ac/nir: fix GS load input type.
[mesa.git] / src / amd / common / ac_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Bas Nieuwenhuizen
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "ac_nir_to_llvm.h"
25 #include "ac_llvm_build.h"
26 #include "ac_llvm_util.h"
27 #include "ac_binary.h"
28 #include "sid.h"
29 #include "nir/nir.h"
30 #include "../vulkan/radv_descriptor_set.h"
31 #include "util/bitscan.h"
32 #include <llvm-c/Transforms/Scalar.h>
33 #include "ac_shader_abi.h"
34 #include "ac_shader_info.h"
35 #include "ac_shader_util.h"
36 #include "ac_exp_param.h"
37
38 enum radeon_llvm_calling_convention {
39 RADEON_LLVM_AMDGPU_VS = 87,
40 RADEON_LLVM_AMDGPU_GS = 88,
41 RADEON_LLVM_AMDGPU_PS = 89,
42 RADEON_LLVM_AMDGPU_CS = 90,
43 RADEON_LLVM_AMDGPU_HS = 93,
44 };
45
46 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
47 #define RADEON_LLVM_MAX_OUTPUTS (VARYING_SLOT_VAR31 + 1)
48
49 struct nir_to_llvm_context;
50
51 struct ac_nir_context {
52 struct ac_llvm_context ac;
53 struct ac_shader_abi *abi;
54
55 gl_shader_stage stage;
56
57 struct hash_table *defs;
58 struct hash_table *phis;
59 struct hash_table *vars;
60
61 LLVMValueRef main_function;
62 LLVMBasicBlockRef continue_block;
63 LLVMBasicBlockRef break_block;
64
65 LLVMValueRef outputs[RADEON_LLVM_MAX_OUTPUTS * 4];
66
67 int num_locals;
68 LLVMValueRef *locals;
69
70 struct nir_to_llvm_context *nctx; /* TODO get rid of this */
71 };
72
73 struct nir_to_llvm_context {
74 struct ac_llvm_context ac;
75 const struct ac_nir_compiler_options *options;
76 struct ac_shader_variant_info *shader_info;
77 struct ac_shader_abi abi;
78 struct ac_nir_context *nir;
79
80 unsigned max_workgroup_size;
81 LLVMContextRef context;
82 LLVMModuleRef module;
83 LLVMBuilderRef builder;
84 LLVMValueRef main_function;
85
86 struct hash_table *defs;
87 struct hash_table *phis;
88
89 LLVMValueRef descriptor_sets[AC_UD_MAX_SETS];
90 LLVMValueRef ring_offsets;
91 LLVMValueRef push_constants;
92 LLVMValueRef view_index;
93 LLVMValueRef num_work_groups;
94 LLVMValueRef workgroup_ids[3];
95 LLVMValueRef local_invocation_ids;
96 LLVMValueRef tg_size;
97
98 LLVMValueRef vertex_buffers;
99 LLVMValueRef rel_auto_id;
100 LLVMValueRef vs_prim_id;
101 LLVMValueRef ls_out_layout;
102 LLVMValueRef es2gs_offset;
103
104 LLVMValueRef tcs_offchip_layout;
105 LLVMValueRef tcs_out_offsets;
106 LLVMValueRef tcs_out_layout;
107 LLVMValueRef tcs_in_layout;
108 LLVMValueRef oc_lds;
109 LLVMValueRef merged_wave_info;
110 LLVMValueRef tess_factor_offset;
111 LLVMValueRef tes_rel_patch_id;
112 LLVMValueRef tes_u;
113 LLVMValueRef tes_v;
114
115 LLVMValueRef gsvs_ring_stride;
116 LLVMValueRef gsvs_num_entries;
117 LLVMValueRef gs2vs_offset;
118 LLVMValueRef gs_wave_id;
119 LLVMValueRef gs_vtx_offset[6];
120
121 LLVMValueRef esgs_ring;
122 LLVMValueRef gsvs_ring;
123 LLVMValueRef hs_ring_tess_offchip;
124 LLVMValueRef hs_ring_tess_factor;
125
126 LLVMValueRef sample_pos_offset;
127 LLVMValueRef persp_sample, persp_center, persp_centroid;
128 LLVMValueRef linear_sample, linear_center, linear_centroid;
129
130 gl_shader_stage stage;
131
132 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
133
134 uint64_t input_mask;
135 uint64_t output_mask;
136 uint8_t num_output_clips;
137 uint8_t num_output_culls;
138
139 bool is_gs_copy_shader;
140 LLVMValueRef gs_next_vertex;
141 unsigned gs_max_out_vertices;
142
143 unsigned tes_primitive_mode;
144 uint64_t tess_outputs_written;
145 uint64_t tess_patch_outputs_written;
146
147 uint32_t tcs_patch_outputs_read;
148 uint64_t tcs_outputs_read;
149 };
150
151 static inline struct nir_to_llvm_context *
152 nir_to_llvm_context_from_abi(struct ac_shader_abi *abi)
153 {
154 struct nir_to_llvm_context *ctx = NULL;
155 return container_of(abi, ctx, abi);
156 }
157
158 static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
159 const nir_deref_var *deref,
160 enum ac_descriptor_type desc_type,
161 const nir_tex_instr *instr,
162 bool image, bool write);
163
164 static unsigned radeon_llvm_reg_index_soa(unsigned index, unsigned chan)
165 {
166 return (index * 4) + chan;
167 }
168
169 static unsigned shader_io_get_unique_index(gl_varying_slot slot)
170 {
171 /* handle patch indices separate */
172 if (slot == VARYING_SLOT_TESS_LEVEL_OUTER)
173 return 0;
174 if (slot == VARYING_SLOT_TESS_LEVEL_INNER)
175 return 1;
176 if (slot >= VARYING_SLOT_PATCH0 && slot <= VARYING_SLOT_TESS_MAX)
177 return 2 + (slot - VARYING_SLOT_PATCH0);
178
179 if (slot == VARYING_SLOT_POS)
180 return 0;
181 if (slot == VARYING_SLOT_PSIZ)
182 return 1;
183 if (slot == VARYING_SLOT_CLIP_DIST0)
184 return 2;
185 /* 3 is reserved for clip dist as well */
186 if (slot >= VARYING_SLOT_VAR0 && slot <= VARYING_SLOT_VAR31)
187 return 4 + (slot - VARYING_SLOT_VAR0);
188 unreachable("illegal slot in get unique index\n");
189 }
190
191 static void set_llvm_calling_convention(LLVMValueRef func,
192 gl_shader_stage stage)
193 {
194 enum radeon_llvm_calling_convention calling_conv;
195
196 switch (stage) {
197 case MESA_SHADER_VERTEX:
198 case MESA_SHADER_TESS_EVAL:
199 calling_conv = RADEON_LLVM_AMDGPU_VS;
200 break;
201 case MESA_SHADER_GEOMETRY:
202 calling_conv = RADEON_LLVM_AMDGPU_GS;
203 break;
204 case MESA_SHADER_TESS_CTRL:
205 calling_conv = HAVE_LLVM >= 0x0500 ? RADEON_LLVM_AMDGPU_HS : RADEON_LLVM_AMDGPU_VS;
206 break;
207 case MESA_SHADER_FRAGMENT:
208 calling_conv = RADEON_LLVM_AMDGPU_PS;
209 break;
210 case MESA_SHADER_COMPUTE:
211 calling_conv = RADEON_LLVM_AMDGPU_CS;
212 break;
213 default:
214 unreachable("Unhandle shader type");
215 }
216
217 LLVMSetFunctionCallConv(func, calling_conv);
218 }
219
220 #define MAX_ARGS 23
221 struct arg_info {
222 LLVMTypeRef types[MAX_ARGS];
223 LLVMValueRef *assign[MAX_ARGS];
224 unsigned array_params_mask;
225 uint8_t count;
226 uint8_t sgpr_count;
227 uint8_t num_sgprs_used;
228 uint8_t num_vgprs_used;
229 };
230
231 enum ac_arg_regfile {
232 ARG_SGPR,
233 ARG_VGPR,
234 };
235
236 static void
237 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
238 LLVMValueRef *param_ptr)
239 {
240 assert(info->count < MAX_ARGS);
241
242 info->assign[info->count] = param_ptr;
243 info->types[info->count] = type;
244 info->count++;
245
246 if (regfile == ARG_SGPR) {
247 info->num_sgprs_used += ac_get_type_size(type) / 4;
248 info->sgpr_count++;
249 } else {
250 assert(regfile == ARG_VGPR);
251 info->num_vgprs_used += ac_get_type_size(type) / 4;
252 }
253 }
254
255 static inline void
256 add_array_arg(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr)
257 {
258 info->array_params_mask |= (1 << info->count);
259 add_arg(info, ARG_SGPR, type, param_ptr);
260 }
261
262 static void assign_arguments(LLVMValueRef main_function,
263 struct arg_info *info)
264 {
265 unsigned i;
266 for (i = 0; i < info->count; i++) {
267 if (info->assign[i])
268 *info->assign[i] = LLVMGetParam(main_function, i);
269 }
270 }
271
272 static LLVMValueRef
273 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
274 LLVMBuilderRef builder, LLVMTypeRef *return_types,
275 unsigned num_return_elems,
276 struct arg_info *args,
277 unsigned max_workgroup_size,
278 bool unsafe_math)
279 {
280 LLVMTypeRef main_function_type, ret_type;
281 LLVMBasicBlockRef main_function_body;
282
283 if (num_return_elems)
284 ret_type = LLVMStructTypeInContext(ctx, return_types,
285 num_return_elems, true);
286 else
287 ret_type = LLVMVoidTypeInContext(ctx);
288
289 /* Setup the function */
290 main_function_type =
291 LLVMFunctionType(ret_type, args->types, args->count, 0);
292 LLVMValueRef main_function =
293 LLVMAddFunction(module, "main", main_function_type);
294 main_function_body =
295 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
296 LLVMPositionBuilderAtEnd(builder, main_function_body);
297
298 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
299 for (unsigned i = 0; i < args->sgpr_count; ++i) {
300 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
301
302 if (args->array_params_mask & (1 << i)) {
303 LLVMValueRef P = LLVMGetParam(main_function, i);
304 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
305 ac_add_attr_dereferenceable(P, UINT64_MAX);
306 }
307 }
308
309 if (max_workgroup_size) {
310 ac_llvm_add_target_dep_function_attr(main_function,
311 "amdgpu-max-work-group-size",
312 max_workgroup_size);
313 }
314 if (unsafe_math) {
315 /* These were copied from some LLVM test. */
316 LLVMAddTargetDependentFunctionAttr(main_function,
317 "less-precise-fpmad",
318 "true");
319 LLVMAddTargetDependentFunctionAttr(main_function,
320 "no-infs-fp-math",
321 "true");
322 LLVMAddTargetDependentFunctionAttr(main_function,
323 "no-nans-fp-math",
324 "true");
325 LLVMAddTargetDependentFunctionAttr(main_function,
326 "unsafe-fp-math",
327 "true");
328 LLVMAddTargetDependentFunctionAttr(main_function,
329 "no-signed-zeros-fp-math",
330 "true");
331 }
332 return main_function;
333 }
334
335 static int get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
336 {
337 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
338 type = LLVMGetElementType(type);
339
340 if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind)
341 return LLVMGetIntTypeWidth(type);
342
343 if (type == ctx->f16)
344 return 16;
345 if (type == ctx->f32)
346 return 32;
347 if (type == ctx->f64)
348 return 64;
349
350 unreachable("Unhandled type kind in get_elem_bits");
351 }
352
353 static LLVMValueRef unpack_param(struct ac_llvm_context *ctx,
354 LLVMValueRef param, unsigned rshift,
355 unsigned bitwidth)
356 {
357 LLVMValueRef value = param;
358 if (rshift)
359 value = LLVMBuildLShr(ctx->builder, value,
360 LLVMConstInt(ctx->i32, rshift, false), "");
361
362 if (rshift + bitwidth < 32) {
363 unsigned mask = (1 << bitwidth) - 1;
364 value = LLVMBuildAnd(ctx->builder, value,
365 LLVMConstInt(ctx->i32, mask, false), "");
366 }
367 return value;
368 }
369
370 static LLVMValueRef get_rel_patch_id(struct nir_to_llvm_context *ctx)
371 {
372 switch (ctx->stage) {
373 case MESA_SHADER_TESS_CTRL:
374 return unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
375 case MESA_SHADER_TESS_EVAL:
376 return ctx->tes_rel_patch_id;
377 break;
378 default:
379 unreachable("Illegal stage");
380 }
381 }
382
383 /* Tessellation shaders pass outputs to the next shader using LDS.
384 *
385 * LS outputs = TCS inputs
386 * TCS outputs = TES inputs
387 *
388 * The LDS layout is:
389 * - TCS inputs for patch 0
390 * - TCS inputs for patch 1
391 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
392 * - ...
393 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
394 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
395 * - TCS outputs for patch 1
396 * - Per-patch TCS outputs for patch 1
397 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
398 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
399 * - ...
400 *
401 * All three shaders VS(LS), TCS, TES share the same LDS space.
