amd: remove support for LLVM 3.9
[mesa.git] / src / amd / common / ac_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Bas Nieuwenhuizen
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "ac_nir_to_llvm.h"
25 #include "ac_llvm_build.h"
26 #include "ac_llvm_util.h"
27 #include "ac_binary.h"
28 #include "sid.h"
29 #include "nir/nir.h"
30 #include "../vulkan/radv_descriptor_set.h"
31 #include "util/bitscan.h"
32 #include <llvm-c/Transforms/Scalar.h>
33 #include "ac_shader_abi.h"
34 #include "ac_shader_info.h"
35 #include "ac_shader_util.h"
36 #include "ac_exp_param.h"
37
38 enum radeon_llvm_calling_convention {
39 RADEON_LLVM_AMDGPU_VS = 87,
40 RADEON_LLVM_AMDGPU_GS = 88,
41 RADEON_LLVM_AMDGPU_PS = 89,
42 RADEON_LLVM_AMDGPU_CS = 90,
43 RADEON_LLVM_AMDGPU_HS = 93,
44 };
45
46 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
47 #define RADEON_LLVM_MAX_OUTPUTS (VARYING_SLOT_VAR31 + 1)
48
49 struct nir_to_llvm_context;
50
51 struct ac_nir_context {
52 struct ac_llvm_context ac;
53 struct ac_shader_abi *abi;
54
55 gl_shader_stage stage;
56
57 struct hash_table *defs;
58 struct hash_table *phis;
59 struct hash_table *vars;
60
61 LLVMValueRef main_function;
62 LLVMBasicBlockRef continue_block;
63 LLVMBasicBlockRef break_block;
64
65 LLVMValueRef outputs[RADEON_LLVM_MAX_OUTPUTS * 4];
66
67 int num_locals;
68 LLVMValueRef *locals;
69
70 struct nir_to_llvm_context *nctx; /* TODO get rid of this */
71 };
72
73 struct nir_to_llvm_context {
74 struct ac_llvm_context ac;
75 const struct ac_nir_compiler_options *options;
76 struct ac_shader_variant_info *shader_info;
77 struct ac_shader_abi abi;
78 struct ac_nir_context *nir;
79
80 unsigned max_workgroup_size;
81 LLVMContextRef context;
82 LLVMModuleRef module;
83 LLVMBuilderRef builder;
84 LLVMValueRef main_function;
85
86 struct hash_table *defs;
87 struct hash_table *phis;
88
89 LLVMValueRef descriptor_sets[AC_UD_MAX_SETS];
90 LLVMValueRef ring_offsets;
91 LLVMValueRef push_constants;
92 LLVMValueRef view_index;
93 LLVMValueRef num_work_groups;
94 LLVMValueRef workgroup_ids[3];
95 LLVMValueRef local_invocation_ids;
96 LLVMValueRef tg_size;
97
98 LLVMValueRef vertex_buffers;
99 LLVMValueRef rel_auto_id;
100 LLVMValueRef vs_prim_id;
101 LLVMValueRef ls_out_layout;
102 LLVMValueRef es2gs_offset;
103
104 LLVMValueRef tcs_offchip_layout;
105 LLVMValueRef tcs_out_offsets;
106 LLVMValueRef tcs_out_layout;
107 LLVMValueRef tcs_in_layout;
108 LLVMValueRef oc_lds;
109 LLVMValueRef merged_wave_info;
110 LLVMValueRef tess_factor_offset;
111 LLVMValueRef tes_rel_patch_id;
112 LLVMValueRef tes_u;
113 LLVMValueRef tes_v;
114
115 LLVMValueRef gsvs_ring_stride;
116 LLVMValueRef gsvs_num_entries;
117 LLVMValueRef gs2vs_offset;
118 LLVMValueRef gs_wave_id;
119 LLVMValueRef gs_vtx_offset[6];
120
121 LLVMValueRef esgs_ring;
122 LLVMValueRef gsvs_ring;
123 LLVMValueRef hs_ring_tess_offchip;
124 LLVMValueRef hs_ring_tess_factor;
125
126 LLVMValueRef sample_pos_offset;
127 LLVMValueRef persp_sample, persp_center, persp_centroid;
128 LLVMValueRef linear_sample, linear_center, linear_centroid;
129
130 gl_shader_stage stage;
131
132 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
133
134 uint64_t input_mask;
135 uint64_t output_mask;
136 uint8_t num_output_clips;
137 uint8_t num_output_culls;
138
139 bool is_gs_copy_shader;
140 LLVMValueRef gs_next_vertex;
141 unsigned gs_max_out_vertices;
142
143 unsigned tes_primitive_mode;
144 uint64_t tess_outputs_written;
145 uint64_t tess_patch_outputs_written;
146
147 uint32_t tcs_patch_outputs_read;
148 uint64_t tcs_outputs_read;
149 };
150
151 static inline struct nir_to_llvm_context *
152 nir_to_llvm_context_from_abi(struct ac_shader_abi *abi)
153 {
154 struct nir_to_llvm_context *ctx = NULL;
155 return container_of(abi, ctx, abi);
156 }
157
158 static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
159 const nir_deref_var *deref,
160 enum ac_descriptor_type desc_type,
161 const nir_tex_instr *instr,
162 bool image, bool write);
163
164 static unsigned radeon_llvm_reg_index_soa(unsigned index, unsigned chan)
165 {
166 return (index * 4) + chan;
167 }
168
169 static unsigned shader_io_get_unique_index(gl_varying_slot slot)
170 {
171 /* handle patch indices separate */
172 if (slot == VARYING_SLOT_TESS_LEVEL_OUTER)
173 return 0;
174 if (slot == VARYING_SLOT_TESS_LEVEL_INNER)
175 return 1;
176 if (slot >= VARYING_SLOT_PATCH0 && slot <= VARYING_SLOT_TESS_MAX)
177 return 2 + (slot - VARYING_SLOT_PATCH0);
178
179 if (slot == VARYING_SLOT_POS)
180 return 0;
181 if (slot == VARYING_SLOT_PSIZ)
182 return 1;
183 if (slot == VARYING_SLOT_CLIP_DIST0)
184 return 2;
185 /* 3 is reserved for clip dist as well */
186 if (slot >= VARYING_SLOT_VAR0 && slot <= VARYING_SLOT_VAR31)
187 return 4 + (slot - VARYING_SLOT_VAR0);
188 unreachable("illegal slot in get unique index\n");
189 }
190
191 static void set_llvm_calling_convention(LLVMValueRef func,
192 gl_shader_stage stage)
193 {
194 enum radeon_llvm_calling_convention calling_conv;
195
196 switch (stage) {
197 case MESA_SHADER_VERTEX:
198 case MESA_SHADER_TESS_EVAL:
199 calling_conv = RADEON_LLVM_AMDGPU_VS;
200 break;
201 case MESA_SHADER_GEOMETRY:
202 calling_conv = RADEON_LLVM_AMDGPU_GS;
203 break;
204 case MESA_SHADER_TESS_CTRL:
205 calling_conv = HAVE_LLVM >= 0x0500 ? RADEON_LLVM_AMDGPU_HS : RADEON_LLVM_AMDGPU_VS;
206 break;
207 case MESA_SHADER_FRAGMENT:
208 calling_conv = RADEON_LLVM_AMDGPU_PS;
209 break;
210 case MESA_SHADER_COMPUTE:
211 calling_conv = RADEON_LLVM_AMDGPU_CS;
212 break;
213 default:
214 unreachable("Unhandle shader type");
215 }
216
217 LLVMSetFunctionCallConv(func, calling_conv);
218 }
219
220 #define MAX_ARGS 23
221 struct arg_info {
222 LLVMTypeRef types[MAX_ARGS];
223 LLVMValueRef *assign[MAX_ARGS];
224 unsigned array_params_mask;
225 uint8_t count;
226 uint8_t sgpr_count;
227 uint8_t num_sgprs_used;
228 uint8_t num_vgprs_used;
229 };
230
231 enum ac_arg_regfile {
232 ARG_SGPR,
233 ARG_VGPR,
234 };
235
236 static void
237 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
238 LLVMValueRef *param_ptr)
239 {
240 assert(info->count < MAX_ARGS);
241
242 info->assign[info->count] = param_ptr;
243 info->types[info->count] = type;
244 info->count++;
245
246 if (regfile == ARG_SGPR) {
247 info->num_sgprs_used += ac_get_type_size(type) / 4;
248 info->sgpr_count++;
249 } else {
250 assert(regfile == ARG_VGPR);
251 info->num_vgprs_used += ac_get_type_size(type) / 4;
252 }
253 }
254
255 static inline void
256 add_array_arg(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr)
257 {
258 info->array_params_mask |= (1 << info->count);
259 add_arg(info, ARG_SGPR, type, param_ptr);
260 }
261
262 static void assign_arguments(LLVMValueRef main_function,
263 struct arg_info *info)
264 {
265 unsigned i;
266 for (i = 0; i < info->count; i++) {
267 if (info->assign[i])
268 *info->assign[i] = LLVMGetParam(main_function, i);
269 }
270 }
271
272 static LLVMValueRef
273 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
274 LLVMBuilderRef builder, LLVMTypeRef *return_types,
275 unsigned num_return_elems,
276 struct arg_info *args,
277 unsigned max_workgroup_size,
278 bool unsafe_math)
279 {
280 LLVMTypeRef main_function_type, ret_type;
281 LLVMBasicBlockRef main_function_body;
282
283 if (num_return_elems)
284 ret_type = LLVMStructTypeInContext(ctx, return_types,
285 num_return_elems, true);
286 else
287 ret_type = LLVMVoidTypeInContext(ctx);
288
289 /* Setup the function */
290 main_function_type =
291 LLVMFunctionType(ret_type, args->types, args->count, 0);
292 LLVMValueRef main_function =
293 LLVMAddFunction(module, "main", main_function_type);
294 main_function_body =
295 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
296 LLVMPositionBuilderAtEnd(builder, main_function_body);
297
298 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
299 for (unsigned i = 0; i < args->sgpr_count; ++i) {
300 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
301
302 if (args->array_params_mask & (1 << i)) {
303 LLVMValueRef P = LLVMGetParam(main_function, i);
304 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
305 ac_add_attr_dereferenceable(P, UINT64_MAX);
306 }
307 }
308
309 if (max_workgroup_size) {
310 ac_llvm_add_target_dep_function_attr(main_function,
311 "amdgpu-max-work-group-size",
312 max_workgroup_size);
313 }
314 if (unsafe_math) {
315 /* These were copied from some LLVM test. */
316 LLVMAddTargetDependentFunctionAttr(main_function,
317 "less-precise-fpmad",
318 "true");
319 LLVMAddTargetDependentFunctionAttr(main_function,
320 "no-infs-fp-math",
321 "true");
322 LLVMAddTargetDependentFunctionAttr(main_function,
323 "no-nans-fp-math",
324 "true");
325 LLVMAddTargetDependentFunctionAttr(main_function,
326 "unsafe-fp-math",
327 "true");
328 LLVMAddTargetDependentFunctionAttr(main_function,
329 "no-signed-zeros-fp-math",
330 "true");
331 }
332 return main_function;
333 }
334
335 static int get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
336 {
337 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
338 type = LLVMGetElementType(type);
339
340 if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind)
341 return LLVMGetIntTypeWidth(type);
342
343 if (type == ctx->f16)
344 return 16;
345 if (type == ctx->f32)
346 return 32;
347 if (type == ctx->f64)
348 return 64;
349
350 unreachable("Unhandled type kind in get_elem_bits");
351 }
352
353 static LLVMValueRef unpack_param(struct ac_llvm_context *ctx,
354 LLVMValueRef param, unsigned rshift,
355 unsigned bitwidth)
356 {
357 LLVMValueRef value = param;
358 if (rshift)
359 value = LLVMBuildLShr(ctx->builder, value,
360 LLVMConstInt(ctx->i32, rshift, false), "");
361
362 if (rshift + bitwidth < 32) {
363 unsigned mask = (1 << bitwidth) - 1;
364 value = LLVMBuildAnd(ctx->builder, value,
365 LLVMConstInt(ctx->i32, mask, false), "");
366 }
367 return value;
368 }
369
370 static LLVMValueRef get_rel_patch_id(struct nir_to_llvm_context *ctx)
371 {
372 switch (ctx->stage) {
373 case MESA_SHADER_TESS_CTRL:
374 return unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
375 case MESA_SHADER_TESS_EVAL:
376 return ctx->tes_rel_patch_id;
377 break;
378 default:
379 unreachable("Illegal stage");
380 }
381 }
382
383 /* Tessellation shaders pass outputs to the next shader using LDS.
384 *
385 * LS outputs = TCS inputs
386 * TCS outputs = TES inputs
387 *
388 * The LDS layout is:
389 * - TCS inputs for patch 0
390 * - TCS inputs for patch 1
391 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
392 * - ...
393 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
394 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
395 * - TCS outputs for patch 1
396 * - Per-patch TCS outputs for patch 1
397 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
398 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
399 * - ...
400 *
401 * All three shaders VS(LS), TCS, TES share the same LDS space.
402 */
403 static LLVMValueRef
404 get_tcs_in_patch_stride(struct nir_to_llvm_context *ctx)
405 {
406 if (ctx->stage == MESA_SHADER_VERTEX)
407 return unpack_param(&ctx->ac, ctx->ls_out_layout, 0, 13);
408 else if (ctx->stage == MESA_SHADER_TESS_CTRL)
409 return unpack_param(&ctx->ac, ctx->tcs_in_layout, 0, 13);
410 else {
411 assert(0);
412 return NULL;
413 }
414 }
415
416 static LLVMValueRef
417 get_tcs_out_patch_stride(struct nir_to_llvm_context *ctx)
418 {
419 return unpack_param(&ctx->ac, ctx->tcs_out_layout, 0, 13);
420 }
421
422 static LLVMValueRef
423 get_tcs_out_patch0_offset(struct nir_to_llvm_context *ctx)
424 {
425 return LLVMBuildMul(ctx->builder,
426 unpack_param(&ctx->ac, ctx->tcs_out_offsets, 0, 16),
427 LLVMConstInt(ctx->ac.i32, 4, false), "");
428 }
429
430 static LLVMValueRef
431 get_tcs_out_patch0_patch_data_offset(struct nir_to_llvm_context *ctx)
432 {
433 return LLVMBuildMul(ctx->builder,
434 unpack_param(&ctx->ac, ctx->tcs_out_offsets, 16, 16),
435 LLVMConstInt(ctx->ac.i32, 4, false), "");
436 }
437
438 static LLVMValueRef
439 get_tcs_in_current_patch_offset(struct nir_to_llvm_context *ctx)
440 {
441 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
442 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
443
444 return LLVMBuildMul(ctx->builder, patch_stride, rel_patch_id, "");
445 }
446
447 static LLVMValueRef
448 get_tcs_out_current_patch_offset(struct nir_to_llvm_context *ctx)
449 {
450 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
451 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
452 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
453
454 return LLVMBuildAdd(ctx->builder, patch0_offset,
455 LLVMBuildMul(ctx->builder, patch_stride,
456 rel_patch_id, ""),
457 "");
458 }
459
460 static LLVMValueRef
461 get_tcs_out_current_patch_data_offset(struct nir_to_llvm_context *ctx)
462 {
463 LLVMValueRef patch0_patch_data_offset =
464 get_tcs_out_patch0_patch_data_offset(ctx);
465 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
466 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
467
468 return LLVMBuildAdd(ctx->builder, patch0_patch_data_offset,
469 LLVMBuildMul(ctx->builder, patch_stride,
470 rel_patch_id, ""),
471 "");
472 }
473
474 static void
475 set_loc(struct ac_userdata_info *ud_info, uint8_t *sgpr_idx, uint8_t num_sgprs,
476 uint32_t indirect_offset)
477 {
478 ud_info->sgpr_idx = *sgpr_idx;
479 ud_info->num_sgprs = num_sgprs;
480 ud_info->indirect = indirect_offset > 0;
481 ud_info->indirect_offset = indirect_offset;
482 *sgpr_idx += num_sgprs;
483 }
484
485 static void
486 set_loc_shader(struct nir_to_llvm_context *ctx, int idx, uint8_t *sgpr_idx,
487 uint8_t num_sgprs)
488 {
489 struct ac_userdata_info *ud_info =
490 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
491 assert(ud_info);
492
493 set_loc(ud_info, sgpr_idx, num_sgprs, 0);
494 }
495
496 static void
497 set_loc_desc(struct nir_to_llvm_context *ctx, int idx, uint8_t *sgpr_idx,
498 uint32_t indirect_offset)
499 {
500 struct ac_userdata_info *ud_info =
501 &ctx->shader_info->user_sgprs_locs.descriptor_sets[idx];
502 assert(ud_info);
503
504 set_loc(ud_info, sgpr_idx, 2, indirect_offset);
505 }
506
507 struct user_sgpr_info {
508 bool need_ring_offsets;
509 uint8_t sgpr_count;
510 bool indirect_all_descriptor_sets;
511 };
512
513 static bool needs_view_index_sgpr(struct nir_to_llvm_context *ctx,
514 gl_shader_stage stage)
515 {
516 switch (stage) {
517 case MESA_SHADER_VERTEX:
518 if (ctx->shader_info->info.needs_multiview_view_index ||
519 (!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
520 return true;
521 break;
522 case MESA_SHADER_TESS_EVAL:
523 if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
524 return true;
525 break;
526 case MESA_SHADER_GEOMETRY:
527 case MESA_SHADER_TESS_CTRL:
528 if (ctx->shader_info->info.needs_multiview_view_index)
529 return true;
530 break;
531 default:
532 break;
533 }
534 return false;
535 }
536
537 static void allocate_user_sgprs(struct nir_to_llvm_context *ctx,
538 gl_shader_stage stage,
539 bool needs_view_index,
540 struct user_sgpr_info *user_sgpr_info)
541 {
542 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
543
544 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
545 if (stage == MESA_SHADER_GEOMETRY ||
546 stage == MESA_SHADER_VERTEX ||
547 stage == MESA_SHADER_TESS_CTRL ||
548 stage == MESA_SHADER_TESS_EVAL ||
549 ctx->is_gs_copy_shader)
550 user_sgpr_info->need_ring_offsets = true;
551
552 if (stage == MESA_SHADER_FRAGMENT &&
553 ctx->shader_info->info.ps.needs_sample_positions)
554 user_sgpr_info->need_ring_offsets = true;
555
556 /* 2 user sgprs will nearly always be allocated for scratch/rings */
557 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
558 user_sgpr_info->sgpr_count += 2;
559 }
560
561 /* FIXME: fix the number of user sgprs for merged shaders on GFX9 */
562 switch (stage) {
563 case MESA_SHADER_COMPUTE:
564 if (ctx->shader_info->info.cs.uses_grid_size)
565 user_sgpr_info->sgpr_count += 3;
566 break;
567 case MESA_SHADER_FRAGMENT:
568 user_sgpr_info->sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
569 break;
570 case MESA_SHADER_VERTEX:
571 if (!ctx->is_gs_copy_shader) {
572 user_sgpr_info->sgpr_count += ctx->shader_info->info.vs.has_vertex_buffers ? 2 : 0;
573 if (ctx->shader_info->info.vs.needs_draw_id) {
574 user_sgpr_info->sgpr_count += 3;
575 } else {
576 user_sgpr_info->sgpr_count += 2;
577 }
578 }
579 if (ctx->options->key.vs.as_ls)
580 user_sgpr_info->sgpr_count++;
581 break;
582 case MESA_SHADER_TESS_CTRL:
583 user_sgpr_info->sgpr_count += 4;
584 break;
585 case MESA_SHADER_TESS_EVAL:
586 user_sgpr_info->sgpr_count += 1;
587 break;
588 case MESA_SHADER_GEOMETRY:
589 user_sgpr_info->sgpr_count += 2;
590 break;
591 default:
592 break;
593 }
594
595 if (needs_view_index)
596 user_sgpr_info->sgpr_count++;
597
598 if (ctx->shader_info->info.loads_push_constants)
599 user_sgpr_info->sgpr_count += 2;
600
601 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 ? 32 : 16;
602 uint32_t remaining_sgprs = available_sgprs - user_sgpr_info->sgpr_count;
603
604 if (remaining_sgprs / 2 < util_bitcount(ctx->shader_info->info.desc_set_used_mask)) {
605 user_sgpr_info->sgpr_count += 2;
606 user_sgpr_info->indirect_all_descriptor_sets = true;
607 } else {
608 user_sgpr_info->sgpr_count += util_bitcount(ctx->shader_info->info.desc_set_used_mask) * 2;
609 }
610 }
611
612 static void
613 declare_global_input_sgprs(struct nir_to_llvm_context *ctx,
614 gl_shader_stage stage,
615 bool has_previous_stage,
616 gl_shader_stage previous_stage,
617 const struct user_sgpr_info *user_sgpr_info,
618 struct arg_info *args,
619 LLVMValueRef *desc_sets)
620 {
621 LLVMTypeRef type = ac_array_in_const_addr_space(ctx->ac.i8);
622 unsigned num_sets = ctx->options->layout ?
623 ctx->options->layout->num_sets : 0;
624 unsigned stage_mask = 1 << stage;
625
626 if (has_previous_stage)
627 stage_mask |= 1 << previous_stage;
628
629 /* 1 for each descriptor set */
630 if (!user_sgpr_info->indirect_all_descriptor_sets) {
631 for (unsigned i = 0; i < num_sets; ++i) {
632 if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
633 add_array_arg(args, type,
634 &ctx->descriptor_sets[i]);
635 }
636 }
637 } else {
638 add_array_arg(args, ac_array_in_const_addr_space(type), desc_sets);
639 }
640
641 if (ctx->shader_info->info.loads_push_constants) {
642 /* 1 for push constants and dynamic descriptors */
643 add_array_arg(args, type, &ctx->push_constants);
644 }
645 }
646
647 static void
648 declare_vs_specific_input_sgprs(struct nir_to_llvm_context *ctx,
649 gl_shader_stage stage,
650 bool has_previous_stage,
651 gl_shader_stage previous_stage,
652 struct arg_info *args)
653 {
654 if (!ctx->is_gs_copy_shader &&
655 (stage == MESA_SHADER_VERTEX ||
656 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
657 if (ctx->shader_info->info.vs.has_vertex_buffers) {
658 add_arg(args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
659 &ctx->vertex_buffers);
660 }
661 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
662 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
663 if (ctx->shader_info->info.vs.needs_draw_id) {
664 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
665 }
666 }
667 }
668
669 static void
670 declare_vs_input_vgprs(struct nir_to_llvm_context *ctx, struct arg_info *args)
671 {
672 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
673 if (!ctx->is_gs_copy_shader) {
674 if (ctx->options->key.vs.as_ls) {
675 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
676 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
677 } else {
678 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
679 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
680 }
681 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
682 }
683 }
684
685 static void
686 declare_tes_input_vgprs(struct nir_to_llvm_context *ctx, struct arg_info *args)
687 {
688 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
689 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
690 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
691 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
692 }
693
694 static void
695 set_global_input_locs(struct nir_to_llvm_context *ctx, gl_shader_stage stage,
696 bool has_previous_stage, gl_shader_stage previous_stage,
697 const struct user_sgpr_info *user_sgpr_info,
698 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
699 {
700 unsigned num_sets = ctx->options->layout ?
701 ctx->options->layout->num_sets : 0;
702 unsigned stage_mask = 1 << stage;
703
704 if (has_previous_stage)
705 stage_mask |= 1 << previous_stage;
706
707 if (!user_sgpr_info->indirect_all_descriptor_sets) {
708 for (unsigned i = 0; i < num_sets; ++i) {
709 if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
710 set_loc_desc(ctx, i, user_sgpr_idx, 0);
711 } else
712 ctx->descriptor_sets[i] = NULL;
713 }
714 } else {
715 set_loc_shader(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
716 user_sgpr_idx, 2);
717
718 for (unsigned i = 0; i < num_sets; ++i) {
719 if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
720 set_loc_desc(ctx, i, user_sgpr_idx, i * 8);
721 ctx->descriptor_sets[i] =
722 ac_build_load_to_sgpr(&ctx->ac,
723 desc_sets,
724 LLVMConstInt(ctx->ac.i32, i, false));
725
726 } else
727 ctx->descriptor_sets[i] = NULL;
728 }
729 ctx->shader_info->need_indirect_descriptor_sets = true;
730 }
731
732 if (ctx->shader_info->info.loads_push_constants) {
733 set_loc_shader(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx, 2);
734 }
735 }
736
737 static void
738 set_vs_specific_input_locs(struct nir_to_llvm_context *ctx,
739 gl_shader_stage stage, bool has_previous_stage,
740 gl_shader_stage previous_stage,
741 uint8_t *user_sgpr_idx)
742 {
743 if (!ctx->is_gs_copy_shader &&
744 (stage == MESA_SHADER_VERTEX ||
745 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
746 if (ctx->shader_info->info.vs.has_vertex_buffers) {
747 set_loc_shader(ctx, AC_UD_VS_VERTEX_BUFFERS,
748 user_sgpr_idx, 2);
749 }
750
751 unsigned vs_num = 2;
752 if (ctx->shader_info->info.vs.needs_draw_id)
753 vs_num++;
754
755 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
756 user_sgpr_idx, vs_num);
757 }
758 }
759
760 static void create_function(struct nir_to_llvm_context *ctx,
761 gl_shader_stage stage,
762 bool has_previous_stage,
763 gl_shader_stage previous_stage)
764 {
765 uint8_t user_sgpr_idx;
766 struct user_sgpr_info user_sgpr_info;
767 struct arg_info args = {};
768 LLVMValueRef desc_sets;
769 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
770 allocate_user_sgprs(ctx, stage, needs_view_index, &user_sgpr_info);
771
772 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
773 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
774 &ctx->ring_offsets);
775 }
776
777 switch (stage) {
778 case MESA_SHADER_COMPUTE:
779 declare_global_input_sgprs(ctx, stage, has_previous_stage,
780 previous_stage, &user_sgpr_info,
781 &args, &desc_sets);
782
783 if (ctx->shader_info->info.cs.uses_grid_size) {
784 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
785 &ctx->num_work_groups);
786 }
787
788 for (int i = 0; i < 3; i++) {
789 ctx->workgroup_ids[i] = NULL;
790 if (ctx->shader_info->info.cs.uses_block_id[i]) {
791 add_arg(&args, ARG_SGPR, ctx->ac.i32,
792 &ctx->workgroup_ids[i]);
793 }
794 }
795
796 if (ctx->shader_info->info.cs.uses_local_invocation_idx)
797 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->tg_size);
798 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
799 &ctx->local_invocation_ids);
800 break;
801 case MESA_SHADER_VERTEX:
802 declare_global_input_sgprs(ctx, stage, has_previous_stage,
803 previous_stage, &user_sgpr_info,
804 &args, &desc_sets);
805 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
806 previous_stage, &args);
807
808 if (needs_view_index)
809 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->view_index);
810 if (ctx->options->key.vs.as_es)
811 add_arg(&args, ARG_SGPR, ctx->ac.i32,
812 &ctx->es2gs_offset);
813 else if (ctx->options->key.vs.as_ls)
814 add_arg(&args, ARG_SGPR, ctx->ac.i32,
815 &ctx->ls_out_layout);
816
817 declare_vs_input_vgprs(ctx, &args);
818 break;
819 case MESA_SHADER_TESS_CTRL:
820 if (has_previous_stage) {
821 // First 6 system regs
822 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
823 add_arg(&args, ARG_SGPR, ctx->ac.i32,
824 &ctx->merged_wave_info);
825 add_arg(&args, ARG_SGPR, ctx->ac.i32,
826 &ctx->tess_factor_offset);
827
828 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
829 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
830 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
831
832 declare_global_input_sgprs(ctx, stage,
833 has_previous_stage,
834 previous_stage,
835 &user_sgpr_info, &args,
836 &desc_sets);
837 declare_vs_specific_input_sgprs(ctx, stage,
838 has_previous_stage,
839 previous_stage, &args);
840
841 add_arg(&args, ARG_SGPR, ctx->ac.i32,
842 &ctx->ls_out_layout);
843
844 add_arg(&args, ARG_SGPR, ctx->ac.i32,
845 &ctx->tcs_offchip_layout);
846 add_arg(&args, ARG_SGPR, ctx->ac.i32,
847 &ctx->tcs_out_offsets);
848 add_arg(&args, ARG_SGPR, ctx->ac.i32,
849 &ctx->tcs_out_layout);
850 add_arg(&args, ARG_SGPR, ctx->ac.i32,
851 &ctx->tcs_in_layout);
852 if (needs_view_index)
853 add_arg(&args, ARG_SGPR, ctx->ac.i32,
854 &ctx->view_index);
855
856 add_arg(&args, ARG_VGPR, ctx->ac.i32,
857 &ctx->abi.tcs_patch_id);
858 add_arg(&args, ARG_VGPR, ctx->ac.i32,
859 &ctx->abi.tcs_rel_ids);
860
861 declare_vs_input_vgprs(ctx, &args);
862 } else {
863 declare_global_input_sgprs(ctx, stage,
