ac/nir: Fix accessing an unitialized value.
[mesa.git] / src / amd / common / ac_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Bas Nieuwenhuizen
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "ac_nir_to_llvm.h"
25 #include "ac_llvm_util.h"
26 #include "ac_binary.h"
27 #include "sid.h"
28 #include "nir/nir.h"
29 #include "../vulkan/radv_descriptor_set.h"
30 #include "util/bitscan.h"
31 #include <llvm-c/Transforms/Scalar.h>
32
33 enum radeon_llvm_calling_convention {
34 RADEON_LLVM_AMDGPU_VS = 87,
35 RADEON_LLVM_AMDGPU_GS = 88,
36 RADEON_LLVM_AMDGPU_PS = 89,
37 RADEON_LLVM_AMDGPU_CS = 90,
38 };
39
40 #define CONST_ADDR_SPACE 2
41 #define LOCAL_ADDR_SPACE 3
42
43 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
44 #define RADEON_LLVM_MAX_OUTPUTS (VARYING_SLOT_VAR31 + 1)
45
46 enum desc_type {
47 DESC_IMAGE,
48 DESC_FMASK,
49 DESC_SAMPLER,
50 DESC_BUFFER,
51 };
52
53 struct nir_to_llvm_context {
54 const struct ac_nir_compiler_options *options;
55 struct ac_shader_variant_info *shader_info;
56
57 LLVMContextRef context;
58 LLVMModuleRef module;
59 LLVMBuilderRef builder;
60 LLVMValueRef main_function;
61
62 struct hash_table *defs;
63 struct hash_table *phis;
64
65 LLVMValueRef descriptor_sets[4];
66 LLVMValueRef push_constants;
67 LLVMValueRef num_work_groups;
68 LLVMValueRef workgroup_ids;
69 LLVMValueRef local_invocation_ids;
70 LLVMValueRef tg_size;
71
72 LLVMValueRef vertex_buffers;
73 LLVMValueRef base_vertex;
74 LLVMValueRef start_instance;
75 LLVMValueRef vertex_id;
76 LLVMValueRef rel_auto_id;
77 LLVMValueRef vs_prim_id;
78 LLVMValueRef instance_id;
79
80 LLVMValueRef prim_mask;
81 LLVMValueRef sample_positions;
82 LLVMValueRef persp_sample, persp_center, persp_centroid;
83 LLVMValueRef linear_sample, linear_center, linear_centroid;
84 LLVMValueRef front_face;
85 LLVMValueRef ancillary;
86 LLVMValueRef frag_pos[4];
87
88 LLVMBasicBlockRef continue_block;
89 LLVMBasicBlockRef break_block;
90
91 LLVMTypeRef i1;
92 LLVMTypeRef i8;
93 LLVMTypeRef i16;
94 LLVMTypeRef i32;
95 LLVMTypeRef i64;
96 LLVMTypeRef v2i32;
97 LLVMTypeRef v3i32;
98 LLVMTypeRef v4i32;
99 LLVMTypeRef v8i32;
100 LLVMTypeRef f32;
101 LLVMTypeRef f16;
102 LLVMTypeRef v2f32;
103 LLVMTypeRef v4f32;
104 LLVMTypeRef v16i8;
105 LLVMTypeRef voidt;
106
107 LLVMValueRef i32zero;
108 LLVMValueRef i32one;
109 LLVMValueRef f32zero;
110 LLVMValueRef f32one;
111 LLVMValueRef v4f32empty;
112
113 unsigned range_md_kind;
114 unsigned uniform_md_kind;
115 unsigned fpmath_md_kind;
116 unsigned invariant_load_md_kind;
117 LLVMValueRef empty_md;
118 LLVMValueRef fpmath_md_2p5_ulp;
119 gl_shader_stage stage;
120
121 LLVMValueRef lds;
122 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
123 LLVMValueRef outputs[RADEON_LLVM_MAX_OUTPUTS * 4];
124
125 LLVMValueRef shared_memory;
126 uint64_t input_mask;
127 uint64_t output_mask;
128 int num_locals;
129 LLVMValueRef *locals;
130 bool has_ddxy;
131 unsigned num_clips;
132 unsigned num_culls;
133
134 bool has_ds_bpermute;
135 };
136
137 struct ac_tex_info {
138 LLVMValueRef args[12];
139 int arg_count;
140 LLVMTypeRef dst_type;
141 bool has_offset;
142 };
143
144 enum ac_func_attr {
145 AC_FUNC_ATTR_ALWAYSINLINE = (1 << 0),
146 AC_FUNC_ATTR_BYVAL = (1 << 1),
147 AC_FUNC_ATTR_INREG = (1 << 2),
148 AC_FUNC_ATTR_NOALIAS = (1 << 3),
149 AC_FUNC_ATTR_NOUNWIND = (1 << 4),
150 AC_FUNC_ATTR_READNONE = (1 << 5),
151 AC_FUNC_ATTR_READONLY = (1 << 6),
152 AC_FUNC_ATTR_LAST = (1 << 7)
153 };
154
155 #if HAVE_LLVM < 0x0400
156 static LLVMAttribute ac_attr_to_llvm_attr(enum ac_func_attr attr)
157 {
158 switch (attr) {
159 case AC_FUNC_ATTR_ALWAYSINLINE: return LLVMAlwaysInlineAttribute;
160 case AC_FUNC_ATTR_BYVAL: return LLVMByValAttribute;
161 case AC_FUNC_ATTR_INREG: return LLVMInRegAttribute;
162 case AC_FUNC_ATTR_NOALIAS: return LLVMNoAliasAttribute;
163 case AC_FUNC_ATTR_NOUNWIND: return LLVMNoUnwindAttribute;
164 case AC_FUNC_ATTR_READNONE: return LLVMReadNoneAttribute;
165 case AC_FUNC_ATTR_READONLY: return LLVMReadOnlyAttribute;
166 default:
167 fprintf(stderr, "Unhandled function attribute: %x\n", attr);
168 return 0;
169 }
170 }
171
172 #else
173
174 static const char *attr_to_str(enum ac_func_attr attr)
175 {
176 switch (attr) {
177 case AC_FUNC_ATTR_ALWAYSINLINE: return "alwaysinline";
178 case AC_FUNC_ATTR_BYVAL: return "byval";
179 case AC_FUNC_ATTR_INREG: return "inreg";
180 case AC_FUNC_ATTR_NOALIAS: return "noalias";
181 case AC_FUNC_ATTR_NOUNWIND: return "nounwind";
182 case AC_FUNC_ATTR_READNONE: return "readnone";
183 case AC_FUNC_ATTR_READONLY: return "readonly";
184 default:
185 fprintf(stderr, "Unhandled function attribute: %x\n", attr);
186 return 0;
187 }
188 }
189
190 #endif
191
192 static void
193 ac_add_function_attr(LLVMValueRef function,
194 int attr_idx,
195 enum ac_func_attr attr)
196 {
197
198 #if HAVE_LLVM < 0x0400
199 LLVMAttribute llvm_attr = ac_attr_to_llvm_attr(attr);
200 if (attr_idx == -1) {
201 LLVMAddFunctionAttr(function, llvm_attr);
202 } else {
203 LLVMAddAttribute(LLVMGetParam(function, attr_idx - 1), llvm_attr);
204 }
205 #else
206 LLVMContextRef context = LLVMGetModuleContext(LLVMGetGlobalParent(function));
207 const char *attr_name = attr_to_str(attr);
208 unsigned kind_id = LLVMGetEnumAttributeKindForName(attr_name,
209 strlen(attr_name));
210 LLVMAttributeRef llvm_attr = LLVMCreateEnumAttribute(context, kind_id, 0);
211 LLVMAddAttributeAtIndex(function, attr_idx, llvm_attr);
212 #endif
213 }
214
215 static LLVMValueRef
216 emit_llvm_intrinsic(struct nir_to_llvm_context *ctx, const char *name,
217 LLVMTypeRef return_type, LLVMValueRef *params,
218 unsigned param_count, unsigned attr_mask);
219 static LLVMValueRef get_sampler_desc(struct nir_to_llvm_context *ctx,
220 nir_deref_var *deref,
221 enum desc_type desc_type);
222 static unsigned radeon_llvm_reg_index_soa(unsigned index, unsigned chan)
223 {
224 return (index * 4) + chan;
225 }
226
227 static unsigned llvm_get_type_size(LLVMTypeRef type)
228 {
229 LLVMTypeKind kind = LLVMGetTypeKind(type);
230
231 switch (kind) {
232 case LLVMIntegerTypeKind:
233 return LLVMGetIntTypeWidth(type) / 8;
234 case LLVMFloatTypeKind:
235 return 4;
236 case LLVMPointerTypeKind:
237 return 8;
238 case LLVMVectorTypeKind:
239 return LLVMGetVectorSize(type) *
240 llvm_get_type_size(LLVMGetElementType(type));
241 default:
242 assert(0);
243 return 0;
244 }
245 }
246
247 static void set_llvm_calling_convention(LLVMValueRef func,
248 gl_shader_stage stage)
249 {
250 enum radeon_llvm_calling_convention calling_conv;
251
252 switch (stage) {
253 case MESA_SHADER_VERTEX:
254 case MESA_SHADER_TESS_CTRL:
255 case MESA_SHADER_TESS_EVAL:
256 calling_conv = RADEON_LLVM_AMDGPU_VS;
257 break;
258 case MESA_SHADER_GEOMETRY:
259 calling_conv = RADEON_LLVM_AMDGPU_GS;
260 break;
261 case MESA_SHADER_FRAGMENT:
262 calling_conv = RADEON_LLVM_AMDGPU_PS;
263 break;
264 case MESA_SHADER_COMPUTE:
265 calling_conv = RADEON_LLVM_AMDGPU_CS;
266 break;
267 default:
268 unreachable("Unhandle shader type");
269 }
270
271 LLVMSetFunctionCallConv(func, calling_conv);
272 }
273
274 static LLVMValueRef
275 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
276 LLVMBuilderRef builder, LLVMTypeRef *return_types,
277 unsigned num_return_elems, LLVMTypeRef *param_types,
278 unsigned param_count, unsigned array_params,
279 unsigned sgpr_params, bool unsafe_math)
280 {
281 LLVMTypeRef main_function_type, ret_type;
282 LLVMBasicBlockRef main_function_body;
283
284 if (num_return_elems)
285 ret_type = LLVMStructTypeInContext(ctx, return_types,
286 num_return_elems, true);
287 else
288 ret_type = LLVMVoidTypeInContext(ctx);
289
290 /* Setup the function */
291 main_function_type =
292 LLVMFunctionType(ret_type, param_types, param_count, 0);
293 LLVMValueRef main_function =
294 LLVMAddFunction(module, "main", main_function_type);
295 main_function_body =
296 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
297 LLVMPositionBuilderAtEnd(builder, main_function_body);
298
299 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
300 for (unsigned i = 0; i < sgpr_params; ++i) {
301 if (i < array_params) {
302 LLVMValueRef P = LLVMGetParam(main_function, i);
303 ac_add_function_attr(main_function, i + 1, AC_FUNC_ATTR_BYVAL);
304 ac_add_attr_dereferenceable(P, UINT64_MAX);
305 }
306 else {
307 ac_add_function_attr(main_function, i + 1, AC_FUNC_ATTR_INREG);
308 }
309 }
310
311 if (unsafe_math) {
312 /* These were copied from some LLVM test. */
313 LLVMAddTargetDependentFunctionAttr(main_function,
314 "less-precise-fpmad",
315 "true");
316 LLVMAddTargetDependentFunctionAttr(main_function,
317 "no-infs-fp-math",
318 "true");
319 LLVMAddTargetDependentFunctionAttr(main_function,
320 "no-nans-fp-math",
321 "true");
322 LLVMAddTargetDependentFunctionAttr(main_function,
323 "unsafe-fp-math",
324 "true");
325 }
326 return main_function;
327 }
328
329 static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
330 {
331 return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
332 CONST_ADDR_SPACE);
333 }
334
335 static LLVMValueRef get_shared_memory_ptr(struct nir_to_llvm_context *ctx,
336 int idx,
337 LLVMTypeRef type)
338 {
339 LLVMValueRef offset;
340 LLVMValueRef ptr;
341 int addr_space;
342
343 offset = LLVMConstInt(ctx->i32, idx, false);
344
345 ptr = ctx->shared_memory;
346 ptr = LLVMBuildGEP(ctx->builder, ptr, &offset, 1, "");
347 addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
348 ptr = LLVMBuildBitCast(ctx->builder, ptr, LLVMPointerType(type, addr_space), "");
349 return ptr;
350 }
351
352 static LLVMValueRef to_integer(struct nir_to_llvm_context *ctx, LLVMValueRef v)
353 {
354 LLVMTypeRef type = LLVMTypeOf(v);
355 if (type == ctx->f32) {
356 return LLVMBuildBitCast(ctx->builder, v, ctx->i32, "");
357 } else if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
358 LLVMTypeRef elem_type = LLVMGetElementType(type);
359 if (elem_type == ctx->f32) {
360 LLVMTypeRef nt = LLVMVectorType(ctx->i32, LLVMGetVectorSize(type));
361 return LLVMBuildBitCast(ctx->builder, v, nt, "");
362 }
363 }
364 return v;
365 }
366
367 static LLVMValueRef to_float(struct nir_to_llvm_context *ctx, LLVMValueRef v)
368 {
369 LLVMTypeRef type = LLVMTypeOf(v);
370 if (type == ctx->i32) {
371 return LLVMBuildBitCast(ctx->builder, v, ctx->f32, "");
372 } else if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
373 LLVMTypeRef elem_type = LLVMGetElementType(type);
374 if (elem_type == ctx->i32) {
375 LLVMTypeRef nt = LLVMVectorType(ctx->f32, LLVMGetVectorSize(type));
376 return LLVMBuildBitCast(ctx->builder, v, nt, "");
377 }
378 }
379 return v;
380 }
381
382 static LLVMValueRef unpack_param(struct nir_to_llvm_context *ctx,
383 LLVMValueRef param, unsigned rshift,
384 unsigned bitwidth)
385 {
386 LLVMValueRef value = param;
387 if (rshift)
388 value = LLVMBuildLShr(ctx->builder, value,
389 LLVMConstInt(ctx->i32, rshift, false), "");
390
391 if (rshift + bitwidth < 32) {
392 unsigned mask = (1 << bitwidth) - 1;
393 value = LLVMBuildAnd(ctx->builder, value,
394 LLVMConstInt(ctx->i32, mask, false), "");
395 }
396 return value;
397 }
398
399 static LLVMValueRef build_gep0(struct nir_to_llvm_context *ctx,
400 LLVMValueRef base_ptr, LLVMValueRef index)
401 {
402 LLVMValueRef indices[2] = {
403 ctx->i32zero,
404 index,
405 };
406 return LLVMBuildGEP(ctx->builder, base_ptr,
407 indices, 2, "");
408 }
409
410 static LLVMValueRef build_indexed_load(struct nir_to_llvm_context *ctx,
411 LLVMValueRef base_ptr, LLVMValueRef index,
412 bool uniform)
413 {
414 LLVMValueRef pointer;
415 pointer = build_gep0(ctx, base_ptr, index);
416 if (uniform)
417 LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
418 return LLVMBuildLoad(ctx->builder, pointer, "");
419 }
420
421 static LLVMValueRef build_indexed_load_const(struct nir_to_llvm_context *ctx,
422 LLVMValueRef base_ptr, LLVMValueRef index)
423 {
424 LLVMValueRef result = build_indexed_load(ctx, base_ptr, index, true);
425 LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
426 return result;
427 }
428
429 static void create_function(struct nir_to_llvm_context *ctx,
430 struct nir_shader *nir)
431 {
432 LLVMTypeRef arg_types[23];
433 unsigned arg_idx = 0;
434 unsigned array_count = 0;
435 unsigned sgpr_count = 0, user_sgpr_count;
436 unsigned i;
437
438 /* 1 for each descriptor set */
439 for (unsigned i = 0; i < 4; ++i)
440 arg_types[arg_idx++] = const_array(ctx->i8, 1024 * 1024);
441
442 /* 1 for push constants and dynamic descriptors */
443 arg_types[arg_idx++] = const_array(ctx->i8, 1024 * 1024);
444
445 array_count = arg_idx;
446 switch (nir->stage) {
447 case MESA_SHADER_COMPUTE:
448 arg_types[arg_idx++] = LLVMVectorType(ctx->i32, 3); /* grid size */
449 user_sgpr_count = arg_idx;
450 arg_types[arg_idx++] = LLVMVectorType(ctx->i32, 3);
451 arg_types[arg_idx++] = ctx->i32;
452 sgpr_count = arg_idx;
453
454 arg_types[arg_idx++] = LLVMVectorType(ctx->i32, 3);
455 break;
456 case MESA_SHADER_VERTEX:
457 arg_types[arg_idx++] = const_array(ctx->v16i8, 16); /* vertex buffers */
458 arg_types[arg_idx++] = ctx->i32; // base vertex
459 arg_types[arg_idx++] = ctx->i32; // start instance
460 user_sgpr_count = sgpr_count = arg_idx;
461 arg_types[arg_idx++] = ctx->i32; // vertex id
462 arg_types[arg_idx++] = ctx->i32; // rel auto id
463 arg_types[arg_idx++] = ctx->i32; // vs prim id
464 arg_types[arg_idx++] = ctx->i32; // instance id
465 break;
466 case MESA_SHADER_FRAGMENT:
467 arg_types[arg_idx++] = const_array(ctx->f32, 32); /* sample positions */
468 user_sgpr_count = arg_idx;
469 arg_types[arg_idx++] = ctx->i32; /* prim mask */
470 sgpr_count = arg_idx;
471 arg_types[arg_idx++] = ctx->v2i32; /* persp sample */
472 arg_types[arg_idx++] = ctx->v2i32; /* persp center */
473 arg_types[arg_idx++] = ctx->v2i32; /* persp centroid */
474 arg_types[arg_idx++] = ctx->v3i32; /* persp pull model */
475 arg_types[arg_idx++] = ctx->v2i32; /* linear sample */
476 arg_types[arg_idx++] = ctx->v2i32; /* linear center */
477 arg_types[arg_idx++] = ctx->v2i32; /* linear centroid */
478 arg_types[arg_idx++] = ctx->f32; /* line stipple tex */
479 arg_types[arg_idx++] = ctx->f32; /* pos x float */
480 arg_types[arg_idx++] = ctx->f32; /* pos y float */
481 arg_types[arg_idx++] = ctx->f32; /* pos z float */
482 arg_types[arg_idx++] = ctx->f32; /* pos w float */
483 arg_types[arg_idx++] = ctx->i32; /* front face */
484 arg_types[arg_idx++] = ctx->i32; /* ancillary */
485 arg_types[arg_idx++] = ctx->f32; /* sample coverage */
486 arg_types[arg_idx++] = ctx->i32; /* fixed pt */
487 break;
488 default:
489 unreachable("Shader stage not implemented");
490 }
491
492 ctx->main_function = create_llvm_function(
493 ctx->context, ctx->module, ctx->builder, NULL, 0, arg_types,
494 arg_idx, array_count, sgpr_count, ctx->options->unsafe_math);
495 set_llvm_calling_convention(ctx->main_function, nir->stage);
496
497
498 ctx->shader_info->num_input_sgprs = 0;
499 ctx->shader_info->num_input_vgprs = 0;
500
501 for (i = 0; i < user_sgpr_count; i++)
502 ctx->shader_info->num_user_sgprs += llvm_get_type_size(arg_types[i]) / 4;
503
504 ctx->shader_info->num_input_sgprs = ctx->shader_info->num_user_sgprs;
505 for (; i < sgpr_count; i++)
506 ctx->shader_info->num_input_sgprs += llvm_get_type_size(arg_types[i]) / 4;
507
508 if (nir->stage != MESA_SHADER_FRAGMENT)
509 for (; i < arg_idx; ++i)
510 ctx->shader_info->num_input_vgprs += llvm_get_type_size(arg_types[i]) / 4;
511
512 arg_idx = 0;
513 for (unsigned i = 0; i < 4; ++i)
514 ctx->descriptor_sets[i] =
515 LLVMGetParam(ctx->main_function, arg_idx++);
516
517 ctx->push_constants = LLVMGetParam(ctx->main_function, arg_idx++);
518
519 switch (nir->stage) {
520 case MESA_SHADER_COMPUTE:
521 ctx->num_work_groups =
522 LLVMGetParam(ctx->main_function, arg_idx++);
523 ctx->workgroup_ids =
524 LLVMGetParam(ctx->main_function, arg_idx++);
525 ctx->tg_size =
526 LLVMGetParam(ctx->main_function, arg_idx++);
527 ctx->local_invocation_ids =
528 LLVMGetParam(ctx->main_function, arg_idx++);
529 break;
530 case MESA_SHADER_VERTEX:
531 ctx->vertex_buffers = LLVMGetParam(ctx->main_function, arg_idx++);
532 ctx->base_vertex = LLVMGetParam(ctx->main_function, arg_idx++);
533 ctx->start_instance = LLVMGetParam(ctx->main_function, arg_idx++);
534 ctx->vertex_id = LLVMGetParam(ctx->main_function, arg_idx++);
535 ctx->rel_auto_id = LLVMGetParam(ctx->main_function, arg_idx++);
536 ctx->vs_prim_id = LLVMGetParam(ctx->main_function, arg_idx++);
537 ctx->instance_id = LLVMGetParam(ctx->main_function, arg_idx++);
538 break;
539 case MESA_SHADER_FRAGMENT:
540 ctx->sample_positions = LLVMGetParam(ctx->main_function, arg_idx++);
541 ctx->prim_mask = LLVMGetParam(ctx->main_function, arg_idx++);
542 ctx->persp_sample = LLVMGetParam(ctx->main_function, arg_idx++);
543 ctx->persp_center = LLVMGetParam(ctx->main_function, arg_idx++);
544 ctx->persp_centroid = LLVMGetParam(ctx->main_function, arg_idx++);
545 arg_idx++;
546 ctx->linear_sample = LLVMGetParam(ctx->main_function, arg_idx++);
547 ctx->linear_center = LLVMGetParam(ctx->main_function, arg_idx++);
548 ctx->linear_centroid = LLVMGetParam(ctx->main_function, arg_idx++);
549 arg_idx++; /* line stipple */
550 ctx->frag_pos[0] = LLVMGetParam(ctx->main_function, arg_idx++);
551 ctx->frag_pos[1] = LLVMGetParam(ctx->main_function, arg_idx++);
552 ctx->frag_pos[2] = LLVMGetParam(ctx->main_function, arg_idx++);
553 ctx->frag_pos[3] = LLVMGetParam(ctx->main_function, arg_idx++);
554 ctx->front_face = LLVMGetParam(ctx->main_function, arg_idx++);
555 ctx->ancillary = LLVMGetParam(ctx->main_function, arg_idx++);
556 break;
557 default:
558 unreachable("Shader stage not implemented");
559 }
560 }
561
562 static void setup_types(struct nir_to_llvm_context *ctx)
563 {
564 LLVMValueRef args[4];
565
566 ctx->voidt = LLVMVoidTypeInContext(ctx->context);
567 ctx->i1 = LLVMIntTypeInContext(ctx->context, 1);
568 ctx->i8 = LLVMIntTypeInContext(ctx->context, 8);
569 ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
570 ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
571 ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
572 ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
573 ctx->v3i32 = LLVMVectorType(ctx->i32, 3);
574 ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
575 ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
576 ctx->f32 = LLVMFloatTypeInContext(ctx->context);
577 ctx->f16 = LLVMHalfTypeInContext(ctx->context);
578 ctx->v2f32 = LLVMVectorType(ctx->f32, 2);
579 ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
580 ctx->v16i8 = LLVMVectorType(ctx->i8, 16);
581
582 ctx->i32zero = LLVMConstInt(ctx->i32, 0, false);
583 ctx->i32one = LLVMConstInt(ctx->i32, 1, false);
584 ctx->f32zero = LLVMConstReal(ctx->f32, 0.0);
585 ctx->f32one = LLVMConstReal(ctx->f32, 1.0);
586
587 args[0] = ctx->f32zero;
588 args[1] = ctx->f32zero;
589 args[2] = ctx->f32zero;
590 args[3] = ctx->f32one;
591 ctx->v4f32empty = LLVMConstVector(args, 4);
592
593 ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
594 "range", 5);
595 ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
596 "invariant.load", 14);
597 ctx->uniform_md_kind =
598 LLVMGetMDKindIDInContext(ctx->context, "amdgpu.uniform", 14);
599 ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
600
601 ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);
602
603 args[0] = LLVMConstReal(ctx->f32, 2.5);
604 ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);
605 }
606
607 static int get_llvm_num_components(LLVMValueRef value)
608 {
609 LLVMTypeRef type = LLVMTypeOf(value);
610 unsigned num_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
611 ? LLVMGetVectorSize(type)
612 : 1;
613 return num_components;
614 }
615
616 static LLVMValueRef llvm_extract_elem(struct nir_to_llvm_context *ctx,
617 LLVMValueRef value,
618 int index)
619 {
620 int count = get_llvm_num_components(value);
621
622 assert(index < count);
623 if (count == 1)
624 return value;
625
626 return LLVMBuildExtractElement(ctx->builder, value,
627 LLVMConstInt(ctx->i32, index, false), "");
628 }
629
630 static LLVMValueRef trim_vector(struct nir_to_llvm_context *ctx,
