_context *ctx, LLVMValueRef value)
422 {
423 LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
424 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
425 return LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, active_set, "");
426 }
427
428 LLVMValueRef
429 ac_build_vote_any(struct ac_llvm_context *ctx, LLVMValueRef value)
430 {
431 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
432 return LLVMBuildICmp(ctx->builder, LLVMIntNE, vote_set,
433 LLVMConstInt(ctx->i64, 0, 0), "");
434 }
435
436 LLVMValueRef
437 ac_build_vote_eq(struct ac_llvm_context *ctx, LLVMValueRef value)
438 {
439 LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
440 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
441
442 LLVMValueRef all = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
443 vote_set, active_set, "");
444 LLVMValueRef none = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
445 vote_set,
446 LLVMConstInt(ctx->i64, 0, 0), "");
447 return LLVMBuildOr(ctx->builder, all, none, "");
448 }
449
450 LLVMValueRef
451 ac_build_varying_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values,
452 unsigned value_count, unsigned component)
453 {
454 LLVMValueRef vec = NULL;
455
456 if (value_count == 1) {
457 return values[component];
458 } else if (!value_count)
459 unreachable("value_count is 0");
460
461 for (unsigned i = component; i < value_count + component; i++) {
462 LLVMValueRef value = values[i];
463
464 if (i == component)
465 vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
466 LLVMValueRef index = LLVMConstInt(ctx->i32, i - component, false);
467 vec = LLVMBuildInsertElement(ctx->builder, vec, value, index, "");
468 }
469 return vec;
470 }
471
472 LLVMValueRef
473 ac_build_gather_values_extended(struct ac_llvm_context *ctx,
474 LLVMValueRef *values,
475 unsigned value_count,
476 unsigned value_stride,
477 bool load,
478 bool always_vector)
479 {
480 LLVMBuilderRef builder = ctx->builder;
481 LLVMValueRef vec = NULL;
482 unsigned i;
483
484 if (value_count == 1 && !always_vector) {
485 if (load)
486 return LLVMBuildLoad(builder, values[0], "");
487 return values[0];
488 } else if (!value_count)
489 unreachable("value_count is 0");
490
491 for (i = 0; i < value_count; i++) {
492 LLVMValueRef value = values[i * value_stride];
493 if (load)
494 value = LLVMBuildLoad(builder, value, "");
495
496 if (!i)
497 vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
498 LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
499 vec = LLVMBuildInsertElement(builder, vec, value, index, "");
500 }
501 return vec;
502 }
503
504 LLVMValueRef
505 ac_build_gather_values(struct ac_llvm_context *ctx,
506 LLVMValueRef *values,
507 unsigned value_count)
508 {
509 return ac_build_gather_values_extended(ctx, values, value_count, 1, false, false);
510 }
511
512 /* Expand a scalar or vector to <4 x type> by filling the remaining channels
513 * with undef. Extract at most num_channels components from the input.
514 */
515 LLVMValueRef ac_build_expand_to_vec4(struct ac_llvm_context *ctx,
516 LLVMValueRef value,
517 unsigned num_channels)
518 {
519 LLVMTypeRef elemtype;
520 LLVMValueRef chan[4];
521
522 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
523 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
524 num_channels = MIN2(num_channels, vec_size);
525
526 if (num_channels >= 4)
527 return value;
528
529 for (unsigned i = 0; i < num_channels; i++)
530 chan[i] = ac_llvm_extract_elem(ctx, value, i);
531
532 elemtype = LLVMGetElementType(LLVMTypeOf(value));
533 } else {
534 if (num_channels) {
535 assert(num_channels == 1);
536 chan[0] = value;
537 }
538 elemtype = LLVMTypeOf(value);
539 }
540
541 while (num_channels < 4)
542 chan[num_channels++] = LLVMGetUndef(elemtype);
543
544 return ac_build_gather_values(ctx, chan, 4);
545 }
546
547 LLVMValueRef
548 ac_build_fdiv(struct ac_llvm_context *ctx,
549 LLVMValueRef num,
550 LLVMValueRef den)
551 {
552 LLVMValueRef ret = LLVMBuildFDiv(ctx->builder, num, den, "");
553
554 /* Use v_rcp_f32 instead of precise division. */
555 if (!LLVMIsConstant(ret))
556 LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp);
557 return ret;
558 }
559
560 /* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27
561 * of the OpenGL 4.5 (Compatibility Profile) specification, except ma is
562 * already multiplied by two. id is the cube face number.
563 */
564 struct cube_selection_coords {
565 LLVMValueRef stc[2];
566 LLVMValueRef ma;
567 LLVMValueRef id;
568 };
569
570 static void
571 build_cube_intrinsic(struct ac_llvm_context *ctx,
572 LLVMValueRef in[3],
573 struct cube_selection_coords *out)
574 {
575 LLVMTypeRef f32 = ctx->f32;
576
577 out->stc[1] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubetc",
578 f32, in, 3, AC_FUNC_ATTR_READNONE);
579 out->stc[0] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubesc",
580 f32, in, 3, AC_FUNC_ATTR_READNONE);
581 out->ma = ac_build_intrinsic(ctx, "llvm.amdgcn.cubema",
582 f32, in, 3, AC_FUNC_ATTR_READNONE);
583 out->id = ac_build_intrinsic(ctx, "llvm.amdgcn.cubeid",
584 f32, in, 3, AC_FUNC_ATTR_READNONE);
585 }
586
587 /**
588 * Build a manual selection sequence for cube face sc/tc coordinates and
589 * major axis vector (multiplied by 2 for consistency) for the given
590 * vec3 \p coords, for the face implied by \p selcoords.
591 *
592 * For the major axis, we always adjust the sign to be in the direction of
593 * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
594 * the selcoords major axis.
595 */
596 static void build_cube_select(struct ac_llvm_context *ctx,
597 const struct cube_selection_coords *selcoords,
598 const LLVMValueRef *coords,
599 LLVMValueRef *out_st,
600 LLVMValueRef *out_ma)
601 {
602 LLVMBuilderRef builder = ctx->builder;
603 LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
604 LLVMValueRef is_ma_positive;
605 LLVMValueRef sgn_ma;
606 LLVMValueRef is_ma_z, is_not_ma_z;
607 LLVMValueRef is_ma_y;
608 LLVMValueRef is_ma_x;
609 LLVMValueRef sgn;
610 LLVMValueRef tmp;
611
612 is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE,
613 selcoords->ma, LLVMConstReal(f32, 0.0), "");
614 sgn_ma = LLVMBuildSelect(builder, is_ma_positive,
615 LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), "");
616
617 is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
618 is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
619 is_ma_y = LLVMBuildAnd(builder, is_not_ma_z,
620 LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
621 is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
622
623 /* Select sc */
624 tmp = LLVMBuildSelect(builder, is_ma_x, coords[2], coords[0], "");
625 sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0),
626 LLVMBuildSelect(builder, is_ma_z, sgn_ma,
627 LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
628 out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
629
630 /* Select tc */
631 tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
632 sgn = LLVMBuildSelect(builder, is_ma_y, sgn_ma,
633 LLVMConstReal(f32, -1.0), "");
634 out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
635
636 /* Select ma */
637 tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
638 LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
639 tmp = ac_build_intrinsic(ctx, "llvm.fabs.f32",
640 ctx->f32, &tmp, 1, AC_FUNC_ATTR_READNONE);
641 *out_ma = LLVMBuildFMul(builder, tmp, LLVMConstReal(f32, 2.0), "");
642 }
643
644 void
645 ac_prepare_cube_coords(struct ac_llvm_context *ctx,
646 bool is_deriv, bool is_array, bool is_lod,
647 LLVMValueRef *coords_arg,
648 LLVMValueRef *derivs_arg)
649 {
650
651 LLVMBuilderRef builder = ctx->builder;
652 struct cube_selection_coords selcoords;
653 LLVMValueRef coords[3];
654 LLVMValueRef invma;
655
656 if (is_array && !is_lod) {
657 LLVMValueRef tmp = coords_arg[3];
658 tmp = ac_build_intrinsic(ctx, "llvm.rint.f32", ctx->f32, &tmp, 1, 0);
659
660 /* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says:
661 *
662 * "For Array forms, the array layer used will be
663 *
664 * max(0, min(d−1, floor(layer+0.5)))
665 *
666 * where d is the depth of the texture array and layer
667 * comes from the component indicated in the tables below.
668 * Workaroudn for an issue where the layer is taken from a
669 * helper invocation which happens to fall on a different
670 * layer due to extrapolation."
671 *
672 * VI and earlier attempt to implement this in hardware by
673 * clamping the value of coords[2] = (8 * layer) + face.
674 * Unfortunately, this means that the we end up with the wrong
675 * face when clamping occurs.
676 *
677 * Clamp the layer earlier to work around the issue.
678 */
679 if (ctx->chip_class <= VI) {
680 LLVMValueRef ge0;
681 ge0 = LLVMBuildFCmp(builder, LLVMRealOGE, tmp, ctx->f32_0, "");
682 tmp = LLVMBuildSelect(builder, ge0, tmp, ctx->f32_0, "");
683 }
684
685 coords_arg[3] = tmp;
686 }
687
688 build_cube_intrinsic(ctx, coords_arg, &selcoords);
689
690 invma = ac_build_intrinsic(ctx, "llvm.fabs.f32",
691 ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE);
692 invma = ac_build_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma);
693
694 for (int i = 0; i < 2; ++i)
695 coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
696
697 coords[2] = selcoords.id;
698
699 if (is_deriv && derivs_arg) {
700 LLVMValueRef derivs[4];
701 int axis;
702
703 /* Convert cube derivatives to 2D derivatives. */
704 for (axis = 0; axis < 2; axis++) {
705 LLVMValueRef deriv_st[2];
706 LLVMValueRef deriv_ma;
707
708 /* Transform the derivative alongside the texture
709 * coordinate. Mathematically, the correct formula is
710 * as follows. Assume we're projecting onto the +Z face
711 * and denote by dx/dh the derivative of the (original)
712 * X texture coordinate with respect to horizontal
713 * window coordinates. The projection onto the +Z face
714 * plane is:
715 *
716 * f(x,z) = x/z
717 *
718 * Then df/dh = df/dx * dx/dh + df/dz * dz/dh
719 * = 1/z * dx/dh - x/z * 1/z * dz/dh.