864 has_previous_stage,
865 previous_stage,
866 &user_sgpr_info, &args,
867 &desc_sets);
868
869 add_arg(&args, ARG_SGPR, ctx->ac.i32,
870 &ctx->tcs_offchip_layout);
871 add_arg(&args, ARG_SGPR, ctx->ac.i32,
872 &ctx->tcs_out_offsets);
873 add_arg(&args, ARG_SGPR, ctx->ac.i32,
874 &ctx->tcs_out_layout);
875 add_arg(&args, ARG_SGPR, ctx->ac.i32,
876 &ctx->tcs_in_layout);
877 if (needs_view_index)
878 add_arg(&args, ARG_SGPR, ctx->ac.i32,
879 &ctx->view_index);
880
881 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
882 add_arg(&args, ARG_SGPR, ctx->ac.i32,
883 &ctx->tess_factor_offset);
884 add_arg(&args, ARG_VGPR, ctx->ac.i32,
885 &ctx->abi.tcs_patch_id);
886 add_arg(&args, ARG_VGPR, ctx->ac.i32,
887 &ctx->abi.tcs_rel_ids);
888 }
889 break;
890 case MESA_SHADER_TESS_EVAL:
891 declare_global_input_sgprs(ctx, stage, has_previous_stage,
892 previous_stage, &user_sgpr_info,
893 &args, &desc_sets);
894
895 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->tcs_offchip_layout);
896 if (needs_view_index)
897 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->view_index);
898
899 if (ctx->options->key.tes.as_es) {
900 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
901 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
902 add_arg(&args, ARG_SGPR, ctx->ac.i32,
903 &ctx->es2gs_offset);
904 } else {
905 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
906 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
907 }
908 declare_tes_input_vgprs(ctx, &args);
909 break;
910 case MESA_SHADER_GEOMETRY:
911 if (has_previous_stage) {
912 // First 6 system regs
913 add_arg(&args, ARG_SGPR, ctx->ac.i32,
914 &ctx->gs2vs_offset);
915 add_arg(&args, ARG_SGPR, ctx->ac.i32,
916 &ctx->merged_wave_info);
917 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
918
919 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
920 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
921 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
922
923 declare_global_input_sgprs(ctx, stage,
924 has_previous_stage,
925 previous_stage,
926 &user_sgpr_info, &args,
927 &desc_sets);
928
929 if (previous_stage == MESA_SHADER_TESS_EVAL) {
930 add_arg(&args, ARG_SGPR, ctx->ac.i32,
931 &ctx->tcs_offchip_layout);
932 } else {
933 declare_vs_specific_input_sgprs(ctx, stage,
934 has_previous_stage,
935 previous_stage,
936 &args);
937 }
938
939 add_arg(&args, ARG_SGPR, ctx->ac.i32,
940 &ctx->gsvs_ring_stride);
941 add_arg(&args, ARG_SGPR, ctx->ac.i32,
942 &ctx->gsvs_num_entries);
943 if (needs_view_index)
944 add_arg(&args, ARG_SGPR, ctx->ac.i32,
945 &ctx->view_index);
946
947 add_arg(&args, ARG_VGPR, ctx->ac.i32,
948 &ctx->gs_vtx_offset[0]);
949 add_arg(&args, ARG_VGPR, ctx->ac.i32,
950 &ctx->gs_vtx_offset[2]);
951 add_arg(&args, ARG_VGPR, ctx->ac.i32,
952 &ctx->abi.gs_prim_id);
953 add_arg(&args, ARG_VGPR, ctx->ac.i32,
954 &ctx->abi.gs_invocation_id);
955 add_arg(&args, ARG_VGPR, ctx->ac.i32,
956 &ctx->gs_vtx_offset[4]);
957
958 if (previous_stage == MESA_SHADER_VERTEX) {
959 declare_vs_input_vgprs(ctx, &args);
960 } else {
961 declare_tes_input_vgprs(ctx, &args);
962 }
963 } else {
964 declare_global_input_sgprs(ctx, stage,
965 has_previous_stage,
966 previous_stage,
967 &user_sgpr_info, &args,
968 &desc_sets);
969
970 add_arg(&args, ARG_SGPR, ctx->ac.i32,
971 &ctx->gsvs_ring_stride);
972 add_arg(&args, ARG_SGPR, ctx->ac.i32,
973 &ctx->gsvs_num_entries);
974 if (needs_view_index)
975 add_arg(&args, ARG_SGPR, ctx->ac.i32,
976 &ctx->view_index);
977
978 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
979 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
980 add_arg(&args, ARG_VGPR, ctx->ac.i32,
981 &ctx->gs_vtx_offset[0]);
982 add_arg(&args, ARG_VGPR, ctx->ac.i32,
983 &ctx->gs_vtx_offset[1]);
984 add_arg(&args, ARG_VGPR, ctx->ac.i32,
985 &ctx->abi.gs_prim_id);
986 add_arg(&args, ARG_VGPR, ctx->ac.i32,
987 &ctx->gs_vtx_offset[2]);
988 add_arg(&args, ARG_VGPR, ctx->ac.i32,
989 &ctx->gs_vtx_offset[3]);
990 add_arg(&args, ARG_VGPR, ctx->ac.i32,
991 &ctx->gs_vtx_offset[4]);
992 add_arg(&args, ARG_VGPR, ctx->ac.i32,
993 &ctx->gs_vtx_offset[5]);
994 add_arg(&args, ARG_VGPR, ctx->ac.i32,
995 &ctx->abi.gs_invocation_id);
996 }
997 break;
998 case MESA_SHADER_FRAGMENT:
999 declare_global_input_sgprs(ctx, stage, has_previous_stage,
1000 previous_stage, &user_sgpr_info,
1001 &args, &desc_sets);
1002
1003 if (ctx->shader_info->info.ps.needs_sample_positions)
1004 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1005 &ctx->sample_pos_offset);
1006
1007 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1008 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
1009 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
1010 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
1011 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1012 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
1013 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
1014 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
1015 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1016 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1017 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1018 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1019 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1020 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1021 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1022 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1023 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1024 break;
1025 default:
1026 unreachable("Shader stage not implemented");
1027 }
1028
1029 ctx->main_function = create_llvm_function(
1030 ctx->context, ctx->module, ctx->builder, NULL, 0, &args,
1031 ctx->max_workgroup_size,
1032 ctx->options->unsafe_math);
1033 set_llvm_calling_convention(ctx->main_function, stage);
1034
1035
1036 ctx->shader_info->num_input_vgprs = 0;
1037 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1038
1039 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1040
1041 if (ctx->stage != MESA_SHADER_FRAGMENT)
1042 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1043
1044 assign_arguments(ctx->main_function, &args);
1045
1046 user_sgpr_idx = 0;
1047
1048 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1049 set_loc_shader(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1050 &user_sgpr_idx, 2);
1051 if (ctx->options->supports_spill) {
1052 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1053 LLVMPointerType(ctx->ac.i8, AC_CONST_ADDR_SPACE),
1054 NULL, 0, AC_FUNC_ATTR_READNONE);
1055 ctx->ring_offsets = LLVMBuildBitCast(ctx->builder, ctx->ring_offsets,
1056 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1057 }
1058 }
1059
1060 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1061 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1062 if (has_previous_stage)
1063 user_sgpr_idx = 0;
1064
1065 set_global_input_locs(ctx, stage, has_previous_stage, previous_stage,
1066 &user_sgpr_info, desc_sets, &user_sgpr_idx);
1067
1068 switch (stage) {
1069 case MESA_SHADER_COMPUTE:
1070 if (ctx->shader_info->info.cs.uses_grid_size) {
1071 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1072 &user_sgpr_idx, 3);
1073 }
1074 break;
1075 case MESA_SHADER_VERTEX:
1076 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1077 previous_stage, &user_sgpr_idx);
1078 if (ctx->view_index)
1079 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1080 if (ctx->options->key.vs.as_ls) {
1081 set_loc_shader(ctx, AC_UD_VS_LS_TCS_IN_LAYOUT,
1082 &user_sgpr_idx, 1);
1083 }
1084 if (ctx->options->key.vs.as_ls)
1085 ac_declare_lds_as_pointer(&ctx->ac);
1086 break;
1087 case MESA_SHADER_TESS_CTRL:
1088 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1089 previous_stage, &user_sgpr_idx);
1090 if (has_previous_stage)
1091 set_loc_shader(ctx, AC_UD_VS_LS_TCS_IN_LAYOUT,
1092 &user_sgpr_idx, 1);
1093 set_loc_shader(ctx, AC_UD_TCS_OFFCHIP_LAYOUT, &user_sgpr_idx, 4);
1094 if (ctx->view_index)
1095 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1096 ac_declare_lds_as_pointer(&ctx->ac);
1097 break;
1098 case MESA_SHADER_TESS_EVAL:
1099 set_loc_shader(ctx, AC_UD_TES_OFFCHIP_LAYOUT, &user_sgpr_idx, 1);
1100 if (ctx->view_index)
1101 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1102 break;
1103 case MESA_SHADER_GEOMETRY:
1104 if (has_previous_stage) {
1105 if (previous_stage == MESA_SHADER_VERTEX)
1106 set_vs_specific_input_locs(ctx, stage,
1107 has_previous_stage,
1108 previous_stage,
1109 &user_sgpr_idx);
1110 else
1111 set_loc_shader(ctx, AC_UD_TES_OFFCHIP_LAYOUT,
1112 &user_sgpr_idx, 1);
1113 }
1114 set_loc_shader(ctx, AC_UD_GS_VS_RING_STRIDE_ENTRIES,
1115 &user_sgpr_idx, 2);
1116 if (ctx->view_index)
1117 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1118 if (has_previous_stage)
1119 ac_declare_lds_as_pointer(&ctx->ac);
1120 break;
1121 case MESA_SHADER_FRAGMENT:
1122 if (ctx->shader_info->info.ps.needs_sample_positions) {
1123 set_loc_shader(ctx, AC_UD_PS_SAMPLE_POS_OFFSET,
1124 &user_sgpr_idx, 1);
1125 }
1126 break;
1127 default:
1128 unreachable("Shader stage not implemented");
1129 }
1130
1131 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1132 }
1133
1134 static LLVMValueRef trim_vector(struct ac_llvm_context *ctx,
1135 LLVMValueRef value, unsigned count)
1136 {
1137 unsigned num_components = ac_get_llvm_num_components(value);
1138 if (count == num_components)
1139 return value;
1140
1141 LLVMValueRef masks[] = {
1142 LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
1143 LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false)};
1144
1145 if (count == 1)
1146 return LLVMBuildExtractElement(ctx->builder, value, masks[0],
1147 "");
1148
1149 LLVMValueRef swizzle = LLVMConstVector(masks, count);
1150 return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
1151 }
1152
1153 static void
1154 build_store_values_extended(struct ac_llvm_context *ac,
1155 LLVMValueRef *values,
1156 unsigned value_count,
1157 unsigned value_stride,
1158 LLVMValueRef vec)
1159 {
1160 LLVMBuilderRef builder = ac->builder;
1161 unsigned i;
1162
1163 for (i = 0; i < value_count; i++) {
1164 LLVMValueRef ptr = values[i * value_stride];
1165 LLVMValueRef index = LLVMConstInt(ac->i32, i, false);
1166 LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, "");
1167 LLVMBuildStore(builder, value, ptr);
1168 }
1169 }
1170
1171 static LLVMTypeRef get_def_type(struct ac_nir_context *ctx,
1172 const nir_ssa_def *def)
1173 {
1174 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, def->bit_size);
1175 if (def->num_components > 1) {
1176 type = LLVMVectorType(type, def->num_components);
1177 }
1178 return type;
1179 }
1180
1181 static LLVMValueRef get_src(struct ac_nir_context *nir, nir_src src)
1182 {
1183 assert(src.is_ssa);
1184 struct hash_entry *entry = _mesa_hash_table_search(nir->defs, src.ssa);
1185 return (LLVMValueRef)entry->data;
1186 }
1187
1188
1189 static LLVMBasicBlockRef get_block(struct ac_nir_context *nir,
1190 const struct nir_block *b)
1191 {
1192 struct hash_entry *entry = _mesa_hash_table_search(nir->defs, b);
1193 return (LLVMBasicBlockRef)entry->data;
1194 }
1195
1196 static LLVMValueRef get_alu_src(struct ac_nir_context *ctx,
1197 nir_alu_src src,
1198 unsigned num_components)
1199 {
1200 LLVMValueRef value = get_src(ctx, src.src);
1201 bool need_swizzle = false;
1202
1203 assert(value);
1204 LLVMTypeRef type = LLVMTypeOf(value);
1205 unsigned src_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
1206 ? LLVMGetVectorSize(type)
1207 : 1;
1208
1209 for (unsigned i = 0; i < num_components; ++i) {
1210 assert(src.swizzle[i] < src_components);
1211 if (src.swizzle[i] != i)
1212 need_swizzle = true;
1213 }
1214
1215 if (need_swizzle || num_components != src_components) {
1216 LLVMValueRef masks[] = {
1217 LLVMConstInt(ctx->ac.i32, src.swizzle[0], false),
1218 LLVMConstInt(ctx->ac.i32, src.swizzle[1], false),
1219 LLVMConstInt(ctx->ac.i32, src.swizzle[2], false),
1220 LLVMConstInt(ctx->ac.i32, src.swizzle[3], false)};
1221
1222 if (src_components > 1 && num_components == 1) {
1223 value = LLVMBuildExtractElement(ctx->ac.builder, value,
1224 masks[0], "");
1225 } else if (src_components == 1 && num_components > 1) {
1226 LLVMValueRef values[] = {value, value, value, value};
1227 value = ac_build_gather_values(&ctx->ac, values, num_components);
1228 } else {
1229 LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
1230 value = LLVMBuildShuffleVector(ctx->ac.builder, value, value,
1231 swizzle, "");
1232 }
1233 }
1234 assert(!src.negate);
1235 assert(!src.abs);
1236 return value;
1237 }
1238
1239 static LLVMValueRef emit_int_cmp(struct ac_llvm_context *ctx,
1240 LLVMIntPredicate pred, LLVMValueRef src0,
1241 LLVMValueRef src1)
1242 {
1243 LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
1244 return LLVMBuildSelect(ctx->builder, result,
1245 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
1246 ctx->i32_0, "");
1247 }
1248
1249 static LLVMValueRef emit_float_cmp(struct ac_llvm_context *ctx,
1250 LLVMRealPredicate pred, LLVMValueRef src0,
1251 LLVMValueRef src1)
1252 {
1253 LLVMValueRef result;
1254 src0 = ac_to_float(ctx, src0);
1255 src1 = ac_to_float(ctx, src1);
1256 result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
1257 return LLVMBuildSelect(ctx->builder, result,
1258 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
1259 ctx->i32_0, "");
1260 }
1261
1262 static LLVMValueRef emit_intrin_1f_param(struct ac_llvm_context *ctx,
1263 const char *intrin,
1264 LLVMTypeRef result_type,
1265 LLVMValueRef src0)
1266 {
1267 char name[64];
1268 LLVMValueRef params[] = {
1269 ac_to_float(ctx, src0),
1270 };
1271
1272 MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
1273 get_elem_bits(ctx, result_type));
1274 assert(length < sizeof(name));
1275 return ac_build_intrinsic(ctx, name, result_type, params, 1, AC_FUNC_ATTR_READNONE);
1276 }
1277
1278 static LLVMValueRef emit_intrin_2f_param(struct ac_llvm_context *ctx,
1279 const char *intrin,
1280 LLVMTypeRef result_type,
1281 LLVMValueRef src0, LLVMValueRef src1)
1282 {
1283 char name[64];
1284 LLVMValueRef params[] = {
1285 ac_to_float(ctx, src0),
1286 ac_to_float(ctx, src1),
1287 };
1288
1289 MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
1290 get_elem_bits(ctx, result_type));
1291 assert(length < sizeof(name));
1292 return ac_build_intrinsic(ctx, name, result_type, params, 2, AC_FUNC_ATTR_READNONE);
1293 }
1294
1295 static LLVMValueRef emit_intrin_3f_param(struct ac_llvm_context *ctx,
1296 const char *intrin,
1297 LLVMTypeRef result_type,
1298 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
1299 {
1300 char name[64];
1301 LLVMValueRef params[] = {
1302 ac_to_float(ctx, src0),
1303 ac_to_float(ctx, src1),
1304 ac_to_float(ctx, src2),
1305 };
1306
1307 MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
1308 get_elem_bits(ctx, result_type));
1309 assert(length < sizeof(name));
1310 return ac_build_intrinsic(ctx, name, result_type, params, 3, AC_FUNC_ATTR_READNONE);
1311 }
1312
1313 static LLVMValueRef emit_bcsel(struct ac_llvm_context *ctx,
1314 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
1315 {
1316 LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0,
1317 ctx->i32_0, "");
1318 return LLVMBuildSelect(ctx->builder, v, src1, src2, "");
1319 }
1320
1321 static LLVMValueRef emit_minmax_int(struct ac_llvm_context *ctx,
1322 LLVMIntPredicate pred,
1323 LLVMValueRef src0, LLVMValueRef src1)
1324 {
1325 return LLVMBuildSelect(ctx->builder,
1326 LLVMBuildICmp(ctx->builder, pred, src0, src1, ""),
1327 src0,
1328 src1, "");
1329
1330 }
1331 static LLVMValueRef emit_iabs(struct ac_llvm_context *ctx,
1332 LLVMValueRef src0)
1333 {
1334 return emit_minmax_int(ctx, LLVMIntSGT, src0,
1335 LLVMBuildNeg(ctx->builder, src0, ""));
1336 }
1337
1338 static LLVMValueRef emit_fsign(struct ac_llvm_context *ctx,
1339 LLVMValueRef src0,
1340 unsigned bitsize)
1341 {
1342 LLVMValueRef cmp, val, zero, one;
1343 LLVMTypeRef type;
1344
1345 if (bitsize == 32) {
1346 type = ctx->f32;
1347 zero = ctx->f32_0;
1348 one = ctx->f32_1;
1349 } else {
1350 type = ctx->f64;
1351 zero = ctx->f64_0;
1352 one = ctx->f64_1;
1353 }
1354
1355 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, zero, "");
1356 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
1357 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, zero, "");
1358 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(type, -1.0), "");
1359 return val;
1360 }
1361
1362 static LLVMValueRef emit_isign(struct ac_llvm_context *ctx,
1363 LLVMValueRef src0, unsigned bitsize)
1364 {
1365 LLVMValueRef cmp, val, zero, one;
1366 LLVMTypeRef type;
1367
1368 if (bitsize == 32) {
1369 type = ctx->i32;
1370 zero = ctx->i32_0;
1371 one = ctx->i32_1;
1372 } else {
1373 type = ctx->i64;
1374 zero = ctx->i64_0;
1375 one = ctx->i64_1;
1376 }
1377
1378 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, zero, "");
1379 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
1380 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, zero, "");
1381 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(type, -1, true), "");
1382 return val;
1383 }
1384
1385 static LLVMValueRef emit_ffract(struct ac_llvm_context *ctx,
1386 LLVMValueRef src0, unsigned bitsize)
1387 {
1388 LLVMTypeRef type;
1389 char *intr;
1390
1391 if (bitsize == 32) {
1392 intr = "llvm.floor.f32";
1393 type = ctx->f32;
1394 } else {
1395 intr = "llvm.floor.f64";
1396 type = ctx->f64;
1397 }
1398
1399 LLVMValueRef fsrc0 = ac_to_float(ctx, src0);
1400 LLVMValueRef params[] = {
1401 fsrc0,
1402 };
1403 LLVMValueRef floor = ac_build_intrinsic(ctx, intr, type, params, 1,
1404 AC_FUNC_ATTR_READNONE);
1405 return LLVMBuildFSub(ctx->builder, fsrc0, floor, "");
1406 }
1407
1408 static LLVMValueRef emit_uint_carry(struct ac_llvm_context *ctx,
1409 const char *intrin,
1410 LLVMValueRef src0, LLVMValueRef src1)
1411 {
1412 LLVMTypeRef ret_type;
1413 LLVMTypeRef types[] = { ctx->i32, ctx->i1 };
1414 LLVMValueRef res;
1415 LLVMValueRef params[] = { src0, src1 };
1416 ret_type = LLVMStructTypeInContext(ctx->context, types,
1417 2, true);
1418
1419 res = ac_build_intrinsic(ctx, intrin, ret_type,
1420 params, 2, AC_FUNC_ATTR_READNONE);
1421
1422 res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
1423 res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
1424 return res;
1425 }
1426
1427 static LLVMValueRef emit_b2f(struct ac_llvm_context *ctx,
1428 LLVMValueRef src0)
1429 {
1430 return LLVMBuildAnd(ctx->builder, src0, LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""), "");
1431 }
1432
1433 static LLVMValueRef emit_f2b(struct ac_llvm_context *ctx,
1434 LLVMValueRef src0)
1435 {
1436 src0 = ac_to_float(ctx, src0);
1437 return LLVMBuildSExt(ctx->builder,
1438 LLVMBuildFCmp(ctx->builder, LLVMRealUNE, src0, ctx->f32_0, ""),
1439 ctx->i32, "");
1440 }
1441
1442 static LLVMValueRef emit_b2i(struct ac_llvm_context *ctx,
1443 LLVMValueRef src0,
1444 unsigned bitsize)
1445 {
1446 LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0, ctx->i32_1, "");
1447
1448 if (bitsize == 32)
1449 return result;
1450
1451 return LLVMBuildZExt(ctx->builder, result, ctx->i64, "");
1452 }
1453
1454 static LLVMValueRef emit_i2b(struct ac_llvm_context *ctx,
1455 LLVMValueRef src0)
1456 {
1457 return LLVMBuildSExt(ctx->builder,
1458 LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, ctx->i32_0, ""),
1459 ctx->i32, "");
1460 }
1461
1462 static LLVMValueRef emit_f2f16(struct nir_to_llvm_context *ctx,
1463 LLVMValueRef src0)
1464 {
1465 LLVMValueRef result;
1466 LLVMValueRef cond = NULL;
1467
1468 src0 = ac_to_float(&ctx->ac, src0);
1469 result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->ac.f16, "");
1470
1471 if (ctx->options->chip_class >= VI) {
1472 LLVMValueRef args[2];
1473 /* Check if the result is a denormal - and flush to 0 if so. */
1474 args[0] = result;
1475 args[1] = LLVMConstInt(ctx->ac.i32, N_SUBNORMAL | P_SUBNORMAL, false);
1476 cond = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.class.f16", ctx->ac.i1, args, 2, AC_FUNC_ATTR_READNONE);
1477 }
1478
1479 /* need to convert back up to f32 */
1480 result = LLVMBuildFPExt(ctx->builder, result, ctx->ac.f32, "");
1481
1482 if (ctx->options->chip_class >= VI)
1483 result = LLVMBuildSelect(ctx->builder, cond, ctx->ac.f32_0, result, "");
1484 else {
1485 /* for SI/CIK */
1486 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
1487 * so compare the result and flush to 0 if it's smaller.
1488 */
1489 LLVMValueRef temp, cond2;
1490 temp = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
1491 ctx->ac.f32, result);
1492 cond = LLVMBuildFCmp(ctx->builder, LLVMRealUGT,
1493 LLVMBuildBitCast(ctx->builder, LLVMConstInt(ctx->ac.i32, 0x38800000, false), ctx->ac.f32, ""),
1494 temp, "");
1495 cond2 = LLVMBuildFCmp(ctx->builder, LLVMRealUNE,
1496 temp, ctx->ac.f32_0, "");
1497 cond = LLVMBuildAnd(ctx->builder, cond, cond2, "");
1498 result = LLVMBuildSelect(ctx->builder, cond, ctx->ac.f32_0, result, "");
1499 }
1500 return result;
1501 }
1502
1503 static LLVMValueRef emit_umul_high(struct ac_llvm_context *ctx,
1504 LLVMValueRef src0, LLVMValueRef src1)
1505 {
1506 LLVMValueRef dst64, result;
1507 src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
1508 src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
1509
1510 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
1511 dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
1512 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
1513 return result;
1514 }
1515
1516 static LLVMValueRef emit_imul_high(struct ac_llvm_context *ctx,
1517 LLVMValueRef src0, LLVMValueRef src1)
1518 {
1519 LLVMValueRef dst64, result;
1520 src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
1521 src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
1522
1523 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
1524 dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
1525 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
1526 return result;
1527 }
1528
1529 static LLVMValueRef emit_bitfield_extract(struct ac_llvm_context *ctx,
1530 bool is_signed,
1531 const LLVMValueRef srcs[3])
1532 {
1533 LLVMValueRef result;
1534 LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, srcs[2], LLVMConstInt(ctx->i32, 32, false), "");
1535
1536 result = ac_build_bfe(ctx, srcs[0], srcs[1], srcs[2], is_signed);
1537 result = LLVMBuildSelect(ctx->builder, icond, srcs[0], result, "");
1538 return result;
1539 }
1540
1541 static LLVMValueRef emit_bitfield_insert(struct ac_llvm_context *ctx,
1542 LLVMValueRef src0, LLVMValueRef src1,
1543 LLVMValueRef src2, LLVMValueRef src3)
1544 {
1545 LLVMValueRef bfi_args[3], result;
1546
1547 bfi_args[0] = LLVMBuildShl(ctx->builder,
1548 LLVMBuildSub(ctx->builder,
1549 LLVMBuildShl(ctx->builder,
1550 ctx->i32_1,
1551 src3, ""),
1552 ctx->i32_1, ""),
1553 src2, "");
1554 bfi_args[1] = LLVMBuildShl(ctx->builder, src1, src2, "");
1555 bfi_args[2] = src0;
1556
1557 LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, src3, LLVMConstInt(ctx->i32, 32, false), "");
1558
1559 /* Calculate:
1560 * (arg0 & arg1) | (~arg0 & arg2) = arg2 ^ (arg0 & (arg1 ^ arg2)
1561 * Use the right-hand side, which the LLVM backend can convert to V_BFI.
1562 */
1563 result = LLVMBuildXor(ctx->builder, bfi_args[2],
1564 LLVMBuildAnd(ctx->builder, bfi_args[0],
1565 LLVMBuildXor(ctx->builder, bfi_args[1], bfi_args[2], ""), ""), "");
1566
1567 result = LLVMBuildSelect(ctx->builder, icond, src1, result, "");
1568 return result;
1569 }
1570
1571 static LLVMValueRef emit_pack_half_2x16(struct ac_llvm_context *ctx,
1572 LLVMValueRef src0)
1573 {
1574 LLVMValueRef comp[2];
1575
1576 src0 = ac_to_float(ctx, src0);
1577 comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_0, "");
1578 comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_1, "");
1579
1580 return ac_build_cvt_pkrtz_f16(ctx, comp);
1581 }
1582
1583 static LLVMValueRef emit_unpack_half_2x16(struct ac_llvm_context *ctx,
1584 LLVMValueRef src0)
1585 {
1586 LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
1587 LLVMValueRef temps[2], result, val;
1588 int i;
1589
1590 for (i = 0; i < 2; i++) {
1591 val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
1592 val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
1593 val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
1594 temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
1595 }
1596
1597 result = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), temps[0],
1598 ctx->i32_0, "");
1599 result = LLVMBuildInsertElement(ctx->builder, result, temps[1],
1600 ctx->i32_1, "");
1601 return result;
1602 }
1603
1604 static LLVMValueRef emit_ddxy(struct ac_nir_context *ctx,
1605 nir_op op,
1606 LLVMValueRef src0)
1607 {
1608 unsigned mask;
1609 int idx;
1610 LLVMValueRef result;
1611
1612 if (op == nir_op_fddx_fine || op == nir_op_fddx)
1613 mask = AC_TID_MASK_LEFT;
1614 else if (op == nir_op_fddy_fine || op == nir_op_fddy)
1615 mask = AC_TID_MASK_TOP;
1616 else
1617 mask = AC_TID_MASK_TOP_LEFT;
1618
1619 /* for DDX we want to next X pixel, DDY next Y pixel. */
1620 if (op == nir_op_fddx_fine ||
1621 op == nir_op_fddx_coarse ||
1622 op == nir_op_fddx)
1623 idx = 1;
1624 else
1625 idx = 2;
1626
1627 result = ac_build_ddxy(&ctx->ac, mask, idx, src0);
1628 return result;
1629 }
1630
1631 /*
1632 * this takes an I,J coordinate pair,
1633 * and works out the X and Y derivatives.