402 */
403 static LLVMValueRef
404 get_tcs_in_patch_stride(struct nir_to_llvm_context *ctx)
405 {
406 if (ctx->stage == MESA_SHADER_VERTEX)
407 return unpack_param(&ctx->ac, ctx->ls_out_layout, 0, 13);
408 else if (ctx->stage == MESA_SHADER_TESS_CTRL)
409 return unpack_param(&ctx->ac, ctx->tcs_in_layout, 0, 13);
410 else {
411 assert(0);
412 return NULL;
413 }
414 }
415
416 static LLVMValueRef
417 get_tcs_out_patch_stride(struct nir_to_llvm_context *ctx)
418 {
419 return unpack_param(&ctx->ac, ctx->tcs_out_layout, 0, 13);
420 }
421
422 static LLVMValueRef
423 get_tcs_out_patch0_offset(struct nir_to_llvm_context *ctx)
424 {
425 return LLVMBuildMul(ctx->builder,
426 unpack_param(&ctx->ac, ctx->tcs_out_offsets, 0, 16),
427 LLVMConstInt(ctx->ac.i32, 4, false), "");
428 }
429
430 static LLVMValueRef
431 get_tcs_out_patch0_patch_data_offset(struct nir_to_llvm_context *ctx)
432 {
433 return LLVMBuildMul(ctx->builder,
434 unpack_param(&ctx->ac, ctx->tcs_out_offsets, 16, 16),
435 LLVMConstInt(ctx->ac.i32, 4, false), "");
436 }
437
438 static LLVMValueRef
439 get_tcs_in_current_patch_offset(struct nir_to_llvm_context *ctx)
440 {
441 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
442 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
443
444 return LLVMBuildMul(ctx->builder, patch_stride, rel_patch_id, "");
445 }
446
447 static LLVMValueRef
448 get_tcs_out_current_patch_offset(struct nir_to_llvm_context *ctx)
449 {
450 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
451 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
452 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
453
454 return LLVMBuildAdd(ctx->builder, patch0_offset,
455 LLVMBuildMul(ctx->builder, patch_stride,
456 rel_patch_id, ""),
457 "");
458 }
459
460 static LLVMValueRef
461 get_tcs_out_current_patch_data_offset(struct nir_to_llvm_context *ctx)
462 {
463 LLVMValueRef patch0_patch_data_offset =
464 get_tcs_out_patch0_patch_data_offset(ctx);
465 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
466 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
467
468 return LLVMBuildAdd(ctx->builder, patch0_patch_data_offset,
469 LLVMBuildMul(ctx->builder, patch_stride,
470 rel_patch_id, ""),
471 "");
472 }
473
474 static void
475 set_loc(struct ac_userdata_info *ud_info, uint8_t *sgpr_idx, uint8_t num_sgprs,
476 uint32_t indirect_offset)
477 {
478 ud_info->sgpr_idx = *sgpr_idx;
479 ud_info->num_sgprs = num_sgprs;
480 ud_info->indirect = indirect_offset > 0;
481 ud_info->indirect_offset = indirect_offset;
482 *sgpr_idx += num_sgprs;
483 }
484
485 static void
486 set_loc_shader(struct nir_to_llvm_context *ctx, int idx, uint8_t *sgpr_idx,
487 uint8_t num_sgprs)
488 {
489 struct ac_userdata_info *ud_info =
490 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
491 assert(ud_info);
492
493 set_loc(ud_info, sgpr_idx, num_sgprs, 0);
494 }
495
496 static void
497 set_loc_desc(struct nir_to_llvm_context *ctx, int idx, uint8_t *sgpr_idx,
498 uint32_t indirect_offset)
499 {
500 struct ac_userdata_info *ud_info =
501 &ctx->shader_info->user_sgprs_locs.descriptor_sets[idx];
502 assert(ud_info);
503
504 set_loc(ud_info, sgpr_idx, 2, indirect_offset);
505 }
506
507 struct user_sgpr_info {
508 bool need_ring_offsets;
509 uint8_t sgpr_count;
510 bool indirect_all_descriptor_sets;
511 };
512
513 static bool needs_view_index_sgpr(struct nir_to_llvm_context *ctx,
514 gl_shader_stage stage)
515 {
516 switch (stage) {
517 case MESA_SHADER_VERTEX:
518 if (ctx->shader_info->info.needs_multiview_view_index ||
519 (!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
520 return true;
521 break;
522 case MESA_SHADER_TESS_EVAL:
523 if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
524 return true;
525 break;
526 case MESA_SHADER_GEOMETRY:
527 case MESA_SHADER_TESS_CTRL:
528 if (ctx->shader_info->info.needs_multiview_view_index)
529 return true;
530 break;
531 default:
532 break;
533 }
534 return false;
535 }
536
537 static void allocate_user_sgprs(struct nir_to_llvm_context *ctx,
538 gl_shader_stage stage,
539 bool needs_view_index,
540 struct user_sgpr_info *user_sgpr_info)
541 {
542 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
543
544 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
545 if (stage == MESA_SHADER_GEOMETRY ||
546 stage == MESA_SHADER_VERTEX ||
547 stage == MESA_SHADER_TESS_CTRL ||
548 stage == MESA_SHADER_TESS_EVAL ||
549 ctx->is_gs_copy_shader)
550 user_sgpr_info->need_ring_offsets = true;
551
552 if (stage == MESA_SHADER_FRAGMENT &&
553 ctx->shader_info->info.ps.needs_sample_positions)
554 user_sgpr_info->need_ring_offsets = true;
555
556 /* 2 user sgprs will nearly always be allocated for scratch/rings */
557 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
558 user_sgpr_info->sgpr_count += 2;
559 }
560
561 /* FIXME: fix the number of user sgprs for merged shaders on GFX9 */
562 switch (stage) {
563 case MESA_SHADER_COMPUTE:
564 if (ctx->shader_info->info.cs.uses_grid_size)
565 user_sgpr_info->sgpr_count += 3;
566 break;
567 case MESA_SHADER_FRAGMENT:
568 user_sgpr_info->sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
569 break;
570 case MESA_SHADER_VERTEX:
571 if (!ctx->is_gs_copy_shader) {
572 user_sgpr_info->sgpr_count += ctx->shader_info->info.vs.has_vertex_buffers ? 2 : 0;
573 if (ctx->shader_info->info.vs.needs_draw_id) {
574 user_sgpr_info->sgpr_count += 3;
575 } else {
576 user_sgpr_info->sgpr_count += 2;
577 }
578 }
579 if (ctx->options->key.vs.as_ls)
580 user_sgpr_info->sgpr_count++;
581 break;
582 case MESA_SHADER_TESS_CTRL:
583 user_sgpr_info->sgpr_count += 4;
584 break;
585 case MESA_SHADER_TESS_EVAL:
586 user_sgpr_info->sgpr_count += 1;
587 break;
588 case MESA_SHADER_GEOMETRY:
589 user_sgpr_info->sgpr_count += 2;
590 break;
591 default:
592 break;
593 }
594
595 if (needs_view_index)
596 user_sgpr_info->sgpr_count++;
597
598 if (ctx->shader_info->info.loads_push_constants)
599 user_sgpr_info->sgpr_count += 2;
600
601 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 ? 32 : 16;
602 uint32_t remaining_sgprs = available_sgprs - user_sgpr_info->sgpr_count;
603
604 if (remaining_sgprs / 2 < util_bitcount(ctx->shader_info->info.desc_set_used_mask)) {
605 user_sgpr_info->sgpr_count += 2;
606 user_sgpr_info->indirect_all_descriptor_sets = true;
607 } else {
608 user_sgpr_info->sgpr_count += util_bitcount(ctx->shader_info->info.desc_set_used_mask) * 2;
609 }
610 }
611
612 static void
613 declare_global_input_sgprs(struct nir_to_llvm_context *ctx,
614 gl_shader_stage stage,
615 bool has_previous_stage,
616 gl_shader_stage previous_stage,
617 const struct user_sgpr_info *user_sgpr_info,
618 struct arg_info *args,
619 LLVMValueRef *desc_sets)
620 {
621 LLVMTypeRef type = ac_array_in_const_addr_space(ctx->ac.i8);
622 unsigned num_sets = ctx->options->layout ?