720 *
721 * This motivatives the implementation below.
722 *
723 * Whether this actually gives the expected results for
724 * apps that might feed in derivatives obtained via
725 * finite differences is anyone's guess. The OpenGL spec
726 * seems awfully quiet about how textureGrad for cube
727 * maps should be handled.
728 */
729 build_cube_select(ctx, &selcoords, &derivs_arg[axis * 3],
730 deriv_st, &deriv_ma);
731
732 deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
733
734 for (int i = 0; i < 2; ++i)
735 derivs[axis * 2 + i] =
736 LLVMBuildFSub(builder,
737 LLVMBuildFMul(builder, deriv_st[i], invma, ""),
738 LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
739 }
740
741 memcpy(derivs_arg, derivs, sizeof(derivs));
742 }
743
744 /* Shift the texture coordinate. This must be applied after the
745 * derivative calculation.
746 */
747 for (int i = 0; i < 2; ++i)
748 coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), "");
749
750 if (is_array) {
751 /* for cube arrays coord.z = coord.w(array_index) * 8 + face */
752 /* coords_arg.w component - array_index for cube arrays */
753 LLVMValueRef tmp = LLVMBuildFMul(ctx->builder, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), "");
754 coords[2] = LLVMBuildFAdd(ctx->builder, tmp, coords[2], "");
755 }
756
757 memcpy(coords_arg, coords, sizeof(coords));
758 }
759
760
761 LLVMValueRef
762 ac_build_fs_interp(struct ac_llvm_context *ctx,
763 LLVMValueRef llvm_chan,
764 LLVMValueRef attr_number,
765 LLVMValueRef params,
766 LLVMValueRef i,
767 LLVMValueRef j)
768 {
769 LLVMValueRef args[5];
770 LLVMValueRef p1;
771
772 args[0] = i;
773 args[1] = llvm_chan;
774 args[2] = attr_number;
775 args[3] = params;
776
777 p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1",
778 ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
779
780 args[0] = p1;
781 args[1] = j;
782 args[2] = llvm_chan;
783 args[3] = attr_number;
784 args[4] = params;
785
786 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2",
787 ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
788 }
789
790 LLVMValueRef
791 ac_build_fs_interp_mov(struct ac_llvm_context *ctx,
792 LLVMValueRef parameter,
793 LLVMValueRef llvm_chan,
794 LLVMValueRef attr_number,
795 LLVMValueRef params)
796 {
797 LLVMValueRef args[4];
798
799 args[0] = parameter;
800 args[1] = llvm_chan;
801 args[2] = attr_number;
802 args[3] = params;
803
804 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.mov",
805 ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
806 }
807
808 LLVMValueRef
809 ac_build_gep0(struct ac_llvm_context *ctx,
810 LLVMValueRef base_ptr,
811 LLVMValueRef index)
812 {
813 LLVMValueRef indices[2] = {
814 LLVMConstInt(ctx->i32, 0, 0),
815 index,
816 };
817 return LLVMBuildGEP(ctx->builder, base_ptr,
818 indices, 2, "");
819 }
820
821 void
822 ac_build_indexed_store(struct ac_llvm_context *ctx,
823 LLVMValueRef base_ptr, LLVMValueRef index,
824 LLVMValueRef value)
825 {
826 LLVMBuildStore(ctx->builder, value,
827 ac_build_gep0(ctx, base_ptr, index));
828 }
829
830 /**
831 * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
832 * It's equivalent to doing a load from &base_ptr[index].
833 *
834 * \param base_ptr Where the array starts.
835 * \param index The element index into the array.
836 * \param uniform Whether the base_ptr and index can be assumed to be
837 * dynamically uniform (i.e. load to an SGPR)
838 * \param invariant Whether the load is invariant (no other opcodes affect it)
839 */
840 static LLVMValueRef
841 ac_build_load_custom(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
842 LLVMValueRef index, bool uniform, bool invariant)
843 {
844 LLVMValueRef pointer, result;
845
846 pointer = ac_build_gep0(ctx, base_ptr, index);
847 if (uniform)
848 LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
849 result = LLVMBuildLoad(ctx->builder, pointer, "");
850 if (invariant)
851 LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
852 return result;
853 }
854
855 LLVMValueRef ac_build_load(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
856 LLVMValueRef index)
857 {
858 return ac_build_load_custom(ctx, base_ptr, index, false, false);
859 }
860
861 LLVMValueRef ac_build_load_invariant(struct ac_llvm_context *ctx,
862 LLVMValueRef base_ptr, LLVMValueRef index)
863 {
864 return ac_build_load_custom(ctx, base_ptr, index, false, true);
865 }
866
867 LLVMValueRef ac_build_load_to_sgpr(struct ac_llvm_context *ctx,
868 LLVMValueRef base_ptr, LLVMValueRef index)
869 {
870 return ac_build_load_custom(ctx, base_ptr, index, true, true);
871 }
872
873 /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
874 * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
875 * or v4i32 (num_channels=3,4).
876 */
877 void
878 ac_build_buffer_store_dword(struct ac_llvm_context *ctx,
879 LLVMValueRef rsrc,
880 LLVMValueRef vdata,
881 unsigned num_channels,
882 LLVMValueRef voffset,
883 LLVMValueRef soffset,
884 unsigned inst_offset,
885 bool glc,
886 bool slc,
887 bool writeonly_memory,
888 bool swizzle_enable_hint)
889 {
890 /* SWIZZLE_ENABLE requires that soffset isn't folded into voffset
891 * (voffset is swizzled, but soffset isn't swizzled).
892 * llvm.amdgcn.buffer.store doesn't have a separate soffset parameter.
893 */
894 if (!swizzle_enable_hint) {
895 /* Split 3 channel stores, becase LLVM doesn't support 3-channel
896 * intrinsics. */
897 if (num_channels == 3) {
898 LLVMValueRef v[3], v01;
899
900 for (int i = 0; i < 3; i++) {
901 v[i] = LLVMBuildExtractElement(ctx->builder, vdata,
902 LLVMConstInt(ctx->i32, i, 0), "");
903 }
904 v01 = ac_build_gather_values(ctx, v, 2);
905
906 ac_build_buffer_store_dword(ctx, rsrc, v01, 2, voffset,
907 soffset, inst_offset, glc, slc,
908 writeonly_memory, swizzle_enable_hint);
909 ac_build_buffer_store_dword(ctx, rsrc, v[2], 1, voffset,
910 soffset, inst_offset + 8,
911 glc, slc,
912 writeonly_memory, swizzle_enable_hint);
913 return;
914 }
915
916 unsigned func = CLAMP(num_channels, 1, 3) - 1;
917 static const char *types[] = {"f32", "v2f32", "v4f32"};
918 char name[256];
919 LLVMValueRef offset = soffset;
920
921 if (inst_offset)
922 offset = LLVMBuildAdd(ctx->builder, offset,
923 LLVMConstInt(ctx->i32, inst_offset, 0), "");
924 if (voffset)
925 offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
926
927 LLVMValueRef args[] = {
928 ac_to_float(ctx, vdata),
929 LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
930 LLVMConstInt(ctx->i32, 0, 0),
931 offset,
932 LLVMConstInt(ctx->i1, glc, 0),
933 LLVMConstInt(ctx->i1, slc, 0),
934 };
935
936 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.store.%s",
937 types[func]);
938
939 ac_build_intrinsic(ctx, name, ctx->voidt,
940 args, ARRAY_SIZE(args),
941 writeonly_memory ?