1634 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
1635 */
1636 static LLVMValueRef emit_ddxy_interp(
1637 struct ac_nir_context *ctx,
1638 LLVMValueRef interp_ij)
1639 {
1640 LLVMValueRef result[4], a;
1641 unsigned i;
1642
1643 for (i = 0; i < 2; i++) {
1644 a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
1645 LLVMConstInt(ctx->ac.i32, i, false), "");
1646 result[i] = emit_ddxy(ctx, nir_op_fddx, a);
1647 result[2+i] = emit_ddxy(ctx, nir_op_fddy, a);
1648 }
1649 return ac_build_gather_values(&ctx->ac, result, 4);
1650 }
1651
1652 static void visit_alu(struct ac_nir_context *ctx, const nir_alu_instr *instr)
1653 {
1654 LLVMValueRef src[4], result = NULL;
1655 unsigned num_components = instr->dest.dest.ssa.num_components;
1656 unsigned src_components;
1657 LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa);
1658
1659 assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
1660 switch (instr->op) {
1661 case nir_op_vec2:
1662 case nir_op_vec3:
1663 case nir_op_vec4:
1664 src_components = 1;
1665 break;
1666 case nir_op_pack_half_2x16:
1667 src_components = 2;
1668 break;
1669 case nir_op_unpack_half_2x16:
1670 src_components = 1;
1671 break;
1672 default:
1673 src_components = num_components;
1674 break;
1675 }
1676 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1677 src[i] = get_alu_src(ctx, instr->src[i], src_components);
1678
1679 switch (instr->op) {
1680 case nir_op_fmov:
1681 case nir_op_imov:
1682 result = src[0];
1683 break;
1684 case nir_op_fneg:
1685 src[0] = ac_to_float(&ctx->ac, src[0]);
1686 result = LLVMBuildFNeg(ctx->ac.builder, src[0], "");
1687 break;
1688 case nir_op_ineg:
1689 result = LLVMBuildNeg(ctx->ac.builder, src[0], "");
1690 break;
1691 case nir_op_inot:
1692 result = LLVMBuildNot(ctx->ac.builder, src[0], "");
1693 break;
1694 case nir_op_iadd:
1695 result = LLVMBuildAdd(ctx->ac.builder, src[0], src[1], "");
1696 break;
1697 case nir_op_fadd:
1698 src[0] = ac_to_float(&ctx->ac, src[0]);
1699 src[1] = ac_to_float(&ctx->ac, src[1]);
1700 result = LLVMBuildFAdd(ctx->ac.builder, src[0], src[1], "");
1701 break;
1702 case nir_op_fsub:
1703 src[0] = ac_to_float(&ctx->ac, src[0]);
1704 src[1] = ac_to_float(&ctx->ac, src[1]);
1705 result = LLVMBuildFSub(ctx->ac.builder, src[0], src[1], "");
1706 break;
1707 case nir_op_isub:
1708 result = LLVMBuildSub(ctx->ac.builder, src[0], src[1], "");
1709 break;
1710 case nir_op_imul:
1711 result = LLVMBuildMul(ctx->ac.builder, src[0], src[1], "");
1712 break;
1713 case nir_op_imod:
1714 result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
1715 break;
1716 case nir_op_umod:
1717 result = LLVMBuildURem(ctx->ac.builder, src[0], src[1], "");
1718 break;
1719 case nir_op_fmod:
1720 src[0] = ac_to_float(&ctx->ac, src[0]);
1721 src[1] = ac_to_float(&ctx->ac, src[1]);
1722 result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
1723 result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
1724 ac_to_float_type(&ctx->ac, def_type), result);
1725 result = LLVMBuildFMul(ctx->ac.builder, src[1] , result, "");
1726 result = LLVMBuildFSub(ctx->ac.builder, src[0], result, "");
1727 break;
1728 case nir_op_frem:
1729 src[0] = ac_to_float(&ctx->ac, src[0]);
1730 src[1] = ac_to_float(&ctx->ac, src[1]);
1731 result = LLVMBuildFRem(ctx->ac.builder, src[0], src[1], "");
1732 break;
1733 case nir_op_irem:
1734 result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
1735 break;
1736 case nir_op_idiv:
1737 result = LLVMBuildSDiv(ctx->ac.builder, src[0], src[1], "");
1738 break;
1739 case nir_op_udiv:
1740 result = LLVMBuildUDiv(ctx->ac.builder, src[0], src[1], "");
1741 break;
1742 case nir_op_fmul:
1743 src[0] = ac_to_float(&ctx->ac, src[0]);
1744 src[1] = ac_to_float(&ctx->ac, src[1]);
1745 result = LLVMBuildFMul(ctx->ac.builder, src[0], src[1], "");
1746 break;
1747 case nir_op_fdiv:
1748 src[0] = ac_to_float(&ctx->ac, src[0]);
1749 src[1] = ac_to_float(&ctx->ac, src[1]);
1750 result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
1751 break;
1752 case nir_op_frcp:
1753 src[0] = ac_to_float(&ctx->ac, src[0]);
1754 result = ac_build_fdiv(&ctx->ac, instr->dest.dest.ssa.bit_size == 32 ? ctx->ac.f32_1 : ctx->ac.f64_1,
1755 src[0]);
1756 break;
1757 case nir_op_iand:
1758 result = LLVMBuildAnd(ctx->ac.builder, src[0], src[1], "");
1759 break;
1760 case nir_op_ior:
1761 result = LLVMBuildOr(ctx->ac.builder, src[0], src[1], "");
1762 break;
1763 case nir_op_ixor:
1764 result = LLVMBuildXor(ctx->ac.builder, src[0], src[1], "");
1765 break;
1766 case nir_op_ishl:
1767 result = LLVMBuildShl(ctx->ac.builder, src[0],
1768 LLVMBuildZExt(ctx->ac.builder, src[1],
1769 LLVMTypeOf(src[0]), ""),
1770 "");
1771 break;
1772 case nir_op_ishr:
1773 result = LLVMBuildAShr(ctx->ac.builder, src[0],
1774 LLVMBuildZExt(ctx->ac.builder, src[1],
1775 LLVMTypeOf(src[0]), ""),
1776 "");
1777 break;
1778 case nir_op_ushr:
1779 result = LLVMBuildLShr(ctx->ac.builder, src[0],
1780 LLVMBuildZExt(ctx->ac.builder, src[1],
1781 LLVMTypeOf(src[0]), ""),
1782 "");
1783 break;
1784 case nir_op_ilt:
1785 result = emit_int_cmp(&ctx->ac, LLVMIntSLT, src[0], src[1]);
1786 break;
1787 case nir_op_ine:
1788 result = emit_int_cmp(&ctx->ac, LLVMIntNE, src[0], src[1]);
1789 break;
1790 case nir_op_ieq:
1791 result = emit_int_cmp(&ctx->ac, LLVMIntEQ, src[0], src[1]);
1792 break;
1793 case nir_op_ige:
1794 result = emit_int_cmp(&ctx->ac, LLVMIntSGE, src[0], src[1]);
1795 break;
1796 case nir_op_ult:
1797 result = emit_int_cmp(&ctx->ac, LLVMIntULT, src[0], src[1]);
1798 break;
1799 case nir_op_uge:
1800 result = emit_int_cmp(&ctx->ac, LLVMIntUGE, src[0], src[1]);
1801 break;
1802 case nir_op_feq:
1803 result = emit_float_cmp(&ctx->ac, LLVMRealUEQ, src[0], src[1]);
1804 break;
1805 case nir_op_fne:
1806 result = emit_float_cmp(&ctx->ac, LLVMRealUNE, src[0], src[1]);
1807 break;
1808 case nir_op_flt:
1809 result = emit_float_cmp(&ctx->ac, LLVMRealULT, src[0], src[1]);
1810 break;
1811 case nir_op_fge:
1812 result = emit_float_cmp(&ctx->ac, LLVMRealUGE, src[0], src[1]);
1813 break;
1814 case nir_op_fabs:
1815 result = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
1816 ac_to_float_type(&ctx->ac, def_type), src[0]);
1817 break;
1818 case nir_op_iabs:
1819 result = emit_iabs(&ctx->ac, src[0]);
1820 break;
1821 case nir_op_imax:
1822 result = emit_minmax_int(&ctx->ac, LLVMIntSGT, src[0], src[1]);
1823 break;
1824 case nir_op_imin:
1825 result = emit_minmax_int(&ctx->ac, LLVMIntSLT, src[0], src[1]);
1826 break;
1827 case nir_op_umax:
1828 result = emit_minmax_int(&ctx->ac, LLVMIntUGT, src[0], src[1]);
1829 break;
1830 case nir_op_umin:
1831 result = emit_minmax_int(&ctx->ac, LLVMIntULT, src[0], src[1]);
1832 break;
1833 case nir_op_isign:
1834 result = emit_isign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
1835 break;
1836 case nir_op_fsign:
1837 src[0] = ac_to_float(&ctx->ac, src[0]);
1838 result = emit_fsign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
1839 break;
1840 case nir_op_ffloor:
1841 result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
1842 ac_to_float_type(&ctx->ac, def_type), src[0]);
1843 break;
1844 case nir_op_ftrunc:
1845 result = emit_intrin_1f_param(&ctx->ac, "llvm.trunc",
1846 ac_to_float_type(&ctx->ac, def_type), src[0]);
1847 break;
1848 case nir_op_fceil:
1849 result = emit_intrin_1f_param(&ctx->ac, "llvm.ceil",
1850 ac_to_float_type(&ctx->ac, def_type), src[0]);
1851 break;
1852 case nir_op_fround_even:
1853 result = emit_intrin_1f_param(&ctx->ac, "llvm.rint",
1854 ac_to_float_type(&ctx->ac, def_type),src[0]);
1855 break;
1856 case nir_op_ffract:
1857 result = emit_ffract(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
1858 break;
1859 case nir_op_fsin:
1860 result = emit_intrin_1f_param(&ctx->ac, "llvm.sin",
1861 ac_to_float_type(&ctx->ac, def_type), src[0]);
1862 break;
1863 case nir_op_fcos:
1864 result = emit_intrin_1f_param(&ctx->ac, "llvm.cos",
1865 ac_to_float_type(&ctx->ac, def_type), src[0]);
1866 break;
1867 case nir_op_fsqrt:
1868 result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
1869 ac_to_float_type(&ctx->ac, def_type), src[0]);
1870 break;
1871 case nir_op_fexp2:
1872 result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2",
1873 ac_to_float_type(&ctx->ac, def_type), src[0]);
1874 break;
1875 case nir_op_flog2:
1876 result = emit_intrin_1f_param(&ctx->ac, "llvm.log2",
1877 ac_to_float_type(&ctx->ac, def_type), src[0]);
1878 break;
1879 case nir_op_frsq:
1880 result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
1881 ac_to_float_type(&ctx->ac, def_type), src[0]);
1882 result = ac_build_fdiv(&ctx->ac, instr->dest.dest.ssa.bit_size == 32 ? ctx->ac.f32_1 : ctx->ac.f64_1,
1883 result);
1884 break;
1885 case nir_op_fpow:
1886 result = emit_intrin_2f_param(&ctx->ac, "llvm.pow",
1887 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1888 break;
1889 case nir_op_fmax:
1890 result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
1891 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1892 if (ctx->ac.chip_class < GFX9 &&
1893 instr->dest.dest.ssa.bit_size == 32) {
1894 /* Only pre-GFX9 chips do not flush denorms. */
1895 result = emit_intrin_1f_param(&ctx->ac, "llvm.canonicalize",
1896 ac_to_float_type(&ctx->ac, def_type),
1897 result);
1898 }
1899 break;
1900 case nir_op_fmin:
1901 result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
1902 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1903 if (ctx->ac.chip_class < GFX9 &&
1904 instr->dest.dest.ssa.bit_size == 32) {
1905 /* Only pre-GFX9 chips do not flush denorms. */
1906 result = emit_intrin_1f_param(&ctx->ac, "llvm.canonicalize",
1907 ac_to_float_type(&ctx->ac, def_type),
1908 result);
1909 }
1910 break;
1911 case nir_op_ffma:
1912 result = emit_intrin_3f_param(&ctx->ac, "llvm.fmuladd",
1913 ac_to_float_type(&ctx->ac, def_type), src[0], src[1], src[2]);
1914 break;
1915 case nir_op_ibitfield_extract:
1916 result = emit_bitfield_extract(&ctx->ac, true, src);
1917 break;
1918 case nir_op_ubitfield_extract:
1919 result = emit_bitfield_extract(&ctx->ac, false, src);
1920 break;
1921 case nir_op_bitfield_insert:
1922 result = emit_bitfield_insert(&ctx->ac, src[0], src[1], src[2], src[3]);
1923 break;
1924 case nir_op_bitfield_reverse:
1925 result = ac_build_intrinsic(&ctx->ac, "llvm.bitreverse.i32", ctx->ac.i32, src, 1, AC_FUNC_ATTR_READNONE);
1926 break;
1927 case nir_op_bit_count:
1928 result = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32", ctx->ac.i32, src, 1, AC_FUNC_ATTR_READNONE);
1929 break;
1930 case nir_op_vec2:
1931 case nir_op_vec3:
1932 case nir_op_vec4:
1933 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1934 src[i] = ac_to_integer(&ctx->ac, src[i]);
1935 result = ac_build_gather_values(&ctx->ac, src, num_components);
1936 break;
1937 case nir_op_f2i32:
1938 case nir_op_f2i64:
1939 src[0] = ac_to_float(&ctx->ac, src[0]);
1940 result = LLVMBuildFPToSI(ctx->ac.builder, src[0], def_type, "");
1941 break;
1942 case nir_op_f2u32:
1943 case nir_op_f2u64:
1944 src[0] = ac_to_float(&ctx->ac, src[0]);
1945 result = LLVMBuildFPToUI(ctx->ac.builder, src[0], def_type, "");
1946 break;
1947 case nir_op_i2f32:
1948 case nir_op_i2f64:
1949 src[0] = ac_to_integer(&ctx->ac, src[0]);
1950 result = LLVMBuildSIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1951 break;
1952 case nir_op_u2f32:
1953 case nir_op_u2f64:
1954 src[0] = ac_to_integer(&ctx->ac, src[0]);
1955 result = LLVMBuildUIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1956 break;
1957 case nir_op_f2f64:
1958 src[0] = ac_to_float(&ctx->ac, src[0]);
1959 result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1960 break;
1961 case nir_op_f2f32:
1962 result = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1963 break;
1964 case nir_op_u2u32:
1965 case nir_op_u2u64:
1966 src[0] = ac_to_integer(&ctx->ac, src[0]);
1967 if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
1968 result = LLVMBuildZExt(ctx->ac.builder, src[0], def_type, "");
1969 else
1970 result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
1971 break;
1972 case nir_op_i2i32:
1973 case nir_op_i2i64:
1974 src[0] = ac_to_integer(&ctx->ac, src[0]);
1975 if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
1976 result = LLVMBuildSExt(ctx->ac.builder, src[0], def_type, "");
1977 else
1978 result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
1979 break;
1980 case nir_op_bcsel:
1981 result = emit_bcsel(&ctx->ac, src[0], src[1], src[2]);
1982 break;
1983 case nir_op_find_lsb:
1984 src[0] = ac_to_integer(&ctx->ac, src[0]);
1985 result = ac_find_lsb(&ctx->ac, ctx->ac.i32, src[0]);
1986 break;
1987 case nir_op_ufind_msb:
1988 src[0] = ac_to_integer(&ctx->ac, src[0]);
1989 result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32);
1990 break;
1991 case nir_op_ifind_msb:
1992 src[0] = ac_to_integer(&ctx->ac, src[0]);
1993 result = ac_build_imsb(&ctx->ac, src[0], ctx->ac.i32);
1994 break;
1995 case nir_op_uadd_carry:
1996 src[0] = ac_to_integer(&ctx->ac, src[0]);
1997 src[1] = ac_to_integer(&ctx->ac, src[1]);
1998 result = emit_uint_carry(&ctx->ac, "llvm.uadd.with.overflow.i32", src[0], src[1]);
1999 break;
2000 case nir_op_usub_borrow:
2001 src[0] = ac_to_integer(&ctx->ac, src[0]);
2002 src[1] = ac_to_integer(&ctx->ac, src[1]);
2003 result = emit_uint_carry(&ctx->ac, "llvm.usub.with.overflow.i32", src[0], src[1]);
2004 break;
2005 case nir_op_b2f:
2006 result = emit_b2f(&ctx->ac, src[0]);
2007 break;
2008 case nir_op_f2b:
2009 result = emit_f2b(&ctx->ac, src[0]);
2010 break;
2011 case nir_op_b2i:
2012 result = emit_b2i(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
2013 break;
2014 case nir_op_i2b:
2015 src[0] = ac_to_integer(&ctx->ac, src[0]);
2016 result = emit_i2b(&ctx->ac, src[0]);
2017 break;
2018 case nir_op_fquantize2f16:
2019 result = emit_f2f16(ctx->nctx, src[0]);
2020 break;
2021 case nir_op_umul_high:
2022 src[0] = ac_to_integer(&ctx->ac, src[0]);
2023 src[1] = ac_to_integer(&ctx->ac, src[1]);
2024 result = emit_umul_high(&ctx->ac, src[0], src[1]);
2025 break;
2026 case nir_op_imul_high:
2027 src[0] = ac_to_integer(&ctx->ac, src[0]);
2028 src[1] = ac_to_integer(&ctx->ac, src[1]);
2029 result = emit_imul_high(&ctx->ac, src[0], src[1]);
2030 break;
2031 case nir_op_pack_half_2x16:
2032 result = emit_pack_half_2x16(&ctx->ac, src[0]);
2033 break;
2034 case nir_op_unpack_half_2x16:
2035 result = emit_unpack_half_2x16(&ctx->ac, src[0]);
2036 break;
2037 case nir_op_fddx:
2038 case nir_op_fddy:
2039 case nir_op_fddx_fine:
2040 case nir_op_fddy_fine:
2041 case nir_op_fddx_coarse:
2042 case nir_op_fddy_coarse:
2043 result = emit_ddxy(ctx, instr->op, src[0]);
2044 break;
2045
2046 case nir_op_unpack_64_2x32_split_x: {
2047 assert(instr->src[0].src.ssa->num_components == 1);
2048 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
2049 ctx->ac.v2i32,
2050 "");
2051 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
2052 ctx->ac.i32_0, "");
2053 break;
2054 }
2055
2056 case nir_op_unpack_64_2x32_split_y: {
2057 assert(instr->src[0].src.ssa->num_components == 1);
2058 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
2059 ctx->ac.v2i32,
2060 "");
2061 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
2062 ctx->ac.i32_1, "");
2063 break;
2064 }
2065
2066 case nir_op_pack_64_2x32_split: {
2067 LLVMValueRef tmp = LLVMGetUndef(ctx->ac.v2i32);
2068 tmp = LLVMBuildInsertElement(ctx->ac.builder, tmp,
2069 src[0], ctx->ac.i32_0, "");
2070 tmp = LLVMBuildInsertElement(ctx->ac.builder, tmp,
2071 src[1], ctx->ac.i32_1, "");
2072 result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i64, "");
2073 break;
2074 }
2075
2076 default:
2077 fprintf(stderr, "Unknown NIR alu instr: ");
2078 nir_print_instr(&instr->instr, stderr);
2079 fprintf(stderr, "\n");
2080 abort();
2081 }
2082
2083 if (result) {
2084 assert(instr->dest.dest.is_ssa);
2085 result = ac_to_integer(&ctx->ac, result);
2086 _mesa_hash_table_insert(ctx->defs, &instr->dest.dest.ssa,
2087 result);
2088 }
2089 }
2090
2091 static void visit_load_const(struct ac_nir_context *ctx,
2092 const nir_load_const_instr *instr)
2093 {
2094 LLVMValueRef values[4], value = NULL;
2095 LLVMTypeRef element_type =
2096 LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
2097
2098 for (unsigned i = 0; i < instr->def.num_components; ++i) {
2099 switch (instr->def.bit_size) {
2100 case 32:
2101 values[i] = LLVMConstInt(element_type,
2102 instr->value.u32[i], false);
2103 break;
2104 case 64:
2105 values[i] = LLVMConstInt(element_type,
2106 instr->value.u64[i], false);
2107 break;
2108 default:
2109 fprintf(stderr,
2110 "unsupported nir load_const bit_size: %d\n",
2111 instr->def.bit_size);
2112 abort();
2113 }
2114 }
2115 if (instr->def.num_components > 1) {
2116 value = LLVMConstVector(values, instr->def.num_components);
2117 } else
2118 value = values[0];
2119
2120 _mesa_hash_table_insert(ctx->defs, &instr->def, value);
2121 }
2122
2123 static LLVMValueRef cast_ptr(struct nir_to_llvm_context *ctx, LLVMValueRef ptr,
2124 LLVMTypeRef type)
2125 {
2126 int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
2127 return LLVMBuildBitCast(ctx->builder, ptr,
2128 LLVMPointerType(type, addr_space), "");
2129 }
2130
2131 static LLVMValueRef
2132 get_buffer_size(struct ac_nir_context *ctx, LLVMValueRef descriptor, bool in_elements)
2133 {
2134 LLVMValueRef size =
2135 LLVMBuildExtractElement(ctx->ac.builder, descriptor,
2136 LLVMConstInt(ctx->ac.i32, 2, false), "");
2137
2138 /* VI only */
2139 if (ctx->ac.chip_class == VI && in_elements) {
2140 /* On VI, the descriptor contains the size in bytes,
2141 * but TXQ must return the size in elements.
2142 * The stride is always non-zero for resources using TXQ.
2143 */
2144 LLVMValueRef stride =
2145 LLVMBuildExtractElement(ctx->ac.builder, descriptor,
2146 ctx->ac.i32_1, "");
2147 stride = LLVMBuildLShr(ctx->ac.builder, stride,
2148 LLVMConstInt(ctx->ac.i32, 16, false), "");
2149 stride = LLVMBuildAnd(ctx->ac.builder, stride,
2150 LLVMConstInt(ctx->ac.i32, 0x3fff, false), "");
2151
2152 size = LLVMBuildUDiv(ctx->ac.builder, size, stride, "");
2153 }
2154 return size;
2155 }
2156
2157 /**
2158 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
2159 * intrinsic names).
2160 */
2161 static void build_int_type_name(
2162 LLVMTypeRef type,
2163 char *buf, unsigned bufsize)
2164 {
2165 assert(bufsize >= 6);
2166
2167 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
2168 snprintf(buf, bufsize, "v%ui32",
2169 LLVMGetVectorSize(type));
2170 else
2171 strcpy(buf, "i32");
2172 }
2173
2174 static LLVMValueRef radv_lower_gather4_integer(struct ac_llvm_context *ctx,
2175 struct ac_image_args *args,
2176 const nir_tex_instr *instr)
2177 {
2178 enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
2179 LLVMValueRef coord = args->addr;
2180 LLVMValueRef half_texel[2];
2181 LLVMValueRef compare_cube_wa = NULL;
2182 LLVMValueRef result;
2183 int c;
2184 unsigned coord_vgpr_index = (unsigned)args->offset + (unsigned)args->compare;
2185
2186 //TODO Rect
2187 {
2188 struct ac_image_args txq_args = { 0 };
2189
2190 txq_args.da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
2191 txq_args.opcode = ac_image_get_resinfo;
2192 txq_args.dmask = 0xf;
2193 txq_args.addr = ctx->i32_0;
2194 txq_args.resource = args->resource;
2195 LLVMValueRef size = ac_build_image_opcode(ctx, &txq_args);
2196
2197 for (c = 0; c < 2; c++) {
2198 half_texel[c] = LLVMBuildExtractElement(ctx->builder, size,
2199 LLVMConstInt(ctx->i32, c, false), "");
2200 half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
2201 half_texel[c] = ac_build_fdiv(ctx, ctx->f32_1, half_texel[c]);
2202 half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c],
2203 LLVMConstReal(ctx->f32, -0.5), "");
2204 }
2205 }
2206
2207 LLVMValueRef orig_coords = args->addr;
2208
2209 for (c = 0; c < 2; c++) {
2210 LLVMValueRef tmp;
2211 LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
2212 tmp = LLVMBuildExtractElement(ctx->builder, coord, index, "");
2213 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
2214 tmp = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
2215 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
2216 coord = LLVMBuildInsertElement(ctx->builder, coord, tmp, index, "");
2217 }
2218
2219
2220 /*
2221 * Apparantly cube has issue with integer types that the workaround doesn't solve,
2222 * so this tests if the format is 8_8_8_8 and an integer type do an alternate
2223 * workaround by sampling using a scaled type and converting.
2224 * This is taken from amdgpu-pro shaders.
2225 */
2226 /* NOTE this produces some ugly code compared to amdgpu-pro,
2227 * LLVM ends up dumping SGPRs into VGPRs to deal with the compare/select,
2228 * and then reads them back. -pro generates two selects,
2229 * one s_cmp for the descriptor rewriting
2230 * one v_cmp for the coordinate and result changes.
2231 */
2232 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
2233 LLVMValueRef tmp, tmp2;
2234
2235 /* workaround 8/8/8/8 uint/sint cube gather bug */
2236 /* first detect it then change to a scaled read and f2i */
2237 tmp = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32_1, "");
2238 tmp2 = tmp;
2239
2240 /* extract the DATA_FORMAT */
2241 tmp = ac_build_bfe(ctx, tmp, LLVMConstInt(ctx->i32, 20, false),
2242 LLVMConstInt(ctx->i32, 6, false), false);
2243
2244 /* is the DATA_FORMAT == 8_8_8_8 */
2245 compare_cube_wa = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tmp, LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false), "");
2246
2247 if (stype == GLSL_TYPE_UINT)
2248 /* Create a NUM FORMAT - 0x2 or 0x4 - USCALED or UINT */
2249 tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0x8000000, false),
2250 LLVMConstInt(ctx->i32, 0x10000000, false), "");
2251 else
2252 /* Create a NUM FORMAT - 0x3 or 0x5 - SSCALED or SINT */
2253 tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0xc000000, false),
2254 LLVMConstInt(ctx->i32, 0x14000000, false), "");
2255
2256 /* replace the NUM FORMAT in the descriptor */
2257 tmp2 = LLVMBuildAnd(ctx->builder, tmp2, LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT_GFX6, false), "");
2258 tmp2 = LLVMBuildOr(ctx->builder, tmp2, tmp, "");
2259
2260 args->resource = LLVMBuildInsertElement(ctx->builder, args->resource, tmp2, ctx->i32_1, "");
2261
2262 /* don't modify the coordinates for this case */
2263 coord = LLVMBuildSelect(ctx->builder, compare_cube_wa, orig_coords, coord, "");
2264 }
2265 args->addr = coord;
2266 result = ac_build_image_opcode(ctx, args);
2267
2268 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
2269 LLVMValueRef tmp, tmp2;
2270
2271 /* if the cube workaround is in place, f2i the result. */
2272 for (c = 0; c < 4; c++) {
2273 tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), "");
2274 if (stype == GLSL_TYPE_UINT)
2275 tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, "");
2276 else
2277 tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, "");
2278 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
2279 tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, "");
2280 tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, tmp2, tmp, "");
2281 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
2282 result = LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), "");
2283 }
2284 }
2285 return result;
2286 }
2287
2288 static LLVMValueRef build_tex_intrinsic(struct ac_nir_context *ctx,
2289 const nir_tex_instr *instr,
2290 bool lod_is_zero,
2291 struct ac_image_args *args)
2292 {
2293 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
2294 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
2295
2296 return ac_build_buffer_load_format(&ctx->ac,
2297 args->resource,
2298 args->addr,
2299 ctx->ac.i32_0,
2300 util_last_bit(mask),
2301 false, true);
2302 }
2303
2304 args->opcode = ac_image_sample;
2305 args->compare = instr->is_shadow;
2306
2307 switch (instr->op) {
2308 case nir_texop_txf:
2309 case nir_texop_txf_ms:
2310 case nir_texop_samples_identical:
2311 args->opcode = lod_is_zero ||
2312 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ?
2313 ac_image_load : ac_image_load_mip;
2314 args->compare = false;
2315 args->offset = false;
2316 break;
2317 case nir_texop_txb:
2318 args->bias = true;
2319 break;
2320 case nir_texop_txl:
2321 if (lod_is_zero)
2322 args->level_zero = true;
2323 else
2324 args->lod = true;
2325 break;
2326 case nir_texop_txs:
2327 case nir_texop_query_levels:
2328 args->opcode = ac_image_get_resinfo;
2329 break;
2330 case nir_texop_tex:
2331 if (ctx->stage != MESA_SHADER_FRAGMENT)
2332 args->level_zero = true;
2333 break;
2334 case nir_texop_txd:
2335 args->deriv = true;
2336 break;
2337 case nir_texop_tg4:
2338 args->opcode = ac_image_gather4;
2339 args->level_zero = true;
2340 break;
2341 case nir_texop_lod:
2342 args->opcode = ac_image_get_lod;
2343 args->compare = false;
2344 args->offset = false;
2345 break;
2346 default:
2347 break;
2348 }
2349
2350 if (instr->op == nir_texop_tg4 && ctx->ac.chip_class <= VI) {
2351 enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
2352 if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) {
2353 return radv_lower_gather4_integer(&ctx->ac, args, instr);
2354 }
2355 }
2356 return ac_build_image_opcode(&ctx->ac, args);
2357 }
2358
2359 static LLVMValueRef visit_vulkan_resource_index(struct nir_to_llvm_context *ctx,
2360 nir_intrinsic_instr *instr)
2361 {
2362 LLVMValueRef index = get_src(ctx->nir, instr->src[0]);
2363 unsigned desc_set = nir_intrinsic_desc_set(instr);
2364 unsigned binding = nir_intrinsic_binding(instr);
2365 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
2366 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
2367 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
2368 unsigned base_offset = layout->binding[binding].offset;
2369 LLVMValueRef offset, stride;
2370
2371 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2372 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2373 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
2374 layout->binding[binding].dynamic_offset_offset;
2375 desc_ptr = ctx->push_constants;
2376 base_offset = pipeline_layout->push_constant_size + 16 * idx;
2377 stride = LLVMConstInt(ctx->ac.i32, 16, false);
2378 } else
2379 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
2380
2381 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
2382 index = LLVMBuildMul(ctx->builder, index, stride, "");
2383 offset = LLVMBuildAdd(ctx->builder, offset, index, "");
2384
2385 desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset);
2386 desc_ptr = cast_ptr(ctx, desc_ptr, ctx->ac.v4i32);
2387 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
2388
2389 return desc_ptr;
2390 }
2391
2392 static LLVMValueRef visit_vulkan_resource_reindex(struct nir_to_llvm_context *ctx,
2393 nir_intrinsic_instr *instr)
2394 {
2395 LLVMValueRef ptr = get_src(ctx->nir, instr->src[0]);
2396 LLVMValueRef index = get_src(ctx->nir, instr->src[1]);
2397
2398 LLVMValueRef result = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
2399 LLVMSetMetadata(result, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
2400 return result;
2401 }
2402
2403 static LLVMValueRef visit_load_push_constant(struct nir_to_llvm_context *ctx,
2404 nir_intrinsic_instr *instr)
2405 {
2406 LLVMValueRef ptr, addr;
2407
2408 addr = LLVMConstInt(ctx->ac.i32, nir_intrinsic_base(instr), 0);
2409 addr = LLVMBuildAdd(ctx->builder, addr, get_src(ctx->nir, instr->src[0]), "");
2410
2411 ptr = ac_build_gep0(&ctx->ac, ctx->push_constants, addr);
2412 ptr = cast_ptr(ctx, ptr, get_def_type(ctx->nir, &instr->dest.ssa));
2413
2414 return LLVMBuildLoad(ctx->builder, ptr, "");
2415 }
2416
2417 static LLVMValueRef visit_get_buffer_size(struct ac_nir_context *ctx,
2418 const nir_intrinsic_instr *instr)
2419 {
2420 LLVMValueRef index = get_src(ctx, instr->src[0]);
2421
2422 return get_buffer_size(ctx, ctx->abi->load_ssbo(ctx->abi, index, false), false);
2423 }
2424
2425 static uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2426 {
2427 uint32_t new_mask = 0;
2428 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2429 if (mask & (1u << i))
2430 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2431 return new_mask;
2432 }
2433
2434 static LLVMValueRef extract_vector_range(struct ac_llvm_context *ctx, LLVMValueRef src,
2435 unsigned start, unsigned count)
2436 {
2437 LLVMTypeRef type = LLVMTypeOf(src);
2438
2439 if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) {
2440 assert(start == 0);
2441 assert(count == 1);
2442 return src;
2443 }
2444
2445 unsigned src_elements = LLVMGetVectorSize(type);
2446 assert(start < src_elements);
2447 assert(start + count <= src_elements);
2448
2449 if (start == 0 && count == src_elements)
2450 return src;
2451
2452 if (count == 1)
2453 return LLVMBuildExtractElement(ctx->builder, src, LLVMConstInt(ctx->i32, start, false), "");
2454
2455 assert(count <= 8);
2456 LLVMValueRef indices[8];
2457 for (unsigned i = 0; i < count; ++i)
2458 indices[i] = LLVMConstInt(ctx->i32, start + i, false);
2459
2460 LLVMValueRef swizzle = LLVMConstVector(indices, count);
2461 return LLVMBuildShuffleVector(ctx->builder, src, src, swizzle, "");
2462 }
2463
2464 static void visit_store_ssbo(struct ac_nir_context *ctx,
2465 nir_intrinsic_instr *instr)
2466 {
2467 const char *store_name;
2468 LLVMValueRef src_data = get_src(ctx, instr->src[0]);
2469 LLVMTypeRef data_type = ctx->ac.f32;
2470 int elem_size_mult = get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 32;
2471 int components_32bit = elem_size_mult * instr->num_components;
2472 unsigned writemask = nir_intrinsic_write_mask(instr);
2473 LLVMValueRef base_data, base_offset;
2474 LLVMValueRef params[6];
2475
2476 params[1] = ctx->abi->load_ssbo(ctx->abi,
2477 get_src(ctx, instr->src[1]), true);
2478 params[2] = ctx->ac.i32_0; /* vindex */
2479 params[4] = ctx->ac.i1false; /* glc */
2480 params[5] = ctx->ac.i1false; /* slc */
2481
2482 if (components_32bit > 1)
2483 data_type = LLVMVectorType(ctx->ac.f32, components_32bit);
2484
2485 writemask = widen_mask(writemask, elem_size_mult);
2486
2487 base_data = ac_to_float(&ctx->ac, src_data);
2488 base_data = trim_vector(&ctx->ac, base_data, instr->num_components);
2489 base_data = LLVMBuildBitCast(ctx->ac.builder, base_data,
2490 data_type, "");
2491 base_offset = get_src(ctx, instr->src[2]); /* voffset */
2492 while (writemask) {
2493 int start, count;
2494 LLVMValueRef data;
2495 LLVMValueRef offset;
2496
2497 u_bit_scan_consecutive_range(&writemask, &start, &count);
2498
2499 /* Due to an LLVM limitation, split 3-element writes
2500 * into a 2-element and a 1-element write. */
2501 if (count == 3) {
2502 writemask |= 1 << (start + 2);
2503 count = 2;
2504 }
2505
2506 if (count > 4) {
2507 writemask |= ((1u << (count - 4)) - 1u) << (start + 4);
2508 count = 4;
2509 }
2510
2511 if (count == 4) {
2512 store_name = "llvm.amdgcn.buffer.store.v4f32";
2513 } else if (count == 2) {
2514 store_name = "llvm.amdgcn.buffer.store.v2f32";
2515
2516 } else {
2517 assert(count == 1);
2518 store_name = "llvm.amdgcn.buffer.store.f32";
2519 }
2520 data = extract_vector_range(&ctx->ac, base_data, start, count);
2521
2522 offset = base_offset;
2523 if (start != 0) {
2524 offset = LLVMBuildAdd(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, start * 4, false), "");
2525 }
2526 params[0] = data;
2527 params[3] = offset;
2528 ac_build_intrinsic(&ctx->ac, store_name,
2529 ctx->ac.voidt, params, 6, 0);
2530 }
2531 }
2532
2533 static LLVMValueRef visit_atomic_ssbo(struct ac_nir_context *ctx,
2534 const nir_intrinsic_instr *instr)
2535 {
2536 const char *name;
2537 LLVMValueRef params[6];
2538 int arg_count = 0;
2539
2540 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
2541 params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[3]), 0);
2542 }
2543 params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
2544 params[arg_count++] = ctx->abi->load_ssbo(ctx->abi,
2545 get_src(ctx, instr->src[0]),
2546 true);
2547 params[arg_count++] = ctx->ac.i32_0; /* vindex */
2548 params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
2549 params[arg_count++] = LLVMConstInt(ctx->ac.i1, 0, false); /* slc */
2550
2551 switch (instr->intrinsic) {
2552 case nir_intrinsic_ssbo_atomic_add:
2553 name = "llvm.amdgcn.buffer.atomic.add";
2554 break;
2555 case nir_intrinsic_ssbo_atomic_imin:
2556 name = "llvm.amdgcn.buffer.atomic.smin";
2557 break;
2558 case nir_intrinsic_ssbo_atomic_umin:
2559 name = "llvm.amdgcn.buffer.atomic.umin";
2560 break;
2561 case nir_intrinsic_ssbo_atomic_imax:
2562 name = "llvm.amdgcn.buffer.atomic.smax";
2563 break;
2564 case nir_intrinsic_ssbo_atomic_umax:
2565 name = "llvm.amdgcn.buffer.atomic.umax";
2566 break;
2567 case nir_intrinsic_ssbo_atomic_and:
2568 name = "llvm.amdgcn.buffer.atomic.and";
2569 break;
2570 case nir_intrinsic_ssbo_atomic_or:
2571 name = "llvm.amdgcn.buffer.atomic.or";
2572 break;
2573 case nir_intrinsic_ssbo_atomic_xor:
2574 name = "llvm.amdgcn.buffer.atomic.xor";
2575 break;
2576 case nir_intrinsic_ssbo_atomic_exchange:
2577 name = "llvm.amdgcn.buffer.atomic.swap";
2578 break;
2579 case nir_intrinsic_ssbo_atomic_comp_swap:
2580 name = "llvm.amdgcn.buffer.atomic.cmpswap";
2581 break;
2582 default:
2583 abort();
2584 }
2585
2586 return ac_build_intrinsic(&ctx->ac, name, ctx->ac.i32, params, arg_count, 0);
2587 }
2588
2589 static LLVMValueRef visit_load_buffer(struct ac_nir_context *ctx,
2590 const nir_intrinsic_instr *instr)
2591 {
2592 LLVMValueRef results[2];
2593 int load_components;
2594 int num_components = instr->num_components;
2595 if (instr->dest.ssa.bit_size == 64)
2596 num_components *= 2;
2597
2598 for (int i = 0; i < num_components; i += load_components) {
2599 load_components = MIN2(num_components - i, 4);
2600 const char *load_name;
2601 LLVMTypeRef data_type = ctx->ac.f32;
2602 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, i * 4, false);
2603 offset = LLVMBuildAdd(ctx->ac.builder, get_src(ctx, instr->src[1]), offset, "");
2604
2605 if (load_components == 3)
2606 data_type = LLVMVectorType(ctx->ac.f32, 4);
2607 else if (load_components > 1)
2608 data_type = LLVMVectorType(ctx->ac.f32, load_components);
2609
2610 if (load_components >= 3)
2611 load_name = "llvm.amdgcn.buffer.load.v4f32";
2612 else if (load_components == 2)
2613 load_name = "llvm.amdgcn.buffer.load.v2f32";
2614 else if (load_components == 1)
2615 load_name = "llvm.amdgcn.buffer.load.f32";
2616 else
2617 unreachable("unhandled number of components");
2618
2619 LLVMValueRef params[] = {
2620 ctx->abi->load_ssbo(ctx->abi,
2621 get_src(ctx, instr->src[0]),
2622 false),
2623 ctx->ac.i32_0,
2624 offset,
2625 ctx->ac.i1false,
2626 ctx->ac.i1false,
2627 };
2628
2629 results[i > 0 ? 1 : 0] = ac_build_intrinsic(&ctx->ac, load_name, data_type, params, 5, 0);
2630 }
2631
2632 assume(results[0]);
2633 LLVMValueRef ret = results[0];
2634 if (num_components > 4 || num_components == 3) {
2635 LLVMValueRef masks[] = {
2636 LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
2637 LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
2638 LLVMConstInt(ctx->ac.i32, 4, false), LLVMConstInt(ctx->ac.i32, 5, false),
2639 LLVMConstInt(ctx->ac.i32, 6, false), LLVMConstInt(ctx->ac.i32, 7, false)
2640 };
2641
2642 LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
2643 ret = LLVMBuildShuffleVector(ctx->ac.builder, results[0],
2644 results[num_components > 4 ? 1 : 0], swizzle, "");
2645 }
2646
2647 return LLVMBuildBitCast(ctx->ac.builder, ret,
2648 get_def_type(ctx, &instr->dest.ssa), "");
2649 }
2650
2651 static LLVMValueRef visit_load_ubo_buffer(struct ac_nir_context *ctx,
2652 const nir_intrinsic_instr *instr)
2653 {
2654 LLVMValueRef ret;
2655 LLVMValueRef rsrc = get_src(ctx, instr->src[0]);
2656 LLVMValueRef offset = get_src(ctx, instr->src[1]);
2657 int num_components = instr->num_components;
2658
2659 if (ctx->abi->load_ubo)
2660 rsrc = ctx->abi->load_ubo(ctx->abi, rsrc);
2661
2662 if (instr->dest.ssa.bit_size == 64)
2663 num_components *= 2;
2664
2665 ret = ac_build_buffer_load(&ctx->ac, rsrc, num_components, NULL, offset,
2666 NULL, 0, false, false, true, true);
2667 ret = trim_vector(&ctx->ac, ret, num_components);
2668 return LLVMBuildBitCast(ctx->ac.builder, ret,
2669 get_def_type(ctx, &instr->dest.ssa), "");
2670 }
2671
2672 static void
2673 get_deref_offset(struct ac_nir_context *ctx, nir_deref_var *deref,
2674 bool vs_in, unsigned *vertex_index_out,
2675 LLVMValueRef *vertex_index_ref,
2676 unsigned *const_out, LLVMValueRef *indir_out)
2677 {
2678 unsigned const_offset = 0;
2679 nir_deref *tail = &deref->deref;
2680 LLVMValueRef offset = NULL;
2681
2682 if (vertex_index_out != NULL || vertex_index_ref != NULL) {
2683 tail = tail->child;
2684 nir_deref_array *deref_array = nir_deref_as_array(tail);
2685 if (vertex_index_out)
2686 *vertex_index_out = deref_array->base_offset;
2687
2688 if (vertex_index_ref) {
2689 LLVMValueRef vtx = LLVMConstInt(ctx->ac.i32, deref_array->base_offset, false);
2690 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
2691 vtx = LLVMBuildAdd(ctx->ac.builder, vtx, get_src(ctx, deref_array->indirect), "");
2692 }
2693 *vertex_index_ref = vtx;
2694 }
2695 }
2696
2697 if (deref->var->data.compact) {
2698 assert(tail->child->deref_type == nir_deref_type_array);
2699 assert(glsl_type_is_scalar(glsl_without_array(deref->var->type)));
2700 nir_deref_array *deref_array = nir_deref_as_array(tail->child);
2701 /* We always lower indirect dereferences for "compact" array vars. */
2702 assert(deref_array->deref_array_type == nir_deref_array_type_direct);
2703
2704 const_offset = deref_array->base_offset;
2705 goto out;
2706 }
2707
2708 while (tail->child != NULL) {
2709 const struct glsl_type *parent_type = tail->type;
2710 tail = tail->child;
2711
2712 if (tail->deref_type == nir_deref_type_array) {
2713 nir_deref_array *deref_array = nir_deref_as_array(tail);
2714 LLVMValueRef index, stride, local_offset;
2715 unsigned size = glsl_count_attribute_slots(tail->type, vs_in);
2716
2717 const_offset += size * deref_array->base_offset;
2718 if (deref_array->deref_array_type == nir_deref_array_type_direct)
2719 continue;
2720
2721 assert(deref_array->deref_array_type == nir_deref_array_type_indirect);
2722 index = get_src(ctx, deref_array->indirect);
2723 stride = LLVMConstInt(ctx->ac.i32, size, 0);
2724 local_offset = LLVMBuildMul(ctx->ac.builder, stride, index, "");
2725
2726 if (offset)
2727 offset = LLVMBuildAdd(ctx->ac.builder, offset, local_offset, "");
2728 else
2729 offset = local_offset;
2730 } else if (tail->deref_type == nir_deref_type_struct) {
2731 nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
2732
2733 for (unsigned i = 0; i < deref_struct->index; i++) {
2734 const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
2735 const_offset += glsl_count_attribute_slots(ft, vs_in);
2736 }
2737 } else
2738 unreachable("unsupported deref type");
2739
2740 }
2741 out:
2742 if (const_offset && offset)
2743 offset = LLVMBuildAdd(ctx->ac.builder, offset,
2744 LLVMConstInt(ctx->ac.i32, const_offset, 0),
2745 "");
2746
2747 *const_out = const_offset;
2748 *indir_out = offset;
2749 }
2750
2751
2752 /* The offchip buffer layout for TCS->TES is
2753 *
2754 * - attribute 0 of patch 0 vertex 0
2755 * - attribute 0 of patch 0 vertex 1
2756 * - attribute 0 of patch 0 vertex 2
2757 * ...