631 LLVMValueRef value, unsigned count)
632 {
633 unsigned num_components = get_llvm_num_components(value);
634 if (count == num_components)
635 return value;
636
637 LLVMValueRef masks[] = {
638 LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
639 LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false)};
640
641 if (count == 1)
642 return LLVMBuildExtractElement(ctx->builder, value, masks[0],
643 "");
644
645 LLVMValueRef swizzle = LLVMConstVector(masks, count);
646 return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
647 }
648
649 static LLVMValueRef
650 build_gather_values_extended(struct nir_to_llvm_context *ctx,
651 LLVMValueRef *values,
652 unsigned value_count,
653 unsigned value_stride,
654 bool load)
655 {
656 LLVMBuilderRef builder = ctx->builder;
657 LLVMValueRef vec;
658 unsigned i;
659
660
661 if (value_count == 1) {
662 if (load)
663 return LLVMBuildLoad(builder, values[0], "");
664 return values[0];
665 }
666
667 for (i = 0; i < value_count; i++) {
668 LLVMValueRef value = values[i * value_stride];
669 if (load)
670 value = LLVMBuildLoad(builder, value, "");
671
672 if (!i)
673 vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
674 LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
675 vec = LLVMBuildInsertElement(builder, vec, value, index, "");
676 }
677 return vec;
678 }
679
680
681 static void
682 build_store_values_extended(struct nir_to_llvm_context *ctx,
683 LLVMValueRef *values,
684 unsigned value_count,
685 unsigned value_stride,
686 LLVMValueRef vec)
687 {
688 LLVMBuilderRef builder = ctx->builder;
689 unsigned i;
690
691 if (value_count == 1) {
692 LLVMBuildStore(builder, vec, values[0]);
693 return;
694 }
695
696 for (i = 0; i < value_count; i++) {
697 LLVMValueRef ptr = values[i * value_stride];
698 LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
699 LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, "");
700 LLVMBuildStore(builder, value, ptr);
701 }
702 }
703
704 static LLVMValueRef
705 build_gather_values(struct nir_to_llvm_context *ctx,
706 LLVMValueRef *values,
707 unsigned value_count)
708 {
709 return build_gather_values_extended(ctx, values, value_count, 1, false);
710 }
711
712 static LLVMTypeRef get_def_type(struct nir_to_llvm_context *ctx,
713 nir_ssa_def *def)
714 {
715 LLVMTypeRef type = LLVMIntTypeInContext(ctx->context, def->bit_size);
716 if (def->num_components > 1) {
717 type = LLVMVectorType(type, def->num_components);
718 }
719 return type;
720 }
721
722 static LLVMValueRef get_src(struct nir_to_llvm_context *ctx, nir_src src)
723 {
724 assert(src.is_ssa);
725 struct hash_entry *entry = _mesa_hash_table_search(ctx->defs, src.ssa);
726 return (LLVMValueRef)entry->data;
727 }
728
729
730 static LLVMBasicBlockRef get_block(struct nir_to_llvm_context *ctx,
731 struct nir_block *b)
732 {
733 struct hash_entry *entry = _mesa_hash_table_search(ctx->defs, b);
734 return (LLVMBasicBlockRef)entry->data;
735 }
736
737 static LLVMValueRef get_alu_src(struct nir_to_llvm_context *ctx,
738 nir_alu_src src,
739 unsigned num_components)
740 {
741 LLVMValueRef value = get_src(ctx, src.src);
742 bool need_swizzle = false;
743
744 assert(value);
745 LLVMTypeRef type = LLVMTypeOf(value);
746 unsigned src_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
747 ? LLVMGetVectorSize(type)
748 : 1;
749
750 for (unsigned i = 0; i < num_components; ++i) {
751 assert(src.swizzle[i] < src_components);
752 if (src.swizzle[i] != i)
753 need_swizzle = true;
754 }
755
756 if (need_swizzle || num_components != src_components) {
757 LLVMValueRef masks[] = {
758 LLVMConstInt(ctx->i32, src.swizzle[0], false),
759 LLVMConstInt(ctx->i32, src.swizzle[1], false),
760 LLVMConstInt(ctx->i32, src.swizzle[2], false),
761 LLVMConstInt(ctx->i32, src.swizzle[3], false)};
762
763 if (src_components > 1 && num_components == 1) {
764 value = LLVMBuildExtractElement(ctx->builder, value,
765 masks[0], "");
766 } else if (src_components == 1 && num_components > 1) {
767 LLVMValueRef values[] = {value, value, value, value};
768 value = build_gather_values(ctx, values, num_components);
769 } else {
770 LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
771 value = LLVMBuildShuffleVector(ctx->builder, value, value,
772 swizzle, "");
773 }
774 }
775 assert(!src.negate);
776 assert(!src.abs);
777 return value;
778 }
779
780 static LLVMValueRef emit_int_cmp(struct nir_to_llvm_context *ctx,
781 LLVMIntPredicate pred, LLVMValueRef src0,
782 LLVMValueRef src1)
783 {
784 LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
785 return LLVMBuildSelect(ctx->builder, result,
786 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
787 LLVMConstInt(ctx->i32, 0, false), "");
788 }
789
790 static LLVMValueRef emit_float_cmp(struct nir_to_llvm_context *ctx,
791 LLVMRealPredicate pred, LLVMValueRef src0,
792 LLVMValueRef src1)
793 {
794 LLVMValueRef result;
795 src0 = to_float(ctx, src0);
796 src1 = to_float(ctx, src1);
797 result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
798 return LLVMBuildSelect(ctx->builder, result,
799 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
800 LLVMConstInt(ctx->i32, 0, false), "");
801 }
802
803 static LLVMValueRef emit_intrin_1f_param(struct nir_to_llvm_context *ctx,
804 const char *intrin,
805 LLVMValueRef src0)
806 {
807 LLVMValueRef params[] = {
808 to_float(ctx, src0),
809 };
810 return emit_llvm_intrinsic(ctx, intrin, ctx->f32, params, 1, AC_FUNC_ATTR_READNONE);
811 }
812
813 static LLVMValueRef emit_intrin_2f_param(struct nir_to_llvm_context *ctx,
814 const char *intrin,
815 LLVMValueRef src0, LLVMValueRef src1)
816 {
817 LLVMValueRef params[] = {
818 to_float(ctx, src0),
819 to_float(ctx, src1),
820 };
821 return emit_llvm_intrinsic(ctx, intrin, ctx->f32, params, 2, AC_FUNC_ATTR_READNONE);
822 }
823
824 static LLVMValueRef emit_intrin_3f_param(struct nir_to_llvm_context *ctx,
825 const char *intrin,
826 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
827 {
828 LLVMValueRef params[] = {
829 to_float(ctx, src0),
830 to_float(ctx, src1),
831 to_float(ctx, src2),
832 };
833 return emit_llvm_intrinsic(ctx, intrin, ctx->f32, params, 3, AC_FUNC_ATTR_READNONE);
834 }
835
836 static LLVMValueRef emit_bcsel(struct nir_to_llvm_context *ctx,
837 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
838 {
839 LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0,
840 ctx->i32zero, "");
841 return LLVMBuildSelect(ctx->builder, v, src1, src2, "");
842 }
843
844 static LLVMValueRef emit_find_lsb(struct nir_to_llvm_context *ctx,
845 LLVMValueRef src0)
846 {
847 LLVMValueRef params[2] = {
848 src0,
849
850 /* The value of 1 means that ffs(x=0) = undef, so LLVM won't
851 * add special code to check for x=0. The reason is that
852 * the LLVM behavior for x=0 is different from what we
853 * need here.
854 *
855 * The hardware already implements the correct behavior.
856 */
857 LLVMConstInt(ctx->i32, 1, false),
858 };
859 return emit_llvm_intrinsic(ctx, "llvm.cttz.i32", ctx->i32, params, 2, AC_FUNC_ATTR_READNONE);
860 }
861
862 static LLVMValueRef emit_ifind_msb(struct nir_to_llvm_context *ctx,
863 LLVMValueRef src0)
864 {
865 LLVMValueRef msb = emit_llvm_intrinsic(ctx, "llvm.AMDGPU.flbit.i32",
866 ctx->i32, &src0, 1,
867 AC_FUNC_ATTR_READNONE);
868
869 /* The HW returns the last bit index from MSB, but NIR wants
870 * the index from LSB. Invert it by doing "31 - msb". */
871 msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
872 msb, "");
873
874 LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
875 LLVMValueRef cond = LLVMBuildOr(ctx->builder,
876 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
877 src0, ctx->i32zero, ""),
878 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
879 src0, all_ones, ""), "");
880
881 return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
882 }
883
884 static LLVMValueRef emit_ufind_msb(struct nir_to_llvm_context *ctx,
885 LLVMValueRef src0)
886 {
887 LLVMValueRef args[2] = {
888 src0,
889 ctx->i32one,
890 };
891 LLVMValueRef msb = emit_llvm_intrinsic(ctx, "llvm.ctlz.i32",
892 ctx->i32, args, ARRAY_SIZE(args),
893 AC_FUNC_ATTR_READNONE);
894
895 /* The HW returns the last bit index from MSB, but NIR wants
896 * the index from LSB. Invert it by doing "31 - msb". */
897 msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
898 msb, "");
899
900 return LLVMBuildSelect(ctx->builder,
901 LLVMBuildICmp(ctx->builder, LLVMIntEQ, src0,
902 ctx->i32zero, ""),
903 LLVMConstInt(ctx->i32, -1, true), msb, "");
904 }
905
906 static LLVMValueRef emit_minmax_int(struct nir_to_llvm_context *ctx,
907 LLVMIntPredicate pred,
908 LLVMValueRef src0, LLVMValueRef src1)
909 {
910 return LLVMBuildSelect(ctx->builder,
911 LLVMBuildICmp(ctx->builder, pred, src0, src1, ""),
912 src0,
913 src1, "");
914
915 }
916 static LLVMValueRef emit_iabs(struct nir_to_llvm_context *ctx,
917 LLVMValueRef src0)
918 {
919 return emit_minmax_int(ctx, LLVMIntSGT, src0,
920 LLVMBuildNeg(ctx->builder, src0, ""));
921 }
922
923 static LLVMValueRef emit_fsign(struct nir_to_llvm_context *ctx,
924 LLVMValueRef src0)
925 {
926 LLVMValueRef cmp, val;
927
928 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, ctx->f32zero, "");
929 val = LLVMBuildSelect(ctx->builder, cmp, ctx->f32one, src0, "");
930 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, ctx->f32zero, "");
931 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(ctx->f32, -1.0), "");
932 return val;
933 }
934
935 static LLVMValueRef emit_isign(struct nir_to_llvm_context *ctx,
936 LLVMValueRef src0)
937 {
938 LLVMValueRef cmp, val;
939
940 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, ctx->i32zero, "");
941 val = LLVMBuildSelect(ctx->builder, cmp, ctx->i32one, src0, "");
942 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, ctx->i32zero, "");
943 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(ctx->i32, -1, true), "");
944 return val;
945 }
946
947 static LLVMValueRef emit_ffract(struct nir_to_llvm_context *ctx,
948 LLVMValueRef src0)
949 {
950 const char *intr = "llvm.floor.f32";
951 LLVMValueRef fsrc0 = to_float(ctx, src0);
952 LLVMValueRef params[] = {
953 fsrc0,
954 };
955 LLVMValueRef floor = emit_llvm_intrinsic(ctx, intr,
956 ctx->f32, params, 1,
957 AC_FUNC_ATTR_READNONE);
958 return LLVMBuildFSub(ctx->builder, fsrc0, floor, "");
959 }
960
961 static LLVMValueRef emit_uint_carry(struct nir_to_llvm_context *ctx,
962 const char *intrin,
963 LLVMValueRef src0, LLVMValueRef src1)
964 {
965 LLVMTypeRef ret_type;
966 LLVMTypeRef types[] = { ctx->i32, ctx->i1 };
967 LLVMValueRef res;
968 LLVMValueRef params[] = { src0, src1 };
969 ret_type = LLVMStructTypeInContext(ctx->context, types,
970 2, true);
971
972 res = emit_llvm_intrinsic(ctx, intrin, ret_type,
973 params, 2, AC_FUNC_ATTR_READNONE);
974
975 res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
976 res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
977 return res;
978 }
979
980 static LLVMValueRef emit_b2f(struct nir_to_llvm_context *ctx,
981 LLVMValueRef src0)
982 {
983 return LLVMBuildAnd(ctx->builder, src0, LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""), "");
984 }
985
986 static LLVMValueRef emit_umul_high(struct nir_to_llvm_context *ctx,
987 LLVMValueRef src0, LLVMValueRef src1)
988 {
989 LLVMValueRef dst64, result;
990 src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
991 src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
992
993 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
994 dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
995 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
996 return result;
997 }
998
999 static LLVMValueRef emit_imul_high(struct nir_to_llvm_context *ctx,
1000 LLVMValueRef src0, LLVMValueRef src1)
1001 {
1002 LLVMValueRef dst64, result;
1003 src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
1004 src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
1005
1006 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
1007 dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
1008 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
1009 return result;
1010 }
1011
1012 static LLVMValueRef emit_bitfield_extract(struct nir_to_llvm_context *ctx,
1013 const char *intrin,
1014 LLVMValueRef srcs[3])
1015 {
1016 LLVMValueRef result;
1017 LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, srcs[2], LLVMConstInt(ctx->i32, 32, false), "");
1018 result = emit_llvm_intrinsic(ctx, intrin, ctx->i32, srcs, 3, AC_FUNC_ATTR_READNONE);
1019
1020 result = LLVMBuildSelect(ctx->builder, icond, srcs[0], result, "");
1021 return result;
1022 }
1023
1024 static LLVMValueRef emit_bitfield_insert(struct nir_to_llvm_context *ctx,
1025 LLVMValueRef src0, LLVMValueRef src1,
1026 LLVMValueRef src2, LLVMValueRef src3)
1027 {
1028 LLVMValueRef bfi_args[3], result;
1029
1030 bfi_args[0] = LLVMBuildShl(ctx->builder,
1031 LLVMBuildSub(ctx->builder,
1032 LLVMBuildShl(ctx->builder,
1033 ctx->i32one,
1034 src3, ""),
1035 ctx->i32one, ""),
1036 src2, "");
1037 bfi_args[1] = LLVMBuildShl(ctx->builder, src1, src2, "");
1038 bfi_args[2] = src0;
1039
1040 LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, src3, LLVMConstInt(ctx->i32, 32, false), "");
1041
1042 /* Calculate:
1043 * (arg0 & arg1) | (~arg0 & arg2) = arg2 ^ (arg0 & (arg1 ^ arg2)
1044 * Use the right-hand side, which the LLVM backend can convert to V_BFI.
1045 */
1046 result = LLVMBuildXor(ctx->builder, bfi_args[2],
1047 LLVMBuildAnd(ctx->builder, bfi_args[0],
1048 LLVMBuildXor(ctx->builder, bfi_args[1], bfi_args[2], ""), ""), "");
1049
1050 result = LLVMBuildSelect(ctx->builder, icond, src1, result, "");
1051 return result;
1052 }
1053
1054 static LLVMValueRef emit_pack_half_2x16(struct nir_to_llvm_context *ctx,
1055 LLVMValueRef src0)
1056 {
1057 LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
1058 int i;
1059 LLVMValueRef comp[2];
1060
1061 src0 = to_float(ctx, src0);
1062 comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, "");
1063 comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, "");
1064 for (i = 0; i < 2; i++) {
1065 comp[i] = LLVMBuildFPTrunc(ctx->builder, comp[i], ctx->f16, "");
1066 comp[i] = LLVMBuildBitCast(ctx->builder, comp[i], ctx->i16, "");
1067 comp[i] = LLVMBuildZExt(ctx->builder, comp[i], ctx->i32, "");
1068 }
1069
1070 comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, "");
1071 comp[0] = LLVMBuildOr(ctx->builder, comp[0], comp[1], "");
1072
1073 return comp[0];
1074 }
1075
1076 static LLVMValueRef emit_unpack_half_2x16(struct nir_to_llvm_context *ctx,
1077 LLVMValueRef src0)
1078 {
1079 LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
1080 LLVMValueRef temps[2], result, val;
1081 int i;
1082
1083 for (i = 0; i < 2; i++) {
1084 val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
1085 val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
1086 val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
1087 temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
1088 }
1089
1090 result = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), temps[0],
1091 ctx->i32zero, "");
1092 result = LLVMBuildInsertElement(ctx->builder, result, temps[1],
1093 ctx->i32one, "");
1094 return result;
1095 }
1096
1097 /**
1098 * Set range metadata on an instruction. This can only be used on load and
1099 * call instructions. If you know an instruction can only produce the values
1100 * 0, 1, 2, you would do set_range_metadata(value, 0, 3);
1101 * \p lo is the minimum value inclusive.
1102 * \p hi is the maximum value exclusive.
1103 */
1104 static void set_range_metadata(struct nir_to_llvm_context *ctx,
1105 LLVMValueRef value, unsigned lo, unsigned hi)
1106 {
1107 LLVMValueRef range_md, md_args[2];
1108 LLVMTypeRef type = LLVMTypeOf(value);
1109 LLVMContextRef context = LLVMGetTypeContext(type);
1110
1111 md_args[0] = LLVMConstInt(type, lo, false);
1112 md_args[1] = LLVMConstInt(type, hi, false);
1113 range_md = LLVMMDNodeInContext(context, md_args, 2);
1114 LLVMSetMetadata(value, ctx->range_md_kind, range_md);
1115 }
1116
1117 static LLVMValueRef get_thread_id(struct nir_to_llvm_context *ctx)
1118 {
1119 LLVMValueRef tid;
1120 LLVMValueRef tid_args[2];
1121 tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
1122 tid_args[1] = ctx->i32zero;
1123 tid_args[1] = emit_llvm_intrinsic(ctx,
1124 "llvm.amdgcn.mbcnt.lo", ctx->i32,
1125 tid_args, 2, AC_FUNC_ATTR_READNONE);
1126
1127 tid = emit_llvm_intrinsic(ctx,
1128 "llvm.amdgcn.mbcnt.hi", ctx->i32,
1129 tid_args, 2, AC_FUNC_ATTR_READNONE);
1130 set_range_metadata(ctx, tid, 0, 64);
1131 return tid;
1132 }
1133
1134 /*
1135 * SI implements derivatives using the local data store (LDS)
1136 * All writes to the LDS happen in all executing threads at
1137 * the same time. TID is the Thread ID for the current
1138 * thread and is a value between 0 and 63, representing
1139 * the thread's position in the wavefront.
1140 *
1141 * For the pixel shader threads are grouped into quads of four pixels.
1142 * The TIDs of the pixels of a quad are:
1143 *
1144 * +------+------+
1145 * |4n + 0|4n + 1|
1146 * +------+------+
1147 * |4n + 2|4n + 3|
1148 * +------+------+
1149 *
1150 * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
1151 * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
1152 * the current pixel's column, and masking with 0xfffffffe yields the TID
1153 * of the left pixel of the current pixel's row.
1154 *
1155 * Adding 1 yields the TID of the pixel to the right of the left pixel, and
1156 * adding 2 yields the TID of the pixel below the top pixel.
1157 */
1158 /* masks for thread ID. */
1159 #define TID_MASK_TOP_LEFT 0xfffffffc
1160 #define TID_MASK_TOP 0xfffffffd
1161 #define TID_MASK_LEFT 0xfffffffe
1162 static LLVMValueRef emit_ddxy(struct nir_to_llvm_context *ctx,
1163 nir_op op,
1164 LLVMValueRef src0)
1165 {
1166 LLVMValueRef tl, trbl, result;
1167 LLVMValueRef tl_tid, trbl_tid;
1168 LLVMValueRef args[2];
1169 LLVMValueRef thread_id;
1170 unsigned mask;
1171 int idx;
1172 ctx->has_ddxy = true;
1173
1174 if (!ctx->lds && !ctx->has_ds_bpermute)
1175 ctx->lds = LLVMAddGlobalInAddressSpace(ctx->module,
1176 LLVMArrayType(ctx->i32, 64),
1177 "ddxy_lds", LOCAL_ADDR_SPACE);
1178
1179 thread_id = get_thread_id(ctx);
1180 if (op == nir_op_fddx_fine || op == nir_op_fddx)
1181 mask = TID_MASK_LEFT;
1182 else if (op == nir_op_fddy_fine || op == nir_op_fddy)
1183 mask = TID_MASK_TOP;
1184 else
1185 mask = TID_MASK_TOP_LEFT;
1186
1187 tl_tid = LLVMBuildAnd(ctx->builder, thread_id,
1188 LLVMConstInt(ctx->i32, mask, false), "");
1189 /* for DDX we want to next X pixel, DDY next Y pixel. */
1190 if (op == nir_op_fddx_fine ||
1191 op == nir_op_fddx_coarse ||
1192 op == nir_op_fddx)
1193 idx = 1;
1194 else
1195 idx = 2;
1196
1197 trbl_tid = LLVMBuildAdd(ctx->builder, tl_tid,
1198 LLVMConstInt(ctx->i32, idx, false), "");
1199
1200 if (ctx->has_ds_bpermute) {
1201 args[0] = LLVMBuildMul(ctx->builder, tl_tid,
1202 LLVMConstInt(ctx->i32, 4, false), "");
1203 args[1] = src0;
1204 tl = emit_llvm_intrinsic(ctx, "llvm.amdgcn.ds.bpermute",
1205 ctx->i32, args, 2,
1206 AC_FUNC_ATTR_READNONE);
1207
1208 args[0] = LLVMBuildMul(ctx->builder, trbl_tid,
1209 LLVMConstInt(ctx->i32, 4, false), "");
1210 trbl = emit_llvm_intrinsic(ctx, "llvm.amdgcn.ds.bpermute",
1211 ctx->i32, args, 2,
1212 AC_FUNC_ATTR_READNONE);
1213 } else {
1214 LLVMValueRef store_ptr, load_ptr0, load_ptr1;
1215
1216 store_ptr = build_gep0(ctx, ctx->lds, thread_id);
1217 load_ptr0 = build_gep0(ctx, ctx->lds, tl_tid);
1218 load_ptr1 = build_gep0(ctx, ctx->lds, trbl_tid);
1219
1220 LLVMBuildStore(ctx->builder, src0, store_ptr);
1221 tl = LLVMBuildLoad(ctx->builder, load_ptr0, "");
1222 trbl = LLVMBuildLoad(ctx->builder, load_ptr1, "");
1223 }
1224 tl = LLVMBuildBitCast(ctx->builder, tl, ctx->f32, "");
1225 trbl = LLVMBuildBitCast(ctx->builder, trbl, ctx->f32, "");
1226 result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
1227 return result;
1228 }
1229
1230 /*
1231 * this takes an I,J coordinate pair,
1232 * and works out the X and Y derivatives.