623 ctx->options->layout->num_sets : 0;
624 unsigned stage_mask = 1 << stage;
625
626 if (has_previous_stage)
627 stage_mask |= 1 << previous_stage;
628
629 /* 1 for each descriptor set */
630 if (!user_sgpr_info->indirect_all_descriptor_sets) {
631 for (unsigned i = 0; i < num_sets; ++i) {
632 if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
633 add_array_arg(args, type,
634 &ctx->descriptor_sets[i]);
635 }
636 }
637 } else {
638 add_array_arg(args, ac_array_in_const_addr_space(type), desc_sets);
639 }
640
641 if (ctx->shader_info->info.loads_push_constants) {
642 /* 1 for push constants and dynamic descriptors */
643 add_array_arg(args, type, &ctx->push_constants);
644 }
645 }
646
647 static void
648 declare_vs_specific_input_sgprs(struct nir_to_llvm_context *ctx,
649 gl_shader_stage stage,
650 bool has_previous_stage,
651 gl_shader_stage previous_stage,
652 struct arg_info *args)
653 {
654 if (!ctx->is_gs_copy_shader &&
655 (stage == MESA_SHADER_VERTEX ||
656 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
657 if (ctx->shader_info->info.vs.has_vertex_buffers) {
658 add_arg(args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
659 &ctx->vertex_buffers);
660 }
661 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
662 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
663 if (ctx->shader_info->info.vs.needs_draw_id) {
664 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
665 }
666 }
667 }
668
669 static void
670 declare_vs_input_vgprs(struct nir_to_llvm_context *ctx, struct arg_info *args)
671 {
672 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
673 if (!ctx->is_gs_copy_shader) {
674 if (ctx->options->key.vs.as_ls) {
675 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
676 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
677 } else {
678 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
679 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
680 }
681 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
682 }
683 }
684
685 static void
686 declare_tes_input_vgprs(struct nir_to_llvm_context *ctx, struct arg_info *args)
687 {
688 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
689 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
690 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
691 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
692 }
693
694 static void
695 set_global_input_locs(struct nir_to_llvm_context *ctx, gl_shader_stage stage,
696 bool has_previous_stage, gl_shader_stage previous_stage,
697 const struct user_sgpr_info *user_sgpr_info,
698 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
699 {
700 unsigned num_sets = ctx->options->layout ?
701 ctx->options->layout->num_sets : 0;
702 unsigned stage_mask = 1 << stage;
703
704 if (has_previous_stage)
705 stage_mask |= 1 << previous_stage;
706
707 if (!user_sgpr_info->indirect_all_descriptor_sets) {
708 for (unsigned i = 0; i < num_sets; ++i) {
709 if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
710 set_loc_desc(ctx, i, user_sgpr_idx, 0);
711 } else
712 ctx->descriptor_sets[i] = NULL;
713 }
714 } else {
715 set_loc_shader(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
716 user_sgpr_idx, 2);
717
718 for (unsigned i = 0; i < num_sets; ++i) {
719 if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
720 set_loc_desc(ctx, i, user_sgpr_idx, i * 8);
721 ctx->descriptor_sets[i] =
722 ac_build_load_to_sgpr(&ctx->ac,
723 desc_sets,
724 LLVMConstInt(ctx->ac.i32, i, false));
725
726 } else
727 ctx->descriptor_sets[i] = NULL;
728 }
729 ctx->shader_info->need_indirect_descriptor_sets = true;
730 }
731
732 if (ctx->shader_info->info.loads_push_constants) {
733 set_loc_shader(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx, 2);
734 }
735 }
736
737 static void
738 set_vs_specific_input_locs(struct nir_to_llvm_context *ctx,
739 gl_shader_stage stage, bool has_previous_stage,
740 gl_shader_stage previous_stage,
741 uint8_t *user_sgpr_idx)
742 {
743 if (!ctx->is_gs_copy_shader &&
744 (stage == MESA_SHADER_VERTEX ||
745 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
746 if (ctx->shader_info->info.vs.has_vertex_buffers) {
747 set_loc_shader(ctx, AC_UD_VS_VERTEX_BUFFERS,
748 user_sgpr_idx, 2);
749 }
750
751 unsigned vs_num = 2;
752 if (ctx->shader_info->info.vs.needs_draw_id)
753 vs_num++;
754
755 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
756 user_sgpr_idx, vs_num);
757 }
758 }
759
760 static void create_function(struct nir_to_llvm_context *ctx,
761 gl_shader_stage stage,
762 bool has_previous_stage,
763 gl_shader_stage previous_stage)
764 {
765 uint8_t user_sgpr_idx;
766 struct user_sgpr_info user_sgpr_info;
767 struct arg_info args = {};
768 LLVMValueRef desc_sets;
769 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
770 allocate_user_sgprs(ctx, stage, needs_view_index, &user_sgpr_info);
771
772 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
773 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
774 &ctx->ring_offsets);
775 }
776
777 switch (stage) {
778 case MESA_SHADER_COMPUTE:
779 declare_global_input_sgprs(ctx, stage, has_previous_stage,
780 previous_stage, &user_sgpr_info,
781 &args, &desc_sets);
782
783 if (ctx->shader_info->info.cs.uses_grid_size) {
784 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
785 &ctx->num_work_groups);
786 }
787
788 for (int i = 0; i < 3; i++) {
789 ctx->workgroup_ids[i] = NULL;
790 if (ctx->shader_info->info.cs.uses_block_id[i]) {
791 add_arg(&args, ARG_SGPR, ctx->ac.i32,
792 &ctx->workgroup_ids[i]);
793 }
794 }
795
796 if (ctx->shader_info->info.cs.uses_local_invocation_idx)
797 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->tg_size);
798 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
799 &ctx->local_invocation_ids);
800 break;
801 case MESA_SHADER_VERTEX:
802 declare_global_input_sgprs(ctx, stage, has_previous_stage,
803 previous_stage, &user_sgpr_info,
804 &args, &desc_sets);
805 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
806 previous_stage, &args);
807
808 if (needs_view_index)