2758 * - attribute 0 of patch 1 vertex 0
2759 * - attribute 0 of patch 1 vertex 1
2760 * ...
2761 * - attribute 1 of patch 0 vertex 0
2762 * - attribute 1 of patch 0 vertex 1
2763 * ...
2764 * - per patch attribute 0 of patch 0
2765 * - per patch attribute 0 of patch 1
2766 * ...
2767 *
2768 * Note that every attribute has 4 components.
2769 */
2770 static LLVMValueRef get_tcs_tes_buffer_address(struct nir_to_llvm_context *ctx,
2771 LLVMValueRef vertex_index,
2772 LLVMValueRef param_index)
2773 {
2774 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
2775 LLVMValueRef param_stride, constant16;
2776 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
2777
2778 vertices_per_patch = unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 9, 6);
2779 num_patches = unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 0, 9);
2780 total_vertices = LLVMBuildMul(ctx->builder, vertices_per_patch,
2781 num_patches, "");
2782
2783 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
2784 if (vertex_index) {
2785 base_addr = LLVMBuildMul(ctx->builder, rel_patch_id,
2786 vertices_per_patch, "");
2787
2788 base_addr = LLVMBuildAdd(ctx->builder, base_addr,
2789 vertex_index, "");
2790
2791 param_stride = total_vertices;
2792 } else {
2793 base_addr = rel_patch_id;
2794 param_stride = num_patches;
2795 }
2796
2797 base_addr = LLVMBuildAdd(ctx->builder, base_addr,
2798 LLVMBuildMul(ctx->builder, param_index,
2799 param_stride, ""), "");
2800
2801 base_addr = LLVMBuildMul(ctx->builder, base_addr, constant16, "");
2802
2803 if (!vertex_index) {
2804 LLVMValueRef patch_data_offset =
2805 unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 16, 16);
2806
2807 base_addr = LLVMBuildAdd(ctx->builder, base_addr,
2808 patch_data_offset, "");
2809 }
2810 return base_addr;
2811 }
2812
2813 static LLVMValueRef get_tcs_tes_buffer_address_params(struct nir_to_llvm_context *ctx,
2814 unsigned param,
2815 unsigned const_index,
2816 bool is_compact,
2817 LLVMValueRef vertex_index,
2818 LLVMValueRef indir_index)
2819 {
2820 LLVMValueRef param_index;
2821
2822 if (indir_index)
2823 param_index = LLVMBuildAdd(ctx->builder, LLVMConstInt(ctx->ac.i32, param, false),
2824 indir_index, "");
2825 else {
2826 if (const_index && !is_compact)
2827 param += const_index;
2828 param_index = LLVMConstInt(ctx->ac.i32, param, false);
2829 }
2830 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
2831 }
2832
2833 static void
2834 mark_tess_output(struct nir_to_llvm_context *ctx,
2835 bool is_patch, uint32_t param)
2836
2837 {
2838 if (is_patch) {
2839 ctx->tess_patch_outputs_written |= (1ull << param);
2840 } else
2841 ctx->tess_outputs_written |= (1ull << param);
2842 }
2843
2844 static LLVMValueRef
2845 get_dw_address(struct nir_to_llvm_context *ctx,
2846 LLVMValueRef dw_addr,
2847 unsigned param,
2848 unsigned const_index,
2849 bool compact_const_index,
2850 LLVMValueRef vertex_index,
2851 LLVMValueRef stride,
2852 LLVMValueRef indir_index)
2853
2854 {
2855
2856 if (vertex_index) {
2857 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2858 LLVMBuildMul(ctx->builder,
2859 vertex_index,
2860 stride, ""), "");
2861 }
2862
2863 if (indir_index)
2864 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2865 LLVMBuildMul(ctx->builder, indir_index,
2866 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
2867 else if (const_index && !compact_const_index)
2868 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2869 LLVMConstInt(ctx->ac.i32, const_index, false), "");
2870
2871 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2872 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
2873
2874 if (const_index && compact_const_index)
2875 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2876 LLVMConstInt(ctx->ac.i32, const_index, false), "");
2877 return dw_addr;
2878 }
2879
2880 static LLVMValueRef
2881 load_tcs_varyings(struct ac_shader_abi *abi,
2882 LLVMValueRef vertex_index,
2883 LLVMValueRef indir_index,
2884 unsigned const_index,
2885 unsigned location,
2886 unsigned driver_location,
2887 unsigned component,
2888 unsigned num_components,
2889 bool is_patch,
2890 bool is_compact,
2891 bool load_input)
2892 {
2893 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
2894 LLVMValueRef dw_addr, stride;
2895 LLVMValueRef value[4], result;
2896 unsigned param = shader_io_get_unique_index(location);
2897
2898 if (load_input) {
2899 stride = unpack_param(&ctx->ac, ctx->tcs_in_layout, 13, 8);
2900 dw_addr = get_tcs_in_current_patch_offset(ctx);
2901 } else {
2902 if (!is_patch) {
2903 stride = unpack_param(&ctx->ac, ctx->tcs_out_layout, 13, 8);
2904 dw_addr = get_tcs_out_current_patch_offset(ctx);
2905 } else {
2906 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
2907 stride = NULL;
2908 }
2909 }
2910
2911 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
2912 indir_index);
2913
2914 for (unsigned i = 0; i < num_components + component; i++) {
2915 value[i] = ac_lds_load(&ctx->ac, dw_addr);
2916 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2917 ctx->ac.i32_1, "");
2918 }
2919 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
2920 return result;
2921 }
2922
2923 static void
2924 store_tcs_output(struct ac_shader_abi *abi,
2925 LLVMValueRef vertex_index,
2926 LLVMValueRef param_index,
2927 unsigned const_index,
2928 unsigned location,
2929 unsigned driver_location,
2930 LLVMValueRef src,
2931 unsigned component,
2932 bool is_patch,
2933 bool is_compact,
2934 unsigned writemask)
2935 {
2936 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
2937 LLVMValueRef dw_addr;
2938 LLVMValueRef stride = NULL;
2939 LLVMValueRef buf_addr = NULL;
2940 unsigned param;
2941 bool store_lds = true;
2942
2943 if (is_patch) {
2944 if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
2945 store_lds = false;
2946 } else {
2947 if (!(ctx->tcs_outputs_read & (1ULL << location)))
2948 store_lds = false;
2949 }
2950
2951 param = shader_io_get_unique_index(location);
2952 if (location == VARYING_SLOT_CLIP_DIST0 &&
2953 is_compact && const_index > 3) {
2954 const_index -= 3;
2955 param++;
2956 }
2957
2958 if (!is_patch) {
2959 stride = unpack_param(&ctx->ac, ctx->tcs_out_layout, 13, 8);
2960 dw_addr = get_tcs_out_current_patch_offset(ctx);
2961 } else {
2962 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
2963 }
2964
2965 mark_tess_output(ctx, is_patch, param);
2966
2967 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
2968 param_index);
2969 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
2970 vertex_index, param_index);
2971
2972 bool is_tess_factor = false;
2973 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
2974 location == VARYING_SLOT_TESS_LEVEL_OUTER)
2975 is_tess_factor = true;
2976
2977 unsigned base = is_compact ? const_index : 0;
2978 for (unsigned chan = 0; chan < 8; chan++) {
2979 if (!(writemask & (1 << chan)))
2980 continue;
2981 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
2982
2983 if (store_lds || is_tess_factor) {
2984 LLVMValueRef dw_addr_chan =
2985 LLVMBuildAdd(ctx->builder, dw_addr,
2986 LLVMConstInt(ctx->ac.i32, chan, false), "");
2987 ac_lds_store(&ctx->ac, dw_addr_chan, value);
2988 }
2989
2990 if (!is_tess_factor && writemask != 0xF)
2991 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
2992 buf_addr, ctx->oc_lds,
2993 4 * (base + chan), 1, 0, true, false);
2994 }
2995
2996 if (writemask == 0xF) {
2997 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
2998 buf_addr, ctx->oc_lds,
2999 (base * 4), 1, 0, true, false);
3000 }
3001 }
3002
3003 static LLVMValueRef
3004 load_tes_input(struct ac_shader_abi *abi,
3005 LLVMValueRef vertex_index,
3006 LLVMValueRef param_index,
3007 unsigned const_index,
3008 unsigned location,
3009 unsigned driver_location,
3010 unsigned component,
3011 unsigned num_components,
3012 bool is_patch,
3013 bool is_compact,
3014 bool load_input)
3015 {
3016 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
3017 LLVMValueRef buf_addr;
3018 LLVMValueRef result;
3019 unsigned param = shader_io_get_unique_index(location);
3020
3021 if (location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) {
3022 const_index -= 3;
3023 param++;
3024 }
3025
3026 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
3027 is_compact, vertex_index, param_index);
3028
3029 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
3030 buf_addr = LLVMBuildAdd(ctx->builder, buf_addr, comp_offset, "");
3031
3032 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
3033 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false);
3034 result = trim_vector(&ctx->ac, result, num_components);
3035 return result;
3036 }
3037
3038 static LLVMValueRef
3039 load_gs_input(struct ac_shader_abi *abi,
3040 unsigned location,
3041 unsigned driver_location,
3042 unsigned component,
3043 unsigned num_components,
3044 unsigned vertex_index,
3045 unsigned const_index,
3046 LLVMTypeRef type)
3047 {
3048 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
3049 LLVMValueRef vtx_offset;
3050 unsigned param, vtx_offset_param;
3051 LLVMValueRef value[4], result;
3052
3053 vtx_offset_param = vertex_index;
3054 assert(vtx_offset_param < 6);
3055 vtx_offset = LLVMBuildMul(ctx->builder, ctx->gs_vtx_offset[vtx_offset_param],
3056 LLVMConstInt(ctx->ac.i32, 4, false), "");
3057
3058 param = shader_io_get_unique_index(location);
3059
3060 for (unsigned i = component; i < num_components + component; i++) {
3061 if (ctx->ac.chip_class >= GFX9) {
3062 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
3063 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
3064 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
3065 value[i] = ac_lds_load(&ctx->ac, dw_addr);
3066 } else {
3067 LLVMValueRef soffset =
3068 LLVMConstInt(ctx->ac.i32,
3069 (param * 4 + i + const_index) * 256,
3070 false);
3071
3072 value[i] = ac_build_buffer_load(&ctx->ac,
3073 ctx->esgs_ring, 1,
3074 ctx->ac.i32_0,
3075 vtx_offset, soffset,
3076 0, 1, 0, true, false);
3077 }
3078 }
3079 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
3080
3081 return result;
3082 }
3083
3084 static LLVMValueRef
3085 build_gep_for_deref(struct ac_nir_context *ctx,
3086 nir_deref_var *deref)
3087 {
3088 struct hash_entry *entry = _mesa_hash_table_search(ctx->vars, deref->var);
3089 assert(entry->data);
3090 LLVMValueRef val = entry->data;
3091 nir_deref *tail = deref->deref.child;
3092 while (tail != NULL) {
3093 LLVMValueRef offset;
3094 switch (tail->deref_type) {
3095 case nir_deref_type_array: {
3096 nir_deref_array *array = nir_deref_as_array(tail);
3097 offset = LLVMConstInt(ctx->ac.i32, array->base_offset, 0);
3098 if (array->deref_array_type ==
3099 nir_deref_array_type_indirect) {
3100 offset = LLVMBuildAdd(ctx->ac.builder, offset,
3101 get_src(ctx,
3102 array->indirect),
3103 "");
3104 }
3105 break;
3106 }
3107 case nir_deref_type_struct: {
3108 nir_deref_struct *deref_struct =
3109 nir_deref_as_struct(tail);
3110 offset = LLVMConstInt(ctx->ac.i32,
3111 deref_struct->index, 0);
3112 break;
3113 }
3114 default:
3115 unreachable("bad deref type");
3116 }
3117 val = ac_build_gep0(&ctx->ac, val, offset);
3118 tail = tail->child;
3119 }
3120 return val;
3121 }
3122
3123 static LLVMValueRef load_tess_varyings(struct ac_nir_context *ctx,
3124 nir_intrinsic_instr *instr,
3125 bool load_inputs)
3126 {
3127 LLVMValueRef result;
3128 LLVMValueRef vertex_index = NULL;
3129 LLVMValueRef indir_index = NULL;
3130 unsigned const_index = 0;
3131 unsigned location = instr->variables[0]->var->data.location;
3132 unsigned driver_location = instr->variables[0]->var->data.driver_location;
3133 const bool is_patch = instr->variables[0]->var->data.patch;
3134 const bool is_compact = instr->variables[0]->var->data.compact;
3135
3136 get_deref_offset(ctx, instr->variables[0],
3137 false, NULL, is_patch ? NULL : &vertex_index,
3138 &const_index, &indir_index);
3139
3140 result = ctx->abi->load_tess_varyings(ctx->abi, vertex_index, indir_index,
3141 const_index, location, driver_location,
3142 instr->variables[0]->var->data.location_frac,
3143 instr->num_components,
3144 is_patch, is_compact, load_inputs);
3145 return LLVMBuildBitCast(ctx->ac.builder, result, get_def_type(ctx, &instr->dest.ssa), "");
3146 }
3147
3148 static LLVMValueRef visit_load_var(struct ac_nir_context *ctx,
3149 nir_intrinsic_instr *instr)
3150 {
3151 LLVMValueRef values[8];
3152 int idx = instr->variables[0]->var->data.driver_location;
3153 int ve = instr->dest.ssa.num_components;
3154 unsigned comp = instr->variables[0]->var->data.location_frac;
3155 LLVMValueRef indir_index;
3156 LLVMValueRef ret;
3157 unsigned const_index;
3158 unsigned stride = instr->variables[0]->var->data.compact ? 1 : 4;
3159 bool vs_in = ctx->stage == MESA_SHADER_VERTEX &&
3160 instr->variables[0]->var->data.mode == nir_var_shader_in;
3161 get_deref_offset(ctx, instr->variables[0], vs_in, NULL, NULL,
3162 &const_index, &indir_index);
3163
3164 if (instr->dest.ssa.bit_size == 64)
3165 ve *= 2;
3166
3167 switch (instr->variables[0]->var->data.mode) {
3168 case nir_var_shader_in:
3169 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
3170 ctx->stage == MESA_SHADER_TESS_EVAL) {
3171 return load_tess_varyings(ctx, instr, true);
3172 }
3173
3174 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3175 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
3176 LLVMValueRef indir_index;
3177 unsigned const_index, vertex_index;
3178 get_deref_offset(ctx, instr->variables[0],
3179 false, &vertex_index, NULL,
3180 &const_index, &indir_index);
3181
3182 return ctx->abi->load_inputs(ctx->abi, instr->variables[0]->var->data.location,
3183 instr->variables[0]->var->data.driver_location,
3184 instr->variables[0]->var->data.location_frac, ve,
3185 vertex_index, const_index, type);
3186 }
3187
3188 for (unsigned chan = comp; chan < ve + comp; chan++) {
3189 if (indir_index) {
3190 unsigned count = glsl_count_attribute_slots(
3191 instr->variables[0]->var->type,
3192 ctx->stage == MESA_SHADER_VERTEX);
3193 count -= chan / 4;
3194 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3195 &ctx->ac, ctx->abi->inputs + idx + chan, count,
3196 stride, false, true);
3197
3198 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
3199 tmp_vec,
3200 indir_index, "");
3201 } else
3202 values[chan] = ctx->abi->inputs[idx + chan + const_index * stride];
3203 }
3204 break;
3205 case nir_var_local:
3206 for (unsigned chan = 0; chan < ve; chan++) {
3207 if (indir_index) {
3208 unsigned count = glsl_count_attribute_slots(
3209 instr->variables[0]->var->type, false);
3210 count -= chan / 4;
3211 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3212 &ctx->ac, ctx->locals + idx + chan, count,
3213 stride, true, true);
3214
3215 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
3216 tmp_vec,
3217 indir_index, "");
3218 } else {
3219 values[chan] = LLVMBuildLoad(ctx->ac.builder, ctx->locals[idx + chan + const_index * stride], "");
3220 }
3221 }
3222 break;
3223 case nir_var_shared: {
3224 LLVMValueRef address = build_gep_for_deref(ctx,
3225 instr->variables[0]);
3226 LLVMValueRef val = LLVMBuildLoad(ctx->ac.builder, address, "");
3227 return LLVMBuildBitCast(ctx->ac.builder, val,
3228 get_def_type(ctx, &instr->dest.ssa),
3229 "");
3230 }
3231 case nir_var_shader_out:
3232 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
3233 return load_tess_varyings(ctx, instr, false);
3234 }
3235
3236 for (unsigned chan = comp; chan < ve + comp; chan++) {
3237 if (indir_index) {
3238 unsigned count = glsl_count_attribute_slots(
3239 instr->variables[0]->var->type, false);
3240 count -= chan / 4;
3241 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3242 &ctx->ac, ctx->outputs + idx + chan, count,
3243 stride, true, true);
3244
3245 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
3246 tmp_vec,
3247 indir_index, "");
3248 } else {
3249 values[chan] = LLVMBuildLoad(ctx->ac.builder,
3250 ctx->outputs[idx + chan + const_index * stride],
3251 "");
3252 }
3253 }
3254 break;
3255 default:
3256 unreachable("unhandle variable mode");
3257 }
3258 ret = ac_build_varying_gather_values(&ctx->ac, values, ve, comp);
3259 return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
3260 }
3261
3262 static void
3263 visit_store_var(struct ac_nir_context *ctx,
3264 nir_intrinsic_instr *instr)
3265 {
3266 LLVMValueRef temp_ptr, value;
3267 int idx = instr->variables[0]->var->data.driver_location;
3268 unsigned comp = instr->variables[0]->var->data.location_frac;
3269 LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
3270 int writemask = instr->const_index[0] << comp;
3271 LLVMValueRef indir_index;
3272 unsigned const_index;
3273 get_deref_offset(ctx, instr->variables[0], false,
3274 NULL, NULL, &const_index, &indir_index);
3275
3276 if (get_elem_bits(&ctx->ac, LLVMTypeOf(src)) == 64) {
3277
3278 src = LLVMBuildBitCast(ctx->ac.builder, src,
3279 LLVMVectorType(ctx->ac.f32, ac_get_llvm_num_components(src) * 2),
3280 "");
3281
3282 writemask = widen_mask(writemask, 2);
3283 }
3284
3285 switch (instr->variables[0]->var->data.mode) {
3286 case nir_var_shader_out:
3287
3288 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
3289 LLVMValueRef vertex_index = NULL;
3290 LLVMValueRef indir_index = NULL;
3291 unsigned const_index = 0;
3292 const unsigned location = instr->variables[0]->var->data.location;
3293 const unsigned driver_location = instr->variables[0]->var->data.driver_location;
3294 const unsigned comp = instr->variables[0]->var->data.location_frac;
3295 const bool is_patch = instr->variables[0]->var->data.patch;
3296 const bool is_compact = instr->variables[0]->var->data.compact;
3297
3298 get_deref_offset(ctx, instr->variables[0],
3299 false, NULL, is_patch ? NULL : &vertex_index,
3300 &const_index, &indir_index);
3301
3302 ctx->abi->store_tcs_outputs(ctx->abi, vertex_index, indir_index,
3303 const_index, location, driver_location,
3304 src, comp, is_patch, is_compact, writemask);
3305 return;
3306 }
3307
3308 for (unsigned chan = 0; chan < 8; chan++) {
3309 int stride = 4;
3310 if (!(writemask & (1 << chan)))
3311 continue;
3312
3313 value = ac_llvm_extract_elem(&ctx->ac, src, chan - comp);
3314
3315 if (instr->variables[0]->var->data.compact)
3316 stride = 1;
3317 if (indir_index) {
3318 unsigned count = glsl_count_attribute_slots(
3319 instr->variables[0]->var->type, false);
3320 count -= chan / 4;
3321 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3322 &ctx->ac, ctx->outputs + idx + chan, count,
3323 stride, true, true);
3324
3325 tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
3326 value, indir_index, "");
3327 build_store_values_extended(&ctx->ac, ctx->outputs + idx + chan,
3328 count, stride, tmp_vec);
3329
3330 } else {
3331 temp_ptr = ctx->outputs[idx + chan + const_index * stride];
3332
3333 LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
3334 }
3335 }
3336 break;
3337 case nir_var_local:
3338 for (unsigned chan = 0; chan < 8; chan++) {
3339 if (!(writemask & (1 << chan)))
3340 continue;
3341
3342 value = ac_llvm_extract_elem(&ctx->ac, src, chan);
3343 if (indir_index) {
3344 unsigned count = glsl_count_attribute_slots(
3345 instr->variables[0]->var->type, false);
3346 count -= chan / 4;
3347 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3348 &ctx->ac, ctx->locals + idx + chan, count,
3349 4, true, true);
3350
3351 tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
3352 value, indir_index, "");
3353 build_store_values_extended(&ctx->ac, ctx->locals + idx + chan,
3354 count, 4, tmp_vec);
3355 } else {
3356 temp_ptr = ctx->locals[idx + chan + const_index * 4];
3357
3358 LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
3359 }
3360 }
3361 break;
3362 case nir_var_shared: {
3363 int writemask = instr->const_index[0];
3364 LLVMValueRef address = build_gep_for_deref(ctx,
3365 instr->variables[0]);
3366 LLVMValueRef val = get_src(ctx, instr->src[0]);
3367 unsigned components =
3368 glsl_get_vector_elements(
3369 nir_deref_tail(&instr->variables[0]->deref)->type);
3370 if (writemask == (1 << components) - 1) {
3371 val = LLVMBuildBitCast(
3372 ctx->ac.builder, val,
3373 LLVMGetElementType(LLVMTypeOf(address)), "");
3374 LLVMBuildStore(ctx->ac.builder, val, address);
3375 } else {
3376 for (unsigned chan = 0; chan < 4; chan++) {
3377 if (!(writemask & (1 << chan)))
3378 continue;
3379 LLVMValueRef ptr =
3380 LLVMBuildStructGEP(ctx->ac.builder,
3381 address, chan, "");
3382 LLVMValueRef src = ac_llvm_extract_elem(&ctx->ac, val,
3383 chan);
3384 src = LLVMBuildBitCast(
3385 ctx->ac.builder, src,
3386 LLVMGetElementType(LLVMTypeOf(ptr)), "");
3387 LLVMBuildStore(ctx->ac.builder, src, ptr);
3388 }
3389 }
3390 break;
3391 }
3392 default:
3393 break;
3394 }
3395 }
3396
3397 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
3398 {
3399 switch (dim) {
3400 case GLSL_SAMPLER_DIM_BUF:
3401 return 1;
3402 case GLSL_SAMPLER_DIM_1D:
3403 return array ? 2 : 1;
3404 case GLSL_SAMPLER_DIM_2D:
3405 return array ? 3 : 2;
3406 case GLSL_SAMPLER_DIM_MS:
3407 return array ? 4 : 3;
3408 case GLSL_SAMPLER_DIM_3D:
3409 case GLSL_SAMPLER_DIM_CUBE:
3410 return 3;
3411 case GLSL_SAMPLER_DIM_RECT:
3412 case GLSL_SAMPLER_DIM_SUBPASS:
3413 return 2;
3414 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3415 return 3;
3416 default:
3417 break;
3418 }
3419 return 0;
3420 }
3421
3422
3423
3424 /* Adjust the sample index according to FMASK.
3425 *
3426 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3427 * which is the identity mapping. Each nibble says which physical sample
3428 * should be fetched to get that sample.
3429 *
3430 * For example, 0x11111100 means there are only 2 samples stored and
3431 * the second sample covers 3/4 of the pixel. When reading samples 0
3432 * and 1, return physical sample 0 (determined by the first two 0s
3433 * in FMASK), otherwise return physical sample 1.