942 AC_FUNC_ATTR_INACCESSIBLE_MEM_ONLY :
943 AC_FUNC_ATTR_WRITEONLY);
944 return;
945 }
946
947 static unsigned dfmt[] = {
948 V_008F0C_BUF_DATA_FORMAT_32,
949 V_008F0C_BUF_DATA_FORMAT_32_32,
950 V_008F0C_BUF_DATA_FORMAT_32_32_32,
951 V_008F0C_BUF_DATA_FORMAT_32_32_32_32
952 };
953 assert(num_channels >= 1 && num_channels <= 4);
954
955 LLVMValueRef args[] = {
956 rsrc,
957 vdata,
958 LLVMConstInt(ctx->i32, num_channels, 0),
959 voffset ? voffset : LLVMGetUndef(ctx->i32),
960 soffset,
961 LLVMConstInt(ctx->i32, inst_offset, 0),
962 LLVMConstInt(ctx->i32, dfmt[num_channels - 1], 0),
963 LLVMConstInt(ctx->i32, V_008F0C_BUF_NUM_FORMAT_UINT, 0),
964 LLVMConstInt(ctx->i32, voffset != NULL, 0),
965 LLVMConstInt(ctx->i32, 0, 0), /* idxen */
966 LLVMConstInt(ctx->i32, glc, 0),
967 LLVMConstInt(ctx->i32, slc, 0),
968 LLVMConstInt(ctx->i32, 0, 0), /* tfe*/
969 };
970
971 /* The instruction offset field has 12 bits */
972 assert(voffset || inst_offset < (1 << 12));
973
974 /* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
975 unsigned func = CLAMP(num_channels, 1, 3) - 1;
976 const char *types[] = {"i32", "v2i32", "v4i32"};
977 char name[256];
978 snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
979
980 ac_build_intrinsic(ctx, name, ctx->voidt,
981 args, ARRAY_SIZE(args),
982 AC_FUNC_ATTR_LEGACY);
983 }
984
985 static LLVMValueRef
986 ac_build_buffer_load_common(struct ac_llvm_context *ctx,
987 LLVMValueRef rsrc,
988 LLVMValueRef vindex,
989 LLVMValueRef voffset,
990 unsigned num_channels,
991 bool glc,
992 bool slc,
993 bool can_speculate,
994 bool use_format)
995 {
996 LLVMValueRef args[] = {
997 LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
998 vindex ? vindex : LLVMConstInt(ctx->i32, 0, 0),
999 voffset,
1000 LLVMConstInt(ctx->i1, glc, 0),
1001 LLVMConstInt(ctx->i1, slc, 0)
1002 };
1003 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1004
1005 LLVMTypeRef types[] = {ctx->f32, ctx->v2f32, ctx->v4f32};
1006 const char *type_names[] = {"f32", "v2f32", "v4f32"};
1007 char name[256];
1008
1009 if (use_format) {
1010 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.format.%s",
1011 type_names[func]);
1012 } else {
1013 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
1014 type_names[func]);
1015 }
1016
1017 return ac_build_intrinsic(ctx, name, types[func], args,
1018 ARRAY_SIZE(args),
1019 ac_get_load_intr_attribs(can_speculate));
1020 }
1021
1022 LLVMValueRef
1023 ac_build_buffer_load(struct ac_llvm_context *ctx,
1024 LLVMValueRef rsrc,
1025 int num_channels,
1026 LLVMValueRef vindex,
1027 LLVMValueRef voffset,
1028 LLVMValueRef soffset,
1029 unsigned inst_offset,
1030 unsigned glc,
1031 unsigned slc,
1032 bool can_speculate,
1033 bool allow_smem)
1034 {
1035 LLVMValueRef offset = LLVMConstInt(ctx->i32, inst_offset, 0);
1036 if (voffset)
1037 offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
1038 if (soffset)
1039 offset = LLVMBuildAdd(ctx->builder, offset, soffset, "");
1040
1041 /* TODO: VI and later generations can use SMEM with GLC=1.*/
1042 if (allow_smem && !glc && !slc) {
1043 assert(vindex == NULL);
1044
1045 LLVMValueRef result[8];
1046
1047 for (int i = 0; i < num_channels; i++) {
1048 if (i) {
1049 offset = LLVMBuildAdd(ctx->builder, offset,
1050 LLVMConstInt(ctx->i32, 4, 0), "");
1051 }
1052 LLVMValueRef args[2] = {rsrc, offset};
1053 result[i] = ac_build_intrinsic(ctx, "llvm.SI.load.const.v4i32",
1054 ctx->f32, args, 2,
1055 AC_FUNC_ATTR_READNONE |
1056 AC_FUNC_ATTR_LEGACY);
1057 }
1058 if (num_channels == 1)
1059 return result[0];
1060
1061 if (num_channels == 3)
1062 result[num_channels++] = LLVMGetUndef(ctx->f32);
1063 return ac_build_gather_values(ctx, result, num_channels);
1064 }
1065
1066 return ac_build_buffer_load_common(ctx, rsrc, vindex, offset,
1067 num_channels, glc, slc,
1068 can_speculate, false);
1069 }
1070
1071 LLVMValueRef ac_build_buffer_load_format(struct ac_llvm_context *ctx,
1072 LLVMValueRef rsrc,
1073 LLVMValueRef vindex,
1074 LLVMValueRef voffset,
1075 unsigned num_channels,
1076 bool glc,
1077 bool can_speculate)
1078 {
1079 return ac_build_buffer_load_common(ctx, rsrc, vindex, voffset,
1080 num_channels, glc, false,
1081 can_speculate, true);
1082 }
1083
1084 LLVMValueRef ac_build_buffer_load_format_gfx9_safe(struct ac_llvm_context *ctx,
1085 LLVMValueRef rsrc,
1086 LLVMValueRef vindex,
1087 LLVMValueRef voffset,
1088 unsigned num_channels,
1089 bool glc,
1090 bool can_speculate)
1091 {
1092 LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->builder, rsrc, LLVMConstInt(ctx->i32, 2, 0), "");
1093 LLVMValueRef stride = LLVMBuildExtractElement(ctx->builder, rsrc, LLVMConstInt(ctx->i32, 1, 0), "");
1094 stride = LLVMBuildLShr(ctx->builder, stride, LLVMConstInt(ctx->i32, 16, 0), "");
1095
1096 LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->builder,
1097 LLVMBuildICmp(ctx->builder, LLVMIntUGT, elem_count, stride, ""),
1098 elem_count, stride, "");
1099
1100 LLVMValueRef new_rsrc = LLVMBuildInsertElement(ctx->builder, rsrc, new_elem_count,
1101 LLVMConstInt(ctx->i32, 2, 0), "");
1102
1103 return ac_build_buffer_load_common(ctx, new_rsrc, vindex, voffset,
1104 num_channels, glc, false,
1105 can_speculate, true);
1106 }
1107
1108 /**
1109 * Set range metadata on an instruction. This can only be used on load and
1110 * call instructions. If you know an instruction can only produce the values
1111 * 0, 1, 2, you would do set_range_metadata(value, 0, 3);
1112 * \p lo is the minimum value inclusive.
1113 * \p hi is the maximum value exclusive.
1114 */
1115 static void set_range_metadata(struct ac_llvm_context *ctx,
1116 LLVMValueRef value, unsigned lo, unsigned hi)
1117 {
1118 LLVMValueRef range_md, md_args[2];
1119 LLVMTypeRef type = LLVMTypeOf(value);
1120 LLVMContextRef context = LLVMGetTypeContext(type);
1121
1122 md_args[0] = LLVMConstInt(type, lo, false);
1123 md_args[1] = LLVMConstInt(type, hi, false);
1124 range_md = LLVMMDNodeInContext(context, md_args, 2);
1125 LLVMSetMetadata(value, ctx->range_md_kind, range_md);
1126 }
1127
1128 LLVMValueRef
1129 ac_get_thread_id(struct ac_llvm_context *ctx)
1130 {
1131 LLVMValueRef tid;
1132
1133 LLVMValueRef tid_args[2];
1134 tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
1135 tid_args[1] = LLVMConstInt(ctx->i32, 0, false);
1136 tid_args[1] = ac_build_intrinsic(ctx,
1137 "llvm.amdgcn.mbcnt.lo", ctx->i32,
1138 tid_args, 2, AC_FUNC_ATTR_READNONE);
1139
1140 tid = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi",
1141 ctx->i32, tid_args,
1142 2, AC_FUNC_ATTR_READNONE);
1143 set_range_metadata(ctx, tid, 0, 64);
1144 return tid;
1145 }
1146
1147 /*
1148 * SI implements derivatives using the local data store (LDS)
1149 * All writes to the LDS happen in all executing threads at
1150 * the same time. TID is the Thread ID for the current
1151 * thread and is a value between 0 and 63, representing
1152 * the thread's position in the wavefront.
1153 *
1154 * For the pixel shader threads are grouped into quads of four pixels.
1155 * The TIDs of the pixels of a quad are:
1156 *
1157 * +------+------+
1158 * |4n + 0|4n + 1|
1159 * +------+------+
1160 * |4n + 2|4n + 3|
1161 * +------+------+
1162 *
1163 * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
1164 * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
1165 * the current pixel's column, and masking with 0xfffffffe yields the TID
1166 * of the left pixel of the current pixel's row.
1167 *
1168 * Adding 1 yields the TID of the pixel to the right of the left pixel, and
1169 * adding 2 yields the TID of the pixel below the top pixel.
1170 */
1171 LLVMValueRef
1172 ac_build_ddxy(struct ac_llvm_context *ctx,
1173 uint32_t mask,
1174 int idx,
1175 LLVMValueRef val)
1176 {
1177 LLVMValueRef tl, trbl, args[2];
1178 LLVMValueRef result;
1179
1180 if (ctx->chip_class >= VI) {
1181 LLVMValueRef thread_id, tl_tid, trbl_tid;
1182 thread_id = ac_get_thread_id(ctx);
1183
1184 tl_tid = LLVMBuildAnd(ctx->builder, thread_id,
1185 LLVMConstInt(ctx->i32, mask, false), "");
1186
1187 trbl_tid = LLVMBuildAdd(ctx->builder, tl_tid,