809 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->view_index);
810 if (ctx->options->key.vs.as_es)
811 add_arg(&args, ARG_SGPR, ctx->ac.i32,
812 &ctx->es2gs_offset);
813 else if (ctx->options->key.vs.as_ls)
814 add_arg(&args, ARG_SGPR, ctx->ac.i32,
815 &ctx->ls_out_layout);
816
817 declare_vs_input_vgprs(ctx, &args);
818 break;
819 case MESA_SHADER_TESS_CTRL:
820 if (has_previous_stage) {
821 // First 6 system regs
822 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
823 add_arg(&args, ARG_SGPR, ctx->ac.i32,
824 &ctx->merged_wave_info);
825 add_arg(&args, ARG_SGPR, ctx->ac.i32,
826 &ctx->tess_factor_offset);
827
828 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
829 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
830 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
831
832 declare_global_input_sgprs(ctx, stage,
833 has_previous_stage,
834 previous_stage,
835 &user_sgpr_info, &args,
836 &desc_sets);
837 declare_vs_specific_input_sgprs(ctx, stage,
838 has_previous_stage,
839 previous_stage, &args);
840
841 add_arg(&args, ARG_SGPR, ctx->ac.i32,
842 &ctx->ls_out_layout);
843
844 add_arg(&args, ARG_SGPR, ctx->ac.i32,
845 &ctx->tcs_offchip_layout);
846 add_arg(&args, ARG_SGPR, ctx->ac.i32,
847 &ctx->tcs_out_offsets);
848 add_arg(&args, ARG_SGPR, ctx->ac.i32,
849 &ctx->tcs_out_layout);
850 add_arg(&args, ARG_SGPR, ctx->ac.i32,
851 &ctx->tcs_in_layout);
852 if (needs_view_index)
853 add_arg(&args, ARG_SGPR, ctx->ac.i32,
854 &ctx->view_index);
855
856 add_arg(&args, ARG_VGPR, ctx->ac.i32,
857 &ctx->abi.tcs_patch_id);
858 add_arg(&args, ARG_VGPR, ctx->ac.i32,
859 &ctx->abi.tcs_rel_ids);
860
861 declare_vs_input_vgprs(ctx, &args);
862 } else {
863 declare_global_input_sgprs(ctx, stage,
864 has_previous_stage,
865 previous_stage,
866 &user_sgpr_info, &args,
867 &desc_sets);
868
869 add_arg(&args, ARG_SGPR, ctx->ac.i32,
870 &ctx->tcs_offchip_layout);
871 add_arg(&args, ARG_SGPR, ctx->ac.i32,
872 &ctx->tcs_out_offsets);
873 add_arg(&args, ARG_SGPR, ctx->ac.i32,
874 &ctx->tcs_out_layout);
875 add_arg(&args, ARG_SGPR, ctx->ac.i32,
876 &ctx->tcs_in_layout);
877 if (needs_view_index)
878 add_arg(&args, ARG_SGPR, ctx->ac.i32,
879 &ctx->view_index);
880
881 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
882 add_arg(&args, ARG_SGPR, ctx->ac.i32,
883 &ctx->tess_factor_offset);
884 add_arg(&args, ARG_VGPR, ctx->ac.i32,
885 &ctx->abi.tcs_patch_id);
886 add_arg(&args, ARG_VGPR, ctx->ac.i32,
887 &ctx->abi.tcs_rel_ids);
888 }
889 break;
890 case MESA_SHADER_TESS_EVAL:
891 declare_global_input_sgprs(ctx, stage, has_previous_stage,
892 previous_stage, &user_sgpr_info,
893 &args, &desc_sets);
894
895 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->tcs_offchip_layout);
896 if (needs_view_index)
897 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->view_index);
898
899 if (ctx->options->key.tes.as_es) {
900 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
901 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
902 add_arg(&args, ARG_SGPR, ctx->ac.i32,
903 &ctx->es2gs_offset);
904 } else {
905 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
906 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
907 }
908 declare_tes_input_vgprs(ctx, &args);
909 break;
910 case MESA_SHADER_GEOMETRY:
911 if (has_previous_stage) {
912 // First 6 system regs
913 add_arg(&args, ARG_SGPR, ctx->ac.i32,
914 &ctx->gs2vs_offset);
915 add_arg(&args, ARG_SGPR, ctx->ac.i32,
916 &ctx->merged_wave_info);
917 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
918
919 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
920 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
921 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
922
923 declare_global_input_sgprs(ctx, stage,
924 has_previous_stage,
925 previous_stage,
926 &user_sgpr_info, &args,
927 &desc_sets);
928
929 if (previous_stage == MESA_SHADER_TESS_EVAL) {
930 add_arg(&args, ARG_SGPR, ctx->ac.i32,
931 &ctx->tcs_offchip_layout);
932 } else {
933 declare_vs_specific_input_sgprs(ctx, stage,
934 has_previous_stage,
935 previous_stage,
936 &args);
937 }
938
939 add_arg(&args, ARG_SGPR, ctx->ac.i32,
940 &ctx->gsvs_ring_stride);
941 add_arg(&args, ARG_SGPR, ctx->ac.i32,
942 &ctx->gsvs_num_entries);
943 if (needs_view_index)
944 add_arg(&args, ARG_SGPR, ctx->ac.i32,
945 &ctx->view_index);
946
947 add_arg(&args, ARG_VGPR, ctx->ac.i32,
948 &ctx->gs_vtx_offset[0]);
949 add_arg(&args, ARG_VGPR, ctx->ac.i32,
950 &ctx->gs_vtx_offset[2]);
951 add_arg(&args, ARG_VGPR, ctx->ac.i32,
952 &ctx->abi.gs_prim_id);
953 add_arg(&args, ARG_VGPR, ctx->ac.i32,
954 &ctx->abi.gs_invocation_id);
955 add_arg(&args, ARG_VGPR, ctx->ac.i32,
956 &ctx->gs_vtx_offset[4]);
957
958 if (previous_stage == MESA_SHADER_VERTEX) {
959 declare_vs_input_vgprs(ctx, &args);
960 } else {
961 declare_tes_input_vgprs(ctx, &args);
962 }
963 } else {
964 declare_global_input_sgprs(ctx, stage,
965 has_previous_stage,
966 previous_stage,
967 &user_sgpr_info, &args,
968 &desc_sets);
969
970 add_arg(&args, ARG_SGPR, ctx->ac.i32,
971 &ctx->gsvs_ring_stride);
972 add_arg(&args, ARG_SGPR, ctx->ac.i32,
973 &ctx->gsvs_num_entries);
974 if (needs_view_index)
975 add_arg(&args, ARG_SGPR, ctx->ac.i32,
976 &ctx->view_index);
977
978 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
979 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
980 add_arg(&args, ARG_VGPR, ctx->ac.i32,
981 &ctx->gs_vtx_offset[0]);
982 add_arg(&args, ARG_VGPR, ctx->ac.i32,
983 &ctx->gs_vtx_offset[1]);
984 add_arg(&args, ARG_VGPR, ctx->ac.i32,
985 &ctx->abi.gs_prim_id);
986 add_arg(&args, ARG_VGPR, ctx->ac.i32,
987 &ctx->gs_vtx_offset[2]);
988 add_arg(&args, ARG_VGPR, ctx->ac.i32,
989 &ctx->gs_vtx_offset[3]);
990 add_arg(&args, ARG_VGPR, ctx->ac.i32,
991 &ctx->gs_vtx_offset[4]);
992 add_arg(&args, ARG_VGPR, ctx->ac.i32,
993 &ctx->gs_vtx_offset[5]);
994 add_arg(&args, ARG_VGPR, ctx->ac.i32,
995 &ctx->abi.gs_invocation_id);
996 }
997 break;
998 case MESA_SHADER_FRAGMENT:
999 declare_global_input_sgprs(ctx, stage, has_previous_stage,