3434 *
3435 * The sample index should be adjusted as follows:
3436 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3437 */
3438 static LLVMValueRef adjust_sample_index_using_fmask(struct ac_llvm_context *ctx,
3439 LLVMValueRef coord_x, LLVMValueRef coord_y,
3440 LLVMValueRef coord_z,
3441 LLVMValueRef sample_index,
3442 LLVMValueRef fmask_desc_ptr)
3443 {
3444 LLVMValueRef fmask_load_address[4];
3445 LLVMValueRef res;
3446
3447 fmask_load_address[0] = coord_x;
3448 fmask_load_address[1] = coord_y;
3449 if (coord_z) {
3450 fmask_load_address[2] = coord_z;
3451 fmask_load_address[3] = LLVMGetUndef(ctx->i32);
3452 }
3453
3454 struct ac_image_args args = {0};
3455
3456 args.opcode = ac_image_load;
3457 args.da = coord_z ? true : false;
3458 args.resource = fmask_desc_ptr;
3459 args.dmask = 0xf;
3460 args.addr = ac_build_gather_values(ctx, fmask_load_address, coord_z ? 4 : 2);
3461
3462 res = ac_build_image_opcode(ctx, &args);
3463
3464 res = ac_to_integer(ctx, res);
3465 LLVMValueRef four = LLVMConstInt(ctx->i32, 4, false);
3466 LLVMValueRef F = LLVMConstInt(ctx->i32, 0xf, false);
3467
3468 LLVMValueRef fmask = LLVMBuildExtractElement(ctx->builder,
3469 res,
3470 ctx->i32_0, "");
3471
3472 LLVMValueRef sample_index4 =
3473 LLVMBuildMul(ctx->builder, sample_index, four, "");
3474 LLVMValueRef shifted_fmask =
3475 LLVMBuildLShr(ctx->builder, fmask, sample_index4, "");
3476 LLVMValueRef final_sample =
3477 LLVMBuildAnd(ctx->builder, shifted_fmask, F, "");
3478
3479 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3480 * resource descriptor is 0 (invalid),
3481 */
3482 LLVMValueRef fmask_desc =
3483 LLVMBuildBitCast(ctx->builder, fmask_desc_ptr,
3484 ctx->v8i32, "");
3485
3486 LLVMValueRef fmask_word1 =
3487 LLVMBuildExtractElement(ctx->builder, fmask_desc,
3488 ctx->i32_1, "");
3489
3490 LLVMValueRef word1_is_nonzero =
3491 LLVMBuildICmp(ctx->builder, LLVMIntNE,
3492 fmask_word1, ctx->i32_0, "");
3493
3494 /* Replace the MSAA sample index. */
3495 sample_index =
3496 LLVMBuildSelect(ctx->builder, word1_is_nonzero,
3497 final_sample, sample_index, "");
3498 return sample_index;
3499 }
3500
3501 static LLVMValueRef get_image_coords(struct ac_nir_context *ctx,
3502 const nir_intrinsic_instr *instr)
3503 {
3504 const struct glsl_type *type = glsl_without_array(instr->variables[0]->var->type);
3505
3506 LLVMValueRef src0 = get_src(ctx, instr->src[0]);
3507 LLVMValueRef coords[4];
3508 LLVMValueRef masks[] = {
3509 LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
3510 LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
3511 };
3512 LLVMValueRef res;
3513 LLVMValueRef sample_index = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[1]), 0);
3514
3515 int count;
3516 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3517 bool is_array = glsl_sampler_type_is_array(type);
3518 bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS ||
3519 dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3520 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS ||
3521 dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3522 bool gfx9_1d = ctx->ac.chip_class >= GFX9 && dim == GLSL_SAMPLER_DIM_1D;
3523 count = image_type_to_components_count(dim, is_array);
3524
3525 if (is_ms) {
3526 LLVMValueRef fmask_load_address[3];
3527 int chan;
3528
3529 fmask_load_address[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
3530 fmask_load_address[1] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[1], "");
3531 if (is_array)
3532 fmask_load_address[2] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[2], "");
3533 else
3534 fmask_load_address[2] = NULL;
3535 if (add_frag_pos) {
3536 for (chan = 0; chan < 2; ++chan)
3537 fmask_load_address[chan] =
3538 LLVMBuildAdd(ctx->ac.builder, fmask_load_address[chan],
3539 LLVMBuildFPToUI(ctx->ac.builder, ctx->abi->frag_pos[chan],
3540 ctx->ac.i32, ""), "");
3541 fmask_load_address[2] = ac_to_integer(&ctx->ac, ctx->abi->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)]);
3542 }
3543 sample_index = adjust_sample_index_using_fmask(&ctx->ac,
3544 fmask_load_address[0],
3545 fmask_load_address[1],
3546 fmask_load_address[2],
3547 sample_index,
3548 get_sampler_desc(ctx, instr->variables[0], AC_DESC_FMASK, NULL, true, false));
3549 }
3550 if (count == 1 && !gfx9_1d) {
3551 if (instr->src[0].ssa->num_components)
3552 res = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
3553 else
3554 res = src0;
3555 } else {
3556 int chan;
3557 if (is_ms)
3558 count--;
3559 for (chan = 0; chan < count; ++chan) {
3560 coords[chan] = ac_llvm_extract_elem(&ctx->ac, src0, chan);
3561 }
3562 if (add_frag_pos) {
3563 for (chan = 0; chan < 2; ++chan)
3564 coords[chan] = LLVMBuildAdd(ctx->ac.builder, coords[chan], LLVMBuildFPToUI(ctx->ac.builder, ctx->abi->frag_pos[chan],
3565 ctx->ac.i32, ""), "");
3566 coords[2] = ac_to_integer(&ctx->ac, ctx->abi->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)]);
3567 count++;
3568 }
3569
3570 if (gfx9_1d) {
3571 if (is_array) {
3572 coords[2] = coords[1];
3573 coords[1] = ctx->ac.i32_0;
3574 } else
3575 coords[1] = ctx->ac.i32_0;
3576 count++;
3577 }
3578
3579 if (is_ms) {
3580 coords[count] = sample_index;
3581 count++;
3582 }
3583
3584 if (count == 3) {
3585 coords[3] = LLVMGetUndef(ctx->ac.i32);
3586 count = 4;
3587 }
3588 res = ac_build_gather_values(&ctx->ac, coords, count);
3589 }
3590 return res;
3591 }
3592
3593 static LLVMValueRef visit_image_load(struct ac_nir_context *ctx,
3594 const nir_intrinsic_instr *instr)
3595 {
3596 LLVMValueRef params[7];
3597 LLVMValueRef res;
3598 char intrinsic_name[64];
3599 const nir_variable *var = instr->variables[0]->var;
3600 const struct glsl_type *type = var->type;
3601
3602 if(instr->variables[0]->deref.child)
3603 type = instr->variables[0]->deref.child->type;
3604
3605 type = glsl_without_array(type);
3606
3607 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3608 if (dim == GLSL_SAMPLER_DIM_BUF) {
3609 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
3610 unsigned num_channels = util_last_bit(mask);
3611 LLVMValueRef rsrc, vindex;
3612
3613 rsrc = get_sampler_desc(ctx, instr->variables[0], AC_DESC_BUFFER, NULL, true, false);
3614 vindex = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
3615 ctx->ac.i32_0, "");
3616
3617 /* TODO: set "glc" and "can_speculate" when OpenGL needs it. */
3618 res = ac_build_buffer_load_format(&ctx->ac, rsrc, vindex,
3619 ctx->ac.i32_0, num_channels,
3620 false, false);
3621 res = ac_build_expand_to_vec4(&ctx->ac, res, num_channels);
3622
3623 res = trim_vector(&ctx->ac, res, instr->dest.ssa.num_components);
3624 res = ac_to_integer(&ctx->ac, res);
3625 } else {
3626 bool is_da = glsl_sampler_type_is_array(type) ||
3627 dim == GLSL_SAMPLER_DIM_CUBE ||
3628 dim == GLSL_SAMPLER_DIM_3D ||
3629 dim == GLSL_SAMPLER_DIM_SUBPASS ||
3630 dim == GLSL_SAMPLER_DIM_SUBPASS_MS;
3631 LLVMValueRef da = is_da ? ctx->ac.i1true : ctx->ac.i1false;
3632 LLVMValueRef glc = ctx->ac.i1false;
3633 LLVMValueRef slc = ctx->ac.i1false;
3634
3635 params[0] = get_image_coords(ctx, instr);
3636 params[1] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, false);
3637 params[2] = LLVMConstInt(ctx->ac.i32, 15, false); /* dmask */
3638 params[3] = glc;
3639 params[4] = slc;
3640 params[5] = ctx->ac.i1false;
3641 params[6] = da;
3642
3643 ac_get_image_intr_name("llvm.amdgcn.image.load",
3644 ctx->ac.v4f32, /* vdata */
3645 LLVMTypeOf(params[0]), /* coords */
3646 LLVMTypeOf(params[1]), /* rsrc */
3647 intrinsic_name, sizeof(intrinsic_name));
3648
3649 res = ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.v4f32,
3650 params, 7, AC_FUNC_ATTR_READONLY);
3651 }
3652 return ac_to_integer(&ctx->ac, res);
3653 }
3654
3655 static void visit_image_store(struct ac_nir_context *ctx,
3656 nir_intrinsic_instr *instr)
3657 {
3658 LLVMValueRef params[8];
3659 char intrinsic_name[64];
3660 const nir_variable *var = instr->variables[0]->var;
3661 const struct glsl_type *type = glsl_without_array(var->type);
3662 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3663 LLVMValueRef glc = ctx->ac.i1false;
3664 bool force_glc = ctx->ac.chip_class == SI;
3665 if (force_glc)
3666 glc = ctx->ac.i1true;
3667
3668 if (dim == GLSL_SAMPLER_DIM_BUF) {
3669 params[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[2])); /* data */
3670 params[1] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_BUFFER, NULL, true, true);
3671 params[2] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
3672 ctx->ac.i32_0, ""); /* vindex */
3673 params[3] = ctx->ac.i32_0; /* voffset */
3674 params[4] = glc; /* glc */
3675 params[5] = ctx->ac.i1false; /* slc */
3676 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.store.format.v4f32", ctx->ac.voidt,
3677 params, 6, 0);
3678 } else {
3679 bool is_da = glsl_sampler_type_is_array(type) ||
3680 dim == GLSL_SAMPLER_DIM_CUBE ||
3681 dim == GLSL_SAMPLER_DIM_3D;
3682 LLVMValueRef da = is_da ? ctx->ac.i1true : ctx->ac.i1false;
3683 LLVMValueRef slc = ctx->ac.i1false;
3684
3685 params[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[2]));
3686 params[1] = get_image_coords(ctx, instr); /* coords */
3687 params[2] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, true);
3688 params[3] = LLVMConstInt(ctx->ac.i32, 15, false); /* dmask */
3689 params[4] = glc;
3690 params[5] = slc;
3691 params[6] = ctx->ac.i1false;
3692 params[7] = da;
3693
3694 ac_get_image_intr_name("llvm.amdgcn.image.store",
3695 LLVMTypeOf(params[0]), /* vdata */
3696 LLVMTypeOf(params[1]), /* coords */
3697 LLVMTypeOf(params[2]), /* rsrc */
3698 intrinsic_name, sizeof(intrinsic_name));
3699
3700 ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.voidt,
3701 params, 8, 0);
3702 }
3703
3704 }
3705
3706 static LLVMValueRef visit_image_atomic(struct ac_nir_context *ctx,
3707 const nir_intrinsic_instr *instr)
3708 {
3709 LLVMValueRef params[7];
3710 int param_count = 0;
3711 const nir_variable *var = instr->variables[0]->var;
3712
3713 const char *atomic_name;
3714 char intrinsic_name[41];
3715 const struct glsl_type *type = glsl_without_array(var->type);
3716 MAYBE_UNUSED int length;
3717
3718 bool is_unsigned = glsl_get_sampler_result_type(type) == GLSL_TYPE_UINT;
3719
3720 switch (instr->intrinsic) {
3721 case nir_intrinsic_image_atomic_add:
3722 atomic_name = "add";
3723 break;
3724 case nir_intrinsic_image_atomic_min:
3725 atomic_name = is_unsigned ? "umin" : "smin";
3726 break;
3727 case nir_intrinsic_image_atomic_max:
3728 atomic_name = is_unsigned ? "umax" : "smax";
3729 break;
3730 case nir_intrinsic_image_atomic_and:
3731 atomic_name = "and";
3732 break;
3733 case nir_intrinsic_image_atomic_or:
3734 atomic_name = "or";
3735 break;
3736 case nir_intrinsic_image_atomic_xor:
3737 atomic_name = "xor";
3738 break;
3739 case nir_intrinsic_image_atomic_exchange:
3740 atomic_name = "swap";
3741 break;
3742 case nir_intrinsic_image_atomic_comp_swap:
3743 atomic_name = "cmpswap";
3744 break;
3745 default:
3746 abort();
3747 }
3748
3749 if (instr->intrinsic == nir_intrinsic_image_atomic_comp_swap)
3750 params[param_count++] = get_src(ctx, instr->src[3]);
3751 params[param_count++] = get_src(ctx, instr->src[2]);
3752
3753 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
3754 params[param_count++] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_BUFFER,
3755 NULL, true, true);
3756 params[param_count++] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
3757 ctx->ac.i32_0, ""); /* vindex */
3758 params[param_count++] = ctx->ac.i32_0; /* voffset */
3759 params[param_count++] = ctx->ac.i1false; /* slc */
3760
3761 length = snprintf(intrinsic_name, sizeof(intrinsic_name),
3762 "llvm.amdgcn.buffer.atomic.%s", atomic_name);
3763 } else {
3764 char coords_type[8];
3765
3766 bool da = glsl_sampler_type_is_array(type) ||
3767 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
3768
3769 LLVMValueRef coords = params[param_count++] = get_image_coords(ctx, instr);
3770 params[param_count++] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE,
3771 NULL, true, true);
3772 params[param_count++] = ctx->ac.i1false; /* r128 */
3773 params[param_count++] = da ? ctx->ac.i1true : ctx->ac.i1false; /* da */
3774 params[param_count++] = ctx->ac.i1false; /* slc */
3775
3776 build_int_type_name(LLVMTypeOf(coords),
3777 coords_type, sizeof(coords_type));
3778
3779 length = snprintf(intrinsic_name, sizeof(intrinsic_name),
3780 "llvm.amdgcn.image.atomic.%s.%s", atomic_name, coords_type);
3781 }
3782
3783 assert(length < sizeof(intrinsic_name));
3784 return ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.i32, params, param_count, 0);
3785 }
3786
3787 static LLVMValueRef visit_image_size(struct ac_nir_context *ctx,
3788 const nir_intrinsic_instr *instr)
3789 {
3790 LLVMValueRef res;
3791 const nir_variable *var = instr->variables[0]->var;
3792 const struct glsl_type *type = instr->variables[0]->var->type;
3793 bool da = glsl_sampler_type_is_array(var->type) ||
3794 glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_CUBE ||
3795 glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_3D;
3796 if(instr->variables[0]->deref.child)
3797 type = instr->variables[0]->deref.child->type;
3798
3799 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF)
3800 return get_buffer_size(ctx,
3801 get_sampler_desc(ctx, instr->variables[0],
3802 AC_DESC_BUFFER, NULL, true, false), true);
3803
3804 struct ac_image_args args = { 0 };
3805
3806 args.da = da;
3807 args.dmask = 0xf;
3808 args.resource = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, false);
3809 args.opcode = ac_image_get_resinfo;
3810 args.addr = ctx->ac.i32_0;
3811
3812 res = ac_build_image_opcode(&ctx->ac, &args);
3813
3814 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
3815
3816 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
3817 glsl_sampler_type_is_array(type)) {
3818 LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
3819 LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
3820 z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
3821 res = LLVMBuildInsertElement(ctx->ac.builder, res, z, two, "");
3822 }
3823 if (ctx->ac.chip_class >= GFX9 &&
3824 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
3825 glsl_sampler_type_is_array(type)) {
3826 LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
3827 res = LLVMBuildInsertElement(ctx->ac.builder, res, layers,
3828 ctx->ac.i32_1, "");
3829
3830 }
3831 return res;
3832 }
3833
3834 #define NOOP_WAITCNT 0xf7f
3835 #define LGKM_CNT 0x07f
3836 #define VM_CNT 0xf70
3837
3838 static void emit_membar(struct nir_to_llvm_context *ctx,
3839 const nir_intrinsic_instr *instr)
3840 {
3841 unsigned waitcnt = NOOP_WAITCNT;
3842
3843 switch (instr->intrinsic) {
3844 case nir_intrinsic_memory_barrier:
3845 case nir_intrinsic_group_memory_barrier:
3846 waitcnt &= VM_CNT & LGKM_CNT;
3847 break;
3848 case nir_intrinsic_memory_barrier_atomic_counter:
3849 case nir_intrinsic_memory_barrier_buffer:
3850 case nir_intrinsic_memory_barrier_image:
3851 waitcnt &= VM_CNT;
3852 break;
3853 case nir_intrinsic_memory_barrier_shared:
3854 waitcnt &= LGKM_CNT;
3855 break;
3856 default:
3857 break;
3858 }
3859 if (waitcnt != NOOP_WAITCNT)
3860 ac_build_waitcnt(&ctx->ac, waitcnt);
3861 }
3862
3863 static void emit_barrier(struct ac_llvm_context *ac, gl_shader_stage stage)
3864 {
3865 /* SI only (thanks to a hw bug workaround):
3866 * The real barrier instruction isn’t needed, because an entire patch
3867 * always fits into a single wave.
3868 */
3869 if (ac->chip_class == SI && stage == MESA_SHADER_TESS_CTRL) {
3870 ac_build_waitcnt(ac, LGKM_CNT & VM_CNT);
3871 return;
3872 }
3873 ac_build_intrinsic(ac, "llvm.amdgcn.s.barrier",
3874 ac->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
3875 }
3876
3877 static void emit_discard(struct ac_nir_context *ctx,
3878 const nir_intrinsic_instr *instr)
3879 {
3880 LLVMValueRef cond;
3881
3882 if (instr->intrinsic == nir_intrinsic_discard_if) {
3883 cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3884 get_src(ctx, instr->src[0]),
3885 ctx->ac.i32_0, "");
3886 } else {
3887 assert(instr->intrinsic == nir_intrinsic_discard);
3888 cond = LLVMConstInt(ctx->ac.i1, false, 0);
3889 }
3890
3891 ac_build_kill_if_false(&ctx->ac, cond);
3892 }
3893
3894 static LLVMValueRef
3895 visit_load_helper_invocation(struct ac_nir_context *ctx)
3896 {
3897 LLVMValueRef result = ac_build_intrinsic(&ctx->ac,
3898 "llvm.amdgcn.ps.live",
3899 ctx->ac.i1, NULL, 0,
3900 AC_FUNC_ATTR_READNONE);
3901 result = LLVMBuildNot(ctx->ac.builder, result, "");
3902 return LLVMBuildSExt(ctx->ac.builder, result, ctx->ac.i32, "");
3903 }
3904
3905 static LLVMValueRef
3906 visit_load_local_invocation_index(struct nir_to_llvm_context *ctx)
3907 {
3908 LLVMValueRef result;
3909 LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac);
3910 result = LLVMBuildAnd(ctx->builder, ctx->tg_size,
3911 LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
3912
3913 return LLVMBuildAdd(ctx->builder, result, thread_id, "");
3914 }
3915
3916 static LLVMValueRef visit_var_atomic(struct nir_to_llvm_context *ctx,
3917 const nir_intrinsic_instr *instr)
3918 {
3919 LLVMValueRef ptr, result;
3920 LLVMValueRef src = get_src(ctx->nir, instr->src[0]);
3921 ptr = build_gep_for_deref(ctx->nir, instr->variables[0]);
3922
3923 if (instr->intrinsic == nir_intrinsic_var_atomic_comp_swap) {
3924 LLVMValueRef src1 = get_src(ctx->nir, instr->src[1]);
3925 result = LLVMBuildAtomicCmpXchg(ctx->builder,
3926 ptr, src, src1,
3927 LLVMAtomicOrderingSequentiallyConsistent,
3928 LLVMAtomicOrderingSequentiallyConsistent,
3929 false);
3930 } else {
3931 LLVMAtomicRMWBinOp op;
3932 switch (instr->intrinsic) {
3933 case nir_intrinsic_var_atomic_add:
3934 op = LLVMAtomicRMWBinOpAdd;
3935 break;
3936 case nir_intrinsic_var_atomic_umin:
3937 op = LLVMAtomicRMWBinOpUMin;
3938 break;
3939 case nir_intrinsic_var_atomic_umax:
3940 op = LLVMAtomicRMWBinOpUMax;
3941 break;
3942 case nir_intrinsic_var_atomic_imin:
3943 op = LLVMAtomicRMWBinOpMin;
3944 break;
3945 case nir_intrinsic_var_atomic_imax:
3946 op = LLVMAtomicRMWBinOpMax;
3947 break;
3948 case nir_intrinsic_var_atomic_and:
3949 op = LLVMAtomicRMWBinOpAnd;
3950 break;
3951 case nir_intrinsic_var_atomic_or:
3952 op = LLVMAtomicRMWBinOpOr;
3953 break;
3954 case nir_intrinsic_var_atomic_xor:
3955 op = LLVMAtomicRMWBinOpXor;
3956 break;
3957 case nir_intrinsic_var_atomic_exchange:
3958 op = LLVMAtomicRMWBinOpXchg;
3959 break;
3960 default:
3961 return NULL;
3962 }
3963
3964 result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, ac_to_integer(&ctx->ac, src),
3965 LLVMAtomicOrderingSequentiallyConsistent,
3966 false);
3967 }
3968 return result;
3969 }
3970
3971 static LLVMValueRef lookup_interp_param(struct ac_shader_abi *abi,
3972 enum glsl_interp_mode interp, unsigned location)
3973 {
3974 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
3975
3976 switch (interp) {
3977 case INTERP_MODE_FLAT:
3978 default:
3979 return NULL;
3980 case INTERP_MODE_SMOOTH:
3981 case INTERP_MODE_NONE:
3982 if (location == INTERP_CENTER)
3983 return ctx->persp_center;
3984 else if (location == INTERP_CENTROID)
3985 return ctx->persp_centroid;
3986 else if (location == INTERP_SAMPLE)
3987 return ctx->persp_sample;
3988 break;
3989 case INTERP_MODE_NOPERSPECTIVE:
3990 if (location == INTERP_CENTER)
3991 return ctx->linear_center;
3992 else if (location == INTERP_CENTROID)
3993 return ctx->linear_centroid;
3994 else if (location == INTERP_SAMPLE)
3995 return ctx->linear_sample;
3996 break;
3997 }
3998 return NULL;
3999 }
4000
4001 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
4002 LLVMValueRef sample_id)
4003 {
4004 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4005
4006 LLVMValueRef result;
4007 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false));
4008
4009 ptr = LLVMBuildBitCast(ctx->builder, ptr,
4010 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
4011
4012 sample_id = LLVMBuildAdd(ctx->builder, sample_id, ctx->sample_pos_offset, "");
4013 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
4014
4015 return result;
4016 }
4017
4018 static LLVMValueRef load_sample_pos(struct ac_nir_context *ctx)
4019 {
4020 LLVMValueRef values[2];
4021
4022 values[0] = emit_ffract(&ctx->ac, ctx->abi->frag_pos[0], 32);
4023 values[1] = emit_ffract(&ctx->ac, ctx->abi->frag_pos[1], 32);
4024 return ac_build_gather_values(&ctx->ac, values, 2);
4025 }
4026
4027 static LLVMValueRef load_sample_mask_in(struct ac_nir_context *ctx)
4028 {
4029 uint8_t log2_ps_iter_samples = ctx->nctx->shader_info->info.ps.force_persample ? ctx->nctx->options->key.fs.log2_num_samples : ctx->nctx->options->key.fs.log2_ps_iter_samples;
4030
4031 /* The bit pattern matches that used by fixed function fragment
4032 * processing. */
4033 static const uint16_t ps_iter_masks[] = {
4034 0xffff, /* not used */
4035 0x5555,
4036 0x1111,
4037 0x0101,
4038 0x0001,
4039 };
4040 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
4041
4042 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
4043
4044 LLVMValueRef result, sample_id;
4045 sample_id = unpack_param(&ctx->ac, ctx->abi->ancillary, 8, 4);
4046 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
4047 result = LLVMBuildAnd(ctx->ac.builder, sample_id, ctx->abi->sample_coverage, "");
4048 return result;
4049 }
4050
4051 static LLVMValueRef visit_interp(struct ac_nir_context *ctx,
4052 const nir_intrinsic_instr *instr)
4053 {
4054 LLVMValueRef result[4];
4055 LLVMValueRef interp_param, attr_number;
4056 unsigned location;
4057 unsigned chan;
4058 LLVMValueRef src_c0 = NULL;
4059 LLVMValueRef src_c1 = NULL;
4060 LLVMValueRef src0 = NULL;
4061 int input_index = instr->variables[0]->var->data.location - VARYING_SLOT_VAR0;
4062 switch (instr->intrinsic) {
4063 case nir_intrinsic_interp_var_at_centroid:
4064 location = INTERP_CENTROID;
4065 break;
4066 case nir_intrinsic_interp_var_at_sample:
4067 case nir_intrinsic_interp_var_at_offset:
4068 location = INTERP_CENTER;
4069 src0 = get_src(ctx, instr->src[0]);
4070 break;
4071 default:
4072 break;
4073 }
4074
4075 if (instr->intrinsic == nir_intrinsic_interp_var_at_offset) {
4076 src_c0 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, src0, ctx->ac.i32_0, ""));
4077 src_c1 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, src0, ctx->ac.i32_1, ""));
4078 } else if (instr->intrinsic == nir_intrinsic_interp_var_at_sample) {
4079 LLVMValueRef sample_position;
4080 LLVMValueRef halfval = LLVMConstReal(ctx->ac.f32, 0.5f);
4081
4082 /* fetch sample ID */
4083 sample_position = ctx->abi->load_sample_position(ctx->abi, src0);
4084
4085 src_c0 = LLVMBuildExtractElement(ctx->ac.builder, sample_position, ctx->ac.i32_0, "");
4086 src_c0 = LLVMBuildFSub(ctx->ac.builder, src_c0, halfval, "");
4087 src_c1 = LLVMBuildExtractElement(ctx->ac.builder, sample_position, ctx->ac.i32_1, "");
4088 src_c1 = LLVMBuildFSub(ctx->ac.builder, src_c1, halfval, "");
4089 }
4090 interp_param = ctx->abi->lookup_interp_param(ctx->abi, instr->variables[0]->var->data.interpolation, location);
4091 attr_number = LLVMConstInt(ctx->ac.i32, input_index, false);
4092
4093 if (location == INTERP_CENTER) {
4094 LLVMValueRef ij_out[2];
4095 LLVMValueRef ddxy_out = emit_ddxy_interp(ctx, interp_param);
4096
4097 /*
4098 * take the I then J parameters, and the DDX/Y for it, and
4099 * calculate the IJ inputs for the interpolator.
4100 * temp1 = ddx * offset/sample.x + I;
4101 * interp_param.I = ddy * offset/sample.y + temp1;
4102 * temp1 = ddx * offset/sample.x + J;
4103 * interp_param.J = ddy * offset/sample.y + temp1;
4104 */
4105 for (unsigned i = 0; i < 2; i++) {
4106 LLVMValueRef ix_ll = LLVMConstInt(ctx->ac.i32, i, false);
4107 LLVMValueRef iy_ll = LLVMConstInt(ctx->ac.i32, i + 2, false);
4108 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4109 ddxy_out, ix_ll, "");
4110 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4111 ddxy_out, iy_ll, "");
4112 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4113 interp_param, ix_ll, "");
4114 LLVMValueRef temp1, temp2;
4115
4116 interp_el = LLVMBuildBitCast(ctx->ac.builder, interp_el,
4117 ctx->ac.f32, "");
4118
4119 temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, src_c0, "");
4120 temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4121
4122 temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, src_c1, "");
4123 temp2 = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4124
4125 ij_out[i] = LLVMBuildBitCast(ctx->ac.builder,
4126 temp2, ctx->ac.i32, "");
4127 }
4128 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4129
4130 }
4131
4132 for (chan = 0; chan < 4; chan++) {
4133 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
4134
4135 if (interp_param) {
4136 interp_param = LLVMBuildBitCast(ctx->ac.builder,
4137 interp_param, ctx->ac.v2f32, "");
4138 LLVMValueRef i = LLVMBuildExtractElement(
4139 ctx->ac.builder, interp_param, ctx->ac.i32_0, "");
4140 LLVMValueRef j = LLVMBuildExtractElement(
4141 ctx->ac.builder, interp_param, ctx->ac.i32_1, "");
4142
4143 result[chan] = ac_build_fs_interp(&ctx->ac,
4144 llvm_chan, attr_number,
4145 ctx->abi->prim_mask, i, j);
4146 } else {
4147 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
4148 LLVMConstInt(ctx->ac.i32, 2, false),
4149 llvm_chan, attr_number,
4150 ctx->abi->prim_mask);
4151 }
4152 }
4153 return ac_build_varying_gather_values(&ctx->ac, result, instr->num_components,
4154 instr->variables[0]->var->data.location_frac);
4155 }
4156
4157 static void
4158 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
4159 {
4160 LLVMValueRef gs_next_vertex;
4161 LLVMValueRef can_emit;
4162 int idx;
4163 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4164
4165 assert(stream == 0);
4166
4167 /* Write vertex attribute values to GSVS ring */
4168 gs_next_vertex = LLVMBuildLoad(ctx->builder,
4169 ctx->gs_next_vertex,
4170 "");
4171
4172 /* If this thread has already emitted the declared maximum number of
4173 * vertices, kill it: excessive vertex emissions are not supposed to
4174 * have any effect, and GS threads have no externally observable
4175 * effects other than emitting vertices.
4176 */
4177 can_emit = LLVMBuildICmp(ctx->builder, LLVMIntULT, gs_next_vertex,
4178 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
4179 ac_build_kill_if_false(&ctx->ac, can_emit);
4180
4181 /* loop num outputs */
4182 idx = 0;
4183 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
4184 LLVMValueRef *out_ptr = &addrs[i * 4];
4185 int length = 4;
4186 int slot = idx;
4187 int slot_inc = 1;
4188
4189 if (!(ctx->output_mask & (1ull << i)))
4190 continue;
4191
4192 if (i == VARYING_SLOT_CLIP_DIST0) {
4193 /* pack clip and cull into a single set of slots */
4194 length = ctx->num_output_clips + ctx->num_output_culls;
4195 if (length > 4)
4196 slot_inc = 2;
4197 }
4198 for (unsigned j = 0; j < length; j++) {
4199 LLVMValueRef out_val = LLVMBuildLoad(ctx->builder,
4200 out_ptr[j], "");
4201 LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, (slot * 4 + j) * ctx->gs_max_out_vertices, false);
4202 voffset = LLVMBuildAdd(ctx->builder, voffset, gs_next_vertex, "");
4203 voffset = LLVMBuildMul(ctx->builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
4204
4205 out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->ac.i32, "");
4206
4207 ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring,
4208 out_val, 1,
4209 voffset, ctx->gs2vs_offset, 0,
4210 1, 1, true, true);
4211 }
4212 idx += slot_inc;
4213 }
4214
4215 gs_next_vertex = LLVMBuildAdd(ctx->builder, gs_next_vertex,
4216 ctx->ac.i32_1, "");
4217 LLVMBuildStore(ctx->builder, gs_next_vertex, ctx->gs_next_vertex);
4218
4219 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (0 << 8), ctx->gs_wave_id);
4220 }
4221
4222 static void
4223 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
4224 {
4225 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4226 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
4227 }
4228
4229 static LLVMValueRef
4230 load_tess_coord(struct ac_shader_abi *abi, LLVMTypeRef type,
4231 unsigned num_components)
4232 {
4233 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4234
4235 LLVMValueRef coord[4] = {
4236 ctx->tes_u,
4237 ctx->tes_v,
4238 ctx->ac.f32_0,
4239 ctx->ac.f32_0,
4240 };
4241
4242 if (ctx->tes_primitive_mode == GL_TRIANGLES)
4243 coord[2] = LLVMBuildFSub(ctx->builder, ctx->ac.f32_1,
4244 LLVMBuildFAdd(ctx->builder, coord[0], coord[1], ""), "");
4245
4246 LLVMValueRef result = ac_build_gather_values(&ctx->ac, coord, num_components);
4247 return LLVMBuildBitCast(ctx->builder, result, type, "");
4248 }
4249
4250 static LLVMValueRef
4251 load_patch_vertices_in(struct ac_shader_abi *abi)
4252 {
4253 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4254 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
4255 }
4256
4257 static void visit_intrinsic(struct ac_nir_context *ctx,
4258 nir_intrinsic_instr *instr)
4259 {
4260 LLVMValueRef result = NULL;
4261
4262 switch (instr->intrinsic) {
4263 case nir_intrinsic_ballot:
4264 result = ac_build_ballot(&ctx->ac, get_src(ctx, instr->src[0]));
4265 break;
4266 case nir_intrinsic_read_invocation:
4267 case nir_intrinsic_read_first_invocation: {
4268 LLVMValueRef args[2];
4269
4270 /* Value */
4271 args[0] = get_src(ctx, instr->src[0]);
4272
4273 unsigned num_args;
4274 const char *intr_name;
4275 if (instr->intrinsic == nir_intrinsic_read_invocation) {
4276 num_args = 2;
4277 intr_name = "llvm.amdgcn.readlane";
4278
4279 /* Invocation */
4280 args[1] = get_src(ctx, instr->src[1]);
4281 } else {
4282 num_args = 1;
4283 intr_name = "llvm.amdgcn.readfirstlane";
4284 }
4285
4286 /* We currently have no other way to prevent LLVM from lifting the icmp
4287 * calls to a dominating basic block.
4288 */
4289 ac_build_optimization_barrier(&ctx->ac, &args[0]);
4290
4291 result = ac_build_intrinsic(&ctx->ac, intr_name,
4292 ctx->ac.i32, args, num_args,
4293 AC_FUNC_ATTR_READNONE |
4294 AC_FUNC_ATTR_CONVERGENT);
4295 break;
4296 }
4297 case nir_intrinsic_load_subgroup_invocation:
4298 result = ac_get_thread_id(&ctx->ac);
4299 break;
4300 case nir_intrinsic_load_work_group_id: {
4301 LLVMValueRef values[3];
4302
4303 for (int i = 0; i < 3; i++) {
4304 values[i] = ctx->nctx->workgroup_ids[i] ?
4305 ctx->nctx->workgroup_ids[i] : ctx->ac.i32_0;
4306 }
4307
4308 result = ac_build_gather_values(&ctx->ac, values, 3);
4309 break;
4310 }
4311 case nir_intrinsic_load_base_vertex: {
4312 result = ctx->abi->base_vertex;
4313 break;
4314 }
4315 case nir_intrinsic_load_vertex_id_zero_base: {
4316 result = ctx->abi->vertex_id;
4317 break;
4318 }
4319 case nir_intrinsic_load_local_invocation_id: {
4320 result = ctx->nctx->local_invocation_ids;
4321 break;
4322 }
4323 case nir_intrinsic_load_base_instance:
4324 result = ctx->abi->start_instance;
4325 break;
4326 case nir_intrinsic_load_draw_id:
4327 result = ctx->abi->draw_id;
4328 break;
4329 case nir_intrinsic_load_view_index:
4330 result = ctx->nctx->view_index ? ctx->nctx->view_index : ctx->ac.i32_0;
4331 break;
4332 case nir_intrinsic_load_invocation_id:
4333 if (ctx->stage == MESA_SHADER_TESS_CTRL)
4334 result = unpack_param(&ctx->ac, ctx->abi->tcs_rel_ids, 8, 5);
4335 else
4336 result = ctx->abi->gs_invocation_id;
4337 break;
4338 case nir_intrinsic_load_primitive_id:
4339 if (ctx->stage == MESA_SHADER_GEOMETRY) {
4340 result = ctx->abi->gs_prim_id;
4341 } else if (ctx->stage == MESA_SHADER_TESS_CTRL) {
4342 result = ctx->abi->tcs_patch_id;
4343 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
4344 result = ctx->abi->tes_patch_id;
4345 } else
4346 fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage);
4347 break;
4348 case nir_intrinsic_load_sample_id:
4349 result = unpack_param(&ctx->ac, ctx->abi->ancillary, 8, 4);
4350 break;
4351 case nir_intrinsic_load_sample_pos:
4352 result = load_sample_pos(ctx);
4353 break;
4354 case nir_intrinsic_load_sample_mask_in:
4355 if (ctx->nctx)
4356 result = load_sample_mask_in(ctx);
4357 else
4358 result = ctx->abi->sample_coverage;
4359 break;
4360 case nir_intrinsic_load_frag_coord: {
4361 LLVMValueRef values[4] = {
4362 ctx->abi->frag_pos[0],
4363 ctx->abi->frag_pos[1],
4364 ctx->abi->frag_pos[2],
4365 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, ctx->abi->frag_pos[3])
4366 };
4367 result = ac_build_gather_values(&ctx->ac, values, 4);
4368 break;
4369 }
4370 case nir_intrinsic_load_front_face:
4371 result = ctx->abi->front_face;
4372 break;
4373 case nir_intrinsic_load_helper_invocation:
4374 result = visit_load_helper_invocation(ctx);
4375 break;
4376 case nir_intrinsic_load_instance_id:
4377 result = ctx->abi->instance_id;
4378 break;
4379 case nir_intrinsic_load_num_work_groups:
4380 result = ctx->nctx->num_work_groups;
4381 break;
4382 case nir_intrinsic_load_local_invocation_index:
4383 result = visit_load_local_invocation_index(ctx->nctx);
4384 break;
4385 case nir_intrinsic_load_push_constant:
4386 result = visit_load_push_constant(ctx->nctx, instr);
4387 break;
4388 case nir_intrinsic_vulkan_resource_index:
4389 result = visit_vulkan_resource_index(ctx->nctx, instr);
4390 break;
4391 case nir_intrinsic_vulkan_resource_reindex:
4392 result = visit_vulkan_resource_reindex(ctx->nctx, instr);
4393 break;
4394 case nir_intrinsic_store_ssbo:
4395 visit_store_ssbo(ctx, instr);
4396 break;
4397 case nir_intrinsic_load_ssbo:
4398 result = visit_load_buffer(ctx, instr);
4399 break;
4400 case nir_intrinsic_ssbo_atomic_add:
4401 case nir_intrinsic_ssbo_atomic_imin:
4402 case nir_intrinsic_ssbo_atomic_umin:
4403 case nir_intrinsic_ssbo_atomic_imax:
4404 case nir_intrinsic_ssbo_atomic_umax:
4405 case nir_intrinsic_ssbo_atomic_and:
4406 case nir_intrinsic_ssbo_atomic_or:
4407 case nir_intrinsic_ssbo_atomic_xor:
4408 case nir_intrinsic_ssbo_atomic_exchange:
4409 case nir_intrinsic_ssbo_atomic_comp_swap:
4410 result = visit_atomic_ssbo(ctx, instr);
4411 break;
4412 case nir_intrinsic_load_ubo:
4413 result = visit_load_ubo_buffer(ctx, instr);
4414 break;
4415 case nir_intrinsic_get_buffer_size:
4416 result = visit_get_buffer_size(ctx, instr);
4417 break;
4418 case nir_intrinsic_load_var:
4419 result = visit_load_var(ctx, instr);
4420 break;
4421 case nir_intrinsic_store_var:
4422 visit_store_var(ctx, instr);
4423 break;
4424 case nir_intrinsic_image_load:
4425 result = visit_image_load(ctx, instr);
4426 break;
4427 case nir_intrinsic_image_store:
4428 visit_image_store(ctx, instr);
4429 break;
4430 case nir_intrinsic_image_atomic_add:
4431 case nir_intrinsic_image_atomic_min:
4432 case nir_intrinsic_image_atomic_max:
4433 case nir_intrinsic_image_atomic_and:
4434 case nir_intrinsic_image_atomic_or:
4435 case nir_intrinsic_image_atomic_xor:
4436 case nir_intrinsic_image_atomic_exchange:
4437 case nir_intrinsic_image_atomic_comp_swap:
4438 result = visit_image_atomic(ctx, instr);
4439 break;
4440 case nir_intrinsic_image_size:
4441 result = visit_image_size(ctx, instr);
4442 break;
4443 case nir_intrinsic_discard:
4444 case nir_intrinsic_discard_if:
4445 emit_discard(ctx, instr);
4446 break;
4447 case nir_intrinsic_memory_barrier:
4448 case nir_intrinsic_group_memory_barrier:
4449 case nir_intrinsic_memory_barrier_atomic_counter:
4450 case nir_intrinsic_memory_barrier_buffer:
4451 case nir_intrinsic_memory_barrier_image:
4452 case nir_intrinsic_memory_barrier_shared:
4453 emit_membar(ctx->nctx, instr);
4454 break;
4455 case nir_intrinsic_barrier:
4456 emit_barrier(&ctx->ac, ctx->stage);
4457 break;
4458 case nir_intrinsic_var_atomic_add:
4459 case nir_intrinsic_var_atomic_imin:
4460 case nir_intrinsic_var_atomic_umin:
4461 case nir_intrinsic_var_atomic_imax:
4462 case nir_intrinsic_var_atomic_umax:
4463 case nir_intrinsic_var_atomic_and:
4464 case nir_intrinsic_var_atomic_or:
4465 case nir_intrinsic_var_atomic_xor:
4466 case nir_intrinsic_var_atomic_exchange:
4467 case nir_intrinsic_var_atomic_comp_swap:
4468 result = visit_var_atomic(ctx->nctx, instr);
4469 break;
4470 case nir_intrinsic_interp_var_at_centroid:
4471 case nir_intrinsic_interp_var_at_sample:
4472 case nir_intrinsic_interp_var_at_offset:
4473 result = visit_interp(ctx, instr);
4474 break;
4475 case nir_intrinsic_emit_vertex:
4476 ctx->abi->emit_vertex(ctx->abi, nir_intrinsic_stream_id(instr), ctx->outputs);
4477 break;
4478 case nir_intrinsic_end_primitive:
4479 ctx->abi->emit_primitive(ctx->abi, nir_intrinsic_stream_id(instr));
4480 break;