1233 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
1234 */
1235 static LLVMValueRef emit_ddxy_interp(
1236 struct nir_to_llvm_context *ctx,
1237 LLVMValueRef interp_ij)
1238 {
1239 LLVMValueRef result[4], a;
1240 unsigned i;
1241
1242 for (i = 0; i < 2; i++) {
1243 a = LLVMBuildExtractElement(ctx->builder, interp_ij,
1244 LLVMConstInt(ctx->i32, i, false), "");
1245 result[i] = emit_ddxy(ctx, nir_op_fddx, a);
1246 result[2+i] = emit_ddxy(ctx, nir_op_fddy, a);
1247 }
1248 return build_gather_values(ctx, result, 4);
1249 }
1250
1251 static LLVMValueRef emit_fdiv(struct nir_to_llvm_context *ctx,
1252 LLVMValueRef num,
1253 LLVMValueRef den)
1254 {
1255 LLVMValueRef ret = LLVMBuildFDiv(ctx->builder, num, den, "");
1256
1257 if (!LLVMIsConstant(ret))
1258 LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp);
1259 return ret;
1260 }
1261
1262 static void visit_alu(struct nir_to_llvm_context *ctx, nir_alu_instr *instr)
1263 {
1264 LLVMValueRef src[4], result = NULL;
1265 unsigned num_components = instr->dest.dest.ssa.num_components;
1266 unsigned src_components;
1267
1268 assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
1269 switch (instr->op) {
1270 case nir_op_vec2:
1271 case nir_op_vec3:
1272 case nir_op_vec4:
1273 src_components = 1;
1274 break;
1275 case nir_op_pack_half_2x16:
1276 src_components = 2;
1277 break;
1278 case nir_op_unpack_half_2x16:
1279 src_components = 1;
1280 break;
1281 default:
1282 src_components = num_components;
1283 break;
1284 }
1285 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1286 src[i] = get_alu_src(ctx, instr->src[i], src_components);
1287
1288 switch (instr->op) {
1289 case nir_op_fmov:
1290 case nir_op_imov:
1291 result = src[0];
1292 break;
1293 case nir_op_fneg:
1294 src[0] = to_float(ctx, src[0]);
1295 result = LLVMBuildFNeg(ctx->builder, src[0], "");
1296 break;
1297 case nir_op_ineg:
1298 result = LLVMBuildNeg(ctx->builder, src[0], "");
1299 break;
1300 case nir_op_inot:
1301 result = LLVMBuildNot(ctx->builder, src[0], "");
1302 break;
1303 case nir_op_iadd:
1304 result = LLVMBuildAdd(ctx->builder, src[0], src[1], "");
1305 break;
1306 case nir_op_fadd:
1307 src[0] = to_float(ctx, src[0]);
1308 src[1] = to_float(ctx, src[1]);
1309 result = LLVMBuildFAdd(ctx->builder, src[0], src[1], "");
1310 break;
1311 case nir_op_fsub:
1312 src[0] = to_float(ctx, src[0]);
1313 src[1] = to_float(ctx, src[1]);
1314 result = LLVMBuildFSub(ctx->builder, src[0], src[1], "");
1315 break;
1316 case nir_op_isub:
1317 result = LLVMBuildSub(ctx->builder, src[0], src[1], "");
1318 break;
1319 case nir_op_imul:
1320 result = LLVMBuildMul(ctx->builder, src[0], src[1], "");
1321 break;
1322 case nir_op_imod:
1323 result = LLVMBuildSRem(ctx->builder, src[0], src[1], "");
1324 break;
1325 case nir_op_umod:
1326 result = LLVMBuildURem(ctx->builder, src[0], src[1], "");
1327 break;
1328 case nir_op_fmod:
1329 src[0] = to_float(ctx, src[0]);
1330 src[1] = to_float(ctx, src[1]);
1331 result = emit_fdiv(ctx, src[0], src[1]);
1332 result = emit_intrin_1f_param(ctx, "llvm.floor.f32", result);
1333 result = LLVMBuildFMul(ctx->builder, src[1] , result, "");
1334 result = LLVMBuildFSub(ctx->builder, src[0], result, "");
1335 break;
1336 case nir_op_frem:
1337 src[0] = to_float(ctx, src[0]);
1338 src[1] = to_float(ctx, src[1]);
1339 result = LLVMBuildFRem(ctx->builder, src[0], src[1], "");
1340 break;
1341 case nir_op_idiv:
1342 result = LLVMBuildSDiv(ctx->builder, src[0], src[1], "");
1343 break;
1344 case nir_op_udiv:
1345 result = LLVMBuildUDiv(ctx->builder, src[0], src[1], "");
1346 break;
1347 case nir_op_fmul:
1348 src[0] = to_float(ctx, src[0]);
1349 src[1] = to_float(ctx, src[1]);
1350 result = LLVMBuildFMul(ctx->builder, src[0], src[1], "");
1351 break;
1352 case nir_op_fdiv:
1353 src[0] = to_float(ctx, src[0]);
1354 src[1] = to_float(ctx, src[1]);
1355 result = emit_fdiv(ctx, src[0], src[1]);
1356 break;
1357 case nir_op_frcp:
1358 src[0] = to_float(ctx, src[0]);
1359 result = emit_fdiv(ctx, ctx->f32one, src[0]);
1360 break;
1361 case nir_op_iand:
1362 result = LLVMBuildAnd(ctx->builder, src[0], src[1], "");
1363 break;
1364 case nir_op_ior:
1365 result = LLVMBuildOr(ctx->builder, src[0], src[1], "");
1366 break;
1367 case nir_op_ixor:
1368 result = LLVMBuildXor(ctx->builder, src[0], src[1], "");
1369 break;
1370 case nir_op_ishl:
1371 result = LLVMBuildShl(ctx->builder, src[0], src[1], "");
1372 break;
1373 case nir_op_ishr:
1374 result = LLVMBuildAShr(ctx->builder, src[0], src[1], "");
1375 break;
1376 case nir_op_ushr:
1377 result = LLVMBuildLShr(ctx->builder, src[0], src[1], "");
1378 break;
1379 case nir_op_ilt:
1380 result = emit_int_cmp(ctx, LLVMIntSLT, src[0], src[1]);
1381 break;
1382 case nir_op_ine:
1383 result = emit_int_cmp(ctx, LLVMIntNE, src[0], src[1]);
1384 break;
1385 case nir_op_ieq:
1386 result = emit_int_cmp(ctx, LLVMIntEQ, src[0], src[1]);
1387 break;
1388 case nir_op_ige:
1389 result = emit_int_cmp(ctx, LLVMIntSGE, src[0], src[1]);
1390 break;
1391 case nir_op_ult:
1392 result = emit_int_cmp(ctx, LLVMIntULT, src[0], src[1]);
1393 break;
1394 case nir_op_uge:
1395 result = emit_int_cmp(ctx, LLVMIntUGE, src[0], src[1]);
1396 break;
1397 case nir_op_feq:
1398 result = emit_float_cmp(ctx, LLVMRealUEQ, src[0], src[1]);
1399 break;
1400 case nir_op_fne:
1401 result = emit_float_cmp(ctx, LLVMRealUNE, src[0], src[1]);
1402 break;
1403 case nir_op_flt:
1404 result = emit_float_cmp(ctx, LLVMRealULT, src[0], src[1]);
1405 break;
1406 case nir_op_fge:
1407 result = emit_float_cmp(ctx, LLVMRealUGE, src[0], src[1]);
1408 break;
1409 case nir_op_fabs:
1410 result = emit_intrin_1f_param(ctx, "llvm.fabs.f32", src[0]);
1411 break;
1412 case nir_op_iabs:
1413 result = emit_iabs(ctx, src[0]);
1414 break;
1415 case nir_op_imax:
1416 result = emit_minmax_int(ctx, LLVMIntSGT, src[0], src[1]);
1417 break;
1418 case nir_op_imin:
1419 result = emit_minmax_int(ctx, LLVMIntSLT, src[0], src[1]);
1420 break;
1421 case nir_op_umax:
1422 result = emit_minmax_int(ctx, LLVMIntUGT, src[0], src[1]);
1423 break;
1424 case nir_op_umin:
1425 result = emit_minmax_int(ctx, LLVMIntULT, src[0], src[1]);
1426 break;
1427 case nir_op_isign:
1428 result = emit_isign(ctx, src[0]);
1429 break;
1430 case nir_op_fsign:
1431 src[0] = to_float(ctx, src[0]);
1432 result = emit_fsign(ctx, src[0]);
1433 break;
1434 case nir_op_ffloor:
1435 result = emit_intrin_1f_param(ctx, "llvm.floor.f32", src[0]);
1436 break;
1437 case nir_op_ftrunc:
1438 result = emit_intrin_1f_param(ctx, "llvm.trunc.f32", src[0]);
1439 break;
1440 case nir_op_fceil:
1441 result = emit_intrin_1f_param(ctx, "llvm.ceil.f32", src[0]);
1442 break;
1443 case nir_op_fround_even:
1444 result = emit_intrin_1f_param(ctx, "llvm.rint.f32", src[0]);
1445 break;
1446 case nir_op_ffract:
1447 result = emit_ffract(ctx, src[0]);
1448 break;
1449 case nir_op_fsin:
1450 result = emit_intrin_1f_param(ctx, "llvm.sin.f32", src[0]);
1451 break;
1452 case nir_op_fcos:
1453 result = emit_intrin_1f_param(ctx, "llvm.cos.f32", src[0]);
1454 break;
1455 case nir_op_fsqrt:
1456 result = emit_intrin_1f_param(ctx, "llvm.sqrt.f32", src[0]);
1457 break;
1458 case nir_op_fexp2:
1459 result = emit_intrin_1f_param(ctx, "llvm.exp2.f32", src[0]);
1460 break;
1461 case nir_op_flog2:
1462 result = emit_intrin_1f_param(ctx, "llvm.log2.f32", src[0]);
1463 break;
1464 case nir_op_frsq:
1465 result = emit_intrin_1f_param(ctx, "llvm.sqrt.f32", src[0]);
1466 result = emit_fdiv(ctx, ctx->f32one, result);
1467 break;
1468 case nir_op_fpow:
1469 result = emit_intrin_2f_param(ctx, "llvm.pow.f32", src[0], src[1]);
1470 break;
1471 case nir_op_fmax:
1472 result = emit_intrin_2f_param(ctx, "llvm.maxnum.f32", src[0], src[1]);
1473 break;
1474 case nir_op_fmin:
1475 result = emit_intrin_2f_param(ctx, "llvm.minnum.f32", src[0], src[1]);
1476 break;
1477 case nir_op_ffma:
1478 result = emit_intrin_3f_param(ctx, "llvm.fma.f32", src[0], src[1], src[2]);
1479 break;
1480 case nir_op_ibitfield_extract:
1481 result = emit_bitfield_extract(ctx, "llvm.AMDGPU.bfe.i32", src);
1482 break;
1483 case nir_op_ubitfield_extract:
1484 result = emit_bitfield_extract(ctx, "llvm.AMDGPU.bfe.u32", src);
1485 break;
1486 case nir_op_bitfield_insert:
1487 result = emit_bitfield_insert(ctx, src[0], src[1], src[2], src[3]);
1488 break;
1489 case nir_op_bitfield_reverse:
1490 result = emit_llvm_intrinsic(ctx, "llvm.bitreverse.i32", ctx->i32, src, 1, AC_FUNC_ATTR_READNONE);
1491 break;
1492 case nir_op_bit_count:
1493 result = emit_llvm_intrinsic(ctx, "llvm.ctpop.i32", ctx->i32, src, 1, AC_FUNC_ATTR_READNONE);
1494 break;
1495 case nir_op_vec2:
1496 case nir_op_vec3:
1497 case nir_op_vec4:
1498 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1499 src[i] = to_integer(ctx, src[i]);
1500 result = build_gather_values(ctx, src, num_components);
1501 break;
1502 case nir_op_f2i:
1503 src[0] = to_float(ctx, src[0]);
1504 result = LLVMBuildFPToSI(ctx->builder, src[0], ctx->i32, "");
1505 break;
1506 case nir_op_f2u:
1507 src[0] = to_float(ctx, src[0]);
1508 result = LLVMBuildFPToUI(ctx->builder, src[0], ctx->i32, "");
1509 break;
1510 case nir_op_i2f:
1511 result = LLVMBuildSIToFP(ctx->builder, src[0], ctx->f32, "");
1512 break;
1513 case nir_op_u2f:
1514 result = LLVMBuildUIToFP(ctx->builder, src[0], ctx->f32, "");
1515 break;
1516 case nir_op_bcsel:
1517 result = emit_bcsel(ctx, src[0], src[1], src[2]);
1518 break;
1519 case nir_op_find_lsb:
1520 result = emit_find_lsb(ctx, src[0]);
1521 break;
1522 case nir_op_ufind_msb:
1523 result = emit_ufind_msb(ctx, src[0]);
1524 break;
1525 case nir_op_ifind_msb:
1526 result = emit_ifind_msb(ctx, src[0]);
1527 break;
1528 case nir_op_uadd_carry:
1529 result = emit_uint_carry(ctx, "llvm.uadd.with.overflow.i32", src[0], src[1]);
1530 break;
1531 case nir_op_usub_borrow:
1532 result = emit_uint_carry(ctx, "llvm.usub.with.overflow.i32", src[0], src[1]);
1533 break;
1534 case nir_op_b2f:
1535 result = emit_b2f(ctx, src[0]);
1536 break;
1537 case nir_op_fquantize2f16:
1538 src[0] = to_float(ctx, src[0]);
1539 result = LLVMBuildFPTrunc(ctx->builder, src[0], ctx->f16, "");
1540 /* need to convert back up to f32 */
1541 result = LLVMBuildFPExt(ctx->builder, result, ctx->f32, "");
1542 break;
1543 case nir_op_umul_high:
1544 result = emit_umul_high(ctx, src[0], src[1]);
1545 break;
1546 case nir_op_imul_high:
1547 result = emit_imul_high(ctx, src[0], src[1]);
1548 break;
1549 case nir_op_pack_half_2x16:
1550 result = emit_pack_half_2x16(ctx, src[0]);
1551 break;
1552 case nir_op_unpack_half_2x16:
1553 result = emit_unpack_half_2x16(ctx, src[0]);
1554 break;
1555 case nir_op_fddx:
1556 case nir_op_fddy:
1557 case nir_op_fddx_fine:
1558 case nir_op_fddy_fine:
1559 case nir_op_fddx_coarse:
1560 case nir_op_fddy_coarse:
1561 result = emit_ddxy(ctx, instr->op, src[0]);
1562 break;
1563 default:
1564 fprintf(stderr, "Unknown NIR alu instr: ");
1565 nir_print_instr(&instr->instr, stderr);
1566 fprintf(stderr, "\n");
1567 abort();
1568 }
1569
1570 if (result) {
1571 assert(instr->dest.dest.is_ssa);
1572 result = to_integer(ctx, result);
1573 _mesa_hash_table_insert(ctx->defs, &instr->dest.dest.ssa,
1574 result);
1575 }
1576 }
1577
1578 static void visit_load_const(struct nir_to_llvm_context *ctx,
1579 nir_load_const_instr *instr)
1580 {
1581 LLVMValueRef values[4], value = NULL;
1582 LLVMTypeRef element_type =
1583 LLVMIntTypeInContext(ctx->context, instr->def.bit_size);
1584
1585 for (unsigned i = 0; i < instr->def.num_components; ++i) {
1586 switch (instr->def.bit_size) {
1587 case 32:
1588 values[i] = LLVMConstInt(element_type,
1589 instr->value.u32[i], false);
1590 break;
1591 case 64:
1592 values[i] = LLVMConstInt(element_type,
1593 instr->value.u64[i], false);
1594 break;
1595 default:
1596 fprintf(stderr,
1597 "unsupported nir load_const bit_size: %d\n",
1598 instr->def.bit_size);
1599 abort();
1600 }
1601 }
1602 if (instr->def.num_components > 1) {
1603 value = LLVMConstVector(values, instr->def.num_components);
1604 } else
1605 value = values[0];
1606
1607 _mesa_hash_table_insert(ctx->defs, &instr->def, value);
1608 }
1609
1610 static LLVMValueRef cast_ptr(struct nir_to_llvm_context *ctx, LLVMValueRef ptr,
1611 LLVMTypeRef type)
1612 {
1613 int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
1614 return LLVMBuildBitCast(ctx->builder, ptr,
1615 LLVMPointerType(type, addr_space), "");
1616 }
1617
1618 static LLVMValueRef
1619 emit_llvm_intrinsic(struct nir_to_llvm_context *ctx, const char *name,
1620 LLVMTypeRef return_type, LLVMValueRef *params,
1621 unsigned param_count, unsigned attrib_mask)
1622 {
1623 LLVMValueRef function;
1624
1625 function = LLVMGetNamedFunction(ctx->module, name);
1626 if (!function) {
1627 LLVMTypeRef param_types[32], function_type;
1628 unsigned i;
1629
1630 assert(param_count <= 32);
1631
1632 for (i = 0; i < param_count; ++i) {
1633 assert(params[i]);
1634 param_types[i] = LLVMTypeOf(params[i]);
1635 }
1636 function_type =
1637 LLVMFunctionType(return_type, param_types, param_count, 0);
1638 function = LLVMAddFunction(ctx->module, name, function_type);
1639
1640 LLVMSetFunctionCallConv(function, LLVMCCallConv);
1641 LLVMSetLinkage(function, LLVMExternalLinkage);
1642
1643 attrib_mask |= AC_FUNC_ATTR_NOUNWIND;
1644 while (attrib_mask) {
1645 enum ac_func_attr attr = 1u << u_bit_scan(&attrib_mask);
1646 ac_add_function_attr(function, -1, attr);
1647 }
1648 }
1649 return LLVMBuildCall(ctx->builder, function, params, param_count, "");
1650 }
1651
1652 static LLVMValueRef
1653 get_buffer_size(struct nir_to_llvm_context *ctx, LLVMValueRef descriptor, bool in_elements)
1654 {
1655 LLVMValueRef size =
1656 LLVMBuildExtractElement(ctx->builder, descriptor,
1657 LLVMConstInt(ctx->i32, 2, false), "");
1658
1659 /* VI only */
1660 if (ctx->options->chip_class >= VI && in_elements) {
1661 /* On VI, the descriptor contains the size in bytes,
1662 * but TXQ must return the size in elements.
1663 * The stride is always non-zero for resources using TXQ.
1664 */
1665 LLVMValueRef stride =
1666 LLVMBuildExtractElement(ctx->builder, descriptor,
1667 LLVMConstInt(ctx->i32, 1, false), "");
1668 stride = LLVMBuildLShr(ctx->builder, stride,
1669 LLVMConstInt(ctx->i32, 16, false), "");
1670 stride = LLVMBuildAnd(ctx->builder, stride,
1671 LLVMConstInt(ctx->i32, 0x3fff, false), "");
1672
1673 size = LLVMBuildUDiv(ctx->builder, size, stride, "");
1674 }
1675 return size;
1676 }
1677
1678 /**
1679 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
1680 * intrinsic names).