1000 previous_stage, &user_sgpr_info,
1001 &args, &desc_sets);
1002
1003 if (ctx->shader_info->info.ps.needs_sample_positions)
1004 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1005 &ctx->sample_pos_offset);
1006
1007 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1008 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
1009 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
1010 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
1011 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1012 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
1013 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
1014 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
1015 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1016 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1017 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1018 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1019 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1020 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1021 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1022 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1023 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1024 break;
1025 default:
1026 unreachable("Shader stage not implemented");
1027 }
1028
1029 ctx->main_function = create_llvm_function(
1030 ctx->context, ctx->module, ctx->builder, NULL, 0, &args,
1031 ctx->max_workgroup_size,
1032 ctx->options->unsafe_math);
1033 set_llvm_calling_convention(ctx->main_function, stage);
1034
1035
1036 ctx->shader_info->num_input_vgprs = 0;
1037 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1038
1039 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1040
1041 if (ctx->stage != MESA_SHADER_FRAGMENT)
1042 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1043
1044 assign_arguments(ctx->main_function, &args);
1045
1046 user_sgpr_idx = 0;
1047
1048 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1049 set_loc_shader(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1050 &user_sgpr_idx, 2);
1051 if (ctx->options->supports_spill) {
1052 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1053 LLVMPointerType(ctx->ac.i8, AC_CONST_ADDR_SPACE),
1054 NULL, 0, AC_FUNC_ATTR_READNONE);
1055 ctx->ring_offsets = LLVMBuildBitCast(ctx->builder, ctx->ring_offsets,
1056 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1057 }
1058 }
1059
1060 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1061 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1062 if (has_previous_stage)
1063 user_sgpr_idx = 0;
1064
1065 set_global_input_locs(ctx, stage, has_previous_stage, previous_stage,
1066 &user_sgpr_info, desc_sets, &user_sgpr_idx);
1067
1068 switch (stage) {
1069 case MESA_SHADER_COMPUTE:
1070 if (ctx->shader_info->info.cs.uses_grid_size) {
1071 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1072 &user_sgpr_idx, 3);
1073 }
1074 break;
1075 case MESA_SHADER_VERTEX:
1076 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1077 previous_stage, &user_sgpr_idx);
1078 if (ctx->view_index)
1079 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1080 if (ctx->options->key.vs.as_ls) {
1081 set_loc_shader(ctx, AC_UD_VS_LS_TCS_IN_LAYOUT,
1082 &user_sgpr_idx, 1);
1083 }
1084 if (ctx->options->key.vs.as_ls)
1085 ac_declare_lds_as_pointer(&ctx->ac);
1086 break;
1087 case MESA_SHADER_TESS_CTRL:
1088 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1089 previous_stage, &user_sgpr_idx);
1090 if (has_previous_stage)
1091 set_loc_shader(ctx, AC_UD_VS_LS_TCS_IN_LAYOUT,
1092 &user_sgpr_idx, 1);
1093 set_loc_shader(ctx, AC_UD_TCS_OFFCHIP_LAYOUT, &user_sgpr_idx, 4);
1094 if (ctx->view_index)
1095 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1096 ac_declare_lds_as_pointer(&ctx->ac);
1097 break;
1098 case MESA_SHADER_TESS_EVAL:
1099 set_loc_shader(ctx, AC_UD_TES_OFFCHIP_LAYOUT, &user_sgpr_idx, 1);
1100 if (ctx->view_index)
1101 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1102 break;
1103 case MESA_SHADER_GEOMETRY:
1104 if (has_previous_stage) {
1105 if (previous_stage == MESA_SHADER_VERTEX)
1106 set_vs_specific_input_locs(ctx, stage,
1107 has_previous_stage,
1108 previous_stage,
1109 &user_sgpr_idx);
1110 else
1111 set_loc_shader(ctx, AC_UD_TES_OFFCHIP_LAYOUT,
1112 &user_sgpr_idx, 1);
1113 }
1114 set_loc_shader(ctx, AC_UD_GS_VS_RING_STRIDE_ENTRIES,
1115 &user_sgpr_idx, 2);
1116 if (ctx->view_index)
1117 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1118 if (has_previous_stage)
1119 ac_declare_lds_as_pointer(&ctx->ac);
1120 break;
1121 case MESA_SHADER_FRAGMENT:
1122 if (ctx->shader_info->info.ps.needs_sample_positions) {
1123 set_loc_shader(ctx, AC_UD_PS_SAMPLE_POS_OFFSET,
1124 &user_sgpr_idx, 1);
1125 }
1126 break;
1127 default:
1128 unreachable("Shader stage not implemented");
1129 }
1130
1131 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1132 }
1133
1134 static LLVMValueRef trim_vector(struct ac_llvm_context *ctx,
1135 LLVMValueRef value, unsigned count)
1136 {
1137 unsigned num_components = ac_get_llvm_num_components(value);
1138 if (count == num_components)
1139 return value;
1140
1141 LLVMValueRef masks[] = {
1142 LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
1143 LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false)};
1144
1145 if (count == 1)
1146 return LLVMBuildExtractElement(ctx->builder, value, masks[0],
1147 "");
1148
1149 LLVMValueRef swizzle = LLVMConstVector(masks, count);
1150 return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
1151 }
1152
1153 static void
1154 build_store_values_extended(struct ac_llvm_context *ac,
1155 LLVMValueRef *values,
1156 unsigned value_count,
1157 unsigned value_stride,
1158 LLVMValueRef vec)
1159 {
1160 LLVMBuilderRef builder = ac->builder;
1161 unsigned i;
1162
1163 for (i = 0; i < value_count; i++) {
1164 LLVMValueRef ptr = values[i * value_stride];
1165 LLVMValueRef index = LLVMConstInt(ac->i32, i, false);
1166 LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, "");