4481 case nir_intrinsic_load_tess_coord: {
4482 LLVMTypeRef type = ctx->nctx ?
4483 get_def_type(ctx->nctx->nir, &instr->dest.ssa) :
4484 NULL;
4485 result = ctx->abi->load_tess_coord(ctx->abi, type, instr->num_components);
4486 break;
4487 }
4488 case nir_intrinsic_load_tess_level_outer:
4489 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER);
4490 break;
4491 case nir_intrinsic_load_tess_level_inner:
4492 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER);
4493 break;
4494 case nir_intrinsic_load_patch_vertices_in:
4495 result = ctx->abi->load_patch_vertices_in(ctx->abi);
4496 break;
4497 case nir_intrinsic_vote_all: {
4498 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, get_src(ctx, instr->src[0]));
4499 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
4500 break;
4501 }
4502 case nir_intrinsic_vote_any: {
4503 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, get_src(ctx, instr->src[0]));
4504 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
4505 break;
4506 }
4507 case nir_intrinsic_vote_eq: {
4508 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, get_src(ctx, instr->src[0]));
4509 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
4510 break;
4511 }
4512 default:
4513 fprintf(stderr, "Unknown intrinsic: ");
4514 nir_print_instr(&instr->instr, stderr);
4515 fprintf(stderr, "\n");
4516 break;
4517 }
4518 if (result) {
4519 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
4520 }
4521 }
4522
4523 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
4524 LLVMValueRef buffer_ptr, bool write)
4525 {
4526 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4527 LLVMValueRef result;
4528
4529 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
4530
4531 result = LLVMBuildLoad(ctx->builder, buffer_ptr, "");
4532 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
4533
4534 return result;
4535 }
4536
4537 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
4538 {
4539 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4540 LLVMValueRef result;
4541
4542 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
4543
4544 result = LLVMBuildLoad(ctx->builder, buffer_ptr, "");
4545 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
4546
4547 return result;
4548 }
4549
4550 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
4551 unsigned descriptor_set,
4552 unsigned base_index,
4553 unsigned constant_index,
4554 LLVMValueRef index,
4555 enum ac_descriptor_type desc_type,
4556 bool image, bool write)
4557 {
4558 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4559 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
4560 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4561 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4562 unsigned offset = binding->offset;
4563 unsigned stride = binding->size;
4564 unsigned type_size;
4565 LLVMBuilderRef builder = ctx->builder;
4566 LLVMTypeRef type;
4567
4568 assert(base_index < layout->binding_count);
4569
4570 switch (desc_type) {
4571 case AC_DESC_IMAGE:
4572 type = ctx->ac.v8i32;
4573 type_size = 32;
4574 break;
4575 case AC_DESC_FMASK:
4576 type = ctx->ac.v8i32;
4577 offset += 32;
4578 type_size = 32;
4579 break;
4580 case AC_DESC_SAMPLER:
4581 type = ctx->ac.v4i32;
4582 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4583 offset += 64;
4584
4585 type_size = 16;
4586 break;
4587 case AC_DESC_BUFFER:
4588 type = ctx->ac.v4i32;
4589 type_size = 16;
4590 break;
4591 default:
4592 unreachable("invalid desc_type\n");
4593 }
4594
4595 offset += constant_index * stride;
4596
4597 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
4598 (!index || binding->immutable_samplers_equal)) {
4599 if (binding->immutable_samplers_equal)
4600 constant_index = 0;
4601
4602 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4603
4604 LLVMValueRef constants[] = {
4605 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
4606 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
4607 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
4608 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
4609 };
4610 return ac_build_gather_values(&ctx->ac, constants, 4);
4611 }
4612
4613 assert(stride % type_size == 0);
4614
4615 if (!index)
4616 index = ctx->ac.i32_0;
4617
4618 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
4619
4620 list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->ac.i32, offset, 0));
4621 list = LLVMBuildPointerCast(builder, list, ac_array_in_const_addr_space(type), "");
4622
4623 return ac_build_load_to_sgpr(&ctx->ac, list, index);
4624 }
4625
4626 static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
4627 const nir_deref_var *deref,
4628 enum ac_descriptor_type desc_type,
4629 const nir_tex_instr *tex_instr,
4630 bool image, bool write)
4631 {
4632 LLVMValueRef index = NULL;
4633 unsigned constant_index = 0;
4634 unsigned descriptor_set;
4635 unsigned base_index;
4636
4637 if (!deref) {
4638 assert(tex_instr && !image);
4639 descriptor_set = 0;
4640 base_index = tex_instr->sampler_index;
4641 } else {
4642 const nir_deref *tail = &deref->deref;
4643 while (tail->child) {
4644 const nir_deref_array *child = nir_deref_as_array(tail->child);
4645 unsigned array_size = glsl_get_aoa_size(tail->child->type);
4646
4647 if (!array_size)
4648 array_size = 1;
4649
4650 assert(child->deref_array_type != nir_deref_array_type_wildcard);
4651
4652 if (child->deref_array_type == nir_deref_array_type_indirect) {
4653 LLVMValueRef indirect = get_src(ctx, child->indirect);
4654
4655 indirect = LLVMBuildMul(ctx->ac.builder, indirect,
4656 LLVMConstInt(ctx->ac.i32, array_size, false), "");
4657
4658 if (!index)
4659 index = indirect;
4660 else
4661 index = LLVMBuildAdd(ctx->ac.builder, index, indirect, "");
4662 }
4663
4664 constant_index += child->base_offset * array_size;
4665
4666 tail = &child->deref;
4667 }
4668 descriptor_set = deref->var->data.descriptor_set;
4669 base_index = deref->var->data.binding;
4670 }
4671
4672 return ctx->abi->load_sampler_desc(ctx->abi,
4673 descriptor_set,
4674 base_index,
4675 constant_index, index,
4676 desc_type, image, write);
4677 }
4678
4679 static void set_tex_fetch_args(struct ac_llvm_context *ctx,
4680 struct ac_image_args *args,
4681 const nir_tex_instr *instr,
4682 nir_texop op,
4683 LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
4684 LLVMValueRef *param, unsigned count,
4685 unsigned dmask)
4686 {
4687 unsigned is_rect = 0;
4688 bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
4689
4690 if (op == nir_texop_lod)
4691 da = false;
4692 /* Pad to power of two vector */
4693 while (count < util_next_power_of_two(count))
4694 param[count++] = LLVMGetUndef(ctx->i32);
4695
4696 if (count > 1)
4697 args->addr = ac_build_gather_values(ctx, param, count);
4698 else
4699 args->addr = param[0];
4700
4701 args->resource = res_ptr;
4702 args->sampler = samp_ptr;
4703
4704 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF && op == nir_texop_txf) {
4705 args->addr = param[0];
4706 return;
4707 }
4708
4709 args->dmask = dmask;
4710 args->unorm = is_rect;
4711 args->da = da;
4712 }
4713
4714 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
4715 *
4716 * SI-CI:
4717 * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
4718 * filtering manually. The driver sets img7 to a mask clearing
4719 * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
4720 * s_and_b32 samp0, samp0, img7
4721 *
4722 * VI:
4723 * The ANISO_OVERRIDE sampler field enables this fix in TA.
4724 */
4725 static LLVMValueRef sici_fix_sampler_aniso(struct ac_nir_context *ctx,
4726 LLVMValueRef res, LLVMValueRef samp)
4727 {
4728 LLVMBuilderRef builder = ctx->ac.builder;
4729 LLVMValueRef img7, samp0;
4730
4731 if (ctx->ac.chip_class >= VI)
4732 return samp;
4733
4734 img7 = LLVMBuildExtractElement(builder, res,
4735 LLVMConstInt(ctx->ac.i32, 7, 0), "");
4736 samp0 = LLVMBuildExtractElement(builder, samp,
4737 LLVMConstInt(ctx->ac.i32, 0, 0), "");
4738 samp0 = LLVMBuildAnd(builder, samp0, img7, "");
4739 return LLVMBuildInsertElement(builder, samp, samp0,
4740 LLVMConstInt(ctx->ac.i32, 0, 0), "");
4741 }
4742
4743 static void tex_fetch_ptrs(struct ac_nir_context *ctx,
4744 nir_tex_instr *instr,
4745 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
4746 LLVMValueRef *fmask_ptr)
4747 {
4748 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4749 *res_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_BUFFER, instr, false, false);
4750 else
4751 *res_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_IMAGE, instr, false, false);
4752 if (samp_ptr) {
4753 if (instr->sampler)
4754 *samp_ptr = get_sampler_desc(ctx, instr->sampler, AC_DESC_SAMPLER, instr, false, false);
4755 else
4756 *samp_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_SAMPLER, instr, false, false);
4757 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
4758 *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
4759 }
4760 if (fmask_ptr && !instr->sampler && (instr->op == nir_texop_txf_ms ||
4761 instr->op == nir_texop_samples_identical))
4762 *fmask_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_FMASK, instr, false, false);
4763 }
4764
4765 static LLVMValueRef apply_round_slice(struct ac_llvm_context *ctx,
4766 LLVMValueRef coord)
4767 {
4768 coord = ac_to_float(ctx, coord);
4769 coord = ac_build_intrinsic(ctx, "llvm.rint.f32", ctx->f32, &coord, 1, 0);
4770 coord = ac_to_integer(ctx, coord);
4771 return coord;
4772 }
4773
4774 static void visit_tex(struct ac_nir_context *ctx, nir_tex_instr *instr)
4775 {
4776 LLVMValueRef result = NULL;
4777 struct ac_image_args args = { 0 };
4778 unsigned dmask = 0xf;
4779 LLVMValueRef address[16];
4780 LLVMValueRef coords[5];
4781 LLVMValueRef coord = NULL, lod = NULL, comparator = NULL;
4782 LLVMValueRef bias = NULL, offsets = NULL;
4783 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL, sample_index = NULL;
4784 LLVMValueRef ddx = NULL, ddy = NULL;
4785 LLVMValueRef derivs[6];
4786 unsigned chan, count = 0;
4787 unsigned const_src = 0, num_deriv_comp = 0;
4788 bool lod_is_zero = false;
4789
4790 tex_fetch_ptrs(ctx, instr, &res_ptr, &samp_ptr, &fmask_ptr);
4791
4792 for (unsigned i = 0; i < instr->num_srcs; i++) {
4793 switch (instr->src[i].src_type) {
4794 case nir_tex_src_coord:
4795 coord = get_src(ctx, instr->src[i].src);
4796 break;
4797 case nir_tex_src_projector:
4798 break;
4799 case nir_tex_src_comparator:
4800 comparator = get_src(ctx, instr->src[i].src);
4801 break;
4802 case nir_tex_src_offset:
4803 offsets = get_src(ctx, instr->src[i].src);
4804 const_src = i;
4805 break;
4806 case nir_tex_src_bias:
4807 bias = get_src(ctx, instr->src[i].src);
4808 break;
4809 case nir_tex_src_lod: {
4810 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
4811
4812 if (val && val->i32[0] == 0)
4813 lod_is_zero = true;
4814 lod = get_src(ctx, instr->src[i].src);
4815 break;
4816 }
4817 case nir_tex_src_ms_index:
4818 sample_index = get_src(ctx, instr->src[i].src);
4819 break;
4820 case nir_tex_src_ms_mcs:
4821 break;
4822 case nir_tex_src_ddx:
4823 ddx = get_src(ctx, instr->src[i].src);
4824 num_deriv_comp = instr->src[i].src.ssa->num_components;
4825 break;
4826 case nir_tex_src_ddy:
4827 ddy = get_src(ctx, instr->src[i].src);
4828 break;
4829 case nir_tex_src_texture_offset:
4830 case nir_tex_src_sampler_offset:
4831 case nir_tex_src_plane:
4832 default:
4833 break;
4834 }
4835 }
4836
4837 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
4838 result = get_buffer_size(ctx, res_ptr, true);
4839 goto write_result;
4840 }
4841
4842 if (instr->op == nir_texop_texture_samples) {
4843 LLVMValueRef res, samples, is_msaa;
4844 res = LLVMBuildBitCast(ctx->ac.builder, res_ptr, ctx->ac.v8i32, "");
4845 samples = LLVMBuildExtractElement(ctx->ac.builder, res,
4846 LLVMConstInt(ctx->ac.i32, 3, false), "");
4847 is_msaa = LLVMBuildLShr(ctx->ac.builder, samples,
4848 LLVMConstInt(ctx->ac.i32, 28, false), "");
4849 is_msaa = LLVMBuildAnd(ctx->ac.builder, is_msaa,
4850 LLVMConstInt(ctx->ac.i32, 0xe, false), "");
4851 is_msaa = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, is_msaa,
4852 LLVMConstInt(ctx->ac.i32, 0xe, false), "");
4853
4854 samples = LLVMBuildLShr(ctx->ac.builder, samples,
4855 LLVMConstInt(ctx->ac.i32, 16, false), "");
4856 samples = LLVMBuildAnd(ctx->ac.builder, samples,
4857 LLVMConstInt(ctx->ac.i32, 0xf, false), "");
4858 samples = LLVMBuildShl(ctx->ac.builder, ctx->ac.i32_1,
4859 samples, "");
4860 samples = LLVMBuildSelect(ctx->ac.builder, is_msaa, samples,
4861 ctx->ac.i32_1, "");
4862 result = samples;
4863 goto write_result;
4864 }
4865
4866 if (coord)
4867 for (chan = 0; chan < instr->coord_components; chan++)
4868 coords[chan] = ac_llvm_extract_elem(&ctx->ac, coord, chan);
4869
4870 if (offsets && instr->op != nir_texop_txf) {
4871 LLVMValueRef offset[3], pack;
4872 for (chan = 0; chan < 3; ++chan)
4873 offset[chan] = ctx->ac.i32_0;
4874
4875 args.offset = true;
4876 for (chan = 0; chan < ac_get_llvm_num_components(offsets); chan++) {
4877 offset[chan] = ac_llvm_extract_elem(&ctx->ac, offsets, chan);
4878 offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
4879 LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
4880 if (chan)
4881 offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
4882 LLVMConstInt(ctx->ac.i32, chan * 8, false), "");
4883 }
4884 pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
4885 pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
4886 address[count++] = pack;
4887
4888 }
4889 /* pack LOD bias value */
4890 if (instr->op == nir_texop_txb && bias) {
4891 address[count++] = bias;
4892 }
4893
4894 /* Pack depth comparison value */
4895 if (instr->is_shadow && comparator) {
4896 LLVMValueRef z = ac_to_float(&ctx->ac,
4897 ac_llvm_extract_elem(&ctx->ac, comparator, 0));
4898
4899 /* TC-compatible HTILE on radeonsi promotes Z16 and Z24 to Z32_FLOAT,
4900 * so the depth comparison value isn't clamped for Z16 and
4901 * Z24 anymore. Do it manually here.
4902 *
4903 * It's unnecessary if the original texture format was
4904 * Z32_FLOAT, but we don't know that here.
4905 */
4906 if (ctx->ac.chip_class == VI && ctx->abi->clamp_shadow_reference)
4907 z = ac_build_clamp(&ctx->ac, z);
4908
4909 address[count++] = z;
4910 }
4911
4912 /* pack derivatives */
4913 if (ddx || ddy) {
4914 int num_src_deriv_channels, num_dest_deriv_channels;
4915 switch (instr->sampler_dim) {
4916 case GLSL_SAMPLER_DIM_3D:
4917 case GLSL_SAMPLER_DIM_CUBE:
4918 num_deriv_comp = 3;
4919 num_src_deriv_channels = 3;
4920 num_dest_deriv_channels = 3;
4921 break;
4922 case GLSL_SAMPLER_DIM_2D:
4923 default:
4924 num_src_deriv_channels = 2;
4925 num_dest_deriv_channels = 2;
4926 num_deriv_comp = 2;
4927 break;
4928 case GLSL_SAMPLER_DIM_1D:
4929 num_src_deriv_channels = 1;
4930 if (ctx->ac.chip_class >= GFX9) {
4931 num_dest_deriv_channels = 2;
4932 num_deriv_comp = 2;
4933 } else {
4934 num_dest_deriv_channels = 1;
4935 num_deriv_comp = 1;
4936 }
4937 break;
4938 }
4939
4940 for (unsigned i = 0; i < num_src_deriv_channels; i++) {
4941 derivs[i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddx, i));
4942 derivs[num_dest_deriv_channels + i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddy, i));
4943 }
4944 for (unsigned i = num_src_deriv_channels; i < num_dest_deriv_channels; i++) {
4945 derivs[i] = ctx->ac.f32_0;
4946 derivs[num_dest_deriv_channels + i] = ctx->ac.f32_0;
4947 }
4948 }
4949
4950 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && coord) {
4951 for (chan = 0; chan < instr->coord_components; chan++)
4952 coords[chan] = ac_to_float(&ctx->ac, coords[chan]);
4953 if (instr->coord_components == 3)
4954 coords[3] = LLVMGetUndef(ctx->ac.f32);
4955 ac_prepare_cube_coords(&ctx->ac,
4956 instr->op == nir_texop_txd, instr->is_array,
4957 instr->op == nir_texop_lod, coords, derivs);
4958 if (num_deriv_comp)
4959 num_deriv_comp--;
4960 }
4961
4962 if (ddx || ddy) {
4963 for (unsigned i = 0; i < num_deriv_comp * 2; i++)
4964 address[count++] = derivs[i];
4965 }
4966
4967 /* Pack texture coordinates */
4968 if (coord) {
4969 address[count++] = coords[0];
4970 if (instr->coord_components > 1) {
4971 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array && instr->op != nir_texop_txf) {
4972 coords[1] = apply_round_slice(&ctx->ac, coords[1]);
4973 }
4974 address[count++] = coords[1];
4975 }
4976 if (instr->coord_components > 2) {
4977 /* This seems like a bit of a hack - but it passes Vulkan CTS with it */
4978 if (instr->sampler_dim != GLSL_SAMPLER_DIM_3D &&
4979 instr->sampler_dim != GLSL_SAMPLER_DIM_CUBE &&
4980 instr->op != nir_texop_txf) {
4981 coords[2] = apply_round_slice(&ctx->ac, coords[2]);
4982 }
4983 address[count++] = coords[2];
4984 }
4985
4986 if (ctx->ac.chip_class >= GFX9) {
4987 LLVMValueRef filler;
4988 if (instr->op == nir_texop_txf)
4989 filler = ctx->ac.i32_0;
4990 else
4991 filler = LLVMConstReal(ctx->ac.f32, 0.5);
4992
4993 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D) {
4994 /* No nir_texop_lod, because it does not take a slice
4995 * even with array textures. */
4996 if (instr->is_array && instr->op != nir_texop_lod ) {
4997 address[count] = address[count - 1];
4998 address[count - 1] = filler;
4999 count++;
5000 } else
5001 address[count++] = filler;
5002 }
5003 }
5004 }
5005
5006 /* Pack LOD */
5007 if (lod && ((instr->op == nir_texop_txl && !lod_is_zero) ||
5008 instr->op == nir_texop_txf)) {
5009 address[count++] = lod;
5010 } else if (instr->op == nir_texop_txf_ms && sample_index) {
5011 address[count++] = sample_index;
5012 } else if(instr->op == nir_texop_txs) {
5013 count = 0;
5014 if (lod)
5015 address[count++] = lod;
5016 else
5017 address[count++] = ctx->ac.i32_0;
5018 }
5019
5020 for (chan = 0; chan < count; chan++) {
5021 address[chan] = LLVMBuildBitCast(ctx->ac.builder,
5022 address[chan], ctx->ac.i32, "");
5023 }
5024
5025 if (instr->op == nir_texop_samples_identical) {
5026 LLVMValueRef txf_address[4];
5027 struct ac_image_args txf_args = { 0 };
5028 unsigned txf_count = count;
5029 memcpy(txf_address, address, sizeof(txf_address));
5030
5031 if (!instr->is_array)
5032 txf_address[2] = ctx->ac.i32_0;
5033 txf_address[3] = ctx->ac.i32_0;
5034
5035 set_tex_fetch_args(&ctx->ac, &txf_args, instr, nir_texop_txf,
5036 fmask_ptr, NULL,
5037 txf_address, txf_count, 0xf);
5038
5039 result = build_tex_intrinsic(ctx, instr, false, &txf_args);
5040
5041 result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
5042 result = emit_int_cmp(&ctx->ac, LLVMIntEQ, result, ctx->ac.i32_0);
5043 goto write_result;
5044 }
5045
5046 if (instr->sampler_dim == GLSL_SAMPLER_DIM_MS &&
5047 instr->op != nir_texop_txs) {
5048 unsigned sample_chan = instr->is_array ? 3 : 2;
5049 address[sample_chan] = adjust_sample_index_using_fmask(&ctx->ac,
5050 address[0],
5051 address[1],
5052 instr->is_array ? address[2] : NULL,
5053 address[sample_chan],
5054 fmask_ptr);
5055 }
5056
5057 if (offsets && instr->op == nir_texop_txf) {
5058 nir_const_value *const_offset =
5059 nir_src_as_const_value(instr->src[const_src].src);
5060 int num_offsets = instr->src[const_src].src.ssa->num_components;
5061 assert(const_offset);
5062 num_offsets = MIN2(num_offsets, instr->coord_components);
5063 if (num_offsets > 2)
5064 address[2] = LLVMBuildAdd(ctx->ac.builder,
5065 address[2], LLVMConstInt(ctx->ac.i32, const_offset->i32[2], false), "");
5066 if (num_offsets > 1)
5067 address[1] = LLVMBuildAdd(ctx->ac.builder,
5068 address[1], LLVMConstInt(ctx->ac.i32, const_offset->i32[1], false), "");
5069 address[0] = LLVMBuildAdd(ctx->ac.builder,
5070 address[0], LLVMConstInt(ctx->ac.i32, const_offset->i32[0], false), "");
5071
5072 }
5073
5074 /* TODO TG4 support */
5075 if (instr->op == nir_texop_tg4) {
5076 if (instr->is_shadow)
5077 dmask = 1;
5078 else
5079 dmask = 1 << instr->component;
5080 }
5081 set_tex_fetch_args(&ctx->ac, &args, instr, instr->op,
5082 res_ptr, samp_ptr, address, count, dmask);
5083
5084 result = build_tex_intrinsic(ctx, instr, lod_is_zero, &args);
5085
5086 if (instr->op == nir_texop_query_levels)
5087 result = LLVMBuildExtractElement(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 3, false), "");
5088 else if (instr->is_shadow && instr->is_new_style_shadow &&
5089 instr->op != nir_texop_txs && instr->op != nir_texop_lod &&
5090 instr->op != nir_texop_tg4)
5091 result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
5092 else if (instr->op == nir_texop_txs &&
5093 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
5094 instr->is_array) {
5095 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
5096 LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
5097 LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
5098 z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
5099 result = LLVMBuildInsertElement(ctx->ac.builder, result, z, two, "");
5100 } else if (ctx->ac.chip_class >= GFX9 &&
5101 instr->op == nir_texop_txs &&
5102 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
5103 instr->is_array) {
5104 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
5105 LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
5106 result = LLVMBuildInsertElement(ctx->ac.builder, result, layers,
5107 ctx->ac.i32_1, "");
5108 } else if (instr->dest.ssa.num_components != 4)
5109 result = trim_vector(&ctx->ac, result, instr->dest.ssa.num_components);
5110
5111 write_result:
5112 if (result) {
5113 assert(instr->dest.is_ssa);
5114 result = ac_to_integer(&ctx->ac, result);
5115 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
5116 }
5117 }
5118
5119
5120 static void visit_phi(struct ac_nir_context *ctx, nir_phi_instr *instr)
5121 {
5122 LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
5123 LLVMValueRef result = LLVMBuildPhi(ctx->ac.builder, type, "");
5124
5125 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
5126 _mesa_hash_table_insert(ctx->phis, instr, result);
5127 }
5128
5129 static void visit_post_phi(struct ac_nir_context *ctx,
5130 nir_phi_instr *instr,
5131 LLVMValueRef llvm_phi)
5132 {
5133 nir_foreach_phi_src(src, instr) {
5134 LLVMBasicBlockRef block = get_block(ctx, src->pred);
5135 LLVMValueRef llvm_src = get_src(ctx, src->src);
5136
5137 LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
5138 }
5139 }
5140
5141 static void phi_post_pass(struct ac_nir_context *ctx)
5142 {
5143 struct hash_entry *entry;
5144 hash_table_foreach(ctx->phis, entry) {
5145 visit_post_phi(ctx, (nir_phi_instr*)entry->key,
5146 (LLVMValueRef)entry->data);
5147 }
5148 }
5149
5150
5151 static void visit_ssa_undef(struct ac_nir_context *ctx,
5152 const nir_ssa_undef_instr *instr)
5153 {
5154 unsigned num_components = instr->def.num_components;
5155 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
5156 LLVMValueRef undef;
5157
5158 if (num_components == 1)
5159 undef = LLVMGetUndef(type);
5160 else {
5161 undef = LLVMGetUndef(LLVMVectorType(type, num_components));
5162 }
5163 _mesa_hash_table_insert(ctx->defs, &instr->def, undef);
5164 }
5165
5166 static void visit_jump(struct ac_nir_context *ctx,
5167 const nir_jump_instr *instr)
5168 {
5169 switch (instr->type) {
5170 case nir_jump_break:
5171 LLVMBuildBr(ctx->ac.builder, ctx->break_block);
5172 LLVMClearInsertionPosition(ctx->ac.builder);
5173 break;
5174 case nir_jump_continue:
5175 LLVMBuildBr(ctx->ac.builder, ctx->continue_block);
5176 LLVMClearInsertionPosition(ctx->ac.builder);
5177 break;
5178 default:
5179 fprintf(stderr, "Unknown NIR jump instr: ");
5180 nir_print_instr(&instr->instr, stderr);
5181 fprintf(stderr, "\n");
5182 abort();
5183 }
5184 }
5185
5186 static void visit_cf_list(struct ac_nir_context *ctx,
5187 struct exec_list *list);
5188
5189 static void visit_block(struct ac_nir_context *ctx, nir_block *block)
5190 {
5191 LLVMBasicBlockRef llvm_block = LLVMGetInsertBlock(ctx->ac.builder);
5192 nir_foreach_instr(instr, block)
5193 {
5194 switch (instr->type) {
5195 case nir_instr_type_alu:
5196 visit_alu(ctx, nir_instr_as_alu(instr));
5197 break;
5198 case nir_instr_type_load_const:
5199 visit_load_const(ctx, nir_instr_as_load_const(instr));
5200 break;
5201 case nir_instr_type_intrinsic:
5202 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
5203 break;
5204 case nir_instr_type_tex:
5205 visit_tex(ctx, nir_instr_as_tex(instr));
5206 break;
5207 case nir_instr_type_phi:
5208 visit_phi(ctx, nir_instr_as_phi(instr));
5209 break;
5210 case nir_instr_type_ssa_undef:
5211 visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
5212 break;
5213 case nir_instr_type_jump:
5214 visit_jump(ctx, nir_instr_as_jump(instr));
5215 break;
5216 default:
5217 fprintf(stderr, "Unknown NIR instr type: ");
5218 nir_print_instr(instr, stderr);
5219 fprintf(stderr, "\n");
5220 abort();
5221 }
5222 }
5223
5224 _mesa_hash_table_insert(ctx->defs, block, llvm_block);
5225 }
5226
5227 static void visit_if(struct ac_nir_context *ctx, nir_if *if_stmt)
5228 {
5229 LLVMValueRef value = get_src(ctx, if_stmt->condition);
5230
5231 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
5232 LLVMBasicBlockRef merge_block =
5233 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5234 LLVMBasicBlockRef if_block =
5235 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5236 LLVMBasicBlockRef else_block = merge_block;
5237 if (!exec_list_is_empty(&if_stmt->else_list))
5238 else_block = LLVMAppendBasicBlockInContext(
5239 ctx->ac.context, fn, "");
5240
5241 LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, value,
5242 ctx->ac.i32_0, "");
5243 LLVMBuildCondBr(ctx->ac.builder, cond, if_block, else_block);
5244
5245 LLVMPositionBuilderAtEnd(ctx->ac.builder, if_block);
5246 visit_cf_list(ctx, &if_stmt->then_list);
5247 if (LLVMGetInsertBlock(ctx->ac.builder))
5248 LLVMBuildBr(ctx->ac.builder, merge_block);
5249
5250 if (!exec_list_is_empty(&if_stmt->else_list)) {
5251 LLVMPositionBuilderAtEnd(ctx->ac.builder, else_block);
5252 visit_cf_list(ctx, &if_stmt->else_list);
5253 if (LLVMGetInsertBlock(ctx->ac.builder))
5254 LLVMBuildBr(ctx->ac.builder, merge_block);
5255 }
5256
5257 LLVMPositionBuilderAtEnd(ctx->ac.builder, merge_block);
5258 }
5259
5260 static void visit_loop(struct ac_nir_context *ctx, nir_loop *loop)
5261 {
5262 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
5263 LLVMBasicBlockRef continue_parent = ctx->continue_block;
5264 LLVMBasicBlockRef break_parent = ctx->break_block;
5265
5266 ctx->continue_block =
5267 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5268 ctx->break_block =
5269 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5270
5271 LLVMBuildBr(ctx->ac.builder, ctx->continue_block);
5272 LLVMPositionBuilderAtEnd(ctx->ac.builder, ctx->continue_block);
5273 visit_cf_list(ctx, &loop->body);
5274
5275 if (LLVMGetInsertBlock(ctx->ac.builder))
5276 LLVMBuildBr(ctx->ac.builder, ctx->continue_block);
5277 LLVMPositionBuilderAtEnd(ctx->ac.builder, ctx->break_block);
5278
5279 ctx->continue_block = continue_parent;
5280 ctx->break_block = break_parent;
5281 }
5282
5283 static void visit_cf_list(struct ac_nir_context *ctx,
5284 struct exec_list *list)
5285 {
5286 foreach_list_typed(nir_cf_node, node, node, list)
5287 {
5288 switch (node->type) {
5289 case nir_cf_node_block:
5290 visit_block(ctx, nir_cf_node_as_block(node));
5291 break;
5292
5293 case nir_cf_node_if:
5294 visit_if(ctx, nir_cf_node_as_if(node));
5295 break;
5296
5297 case nir_cf_node_loop:
5298 visit_loop(ctx, nir_cf_node_as_loop(node));
5299 break;
5300
5301 default:
5302 assert(0);
5303 }
5304 }
5305 }
5306
5307 static void
5308 handle_vs_input_decl(struct nir_to_llvm_context *ctx,
5309 struct nir_variable *variable)
5310 {
5311 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
5312 LLVMValueRef t_offset;
5313 LLVMValueRef t_list;
5314 LLVMValueRef input;
5315 LLVMValueRef buffer_index;
5316 int index = variable->data.location - VERT_ATTRIB_GENERIC0;
5317 int idx = variable->data.location;
5318 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
5319
5320 variable->data.driver_location = idx * 4;
5321
5322 for (unsigned i = 0; i < attrib_count; ++i, ++idx) {
5323 if (ctx->options->key.vs.instance_rate_inputs & (1u << (index + i))) {
5324 buffer_index = LLVMBuildAdd(ctx->builder, ctx->abi.instance_id,
5325 ctx->abi.start_instance, "");
5326 if (ctx->options->key.vs.as_ls) {
5327 ctx->shader_info->vs.vgpr_comp_cnt =
5328 MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt);
5329 } else {
5330 ctx->shader_info->vs.vgpr_comp_cnt =
5331 MAX2(1, ctx->shader_info->vs.vgpr_comp_cnt);
5332 }
5333 } else
5334 buffer_index = LLVMBuildAdd(ctx->builder, ctx->abi.vertex_id,
5335 ctx->abi.base_vertex, "");
5336 t_offset = LLVMConstInt(ctx->ac.i32, index + i, false);
5337
5338 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
5339
5340 input = ac_build_buffer_load_format(&ctx->ac, t_list,
5341 buffer_index,
5342 ctx->ac.i32_0,
5343 4, false, true);
5344
5345 for (unsigned chan = 0; chan < 4; chan++) {
5346 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
5347 ctx->inputs[radeon_llvm_reg_index_soa(idx, chan)] =
5348 ac_to_integer(&ctx->ac, LLVMBuildExtractElement(ctx->builder,
5349 input, llvm_chan, ""));
5350 }
5351 }
5352 }
5353
5354 static void interp_fs_input(struct nir_to_llvm_context *ctx,
5355 unsigned attr,
5356 LLVMValueRef interp_param,
5357 LLVMValueRef prim_mask,
5358 LLVMValueRef result[4])
5359 {
5360 LLVMValueRef attr_number;
5361 unsigned chan;
5362 LLVMValueRef i, j;
5363 bool interp = interp_param != NULL;
5364
5365 attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
5366
5367 /* fs.constant returns the param from the middle vertex, so it's not
5368 * really useful for flat shading. It's meant to be used for custom
5369 * interpolation (but the intrinsic can't fetch from the other two
5370 * vertices).
5371 *
5372 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
5373 * to do the right thing. The only reason we use fs.constant is that
5374 * fs.interp cannot be used on integers, because they can be equal
5375 * to NaN.