1188 LLVMConstInt(ctx->i32, idx, false), "");
1189
1190 args[0] = LLVMBuildMul(ctx->builder, tl_tid,
1191 LLVMConstInt(ctx->i32, 4, false), "");
1192 args[1] = val;
1193 tl = ac_build_intrinsic(ctx,
1194 "llvm.amdgcn.ds.bpermute", ctx->i32,
1195 args, 2,
1196 AC_FUNC_ATTR_READNONE |
1197 AC_FUNC_ATTR_CONVERGENT);
1198
1199 args[0] = LLVMBuildMul(ctx->builder, trbl_tid,
1200 LLVMConstInt(ctx->i32, 4, false), "");
1201 trbl = ac_build_intrinsic(ctx,
1202 "llvm.amdgcn.ds.bpermute", ctx->i32,
1203 args, 2,
1204 AC_FUNC_ATTR_READNONE |
1205 AC_FUNC_ATTR_CONVERGENT);
1206 } else {
1207 uint32_t masks[2] = {};
1208
1209 switch (mask) {
1210 case AC_TID_MASK_TOP_LEFT:
1211 masks[0] = 0x8000;
1212 if (idx == 1)
1213 masks[1] = 0x8055;
1214 else
1215 masks[1] = 0x80aa;
1216
1217 break;
1218 case AC_TID_MASK_TOP:
1219 masks[0] = 0x8044;
1220 masks[1] = 0x80ee;
1221 break;
1222 case AC_TID_MASK_LEFT:
1223 masks[0] = 0x80a0;
1224 masks[1] = 0x80f5;
1225 break;
1226 default:
1227 assert(0);
1228 }
1229
1230 args[0] = val;
1231 args[1] = LLVMConstInt(ctx->i32, masks[0], false);
1232
1233 tl = ac_build_intrinsic(ctx,
1234 "llvm.amdgcn.ds.swizzle", ctx->i32,
1235 args, 2,
1236 AC_FUNC_ATTR_READNONE |
1237 AC_FUNC_ATTR_CONVERGENT);
1238
1239 args[1] = LLVMConstInt(ctx->i32, masks[1], false);
1240 trbl = ac_build_intrinsic(ctx,
1241 "llvm.amdgcn.ds.swizzle", ctx->i32,
1242 args, 2,
1243 AC_FUNC_ATTR_READNONE |
1244 AC_FUNC_ATTR_CONVERGENT);
1245 }
1246
1247 tl = LLVMBuildBitCast(ctx->builder, tl, ctx->f32, "");
1248 trbl = LLVMBuildBitCast(ctx->builder, trbl, ctx->f32, "");
1249 result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
1250 return result;
1251 }
1252
1253 void
1254 ac_build_sendmsg(struct ac_llvm_context *ctx,
1255 uint32_t msg,
1256 LLVMValueRef wave_id)
1257 {
1258 LLVMValueRef args[2];
1259 args[0] = LLVMConstInt(ctx->i32, msg, false);
1260 args[1] = wave_id;
1261 ac_build_intrinsic(ctx, "llvm.amdgcn.s.sendmsg", ctx->voidt, args, 2, 0);
1262 }
1263
1264 LLVMValueRef
1265 ac_build_imsb(struct ac_llvm_context *ctx,
1266 LLVMValueRef arg,
1267 LLVMTypeRef dst_type)
1268 {
1269 LLVMValueRef msb = ac_build_intrinsic(ctx, "llvm.amdgcn.sffbh.i32",
1270 dst_type, &arg, 1,
1271 AC_FUNC_ATTR_READNONE);
1272
1273 /* The HW returns the last bit index from MSB, but NIR/TGSI wants
1274 * the index from LSB. Invert it by doing "31 - msb". */
1275 msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
1276 msb, "");
1277
1278 LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
1279 LLVMValueRef cond = LLVMBuildOr(ctx->builder,
1280 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
1281 arg, LLVMConstInt(ctx->i32, 0, 0), ""),
1282 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
1283 arg, all_ones, ""), "");
1284
1285 return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
1286 }
1287
1288 LLVMValueRef
1289 ac_build_umsb(struct ac_llvm_context *ctx,
1290 LLVMValueRef arg,
1291 LLVMTypeRef dst_type)
1292 {
1293 const char *intrin_name;
1294 LLVMTypeRef type;
1295 LLVMValueRef highest_bit;
1296 LLVMValueRef zero;
1297
1298 if (ac_get_elem_bits(ctx, LLVMTypeOf(arg)) == 64) {
1299 intrin_name = "llvm.ctlz.i64";
1300 type = ctx->i64;
1301 highest_bit = LLVMConstInt(ctx->i64, 63, false);
1302 zero = ctx->i64_0;
1303 } else {
1304 intrin_name = "llvm.ctlz.i32";
1305 type = ctx->i32;
1306 highest_bit = LLVMConstInt(ctx->i32, 31, false);
1307 zero = ctx->i32_0;
1308 }
1309
1310 LLVMValueRef params[2] = {
1311 arg,
1312 ctx->i1true,
1313 };
1314
1315 LLVMValueRef msb = ac_build_intrinsic(ctx, intrin_name, type,
1316 params, 2,
1317 AC_FUNC_ATTR_READNONE);
1318
1319 /* The HW returns the last bit index from MSB, but TGSI/NIR wants
1320 * the index from LSB. Invert it by doing "31 - msb". */
1321 msb = LLVMBuildSub(ctx->builder, highest_bit, msb, "");
1322 msb = LLVMBuildTruncOrBitCast(ctx->builder, msb, ctx->i32, "");
1323
1324 /* check for zero */
1325 return LLVMBuildSelect(ctx->builder,
1326 LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, zero, ""),
1327 LLVMConstInt(ctx->i32, -1, true), msb, "");
1328 }
1329
1330 LLVMValueRef ac_build_fmin(struct ac_llvm_context *ctx, LLVMValueRef a,
1331 LLVMValueRef b)
1332 {
1333 LLVMValueRef args[2] = {a, b};
1334 return ac_build_intrinsic(ctx, "llvm.minnum.f32", ctx->f32, args, 2,
1335 AC_FUNC_ATTR_READNONE);
1336 }
1337
1338 LLVMValueRef ac_build_fmax(struct ac_llvm_context *ctx, LLVMValueRef a,
1339 LLVMValueRef b)
1340 {
1341 LLVMValueRef args[2] = {a, b};
1342 return ac_build_intrinsic(ctx, "llvm.maxnum.f32", ctx->f32, args, 2,
1343 AC_FUNC_ATTR_READNONE);
1344 }
1345
1346 LLVMValueRef ac_build_imin(struct ac_llvm_context *ctx, LLVMValueRef a,
1347 LLVMValueRef b)
1348 {
1349 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSLE, a, b, "");
1350 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
1351 }
1352
1353 LLVMValueRef ac_build_imax(struct ac_llvm_context *ctx, LLVMValueRef a,
1354 LLVMValueRef b)
1355 {
1356 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, a, b, "");
1357 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
1358 }
1359
1360 LLVMValueRef ac_build_umin(struct ac_llvm_context *ctx, LLVMValueRef a,
1361 LLVMValueRef b)
1362 {
1363 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntULE, a, b, "");
1364 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
1365 }
1366
1367 LLVMValueRef ac_build_clamp(struct ac_llvm_context *ctx, LLVMValueRef value)
1368 {
1369 if (HAVE_LLVM >= 0x0500) {
1370 return ac_build_fmin(ctx, ac_build_fmax(ctx, value, ctx->f32_0),
1371 ctx->f32_1);
1372 }
1373
1374 LLVMValueRef args[3] = {
1375 value,
1376 LLVMConstReal(ctx->f32, 0),
1377 LLVMConstReal(ctx->f32, 1),
1378 };
1379
1380 return ac_build_intrinsic(ctx, "llvm.AMDGPU.clamp.", ctx->f32, args, 3,
1381 AC_FUNC_ATTR_READNONE |
1382 AC_FUNC_ATTR_LEGACY);
1383 }
1384
1385 void ac_build_export(struct ac_llvm_context *ctx, struct ac_export_args *a)
1386 {
1387 LLVMValueRef args[9];
1388
1389 if (HAVE_LLVM >= 0x0500) {
1390 args[0] = LLVMConstInt(ctx->i32, a->target, 0);
1391 args[1] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
1392
1393 if (a->compr) {
1394 LLVMTypeRef i16 = LLVMInt16TypeInContext(ctx->context);
1395 LLVMTypeRef v2i16 = LLVMVectorType(i16, 2);
1396
1397 args[2] = LLVMBuildBitCast(ctx->builder, a->out[0],
1398 v2i16, "");
1399 args[3] = LLVMBuildBitCast(ctx->builder, a->out[1],
1400 v2i16, "");
1401 args[4] = LLVMConstInt(ctx->i1, a->done, 0);
1402 args[5] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
1403
1404 ac_build_intrinsic(ctx, "llvm.amdgcn.exp.compr.v2i16",
1405 ctx->voidt, args, 6, 0);
1406 } else {
1407 args[2] = a->out[0];
1408 args[3] = a->out[1];
1409 args[4] = a->out[2];
1410 args[5] = a->out[3];
1411 args[6] = LLVMConstInt(ctx->i1, a->done, 0);
1412 args[7] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
1413
1414 ac_build_intrinsic(ctx, "llvm.amdgcn.exp.f32",
1415 ctx->voidt, args, 8, 0);
1416 }
1417 return;
1418 }
1419
1420 args[0] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
1421 args[1] = LLVMConstInt(ctx->i32, a->valid_mask, 0);
1422 args[2] = LLVMConstInt(ctx->i32, a->done, 0);
1423 args[3] = LLVMConstInt(ctx->i32, a->target, 0);
1424 args[4] = LLVMConstInt(ctx->i32, a->compr, 0);
1425 memcpy(args + 5, a->out, sizeof(a->out[0]) * 4);
1426
1427 ac_build_intrinsic(ctx, "llvm.SI.export", ctx->voidt, args, 9,
1428 AC_FUNC_ATTR_LEGACY);
1429 }
1430
1431 void ac_build_export_null(struct ac_llvm_context *ctx)
1432 {
1433 struct ac_export_args args;
1434
1435 args.enabled_channels = 0x0; /* enabled channels */
1436 args.valid_mask = 1; /* whether the EXEC mask is valid */
1437 args.done = 1; /* DONE bit */
1438 args.target = V_008DFC_SQ_EXP_NULL;
1439 args.compr = 0; /* COMPR flag (0 = 32-bit export) */
1440 args.out[0] = LLVMGetUndef(ctx->f32); /* R */
1441 args.out[1] = LLVMGetUndef(ctx->f32); /* G */
1442 args.out[2] = LLVMGetUndef(ctx->f32); /* B */
1443 args.out[3] = LLVMGetUndef(ctx->f32); /* A */
1444
1445 ac_build_export(ctx, &args);
1446 }
1447