1167 LLVMBuildStore(builder, value, ptr);
1168 }
1169 }
1170
1171 static LLVMTypeRef get_def_type(struct ac_nir_context *ctx,
1172 const nir_ssa_def *def)
1173 {
1174 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, def->bit_size);
1175 if (def->num_components > 1) {
1176 type = LLVMVectorType(type, def->num_components);
1177 }
1178 return type;
1179 }
1180
1181 static LLVMValueRef get_src(struct ac_nir_context *nir, nir_src src)
1182 {
1183 assert(src.is_ssa);
1184 struct hash_entry *entry = _mesa_hash_table_search(nir->defs, src.ssa);
1185 return (LLVMValueRef)entry->data;
1186 }
1187
1188
1189 static LLVMBasicBlockRef get_block(struct ac_nir_context *nir,
1190 const struct nir_block *b)
1191 {
1192 struct hash_entry *entry = _mesa_hash_table_search(nir->defs, b);
1193 return (LLVMBasicBlockRef)entry->data;
1194 }
1195
1196 static LLVMValueRef get_alu_src(struct ac_nir_context *ctx,
1197 nir_alu_src src,
1198 unsigned num_components)
1199 {
1200 LLVMValueRef value = get_src(ctx, src.src);
1201 bool need_swizzle = false;
1202
1203 assert(value);
1204 LLVMTypeRef type = LLVMTypeOf(value);
1205 unsigned src_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
1206 ? LLVMGetVectorSize(type)
1207 : 1;
1208
1209 for (unsigned i = 0; i < num_components; ++i) {
1210 assert(src.swizzle[i] < src_components);
1211 if (src.swizzle[i] != i)
1212 need_swizzle = true;
1213 }
1214
1215 if (need_swizzle || num_components != src_components) {
1216 LLVMValueRef masks[] = {
1217 LLVMConstInt(ctx->ac.i32, src.swizzle[0], false),
1218 LLVMConstInt(ctx->ac.i32, src.swizzle[1], false),
1219 LLVMConstInt(ctx->ac.i32, src.swizzle[2], false),
1220 LLVMConstInt(ctx->ac.i32, src.swizzle[3], false)};
1221
1222 if (src_components > 1 && num_components == 1) {
1223 value = LLVMBuildExtractElement(ctx->ac.builder, value,
1224 masks[0], "");
1225 } else if (src_components == 1 && num_components > 1) {
1226 LLVMValueRef values[] = {value, value, value, value};
1227 value = ac_build_gather_values(&ctx->ac, values, num_components);
1228 } else {
1229 LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
1230 value = LLVMBuildShuffleVector(ctx->ac.builder, value, value,
1231 swizzle, "");
1232 }
1233 }
1234 assert(!src.negate);
1235 assert(!src.abs);
1236 return value;
1237 }
1238
1239 static LLVMValueRef emit_int_cmp(struct ac_llvm_context *ctx,
1240 LLVMIntPredicate pred, LLVMValueRef src0,
1241 LLVMValueRef src1)
1242 {
1243 LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
1244 return LLVMBuildSelect(ctx->builder, result,
1245 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
1246 ctx->i32_0, "");
1247 }
1248
1249 static LLVMValueRef emit_float_cmp(struct ac_llvm_context *ctx,
1250 LLVMRealPredicate pred, LLVMValueRef src0,
1251 LLVMValueRef src1)
1252 {
1253 LLVMValueRef result;
1254 src0 = ac_to_float(ctx, src0);
1255 src1 = ac_to_float(ctx, src1);
1256 result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
1257 return LLVMBuildSelect(ctx->builder, result,
1258 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
1259 ctx->i32_0, "");
1260 }
1261
1262 static LLVMValueRef emit_intrin_1f_param(struct ac_llvm_context *ctx,
1263 const char *intrin,
1264 LLVMTypeRef result_type,
1265 LLVMValueRef src0)
1266 {
1267 char name[64];
1268 LLVMValueRef params[] = {
1269 ac_to_float(ctx, src0),
1270 };
1271
1272 MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
1273 get_elem_bits(ctx, result_type));
1274 assert(length < sizeof(name));
1275 return ac_build_intrinsic(ctx, name, result_type, params, 1, AC_FUNC_ATTR_READNONE);
1276 }
1277
1278 static LLVMValueRef emit_intrin_2f_param(struct ac_llvm_context *ctx,
1279 const char *intrin,
1280 LLVMTypeRef result_type,
1281 LLVMValueRef src0, LLVMValueRef src1)
1282 {
1283 char name[64];
1284 LLVMValueRef params[] = {
1285 ac_to_float(ctx, src0),
1286 ac_to_float(ctx, src1),
1287 };
1288
1289 MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
1290 get_elem_bits(ctx, result_type));
1291 assert(length < sizeof(name));
1292 return ac_build_intrinsic(ctx, name, result_type, params, 2, AC_FUNC_ATTR_READNONE);
1293 }
1294
1295 static LLVMValueRef emit_intrin_3f_param(struct ac_llvm_context *ctx,
1296 const char *intrin,
1297 LLVMTypeRef result_type,
1298 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
1299 {
1300 char name[64];
1301 LLVMValueRef params[] = {
1302 ac_to_float(ctx, src0),
1303 ac_to_float(ctx, src1),
1304 ac_to_float(ctx, src2),
1305 };
1306
1307 MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
1308 get_elem_bits(ctx, result_type));
1309 assert(length < sizeof(name));
1310 return ac_build_intrinsic(ctx, name, result_type, params, 3, AC_FUNC_ATTR_READNONE);
1311 }
1312
1313 static LLVMValueRef emit_bcsel(struct ac_llvm_context *ctx,
1314 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
1315 {
1316 LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0,
1317 ctx->i32_0, "");
1318 return LLVMBuildSelect(ctx->builder, v, src1, src2, "");
1319 }
1320
1321 static LLVMValueRef emit_minmax_int(struct ac_llvm_context *ctx,
1322 LLVMIntPredicate pred,
1323 LLVMValueRef src0, LLVMValueRef src1)
1324 {
1325 return LLVMBuildSelect(ctx->builder,
1326 LLVMBuildICmp(ctx->builder, pred, src0, src1, ""),
1327 src0,
1328 src1, "");
1329
1330 }
1331 static LLVMValueRef emit_iabs(struct ac_llvm_context *ctx,
1332 LLVMValueRef src0)
1333 {
1334 return emit_minmax_int(ctx, LLVMIntSGT, src0,
1335 LLVMBuildNeg(ctx->builder, src0, ""));
1336 }
1337
1338 static LLVMValueRef emit_fsign(struct ac_llvm_context *ctx,
1339 LLVMValueRef src0,
1340 unsigned bitsize)
1341 {
1342 LLVMValueRef cmp, val, zero, one;
1343 LLVMTypeRef type;
1344
1345 if (bitsize == 32) {
1346 type = ctx->f32;
1347 zero = ctx->f32_0;
1348 one = ctx->f32_1;
1349 } else {
1350 type = ctx->f64;
1351 zero = ctx->f64_0;
1352 one = ctx->f64_1;
1353 }
1354
1355 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, zero, "");
1356 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