1681 */
1682 static void build_int_type_name(
1683 LLVMTypeRef type,
1684 char *buf, unsigned bufsize)
1685 {
1686 assert(bufsize >= 6);
1687
1688 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
1689 snprintf(buf, bufsize, "v%ui32",
1690 LLVMGetVectorSize(type));
1691 else
1692 strcpy(buf, "i32");
1693 }
1694
1695 static LLVMValueRef radv_lower_gather4_integer(struct nir_to_llvm_context *ctx,
1696 struct ac_tex_info *tinfo,
1697 nir_tex_instr *instr,
1698 const char *intr_name,
1699 unsigned coord_vgpr_index)
1700 {
1701 LLVMValueRef coord = tinfo->args[0];
1702 LLVMValueRef half_texel[2];
1703 int c;
1704
1705 //TODO Rect
1706 {
1707 LLVMValueRef txq_args[10];
1708 int txq_arg_count = 0;
1709 LLVMValueRef size;
1710 bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
1711 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, false);
1712 txq_args[txq_arg_count++] = tinfo->args[1];
1713 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0xf, 0); /* dmask */
1714 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* unorm */
1715 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* r128 */
1716 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, da ? 1 : 0, 0);
1717 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* glc */
1718 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* slc */
1719 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* tfe */
1720 txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* lwe */
1721 size = emit_llvm_intrinsic(ctx, "llvm.SI.getresinfo.i32", ctx->v4i32,
1722 txq_args, txq_arg_count,
1723 AC_FUNC_ATTR_READNONE);
1724
1725 for (c = 0; c < 2; c++) {
1726 half_texel[c] = LLVMBuildExtractElement(ctx->builder, size,
1727 LLVMConstInt(ctx->i32, c, false), "");
1728 half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
1729 half_texel[c] = emit_fdiv(ctx, ctx->f32one, half_texel[c]);
1730 half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c],
1731 LLVMConstReal(ctx->f32, -0.5), "");
1732 }
1733 }
1734
1735 for (c = 0; c < 2; c++) {
1736 LLVMValueRef tmp;
1737 LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
1738 tmp = LLVMBuildExtractElement(ctx->builder, coord, index, "");
1739 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
1740 tmp = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
1741 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
1742 coord = LLVMBuildInsertElement(ctx->builder, coord, tmp, index, "");
1743 }
1744
1745 tinfo->args[0] = coord;
1746 return emit_llvm_intrinsic(ctx, intr_name, tinfo->dst_type, tinfo->args, tinfo->arg_count,
1747 AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
1748
1749 }
1750
1751 static LLVMValueRef build_tex_intrinsic(struct nir_to_llvm_context *ctx,
1752 nir_tex_instr *instr,
1753 struct ac_tex_info *tinfo)
1754 {
1755 const char *name = "llvm.SI.image.sample";
1756 const char *infix = "";
1757 char intr_name[127];
1758 char type[64];
1759 bool is_shadow = instr->is_shadow;
1760 bool has_offset = tinfo->has_offset;
1761 switch (instr->op) {
1762 case nir_texop_txf:
1763 case nir_texop_txf_ms:
1764 case nir_texop_samples_identical:
1765 name = instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? "llvm.SI.image.load" :
1766 instr->sampler_dim == GLSL_SAMPLER_DIM_BUF ? "llvm.SI.vs.load.input" :
1767 "llvm.SI.image.load.mip";
1768 is_shadow = false;
1769 has_offset = false;
1770 break;
1771 case nir_texop_txb:
1772 infix = ".b";
1773 break;
1774 case nir_texop_txl:
1775 infix = ".l";
1776 break;
1777 case nir_texop_txs:
1778 name = "llvm.SI.getresinfo";
1779 break;
1780 case nir_texop_query_levels:
1781 name = "llvm.SI.getresinfo";
1782 break;
1783 case nir_texop_tex:
1784 if (ctx->stage != MESA_SHADER_FRAGMENT)
1785 infix = ".lz";
1786 break;
1787 case nir_texop_txd:
1788 infix = ".d";
1789 break;
1790 case nir_texop_tg4:
1791 name = "llvm.SI.gather4";
1792 infix = ".lz";
1793 break;
1794 case nir_texop_lod:
1795 name = "llvm.SI.getlod";
1796 is_shadow = false;
1797 has_offset = false;
1798 break;
1799 default:
1800 break;
1801 }
1802
1803 build_int_type_name(LLVMTypeOf(tinfo->args[0]), type, sizeof(type));
1804 sprintf(intr_name, "%s%s%s%s.%s", name, is_shadow ? ".c" : "", infix,
1805 has_offset ? ".o" : "", type);
1806
1807 if (instr->op == nir_texop_tg4) {
1808 enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
1809 if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) {
1810 return radv_lower_gather4_integer(ctx, tinfo, instr, intr_name,
1811 (int)has_offset + (int)is_shadow);
1812 }
1813 }
1814 return emit_llvm_intrinsic(ctx, intr_name, tinfo->dst_type, tinfo->args, tinfo->arg_count,
1815 AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
1816
1817 }
1818
1819 static LLVMValueRef visit_vulkan_resource_index(struct nir_to_llvm_context *ctx,
1820 nir_intrinsic_instr *instr)
1821 {
1822 LLVMValueRef index = get_src(ctx, instr->src[0]);
1823 unsigned desc_set = nir_intrinsic_desc_set(instr);
1824 unsigned binding = nir_intrinsic_binding(instr);
1825 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
1826 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
1827 unsigned base_offset = layout->binding[binding].offset;
1828 LLVMValueRef offset, stride;
1829
1830 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1831 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1832 desc_ptr = ctx->push_constants;
1833 base_offset = ctx->options->layout->push_constant_size;
1834 base_offset += 16 * layout->binding[binding].dynamic_offset_offset;
1835 stride = LLVMConstInt(ctx->i32, 16, false);
1836 } else
1837 stride = LLVMConstInt(ctx->i32, layout->binding[binding].size, false);
1838
1839 offset = LLVMConstInt(ctx->i32, base_offset, false);
1840 index = LLVMBuildMul(ctx->builder, index, stride, "");
1841 offset = LLVMBuildAdd(ctx->builder, offset, index, "");
1842
1843 LLVMValueRef indices[] = {ctx->i32zero, offset};
1844 desc_ptr = LLVMBuildGEP(ctx->builder, desc_ptr, indices, 2, "");
1845 desc_ptr = cast_ptr(ctx, desc_ptr, ctx->v4i32);
1846 LLVMSetMetadata(desc_ptr, ctx->uniform_md_kind, ctx->empty_md);
1847
1848 return LLVMBuildLoad(ctx->builder, desc_ptr, "");
1849 }
1850
1851 static LLVMValueRef visit_load_push_constant(struct nir_to_llvm_context *ctx,
1852 nir_intrinsic_instr *instr)
1853 {
1854 LLVMValueRef ptr;
1855
1856 LLVMValueRef indices[] = {ctx->i32zero, get_src(ctx, instr->src[0])};
1857 ptr = LLVMBuildGEP(ctx->builder, ctx->push_constants, indices, 2, "");
1858 ptr = cast_ptr(ctx, ptr, get_def_type(ctx, &instr->dest.ssa));
1859
1860 return LLVMBuildLoad(ctx->builder, ptr, "");
1861 }
1862
1863 static LLVMValueRef visit_get_buffer_size(struct nir_to_llvm_context *ctx,
1864 nir_intrinsic_instr *instr)
1865 {
1866 LLVMValueRef desc = get_src(ctx, instr->src[0]);
1867
1868 return get_buffer_size(ctx, desc, false);
1869 }
1870 static void visit_store_ssbo(struct nir_to_llvm_context *ctx,
1871 nir_intrinsic_instr *instr)
1872 {
1873 const char *store_name;
1874 LLVMTypeRef data_type = ctx->f32;
1875 unsigned writemask = nir_intrinsic_write_mask(instr);
1876 LLVMValueRef base_data, base_offset;
1877 LLVMValueRef params[6];
1878
1879 if (ctx->stage == MESA_SHADER_FRAGMENT)
1880 ctx->shader_info->fs.writes_memory = true;
1881
1882 params[1] = get_src(ctx, instr->src[1]);
1883 params[2] = LLVMConstInt(ctx->i32, 0, false); /* vindex */
1884 params[4] = LLVMConstInt(ctx->i1, 0, false); /* glc */
1885 params[5] = LLVMConstInt(ctx->i1, 0, false); /* slc */
1886
1887 if (instr->num_components > 1)
1888 data_type = LLVMVectorType(ctx->f32, instr->num_components);
1889
1890 base_data = to_float(ctx, get_src(ctx, instr->src[0]));
1891 base_data = trim_vector(ctx, base_data, instr->num_components);
1892 base_data = LLVMBuildBitCast(ctx->builder, base_data,
1893 data_type, "");
1894 base_offset = get_src(ctx, instr->src[2]); /* voffset */
1895 while (writemask) {
1896 int start, count;
1897 LLVMValueRef data;
1898 LLVMValueRef offset;
1899 LLVMValueRef tmp;
1900 u_bit_scan_consecutive_range(&writemask, &start, &count);
1901
1902 /* Due to an LLVM limitation, split 3-element writes
1903 * into a 2-element and a 1-element write. */
1904 if (count == 3) {
1905 writemask |= 1 << (start + 2);
1906 count = 2;
1907 }
1908
1909 if (count == 4) {
1910 store_name = "llvm.amdgcn.buffer.store.v4f32";
1911 data = base_data;
1912 } else if (count == 2) {
1913 tmp = LLVMBuildExtractElement(ctx->builder,
1914 base_data, LLVMConstInt(ctx->i32, start, false), "");
1915 data = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), tmp,
1916 ctx->i32zero, "");
1917
1918 tmp = LLVMBuildExtractElement(ctx->builder,
1919 base_data, LLVMConstInt(ctx->i32, start + 1, false), "");
1920 data = LLVMBuildInsertElement(ctx->builder, data, tmp,
1921 ctx->i32one, "");
1922 store_name = "llvm.amdgcn.buffer.store.v2f32";
1923
1924 } else {
1925 assert(count == 1);
1926 if (get_llvm_num_components(base_data) > 1)
1927 data = LLVMBuildExtractElement(ctx->builder, base_data,
1928 LLVMConstInt(ctx->i32, start, false), "");
1929 else
1930 data = base_data;
1931 store_name = "llvm.amdgcn.buffer.store.f32";
1932 }
1933
1934 offset = base_offset;
1935 if (start != 0) {
1936 offset = LLVMBuildAdd(ctx->builder, offset, LLVMConstInt(ctx->i32, start * 4, false), "");
1937 }
1938 params[0] = data;
1939 params[3] = offset;
1940 emit_llvm_intrinsic(ctx, store_name,
1941 LLVMVoidTypeInContext(ctx->context), params, 6, 0);
1942 }
1943 }
1944
1945 static LLVMValueRef visit_atomic_ssbo(struct nir_to_llvm_context *ctx,
1946 nir_intrinsic_instr *instr)
1947 {
1948 const char *name;
1949 LLVMValueRef params[5];
1950 int arg_count = 0;
1951 if (ctx->stage == MESA_SHADER_FRAGMENT)
1952 ctx->shader_info->fs.writes_memory = true;
1953
1954 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
1955 params[arg_count++] = get_src(ctx, instr->src[3]);
1956 }
1957 params[arg_count++] = get_src(ctx, instr->src[2]);
1958 params[arg_count++] = get_src(ctx, instr->src[0]);
1959 params[arg_count++] = LLVMConstInt(ctx->i32, 0, false); /* vindex */
1960 params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
1961 params[arg_count++] = LLVMConstInt(ctx->i1, 0, false); /* slc */
1962
1963 switch (instr->intrinsic) {
1964 case nir_intrinsic_ssbo_atomic_add:
1965 name = "llvm.amdgcn.buffer.atomic.add";
1966 break;
1967 case nir_intrinsic_ssbo_atomic_imin:
1968 name = "llvm.amdgcn.buffer.atomic.smin";
1969 break;
1970 case nir_intrinsic_ssbo_atomic_umin:
1971 name = "llvm.amdgcn.buffer.atomic.umin";
1972 break;
1973 case nir_intrinsic_ssbo_atomic_imax:
1974 name = "llvm.amdgcn.buffer.atomic.smax";
1975 break;
1976 case nir_intrinsic_ssbo_atomic_umax:
1977 name = "llvm.amdgcn.buffer.atomic.umax";
1978 break;
1979 case nir_intrinsic_ssbo_atomic_and:
1980 name = "llvm.amdgcn.buffer.atomic.and";
1981 break;
1982 case nir_intrinsic_ssbo_atomic_or:
1983 name = "llvm.amdgcn.buffer.atomic.or";
1984 break;
1985 case nir_intrinsic_ssbo_atomic_xor:
1986 name = "llvm.amdgcn.buffer.atomic.xor";
1987 break;
1988 case nir_intrinsic_ssbo_atomic_exchange:
1989 name = "llvm.amdgcn.buffer.atomic.swap";
1990 break;
1991 case nir_intrinsic_ssbo_atomic_comp_swap:
1992 name = "llvm.amdgcn.buffer.atomic.cmpswap";
1993 break;
1994 default:
1995 abort();
1996 }
1997
1998 return emit_llvm_intrinsic(ctx, name, ctx->i32, params, arg_count, 0);
1999 }
2000
2001 static LLVMValueRef visit_load_buffer(struct nir_to_llvm_context *ctx,
2002 nir_intrinsic_instr *instr)
2003 {
2004 const char *load_name;
2005 LLVMTypeRef data_type = ctx->f32;
2006 if (instr->num_components == 3)
2007 data_type = LLVMVectorType(ctx->f32, 4);
2008 else if (instr->num_components > 1)
2009 data_type = LLVMVectorType(ctx->f32, instr->num_components);
2010
2011 if (instr->num_components == 4 || instr->num_components == 3)
2012 load_name = "llvm.amdgcn.buffer.load.v4f32";
2013 else if (instr->num_components == 2)
2014 load_name = "llvm.amdgcn.buffer.load.v2f32";
2015 else if (instr->num_components == 1)
2016 load_name = "llvm.amdgcn.buffer.load.f32";
2017 else
2018 abort();
2019
2020 LLVMValueRef params[] = {
2021 get_src(ctx, instr->src[0]),
2022 LLVMConstInt(ctx->i32, 0, false),
2023 get_src(ctx, instr->src[1]),
2024 LLVMConstInt(ctx->i1, 0, false),
2025 LLVMConstInt(ctx->i1, 0, false),
2026 };
2027
2028 LLVMValueRef ret =
2029 emit_llvm_intrinsic(ctx, load_name, data_type, params, 5, 0);
2030
2031 if (instr->num_components == 3)
2032 ret = trim_vector(ctx, ret, 3);
2033
2034 return LLVMBuildBitCast(ctx->builder, ret,
2035 get_def_type(ctx, &instr->dest.ssa), "");
2036 }
2037
2038 static LLVMValueRef visit_load_ubo_buffer(struct nir_to_llvm_context *ctx,
2039 nir_intrinsic_instr *instr)
2040 {
2041 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2042 const char *load_name;
2043 LLVMTypeRef data_type = ctx->f32;
2044 LLVMValueRef results[4], ret;
2045 LLVMValueRef rsrc = get_src(ctx, instr->src[0]);
2046 LLVMValueRef offset = get_src(ctx, instr->src[1]);
2047
2048 rsrc = LLVMBuildBitCast(ctx->builder, rsrc, LLVMVectorType(ctx->i8, 16), "");
2049
2050 for (unsigned i = 0; i < instr->num_components; ++i) {
2051 LLVMValueRef params[] = {
2052 rsrc,
2053 LLVMBuildAdd(ctx->builder, LLVMConstInt(ctx->i32, 4 * i, 0),
2054 offset, "")
2055 };
2056 results[i] = emit_llvm_intrinsic(ctx, "llvm.SI.load.const", ctx->f32,
2057 params, 2, AC_FUNC_ATTR_READNONE);
2058 }
2059
2060
2061 ret = build_gather_values(ctx, results, instr->num_components);
2062 return LLVMBuildBitCast(ctx->builder, ret,
2063 get_def_type(ctx, &instr->dest.ssa), "");
2064 }
2065
2066 static void
2067 radv_get_deref_offset(struct nir_to_llvm_context *ctx, nir_deref *tail,
2068 bool vs_in, unsigned *const_out, LLVMValueRef *indir_out)
2069 {
2070 unsigned const_offset = 0;
2071 LLVMValueRef offset = NULL;
2072
2073
2074 while (tail->child != NULL) {
2075 const struct glsl_type *parent_type = tail->type;
2076 tail = tail->child;
2077
2078 if (tail->deref_type == nir_deref_type_array) {
2079 nir_deref_array *deref_array = nir_deref_as_array(tail);
2080 LLVMValueRef index, stride, local_offset;
2081 unsigned size = glsl_count_attribute_slots(tail->type, vs_in);
2082
2083 const_offset += size * deref_array->base_offset;
2084 if (deref_array->deref_array_type == nir_deref_array_type_direct)
2085 continue;
2086
2087 assert(deref_array->deref_array_type == nir_deref_array_type_indirect);
2088 index = get_src(ctx, deref_array->indirect);
2089 stride = LLVMConstInt(ctx->i32, size, 0);
2090 local_offset = LLVMBuildMul(ctx->builder, stride, index, "");
2091
2092 if (offset)
2093 offset = LLVMBuildAdd(ctx->builder, offset, local_offset, "");
2094 else
2095 offset = local_offset;
2096 } else if (tail->deref_type == nir_deref_type_struct) {
2097 nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
2098
2099 for (unsigned i = 0; i < deref_struct->index; i++) {
2100 const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
2101 const_offset += glsl_count_attribute_slots(ft, vs_in);
2102 }
2103 } else
2104 unreachable("unsupported deref type");
2105
2106 }
2107
2108 if (const_offset && offset)
2109 offset = LLVMBuildAdd(ctx->builder, offset,
2110 LLVMConstInt(ctx->i32, const_offset, 0),
2111 "");
2112
2113 *const_out = const_offset;
2114 *indir_out = offset;
2115 }
2116
2117 static LLVMValueRef visit_load_var(struct nir_to_llvm_context *ctx,
2118 nir_intrinsic_instr *instr)
2119 {
2120 LLVMValueRef values[4];
2121 int idx = instr->variables[0]->var->data.driver_location;
2122 int ve = instr->dest.ssa.num_components;
2123 LLVMValueRef indir_index;
2124 unsigned const_index;
2125 switch (instr->variables[0]->var->data.mode) {
2126 case nir_var_shader_in:
2127 radv_get_deref_offset(ctx, &instr->variables[0]->deref,
2128 ctx->stage == MESA_SHADER_VERTEX,
2129 &const_index, &indir_index);
2130 for (unsigned chan = 0; chan < ve; chan++) {
2131 if (indir_index) {
2132 unsigned count = glsl_count_attribute_slots(
2133 instr->variables[0]->var->type,
2134 ctx->stage == MESA_SHADER_VERTEX);
2135 LLVMValueRef tmp_vec = build_gather_values_extended(
2136 ctx, ctx->inputs + idx + chan, count,
2137 4, false);
2138
2139 values[chan] = LLVMBuildExtractElement(ctx->builder,
2140 tmp_vec,
2141 indir_index, "");
2142 } else
2143 values[chan] = ctx->inputs[idx + chan + const_index * 4];
2144 }
2145 return to_integer(ctx, build_gather_values(ctx, values, ve));
2146 break;
2147 case nir_var_local:
2148 radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
2149 &const_index, &indir_index);
2150 for (unsigned chan = 0; chan < ve; chan++) {
2151 if (indir_index) {
2152 unsigned count = glsl_count_attribute_slots(
2153 instr->variables[0]->var->type, false);
2154 LLVMValueRef tmp_vec = build_gather_values_extended(
2155 ctx, ctx->locals + idx + chan, count,
2156 4, true);
2157
2158 values[chan] = LLVMBuildExtractElement(ctx->builder,
2159 tmp_vec,
2160 indir_index, "");
2161 } else {
2162 values[chan] = LLVMBuildLoad(ctx->builder, ctx->locals[idx + chan + const_index * 4], "");
2163 }
2164 }
2165 return to_integer(ctx, build_gather_values(ctx, values, ve));
2166 case nir_var_shader_out:
2167 radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
2168 &const_index, &indir_index);
2169 for (unsigned chan = 0; chan < ve; chan++) {
2170 if (indir_index) {
2171 unsigned count = glsl_count_attribute_slots(
2172 instr->variables[0]->var->type, false);
2173 LLVMValueRef tmp_vec = build_gather_values_extended(
2174 ctx, ctx->outputs + idx + chan, count,
2175 4, true);
2176
2177 values[chan] = LLVMBuildExtractElement(ctx->builder,
2178 tmp_vec,
2179 indir_index, "");
2180 } else {
2181 values[chan] = LLVMBuildLoad(ctx->builder,
2182 ctx->outputs[idx + chan + const_index * 4],
2183 "");
2184 }
2185 }
2186 return to_integer(ctx, build_gather_values(ctx, values, ve));
2187 case nir_var_shared: {
2188 radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
2189 &const_index, &indir_index);
2190 LLVMValueRef ptr = get_shared_memory_ptr(ctx, idx, ctx->i32);
2191 LLVMValueRef derived_ptr;
2192 LLVMValueRef index = ctx->i32zero;
2193 if (indir_index)
2194 index = LLVMBuildAdd(ctx->builder, index, indir_index, "");
2195 derived_ptr = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
2196
2197 return to_integer(ctx, LLVMBuildLoad(ctx->builder, derived_ptr, ""));
2198 break;
2199 }
2200 default:
2201 break;
2202 }
2203 return NULL;
2204 }
2205
2206 static void
2207 visit_store_var(struct nir_to_llvm_context *ctx,
2208 nir_intrinsic_instr *instr)
2209 {
2210 LLVMValueRef temp_ptr, value;
2211 int idx = instr->variables[0]->var->data.driver_location;
2212 LLVMValueRef src = to_float(ctx, get_src(ctx, instr->src[0]));
2213 int writemask = instr->const_index[0];
2214 LLVMValueRef indir_index;
2215 unsigned const_index;
2216 switch (instr->variables[0]->var->data.mode) {
2217 case nir_var_shader_out:
2218 radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
2219 &const_index, &indir_index);
2220 for (unsigned chan = 0; chan < 4; chan++) {
2221 int stride = 4;
2222 if (!(writemask & (1 << chan)))
2223 continue;
2224 if (get_llvm_num_components(src) == 1)
2225 value = src;
2226 else
2227 value = LLVMBuildExtractElement(ctx->builder, src,
2228 LLVMConstInt(ctx->i32,
2229 chan, false),
2230 "");
2231
2232 if (instr->variables[0]->var->data.location == VARYING_SLOT_CLIP_DIST0 ||
2233 instr->variables[0]->var->data.location == VARYING_SLOT_CULL_DIST0)
2234 stride = 1;
2235 if (indir_index) {
2236 unsigned count = glsl_count_attribute_slots(
2237 instr->variables[0]->var->type, false);
2238 LLVMValueRef tmp_vec = build_gather_values_extended(
2239 ctx, ctx->outputs + idx + chan, count,
2240 stride, true);
2241
2242 if (get_llvm_num_components(tmp_vec) > 1) {
2243 tmp_vec = LLVMBuildInsertElement(ctx->builder, tmp_vec,
2244 value, indir_index, "");
2245 } else
2246 tmp_vec = value;
2247 build_store_values_extended(ctx, ctx->outputs + idx + chan,
2248 count, stride, tmp_vec);
2249
2250 } else {
2251 temp_ptr = ctx->outputs[idx + chan + const_index * stride];
2252
2253 LLVMBuildStore(ctx->builder, value, temp_ptr);
2254 }
2255 }
2256 break;
2257 case nir_var_local:
2258 radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
2259 &const_index, &indir_index);
2260 for (unsigned chan = 0; chan < 4; chan++) {
2261 if (!(writemask & (1 << chan)))
2262 continue;
2263
2264 if (get_llvm_num_components(src) == 1)
2265 value = src;
2266 else
2267 value = LLVMBuildExtractElement(ctx->builder, src,
2268 LLVMConstInt(ctx->i32, chan, false), "");
2269 if (indir_index) {
2270 unsigned count = glsl_count_attribute_slots(