1448 LLVMValueRef ac_build_image_opcode(struct ac_llvm_context *ctx,
1449 struct ac_image_args *a)
1450 {
1451 LLVMValueRef args[11];
1452 unsigned num_args = 0;
1453 const char *name = NULL;
1454 char intr_name[128], type[64];
1455
1456 bool sample = a->opcode == ac_image_sample ||
1457 a->opcode == ac_image_gather4 ||
1458 a->opcode == ac_image_get_lod;
1459
1460 if (sample)
1461 args[num_args++] = ac_to_float(ctx, a->addr);
1462 else
1463 args[num_args++] = a->addr;
1464
1465 args[num_args++] = a->resource;
1466 if (sample)
1467 args[num_args++] = a->sampler;
1468 args[num_args++] = LLVMConstInt(ctx->i32, a->dmask, 0);
1469 if (sample)
1470 args[num_args++] = LLVMConstInt(ctx->i1, a->unorm, 0);
1471 args[num_args++] = ctx->i1false; /* glc */
1472 args[num_args++] = ctx->i1false; /* slc */
1473 args[num_args++] = ctx->i1false; /* lwe */
1474 args[num_args++] = LLVMConstInt(ctx->i1, a->da, 0);
1475
1476 switch (a->opcode) {
1477 case ac_image_sample:
1478 name = "llvm.amdgcn.image.sample";
1479 break;
1480 case ac_image_gather4:
1481 name = "llvm.amdgcn.image.gather4";
1482 break;
1483 case ac_image_load:
1484 name = "llvm.amdgcn.image.load";
1485 break;
1486 case ac_image_load_mip:
1487 name = "llvm.amdgcn.image.load.mip";
1488 break;
1489 case ac_image_get_lod:
1490 name = "llvm.amdgcn.image.getlod";
1491 break;
1492 case ac_image_get_resinfo:
1493 name = "llvm.amdgcn.image.getresinfo";
1494 break;
1495 default:
1496 unreachable("invalid image opcode");
1497 }
1498
1499 ac_build_type_name_for_intr(LLVMTypeOf(args[0]), type,
1500 sizeof(type));
1501
1502 snprintf(intr_name, sizeof(intr_name), "%s%s%s%s.v4f32.%s.v8i32",
1503 name,
1504 a->compare ? ".c" : "",
1505 a->bias ? ".b" :
1506 a->lod ? ".l" :
1507 a->deriv ? ".d" :
1508 a->level_zero ? ".lz" : "",
1509 a->offset ? ".o" : "",
1510 type);
1511
1512 LLVMValueRef result =
1513 ac_build_intrinsic(ctx, intr_name,
1514 ctx->v4f32, args, num_args,
1515 AC_FUNC_ATTR_READNONE);
1516 if (!sample) {
1517 result = LLVMBuildBitCast(ctx->builder, result,
1518 ctx->v4i32, "");
1519 }
1520 return result;
1521 }
1522
1523 LLVMValueRef ac_build_cvt_pkrtz_f16(struct ac_llvm_context *ctx,
1524 LLVMValueRef args[2])
1525 {
1526 if (HAVE_LLVM >= 0x0500) {
1527 LLVMTypeRef v2f16 =
1528 LLVMVectorType(LLVMHalfTypeInContext(ctx->context), 2);
1529 LLVMValueRef res =
1530 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pkrtz",
1531 v2f16, args, 2,
1532 AC_FUNC_ATTR_READNONE);
1533 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
1534 }
1535
1536 return ac_build_intrinsic(ctx, "llvm.SI.packf16", ctx->i32, args, 2,
1537 AC_FUNC_ATTR_READNONE |
1538 AC_FUNC_ATTR_LEGACY);
1539 }
1540
1541 /* Upper 16 bits must be zero. */
1542 static LLVMValueRef ac_llvm_pack_two_int16(struct ac_llvm_context *ctx,
1543 LLVMValueRef val[2])
1544 {
1545 return LLVMBuildOr(ctx->builder, val[0],
1546 LLVMBuildShl(ctx->builder, val[1],
1547 LLVMConstInt(ctx->i32, 16, 0),
1548 ""), "");
1549 }
1550
1551 /* Upper 16 bits are ignored and will be dropped. */
1552 static LLVMValueRef ac_llvm_pack_two_int32_as_int16(struct ac_llvm_context *ctx,
1553 LLVMValueRef val[2])
1554 {
1555 LLVMValueRef v[2] = {
1556 LLVMBuildAnd(ctx->builder, val[0],
1557 LLVMConstInt(ctx->i32, 0xffff, 0), ""),
1558 val[1],
1559 };
1560 return ac_llvm_pack_two_int16(ctx, v);
1561 }
1562
1563 LLVMValueRef ac_build_cvt_pknorm_i16(struct ac_llvm_context *ctx,
1564 LLVMValueRef args[2])
1565 {
1566 if (HAVE_LLVM >= 0x0600) {
1567 LLVMValueRef res =
1568 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.i16",
1569 ctx->v2i16, args, 2,
1570 AC_FUNC_ATTR_READNONE);
1571 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
1572 }
1573
1574 LLVMValueRef val[2];
1575
1576 for (int chan = 0; chan < 2; chan++) {
1577 /* Clamp between [-1, 1]. */
1578 val[chan] = ac_build_fmin(ctx, args[chan], ctx->f32_1);
1579 val[chan] = ac_build_fmax(ctx, val[chan], LLVMConstReal(ctx->f32, -1));
1580 /* Convert to a signed integer in [-32767, 32767]. */
1581 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
1582 LLVMConstReal(ctx->f32, 32767), "");
1583 /* If positive, add 0.5, else add -0.5. */
1584 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
1585 LLVMBuildSelect(ctx->builder,
1586 LLVMBuildFCmp(ctx->builder, LLVMRealOGE,
1587 val[chan], ctx->f32_0, ""),
1588 LLVMConstReal(ctx->f32, 0.5),
1589 LLVMConstReal(ctx->f32, -0.5), ""), "");
1590 val[chan] = LLVMBuildFPToSI(ctx->builder, val[chan], ctx->i32, "");
1591 }
1592 return ac_llvm_pack_two_int32_as_int16(ctx, val);
1593 }
1594
1595 LLVMValueRef ac_build_cvt_pknorm_u16(struct ac_llvm_context *ctx,
1596 LLVMValueRef args[2])
1597 {
1598 if (HAVE_LLVM >= 0x0600) {
1599 LLVMValueRef res =
1600 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.u16",
1601 ctx->v2i16, args, 2,
1602 AC_FUNC_ATTR_READNONE);
1603 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
1604 }
1605
1606 LLVMValueRef val[2];
1607
1608 for (int chan = 0; chan < 2; chan++) {
1609 val[chan] = ac_build_clamp(ctx, args[chan]);
1610 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
1611 LLVMConstReal(ctx->f32, 65535), "");
1612 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
1613 LLVMConstReal(ctx->f32, 0.5), "");
1614 val[chan] = LLVMBuildFPToUI(ctx->builder, val[chan],
1615 ctx->i32, "");
1616 }
1617 return ac_llvm_pack_two_int32_as_int16(ctx, val);
1618 }
1619
1620 /* The 8-bit and 10-bit clamping is for HW workarounds. */
1621 LLVMValueRef ac_build_cvt_pk_i16(struct ac_llvm_context *ctx,
1622 LLVMValueRef args[2], unsigned bits, bool hi)
1623 {
1624 assert(bits == 8 || bits == 10 || bits == 16);
1625
1626 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
1627 bits == 8 ? 127 : bits == 10 ? 511 : 32767, 0);
1628 LLVMValueRef min_rgb = LLVMConstInt(ctx->i32,
1629 bits == 8 ? -128 : bits == 10 ? -512 : -32768, 0);
1630 LLVMValueRef max_alpha =
1631 bits != 10 ? max_rgb : ctx->i32_1;
1632 LLVMValueRef min_alpha =
1633 bits != 10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0);
1634 bool has_intrinsic = HAVE_LLVM >= 0x0600;
1635
1636 /* Clamp. */
1637 if (!has_intrinsic || bits != 16) {
1638 for (int i = 0; i < 2; i++) {
1639 bool alpha = hi && i == 1;
1640 args[i] = ac_build_imin(ctx, args[i],
1641 alpha ? max_alpha : max_rgb);
1642 args[i] = ac_build_imax(ctx, args[i],
1643 alpha ? min_alpha : min_rgb);
1644 }
1645 }
1646
1647 if (has_intrinsic) {
1648 LLVMValueRef res =
1649 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.i16",
1650 ctx->v2i16, args, 2,
1651 AC_FUNC_ATTR_READNONE);
1652 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
1653 }
1654
1655 return ac_llvm_pack_two_int32_as_int16(ctx, args);
1656 }
1657
1658 /* The 8-bit and 10-bit clamping is for HW workarounds. */
1659 LLVMValueRef ac_build_cvt_pk_u16(struct ac_llvm_context *ctx,
1660 LLVMValueRef args[2], unsigned bits, bool hi)
1661 {
1662 assert(bits == 8 || bits == 10 || bits == 16);
1663
1664 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
1665 bits == 8 ? 255 : bits == 10 ? 1023 : 65535, 0);
1666 LLVMValueRef max_alpha =
1667 bits != 10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0);
1668 bool has_intrinsic = HAVE_LLVM >= 0x0600;
1669
1670 /* Clamp. */
1671 if (!has_intrinsic || bits != 16) {
1672 for (int i = 0; i < 2; i++) {
1673 bool alpha = hi && i == 1;
1674 args[i] = ac_build_umin(ctx, args[i],
1675 alpha ? max_alpha : max_rgb);
1676 }
1677 }
1678
1679 if (has_intrinsic) {
1680 LLVMValueRef res =
1681 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.u16",
1682 ctx->v2i16, args, 2,
1683 AC_FUNC_ATTR_READNONE);
1684 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
1685 }
1686
1687 return ac_llvm_pack_two_int16(ctx, args);
1688 }
1689
1690 LLVMValueRef ac_build_wqm_vote(struct ac_llvm_context *ctx, LLVMValueRef i1)
1691 {
1692 assert(HAVE_LLVM >= 0x0600);
1693 return ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.vote", ctx->i1,
1694 &i1, 1, AC_FUNC_ATTR_READNONE);
1695 }
1696
1697 void ac_build_kill_if_false(struct ac_llvm_context *ctx, LLVMValueRef i1)
1698 {