5376 */
5377 if (interp) {
5378 interp_param = LLVMBuildBitCast(ctx->builder, interp_param,
5379 ctx->ac.v2f32, "");
5380
5381 i = LLVMBuildExtractElement(ctx->builder, interp_param,
5382 ctx->ac.i32_0, "");
5383 j = LLVMBuildExtractElement(ctx->builder, interp_param,
5384 ctx->ac.i32_1, "");
5385 }
5386
5387 for (chan = 0; chan < 4; chan++) {
5388 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
5389
5390 if (interp) {
5391 result[chan] = ac_build_fs_interp(&ctx->ac,
5392 llvm_chan,
5393 attr_number,
5394 prim_mask, i, j);
5395 } else {
5396 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
5397 LLVMConstInt(ctx->ac.i32, 2, false),
5398 llvm_chan,
5399 attr_number,
5400 prim_mask);
5401 }
5402 }
5403 }
5404
5405 static void
5406 handle_fs_input_decl(struct nir_to_llvm_context *ctx,
5407 struct nir_variable *variable)
5408 {
5409 int idx = variable->data.location;
5410 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5411 LLVMValueRef interp;
5412
5413 variable->data.driver_location = idx * 4;
5414 ctx->input_mask |= ((1ull << attrib_count) - 1) << variable->data.location;
5415
5416 if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) {
5417 unsigned interp_type;
5418 if (variable->data.sample) {
5419 interp_type = INTERP_SAMPLE;
5420 ctx->shader_info->info.ps.force_persample = true;
5421 } else if (variable->data.centroid)
5422 interp_type = INTERP_CENTROID;
5423 else
5424 interp_type = INTERP_CENTER;
5425
5426 interp = lookup_interp_param(&ctx->abi, variable->data.interpolation, interp_type);
5427 } else
5428 interp = NULL;
5429
5430 for (unsigned i = 0; i < attrib_count; ++i)
5431 ctx->inputs[radeon_llvm_reg_index_soa(idx + i, 0)] = interp;
5432
5433 }
5434
5435 static void
5436 handle_vs_inputs(struct nir_to_llvm_context *ctx,
5437 struct nir_shader *nir) {
5438 nir_foreach_variable(variable, &nir->inputs)
5439 handle_vs_input_decl(ctx, variable);
5440 }
5441
5442 static void
5443 prepare_interp_optimize(struct nir_to_llvm_context *ctx,
5444 struct nir_shader *nir)
5445 {
5446 if (!ctx->options->key.fs.multisample)
5447 return;
5448
5449 bool uses_center = false;
5450 bool uses_centroid = false;
5451 nir_foreach_variable(variable, &nir->inputs) {
5452 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
5453 variable->data.sample)
5454 continue;
5455
5456 if (variable->data.centroid)
5457 uses_centroid = true;
5458 else
5459 uses_center = true;
5460 }
5461
5462 if (uses_center && uses_centroid) {
5463 LLVMValueRef sel = LLVMBuildICmp(ctx->builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
5464 ctx->persp_centroid = LLVMBuildSelect(ctx->builder, sel, ctx->persp_center, ctx->persp_centroid, "");
5465 ctx->linear_centroid = LLVMBuildSelect(ctx->builder, sel, ctx->linear_center, ctx->linear_centroid, "");
5466 }
5467 }
5468
5469 static void
5470 handle_fs_inputs(struct nir_to_llvm_context *ctx,
5471 struct nir_shader *nir)
5472 {
5473 prepare_interp_optimize(ctx, nir);
5474
5475 nir_foreach_variable(variable, &nir->inputs)
5476 handle_fs_input_decl(ctx, variable);
5477
5478 unsigned index = 0;
5479
5480 if (ctx->shader_info->info.ps.uses_input_attachments ||
5481 ctx->shader_info->info.needs_multiview_view_index)
5482 ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
5483
5484 for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
5485 LLVMValueRef interp_param;
5486 LLVMValueRef *inputs = ctx->inputs +radeon_llvm_reg_index_soa(i, 0);
5487
5488 if (!(ctx->input_mask & (1ull << i)))
5489 continue;
5490
5491 if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
5492 i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
5493 interp_param = *inputs;
5494 interp_fs_input(ctx, index, interp_param, ctx->abi.prim_mask,
5495 inputs);
5496
5497 if (!interp_param)
5498 ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
5499 ++index;
5500 } else if (i == VARYING_SLOT_POS) {
5501 for(int i = 0; i < 3; ++i)
5502 inputs[i] = ctx->abi.frag_pos[i];
5503
5504 inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
5505 ctx->abi.frag_pos[3]);
5506 }
5507 }
5508 ctx->shader_info->fs.num_interp = index;
5509 if (ctx->input_mask & (1 << VARYING_SLOT_PNTC))
5510 ctx->shader_info->fs.has_pcoord = true;
5511 if (ctx->input_mask & (1 << VARYING_SLOT_PRIMITIVE_ID))
5512 ctx->shader_info->fs.prim_id_input = true;
5513 if (ctx->input_mask & (1 << VARYING_SLOT_LAYER))
5514 ctx->shader_info->fs.layer_input = true;
5515 ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
5516
5517 if (ctx->shader_info->info.needs_multiview_view_index)
5518 ctx->view_index = ctx->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
5519 }
5520
5521 static LLVMValueRef
5522 ac_build_alloca(struct ac_llvm_context *ac,
5523 LLVMTypeRef type,
5524 const char *name)
5525 {
5526 LLVMBuilderRef builder = ac->builder;
5527 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
5528 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
5529 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
5530 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
5531 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context);
5532 LLVMValueRef res;
5533
5534 if (first_instr) {
5535 LLVMPositionBuilderBefore(first_builder, first_instr);
5536 } else {
5537 LLVMPositionBuilderAtEnd(first_builder, first_block);
5538 }
5539
5540 res = LLVMBuildAlloca(first_builder, type, name);
5541 LLVMBuildStore(builder, LLVMConstNull(type), res);
5542
5543 LLVMDisposeBuilder(first_builder);
5544
5545 return res;
5546 }
5547
5548 static LLVMValueRef si_build_alloca_undef(struct ac_llvm_context *ac,
5549 LLVMTypeRef type,
5550 const char *name)
5551 {
5552 LLVMValueRef ptr = ac_build_alloca(ac, type, name);
5553 LLVMBuildStore(ac->builder, LLVMGetUndef(type), ptr);
5554 return ptr;
5555 }
5556
5557 static void
5558 scan_shader_output_decl(struct nir_to_llvm_context *ctx,
5559 struct nir_variable *variable,
5560 struct nir_shader *shader,
5561 gl_shader_stage stage)
5562 {
5563 int idx = variable->data.location + variable->data.index;
5564 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5565 uint64_t mask_attribs;
5566
5567 variable->data.driver_location = idx * 4;
5568
5569 /* tess ctrl has it's own load/store paths for outputs */
5570 if (stage == MESA_SHADER_TESS_CTRL)
5571 return;
5572
5573 mask_attribs = ((1ull << attrib_count) - 1) << idx;
5574 if (stage == MESA_SHADER_VERTEX ||
5575 stage == MESA_SHADER_TESS_EVAL ||
5576 stage == MESA_SHADER_GEOMETRY) {
5577 if (idx == VARYING_SLOT_CLIP_DIST0) {
5578 int length = shader->info.clip_distance_array_size +
5579 shader->info.cull_distance_array_size;
5580 if (stage == MESA_SHADER_VERTEX) {
5581 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
5582 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
5583 }
5584 if (stage == MESA_SHADER_TESS_EVAL) {
5585 ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
5586 ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
5587 }
5588
5589 if (length > 4)
5590 attrib_count = 2;
5591 else
5592 attrib_count = 1;
5593 mask_attribs = 1ull << idx;
5594 }
5595 }
5596
5597 ctx->output_mask |= mask_attribs;
5598 }
5599
5600 static void
5601 handle_shader_output_decl(struct ac_nir_context *ctx,
5602 struct nir_shader *nir,
5603 struct nir_variable *variable)
5604 {
5605 unsigned output_loc = variable->data.driver_location / 4;
5606 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5607
5608 /* tess ctrl has it's own load/store paths for outputs */
5609 if (ctx->stage == MESA_SHADER_TESS_CTRL)
5610 return;
5611
5612 if (ctx->stage == MESA_SHADER_VERTEX ||
5613 ctx->stage == MESA_SHADER_TESS_EVAL ||
5614 ctx->stage == MESA_SHADER_GEOMETRY) {
5615 int idx = variable->data.location + variable->data.index;
5616 if (idx == VARYING_SLOT_CLIP_DIST0) {
5617 int length = nir->info.clip_distance_array_size +
5618 nir->info.cull_distance_array_size;
5619
5620 if (length > 4)
5621 attrib_count = 2;
5622 else
5623 attrib_count = 1;
5624 }
5625 }
5626
5627 for (unsigned i = 0; i < attrib_count; ++i) {
5628 for (unsigned chan = 0; chan < 4; chan++) {
5629 ctx->outputs[radeon_llvm_reg_index_soa(output_loc + i, chan)] =
5630 si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
5631 }
5632 }
5633 }
5634
5635 static LLVMTypeRef
5636 glsl_base_to_llvm_type(struct nir_to_llvm_context *ctx,
5637 enum glsl_base_type type)
5638 {
5639 switch (type) {
5640 case GLSL_TYPE_INT:
5641 case GLSL_TYPE_UINT:
5642 case GLSL_TYPE_BOOL:
5643 case GLSL_TYPE_SUBROUTINE:
5644 return ctx->ac.i32;
5645 case GLSL_TYPE_FLOAT: /* TODO handle mediump */
5646 return ctx->ac.f32;
5647 case GLSL_TYPE_INT64:
5648 case GLSL_TYPE_UINT64:
5649 return ctx->ac.i64;
5650 case GLSL_TYPE_DOUBLE:
5651 return ctx->ac.f64;
5652 default:
5653 unreachable("unknown GLSL type");
5654 }
5655 }
5656
5657 static LLVMTypeRef
5658 glsl_to_llvm_type(struct nir_to_llvm_context *ctx,
5659 const struct glsl_type *type)
5660 {
5661 if (glsl_type_is_scalar(type)) {
5662 return glsl_base_to_llvm_type(ctx, glsl_get_base_type(type));
5663 }
5664
5665 if (glsl_type_is_vector(type)) {
5666 return LLVMVectorType(
5667 glsl_base_to_llvm_type(ctx, glsl_get_base_type(type)),
5668 glsl_get_vector_elements(type));
5669 }
5670
5671 if (glsl_type_is_matrix(type)) {
5672 return LLVMArrayType(
5673 glsl_to_llvm_type(ctx, glsl_get_column_type(type)),
5674 glsl_get_matrix_columns(type));
5675 }
5676
5677 if (glsl_type_is_array(type)) {
5678 return LLVMArrayType(
5679 glsl_to_llvm_type(ctx, glsl_get_array_element(type)),
5680 glsl_get_length(type));
5681 }
5682
5683 assert(glsl_type_is_struct(type));
5684
5685 LLVMTypeRef member_types[glsl_get_length(type)];
5686
5687 for (unsigned i = 0; i < glsl_get_length(type); i++) {
5688 member_types[i] =
5689 glsl_to_llvm_type(ctx,
5690 glsl_get_struct_field(type, i));
5691 }
5692
5693 return LLVMStructTypeInContext(ctx->context, member_types,
5694 glsl_get_length(type), false);
5695 }
5696
5697 static void
5698 setup_locals(struct ac_nir_context *ctx,
5699 struct nir_function *func)
5700 {
5701 int i, j;
5702 ctx->num_locals = 0;
5703 nir_foreach_variable(variable, &func->impl->locals) {
5704 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5705 variable->data.driver_location = ctx->num_locals * 4;
5706 variable->data.location_frac = 0;
5707 ctx->num_locals += attrib_count;
5708 }
5709 ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef));
5710 if (!ctx->locals)
5711 return;
5712
5713 for (i = 0; i < ctx->num_locals; i++) {
5714 for (j = 0; j < 4; j++) {
5715 ctx->locals[i * 4 + j] =
5716 si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "temp");
5717 }
5718 }
5719 }
5720
5721 static void
5722 setup_shared(struct ac_nir_context *ctx,
5723 struct nir_shader *nir)
5724 {
5725 nir_foreach_variable(variable, &nir->shared) {
5726 LLVMValueRef shared =
5727 LLVMAddGlobalInAddressSpace(
5728 ctx->ac.module, glsl_to_llvm_type(ctx->nctx, variable->type),
5729 variable->name ? variable->name : "",
5730 AC_LOCAL_ADDR_SPACE);
5731 _mesa_hash_table_insert(ctx->vars, variable, shared);
5732 }
5733 }
5734
5735 static LLVMValueRef
5736 emit_float_saturate(struct ac_llvm_context *ctx, LLVMValueRef v, float lo, float hi)
5737 {
5738 v = ac_to_float(ctx, v);
5739 v = emit_intrin_2f_param(ctx, "llvm.maxnum", ctx->f32, v, LLVMConstReal(ctx->f32, lo));
5740 return emit_intrin_2f_param(ctx, "llvm.minnum", ctx->f32, v, LLVMConstReal(ctx->f32, hi));
5741 }
5742
5743
5744 static LLVMValueRef emit_pack_int16(struct nir_to_llvm_context *ctx,
5745 LLVMValueRef src0, LLVMValueRef src1)
5746 {
5747 LLVMValueRef const16 = LLVMConstInt(ctx->ac.i32, 16, false);
5748 LLVMValueRef comp[2];
5749
5750 comp[0] = LLVMBuildAnd(ctx->builder, src0, LLVMConstInt(ctx->ac.i32, 65535, 0), "");
5751 comp[1] = LLVMBuildAnd(ctx->builder, src1, LLVMConstInt(ctx->ac.i32, 65535, 0), "");
5752 comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, "");
5753 return LLVMBuildOr(ctx->builder, comp[0], comp[1], "");
5754 }
5755
5756 /* Initialize arguments for the shader export intrinsic */
5757 static void
5758 si_llvm_init_export_args(struct nir_to_llvm_context *ctx,
5759 LLVMValueRef *values,
5760 unsigned target,
5761 struct ac_export_args *args)
5762 {
5763 /* Default is 0xf. Adjusted below depending on the format. */
5764 args->enabled_channels = 0xf;
5765
5766 /* Specify whether the EXEC mask represents the valid mask */
5767 args->valid_mask = 0;
5768
5769 /* Specify whether this is the last export */
5770 args->done = 0;
5771
5772 /* Specify the target we are exporting */
5773 args->target = target;
5774
5775 args->compr = false;
5776 args->out[0] = LLVMGetUndef(ctx->ac.f32);
5777 args->out[1] = LLVMGetUndef(ctx->ac.f32);
5778 args->out[2] = LLVMGetUndef(ctx->ac.f32);
5779 args->out[3] = LLVMGetUndef(ctx->ac.f32);
5780
5781 if (!values)
5782 return;
5783
5784 if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) {
5785 LLVMValueRef val[4];
5786 unsigned index = target - V_008DFC_SQ_EXP_MRT;
5787 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
5788 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
5789 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
5790
5791 switch(col_format) {
5792 case V_028714_SPI_SHADER_ZERO:
5793 args->enabled_channels = 0; /* writemask */
5794 args->target = V_008DFC_SQ_EXP_NULL;
5795 break;
5796
5797 case V_028714_SPI_SHADER_32_R:
5798 args->enabled_channels = 1;
5799 args->out[0] = values[0];
5800 break;
5801
5802 case V_028714_SPI_SHADER_32_GR:
5803 args->enabled_channels = 0x3;
5804 args->out[0] = values[0];
5805 args->out[1] = values[1];
5806 break;
5807
5808 case V_028714_SPI_SHADER_32_AR:
5809 args->enabled_channels = 0x9;
5810 args->out[0] = values[0];
5811 args->out[3] = values[3];
5812 break;
5813
5814 case V_028714_SPI_SHADER_FP16_ABGR:
5815 args->compr = 1;
5816
5817 for (unsigned chan = 0; chan < 2; chan++) {
5818 LLVMValueRef pack_args[2] = {
5819 values[2 * chan],
5820 values[2 * chan + 1]
5821 };
5822 LLVMValueRef packed;
5823
5824 packed = ac_build_cvt_pkrtz_f16(&ctx->ac, pack_args);
5825 args->out[chan] = packed;
5826 }
5827 break;
5828
5829 case V_028714_SPI_SHADER_UNORM16_ABGR:
5830 for (unsigned chan = 0; chan < 4; chan++) {
5831 val[chan] = ac_build_clamp(&ctx->ac, values[chan]);
5832 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
5833 LLVMConstReal(ctx->ac.f32, 65535), "");
5834 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
5835 LLVMConstReal(ctx->ac.f32, 0.5), "");
5836 val[chan] = LLVMBuildFPToUI(ctx->builder, val[chan],
5837 ctx->ac.i32, "");
5838 }
5839
5840 args->compr = 1;
5841 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5842 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5843 break;
5844
5845 case V_028714_SPI_SHADER_SNORM16_ABGR:
5846 for (unsigned chan = 0; chan < 4; chan++) {
5847 val[chan] = emit_float_saturate(&ctx->ac, values[chan], -1, 1);
5848 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
5849 LLVMConstReal(ctx->ac.f32, 32767), "");
5850
5851 /* If positive, add 0.5, else add -0.5. */
5852 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
5853 LLVMBuildSelect(ctx->builder,
5854 LLVMBuildFCmp(ctx->builder, LLVMRealOGE,
5855 val[chan], ctx->ac.f32_0, ""),
5856 LLVMConstReal(ctx->ac.f32, 0.5),
5857 LLVMConstReal(ctx->ac.f32, -0.5), ""), "");
5858 val[chan] = LLVMBuildFPToSI(ctx->builder, val[chan], ctx->ac.i32, "");
5859 }
5860
5861 args->compr = 1;
5862 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5863 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5864 break;
5865
5866 case V_028714_SPI_SHADER_UINT16_ABGR: {
5867 LLVMValueRef max_rgb = LLVMConstInt(ctx->ac.i32,
5868 is_int8 ? 255 : is_int10 ? 1023 : 65535, 0);
5869 LLVMValueRef max_alpha = !is_int10 ? max_rgb : LLVMConstInt(ctx->ac.i32, 3, 0);
5870
5871 for (unsigned chan = 0; chan < 4; chan++) {
5872 val[chan] = ac_to_integer(&ctx->ac, values[chan]);
5873 val[chan] = emit_minmax_int(&ctx->ac, LLVMIntULT, val[chan], chan == 3 ? max_alpha : max_rgb);
5874 }
5875
5876 args->compr = 1;
5877 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5878 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5879 break;
5880 }
5881
5882 case V_028714_SPI_SHADER_SINT16_ABGR: {
5883 LLVMValueRef max_rgb = LLVMConstInt(ctx->ac.i32,
5884 is_int8 ? 127 : is_int10 ? 511 : 32767, 0);
5885 LLVMValueRef min_rgb = LLVMConstInt(ctx->ac.i32,
5886 is_int8 ? -128 : is_int10 ? -512 : -32768, 0);
5887 LLVMValueRef max_alpha = !is_int10 ? max_rgb : ctx->ac.i32_1;
5888 LLVMValueRef min_alpha = !is_int10 ? min_rgb : LLVMConstInt(ctx->ac.i32, -2, 0);
5889
5890 /* Clamp. */
5891 for (unsigned chan = 0; chan < 4; chan++) {
5892 val[chan] = ac_to_integer(&ctx->ac, values[chan]);
5893 val[chan] = emit_minmax_int(&ctx->ac, LLVMIntSLT, val[chan], chan == 3 ? max_alpha : max_rgb);
5894 val[chan] = emit_minmax_int(&ctx->ac, LLVMIntSGT, val[chan], chan == 3 ? min_alpha : min_rgb);
5895 }
5896
5897 args->compr = 1;
5898 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5899 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5900 break;
5901 }
5902
5903 default:
5904 case V_028714_SPI_SHADER_32_ABGR:
5905 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
5906 break;
5907 }
5908 } else
5909 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
5910
5911 for (unsigned i = 0; i < 4; ++i)
5912 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
5913 }
5914
5915 static void
5916 handle_vs_outputs_post(struct nir_to_llvm_context *ctx,
5917 bool export_prim_id,
5918 struct ac_vs_output_info *outinfo)
5919 {
5920 uint32_t param_count = 0;
5921 unsigned target;
5922 unsigned pos_idx, num_pos_exports = 0;
5923 struct ac_export_args args, pos_args[4] = {};
5924 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
5925 int i;
5926
5927 if (ctx->options->key.has_multiview_view_index) {
5928 LLVMValueRef* tmp_out = &ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
5929 if(!*tmp_out) {
5930 for(unsigned i = 0; i < 4; ++i)
5931 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
5932 si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
5933 }
5934
5935 LLVMBuildStore(ctx->builder, ac_to_float(&ctx->ac, ctx->view_index), *tmp_out);
5936 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
5937 }
5938
5939 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
5940 sizeof(outinfo->vs_output_param_offset));
5941
5942 if (ctx->output_mask & (1ull << VARYING_SLOT_CLIP_DIST0)) {
5943 LLVMValueRef slots[8];
5944 unsigned j;
5945
5946 if (outinfo->cull_dist_mask)
5947 outinfo->cull_dist_mask <<= ctx->num_output_clips;
5948
5949 i = VARYING_SLOT_CLIP_DIST0;
5950 for (j = 0; j < ctx->num_output_clips + ctx->num_output_culls; j++)
5951 slots[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
5952 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
5953
5954 for (i = ctx->num_output_clips + ctx->num_output_culls; i < 8; i++)
5955 slots[i] = LLVMGetUndef(ctx->ac.f32);
5956
5957 if (ctx->num_output_clips + ctx->num_output_culls > 4) {
5958 target = V_008DFC_SQ_EXP_POS + 3;
5959 si_llvm_init_export_args(ctx, &slots[4], target, &args);
5960 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
5961 &args, sizeof(args));
5962 }
5963
5964 target = V_008DFC_SQ_EXP_POS + 2;
5965 si_llvm_init_export_args(ctx, &slots[0], target, &args);
5966 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
5967 &args, sizeof(args));
5968
5969 }
5970
5971 LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
5972 if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
5973 for (unsigned j = 0; j < 4; j++)
5974 pos_values[j] = LLVMBuildLoad(ctx->builder,
5975 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_POS, j)], "");
5976 }
5977 si_llvm_init_export_args(ctx, pos_values, V_008DFC_SQ_EXP_POS, &pos_args[0]);
5978
5979 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
5980 outinfo->writes_pointsize = true;
5981 psize_value = LLVMBuildLoad(ctx->builder,
5982 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_PSIZ, 0)], "");
5983 }
5984
5985 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
5986 outinfo->writes_layer = true;
5987 layer_value = LLVMBuildLoad(ctx->builder,
5988 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)], "");
5989 }
5990
5991 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
5992 outinfo->writes_viewport_index = true;
5993 viewport_index_value = LLVMBuildLoad(ctx->builder,
5994 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_VIEWPORT, 0)], "");
5995 }
5996
5997 if (outinfo->writes_pointsize ||
5998 outinfo->writes_layer ||
5999 outinfo->writes_viewport_index) {
6000 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
6001 (outinfo->writes_layer == true ? 4 : 0));
6002 pos_args[1].valid_mask = 0;
6003 pos_args[1].done = 0;
6004 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
6005 pos_args[1].compr = 0;
6006 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
6007 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
6008 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
6009 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
6010
6011 if (outinfo->writes_pointsize == true)
6012 pos_args[1].out[0] = psize_value;
6013 if (outinfo->writes_layer == true)
6014 pos_args[1].out[2] = layer_value;
6015 if (outinfo->writes_viewport_index == true) {
6016 if (ctx->options->chip_class >= GFX9) {
6017 /* GFX9 has the layer in out.z[10:0] and the viewport
6018 * index in out.z[19:16].
6019 */
6020 LLVMValueRef v = viewport_index_value;
6021 v = ac_to_integer(&ctx->ac, v);
6022 v = LLVMBuildShl(ctx->builder, v,
6023 LLVMConstInt(ctx->ac.i32, 16, false),
6024 "");
6025 v = LLVMBuildOr(ctx->builder, v,
6026 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
6027
6028 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
6029 pos_args[1].enabled_channels |= 1 << 2;
6030 } else {
6031 pos_args[1].out[3] = viewport_index_value;
6032 pos_args[1].enabled_channels |= 1 << 3;
6033 }
6034 }
6035 }
6036 for (i = 0; i < 4; i++) {
6037 if (pos_args[i].out[0])
6038 num_pos_exports++;
6039 }
6040
6041 pos_idx = 0;
6042 for (i = 0; i < 4; i++) {
6043 if (!pos_args[i].out[0])
6044 continue;
6045
6046 /* Specify the target we are exporting */
6047 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
6048 if (pos_idx == num_pos_exports)
6049 pos_args[i].done = 1;
6050 ac_build_export(&ctx->ac, &pos_args[i]);
6051 }
6052
6053 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6054 LLVMValueRef values[4];
6055 if (!(ctx->output_mask & (1ull << i)))
6056 continue;
6057
6058 for (unsigned j = 0; j < 4; j++)
6059 values[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6060 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
6061
6062 if (i == VARYING_SLOT_LAYER) {
6063 target = V_008DFC_SQ_EXP_PARAM + param_count;
6064 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count;
6065 param_count++;
6066 } else if (i == VARYING_SLOT_PRIMITIVE_ID) {
6067 target = V_008DFC_SQ_EXP_PARAM + param_count;
6068 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count;
6069 param_count++;
6070 } else if (i >= VARYING_SLOT_VAR0) {
6071 outinfo->export_mask |= 1u << (i - VARYING_SLOT_VAR0);
6072 target = V_008DFC_SQ_EXP_PARAM + param_count;
6073 outinfo->vs_output_param_offset[i] = param_count;
6074 param_count++;
6075 } else
6076 continue;
6077
6078 si_llvm_init_export_args(ctx, values, target, &args);
6079
6080 if (target >= V_008DFC_SQ_EXP_POS &&
6081 target <= (V_008DFC_SQ_EXP_POS + 3)) {
6082 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
6083 &args, sizeof(args));
6084 } else {
6085 ac_build_export(&ctx->ac, &args);
6086 }
6087 }
6088
6089 if (export_prim_id) {
6090 LLVMValueRef values[4];
6091 target = V_008DFC_SQ_EXP_PARAM + param_count;
6092 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count;
6093 param_count++;
6094
6095 values[0] = ctx->vs_prim_id;
6096 ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2,
6097 ctx->shader_info->vs.vgpr_comp_cnt);
6098 for (unsigned j = 1; j < 4; j++)
6099 values[j] = ctx->ac.f32_0;
6100 si_llvm_init_export_args(ctx, values, target, &args);
6101 ac_build_export(&ctx->ac, &args);
6102 outinfo->export_prim_id = true;
6103 }
6104
6105 outinfo->pos_exports = num_pos_exports;
6106 outinfo->param_exports = param_count;
6107 }
6108
6109 static void
6110 handle_es_outputs_post(struct nir_to_llvm_context *ctx,
6111 struct ac_es_output_info *outinfo)
6112 {
6113 int j;
6114 uint64_t max_output_written = 0;
6115 LLVMValueRef lds_base = NULL;
6116
6117 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6118 int param_index;
6119 int length = 4;
6120
6121 if (!(ctx->output_mask & (1ull << i)))
6122 continue;
6123
6124 if (i == VARYING_SLOT_CLIP_DIST0)
6125 length = ctx->num_output_clips + ctx->num_output_culls;
6126
6127 param_index = shader_io_get_unique_index(i);
6128
6129 max_output_written = MAX2(param_index + (length > 4), max_output_written);
6130 }
6131
6132 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
6133
6134 if (ctx->ac.chip_class >= GFX9) {
6135 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
6136 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
6137 LLVMValueRef wave_idx = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
6138 LLVMConstInt(ctx->ac.i32, 24, false),
6139 LLVMConstInt(ctx->ac.i32, 4, false), false);
6140 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
6141 LLVMBuildMul(ctx->ac.builder, wave_idx,
6142 LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
6143 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
6144 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
6145 }
6146
6147 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6148 LLVMValueRef dw_addr;
6149 LLVMValueRef *out_ptr = &ctx->nir->outputs[i * 4];
6150 int param_index;
6151 int length = 4;
6152
6153 if (!(ctx->output_mask & (1ull << i)))
6154 continue;
6155
6156 if (i == VARYING_SLOT_CLIP_DIST0)
6157 length = ctx->num_output_clips + ctx->num_output_culls;
6158
6159 param_index = shader_io_get_unique_index(i);
6160
6161 if (lds_base) {
6162 dw_addr = LLVMBuildAdd(ctx->builder, lds_base,
6163 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
6164 "");
6165 }
6166 for (j = 0; j < length; j++) {
6167 LLVMValueRef out_val = LLVMBuildLoad(ctx->builder, out_ptr[j], "");
6168 out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->ac.i32, "");
6169
6170 if (ctx->ac.chip_class >= GFX9) {
6171 ac_lds_store(&ctx->ac, dw_addr,
6172 LLVMBuildLoad(ctx->builder, out_ptr[j], ""));
6173 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->ac.i32_1, "");
6174 } else {
6175 ac_build_buffer_store_dword(&ctx->ac,
6176 ctx->esgs_ring,
6177 out_val, 1,
6178 NULL, ctx->es2gs_offset,
6179 (4 * param_index + j) * 4,
6180 1, 1, true, true);
6181 }
6182 }
6183 }
6184 }
6185
6186 static void
6187 handle_ls_outputs_post(struct nir_to_llvm_context *ctx)
6188 {
6189 LLVMValueRef vertex_id = ctx->rel_auto_id;
6190 LLVMValueRef vertex_dw_stride = unpack_param(&ctx->ac, ctx->ls_out_layout, 13, 8);
6191 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->builder, vertex_id,
6192 vertex_dw_stride, "");
6193
6194 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6195 LLVMValueRef *out_ptr = &ctx->nir->outputs[i * 4];
6196 int length = 4;
6197
6198 if (!(ctx->output_mask & (1ull << i)))
6199 continue;
6200
6201 if (i == VARYING_SLOT_CLIP_DIST0)
6202 length = ctx->num_output_clips + ctx->num_output_culls;
6203 int param = shader_io_get_unique_index(i);
6204 mark_tess_output(ctx, false, param);
6205 if (length > 4)
6206 mark_tess_output(ctx, false, param + 1);
6207 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->builder, base_dw_addr,
6208 LLVMConstInt(ctx->ac.i32, param * 4, false),
6209 "");
6210 for (unsigned j = 0; j < length; j++) {
6211 ac_lds_store(&ctx->ac, dw_addr,
6212 LLVMBuildLoad(ctx->builder, out_ptr[j], ""));
6213 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->ac.i32_1, "");
6214 }
6215 }
6216 }
6217
6218 struct ac_build_if_state
6219 {
6220 struct nir_to_llvm_context *ctx;
6221 LLVMValueRef condition;
6222 LLVMBasicBlockRef entry_block;
6223 LLVMBasicBlockRef true_block;
6224 LLVMBasicBlockRef false_block;
6225 LLVMBasicBlockRef merge_block;
6226 };
6227
6228 static LLVMBasicBlockRef
6229 ac_build_insert_new_block(struct nir_to_llvm_context *ctx, const char *name)
6230 {
6231 LLVMBasicBlockRef current_block;
6232 LLVMBasicBlockRef next_block;
6233 LLVMBasicBlockRef new_block;
6234
6235 /* get current basic block */
6236 current_block = LLVMGetInsertBlock(ctx->builder);
6237
6238 /* chqeck if there's another block after this one */
6239 next_block = LLVMGetNextBasicBlock(current_block);
6240 if (next_block) {
6241 /* insert the new block before the next block */
6242 new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
6243 }
6244 else {
6245 /* append new block after current block */
6246 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
6247 new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
6248 }
6249 return new_block;
6250 }
6251
6252 static void
6253 ac_nir_build_if(struct ac_build_if_state *ifthen,
6254 struct nir_to_llvm_context *ctx,
6255 LLVMValueRef condition)
6256 {
6257 LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->builder);
6258
6259 memset(ifthen, 0, sizeof *ifthen);
6260 ifthen->ctx = ctx;
6261 ifthen->condition = condition;
6262 ifthen->entry_block = block;
6263
6264 /* create endif/merge basic block for the phi functions */
6265 ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
6266
6267 /* create/insert true_block before merge_block */
6268 ifthen->true_block =
6269 LLVMInsertBasicBlockInContext(ctx->context,
6270 ifthen->merge_block,
6271 "if-true-block");
6272
6273 /* successive code goes into the true block */
6274 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->true_block);
6275 }
6276
6277 /**
6278 * End a conditional.
6279 */
6280 static void
6281 ac_nir_build_endif(struct ac_build_if_state *ifthen)
6282 {
6283 LLVMBuilderRef builder = ifthen->ctx->builder;
6284
6285 /* Insert branch to the merge block from current block */
6286 LLVMBuildBr(builder, ifthen->merge_block);
6287
6288 /*
6289 * Now patch in the various branch instructions.