2271 instr->variables[0]->var->type, false);
2272 LLVMValueRef tmp_vec = build_gather_values_extended(
2273 ctx, ctx->locals + idx + chan, count,
2274 4, true);
2275
2276 tmp_vec = LLVMBuildInsertElement(ctx->builder, tmp_vec,
2277 value, indir_index, "");
2278 build_store_values_extended(ctx, ctx->locals + idx + chan,
2279 count, 4, tmp_vec);
2280 } else {
2281 temp_ptr = ctx->locals[idx + chan + const_index * 4];
2282
2283 LLVMBuildStore(ctx->builder, value, temp_ptr);
2284 }
2285 }
2286 break;
2287 case nir_var_shared: {
2288 LLVMValueRef ptr;
2289 radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
2290 &const_index, &indir_index);
2291
2292 ptr = get_shared_memory_ptr(ctx, idx, ctx->i32);
2293 LLVMValueRef index = ctx->i32zero;
2294 LLVMValueRef derived_ptr;
2295
2296 if (indir_index)
2297 index = LLVMBuildAdd(ctx->builder, index, indir_index, "");
2298 derived_ptr = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
2299 LLVMBuildStore(ctx->builder,
2300 to_integer(ctx, src), derived_ptr);
2301 break;
2302 }
2303 default:
2304 break;
2305 }
2306 }
2307
2308 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
2309 {
2310 switch (dim) {
2311 case GLSL_SAMPLER_DIM_BUF:
2312 return 1;
2313 case GLSL_SAMPLER_DIM_1D:
2314 return array ? 2 : 1;
2315 case GLSL_SAMPLER_DIM_2D:
2316 return array ? 3 : 2;
2317 case GLSL_SAMPLER_DIM_3D:
2318 case GLSL_SAMPLER_DIM_CUBE:
2319 return 3;
2320 case GLSL_SAMPLER_DIM_RECT:
2321 case GLSL_SAMPLER_DIM_SUBPASS:
2322 return 2;
2323 default:
2324 break;
2325 }
2326 return 0;
2327 }
2328
2329 static LLVMValueRef get_image_coords(struct nir_to_llvm_context *ctx,
2330 nir_intrinsic_instr *instr, bool add_frag_pos)
2331 {
2332 const struct glsl_type *type = instr->variables[0]->var->type;
2333 if(instr->variables[0]->deref.child)
2334 type = instr->variables[0]->deref.child->type;
2335
2336 LLVMValueRef src0 = get_src(ctx, instr->src[0]);
2337 LLVMValueRef coords[4];
2338 LLVMValueRef masks[] = {
2339 LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
2340 LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false),
2341 };
2342 LLVMValueRef res;
2343 int count;
2344 count = image_type_to_components_count(glsl_get_sampler_dim(type),
2345 glsl_sampler_type_is_array(type));
2346
2347 if (count == 1) {
2348 if (instr->src[0].ssa->num_components)
2349 res = LLVMBuildExtractElement(ctx->builder, src0, masks[0], "");
2350 else
2351 res = src0;
2352 } else {
2353 int chan;
2354 for (chan = 0; chan < count; ++chan) {
2355 coords[chan] = LLVMBuildExtractElement(ctx->builder, src0, masks[chan], "");
2356 }
2357
2358 if (add_frag_pos) {
2359 for (chan = 0; chan < count; ++chan)
2360 coords[chan] = LLVMBuildAdd(ctx->builder, coords[chan], LLVMBuildFPToUI(ctx->builder, ctx->frag_pos[chan], ctx->i32, ""), "");
2361 }
2362 if (count == 3) {
2363 coords[3] = LLVMGetUndef(ctx->i32);
2364 count = 4;
2365 }
2366 res = build_gather_values(ctx, coords, count);
2367 }
2368 return res;
2369 }
2370
2371 static void build_type_name_for_intr(
2372 LLVMTypeRef type,
2373 char *buf, unsigned bufsize)
2374 {
2375 LLVMTypeRef elem_type = type;
2376
2377 assert(bufsize >= 8);
2378
2379 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
2380 int ret = snprintf(buf, bufsize, "v%u",
2381 LLVMGetVectorSize(type));
2382 if (ret < 0) {
2383 char *type_name = LLVMPrintTypeToString(type);
2384 fprintf(stderr, "Error building type name for: %s\n",
2385 type_name);
2386 return;
2387 }
2388 elem_type = LLVMGetElementType(type);
2389 buf += ret;
2390 bufsize -= ret;
2391 }
2392 switch (LLVMGetTypeKind(elem_type)) {
2393 default: break;
2394 case LLVMIntegerTypeKind:
2395 snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
2396 break;
2397 case LLVMFloatTypeKind:
2398 snprintf(buf, bufsize, "f32");
2399 break;
2400 case LLVMDoubleTypeKind:
2401 snprintf(buf, bufsize, "f64");
2402 break;
2403 }
2404 }
2405
2406 static void get_image_intr_name(const char *base_name,
2407 LLVMTypeRef data_type,
2408 LLVMTypeRef coords_type,
2409 LLVMTypeRef rsrc_type,
2410 char *out_name, unsigned out_len)
2411 {
2412 char coords_type_name[8];
2413
2414 build_type_name_for_intr(coords_type, coords_type_name,
2415 sizeof(coords_type_name));
2416
2417 if (HAVE_LLVM <= 0x0309) {
2418 snprintf(out_name, out_len, "%s.%s", base_name, coords_type_name);
2419 } else {
2420 char data_type_name[8];
2421 char rsrc_type_name[8];
2422
2423 build_type_name_for_intr(data_type, data_type_name,
2424 sizeof(data_type_name));
2425 build_type_name_for_intr(rsrc_type, rsrc_type_name,
2426 sizeof(rsrc_type_name));
2427 snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
2428 data_type_name, coords_type_name, rsrc_type_name);
2429 }
2430 }
2431
2432 static LLVMValueRef visit_image_load(struct nir_to_llvm_context *ctx,
2433 nir_intrinsic_instr *instr)
2434 {
2435 LLVMValueRef params[7];
2436 LLVMValueRef res;
2437 char intrinsic_name[64];
2438 const nir_variable *var = instr->variables[0]->var;
2439 const struct glsl_type *type = var->type;
2440 if(instr->variables[0]->deref.child)
2441 type = instr->variables[0]->deref.child->type;
2442
2443 type = glsl_without_array(type);
2444 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
2445 params[0] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER);
2446 params[1] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]),
2447 LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */
2448 params[2] = LLVMConstInt(ctx->i32, 0, false); /* voffset */
2449 params[3] = LLVMConstInt(ctx->i1, 0, false); /* glc */
2450 params[4] = LLVMConstInt(ctx->i1, 0, false); /* slc */
2451 res = emit_llvm_intrinsic(ctx, "llvm.amdgcn.buffer.load.format.v4f32", ctx->v4f32,
2452 params, 5, 0);
2453
2454 res = trim_vector(ctx, res, instr->dest.ssa.num_components);
2455 res = to_integer(ctx, res);
2456 } else {
2457 bool is_da = glsl_sampler_type_is_array(type) ||
2458 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
2459 bool add_frag_pos = glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_SUBPASS;
2460 LLVMValueRef da = is_da ? ctx->i32one : ctx->i32zero;
2461 LLVMValueRef glc = LLVMConstInt(ctx->i1, 0, false);
2462 LLVMValueRef slc = LLVMConstInt(ctx->i1, 0, false);
2463
2464 params[0] = get_image_coords(ctx, instr, add_frag_pos);
2465 params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
2466 params[2] = LLVMConstInt(ctx->i32, 15, false); /* dmask */
2467 if (HAVE_LLVM <= 0x0309) {
2468 params[3] = LLVMConstInt(ctx->i1, 0, false); /* r128 */
2469 params[4] = da;
2470 params[5] = glc;
2471 params[6] = slc;
2472 } else {
2473 LLVMValueRef lwe = LLVMConstInt(ctx->i1, 0, false);
2474 params[3] = glc;
2475 params[4] = slc;
2476 params[5] = lwe;
2477 params[6] = da;
2478 }
2479
2480 get_image_intr_name("llvm.amdgcn.image.load",
2481 ctx->v4f32, /* vdata */
2482 LLVMTypeOf(params[0]), /* coords */
2483 LLVMTypeOf(params[1]), /* rsrc */
2484 intrinsic_name, sizeof(intrinsic_name));
2485
2486 res = emit_llvm_intrinsic(ctx, intrinsic_name, ctx->v4f32,
2487 params, 7, AC_FUNC_ATTR_READONLY);
2488 }
2489 return to_integer(ctx, res);
2490 }
2491
2492 static void visit_image_store(struct nir_to_llvm_context *ctx,
2493 nir_intrinsic_instr *instr)
2494 {
2495 LLVMValueRef params[8];
2496 char intrinsic_name[64];
2497 const nir_variable *var = instr->variables[0]->var;
2498 LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
2499 LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
2500 const struct glsl_type *type = glsl_without_array(var->type);
2501
2502 if (ctx->stage == MESA_SHADER_FRAGMENT)
2503 ctx->shader_info->fs.writes_memory = true;
2504
2505 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
2506 params[0] = to_float(ctx, get_src(ctx, instr->src[2])); /* data */
2507 params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER);
2508 params[2] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]),
2509 LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */
2510 params[3] = LLVMConstInt(ctx->i32, 0, false); /* voffset */
2511 params[4] = i1false; /* glc */
2512 params[5] = i1false; /* slc */
2513 emit_llvm_intrinsic(ctx, "llvm.amdgcn.buffer.store.format.v4f32", ctx->voidt,
2514 params, 6, 0);
2515 } else {
2516 bool is_da = glsl_sampler_type_is_array(type) ||
2517 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
2518 LLVMValueRef da = is_da ? i1true : i1false;
2519 LLVMValueRef glc = i1false;
2520 LLVMValueRef slc = i1false;
2521
2522 params[0] = to_float(ctx, get_src(ctx, instr->src[2]));
2523 params[1] = get_image_coords(ctx, instr, false); /* coords */
2524 params[2] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
2525 params[3] = LLVMConstInt(ctx->i32, 15, false); /* dmask */
2526 if (HAVE_LLVM <= 0x0309) {
2527 params[4] = i1false; /* r128 */
2528 params[5] = da;
2529 params[6] = glc;
2530 params[7] = slc;
2531 } else {
2532 LLVMValueRef lwe = i1false;
2533 params[4] = glc;
2534 params[5] = slc;
2535 params[6] = lwe;
2536 params[7] = da;
2537 }
2538
2539 get_image_intr_name("llvm.amdgcn.image.store",
2540 LLVMTypeOf(params[0]), /* vdata */
2541 LLVMTypeOf(params[1]), /* coords */
2542 LLVMTypeOf(params[2]), /* rsrc */
2543 intrinsic_name, sizeof(intrinsic_name));
2544
2545 emit_llvm_intrinsic(ctx, intrinsic_name, ctx->voidt,
2546 params, 8, 0);
2547 }
2548
2549 }
2550
2551 static LLVMValueRef visit_image_atomic(struct nir_to_llvm_context *ctx,
2552 nir_intrinsic_instr *instr)
2553 {
2554 LLVMValueRef params[6];
2555 int param_count = 0;
2556 const nir_variable *var = instr->variables[0]->var;
2557 LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
2558 LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
2559 const char *base_name = "llvm.amdgcn.image.atomic";
2560 const char *atomic_name;
2561 LLVMValueRef coords;
2562 char intrinsic_name[32], coords_type[8];
2563 const struct glsl_type *type = glsl_without_array(var->type);
2564
2565 if (ctx->stage == MESA_SHADER_FRAGMENT)
2566 ctx->shader_info->fs.writes_memory = true;
2567
2568 params[param_count++] = get_src(ctx, instr->src[2]);
2569 if (instr->intrinsic == nir_intrinsic_image_atomic_comp_swap)
2570 params[param_count++] = get_src(ctx, instr->src[3]);
2571
2572 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
2573 params[param_count++] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER);
2574 coords = params[param_count++] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]),
2575 LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */
2576 params[param_count++] = ctx->i32zero; /* voffset */
2577 params[param_count++] = i1false; /* glc */
2578 params[param_count++] = i1false; /* slc */
2579 } else {
2580 bool da = glsl_sampler_type_is_array(type) ||
2581 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
2582
2583 coords = params[param_count++] = get_image_coords(ctx, instr, false);
2584 params[param_count++] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
2585 params[param_count++] = i1false; /* r128 */
2586 params[param_count++] = da ? i1true : i1false; /* da */
2587 params[param_count++] = i1false; /* slc */
2588 }
2589
2590 switch (instr->intrinsic) {
2591 case nir_intrinsic_image_atomic_add:
2592 atomic_name = "add";
2593 break;
2594 case nir_intrinsic_image_atomic_min:
2595 atomic_name = "smin";
2596 break;
2597 case nir_intrinsic_image_atomic_max:
2598 atomic_name = "smax";
2599 break;
2600 case nir_intrinsic_image_atomic_and:
2601 atomic_name = "and";
2602 break;
2603 case nir_intrinsic_image_atomic_or:
2604 atomic_name = "or";
2605 break;
2606 case nir_intrinsic_image_atomic_xor:
2607 atomic_name = "xor";
2608 break;
2609 case nir_intrinsic_image_atomic_exchange:
2610 atomic_name = "swap";
2611 break;
2612 case nir_intrinsic_image_atomic_comp_swap:
2613 atomic_name = "cmpswap";
2614 break;
2615 default:
2616 abort();
2617 }
2618 build_int_type_name(LLVMTypeOf(coords),
2619 coords_type, sizeof(coords_type));
2620
2621 snprintf(intrinsic_name, sizeof(intrinsic_name),
2622 "%s.%s.%s", base_name, atomic_name, coords_type);
2623 return emit_llvm_intrinsic(ctx, intrinsic_name, ctx->i32, params, param_count, 0);
2624 }
2625
2626 static LLVMValueRef visit_image_size(struct nir_to_llvm_context *ctx,
2627 nir_intrinsic_instr *instr)
2628 {
2629 LLVMValueRef res;
2630 LLVMValueRef params[10];
2631 const nir_variable *var = instr->variables[0]->var;
2632 const struct glsl_type *type = instr->variables[0]->var->type;
2633 bool da = glsl_sampler_type_is_array(var->type) ||
2634 glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_CUBE;
2635 if(instr->variables[0]->deref.child)
2636 type = instr->variables[0]->deref.child->type;
2637
2638 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF)
2639 return get_buffer_size(ctx, get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER), true);
2640 params[0] = ctx->i32zero;
2641 params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
2642 params[2] = LLVMConstInt(ctx->i32, 15, false);
2643 params[3] = ctx->i32zero;
2644 params[4] = ctx->i32zero;
2645 params[5] = da ? ctx->i32one : ctx->i32zero;
2646 params[6] = ctx->i32zero;
2647 params[7] = ctx->i32zero;
2648 params[8] = ctx->i32zero;
2649 params[9] = ctx->i32zero;
2650
2651 res = emit_llvm_intrinsic(ctx, "llvm.SI.getresinfo.i32", ctx->v4i32,
2652 params, 10, AC_FUNC_ATTR_READNONE);
2653
2654 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
2655 glsl_sampler_type_is_array(type)) {
2656 LLVMValueRef two = LLVMConstInt(ctx->i32, 2, false);
2657 LLVMValueRef six = LLVMConstInt(ctx->i32, 6, false);
2658 LLVMValueRef z = LLVMBuildExtractElement(ctx->builder, res, two, "");
2659 z = LLVMBuildSDiv(ctx->builder, z, six, "");
2660 res = LLVMBuildInsertElement(ctx->builder, res, z, two, "");
2661 }
2662 return res;
2663 }
2664
2665 static void emit_waitcnt(struct nir_to_llvm_context *ctx)
2666 {
2667 LLVMValueRef args[1] = {
2668 LLVMConstInt(ctx->i32, 0xf70, false),
2669 };
2670 emit_llvm_intrinsic(ctx, "llvm.amdgcn.s.waitcnt",
2671 ctx->voidt, args, 1, 0);
2672 }
2673
2674 static void emit_barrier(struct nir_to_llvm_context *ctx)
2675 {
2676 // TODO tess
2677 emit_llvm_intrinsic(ctx, "llvm.amdgcn.s.barrier",
2678 ctx->voidt, NULL, 0, 0);
2679 }
2680
2681 static void emit_discard_if(struct nir_to_llvm_context *ctx,
2682 nir_intrinsic_instr *instr)
2683 {
2684 LLVMValueRef cond;
2685 ctx->shader_info->fs.can_discard = true;
2686
2687 cond = LLVMBuildICmp(ctx->builder, LLVMIntNE,
2688 get_src(ctx, instr->src[0]),
2689 ctx->i32zero, "");
2690
2691 cond = LLVMBuildSelect(ctx->builder, cond,
2692 LLVMConstReal(ctx->f32, -1.0f),
2693 ctx->f32zero, "");
2694 emit_llvm_intrinsic(ctx, "llvm.AMDGPU.kill",
2695 LLVMVoidTypeInContext(ctx->context),
2696 &cond, 1, 0);
2697 }
2698
2699 static LLVMValueRef
2700 visit_load_local_invocation_index(struct nir_to_llvm_context *ctx)
2701 {
2702 LLVMValueRef result;
2703 LLVMValueRef thread_id = get_thread_id(ctx);
2704 result = LLVMBuildAnd(ctx->builder, ctx->tg_size,
2705 LLVMConstInt(ctx->i32, 0xfc0, false), "");
2706
2707 return LLVMBuildAdd(ctx->builder, result, thread_id, "");
2708 }
2709
2710 static LLVMValueRef visit_var_atomic(struct nir_to_llvm_context *ctx,
2711 nir_intrinsic_instr *instr)
2712 {
2713 LLVMValueRef ptr, result;
2714 int idx = instr->variables[0]->var->data.driver_location;
2715 LLVMValueRef src = get_src(ctx, instr->src[0]);
2716 ptr = get_shared_memory_ptr(ctx, idx, ctx->i32);
2717
2718 if (instr->intrinsic == nir_intrinsic_var_atomic_comp_swap) {
2719 LLVMValueRef src1 = get_src(ctx, instr->src[1]);
2720 result = LLVMBuildAtomicCmpXchg(ctx->builder,
2721 ptr, src, src1,
2722 LLVMAtomicOrderingSequentiallyConsistent,
2723 LLVMAtomicOrderingSequentiallyConsistent,
2724 false);
2725 } else {
2726 LLVMAtomicRMWBinOp op;
2727 switch (instr->intrinsic) {
2728 case nir_intrinsic_var_atomic_add:
2729 op = LLVMAtomicRMWBinOpAdd;
2730 break;
2731 case nir_intrinsic_var_atomic_umin:
2732 op = LLVMAtomicRMWBinOpUMin;
2733 break;
2734 case nir_intrinsic_var_atomic_umax:
2735 op = LLVMAtomicRMWBinOpUMax;
2736 break;
2737 case nir_intrinsic_var_atomic_imin:
2738 op = LLVMAtomicRMWBinOpMin;
2739 break;
2740 case nir_intrinsic_var_atomic_imax:
2741 op = LLVMAtomicRMWBinOpMax;
2742 break;
2743 case nir_intrinsic_var_atomic_and:
2744 op = LLVMAtomicRMWBinOpAnd;
2745 break;
2746 case nir_intrinsic_var_atomic_or:
2747 op = LLVMAtomicRMWBinOpOr;
2748 break;
2749 case nir_intrinsic_var_atomic_xor:
2750 op = LLVMAtomicRMWBinOpXor;
2751 break;
2752 case nir_intrinsic_var_atomic_exchange:
2753 op = LLVMAtomicRMWBinOpXchg;
2754 break;
2755 default:
2756 return NULL;
2757 }
2758
2759 result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, to_integer(ctx, src),
2760 LLVMAtomicOrderingSequentiallyConsistent,
2761 false);
2762 }
2763 return result;
2764 }
2765
2766 #define INTERP_CENTER 0
2767 #define INTERP_CENTROID 1
2768 #define INTERP_SAMPLE 2
2769
2770 static LLVMValueRef lookup_interp_param(struct nir_to_llvm_context *ctx,
2771 enum glsl_interp_mode interp, unsigned location)
2772 {
2773 switch (interp) {
2774 case INTERP_MODE_FLAT:
2775 default:
2776 return NULL;
2777 case INTERP_MODE_SMOOTH:
2778 case INTERP_MODE_NONE:
2779 if (location == INTERP_CENTER)
2780 return ctx->persp_center;
2781 else if (location == INTERP_CENTROID)
2782 return ctx->persp_centroid;
2783 else if (location == INTERP_SAMPLE)
2784 return ctx->persp_sample;
2785 break;
2786 case INTERP_MODE_NOPERSPECTIVE:
2787 if (location == INTERP_CENTER)
2788 return ctx->linear_center;
2789 else if (location == INTERP_CENTROID)
2790 return ctx->linear_centroid;
2791 else if (location == INTERP_SAMPLE)
2792 return ctx->linear_sample;
2793 break;
2794 }
2795 return NULL;
2796 }
2797
2798 static LLVMValueRef load_sample_position(struct nir_to_llvm_context *ctx,
2799 LLVMValueRef sample_id)
2800 {
2801 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
2802 LLVMValueRef offset0 = LLVMBuildMul(ctx->builder, sample_id, LLVMConstInt(ctx->i32, 8, false), "");
2803 LLVMValueRef offset1 = LLVMBuildAdd(ctx->builder, offset0, LLVMConstInt(ctx->i32, 4, false), "");
2804 LLVMValueRef result[2];
2805
2806 result[0] = build_indexed_load_const(ctx, ctx->sample_positions, offset0);
2807 result[1] = build_indexed_load_const(ctx, ctx->sample_positions, offset1);
2808
2809 return build_gather_values(ctx, result, 2);
2810 }
2811
2812 static LLVMValueRef load_sample_pos(struct nir_to_llvm_context *ctx)
2813 {
2814 LLVMValueRef values[2];
2815
2816 values[0] = emit_ffract(ctx, ctx->frag_pos[0]);
2817 values[1] = emit_ffract(ctx, ctx->frag_pos[1]);
2818 return build_gather_values(ctx, values, 2);
2819 }
2820
2821 static LLVMValueRef visit_interp(struct nir_to_llvm_context *ctx,
2822 nir_intrinsic_instr *instr)
2823 {
2824 LLVMValueRef result[2];
2825 LLVMValueRef interp_param, attr_number;
2826 unsigned location;
2827 unsigned chan;
2828 LLVMValueRef src_c0, src_c1;
2829 const char *intr_name;
2830 LLVMValueRef src0;
2831 int input_index = instr->variables[0]->var->data.location - VARYING_SLOT_VAR0;
2832 switch (instr->intrinsic) {
2833 case nir_intrinsic_interp_var_at_centroid:
2834 location = INTERP_CENTROID;
2835 break;
2836 case nir_intrinsic_interp_var_at_sample:
2837 case nir_intrinsic_interp_var_at_offset:
2838 location = INTERP_SAMPLE;
2839 src0 = get_src(ctx, instr->src[0]);
2840 break;
2841 default:
2842 break;
2843 }
2844
2845 if (instr->intrinsic == nir_intrinsic_interp_var_at_offset) {
2846 src_c0 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, ""));
2847 src_c1 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, ""));
2848 } else if (instr->intrinsic == nir_intrinsic_interp_var_at_sample) {
2849 LLVMValueRef sample_position;
2850 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
2851
2852 /* fetch sample ID */
2853 sample_position = load_sample_position(ctx, src0);
2854
2855 src_c0 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->i32zero, "");
2856 src_c0 = LLVMBuildFSub(ctx->builder, src_c0, halfval, "");
2857 src_c1 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->i32one, "");
2858 src_c1 = LLVMBuildFSub(ctx->builder, src_c1, halfval, "");
2859 }
2860 interp_param = lookup_interp_param(ctx, instr->variables[0]->var->data.interpolation, location);
2861 attr_number = LLVMConstInt(ctx->i32, input_index, false);
2862
2863 if (location == INTERP_SAMPLE) {
2864 LLVMValueRef ij_out[2];
2865 LLVMValueRef ddxy_out = emit_ddxy_interp(ctx, interp_param);
2866
2867 /*
2868 * take the I then J parameters, and the DDX/Y for it, and
2869 * calculate the IJ inputs for the interpolator.