1699 if (HAVE_LLVM >= 0x0600) {
1700 ac_build_intrinsic(ctx, "llvm.amdgcn.kill", ctx->voidt,
1701 &i1, 1, 0);
1702 return;
1703 }
1704
1705 LLVMValueRef value = LLVMBuildSelect(ctx->builder, i1,
1706 LLVMConstReal(ctx->f32, 1),
1707 LLVMConstReal(ctx->f32, -1), "");
1708 ac_build_intrinsic(ctx, "llvm.AMDGPU.kill", ctx->voidt,
1709 &value, 1, AC_FUNC_ATTR_LEGACY);
1710 }
1711
1712 LLVMValueRef ac_build_bfe(struct ac_llvm_context *ctx, LLVMValueRef input,
1713 LLVMValueRef offset, LLVMValueRef width,
1714 bool is_signed)
1715 {
1716 LLVMValueRef args[] = {
1717 input,
1718 offset,
1719 width,
1720 };
1721
1722 if (HAVE_LLVM >= 0x0500) {
1723 return ac_build_intrinsic(ctx,
1724 is_signed ? "llvm.amdgcn.sbfe.i32" :
1725 "llvm.amdgcn.ubfe.i32",
1726 ctx->i32, args, 3,
1727 AC_FUNC_ATTR_READNONE);
1728 }
1729
1730 return ac_build_intrinsic(ctx,
1731 is_signed ? "llvm.AMDGPU.bfe.i32" :
1732 "llvm.AMDGPU.bfe.u32",
1733 ctx->i32, args, 3,
1734 AC_FUNC_ATTR_READNONE |
1735 AC_FUNC_ATTR_LEGACY);
1736 }
1737
1738 void ac_build_waitcnt(struct ac_llvm_context *ctx, unsigned simm16)
1739 {
1740 LLVMValueRef args[1] = {
1741 LLVMConstInt(ctx->i32, simm16, false),
1742 };
1743 ac_build_intrinsic(ctx, "llvm.amdgcn.s.waitcnt",
1744 ctx->voidt, args, 1, 0);
1745 }
1746
1747 LLVMValueRef ac_build_fract(struct ac_llvm_context *ctx, LLVMValueRef src0,
1748 unsigned bitsize)
1749 {
1750 LLVMTypeRef type;
1751 char *intr;
1752
1753 if (bitsize == 32) {
1754 intr = "llvm.floor.f32";
1755 type = ctx->f32;
1756 } else {
1757 intr = "llvm.floor.f64";
1758 type = ctx->f64;
1759 }
1760
1761 LLVMValueRef params[] = {
1762 src0,
1763 };
1764 LLVMValueRef floor = ac_build_intrinsic(ctx, intr, type, params, 1,
1765 AC_FUNC_ATTR_READNONE);
1766 return LLVMBuildFSub(ctx->builder, src0, floor, "");
1767 }
1768
1769 LLVMValueRef ac_build_isign(struct ac_llvm_context *ctx, LLVMValueRef src0,
1770 unsigned bitsize)
1771 {
1772 LLVMValueRef cmp, val, zero, one;
1773 LLVMTypeRef type;
1774
1775 if (bitsize == 32) {
1776 type = ctx->i32;
1777 zero = ctx->i32_0;
1778 one = ctx->i32_1;
1779 } else {
1780 type = ctx->i64;
1781 zero = ctx->i64_0;
1782 one = ctx->i64_1;
1783 }
1784
1785 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, zero, "");
1786 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
1787 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, zero, "");
1788 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(type, -1, true), "");
1789 return val;
1790 }
1791
1792 LLVMValueRef ac_build_fsign(struct ac_llvm_context *ctx, LLVMValueRef src0,
1793 unsigned bitsize)
1794 {
1795 LLVMValueRef cmp, val, zero, one;
1796 LLVMTypeRef type;
1797
1798 if (bitsize == 32) {
1799 type = ctx->f32;
1800 zero = ctx->f32_0;
1801 one = ctx->f32_1;
1802 } else {
1803 type = ctx->f64;
1804 zero = ctx->f64_0;
1805 one = ctx->f64_1;
1806 }
1807
1808 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, zero, "");
1809 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
1810 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, zero, "");
1811 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(type, -1.0), "");
1812 return val;
1813 }
1814
1815 void ac_get_image_intr_name(const char *base_name,
1816 LLVMTypeRef data_type,
1817 LLVMTypeRef coords_type,
1818 LLVMTypeRef rsrc_type,
1819 char *out_name, unsigned out_len)
1820 {
1821 char coords_type_name[8];
1822
1823 ac_build_type_name_for_intr(coords_type, coords_type_name,
1824 sizeof(coords_type_name));
1825
1826 char data_type_name[8];
1827 char rsrc_type_name[8];
1828
1829 ac_build_type_name_for_intr(data_type, data_type_name,
1830 sizeof(data_type_name));
1831 ac_build_type_name_for_intr(rsrc_type, rsrc_type_name,
1832 sizeof(rsrc_type_name));
1833 snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
1834 data_type_name, coords_type_name, rsrc_type_name);
1835 }
1836
1837 #define AC_EXP_TARGET (HAVE_LLVM >= 0x0500 ? 0 : 3)
1838 #define AC_EXP_ENABLED_CHANNELS (HAVE_LLVM >= 0x0500 ? 1 : 0)
1839 #define AC_EXP_OUT0 (HAVE_LLVM >= 0x0500 ? 2 : 5)
1840
1841 enum ac_ir_type {
1842 AC_IR_UNDEF,
1843 AC_IR_CONST,
1844 AC_IR_VALUE,
1845 };
1846
1847 struct ac_vs_exp_chan
1848 {
1849 LLVMValueRef value;
1850 float const_float;
1851 enum ac_ir_type type;
1852 };
1853
1854 struct ac_vs_exp_inst {
1855 unsigned offset;
1856 LLVMValueRef inst;
1857 struct ac_vs_exp_chan chan[4];
1858 };
1859
1860 struct ac_vs_exports {
1861 unsigned num;
1862 struct ac_vs_exp_inst exp[VARYING_SLOT_MAX];
1863 };
1864
1865 /* Return true if the PARAM export has been eliminated. */
1866 static bool ac_eliminate_const_output(uint8_t *vs_output_param_offset,
1867 uint32_t num_outputs,
1868 struct ac_vs_exp_inst *exp)
1869 {
1870 unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
1871 bool is_zero[4] = {}, is_one[4] = {};
1872
1873 for (i = 0; i < 4; i++) {
1874 /* It's a constant expression. Undef outputs are eliminated too. */
1875 if (exp->chan[i].type == AC_IR_UNDEF) {
1876 is_zero[i] = true;
1877 is_one[i] = true;
1878 } else if (exp->chan[i].type == AC_IR_CONST) {
1879 if (exp->chan[i].const_float == 0)
1880 is_zero[i] = true;
1881 else if (exp->chan[i].const_float == 1)
1882 is_one[i] = true;
1883 else
1884 return false; /* other constant */
1885 } else
1886 return false;
1887 }
1888
1889 /* Only certain combinations of 0 and 1 can be eliminated. */
1890 if (is_zero[0] && is_zero[1] && is_zero[2])
1891 default_val = is_zero[3] ? 0 : 1;
1892 else if (is_one[0] && is_one[1] && is_one[2])
1893 default_val = is_zero[3] ? 2 : 3;
1894 else
1895 return false;
1896
1897 /* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
1898 LLVMInstructionEraseFromParent(exp->inst);
1899
1900 /* Change OFFSET to DEFAULT_VAL. */
1901 for (i = 0; i < num_outputs; i++) {
1902 if (vs_output_param_offset[i] == exp->offset) {
1903 vs_output_param_offset[i] =
1904 AC_EXP_PARAM_DEFAULT_VAL_0000 + default_val;
1905 break;
1906 }
1907 }
1908 return true;
1909 }
1910
1911 static bool ac_eliminate_duplicated_output(struct ac_llvm_context *ctx,
1912 uint8_t *vs_output_param_offset,
1913 uint32_t num_outputs,
1914 struct ac_vs_exports *processed,
1915 struct ac_vs_exp_inst *exp)
1916 {
1917 unsigned p, copy_back_channels = 0;
1918
1919 /* See if the output is already in the list of processed outputs.
1920 * The LLVMValueRef comparison relies on SSA.
1921 */
1922 for (p = 0; p < processed->num; p++) {
1923 bool different = false;
1924
1925 for (unsigned j = 0; j < 4; j++) {
1926 struct ac_vs_exp_chan *c1 = &processed->exp[p].chan[j];
1927 struct ac_vs_exp_chan *c2 = &exp->chan[j];
1928
1929 /* Treat undef as a match. */
1930 if (c2->type == AC_IR_UNDEF)
1931 continue;
1932
1933 /* If c1 is undef but c2 isn't, we can copy c2 to c1
1934 * and consider the instruction duplicated.
1935 */
1936 if (c1->type == AC_IR_UNDEF) {
1937 copy_back_channels |= 1 << j;
1938 continue;
1939 }
1940
1941 /* Test whether the channels are not equal. */
1942 if (c1->type != c2->type ||
1943 (c1->type == AC_IR_CONST &&
1944 c1->const_float != c2->const_float) ||
1945 (c1->type == AC_IR_VALUE &&
1946 c1->value != c2->value)) {
1947 different = true;
1948 break;
1949 }
1950 }
1951 if (!different)
1952 break;
1953
1954 copy_back_channels = 0;
1955 }
1956 if (p == processed->num)
1957 return false;
1958
1959 /* If a match was found, but the matching export has undef where the new
1960 * one has a normal value, copy the normal value to the undef channel.
1961 */
1962 struct ac_vs_exp_inst *match = &processed->exp[p];
1963
1964 /* Get current enabled channels mask. */
1965 LLVMValueRef arg = LLVMGetOperand(match->inst, AC_EXP_ENABLED_CHANNELS);
1966 unsigned enabled_channels = LLVMConstIntGetZExtValue(arg);
1967
1968 while (copy_back_channels) {
1969 unsigned chan = u_bit_scan(&copy_back_channels);
1970
1971 assert(match->chan[chan].type == AC_IR_UNDEF);
1972 LLVMSetOperand(match->inst, AC_EXP_OUT0 + chan,
1973 exp->chan[chan].value);
1974 match->chan[chan] = exp->chan[chan];
1975
1976 /* Update number of enabled channels because the original mask
1977 * is not always 0xf.