6290 */
6291
6292 /* Insert the conditional branch instruction at the end of entry_block */
6293 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
6294 if (ifthen->false_block) {
6295 /* we have an else clause */
6296 LLVMBuildCondBr(builder, ifthen->condition,
6297 ifthen->true_block, ifthen->false_block);
6298 }
6299 else {
6300 /* no else clause */
6301 LLVMBuildCondBr(builder, ifthen->condition,
6302 ifthen->true_block, ifthen->merge_block);
6303 }
6304
6305 /* Resume building code at end of the ifthen->merge_block */
6306 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
6307 }
6308
6309 static void
6310 write_tess_factors(struct nir_to_llvm_context *ctx)
6311 {
6312 unsigned stride, outer_comps, inner_comps;
6313 struct ac_build_if_state if_ctx, inner_if_ctx;
6314 LLVMValueRef invocation_id = unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
6315 LLVMValueRef rel_patch_id = unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
6316 unsigned tess_inner_index, tess_outer_index;
6317 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
6318 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
6319 int i;
6320 emit_barrier(&ctx->ac, ctx->stage);
6321
6322 switch (ctx->options->key.tcs.primitive_mode) {
6323 case GL_ISOLINES:
6324 stride = 2;
6325 outer_comps = 2;
6326 inner_comps = 0;
6327 break;
6328 case GL_TRIANGLES:
6329 stride = 4;
6330 outer_comps = 3;
6331 inner_comps = 1;
6332 break;
6333 case GL_QUADS:
6334 stride = 6;
6335 outer_comps = 4;
6336 inner_comps = 2;
6337 break;
6338 default:
6339 return;
6340 }
6341
6342 ac_nir_build_if(&if_ctx, ctx,
6343 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
6344 invocation_id, ctx->ac.i32_0, ""));
6345
6346 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
6347 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
6348
6349 mark_tess_output(ctx, true, tess_inner_index);
6350 mark_tess_output(ctx, true, tess_outer_index);
6351 lds_base = get_tcs_out_current_patch_data_offset(ctx);
6352 lds_inner = LLVMBuildAdd(ctx->builder, lds_base,
6353 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
6354 lds_outer = LLVMBuildAdd(ctx->builder, lds_base,
6355 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
6356
6357 for (i = 0; i < 4; i++) {
6358 inner[i] = LLVMGetUndef(ctx->ac.i32);
6359 outer[i] = LLVMGetUndef(ctx->ac.i32);
6360 }
6361
6362 // LINES reverseal
6363 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
6364 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
6365 lds_outer = LLVMBuildAdd(ctx->builder, lds_outer,
6366 ctx->ac.i32_1, "");
6367 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
6368 } else {
6369 for (i = 0; i < outer_comps; i++) {
6370 outer[i] = out[i] =
6371 ac_lds_load(&ctx->ac, lds_outer);
6372 lds_outer = LLVMBuildAdd(ctx->builder, lds_outer,
6373 ctx->ac.i32_1, "");
6374 }
6375 for (i = 0; i < inner_comps; i++) {
6376 inner[i] = out[outer_comps+i] =
6377 ac_lds_load(&ctx->ac, lds_inner);
6378 lds_inner = LLVMBuildAdd(ctx->builder, lds_inner,
6379 ctx->ac.i32_1, "");
6380 }
6381 }
6382
6383 /* Convert the outputs to vectors for stores. */
6384 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
6385 vec1 = NULL;
6386
6387 if (stride > 4)
6388 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
6389
6390
6391 buffer = ctx->hs_ring_tess_factor;
6392 tf_base = ctx->tess_factor_offset;
6393 byteoffset = LLVMBuildMul(ctx->builder, rel_patch_id,
6394 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
6395 unsigned tf_offset = 0;
6396
6397 if (ctx->options->chip_class <= VI) {
6398 ac_nir_build_if(&inner_if_ctx, ctx,
6399 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
6400 rel_patch_id, ctx->ac.i32_0, ""));
6401
6402 /* Store the dynamic HS control word. */
6403 ac_build_buffer_store_dword(&ctx->ac, buffer,
6404 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
6405 1, ctx->ac.i32_0, tf_base,
6406 0, 1, 0, true, false);
6407 tf_offset += 4;
6408
6409 ac_nir_build_endif(&inner_if_ctx);
6410 }
6411
6412 /* Store the tessellation factors. */
6413 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
6414 MIN2(stride, 4), byteoffset, tf_base,
6415 tf_offset, 1, 0, true, false);
6416 if (vec1)
6417 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
6418 stride - 4, byteoffset, tf_base,
6419 16 + tf_offset, 1, 0, true, false);
6420
6421 //store to offchip for TES to read - only if TES reads them
6422 if (ctx->options->key.tcs.tes_reads_tess_factors) {
6423 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
6424 LLVMValueRef tf_inner_offset;
6425 unsigned param_outer, param_inner;
6426
6427 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
6428 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
6429 LLVMConstInt(ctx->ac.i32, param_outer, 0));
6430
6431 outer_vec = ac_build_gather_values(&ctx->ac, outer,
6432 util_next_power_of_two(outer_comps));
6433
6434 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
6435 outer_comps, tf_outer_offset,
6436 ctx->oc_lds, 0, 1, 0, true, false);
6437 if (inner_comps) {
6438 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
6439 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
6440 LLVMConstInt(ctx->ac.i32, param_inner, 0));
6441
6442 inner_vec = inner_comps == 1 ? inner[0] :
6443 ac_build_gather_values(&ctx->ac, inner, inner_comps);
6444 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
6445 inner_comps, tf_inner_offset,
6446 ctx->oc_lds, 0, 1, 0, true, false);
6447 }
6448 }
6449 ac_nir_build_endif(&if_ctx);
6450 }
6451
6452 static void
6453 handle_tcs_outputs_post(struct nir_to_llvm_context *ctx)
6454 {
6455 write_tess_factors(ctx);
6456 }
6457
6458 static bool
6459 si_export_mrt_color(struct nir_to_llvm_context *ctx,
6460 LLVMValueRef *color, unsigned param, bool is_last,
6461 struct ac_export_args *args)
6462 {
6463 /* Export */
6464 si_llvm_init_export_args(ctx, color, param,
6465 args);
6466
6467 if (is_last) {
6468 args->valid_mask = 1; /* whether the EXEC mask is valid */
6469 args->done = 1; /* DONE bit */
6470 } else if (!args->enabled_channels)
6471 return false; /* unnecessary NULL export */
6472
6473 return true;
6474 }
6475
6476 static void
6477 radv_export_mrt_z(struct nir_to_llvm_context *ctx,
6478 LLVMValueRef depth, LLVMValueRef stencil,
6479 LLVMValueRef samplemask)
6480 {
6481 struct ac_export_args args;
6482
6483 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
6484
6485 ac_build_export(&ctx->ac, &args);
6486 }
6487
6488 static void
6489 handle_fs_outputs_post(struct nir_to_llvm_context *ctx)
6490 {
6491 unsigned index = 0;
6492 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
6493 struct ac_export_args color_args[8];
6494
6495 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6496 LLVMValueRef values[4];
6497
6498 if (!(ctx->output_mask & (1ull << i)))
6499 continue;
6500
6501 if (i == FRAG_RESULT_DEPTH) {
6502 ctx->shader_info->fs.writes_z = true;
6503 depth = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6504 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
6505 } else if (i == FRAG_RESULT_STENCIL) {
6506 ctx->shader_info->fs.writes_stencil = true;
6507 stencil = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6508 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
6509 } else if (i == FRAG_RESULT_SAMPLE_MASK) {
6510 ctx->shader_info->fs.writes_sample_mask = true;
6511 samplemask = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6512 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
6513 } else {
6514 bool last = false;
6515 for (unsigned j = 0; j < 4; j++)
6516 values[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6517 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
6518
6519 if (!ctx->shader_info->fs.writes_z && !ctx->shader_info->fs.writes_stencil && !ctx->shader_info->fs.writes_sample_mask)
6520 last = ctx->output_mask <= ((1ull << (i + 1)) - 1);
6521
6522 bool ret = si_export_mrt_color(ctx, values, V_008DFC_SQ_EXP_MRT + (i - FRAG_RESULT_DATA0), last, &color_args[index]);
6523 if (ret)
6524 index++;
6525 }
6526 }
6527
6528 for (unsigned i = 0; i < index; i++)
6529 ac_build_export(&ctx->ac, &color_args[i]);
6530 if (depth || stencil || samplemask)
6531 radv_export_mrt_z(ctx, depth, stencil, samplemask);
6532 else if (!index) {
6533 si_export_mrt_color(ctx, NULL, V_008DFC_SQ_EXP_NULL, true, &color_args[0]);
6534 ac_build_export(&ctx->ac, &color_args[0]);
6535 }
6536 }
6537
6538 static void
6539 emit_gs_epilogue(struct nir_to_llvm_context *ctx)
6540 {
6541 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
6542 }
6543
6544 static void
6545 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
6546 LLVMValueRef *addrs)
6547 {
6548 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
6549
6550 switch (ctx->stage) {
6551 case MESA_SHADER_VERTEX:
6552 if (ctx->options->key.vs.as_ls)
6553 handle_ls_outputs_post(ctx);
6554 else if (ctx->options->key.vs.as_es)
6555 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
6556 else
6557 handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
6558 &ctx->shader_info->vs.outinfo);
6559 break;
6560 case MESA_SHADER_FRAGMENT:
6561 handle_fs_outputs_post(ctx);
6562 break;
6563 case MESA_SHADER_GEOMETRY:
6564 emit_gs_epilogue(ctx);
6565 break;
6566 case MESA_SHADER_TESS_CTRL:
6567 handle_tcs_outputs_post(ctx);
6568 break;
6569 case MESA_SHADER_TESS_EVAL:
6570 if (ctx->options->key.tes.as_es)
6571 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
6572 else
6573 handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
6574 &ctx->shader_info->tes.outinfo);
6575 break;
6576 default:
6577 break;
6578 }
6579 }
6580
6581 static void ac_llvm_finalize_module(struct nir_to_llvm_context * ctx)
6582 {
6583 LLVMPassManagerRef passmgr;
6584 /* Create the pass manager */
6585 passmgr = LLVMCreateFunctionPassManagerForModule(
6586 ctx->module);
6587
6588 /* This pass should eliminate all the load and store instructions */
6589 LLVMAddPromoteMemoryToRegisterPass(passmgr);
6590
6591 /* Add some optimization passes */
6592 LLVMAddScalarReplAggregatesPass(passmgr);
6593 LLVMAddLICMPass(passmgr);
6594 LLVMAddAggressiveDCEPass(passmgr);
6595 LLVMAddCFGSimplificationPass(passmgr);
6596 LLVMAddInstructionCombiningPass(passmgr);
6597
6598 /* Run the pass */
6599 LLVMInitializeFunctionPassManager(passmgr);
6600 LLVMRunFunctionPassManager(passmgr, ctx->main_function);
6601 LLVMFinalizeFunctionPassManager(passmgr);
6602
6603 LLVMDisposeBuilder(ctx->builder);
6604 LLVMDisposePassManager(passmgr);
6605 }
6606
6607 static void
6608 ac_nir_eliminate_const_vs_outputs(struct nir_to_llvm_context *ctx)
6609 {
6610 struct ac_vs_output_info *outinfo;
6611
6612 switch (ctx->stage) {
6613 case MESA_SHADER_FRAGMENT:
6614 case MESA_SHADER_COMPUTE:
6615 case MESA_SHADER_TESS_CTRL:
6616 case MESA_SHADER_GEOMETRY:
6617 return;
6618 case MESA_SHADER_VERTEX:
6619 if (ctx->options->key.vs.as_ls ||
6620 ctx->options->key.vs.as_es)
6621 return;
6622 outinfo = &ctx->shader_info->vs.outinfo;
6623 break;
6624 case MESA_SHADER_TESS_EVAL:
6625 if (ctx->options->key.vs.as_es)
6626 return;
6627 outinfo = &ctx->shader_info->tes.outinfo;
6628 break;
6629 default:
6630 unreachable("Unhandled shader type");
6631 }
6632
6633 ac_optimize_vs_outputs(&ctx->ac,
6634 ctx->main_function,
6635 outinfo->vs_output_param_offset,
6636 VARYING_SLOT_MAX,
6637 &outinfo->param_exports);
6638 }
6639
6640 static void
6641 ac_setup_rings(struct nir_to_llvm_context *ctx)
6642 {
6643 if ((ctx->stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_es) ||
6644 (ctx->stage == MESA_SHADER_TESS_EVAL && ctx->options->key.tes.as_es)) {
6645 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_VS, false));
6646 }
6647
6648 if (ctx->is_gs_copy_shader) {
6649 ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_VS, false));
6650 }
6651 if (ctx->stage == MESA_SHADER_GEOMETRY) {
6652 LLVMValueRef tmp;
6653 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_GS, false));
6654 ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_GS, false));
6655
6656 ctx->gsvs_ring = LLVMBuildBitCast(ctx->builder, ctx->gsvs_ring, ctx->ac.v4i32, "");
6657
6658 ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, ctx->gsvs_num_entries, LLVMConstInt(ctx->ac.i32, 2, false), "");
6659 tmp = LLVMBuildExtractElement(ctx->builder, ctx->gsvs_ring, ctx->ac.i32_1, "");
6660 tmp = LLVMBuildOr(ctx->builder, tmp, ctx->gsvs_ring_stride, "");
6661 ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, tmp, ctx->ac.i32_1, "");
6662 }
6663
6664 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
6665 ctx->stage == MESA_SHADER_TESS_EVAL) {
6666 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
6667 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
6668 }
6669 }
6670
6671 static unsigned
6672 ac_nir_get_max_workgroup_size(enum chip_class chip_class,
6673 const struct nir_shader *nir)
6674 {
6675 switch (nir->info.stage) {
6676 case MESA_SHADER_TESS_CTRL:
6677 return chip_class >= CIK ? 128 : 64;
6678 case MESA_SHADER_GEOMETRY:
6679 return chip_class >= GFX9 ? 128 : 64;
6680 case MESA_SHADER_COMPUTE:
6681 break;
6682 default:
6683 return 0;
6684 }
6685
6686 unsigned max_workgroup_size = nir->info.cs.local_size[0] *
6687 nir->info.cs.local_size[1] *
6688 nir->info.cs.local_size[2];
6689 return max_workgroup_size;
6690 }
6691
6692 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
6693 static void ac_nir_fixup_ls_hs_input_vgprs(struct nir_to_llvm_context *ctx)
6694 {
6695 LLVMValueRef count = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
6696 LLVMConstInt(ctx->ac.i32, 8, false),
6697 LLVMConstInt(ctx->ac.i32, 8, false), false);
6698 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
6699 ctx->ac.i32_0, "");
6700 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
6701 ctx->vs_prim_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.vertex_id, ctx->vs_prim_id, "");
6702 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
6703 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
6704 }
6705
6706 static void prepare_gs_input_vgprs(struct nir_to_llvm_context *ctx)
6707 {
6708 for(int i = 5; i >= 0; --i) {
6709 ctx->gs_vtx_offset[i] = ac_build_bfe(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
6710 LLVMConstInt(ctx->ac.i32, (i & 1) * 16, false),
6711 LLVMConstInt(ctx->ac.i32, 16, false), false);
6712 }
6713
6714 ctx->gs_wave_id = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
6715 LLVMConstInt(ctx->ac.i32, 16, false),
6716 LLVMConstInt(ctx->ac.i32, 8, false), false);
6717 }
6718
6719 void ac_nir_translate(struct ac_llvm_context *ac, struct ac_shader_abi *abi,
6720 struct nir_shader *nir, struct nir_to_llvm_context *nctx)
6721 {
6722 struct ac_nir_context ctx = {};
6723 struct nir_function *func;
6724
6725 ctx.ac = *ac;
6726 ctx.abi = abi;
6727
6728 ctx.nctx = nctx;
6729 if (nctx)
6730 nctx->nir = &ctx;
6731
6732 ctx.stage = nir->info.stage;
6733
6734 ctx.main_function = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
6735
6736 nir_foreach_variable(variable, &nir->outputs)
6737 handle_shader_output_decl(&ctx, nir, variable);
6738
6739 ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
6740 _mesa_key_pointer_equal);
6741 ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
6742 _mesa_key_pointer_equal);
6743 ctx.vars = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
6744 _mesa_key_pointer_equal);
6745
6746 func = (struct nir_function *)exec_list_get_head(&nir->functions);
6747
6748 setup_locals(&ctx, func);
6749
6750 if (nir->info.stage == MESA_SHADER_COMPUTE)
6751 setup_shared(&ctx, nir);
6752
6753 visit_cf_list(&ctx, &func->impl->body);
6754 phi_post_pass(&ctx);
6755
6756 ctx.abi->emit_outputs(ctx.abi, RADEON_LLVM_MAX_OUTPUTS,
6757 ctx.outputs);
6758
6759 free(ctx.locals);
6760 ralloc_free(ctx.defs);
6761 ralloc_free(ctx.phis);
6762 ralloc_free(ctx.vars);
6763
6764 if (nctx)
6765 nctx->nir = NULL;
6766 }
6767
6768 static
6769 LLVMModuleRef ac_translate_nir_to_llvm(LLVMTargetMachineRef tm,
6770 struct nir_shader *const *shaders,
6771 int shader_count,
6772 struct ac_shader_variant_info *shader_info,
6773 const struct ac_nir_compiler_options *options)
6774 {
6775 struct nir_to_llvm_context ctx = {0};
6776 unsigned i;
6777 ctx.options = options;
6778 ctx.shader_info = shader_info;
6779 ctx.context = LLVMContextCreate();
6780 ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
6781
6782 ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
6783 options->family);
6784 ctx.ac.module = ctx.module;
6785 LLVMSetTarget(ctx.module, options->supports_spill ? "amdgcn-mesa-mesa3d" : "amdgcn--");
6786
6787 LLVMTargetDataRef data_layout = LLVMCreateTargetDataLayout(tm);
6788 char *data_layout_str = LLVMCopyStringRepOfTargetData(data_layout);
6789 LLVMSetDataLayout(ctx.module, data_layout_str);
6790 LLVMDisposeTargetData(data_layout);
6791 LLVMDisposeMessage(data_layout_str);
6792
6793 enum ac_float_mode float_mode =
6794 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
6795 AC_FLOAT_MODE_DEFAULT;
6796
6797 ctx.builder = ac_create_builder(ctx.context, float_mode);
6798 ctx.ac.builder = ctx.builder;
6799
6800 memset(shader_info, 0, sizeof(*shader_info));
6801
6802 for(int i = 0; i < shader_count; ++i)
6803 ac_nir_shader_info_pass(shaders[i], options, &shader_info->info);
6804
6805 for (i = 0; i < AC_UD_MAX_SETS; i++)
6806 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
6807 for (i = 0; i < AC_UD_MAX_UD; i++)
6808 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
6809
6810 ctx.max_workgroup_size = 0;
6811 for (int i = 0; i < shader_count; ++i) {
6812 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
6813 ac_nir_get_max_workgroup_size(ctx.options->chip_class,
6814 shaders[i]));
6815 }
6816
6817 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
6818 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
6819
6820 ctx.abi.inputs = &ctx.inputs[0];
6821 ctx.abi.emit_outputs = handle_shader_outputs_post;
6822 ctx.abi.emit_vertex = visit_emit_vertex;
6823 ctx.abi.load_ubo = radv_load_ubo;
6824 ctx.abi.load_ssbo = radv_load_ssbo;
6825 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
6826 ctx.abi.clamp_shadow_reference = false;
6827
6828 if (shader_count >= 2)
6829 ac_init_exec_full_mask(&ctx.ac);
6830
6831 if (ctx.ac.chip_class == GFX9 &&
6832 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
6833 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
6834
6835 for(int i = 0; i < shader_count; ++i) {
6836 ctx.stage = shaders[i]->info.stage;
6837 ctx.output_mask = 0;
6838 ctx.tess_outputs_written = 0;
6839 ctx.num_output_clips = shaders[i]->info.clip_distance_array_size;
6840 ctx.num_output_culls = shaders[i]->info.cull_distance_array_size;
6841
6842 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
6843 ctx.gs_next_vertex = ac_build_alloca(&ctx.ac, ctx.ac.i32, "gs_next_vertex");
6844 ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
6845 ctx.abi.load_inputs = load_gs_input;
6846 ctx.abi.emit_primitive = visit_end_primitive;
6847 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
6848 ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
6849 ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
6850 ctx.abi.load_tess_varyings = load_tcs_varyings;
6851 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
6852 ctx.abi.store_tcs_outputs = store_tcs_output;
6853 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
6854 ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
6855 ctx.abi.load_tess_varyings = load_tes_input;
6856 ctx.abi.load_tess_coord = load_tess_coord;
6857 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
6858 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
6859 if (shader_info->info.vs.needs_instance_id) {
6860 if (ctx.options->key.vs.as_ls) {
6861 ctx.shader_info->vs.vgpr_comp_cnt =
6862 MAX2(2, ctx.shader_info->vs.vgpr_comp_cnt);
6863 } else {
6864 ctx.shader_info->vs.vgpr_comp_cnt =
6865 MAX2(1, ctx.shader_info->vs.vgpr_comp_cnt);
6866 }
6867 }
6868 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
6869 shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
6870 ctx.abi.lookup_interp_param = lookup_interp_param;
6871 ctx.abi.load_sample_position = load_sample_position;
6872 }
6873
6874 if (i)
6875 emit_barrier(&ctx.ac, ctx.stage);
6876
6877 ac_setup_rings(&ctx);
6878
6879 LLVMBasicBlockRef merge_block;
6880 if (shader_count >= 2) {
6881 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
6882 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
6883 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
6884
6885 LLVMValueRef count = ac_build_bfe(&ctx.ac, ctx.merged_wave_info,
6886 LLVMConstInt(ctx.ac.i32, 8 * i, false),
6887 LLVMConstInt(ctx.ac.i32, 8, false), false);
6888 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
6889 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
6890 thread_id, count, "");
6891 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
6892
6893 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
6894 }
6895
6896 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
6897 handle_fs_inputs(&ctx, shaders[i]);
6898 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
6899 handle_vs_inputs(&ctx, shaders[i]);
6900 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
6901 prepare_gs_input_vgprs(&ctx);
6902
6903 nir_foreach_variable(variable, &shaders[i]->outputs)
6904 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
6905
6906 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i], &ctx);
6907
6908 if (shader_count >= 2) {
6909 LLVMBuildBr(ctx.ac.builder, merge_block);
6910 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
6911 }
6912
6913 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
6914 unsigned addclip = shaders[i]->info.clip_distance_array_size +
6915 shaders[i]->info.cull_distance_array_size > 4;
6916 shader_info->gs.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
6917 shader_info->gs.max_gsvs_emit_size = shader_info->gs.gsvs_vertex_size *
6918 shaders[i]->info.gs.vertices_out;
6919 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
6920 shader_info->tcs.outputs_written = ctx.tess_outputs_written;
6921 shader_info->tcs.patch_outputs_written = ctx.tess_patch_outputs_written;
6922 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX && ctx.options->key.vs.as_ls) {
6923 shader_info->vs.outputs_written = ctx.tess_outputs_written;
6924 }
6925 }
6926
6927 LLVMBuildRetVoid(ctx.builder);
6928
6929 if (options->dump_preoptir)
6930 ac_dump_module(ctx.module);
6931
6932 ac_llvm_finalize_module(&ctx);
6933
6934 if (shader_count == 1)
6935 ac_nir_eliminate_const_vs_outputs(&ctx);
6936
6937 return ctx.module;
6938 }
6939
6940 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
6941 {
6942 unsigned *retval = (unsigned *)context;
6943 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
6944 char *description = LLVMGetDiagInfoDescription(di);
6945
6946 if (severity == LLVMDSError) {
6947 *retval = 1;
6948 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
6949 description);
6950 }
6951
6952 LLVMDisposeMessage(description);
6953 }
6954
6955 static unsigned ac_llvm_compile(LLVMModuleRef M,
6956 struct ac_shader_binary *binary,
6957 LLVMTargetMachineRef tm)
6958 {
6959 unsigned retval = 0;
6960 char *err;
6961 LLVMContextRef llvm_ctx;
6962 LLVMMemoryBufferRef out_buffer;
6963 unsigned buffer_size;
6964 const char *buffer_data;
6965 LLVMBool mem_err;
6966
6967 /* Setup Diagnostic Handler*/
6968 llvm_ctx = LLVMGetModuleContext(M);
6969
6970 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
6971 &retval);
6972
6973 /* Compile IR*/
6974 mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile,
6975 &err, &out_buffer);
6976
6977 /* Process Errors/Warnings */
6978 if (mem_err) {
6979 fprintf(stderr, "%s: %s", __FUNCTION__, err);
6980 free(err);
6981 retval = 1;
6982 goto out;
6983 }
6984
6985 /* Extract Shader Code*/
6986 buffer_size = LLVMGetBufferSize(out_buffer);
6987 buffer_data = LLVMGetBufferStart(out_buffer);
6988
6989 ac_elf_read(buffer_data, buffer_size, binary);
6990
6991 /* Clean up */
6992 LLVMDisposeMemoryBuffer(out_buffer);
6993
6994 out:
6995 return retval;
6996 }
6997
6998 static void ac_compile_llvm_module(LLVMTargetMachineRef tm,
6999 LLVMModuleRef llvm_module,
7000 struct ac_shader_binary *binary,
7001 struct ac_shader_config *config,
7002 struct ac_shader_variant_info *shader_info,
7003 gl_shader_stage stage,
7004 bool dump_shader, bool supports_spill)
7005 {
7006 if (dump_shader)
7007 ac_dump_module(llvm_module);
7008
7009 memset(binary, 0, sizeof(*binary));
7010 int v = ac_llvm_compile(llvm_module, binary, tm);
7011 if (v) {
7012 fprintf(stderr, "compile failed\n");
7013 }
7014
7015 if (dump_shader)
7016 fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
7017
7018 ac_shader_binary_read_config(binary, config, 0, supports_spill);
7019
7020 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
7021 LLVMDisposeModule(llvm_module);
7022 LLVMContextDispose(ctx);
7023
7024 if (stage == MESA_SHADER_FRAGMENT) {
7025 shader_info->num_input_vgprs = 0;
7026 if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
7027 shader_info->num_input_vgprs += 2;
7028 if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
7029 shader_info->num_input_vgprs += 2;
7030 if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
7031 shader_info->num_input_vgprs += 2;
7032 if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
7033 shader_info->num_input_vgprs += 3;
7034 if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
7035 shader_info->num_input_vgprs += 2;
7036 if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
7037 shader_info->num_input_vgprs += 2;
7038 if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
7039 shader_info->num_input_vgprs += 2;
7040 if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
7041 shader_info->num_input_vgprs += 1;
7042 if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
7043 shader_info->num_input_vgprs += 1;
7044 if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
7045 shader_info->num_input_vgprs += 1;
7046 if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
7047 shader_info->num_input_vgprs += 1;
7048 if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
7049 shader_info->num_input_vgprs += 1;
7050 if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
7051 shader_info->num_input_vgprs += 1;
7052 if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
7053 shader_info->num_input_vgprs += 1;
7054 if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
7055 shader_info->num_input_vgprs += 1;
7056 if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
7057 shader_info->num_input_vgprs += 1;
7058 }
7059 config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
7060
7061 /* +3 for scratch wave offset and VCC */
7062 config->num_sgprs = MAX2(config->num_sgprs,
7063 shader_info->num_input_sgprs + 3);
7064
7065 /* Enable 64-bit and 16-bit denormals, because there is no performance
7066 * cost.
7067 *
7068 * If denormals are enabled, all floating-point output modifiers are
7069 * ignored.
7070 *
7071 * Don't enable denormals for 32-bit floats, because:
7072 * - Floating-point output modifiers would be ignored by the hw.
7073 * - Some opcodes don't support denormals, such as v_mad_f32. We would
7074 * have to stop using those.
7075 * - SI & CI would be very slow.
7076 */
7077 config->float_mode |= V_00B028_FP_64_DENORMS;
7078 }
7079
7080 static void
7081 ac_fill_shader_info(struct ac_shader_variant_info *shader_info, struct nir_shader *nir, const struct ac_nir_compiler_options *options)
7082 {
7083 switch (nir->info.stage) {
7084 case MESA_SHADER_COMPUTE:
7085 for (int i = 0; i < 3; ++i)
7086 shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
7087 break;
7088 case MESA_SHADER_FRAGMENT:
7089 shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
7090 break;
7091 case MESA_SHADER_GEOMETRY:
7092 shader_info->gs.vertices_in = nir->info.gs.vertices_in;
7093 shader_info->gs.vertices_out = nir->info.gs.vertices_out;
7094 shader_info->gs.output_prim = nir->info.gs.output_primitive;
7095 shader_info->gs.invocations = nir->info.gs.invocations;
7096 break;
7097 case MESA_SHADER_TESS_EVAL:
7098 shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
7099 shader_info->tes.spacing = nir->info.tess.spacing;
7100 shader_info->tes.ccw = nir->info.tess.ccw;
7101 shader_info->tes.point_mode = nir->info.tess.point_mode;
7102 shader_info->tes.as_es = options->key.tes.as_es;
7103 break;
7104 case MESA_SHADER_TESS_CTRL:
7105 shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
7106 break;
7107 case MESA_SHADER_VERTEX:
7108 shader_info->vs.as_es = options->key.vs.as_es;
7109 shader_info->vs.as_ls = options->key.vs.as_ls;
7110 /* in LS mode we need at least 1, invocation id needs 2, handled elsewhere */
7111 if (options->key.vs.as_ls)
7112 shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt);
7113 break;
7114 default:
7115 break;
7116 }
7117 }
7118
7119 void ac_compile_nir_shader(LLVMTargetMachineRef tm,
7120 struct ac_shader_binary *binary,
7121 struct ac_shader_config *config,
7122 struct ac_shader_variant_info *shader_info,
7123 struct nir_shader *const *nir,
7124 int nir_count,
7125 const struct ac_nir_compiler_options *options,
7126 bool dump_shader)
7127 {
7128
7129 LLVMModuleRef llvm_module = ac_translate_nir_to_llvm(tm, nir, nir_count, shader_info,
7130 options);
7131
7132 ac_compile_llvm_module(tm, llvm_module, binary, config, shader_info, nir[0]->info.stage, dump_shader, options->supports_spill);
7133 for (int i = 0; i < nir_count; ++i)
7134 ac_fill_shader_info(shader_info, nir[i], options);
7135
7136 /* Determine the ES type (VS or TES) for the GS on GFX9. */
7137 if (options->chip_class == GFX9) {
7138 if (nir_count == 2 &&
7139 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
7140 shader_info->gs.es_type = nir[0]->info.stage;
7141 }
7142 }
7143 }
7144
7145 static void
7146 ac_gs_copy_shader_emit(struct nir_to_llvm_context *ctx)
7147 {
7148 LLVMValueRef vtx_offset =
7149 LLVMBuildMul(ctx->builder, ctx->abi.vertex_id,
7150 LLVMConstInt(ctx->ac.i32, 4, false), "");
7151 int idx = 0;
7152
7153 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
7154 int length = 4;
7155 int slot = idx;
7156 int slot_inc = 1;
7157 if (!(ctx->output_mask & (1ull << i)))
7158 continue;
7159
7160 if (i == VARYING_SLOT_CLIP_DIST0) {
7161 /* unpack clip and cull from a single set of slots */
7162 length = ctx->num_output_clips + ctx->num_output_culls;
7163 if (length > 4)
7164 slot_inc = 2;
7165 }
7166
7167 for (unsigned j = 0; j < length; j++) {
7168 LLVMValueRef value, soffset;
7169
7170 soffset = LLVMConstInt(ctx->ac.i32,
7171 (slot * 4 + j) *
7172 ctx->gs_max_out_vertices * 16 * 4, false);
7173
7174 value = ac_build_buffer_load(&ctx->ac, ctx->gsvs_ring,
7175 1, ctx->ac.i32_0,
7176 vtx_offset, soffset,
7177 0, 1, 1, true, false);
7178
7179 LLVMBuildStore(ctx->builder,
7180 ac_to_float(&ctx->ac, value), ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)]);
7181 }
7182 idx += slot_inc;
7183 }
7184 handle_vs_outputs_post(ctx, false, &ctx->shader_info->vs.outinfo);
7185 }
7186
7187 void ac_create_gs_copy_shader(LLVMTargetMachineRef tm,
7188 struct nir_shader *geom_shader,
7189 struct ac_shader_binary *binary,
7190 struct ac_shader_config *config,
7191 struct ac_shader_variant_info *shader_info,
7192 const struct ac_nir_compiler_options *options,
7193 bool dump_shader)
7194 {
7195 struct nir_to_llvm_context ctx = {0};
7196 ctx.context = LLVMContextCreate();
7197 ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
7198 ctx.options = options;
7199 ctx.shader_info = shader_info;
7200
7201 ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
7202 options->family);
7203 ctx.ac.module = ctx.module;
7204
7205 ctx.is_gs_copy_shader = true;
7206 LLVMSetTarget(ctx.module, "amdgcn--");
7207
7208 enum ac_float_mode float_mode =
7209 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
7210 AC_FLOAT_MODE_DEFAULT;
7211
7212 ctx.builder = ac_create_builder(ctx.context, float_mode);
7213 ctx.ac.builder = ctx.builder;
7214 ctx.stage = MESA_SHADER_VERTEX;
7215
7216 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
7217
7218 ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
7219 ac_setup_rings(&ctx);
7220
7221 ctx.num_output_clips = geom_shader->info.clip_distance_array_size;
7222 ctx.num_output_culls = geom_shader->info.cull_distance_array_size;
7223
7224 struct ac_nir_context nir_ctx = {};
7225 nir_ctx.ac = ctx.ac;
7226 nir_ctx.abi = &ctx.abi;
7227
7228 nir_ctx.nctx = &ctx;
7229 ctx.nir = &nir_ctx;
7230
7231 nir_foreach_variable(variable, &geom_shader->outputs) {
7232 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
7233 handle_shader_output_decl(&nir_ctx, geom_shader, variable);
7234 }
7235
7236 ac_gs_copy_shader_emit(&ctx);
7237
7238 ctx.nir = NULL;
7239
7240 LLVMBuildRetVoid(ctx.builder);
7241
7242 ac_llvm_finalize_module(&ctx);
7243
7244 ac_compile_llvm_module(tm, ctx.module, binary, config, shader_info,
7245 MESA_SHADER_VERTEX,
7246 dump_shader, options->supports_spill);
7247 }