2870 * temp1 = ddx * offset/sample.x + I;
2871 * interp_param.I = ddy * offset/sample.y + temp1;
2872 * temp1 = ddx * offset/sample.x + J;
2873 * interp_param.J = ddy * offset/sample.y + temp1;
2874 */
2875 for (unsigned i = 0; i < 2; i++) {
2876 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, false);
2877 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, false);
2878 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->builder,
2879 ddxy_out, ix_ll, "");
2880 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->builder,
2881 ddxy_out, iy_ll, "");
2882 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->builder,
2883 interp_param, ix_ll, "");
2884 LLVMValueRef temp1, temp2;
2885
2886 interp_el = LLVMBuildBitCast(ctx->builder, interp_el,
2887 ctx->f32, "");
2888
2889 temp1 = LLVMBuildFMul(ctx->builder, ddx_el, src_c0, "");
2890 temp1 = LLVMBuildFAdd(ctx->builder, temp1, interp_el, "");
2891
2892 temp2 = LLVMBuildFMul(ctx->builder, ddy_el, src_c1, "");
2893 temp2 = LLVMBuildFAdd(ctx->builder, temp2, temp1, "");
2894
2895 ij_out[i] = LLVMBuildBitCast(ctx->builder,
2896 temp2, ctx->i32, "");
2897 }
2898 interp_param = build_gather_values(ctx, ij_out, 2);
2899
2900 }
2901 intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";
2902 for (chan = 0; chan < 2; chan++) {
2903 LLVMValueRef args[4];
2904 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false);
2905
2906 args[0] = llvm_chan;
2907 args[1] = attr_number;
2908 args[2] = ctx->prim_mask;
2909 args[3] = interp_param;
2910 result[chan] = emit_llvm_intrinsic(ctx, intr_name,
2911 ctx->f32, args, args[3] ? 4 : 3,
2912 AC_FUNC_ATTR_READNONE);
2913 }
2914 return build_gather_values(ctx, result, 2);
2915 }
2916
2917 static void visit_intrinsic(struct nir_to_llvm_context *ctx,
2918 nir_intrinsic_instr *instr)
2919 {
2920 LLVMValueRef result = NULL;
2921
2922 switch (instr->intrinsic) {
2923 case nir_intrinsic_load_work_group_id: {
2924 result = ctx->workgroup_ids;
2925 break;
2926 }
2927 case nir_intrinsic_load_base_vertex: {
2928 result = ctx->base_vertex;
2929 break;
2930 }
2931 case nir_intrinsic_load_vertex_id_zero_base: {
2932 result = ctx->vertex_id;
2933 break;
2934 }
2935 case nir_intrinsic_load_local_invocation_id: {
2936 result = ctx->local_invocation_ids;
2937 break;
2938 }
2939 case nir_intrinsic_load_base_instance:
2940 result = ctx->start_instance;
2941 break;
2942 case nir_intrinsic_load_sample_id:
2943 result = unpack_param(ctx, ctx->ancillary, 8, 4);
2944 break;
2945 case nir_intrinsic_load_sample_pos:
2946 result = load_sample_pos(ctx);
2947 break;
2948 case nir_intrinsic_load_front_face:
2949 result = ctx->front_face;
2950 break;
2951 case nir_intrinsic_load_instance_id:
2952 result = ctx->instance_id;
2953 ctx->shader_info->vs.vgpr_comp_cnt = MAX2(3,
2954 ctx->shader_info->vs.vgpr_comp_cnt);
2955 break;
2956 case nir_intrinsic_load_num_work_groups:
2957 result = ctx->num_work_groups;
2958 break;
2959 case nir_intrinsic_load_local_invocation_index:
2960 result = visit_load_local_invocation_index(ctx);
2961 break;
2962 case nir_intrinsic_load_push_constant:
2963 result = visit_load_push_constant(ctx, instr);
2964 break;
2965 case nir_intrinsic_vulkan_resource_index:
2966 result = visit_vulkan_resource_index(ctx, instr);
2967 break;
2968 case nir_intrinsic_store_ssbo:
2969 visit_store_ssbo(ctx, instr);
2970 break;
2971 case nir_intrinsic_load_ssbo:
2972 result = visit_load_buffer(ctx, instr);
2973 break;
2974 case nir_intrinsic_ssbo_atomic_add:
2975 case nir_intrinsic_ssbo_atomic_imin:
2976 case nir_intrinsic_ssbo_atomic_umin:
2977 case nir_intrinsic_ssbo_atomic_imax:
2978 case nir_intrinsic_ssbo_atomic_umax:
2979 case nir_intrinsic_ssbo_atomic_and:
2980 case nir_intrinsic_ssbo_atomic_or:
2981 case nir_intrinsic_ssbo_atomic_xor:
2982 case nir_intrinsic_ssbo_atomic_exchange:
2983 case nir_intrinsic_ssbo_atomic_comp_swap:
2984 result = visit_atomic_ssbo(ctx, instr);
2985 break;
2986 case nir_intrinsic_load_ubo:
2987 result = visit_load_ubo_buffer(ctx, instr);
2988 break;
2989 case nir_intrinsic_get_buffer_size:
2990 result = visit_get_buffer_size(ctx, instr);
2991 break;
2992 case nir_intrinsic_load_var:
2993 result = visit_load_var(ctx, instr);
2994 break;
2995 case nir_intrinsic_store_var:
2996 visit_store_var(ctx, instr);
2997 break;
2998 case nir_intrinsic_image_load:
2999 result = visit_image_load(ctx, instr);
3000 break;
3001 case nir_intrinsic_image_store:
3002 visit_image_store(ctx, instr);
3003 break;
3004 case nir_intrinsic_image_atomic_add:
3005 case nir_intrinsic_image_atomic_min:
3006 case nir_intrinsic_image_atomic_max:
3007 case nir_intrinsic_image_atomic_and:
3008 case nir_intrinsic_image_atomic_or:
3009 case nir_intrinsic_image_atomic_xor:
3010 case nir_intrinsic_image_atomic_exchange:
3011 case nir_intrinsic_image_atomic_comp_swap:
3012 result = visit_image_atomic(ctx, instr);
3013 break;
3014 case nir_intrinsic_image_size:
3015 result = visit_image_size(ctx, instr);
3016 break;
3017 case nir_intrinsic_discard:
3018 ctx->shader_info->fs.can_discard = true;
3019 emit_llvm_intrinsic(ctx, "llvm.AMDGPU.kilp",
3020 LLVMVoidTypeInContext(ctx->context),
3021 NULL, 0, 0);
3022 break;
3023 case nir_intrinsic_discard_if:
3024 emit_discard_if(ctx, instr);
3025 break;
3026 case nir_intrinsic_memory_barrier:
3027 emit_waitcnt(ctx);
3028 break;
3029 case nir_intrinsic_barrier:
3030 emit_barrier(ctx);
3031 break;
3032 case nir_intrinsic_var_atomic_add:
3033 case nir_intrinsic_var_atomic_imin:
3034 case nir_intrinsic_var_atomic_umin:
3035 case nir_intrinsic_var_atomic_imax:
3036 case nir_intrinsic_var_atomic_umax:
3037 case nir_intrinsic_var_atomic_and:
3038 case nir_intrinsic_var_atomic_or:
3039 case nir_intrinsic_var_atomic_xor:
3040 case nir_intrinsic_var_atomic_exchange:
3041 case nir_intrinsic_var_atomic_comp_swap:
3042 result = visit_var_atomic(ctx, instr);
3043 break;
3044 case nir_intrinsic_interp_var_at_centroid:
3045 case nir_intrinsic_interp_var_at_sample:
3046 case nir_intrinsic_interp_var_at_offset:
3047 result = visit_interp(ctx, instr);
3048 break;
3049 default:
3050 fprintf(stderr, "Unknown intrinsic: ");
3051 nir_print_instr(&instr->instr, stderr);
3052 fprintf(stderr, "\n");
3053 break;
3054 }
3055 if (result) {
3056 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
3057 }
3058 }
3059
3060 static LLVMValueRef get_sampler_desc(struct nir_to_llvm_context *ctx,
3061 nir_deref_var *deref,
3062 enum desc_type desc_type)
3063 {
3064 unsigned desc_set = deref->var->data.descriptor_set;
3065 LLVMValueRef list = ctx->descriptor_sets[desc_set];
3066 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3067 struct radv_descriptor_set_binding_layout *binding = layout->binding + deref->var->data.binding;
3068 unsigned offset = binding->offset;
3069 unsigned stride = binding->size;
3070 unsigned type_size;
3071 LLVMBuilderRef builder = ctx->builder;
3072 LLVMTypeRef type;
3073 LLVMValueRef indices[2];
3074 LLVMValueRef index = NULL;
3075
3076 assert(deref->var->data.binding < layout->binding_count);
3077
3078 switch (desc_type) {
3079 case DESC_IMAGE:
3080 type = ctx->v8i32;
3081 type_size = 32;
3082 break;
3083 case DESC_FMASK:
3084 type = ctx->v8i32;
3085 offset += 32;
3086 type_size = 32;
3087 break;
3088 case DESC_SAMPLER:
3089 type = ctx->v4i32;
3090 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
3091 offset += 64;
3092
3093 type_size = 16;
3094 break;
3095 case DESC_BUFFER:
3096 type = ctx->v4i32;
3097 type_size = 16;
3098 break;
3099 }
3100
3101 if (deref->deref.child) {
3102 nir_deref_array *child = (nir_deref_array*)deref->deref.child;
3103
3104 assert(child->deref_array_type != nir_deref_array_type_wildcard);
3105 offset += child->base_offset * stride;
3106 if (child->deref_array_type == nir_deref_array_type_indirect) {
3107 index = get_src(ctx, child->indirect);
3108 }
3109 }
3110
3111 assert(stride % type_size == 0);
3112
3113 if (!index)
3114 index = ctx->i32zero;
3115
3116 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, stride / type_size, 0), "");
3117 indices[0] = ctx->i32zero;
3118 indices[1] = LLVMConstInt(ctx->i32, offset, 0);
3119 list = LLVMBuildGEP(builder, list, indices, 2, "");
3120 list = LLVMBuildPointerCast(builder, list, const_array(type, 0), "");
3121
3122 return build_indexed_load_const(ctx, list, index);
3123 }
3124
3125 static void set_tex_fetch_args(struct nir_to_llvm_context *ctx,
3126 struct ac_tex_info *tinfo,
3127 nir_tex_instr *instr,
3128 nir_texop op,
3129 LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
3130 LLVMValueRef *param, unsigned count,
3131 unsigned dmask)
3132 {
3133 int num_args;
3134 unsigned is_rect = 0;
3135 bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
3136
3137 if (op == nir_texop_lod)
3138 da = false;
3139 /* Pad to power of two vector */
3140 while (count < util_next_power_of_two(count))
3141 param[count++] = LLVMGetUndef(ctx->i32);
3142
3143 if (count > 1)
3144 tinfo->args[0] = build_gather_values(ctx, param, count);
3145 else
3146 tinfo->args[0] = param[0];
3147
3148 tinfo->args[1] = res_ptr;
3149 num_args = 2;
3150
3151 if (op == nir_texop_txf ||
3152 op == nir_texop_txf_ms ||
3153 op == nir_texop_query_levels ||
3154 op == nir_texop_texture_samples ||
3155 op == nir_texop_txs)
3156 tinfo->dst_type = ctx->v4i32;
3157 else {
3158 tinfo->dst_type = ctx->v4f32;
3159 tinfo->args[num_args++] = samp_ptr;
3160 }
3161
3162 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF && op == nir_texop_txf) {
3163 tinfo->args[0] = res_ptr;
3164 tinfo->args[1] = LLVMConstInt(ctx->i32, 0, false);
3165 tinfo->args[2] = param[0];
3166 tinfo->arg_count = 3;
3167 return;
3168 }
3169
3170 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, dmask, 0);
3171 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, is_rect, 0); /* unorm */
3172 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* r128 */
3173 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, da ? 1 : 0, 0);
3174 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* glc */
3175 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* slc */
3176 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* tfe */
3177 tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* lwe */
3178
3179 tinfo->arg_count = num_args;
3180 }
3181
3182 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
3183 *
3184 * SI-CI:
3185 * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
3186 * filtering manually. The driver sets img7 to a mask clearing
3187 * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
3188 * s_and_b32 samp0, samp0, img7
3189 *
3190 * VI:
3191 * The ANISO_OVERRIDE sampler field enables this fix in TA.
3192 */
3193 static LLVMValueRef sici_fix_sampler_aniso(struct nir_to_llvm_context *ctx,
3194 LLVMValueRef res, LLVMValueRef samp)
3195 {
3196 LLVMBuilderRef builder = ctx->builder;
3197 LLVMValueRef img7, samp0;
3198
3199 if (ctx->options->chip_class >= VI)
3200 return samp;
3201
3202 img7 = LLVMBuildExtractElement(builder, res,
3203 LLVMConstInt(ctx->i32, 7, 0), "");
3204 samp0 = LLVMBuildExtractElement(builder, samp,
3205 LLVMConstInt(ctx->i32, 0, 0), "");
3206 samp0 = LLVMBuildAnd(builder, samp0, img7, "");
3207 return LLVMBuildInsertElement(builder, samp, samp0,
3208 LLVMConstInt(ctx->i32, 0, 0), "");
3209 }
3210
3211 static void tex_fetch_ptrs(struct nir_to_llvm_context *ctx,
3212 nir_tex_instr *instr,
3213 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
3214 LLVMValueRef *fmask_ptr)
3215 {
3216 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
3217 *res_ptr = get_sampler_desc(ctx, instr->texture, DESC_BUFFER);
3218 else
3219 *res_ptr = get_sampler_desc(ctx, instr->texture, DESC_IMAGE);
3220 if (samp_ptr) {
3221 if (instr->sampler)
3222 *samp_ptr = get_sampler_desc(ctx, instr->sampler, DESC_SAMPLER);
3223 else
3224 *samp_ptr = get_sampler_desc(ctx, instr->texture, DESC_SAMPLER);
3225 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
3226 *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
3227 }
3228 if (fmask_ptr && !instr->sampler && (instr->op == nir_texop_txf_ms ||
3229 instr->op == nir_texop_samples_identical))
3230 *fmask_ptr = get_sampler_desc(ctx, instr->texture, DESC_FMASK);
3231 }
3232
3233 static LLVMValueRef build_cube_intrinsic(struct nir_to_llvm_context *ctx,
3234 LLVMValueRef *in)
3235 {
3236
3237 LLVMValueRef v, cube_vec;
3238
3239 if (1) {
3240 LLVMTypeRef f32 = LLVMTypeOf(in[0]);
3241 LLVMValueRef out[4];
3242
3243 out[0] = emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubetc",
3244 f32, in, 3, AC_FUNC_ATTR_READNONE);
3245 out[1] = emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubesc",
3246 f32, in, 3, AC_FUNC_ATTR_READNONE);
3247 out[2] = emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubema",
3248 f32, in, 3, AC_FUNC_ATTR_READNONE);
3249 out[3] = emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubeid",
3250 f32, in, 3, AC_FUNC_ATTR_READNONE);
3251
3252 return build_gather_values(ctx, out, 4);
3253 } else {
3254 LLVMValueRef c[4];
3255 c[0] = in[0];
3256 c[1] = in[1];
3257 c[2] = in[2];
3258 c[3] = LLVMGetUndef(LLVMTypeOf(in[0]));
3259 cube_vec = build_gather_values(ctx, c, 4);
3260 v = emit_llvm_intrinsic(ctx, "llvm.AMDGPU.cube", LLVMTypeOf(cube_vec),
3261 &cube_vec, 1, AC_FUNC_ATTR_READNONE);
3262 }
3263 return v;
3264 }
3265
3266 static void cube_to_2d_coords(struct nir_to_llvm_context *ctx,
3267 LLVMValueRef *in, LLVMValueRef *out)
3268 {
3269 LLVMValueRef coords[4];
3270 LLVMValueRef mad_args[3];
3271 LLVMValueRef v;
3272 LLVMValueRef tmp;
3273 int i;
3274
3275 v = build_cube_intrinsic(ctx, in);
3276 for (i = 0; i < 4; i++)
3277 coords[i] = LLVMBuildExtractElement(ctx->builder, v,
3278 LLVMConstInt(ctx->i32, i, false), "");
3279
3280 coords[2] = emit_llvm_intrinsic(ctx, "llvm.fabs.f32", ctx->f32,
3281 &coords[2], 1, AC_FUNC_ATTR_READNONE);
3282 coords[2] = emit_fdiv(ctx, ctx->f32one, coords[2]);
3283
3284 mad_args[1] = coords[2];
3285 mad_args[2] = LLVMConstReal(ctx->f32, 1.5);
3286 mad_args[0] = coords[0];
3287
3288 /* emit MAD */
3289 tmp = LLVMBuildFMul(ctx->builder, mad_args[0], mad_args[1], "");
3290 coords[0] = LLVMBuildFAdd(ctx->builder, tmp, mad_args[2], "");
3291
3292 mad_args[0] = coords[1];
3293
3294 /* emit MAD */
3295 tmp = LLVMBuildFMul(ctx->builder, mad_args[0], mad_args[1], "");
3296 coords[1] = LLVMBuildFAdd(ctx->builder, tmp, mad_args[2], "");
3297
3298 /* apply xyz = yxw swizzle to cooords */
3299 out[0] = coords[1];
3300 out[1] = coords[0];
3301 out[2] = coords[3];
3302 }
3303
3304 static void emit_prepare_cube_coords(struct nir_to_llvm_context *ctx,
3305 LLVMValueRef *coords_arg, int num_coords,
3306 bool is_deriv,
3307 bool is_array, LLVMValueRef *derivs_arg)
3308 {
3309 LLVMValueRef coords[4];
3310 int i;
3311 cube_to_2d_coords(ctx, coords_arg, coords);
3312
3313 if (is_deriv && derivs_arg) {
3314 LLVMValueRef derivs[4];
3315 int axis;
3316
3317 /* Convert cube derivatives to 2D derivatives. */
3318 for (axis = 0; axis < 2; axis++) {
3319 LLVMValueRef shifted_cube_coords[4], shifted_coords[4];
3320
3321 /* Shift the cube coordinates by the derivatives to get
3322 * the cube coordinates of the "neighboring pixel".
3323 */
3324 for (i = 0; i < 3; i++)
3325 shifted_cube_coords[i] =
3326 LLVMBuildFAdd(ctx->builder, coords_arg[i],
3327 derivs_arg[axis*3+i], "");
3328 shifted_cube_coords[3] = LLVMGetUndef(ctx->f32);
3329
3330 /* Project the shifted cube coordinates onto the face. */
3331 cube_to_2d_coords(ctx, shifted_cube_coords,
3332 shifted_coords);
3333
3334 /* Subtract both sets of 2D coordinates to get 2D derivatives.
3335 * This won't work if the shifted coordinates ended up
3336 * in a different face.
3337 */
3338 for (i = 0; i < 2; i++)
3339 derivs[axis * 2 + i] =
3340 LLVMBuildFSub(ctx->builder, shifted_coords[i],
3341 coords[i], "");
3342 }
3343
3344 memcpy(derivs_arg, derivs, sizeof(derivs));
3345 }
3346
3347 if (is_array) {
3348 /* for cube arrays coord.z = coord.w(array_index) * 8 + face */
3349 /* coords_arg.w component - array_index for cube arrays */
3350 LLVMValueRef tmp = LLVMBuildFMul(ctx->builder, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), "");
3351 coords[2] = LLVMBuildFAdd(ctx->builder, tmp, coords[2], "");
3352 }
3353
3354 memcpy(coords_arg, coords, sizeof(coords));
3355 }
3356
3357 static void visit_tex(struct nir_to_llvm_context *ctx, nir_tex_instr *instr)
3358 {
3359 LLVMValueRef result = NULL;
3360 struct ac_tex_info tinfo = { 0 };
3361 unsigned dmask = 0xf;
3362 LLVMValueRef address[16];
3363 LLVMValueRef coords[5];
3364 LLVMValueRef coord = NULL, lod = NULL, comparitor = NULL;
3365 LLVMValueRef bias = NULL, offsets = NULL;
3366 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL, sample_index = NULL;
3367 LLVMValueRef ddx = NULL, ddy = NULL;
3368 LLVMValueRef derivs[6];
3369 unsigned chan, count = 0;
3370 unsigned const_src = 0, num_deriv_comp = 0;
3371
3372 tex_fetch_ptrs(ctx, instr, &res_ptr, &samp_ptr, &fmask_ptr);
3373
3374 for (unsigned i = 0; i < instr->num_srcs; i++) {
3375 switch (instr->src[i].src_type) {
3376 case nir_tex_src_coord:
3377 coord = get_src(ctx, instr->src[i].src);
3378 break;
3379 case nir_tex_src_projector:
3380 break;
3381 case nir_tex_src_comparitor:
3382 comparitor = get_src(ctx, instr->src[i].src);
3383 break;
3384 case nir_tex_src_offset:
3385 offsets = get_src(ctx, instr->src[i].src);
3386 const_src = i;
3387 break;
3388 case nir_tex_src_bias:
3389 bias = get_src(ctx, instr->src[i].src);
3390 break;
3391 case nir_tex_src_lod:
3392 lod = get_src(ctx, instr->src[i].src);
3393 break;
3394 case nir_tex_src_ms_index:
3395 sample_index = get_src(ctx, instr->src[i].src);
3396 break;
3397 case nir_tex_src_ms_mcs:
3398 break;
3399 case nir_tex_src_ddx:
3400 ddx = get_src(ctx, instr->src[i].src);
3401 num_deriv_comp = instr->src[i].src.ssa->num_components;
3402 break;
3403 case nir_tex_src_ddy:
3404 ddy = get_src(ctx, instr->src[i].src);
3405 break;
3406 case nir_tex_src_texture_offset:
3407 case nir_tex_src_sampler_offset:
3408 case nir_tex_src_plane:
3409 default:
3410 break;
3411 }
3412 }
3413
3414 if (instr->op == nir_texop_texture_samples) {
3415 LLVMValueRef res, samples, is_msaa;
3416 res = LLVMBuildBitCast(ctx->builder, res_ptr, ctx->v8i32, "");
3417 samples = LLVMBuildExtractElement(ctx->builder, res,
3418 LLVMConstInt(ctx->i32, 3, false), "");
3419 is_msaa = LLVMBuildLShr(ctx->builder, samples,
3420 LLVMConstInt(ctx->i32, 28, false), "");
3421 is_msaa = LLVMBuildAnd(ctx->builder, is_msaa,
3422 LLVMConstInt(ctx->i32, 0xe, false), "");
3423 is_msaa = LLVMBuildICmp(ctx->builder, LLVMIntEQ, is_msaa,
3424 LLVMConstInt(ctx->i32, 0xe, false), "");
3425
3426 samples = LLVMBuildLShr(ctx->builder, samples,
3427 LLVMConstInt(ctx->i32, 16, false), "");
3428 samples = LLVMBuildAnd(ctx->builder, samples,
3429 LLVMConstInt(ctx->i32, 0xf, false), "");
3430 samples = LLVMBuildShl(ctx->builder, ctx->i32one,
3431 samples, "");
3432 samples = LLVMBuildSelect(ctx->builder, is_msaa, samples,
3433 ctx->i32one, "");
3434 result = samples;
3435 goto write_result;
3436 }
3437
3438 if (coord)
3439 for (chan = 0; chan < instr->coord_components; chan++)
3440 coords[chan] = llvm_extract_elem(ctx, coord, chan);
3441
3442 if (offsets && instr->op != nir_texop_txf) {
3443 LLVMValueRef offset[3], pack;
3444 for (chan = 0; chan < 3; ++chan)
3445 offset[chan] = ctx->i32zero;
3446
3447 tinfo.has_offset = true;
3448 for (chan = 0; chan < get_llvm_num_components(offsets); chan++) {
3449 offset[chan] = llvm_extract_elem(ctx, offsets, chan);
3450 offset[chan] = LLVMBuildAnd(ctx->builder, offset[chan],
3451 LLVMConstInt(ctx->i32, 0x3f, false), "");
3452 if (chan)
3453 offset[chan] = LLVMBuildShl(ctx->builder, offset[chan],
3454 LLVMConstInt(ctx->i32, chan * 8, false), "");
3455 }
3456 pack = LLVMBuildOr(ctx->builder, offset[0], offset[1], "");
3457 pack = LLVMBuildOr(ctx->builder, pack, offset[2], "");
3458 address[count++] = pack;
3459
3460 }
3461 /* pack LOD bias value */
3462 if (instr->op == nir_texop_txb && bias) {
3463 address[count++] = bias;
3464 }
3465
3466 /* Pack depth comparison value */
3467 if (instr->is_shadow && comparitor) {
3468 address[count++] = llvm_extract_elem(ctx, comparitor, 0);
3469 }
3470
3471 /* pack derivatives */
3472 if (ddx || ddy) {
3473 switch (instr->sampler_dim) {
3474 case GLSL_SAMPLER_DIM_3D:
3475 case GLSL_SAMPLER_DIM_CUBE:
3476 num_deriv_comp = 3;
3477 break;
3478 case GLSL_SAMPLER_DIM_2D:
3479 default:
3480 num_deriv_comp = 2;
3481 break;
3482 case GLSL_SAMPLER_DIM_1D:
3483 num_deriv_comp = 1;
3484 break;
3485 }
3486
3487 for (unsigned i = 0; i < num_deriv_comp; i++) {
3488 derivs[i * 2] = to_float(ctx, llvm_extract_elem(ctx, ddx, i));
3489 derivs[i * 2 + 1] = to_float(ctx, llvm_extract_elem(ctx, ddy, i));
3490 }
3491 }
3492
3493 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && coord) {
3494 for (chan = 0; chan < instr->coord_components; chan++)
3495 coords[chan] = to_float(ctx, coords[chan]);
3496 if (instr->coord_components == 3)
3497 coords[3] = LLVMGetUndef(ctx->f32);
3498 emit_prepare_cube_coords(ctx, coords, instr->coord_components, instr->op == nir_texop_txd, instr->is_array, derivs);
3499 if (num_deriv_comp)
3500 num_deriv_comp--;
3501 }
3502
3503 if (ddx || ddy) {
3504 for (unsigned i = 0; i < num_deriv_comp * 2; i++)
3505 address[count++] = derivs[i];
3506 }
3507
3508 /* Pack texture coordinates */
3509 if (coord) {
3510 address[count++] = coords[0];
3511 if (instr->coord_components > 1)
3512 address[count++] = coords[1];
3513 if (instr->coord_components > 2) {
3514 /* This seems like a bit of a hack - but it passes Vulkan CTS with it */
3515 if (instr->sampler_dim != GLSL_SAMPLER_DIM_3D && instr->op != nir_texop_txf) {
3516 coords[2] = to_float(ctx, coords[2]);
3517 coords[2] = emit_llvm_intrinsic(ctx, "llvm.rint.f32", ctx->f32, &coords[2],
3518 1, 0);
3519 coords[2] = to_integer(ctx, coords[2]);
3520 }
3521 address[count++] = coords[2];
3522 }
3523 }
3524
3525 /* Pack LOD */
3526 if ((instr->op == nir_texop_txl || instr->op == nir_texop_txf) && lod) {
3527 address[count++] = lod;
3528 } else if (instr->op == nir_texop_txf_ms && sample_index) {
3529 address[count++] = sample_index;
3530 } else if(instr->op == nir_texop_txs) {
3531 count = 0;
3532 if (lod)
3533 address[count++] = lod;
3534 else
3535 address[count++] = ctx->i32zero;
3536 }
3537
3538 for (chan = 0; chan < count; chan++) {
3539 address[chan] = LLVMBuildBitCast(ctx->builder,
3540 address[chan], ctx->i32, "");
3541 }
3542
3543 if (instr->op == nir_texop_samples_identical) {
3544 LLVMValueRef txf_address[4];
3545 struct ac_tex_info txf_info = { 0 };
3546 unsigned txf_count = count;
3547 memcpy(txf_address, address, sizeof(txf_address));
3548
3549 if (!instr->is_array)
3550 txf_address[2] = ctx->i32zero;
3551 txf_address[3] = ctx->i32zero;
3552
3553 set_tex_fetch_args(ctx, &txf_info, instr, nir_texop_txf,
3554 fmask_ptr, NULL,
3555 txf_address, txf_count, 0xf);
3556
3557 result = build_tex_intrinsic(ctx, instr, &txf_info);
3558
3559 result = LLVMBuildExtractElement(ctx->builder, result, ctx->i32zero, "");
3560 result = emit_int_cmp(ctx, LLVMIntEQ, result, ctx->i32zero);
3561 goto write_result;
3562 }
3563
3564 /* Adjust the sample index according to FMASK.
3565 *
3566 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3567 * which is the identity mapping. Each nibble says which physical sample
3568 * should be fetched to get that sample.
3569 *
3570 * For example, 0x11111100 means there are only 2 samples stored and
3571 * the second sample covers 3/4 of the pixel. When reading samples 0
3572 * and 1, return physical sample 0 (determined by the first two 0s
3573 * in FMASK), otherwise return physical sample 1.