1978 */
1979 enabled_channels |= (1 << chan);
1980 LLVMSetOperand(match->inst, AC_EXP_ENABLED_CHANNELS,
1981 LLVMConstInt(ctx->i32, enabled_channels, 0));
1982 }
1983
1984 /* The PARAM export is duplicated. Kill it. */
1985 LLVMInstructionEraseFromParent(exp->inst);
1986
1987 /* Change OFFSET to the matching export. */
1988 for (unsigned i = 0; i < num_outputs; i++) {
1989 if (vs_output_param_offset[i] == exp->offset) {
1990 vs_output_param_offset[i] = match->offset;
1991 break;
1992 }
1993 }
1994 return true;
1995 }
1996
1997 void ac_optimize_vs_outputs(struct ac_llvm_context *ctx,
1998 LLVMValueRef main_fn,
1999 uint8_t *vs_output_param_offset,
2000 uint32_t num_outputs,
2001 uint8_t *num_param_exports)
2002 {
2003 LLVMBasicBlockRef bb;
2004 bool removed_any = false;
2005 struct ac_vs_exports exports;
2006
2007 exports.num = 0;
2008
2009 /* Process all LLVM instructions. */
2010 bb = LLVMGetFirstBasicBlock(main_fn);
2011 while (bb) {
2012 LLVMValueRef inst = LLVMGetFirstInstruction(bb);
2013
2014 while (inst) {
2015 LLVMValueRef cur = inst;
2016 inst = LLVMGetNextInstruction(inst);
2017 struct ac_vs_exp_inst exp;
2018
2019 if (LLVMGetInstructionOpcode(cur) != LLVMCall)
2020 continue;
2021
2022 LLVMValueRef callee = ac_llvm_get_called_value(cur);
2023
2024 if (!ac_llvm_is_function(callee))
2025 continue;
2026
2027 const char *name = LLVMGetValueName(callee);
2028 unsigned num_args = LLVMCountParams(callee);
2029
2030 /* Check if this is an export instruction. */
2031 if ((num_args != 9 && num_args != 8) ||
2032 (strcmp(name, "llvm.SI.export") &&
2033 strcmp(name, "llvm.amdgcn.exp.f32")))
2034 continue;
2035
2036 LLVMValueRef arg = LLVMGetOperand(cur, AC_EXP_TARGET);
2037 unsigned target = LLVMConstIntGetZExtValue(arg);
2038
2039 if (target < V_008DFC_SQ_EXP_PARAM)
2040 continue;
2041
2042 target -= V_008DFC_SQ_EXP_PARAM;
2043
2044 /* Parse the instruction. */
2045 memset(&exp, 0, sizeof(exp));
2046 exp.offset = target;
2047 exp.inst = cur;
2048
2049 for (unsigned i = 0; i < 4; i++) {
2050 LLVMValueRef v = LLVMGetOperand(cur, AC_EXP_OUT0 + i);
2051
2052 exp.chan[i].value = v;
2053
2054 if (LLVMIsUndef(v)) {
2055 exp.chan[i].type = AC_IR_UNDEF;
2056 } else if (LLVMIsAConstantFP(v)) {
2057 LLVMBool loses_info;
2058 exp.chan[i].type = AC_IR_CONST;
2059 exp.chan[i].const_float =
2060 LLVMConstRealGetDouble(v, &loses_info);
2061 } else {
2062 exp.chan[i].type = AC_IR_VALUE;
2063 }
2064 }
2065
2066 /* Eliminate constant and duplicated PARAM exports. */
2067 if (ac_eliminate_const_output(vs_output_param_offset,
2068 num_outputs, &exp) ||
2069 ac_eliminate_duplicated_output(ctx,
2070 vs_output_param_offset,
2071 num_outputs, &exports,
2072 &exp)) {
2073 removed_any = true;
2074 } else {
2075 exports.exp[exports.num++] = exp;
2076 }
2077 }
2078 bb = LLVMGetNextBasicBlock(bb);
2079 }
2080
2081 /* Remove holes in export memory due to removed PARAM exports.
2082 * This is done by renumbering all PARAM exports.
2083 */
2084 if (removed_any) {
2085 uint8_t old_offset[VARYING_SLOT_MAX];
2086 unsigned out, i;
2087
2088 /* Make a copy of the offsets. We need the old version while
2089 * we are modifying some of them. */
2090 memcpy(old_offset, vs_output_param_offset,
2091 sizeof(old_offset));
2092
2093 for (i = 0; i < exports.num; i++) {
2094 unsigned offset = exports.exp[i].offset;
2095
2096 /* Update vs_output_param_offset. Multiple outputs can
2097 * have the same offset.
2098 */
2099 for (out = 0; out < num_outputs; out++) {
2100 if (old_offset[out] == offset)
2101 vs_output_param_offset[out] = i;
2102 }
2103
2104 /* Change the PARAM offset in the instruction. */
2105 LLVMSetOperand(exports.exp[i].inst, AC_EXP_TARGET,
2106 LLVMConstInt(ctx->i32,
2107 V_008DFC_SQ_EXP_PARAM + i, 0));
2108 }
2109 *num_param_exports = exports.num;
2110 }
2111 }
2112
2113 void ac_init_exec_full_mask(struct ac_llvm_context *ctx)
2114 {
2115 LLVMValueRef full_mask = LLVMConstInt(ctx->i64, ~0ull, 0);
2116 ac_build_intrinsic(ctx,
2117 "llvm.amdgcn.init.exec", ctx->voidt,
2118 &full_mask, 1, AC_FUNC_ATTR_CONVERGENT);
2119 }
2120
2121 void ac_declare_lds_as_pointer(struct ac_llvm_context *ctx)
2122 {
2123 unsigned lds_size = ctx->chip_class >= CIK ? 65536 : 32768;
2124 ctx->lds = LLVMBuildIntToPtr(ctx->builder, ctx->i32_0,
2125 LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), AC_LOCAL_ADDR_SPACE),
2126 "lds");
2127 }
2128
2129 LLVMValueRef ac_lds_load(struct ac_llvm_context *ctx,
2130 LLVMValueRef dw_addr)
2131 {
2132 return ac_build_load(ctx, ctx->lds, dw_addr);
2133 }
2134
2135 void ac_lds_store(struct ac_llvm_context *ctx,
2136 LLVMValueRef dw_addr,
2137 LLVMValueRef value)
2138 {
2139 value = ac_to_integer(ctx, value);
2140 ac_build_indexed_store(ctx, ctx->lds,
2141 dw_addr, value);
2142 }
2143
2144 LLVMValueRef ac_find_lsb(struct ac_llvm_context *ctx,
2145 LLVMTypeRef dst_type,
2146 LLVMValueRef src0)
2147 {
2148 unsigned src0_bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
2149 const char *intrin_name;
2150 LLVMTypeRef type;
2151 LLVMValueRef zero;
2152 if (src0_bitsize == 64) {
2153 intrin_name = "llvm.cttz.i64";
2154 type = ctx->i64;
2155 zero = ctx->i64_0;
2156 } else {
2157 intrin_name = "llvm.cttz.i32";
2158 type = ctx->i32;
2159 zero = ctx->i32_0;
2160 }
2161
2162 LLVMValueRef params[2] = {
2163 src0,
2164
2165 /* The value of 1 means that ffs(x=0) = undef, so LLVM won't
2166 * add special code to check for x=0. The reason is that
2167 * the LLVM behavior for x=0 is different from what we
2168 * need here. However, LLVM also assumes that ffs(x) is
2169 * in [0, 31], but GLSL expects that ffs(0) = -1, so
2170 * a conditional assignment to handle 0 is still required.
2171 *
2172 * The hardware already implements the correct behavior.
2173 */
2174 LLVMConstInt(ctx->i1, 1, false),
2175 };
2176
2177 LLVMValueRef lsb = ac_build_intrinsic(ctx, intrin_name, type,
2178 params, 2,
2179 AC_FUNC_ATTR_READNONE);
2180
2181 if (src0_bitsize == 64) {
2182 lsb = LLVMBuildTrunc(ctx->builder, lsb, ctx->i32, "");
2183 }
2184
2185 /* TODO: We need an intrinsic to skip this conditional. */
2186 /* Check for zero: */
2187 return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder,
2188 LLVMIntEQ, src0,
2189 zero, ""),
2190 LLVMConstInt(ctx->i32, -1, 0), lsb, "");
2191 }
2192
2193 LLVMTypeRef ac_array_in_const_addr_space(LLVMTypeRef elem_type)
2194 {
2195 return LLVMPointerType(LLVMArrayType(elem_type, 0),
2196 AC_CONST_ADDR_SPACE);
2197 }
2198
2199 LLVMTypeRef ac_array_in_const32_addr_space(LLVMTypeRef elem_type)
2200 {
2201 if (!HAVE_32BIT_POINTERS)
2202 return ac_array_in_const_addr_space(elem_type);
2203
2204 return LLVMPointerType(LLVMArrayType(elem_type, 0),
2205 AC_CONST_32BIT_ADDR_SPACE);
2206 }
2207
2208 static struct ac_llvm_flow *
2209 get_current_flow(struct ac_llvm_context *ctx)
2210 {
2211 if (ctx->flow_depth > 0)
2212 return &ctx->flow[ctx->flow_depth - 1];
2213 return NULL;
2214 }
2215
2216 static struct ac_llvm_flow *
2217 get_innermost_loop(struct ac_llvm_context *ctx)
2218 {
2219 for (unsigned i = ctx->flow_depth; i > 0; --i) {
2220 if (ctx->flow[i - 1].loop_entry_block)
2221 return &ctx->flow[i - 1];
2222 }
2223 return NULL;
2224 }
2225
2226 static struct ac_llvm_flow *
2227 push_flow(struct ac_llvm_context *ctx)
2228 {
2229 struct ac_llvm_flow *flow;
2230
2231 if (ctx->flow_depth >= ctx->flow_depth_max) {
2232 unsigned new_max = MAX2(ctx->flow_depth << 1,
2233 AC_LLVM_INITIAL_CF_DEPTH);
2234
2235 ctx->flow = realloc(ctx->flow, new_max * sizeof(*ctx->flow));
2236 ctx->flow_depth_max = new_max;
2237 }
2238
2239 flow = &ctx->flow[ctx->flow_depth];
2240 ctx->flow_depth++;
2241
2242 flow->next_block = NULL;
2243 flow->loop_entry_block = NULL;
2244 return flow;
2245 }
2246
2247 static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base,
2248 int label_id)
2249 {
2250 char buf[32];
2251 snprintf(buf, sizeof(buf), "%s%d", base, label_id);
2252 LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
2253 }
2254
2255 /* Append a basic block at the level of the parent flow.
2256 */
2257 static LLVMBasicBlockRef append_basic_block(struct ac_llvm_context *ctx,
2258 const char *name)
2259 {
2260 assert(ctx->flow_depth >= 1);
2261
2262 if (ctx->flow_depth >= 2) {
2263 struct ac_llvm_flow *flow = &ctx->flow[ctx->flow_depth - 2];
2264
2265 return LLVMInsertBasicBlockInContext(ctx->context,
2266 flow->next_block, name);
2267 }
2268
2269 LLVMValueRef main_fn =
2270 LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->builder));
2271 return LLVMAppendBasicBlockInContext(ctx->context, main_fn, name);
2272 }
2273
2274 /* Emit a branch to the given default target for the current block if
2275 * applicable -- that is, if the current block does not already contain a
2276 * branch from a break or continue.