3574 *
3575 * The sample index should be adjusted as follows:
3576 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3577 */
3578 if (instr->sampler_dim == GLSL_SAMPLER_DIM_MS) {
3579 LLVMValueRef txf_address[4];
3580 struct ac_tex_info txf_info = { 0 };
3581 unsigned txf_count = count;
3582 memcpy(txf_address, address, sizeof(txf_address));
3583
3584 if (!instr->is_array)
3585 txf_address[2] = ctx->i32zero;
3586 txf_address[3] = ctx->i32zero;
3587
3588 set_tex_fetch_args(ctx, &txf_info, instr, nir_texop_txf,
3589 fmask_ptr, NULL,
3590 txf_address, txf_count, 0xf);
3591
3592 result = build_tex_intrinsic(ctx, instr, &txf_info);
3593 LLVMValueRef four = LLVMConstInt(ctx->i32, 4, false);
3594 LLVMValueRef F = LLVMConstInt(ctx->i32, 0xf, false);
3595
3596 LLVMValueRef fmask = LLVMBuildExtractElement(ctx->builder,
3597 result,
3598 ctx->i32zero, "");
3599
3600 unsigned sample_chan = instr->is_array ? 3 : 2;
3601
3602 LLVMValueRef sample_index4 =
3603 LLVMBuildMul(ctx->builder, address[sample_chan], four, "");
3604 LLVMValueRef shifted_fmask =
3605 LLVMBuildLShr(ctx->builder, fmask, sample_index4, "");
3606 LLVMValueRef final_sample =
3607 LLVMBuildAnd(ctx->builder, shifted_fmask, F, "");
3608
3609 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3610 * resource descriptor is 0 (invalid),
3611 */
3612 LLVMValueRef fmask_desc =
3613 LLVMBuildBitCast(ctx->builder, fmask_ptr,
3614 ctx->v8i32, "");
3615
3616 LLVMValueRef fmask_word1 =
3617 LLVMBuildExtractElement(ctx->builder, fmask_desc,
3618 ctx->i32one, "");
3619
3620 LLVMValueRef word1_is_nonzero =
3621 LLVMBuildICmp(ctx->builder, LLVMIntNE,
3622 fmask_word1, ctx->i32zero, "");
3623
3624 /* Replace the MSAA sample index. */
3625 address[sample_chan] =
3626 LLVMBuildSelect(ctx->builder, word1_is_nonzero,
3627 final_sample, address[sample_chan], "");
3628 }
3629
3630 if (offsets && instr->op == nir_texop_txf) {
3631 nir_const_value *const_offset =
3632 nir_src_as_const_value(instr->src[const_src].src);
3633 int num_offsets = instr->src[const_src].src.ssa->num_components;
3634 assert(const_offset);
3635 num_offsets = MIN2(num_offsets, instr->coord_components);
3636 if (num_offsets > 2)
3637 address[2] = LLVMBuildAdd(ctx->builder,
3638 address[2], LLVMConstInt(ctx->i32, const_offset->i32[2], false), "");
3639 if (num_offsets > 1)
3640 address[1] = LLVMBuildAdd(ctx->builder,
3641 address[1], LLVMConstInt(ctx->i32, const_offset->i32[1], false), "");
3642 address[0] = LLVMBuildAdd(ctx->builder,
3643 address[0], LLVMConstInt(ctx->i32, const_offset->i32[0], false), "");
3644
3645 }
3646
3647 /* TODO TG4 support */
3648 if (instr->op == nir_texop_tg4) {
3649 if (instr->is_shadow)
3650 dmask = 1;
3651 else
3652 dmask = 1 << instr->component;
3653 }
3654 set_tex_fetch_args(ctx, &tinfo, instr, instr->op,
3655 res_ptr, samp_ptr, address, count, dmask);
3656
3657 result = build_tex_intrinsic(ctx, instr, &tinfo);
3658
3659 if (instr->op == nir_texop_query_levels)
3660 result = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, 3, false), "");
3661 else if (instr->is_shadow && instr->op != nir_texop_txs && instr->op != nir_texop_lod)
3662 result = LLVMBuildExtractElement(ctx->builder, result, ctx->i32zero, "");
3663 else if (instr->op == nir_texop_txs &&
3664 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
3665 instr->is_array) {
3666 LLVMValueRef two = LLVMConstInt(ctx->i32, 2, false);
3667 LLVMValueRef six = LLVMConstInt(ctx->i32, 6, false);
3668 LLVMValueRef z = LLVMBuildExtractElement(ctx->builder, result, two, "");
3669 z = LLVMBuildSDiv(ctx->builder, z, six, "");
3670 result = LLVMBuildInsertElement(ctx->builder, result, z, two, "");
3671 } else if (instr->dest.ssa.num_components != 4)
3672 result = trim_vector(ctx, result, instr->dest.ssa.num_components);
3673
3674 write_result:
3675 if (result) {
3676 assert(instr->dest.is_ssa);
3677 result = to_integer(ctx, result);
3678 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
3679 }
3680 }
3681
3682
3683 static void visit_phi(struct nir_to_llvm_context *ctx, nir_phi_instr *instr)
3684 {
3685 LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
3686 LLVMValueRef result = LLVMBuildPhi(ctx->builder, type, "");
3687
3688 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
3689 _mesa_hash_table_insert(ctx->phis, instr, result);
3690 }
3691
3692 static void visit_post_phi(struct nir_to_llvm_context *ctx,
3693 nir_phi_instr *instr,
3694 LLVMValueRef llvm_phi)
3695 {
3696 nir_foreach_phi_src(src, instr) {
3697 LLVMBasicBlockRef block = get_block(ctx, src->pred);
3698 LLVMValueRef llvm_src = get_src(ctx, src->src);
3699
3700 LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
3701 }
3702 }
3703
3704 static void phi_post_pass(struct nir_to_llvm_context *ctx)
3705 {
3706 struct hash_entry *entry;
3707 hash_table_foreach(ctx->phis, entry) {
3708 visit_post_phi(ctx, (nir_phi_instr*)entry->key,
3709 (LLVMValueRef)entry->data);
3710 }
3711 }
3712
3713
3714 static void visit_ssa_undef(struct nir_to_llvm_context *ctx,
3715 nir_ssa_undef_instr *instr)
3716 {
3717 unsigned num_components = instr->def.num_components;
3718 LLVMValueRef undef;
3719
3720 if (num_components == 1)
3721 undef = LLVMGetUndef(ctx->i32);
3722 else {
3723 undef = LLVMGetUndef(LLVMVectorType(ctx->i32, num_components));
3724 }
3725 _mesa_hash_table_insert(ctx->defs, &instr->def, undef);
3726 }
3727
3728 static void visit_jump(struct nir_to_llvm_context *ctx,
3729 nir_jump_instr *instr)
3730 {
3731 switch (instr->type) {
3732 case nir_jump_break:
3733 LLVMBuildBr(ctx->builder, ctx->break_block);
3734 LLVMClearInsertionPosition(ctx->builder);
3735 break;
3736 case nir_jump_continue:
3737 LLVMBuildBr(ctx->builder, ctx->continue_block);
3738 LLVMClearInsertionPosition(ctx->builder);
3739 break;
3740 default:
3741 fprintf(stderr, "Unknown NIR jump instr: ");
3742 nir_print_instr(&instr->instr, stderr);
3743 fprintf(stderr, "\n");
3744 abort();
3745 }
3746 }
3747
3748 static void visit_cf_list(struct nir_to_llvm_context *ctx,
3749 struct exec_list *list);
3750
3751 static void visit_block(struct nir_to_llvm_context *ctx, nir_block *block)
3752 {
3753 LLVMBasicBlockRef llvm_block = LLVMGetInsertBlock(ctx->builder);
3754 nir_foreach_instr(instr, block)
3755 {
3756 switch (instr->type) {
3757 case nir_instr_type_alu:
3758 visit_alu(ctx, nir_instr_as_alu(instr));
3759 break;
3760 case nir_instr_type_load_const:
3761 visit_load_const(ctx, nir_instr_as_load_const(instr));
3762 break;
3763 case nir_instr_type_intrinsic:
3764 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
3765 break;
3766 case nir_instr_type_tex:
3767 visit_tex(ctx, nir_instr_as_tex(instr));
3768 break;
3769 case nir_instr_type_phi:
3770 visit_phi(ctx, nir_instr_as_phi(instr));
3771 break;
3772 case nir_instr_type_ssa_undef:
3773 visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
3774 break;
3775 case nir_instr_type_jump:
3776 visit_jump(ctx, nir_instr_as_jump(instr));
3777 break;
3778 default:
3779 fprintf(stderr, "Unknown NIR instr type: ");
3780 nir_print_instr(instr, stderr);
3781 fprintf(stderr, "\n");
3782 abort();
3783 }
3784 }
3785
3786 _mesa_hash_table_insert(ctx->defs, block, llvm_block);
3787 }
3788
3789 static void visit_if(struct nir_to_llvm_context *ctx, nir_if *if_stmt)
3790 {
3791 LLVMValueRef value = get_src(ctx, if_stmt->condition);
3792
3793 LLVMBasicBlockRef merge_block =
3794 LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
3795 LLVMBasicBlockRef if_block =
3796 LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
3797 LLVMBasicBlockRef else_block = merge_block;
3798 if (!exec_list_is_empty(&if_stmt->else_list))
3799 else_block = LLVMAppendBasicBlockInContext(
3800 ctx->context, ctx->main_function, "");
3801
3802 LLVMValueRef cond = LLVMBuildICmp(ctx->builder, LLVMIntNE, value,
3803 LLVMConstInt(ctx->i32, 0, false), "");
3804 LLVMBuildCondBr(ctx->builder, cond, if_block, else_block);
3805
3806 LLVMPositionBuilderAtEnd(ctx->builder, if_block);
3807 visit_cf_list(ctx, &if_stmt->then_list);
3808 if (LLVMGetInsertBlock(ctx->builder))
3809 LLVMBuildBr(ctx->builder, merge_block);
3810
3811 if (!exec_list_is_empty(&if_stmt->else_list)) {
3812 LLVMPositionBuilderAtEnd(ctx->builder, else_block);
3813 visit_cf_list(ctx, &if_stmt->else_list);
3814 if (LLVMGetInsertBlock(ctx->builder))
3815 LLVMBuildBr(ctx->builder, merge_block);
3816 }
3817
3818 LLVMPositionBuilderAtEnd(ctx->builder, merge_block);
3819 }
3820
3821 static void visit_loop(struct nir_to_llvm_context *ctx, nir_loop *loop)
3822 {
3823 LLVMBasicBlockRef continue_parent = ctx->continue_block;
3824 LLVMBasicBlockRef break_parent = ctx->break_block;
3825
3826 ctx->continue_block =
3827 LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
3828 ctx->break_block =
3829 LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
3830
3831 LLVMBuildBr(ctx->builder, ctx->continue_block);
3832 LLVMPositionBuilderAtEnd(ctx->builder, ctx->continue_block);
3833 visit_cf_list(ctx, &loop->body);
3834
3835 if (LLVMGetInsertBlock(ctx->builder))
3836 LLVMBuildBr(ctx->builder, ctx->continue_block);
3837 LLVMPositionBuilderAtEnd(ctx->builder, ctx->break_block);
3838
3839 ctx->continue_block = continue_parent;
3840 ctx->break_block = break_parent;
3841 }
3842
3843 static void visit_cf_list(struct nir_to_llvm_context *ctx,
3844 struct exec_list *list)
3845 {
3846 foreach_list_typed(nir_cf_node, node, node, list)
3847 {
3848 switch (node->type) {
3849 case nir_cf_node_block:
3850 visit_block(ctx, nir_cf_node_as_block(node));
3851 break;
3852
3853 case nir_cf_node_if:
3854 visit_if(ctx, nir_cf_node_as_if(node));
3855 break;
3856
3857 case nir_cf_node_loop:
3858 visit_loop(ctx, nir_cf_node_as_loop(node));
3859 break;
3860
3861 default:
3862 assert(0);
3863 }
3864 }
3865 }
3866
3867 static void
3868 handle_vs_input_decl(struct nir_to_llvm_context *ctx,
3869 struct nir_variable *variable)
3870 {
3871 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
3872 LLVMValueRef t_offset;
3873 LLVMValueRef t_list;
3874 LLVMValueRef args[3];
3875 LLVMValueRef input;
3876 LLVMValueRef buffer_index;
3877 int index = variable->data.location - VERT_ATTRIB_GENERIC0;
3878 int idx = variable->data.location;
3879 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
3880
3881 variable->data.driver_location = idx * 4;
3882
3883 if (ctx->options->key.vs.instance_rate_inputs & (1u << index)) {
3884 buffer_index = LLVMBuildAdd(ctx->builder, ctx->instance_id,
3885 ctx->start_instance, "");
3886 ctx->shader_info->vs.vgpr_comp_cnt = MAX2(3,
3887 ctx->shader_info->vs.vgpr_comp_cnt);
3888 } else
3889 buffer_index = LLVMBuildAdd(ctx->builder, ctx->vertex_id,
3890 ctx->base_vertex, "");
3891
3892 for (unsigned i = 0; i < attrib_count; ++i, ++idx) {
3893 t_offset = LLVMConstInt(ctx->i32, index + i, false);
3894
3895 t_list = build_indexed_load_const(ctx, t_list_ptr, t_offset);
3896 args[0] = t_list;
3897 args[1] = LLVMConstInt(ctx->i32, 0, false);
3898 args[2] = buffer_index;
3899 input = emit_llvm_intrinsic(ctx,
3900 "llvm.SI.vs.load.input", ctx->v4f32, args, 3,
3901 AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
3902
3903 for (unsigned chan = 0; chan < 4; chan++) {
3904 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false);
3905 ctx->inputs[radeon_llvm_reg_index_soa(idx, chan)] =
3906 to_integer(ctx, LLVMBuildExtractElement(ctx->builder,
3907 input, llvm_chan, ""));
3908 }
3909 }
3910 }
3911
3912
3913 static void interp_fs_input(struct nir_to_llvm_context *ctx,
3914 unsigned attr,
3915 LLVMValueRef interp_param,
3916 LLVMValueRef prim_mask,
3917 LLVMValueRef result[4])
3918 {
3919 const char *intr_name;
3920 LLVMValueRef attr_number;
3921 unsigned chan;
3922
3923 attr_number = LLVMConstInt(ctx->i32, attr, false);
3924
3925 /* fs.constant returns the param from the middle vertex, so it's not
3926 * really useful for flat shading. It's meant to be used for custom
3927 * interpolation (but the intrinsic can't fetch from the other two
3928 * vertices).
3929 *
3930 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
3931 * to do the right thing. The only reason we use fs.constant is that
3932 * fs.interp cannot be used on integers, because they can be equal
3933 * to NaN.
3934 */
3935 intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";
3936
3937 for (chan = 0; chan < 4; chan++) {
3938 LLVMValueRef args[4];
3939 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false);
3940
3941 args[0] = llvm_chan;
3942 args[1] = attr_number;
3943 args[2] = prim_mask;
3944 args[3] = interp_param;
3945 result[chan] = emit_llvm_intrinsic(ctx, intr_name,
3946 ctx->f32, args, args[3] ? 4 : 3,
3947 AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
3948 }
3949 }
3950
3951 static void
3952 handle_fs_input_decl(struct nir_to_llvm_context *ctx,
3953 struct nir_variable *variable)
3954 {
3955 int idx = variable->data.location;
3956 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
3957 LLVMValueRef interp;
3958
3959 variable->data.driver_location = idx * 4;
3960 ctx->input_mask |= ((1ull << attrib_count) - 1) << variable->data.location;
3961
3962 if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT)
3963 interp = lookup_interp_param(ctx, variable->data.interpolation, INTERP_CENTER);
3964 else
3965 interp = NULL;
3966
3967 for (unsigned i = 0; i < attrib_count; ++i)
3968 ctx->inputs[radeon_llvm_reg_index_soa(idx + i, 0)] = interp;
3969
3970 }
3971
3972 static void
3973 handle_shader_input_decl(struct nir_to_llvm_context *ctx,
3974 struct nir_variable *variable)
3975 {
3976 switch (ctx->stage) {
3977 case MESA_SHADER_VERTEX:
3978 handle_vs_input_decl(ctx, variable);
3979 break;
3980 case MESA_SHADER_FRAGMENT:
3981 handle_fs_input_decl(ctx, variable);
3982 break;
3983 default:
3984 break;
3985 }
3986
3987 }
3988
3989 static void
3990 handle_fs_inputs_pre(struct nir_to_llvm_context *ctx,
3991 struct nir_shader *nir)
3992 {
3993 unsigned index = 0;
3994 for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
3995 LLVMValueRef interp_param;
3996 LLVMValueRef *inputs = ctx->inputs +radeon_llvm_reg_index_soa(i, 0);
3997
3998 if (!(ctx->input_mask & (1ull << i)))
3999 continue;
4000
4001 if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC) {
4002 interp_param = *inputs;
4003 interp_fs_input(ctx, index, interp_param, ctx->prim_mask,
4004 inputs);
4005
4006 if (!interp_param)
4007 ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
4008 ++index;
4009 } else if (i == VARYING_SLOT_POS) {
4010 for(int i = 0; i < 3; ++i)
4011 inputs[i] = ctx->frag_pos[i];
4012
4013 inputs[3] = emit_fdiv(ctx, ctx->f32one, ctx->frag_pos[3]);
4014 }
4015 }
4016 ctx->shader_info->fs.num_interp = index;
4017 if (ctx->input_mask & (1 << VARYING_SLOT_PNTC))
4018 ctx->shader_info->fs.has_pcoord = true;
4019 ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
4020 }
4021
4022 static LLVMValueRef
4023 ac_build_alloca(struct nir_to_llvm_context *ctx,
4024 LLVMTypeRef type,
4025 const char *name)
4026 {
4027 LLVMBuilderRef builder = ctx->builder;
4028 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
4029 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
4030 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
4031 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
4032 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ctx->context);
4033 LLVMValueRef res;
4034
4035 if (first_instr) {
4036 LLVMPositionBuilderBefore(first_builder, first_instr);
4037 } else {
4038 LLVMPositionBuilderAtEnd(first_builder, first_block);
4039 }
4040
4041 res = LLVMBuildAlloca(first_builder, type, name);
4042 LLVMBuildStore(builder, LLVMConstNull(type), res);
4043
4044 LLVMDisposeBuilder(first_builder);
4045
4046 return res;
4047 }
4048
4049 static LLVMValueRef si_build_alloca_undef(struct nir_to_llvm_context *ctx,
4050 LLVMTypeRef type,
4051 const char *name)
4052 {
4053 LLVMValueRef ptr = ac_build_alloca(ctx, type, name);
4054 LLVMBuildStore(ctx->builder, LLVMGetUndef(type), ptr);
4055 return ptr;
4056 }
4057
4058 static void
4059 handle_shader_output_decl(struct nir_to_llvm_context *ctx,
4060 struct nir_variable *variable)
4061 {
4062 int idx = variable->data.location;
4063 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
4064
4065 variable->data.driver_location = idx * 4;
4066
4067 if (ctx->stage == MESA_SHADER_VERTEX) {
4068
4069 if (idx == VARYING_SLOT_CLIP_DIST0 ||
4070 idx == VARYING_SLOT_CULL_DIST0) {
4071 int length = glsl_get_length(variable->type);
4072 if (idx == VARYING_SLOT_CLIP_DIST0) {
4073 ctx->shader_info->vs.clip_dist_mask = (1 << length) - 1;
4074 ctx->num_clips = length;
4075 } else if (idx == VARYING_SLOT_CULL_DIST0) {
4076 ctx->shader_info->vs.cull_dist_mask = (1 << length) - 1;
4077 ctx->num_culls = length;
4078 }
4079 if (length > 4)
4080 attrib_count = 2;
4081 else
4082 attrib_count = 1;
4083 }
4084 }
4085
4086 for (unsigned i = 0; i < attrib_count; ++i) {
4087 for (unsigned chan = 0; chan < 4; chan++) {
4088 ctx->outputs[radeon_llvm_reg_index_soa(idx + i, chan)] =
4089 si_build_alloca_undef(ctx, ctx->f32, "");
4090 }
4091 }
4092 ctx->output_mask |= ((1ull << attrib_count) - 1) << variable->data.location;
4093 }
4094
4095 static void
4096 setup_locals(struct nir_to_llvm_context *ctx,
4097 struct nir_function *func)
4098 {
4099 int i, j;
4100 ctx->num_locals = 0;
4101 nir_foreach_variable(variable, &func->impl->locals) {
4102 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
4103 variable->data.driver_location = ctx->num_locals * 4;
4104 ctx->num_locals += attrib_count;
4105 }
4106 ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef));
4107 if (!ctx->locals)
4108 return;
4109
4110 for (i = 0; i < ctx->num_locals; i++) {
4111 for (j = 0; j < 4; j++) {
4112 ctx->locals[i * 4 + j] =
4113 si_build_alloca_undef(ctx, ctx->f32, "temp");
4114 }
4115 }
4116 }
4117
4118 static LLVMValueRef
4119 emit_float_saturate(struct nir_to_llvm_context *ctx, LLVMValueRef v, float lo, float hi)
4120 {
4121 v = to_float(ctx, v);
4122 v = emit_intrin_2f_param(ctx, "llvm.maxnum.f32", v, LLVMConstReal(ctx->f32, lo));
4123 return emit_intrin_2f_param(ctx, "llvm.minnum.f32", v, LLVMConstReal(ctx->f32, hi));
4124 }
4125
4126
4127 static LLVMValueRef emit_pack_int16(struct nir_to_llvm_context *ctx,
4128 LLVMValueRef src0, LLVMValueRef src1)
4129 {
4130 LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
4131 LLVMValueRef comp[2];
4132
4133 comp[0] = LLVMBuildAnd(ctx->builder, src0, LLVMConstInt(ctx-> i32, 65535, 0), "");
4134 comp[1] = LLVMBuildAnd(ctx->builder, src1, LLVMConstInt(ctx-> i32, 65535, 0), "");
4135 comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, "");
4136 return LLVMBuildOr(ctx->builder, comp[0], comp[1], "");
4137 }
4138
4139 /* Initialize arguments for the shader export intrinsic */
4140 static void
4141 si_llvm_init_export_args(struct nir_to_llvm_context *ctx,
4142 LLVMValueRef *values,
4143 unsigned target,
4144 LLVMValueRef *args)
4145 {
4146 /* Default is 0xf. Adjusted below depending on the format. */
4147 args[0] = LLVMConstInt(ctx->i32, target != V_008DFC_SQ_EXP_NULL ? 0xf : 0, false);
4148 /* Specify whether the EXEC mask represents the valid mask */
4149 args[1] = LLVMConstInt(ctx->i32, 0, false);
4150
4151 /* Specify whether this is the last export */
4152 args[2] = LLVMConstInt(ctx->i32, 0, false);
4153 /* Specify the target we are exporting */
4154 args[3] = LLVMConstInt(ctx->i32, target, false);
4155
4156 args[4] = LLVMConstInt(ctx->i32, 0, false); /* COMPR flag */
4157 args[5] = LLVMGetUndef(ctx->f32);
4158 args[6] = LLVMGetUndef(ctx->f32);
4159 args[7] = LLVMGetUndef(ctx->f32);
4160 args[8] = LLVMGetUndef(ctx->f32);
4161
4162 if (!values)
4163 return;
4164
4165 if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) {
4166 LLVMValueRef val[4];
4167 unsigned index = target - V_008DFC_SQ_EXP_MRT;
4168 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
4169 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
4170
4171 switch(col_format) {
4172 case V_028714_SPI_SHADER_ZERO:
4173 args[0] = LLVMConstInt(ctx->i32, 0x0, 0);
4174 args[3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_NULL, 0);
4175 break;
4176
4177 case V_028714_SPI_SHADER_32_R:
4178 args[0] = LLVMConstInt(ctx->i32, 0x1, 0);
4179 args[5] = values[0];
4180 break;
4181
4182 case V_028714_SPI_SHADER_32_GR:
4183 args[0] = LLVMConstInt(ctx->i32, 0x3, 0);
4184 args[5] = values[0];
4185 args[6] = values[1];
4186 break;
4187
4188 case V_028714_SPI_SHADER_32_AR:
4189 args[0] = LLVMConstInt(ctx->i32, 0x9, 0);
4190 args[5] = values[0];
4191 args[8] = values[3];
4192 break;
4193
4194 case V_028714_SPI_SHADER_FP16_ABGR:
4195 args[4] = ctx->i32one;
4196
4197 for (unsigned chan = 0; chan < 2; chan++) {
4198 LLVMValueRef pack_args[2] = {
4199 values[2 * chan],
4200 values[2 * chan + 1]
4201 };
4202 LLVMValueRef packed;
4203
4204 packed = emit_llvm_intrinsic(ctx, "llvm.SI.packf16",
4205 ctx->i32, pack_args, 2,
4206 AC_FUNC_ATTR_READNONE);
4207 args[chan + 5] = packed;
4208 }
4209 break;
4210
4211 case V_028714_SPI_SHADER_UNORM16_ABGR:
4212 for (unsigned chan = 0; chan < 4; chan++) {
4213 val[chan] = emit_float_saturate(ctx, values[chan], 0, 1);
4214 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
4215 LLVMConstReal(ctx->f32, 65535), "");
4216 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
4217 LLVMConstReal(ctx->f32, 0.5), "");
4218 val[chan] = LLVMBuildFPToUI(ctx->builder, val[chan],
4219 ctx->i32, "");
4220 }
4221
4222 args[4] = ctx->i32one;
4223 args[5] = emit_pack_int16(ctx, val[0], val[1]);
4224 args[6] = emit_pack_int16(ctx, val[2], val[3]);
4225 break;
4226
4227 case V_028714_SPI_SHADER_SNORM16_ABGR:
4228 for (unsigned chan = 0; chan < 4; chan++) {
4229 val[chan] = emit_float_saturate(ctx, values[chan], -1, 1);
4230 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
4231 LLVMConstReal(ctx->f32, 32767), "");
4232
4233 /* If positive, add 0.5, else add -0.5. */
4234 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
4235 LLVMBuildSelect(ctx->builder,
4236 LLVMBuildFCmp(ctx->builder, LLVMRealOGE,
4237 val[chan], ctx->f32zero, ""),
4238 LLVMConstReal(ctx->f32, 0.5),
4239 LLVMConstReal(ctx->f32, -0.5), ""), "");
4240 val[chan] = LLVMBuildFPToSI(ctx->builder, val[chan], ctx->i32, "");
4241 }
4242
4243 args[4] = ctx->i32one;
4244 args[5] = emit_pack_int16(ctx, val[0], val[1]);
4245 args[6] = emit_pack_int16(ctx, val[2], val[3]);
4246 break;
4247
4248 case V_028714_SPI_SHADER_UINT16_ABGR: {
4249 LLVMValueRef max = LLVMConstInt(ctx->i32, is_int8 ? 255 : 65535, 0);
4250
4251 for (unsigned chan = 0; chan < 4; chan++) {
4252 val[chan] = to_integer(ctx, values[chan]);
4253 val[chan] = emit_minmax_int(ctx, LLVMIntULT, val[chan], max);
4254 }
4255
4256 args[4] = ctx->i32one;
4257 args[5] = emit_pack_int16(ctx, val[0], val[1]);
4258 args[6] = emit_pack_int16(ctx, val[2], val[3]);
4259 break;
4260 }
4261
4262 case V_028714_SPI_SHADER_SINT16_ABGR: {
4263 LLVMValueRef max = LLVMConstInt(ctx->i32, is_int8 ? 127 : 32767, 0);
4264 LLVMValueRef min = LLVMConstInt(ctx->i32, is_int8 ? -128 : -32768, 0);
4265
4266 /* Clamp. */
4267 for (unsigned chan = 0; chan < 4; chan++) {
4268 val[chan] = to_integer(ctx, values[chan]);
4269 val[chan] = emit_minmax_int(ctx, LLVMIntSLT, val[chan], max);
4270 val[chan] = emit_minmax_int(ctx, LLVMIntSGT, val[chan], min);
4271 }
4272
4273 args[4] = ctx->i32one;
4274 args[5] = emit_pack_int16(ctx, val[0], val[1]);
4275 args[6] = emit_pack_int16(ctx, val[2], val[3]);
4276 break;
4277 }
4278
4279 default:
4280 case V_028714_SPI_SHADER_32_ABGR:
4281 memcpy(&args[5], values, sizeof(values[0]) * 4);
4282 break;
4283 }
4284 } else
4285 memcpy(&args[5], values, sizeof(values[0]) * 4);
4286
4287 for (unsigned i = 5; i < 9; ++i)
4288 args[i] = to_float(ctx, args[i]);
4289 }
4290
4291 static void
4292 handle_vs_outputs_post(struct nir_to_llvm_context *ctx,
4293 struct nir_shader *nir)
4294 {
4295 uint32_t param_count = 0;
4296 unsigned target;
4297 unsigned pos_idx, num_pos_exports = 0;
4298 LLVMValueRef args[9];
4299 LLVMValueRef pos_args[4][9] = { { 0 } };
4300 LLVMValueRef psize_value = 0;
4301 int i;
4302 const uint64_t clip_mask = ctx->output_mask & ((1ull << VARYING_SLOT_CLIP_DIST0) |
4303 (1ull << VARYING_SLOT_CLIP_DIST1) |
4304 (1ull << VARYING_SLOT_CULL_DIST0) |
4305 (1ull << VARYING_SLOT_CULL_DIST1));
4306
4307 if (clip_mask) {
4308 LLVMValueRef slots[8];
4309 unsigned j;
4310
4311 if (ctx->shader_info->vs.cull_dist_mask)
4312 ctx->shader_info->vs.cull_dist_mask <<= ctx->num_clips;
4313
4314 i = VARYING_SLOT_CLIP_DIST0;
4315 for (j = 0; j < ctx->num_clips; j++)
4316 slots[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
4317 ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
4318 i = VARYING_SLOT_CULL_DIST0;
4319 for (j = 0; j < ctx->num_culls; j++)
4320 slots[ctx->num_clips + j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
4321 ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
4322
4323 for (i = ctx->num_clips + ctx->num_culls; i < 8; i++)
4324 slots[i] = LLVMGetUndef(ctx->f32);
4325
4326 if (ctx->num_clips + ctx->num_culls > 4) {
4327 target = V_008DFC_SQ_EXP_POS + 3;
4328 si_llvm_init_export_args(ctx, &slots[4], target, args);
4329 memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
4330 args, sizeof(args));
4331 }
4332
4333 target = V_008DFC_SQ_EXP_POS + 2;
4334 si_llvm_init_export_args(ctx, &slots[0], target, args);
4335 memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
4336 args, sizeof(args));
4337
4338 }
4339
4340 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
4341 LLVMValueRef values[4];
4342 if (!(ctx->output_mask & (1ull << i)))
4343 continue;
4344
4345 for (unsigned j = 0; j < 4; j++)
4346 values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
4347 ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
4348
4349 if (i == VARYING_SLOT_POS) {
4350 target = V_008DFC_SQ_EXP_POS;
4351 } else if (i == VARYING_SLOT_CLIP_DIST0 ||
4352 i == VARYING_SLOT_CLIP_DIST1 ||
4353 i == VARYING_SLOT_CULL_DIST0 ||
4354 i == VARYING_SLOT_CULL_DIST1) {
4355 continue;
4356 } else if (i == VARYING_SLOT_PSIZ) {
4357 ctx->shader_info->vs.writes_pointsize = true;
4358 psize_value = values[0];
4359 continue;
4360 } else if (i >= VARYING_SLOT_VAR0) {
4361 ctx->shader_info->vs.export_mask |= 1u << (i - VARYING_SLOT_VAR0);
4362 target = V_008DFC_SQ_EXP_PARAM + param_count;
4363 param_count++;
4364 }
4365
4366 si_llvm_init_export_args(ctx, values, target, args);
4367
4368 if (target >= V_008DFC_SQ_EXP_POS &&
4369 target <= (V_008DFC_SQ_EXP_POS + 3)) {
4370 memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
4371 args, sizeof(args));
4372 } else {
4373 emit_llvm_intrinsic(ctx,
4374 "llvm.SI.export",
4375 LLVMVoidTypeInContext(ctx->context),
4376 args, 9, 0);
4377 }
4378 }
4379
4380 /* We need to add the position output manually if it's missing. */
4381 if (!pos_args[0][0]) {
4382 pos_args[0][0] = LLVMConstInt(ctx->i32, 0xf, false);
4383 pos_args[0][1] = ctx->i32zero; /* EXEC mask */
4384 pos_args[0][2] = ctx->i32zero; /* last export? */
4385 pos_args[0][3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_POS, false);
4386 pos_args[0][4] = ctx->i32zero; /* COMPR flag */
4387 pos_args[0][5] = ctx->f32zero; /* X */
4388 pos_args[0][6] = ctx->f32zero; /* Y */
4389 pos_args[0][7] = ctx->f32zero; /* Z */
4390 pos_args[0][8] = ctx->f32one; /* W */
4391 }
4392
4393 if (ctx->shader_info->vs.writes_pointsize == true) {
4394 pos_args[1][0] = LLVMConstInt(ctx->i32, (ctx->shader_info->vs.writes_pointsize == true), false); /* writemask */
4395 pos_args[1][1] = ctx->i32zero; /* EXEC mask */
4396 pos_args[1][2] = ctx->i32zero; /* last export? */
4397 pos_args[1][3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_POS + 1, false);
4398 pos_args[1][4] = ctx->i32zero; /* COMPR flag */
4399 pos_args[1][5] = ctx->f32zero; /* X */
4400 pos_args[1][6] = ctx->f32zero; /* Y */
4401 pos_args[1][7] = ctx->f32zero; /* Z */
4402 pos_args[1][8] = ctx->f32zero; /* W */
4403
4404 if (ctx->shader_info->vs.writes_pointsize == true)
4405 pos_args[1][5] = psize_value;
4406 }
4407 for (i = 0; i < 4; i++) {
4408 if (pos_args[i][0])
4409 num_pos_exports++;
4410 }
4411
4412 pos_idx = 0;
4413 for (i = 0; i < 4; i++) {
4414 if (!pos_args[i][0])
4415 continue;
4416
4417 /* Specify the target we are exporting */
4418 pos_args[i][3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_POS + pos_idx++, false);
4419 if (pos_idx == num_pos_exports)
4420 pos_args[i][2] = ctx->i32one;
4421 emit_llvm_intrinsic(ctx,
4422 "llvm.SI.export",
4423 LLVMVoidTypeInContext(ctx->context),
4424 pos_args[i], 9, 0);
4425 }
4426
4427 ctx->shader_info->vs.pos_exports = num_pos_exports;
4428 ctx->shader_info->vs.param_exports = param_count;
4429 }
4430
4431 static void
4432 si_export_mrt_color(struct nir_to_llvm_context *ctx,
4433 LLVMValueRef *color, unsigned param, bool is_last)
4434 {
4435 LLVMValueRef args[9];
4436 /* Export */
4437 si_llvm_init_export_args(ctx, color, param,
4438 args);
4439
4440 if (is_last) {
4441 args[1] = ctx->i32one; /* whether the EXEC mask is valid */
4442 args[2] = ctx->i32one; /* DONE bit */
4443 } else if (args[0] == ctx->i32zero)
4444 return; /* unnecessary NULL export */
4445
4446 emit_llvm_intrinsic(ctx, "llvm.SI.export",
4447 ctx->voidt, args, 9, 0);
4448 }
4449
4450 static void
4451 si_export_mrt_z(struct nir_to_llvm_context *ctx,
4452 LLVMValueRef depth, LLVMValueRef stencil,
4453 LLVMValueRef samplemask)
4454 {
4455 LLVMValueRef args[9];
4456 unsigned mask = 0;
4457 args[1] = ctx->i32one; /* whether the EXEC mask is valid */
4458 args[2] = ctx->i32one; /* DONE bit */
4459 /* Specify the target we are exporting */
4460 args[3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_MRTZ, false);
4461
4462 args[4] = ctx->i32zero; /* COMP flag */
4463 args[5] = LLVMGetUndef(ctx->f32); /* R, depth */
4464 args[6] = LLVMGetUndef(ctx->f32); /* G, stencil test val[0:7], stencil op val[8:15] */
4465 args[7] = LLVMGetUndef(ctx->f32); /* B, sample mask */
4466 args[8] = LLVMGetUndef(ctx->f32); /* A, alpha to mask */
4467
4468 if (depth) {
4469 args[5] = depth;
4470 mask |= 0x1;
4471 }
4472
4473 if (stencil) {
4474 args[6] = stencil;
4475 mask |= 0x2;
4476 }
4477
4478 if (samplemask) {
4479 args[7] = samplemask;
4480 mask |= 0x04;
4481 }
4482
4483 /* SI (except OLAND) has a bug that it only looks
4484 * at the X writemask component. */
4485 if (ctx->options->chip_class == SI &&
4486 ctx->options->family != CHIP_OLAND)
4487 mask |= 0x01;
4488
4489 args[0] = LLVMConstInt(ctx->i32, mask, false);
4490 emit_llvm_intrinsic(ctx, "llvm.SI.export",
4491 ctx->voidt, args, 9, 0);
4492 }
4493
4494 static void
4495 handle_fs_outputs_post(struct nir_to_llvm_context *ctx,
4496 struct nir_shader *nir)
4497 {
4498 unsigned index = 0;
4499 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
4500
4501 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
4502 LLVMValueRef values[4];
4503
4504 if (!(ctx->output_mask & (1ull << i)))
4505 continue;
4506
4507 if (i == FRAG_RESULT_DEPTH) {
4508 ctx->shader_info->fs.writes_z = true;
4509 depth = to_float(ctx, LLVMBuildLoad(ctx->builder,
4510 ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
4511 } else if (i == FRAG_RESULT_STENCIL) {
4512 ctx->shader_info->fs.writes_stencil = true;
4513 stencil = to_float(ctx, LLVMBuildLoad(ctx->builder,
4514 ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
4515 } else {
4516 bool last = false;
4517 for (unsigned j = 0; j < 4; j++)
4518 values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
4519 ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
4520
4521 if (!ctx->shader_info->fs.writes_z && !ctx->shader_info->fs.writes_stencil)
4522 last = ctx->output_mask <= ((1ull << (i + 1)) - 1);
4523
4524 si_export_mrt_color(ctx, values, V_008DFC_SQ_EXP_MRT + index, last);
4525 index++;
4526 }
4527 }
4528
4529 if (depth || stencil)
4530 si_export_mrt_z(ctx, depth, stencil, samplemask);
4531 else if (!index)
4532 si_export_mrt_color(ctx, NULL, V_008DFC_SQ_EXP_NULL, true);
4533
4534 ctx->shader_info->fs.output_mask = index ? ((1ull << index) - 1) : 0;
4535 }
4536
4537 static void
4538 handle_shader_outputs_post(struct nir_to_llvm_context *ctx,
4539 struct nir_shader *nir)
4540 {
4541 switch (ctx->stage) {
4542 case MESA_SHADER_VERTEX:
4543 handle_vs_outputs_post(ctx, nir);
4544 break;
4545 case MESA_SHADER_FRAGMENT:
4546 handle_fs_outputs_post(ctx, nir);
4547 break;
4548 default:
4549 break;
4550 }
4551 }
4552
4553 static void
4554 handle_shared_compute_var(struct nir_to_llvm_context *ctx,
4555 struct nir_variable *variable, uint32_t *offset, int idx)
4556 {
4557 unsigned size = glsl_count_attribute_slots(variable->type, false);
4558 variable->data.driver_location = *offset;
4559 *offset += size;
4560 }
4561
4562 static void ac_llvm_finalize_module(struct nir_to_llvm_context * ctx)
4563 {
4564 LLVMPassManagerRef passmgr;
4565 /* Create the pass manager */
4566 passmgr = LLVMCreateFunctionPassManagerForModule(
4567 ctx->module);
4568
4569 /* This pass should eliminate all the load and store instructions */
4570 LLVMAddPromoteMemoryToRegisterPass(passmgr);
4571
4572 /* Add some optimization passes */
4573 LLVMAddScalarReplAggregatesPass(passmgr);
4574 LLVMAddLICMPass(passmgr);
4575 LLVMAddAggressiveDCEPass(passmgr);
4576 LLVMAddCFGSimplificationPass(passmgr);
4577 LLVMAddInstructionCombiningPass(passmgr);
4578
4579 /* Run the pass */
4580 LLVMInitializeFunctionPassManager(passmgr);
4581 LLVMRunFunctionPassManager(passmgr, ctx->main_function);
4582 LLVMFinalizeFunctionPassManager(passmgr);
4583
4584 LLVMDisposeBuilder(ctx->builder);
4585 LLVMDisposePassManager(passmgr);
4586 }
4587
4588 static
4589 LLVMModuleRef ac_translate_nir_to_llvm(LLVMTargetMachineRef tm,
4590 struct nir_shader *nir,
4591 struct ac_shader_variant_info *shader_info,
4592 const struct ac_nir_compiler_options *options)
4593 {
4594 struct nir_to_llvm_context ctx = {0};
4595 struct nir_function *func;
4596 ctx.options = options;
4597 ctx.shader_info = shader_info;
4598 ctx.context = LLVMContextCreate();
4599 ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
4600
4601 ctx.has_ds_bpermute = ctx.options->chip_class >= VI;
4602
4603 memset(shader_info, 0, sizeof(*shader_info));
4604
4605 LLVMSetTarget(ctx.module, "amdgcn--");
4606 setup_types(&ctx);
4607
4608 ctx.builder = LLVMCreateBuilderInContext(ctx.context);
4609 ctx.stage = nir->stage;
4610
4611 create_function(&ctx, nir);
4612
4613 if (nir->stage == MESA_SHADER_COMPUTE) {
4614 int num_shared = 0;
4615 nir_foreach_variable(variable, &nir->shared)
4616 num_shared++;
4617 if (num_shared) {
4618 int idx = 0;
4619 uint32_t shared_size = 0;
4620 LLVMValueRef var;
4621 LLVMTypeRef i8p = LLVMPointerType(ctx.i8, LOCAL_ADDR_SPACE);
4622 nir_foreach_variable(variable, &nir->shared) {
4623 handle_shared_compute_var(&ctx, variable, &shared_size, idx);
4624 idx++;
4625 }
4626
4627 shared_size *= 4;
4628 var = LLVMAddGlobalInAddressSpace(ctx.module,
4629 LLVMArrayType(ctx.i8, shared_size),
4630 "compute_lds",
4631 LOCAL_ADDR_SPACE);
4632 LLVMSetAlignment(var, 4);
4633 ctx.shared_memory = LLVMBuildBitCast(ctx.builder, var, i8p, "");
4634 }
4635 }
4636
4637 nir_foreach_variable(variable, &nir->inputs)
4638 handle_shader_input_decl(&ctx, variable);
4639
4640 if (nir->stage == MESA_SHADER_FRAGMENT)
4641 handle_fs_inputs_pre(&ctx, nir);
4642
4643 nir_foreach_variable(variable, &nir->outputs)
4644 handle_shader_output_decl(&ctx, variable);
4645
4646 ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
4647 _mesa_key_pointer_equal);
4648 ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
4649 _mesa_key_pointer_equal);
4650
4651 func = (struct nir_function *)exec_list_get_head(&nir->functions);
4652
4653 setup_locals(&ctx, func);
4654
4655 visit_cf_list(&ctx, &func->impl->body);
4656 phi_post_pass(&ctx);
4657
4658 handle_shader_outputs_post(&ctx, nir);
4659 LLVMBuildRetVoid(ctx.builder);
4660
4661 ac_llvm_finalize_module(&ctx);
4662 free(ctx.locals);
4663 ralloc_free(ctx.defs);
4664 ralloc_free(ctx.phis);
4665
4666 return ctx.module;
4667 }
4668
4669 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
4670 {
4671 unsigned *retval = (unsigned *)context;
4672 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
4673 char *description = LLVMGetDiagInfoDescription(di);
4674
4675 if (severity == LLVMDSError) {
4676 *retval = 1;
4677 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
4678 description);
4679 }
4680
4681 LLVMDisposeMessage(description);
4682 }
4683
4684 static unsigned ac_llvm_compile(LLVMModuleRef M,
4685 struct ac_shader_binary *binary,
4686 LLVMTargetMachineRef tm)
4687 {
4688 unsigned retval = 0;
4689 char *err;
4690 LLVMContextRef llvm_ctx;
4691 LLVMMemoryBufferRef out_buffer;
4692 unsigned buffer_size;
4693 const char *buffer_data;
4694 LLVMBool mem_err;
4695
4696 /* Setup Diagnostic Handler*/
4697 llvm_ctx = LLVMGetModuleContext(M);
4698
4699 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
4700 &retval);
4701
4702 /* Compile IR*/
4703 mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile,
4704 &err, &out_buffer);
4705
4706 /* Process Errors/Warnings */
4707 if (mem_err) {
4708 fprintf(stderr, "%s: %s", __FUNCTION__, err);
4709 free(err);
4710 retval = 1;
4711 goto out;
4712 }
4713
4714 /* Extract Shader Code*/
4715 buffer_size = LLVMGetBufferSize(out_buffer);
4716 buffer_data = LLVMGetBufferStart(out_buffer);
4717
4718 ac_elf_read(buffer_data, buffer_size, binary);
4719
4720 /* Clean up */
4721 LLVMDisposeMemoryBuffer(out_buffer);
4722
4723 out:
4724 return retval;
4725 }
4726
4727 void ac_compile_nir_shader(LLVMTargetMachineRef tm,
4728 struct ac_shader_binary *binary,
4729 struct ac_shader_config *config,
4730 struct ac_shader_variant_info *shader_info,
4731 struct nir_shader *nir,
4732 const struct ac_nir_compiler_options *options,
4733 bool dump_shader)
4734 {
4735
4736 LLVMModuleRef llvm_module = ac_translate_nir_to_llvm(tm, nir, shader_info,
4737 options);
4738 if (dump_shader)
4739 LLVMDumpModule(llvm_module);
4740
4741 memset(binary, 0, sizeof(*binary));
4742 int v = ac_llvm_compile(llvm_module, binary, tm);
4743 if (v) {
4744 fprintf(stderr, "compile failed\n");
4745 }
4746
4747 if (dump_shader)
4748 fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
4749
4750 ac_shader_binary_read_config(binary, config, 0);
4751
4752 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
4753 LLVMDisposeModule(llvm_module);
4754 LLVMContextDispose(ctx);
4755
4756 if (nir->stage == MESA_SHADER_FRAGMENT) {
4757 shader_info->num_input_vgprs = 0;
4758 if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
4759 shader_info->num_input_vgprs += 2;
4760 if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
4761 shader_info->num_input_vgprs += 2;
4762 if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
4763 shader_info->num_input_vgprs += 2;
4764 if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
4765 shader_info->num_input_vgprs += 3;
4766 if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
4767 shader_info->num_input_vgprs += 2;
4768 if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
4769 shader_info->num_input_vgprs += 2;
4770 if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
4771 shader_info->num_input_vgprs += 2;
4772 if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
4773 shader_info->num_input_vgprs += 1;
4774 if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
4775 shader_info->num_input_vgprs += 1;
4776 if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
4777 shader_info->num_input_vgprs += 1;
4778 if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
4779 shader_info->num_input_vgprs += 1;
4780 if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
4781 shader_info->num_input_vgprs += 1;
4782 if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
4783 shader_info->num_input_vgprs += 1;
4784 if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
4785 shader_info->num_input_vgprs += 1;
4786 if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
4787 shader_info->num_input_vgprs += 1;
4788 if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
4789 shader_info->num_input_vgprs += 1;
4790 }
4791 config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
4792
4793 /* +3 for scratch wave offset and VCC */
4794 config->num_sgprs = MAX2(config->num_sgprs,
4795 shader_info->num_input_sgprs + 3);
4796 if (nir->stage == MESA_SHADER_COMPUTE) {
4797 for (int i = 0; i < 3; ++i)
4798 shader_info->cs.block_size[i] = nir->info->cs.local_size[i];
4799 }
4800
4801 if (nir->stage == MESA_SHADER_FRAGMENT)
4802 shader_info->fs.early_fragment_test = nir->info->fs.early_fragment_tests;
4803 }