2277 */
2278 static void emit_default_branch(LLVMBuilderRef builder,
2279 LLVMBasicBlockRef target)
2280 {
2281 if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
2282 LLVMBuildBr(builder, target);
2283 }
2284
2285 void ac_build_bgnloop(struct ac_llvm_context *ctx, int label_id)
2286 {
2287 struct ac_llvm_flow *flow = push_flow(ctx);
2288 flow->loop_entry_block = append_basic_block(ctx, "LOOP");
2289 flow->next_block = append_basic_block(ctx, "ENDLOOP");
2290 set_basicblock_name(flow->loop_entry_block, "loop", label_id);
2291 LLVMBuildBr(ctx->builder, flow->loop_entry_block);
2292 LLVMPositionBuilderAtEnd(ctx->builder, flow->loop_entry_block);
2293 }
2294
2295 void ac_build_break(struct ac_llvm_context *ctx)
2296 {
2297 struct ac_llvm_flow *flow = get_innermost_loop(ctx);
2298 LLVMBuildBr(ctx->builder, flow->next_block);
2299 }
2300
2301 void ac_build_continue(struct ac_llvm_context *ctx)
2302 {
2303 struct ac_llvm_flow *flow = get_innermost_loop(ctx);
2304 LLVMBuildBr(ctx->builder, flow->loop_entry_block);
2305 }
2306
2307 void ac_build_else(struct ac_llvm_context *ctx, int label_id)
2308 {
2309 struct ac_llvm_flow *current_branch = get_current_flow(ctx);
2310 LLVMBasicBlockRef endif_block;
2311
2312 assert(!current_branch->loop_entry_block);
2313
2314 endif_block = append_basic_block(ctx, "ENDIF");
2315 emit_default_branch(ctx->builder, endif_block);
2316
2317 LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
2318 set_basicblock_name(current_branch->next_block, "else", label_id);
2319
2320 current_branch->next_block = endif_block;
2321 }
2322
2323 void ac_build_endif(struct ac_llvm_context *ctx, int label_id)
2324 {
2325 struct ac_llvm_flow *current_branch = get_current_flow(ctx);
2326
2327 assert(!current_branch->loop_entry_block);
2328
2329 emit_default_branch(ctx->builder, current_branch->next_block);
2330 LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
2331 set_basicblock_name(current_branch->next_block, "endif", label_id);
2332
2333 ctx->flow_depth--;
2334 }
2335
2336 void ac_build_endloop(struct ac_llvm_context *ctx, int label_id)
2337 {
2338 struct ac_llvm_flow *current_loop = get_current_flow(ctx);
2339
2340 assert(current_loop->loop_entry_block);
2341
2342 emit_default_branch(ctx->builder, current_loop->loop_entry_block);
2343
2344 LLVMPositionBuilderAtEnd(ctx->builder, current_loop->next_block);
2345 set_basicblock_name(current_loop->next_block, "endloop", label_id);
2346 ctx->flow_depth--;
2347 }
2348
2349 static void if_cond_emit(struct ac_llvm_context *ctx, LLVMValueRef cond,
2350 int label_id)
2351 {
2352 struct ac_llvm_flow *flow = push_flow(ctx);
2353 LLVMBasicBlockRef if_block;
2354
2355 if_block = append_basic_block(ctx, "IF");
2356 flow->next_block = append_basic_block(ctx, "ELSE");
2357 set_basicblock_name(if_block, "if", label_id);
2358 LLVMBuildCondBr(ctx->builder, cond, if_block, flow->next_block);
2359 LLVMPositionBuilderAtEnd(ctx->builder, if_block);
2360 }
2361
2362 void ac_build_if(struct ac_llvm_context *ctx, LLVMValueRef value,
2363 int label_id)
2364 {
2365 LLVMValueRef cond = LLVMBuildFCmp(ctx->builder, LLVMRealUNE,
2366 value, ctx->f32_0, "");
2367 if_cond_emit(ctx, cond, label_id);
2368 }
2369
2370 void ac_build_uif(struct ac_llvm_context *ctx, LLVMValueRef value,
2371 int label_id)
2372 {
2373 LLVMValueRef cond = LLVMBuildICmp(ctx->builder, LLVMIntNE,
2374 ac_to_integer(ctx, value),
2375 ctx->i32_0, "");
2376 if_cond_emit(ctx, cond, label_id);
2377 }
2378
2379 LLVMValueRef ac_build_alloca(struct ac_llvm_context *ac, LLVMTypeRef type,
2380 const char *name)
2381 {
2382 LLVMBuilderRef builder = ac->builder;
2383 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
2384 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
2385 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
2386 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
2387 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context);
2388 LLVMValueRef res;
2389
2390 if (first_instr) {
2391 LLVMPositionBuilderBefore(first_builder, first_instr);
2392 } else {
2393 LLVMPositionBuilderAtEnd(first_builder, first_block);
2394 }
2395
2396 res = LLVMBuildAlloca(first_builder, type, name);
2397 LLVMBuildStore(builder, LLVMConstNull(type), res);
2398
2399 LLVMDisposeBuilder(first_builder);
2400
2401 return res;
2402 }
2403
2404 LLVMValueRef ac_build_alloca_undef(struct ac_llvm_context *ac,
2405 LLVMTypeRef type, const char *name)
2406 {
2407 LLVMValueRef ptr = ac_build_alloca(ac, type, name);
2408 LLVMBuildStore(ac->builder, LLVMGetUndef(type), ptr);
2409 return ptr;
2410 }
2411
2412 LLVMValueRef ac_cast_ptr(struct ac_llvm_context *ctx, LLVMValueRef ptr,
2413 LLVMTypeRef type)
2414 {
2415 int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
2416 return LLVMBuildBitCast(ctx->builder, ptr,
2417 LLVMPointerType(type, addr_space), "");
2418 }
2419
2420 LLVMValueRef ac_trim_vector(struct ac_llvm_context *ctx, LLVMValueRef value,
2421 unsigned count)
2422 {
2423 unsigned num_components = ac_get_llvm_num_components(value);
2424 if (count == num_components)
2425 return value;
2426
2427 LLVMValueRef masks[] = {
2428 LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
2429 LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false)};
2430
2431 if (count == 1)
2432 return LLVMBuildExtractElement(ctx->builder, value, masks[0],
2433 "");
2434
2435 LLVMValueRef swizzle = LLVMConstVector(masks, count);
2436 return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
2437 }
2438
2439 LLVMValueRef ac_unpack_param(struct ac_llvm_context *ctx, LLVMValueRef param,
2440 unsigned rshift, unsigned bitwidth)
2441 {
2442 LLVMValueRef value = param;
2443 if (rshift)
2444 value = LLVMBuildLShr(ctx->builder, value,
2445 LLVMConstInt(ctx->i32, rshift, false), "");
2446
2447 if (rshift + bitwidth < 32) {
2448 unsigned mask = (1 << bitwidth) - 1;
2449 value = LLVMBuildAnd(ctx->builder, value,
2450 LLVMConstInt(ctx->i32, mask, false), "");
2451 }
2452 return value;
2453 }
2454
2455 /* Adjust the sample index according to FMASK.
2456 *
2457 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
2458 * which is the identity mapping. Each nibble says which physical sample
2459 * should be fetched to get that sample.
2460 *
2461 * For example, 0x11111100 means there are only 2 samples stored and
2462 * the second sample covers 3/4 of the pixel. When reading samples 0
2463 * and 1, return physical sample 0 (determined by the first two 0s
2464 * in FMASK), otherwise return physical sample 1.
2465 *
2466 * The sample index should be adjusted as follows:
2467 * addr[sample_index] = (fmask >> (addr[sample_index] * 4)) & 0xF;
2468 */
2469 void ac_apply_fmask_to_sample(struct ac_llvm_context *ac, LLVMValueRef fmask,
2470 LLVMValueRef *addr, bool is_array_tex)
2471 {
2472 struct ac_image_args fmask_load = {};
2473 fmask_load.opcode = ac_image_load;
2474 fmask_load.resource = fmask;
2475 fmask_load.dmask = 0xf;
2476 fmask_load.da = is_array_tex;
2477
2478 LLVMValueRef fmask_addr[4];
2479 memcpy(fmask_addr, addr, sizeof(fmask_addr[0]) * 3);
2480 fmask_addr[3] = LLVMGetUndef(ac->i32);
2481
2482 fmask_load.addr = ac_build_gather_values(ac, fmask_addr,
2483 is_array_tex ? 4 : 2);
2484
2485 LLVMValueRef fmask_value = ac_build_image_opcode(ac, &fmask_load);
2486 fmask_value = LLVMBuildExtractElement(ac->builder, fmask_value,
2487 ac->i32_0, "");
2488
2489 /* Apply the formula. */
2490 unsigned sample_chan = is_array_tex ? 3 : 2;
2491 LLVMValueRef final_sample;
2492 final_sample = LLVMBuildMul(ac->builder, addr[sample_chan],
2493 LLVMConstInt(ac->i32, 4, 0), "");
2494 final_sample = LLVMBuildLShr(ac->builder, fmask_value, final_sample, "");
2495 final_sample = LLVMBuildAnd(ac->builder, final_sample,
2496 LLVMConstInt(ac->i32, 0xF, 0), "");
2497
2498 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
2499 * resource descriptor is 0 (invalid),
2500 */
2501 LLVMValueRef tmp;
2502 tmp = LLVMBuildBitCast(ac->builder, fmask, ac->v8i32, "");
2503 tmp = LLVMBuildExtractElement(ac->builder, tmp, ac->i32_1, "");
2504 tmp = LLVMBuildICmp(ac->builder, LLVMIntNE, tmp, ac->i32_0, "");
2505
2506 /* Replace the MSAA sample index. */
2507 addr[sample_chan] = LLVMBuildSelect(ac->builder, tmp, final_sample,
2508 addr[sample_chan], "");
2509 }