1357 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, zero, "");
1358 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(type, -1.0), "");
1359 return val;
1360 }
1361
1362 static LLVMValueRef emit_isign(struct ac_llvm_context *ctx,
1363 LLVMValueRef src0, unsigned bitsize)
1364 {
1365 LLVMValueRef cmp, val, zero, one;
1366 LLVMTypeRef type;
1367
1368 if (bitsize == 32) {
1369 type = ctx->i32;
1370 zero = ctx->i32_0;
1371 one = ctx->i32_1;
1372 } else {
1373 type = ctx->i64;
1374 zero = ctx->i64_0;
1375 one = ctx->i64_1;
1376 }
1377
1378 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, zero, "");
1379 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
1380 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, zero, "");
1381 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(type, -1, true), "");
1382 return val;
1383 }
1384
1385 static LLVMValueRef emit_ffract(struct ac_llvm_context *ctx,
1386 LLVMValueRef src0, unsigned bitsize)
1387 {
1388 LLVMTypeRef type;
1389 char *intr;
1390
1391 if (bitsize == 32) {
1392 intr = "llvm.floor.f32";
1393 type = ctx->f32;
1394 } else {
1395 intr = "llvm.floor.f64";
1396 type = ctx->f64;
1397 }
1398
1399 LLVMValueRef fsrc0 = ac_to_float(ctx, src0);
1400 LLVMValueRef params[] = {
1401 fsrc0,
1402 };
1403 LLVMValueRef floor = ac_build_intrinsic(ctx, intr, type, params, 1,
1404 AC_FUNC_ATTR_READNONE);
1405 return LLVMBuildFSub(ctx->builder, fsrc0, floor, "");
1406 }
1407
1408 static LLVMValueRef emit_uint_carry(struct ac_llvm_context *ctx,
1409 const char *intrin,
1410 LLVMValueRef src0, LLVMValueRef src1)
1411 {
1412 LLVMTypeRef ret_type;
1413 LLVMTypeRef types[] = { ctx->i32, ctx->i1 };
1414 LLVMValueRef res;
1415 LLVMValueRef params[] = { src0, src1 };
1416 ret_type = LLVMStructTypeInContext(ctx->context, types,
1417 2, true);
1418
1419 res = ac_build_intrinsic(ctx, intrin, ret_type,
1420 params, 2, AC_FUNC_ATTR_READNONE);
1421
1422 res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
1423 res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
1424 return res;
1425 }
1426
1427 static LLVMValueRef emit_b2f(struct ac_llvm_context *ctx,
1428 LLVMValueRef src0)
1429 {
1430 return LLVMBuildAnd(ctx->builder, src0, LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""), "");
1431 }
1432
1433 static LLVMValueRef emit_f2b(struct ac_llvm_context *ctx,
1434 LLVMValueRef src0)
1435 {
1436 src0 = ac_to_float(ctx, src0);
1437 return LLVMBuildSExt(ctx->builder,
1438 LLVMBuildFCmp(ctx->builder, LLVMRealUNE, src0, ctx->f32_0, ""),
1439 ctx->i32, "");
1440 }
1441
1442 static LLVMValueRef emit_b2i(struct ac_llvm_context *ctx,
1443 LLVMValueRef src0,
1444 unsigned bitsize)
1445 {
1446 LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0, ctx->i32_1, "");
1447
1448 if (bitsize == 32)
1449 return result;
1450
1451 return LLVMBuildZExt(ctx->builder, result, ctx->i64, "");
1452 }
1453
1454 static LLVMValueRef emit_i2b(struct ac_llvm_context *ctx,
1455 LLVMValueRef src0)
1456 {
1457 return LLVMBuildSExt(ctx->builder,
1458 LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, ctx->i32_0, ""),
1459 ctx->i32, "");
1460 }
1461
1462 static LLVMValueRef emit_f2f16(struct nir_to_llvm_context *ctx,
1463 LLVMValueRef src0)
1464 {
1465 LLVMValueRef result;
1466 LLVMValueRef cond = NULL;
1467
1468 src0 = ac_to_float(&ctx->ac, src0);
1469 result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->ac.f16, "");
1470
1471 if (ctx->options->chip_class >= VI) {
1472 LLVMValueRef args[2];
1473 /* Check if the result is a denormal - and flush to 0 if so. */
1474 args[0] = result;
1475 args[1] = LLVMConstInt(ctx->ac.i32, N_SUBNORMAL | P_SUBNORMAL, false);
1476 cond = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.class.f16", ctx->ac.i1, args, 2, AC_FUNC_ATTR_READNONE);
1477 }
1478
1479 /* need to convert back up to f32 */
1480 result = LLVMBuildFPExt(ctx->builder, result, ctx->ac.f32, "");
1481
1482 if (ctx->options->chip_class >= VI)
1483 result = LLVMBuildSelect(ctx->builder, cond, ctx->ac.f32_0, result, "");
1484 else {
1485 /* for SI/CIK */
1486 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
1487 * so compare the result and flush to 0 if it's smaller.
1488 */
1489 LLVMValueRef temp, cond2;
1490 temp = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
1491 ctx->ac.f32, result);
1492 cond = LLVMBuildFCmp(ctx->builder, LLVMRealUGT,
1493 LLVMBuildBitCast(ctx->builder, LLVMConstInt(ctx->ac.i32, 0x38800000, false), ctx->ac.f32, ""),
1494 temp, "");
1495 cond2 = LLVMBuildFCmp(ctx->builder, LLVMRealUNE,
1496 temp, ctx->ac.f32_0, "");
1497 cond = LLVMBuildAnd(ctx->builder, cond, cond2, "");
1498 result = LLVMBuildSelect(ctx->builder, cond, ctx->ac.f32_0, result, "");
1499 }
1500 return result;
1501 }
1502
1503 static LLVMValueRef emit_umul_high(struct ac_llvm_context *ctx,
1504 LLVMValueRef src0, LLVMValueRef src1)
1505 {
1506 LLVMValueRef dst64, result;
1507 src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
1508 src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
1509
1510 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
1511 dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
1512 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
1513 return result;
1514 }
1515
1516 static LLVMValueRef emit_imul_high(struct ac_llvm_context *ctx,
1517 LLVMValueRef src0, LLVMValueRef src1)
1518 {
1519 LLVMValueRef dst64, result;
1520 src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
1521 src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
1522
1523 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
1524 dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
1525 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
1526 return result;
1527 }
1528
1529 static LLVMValueRef emit_bitfield_extract(struct ac_llvm_context *ctx,
1530 bool is_signed,
1531 const LLVMValueRef srcs[3])
1532 {
1533 LLVMValueRef result;
1534 LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, srcs[2], LLVMConstInt(ctx->i32, 32, false), "");
1535
1536 result = ac_build_bfe(ctx, srcs[0], srcs[1], srcs[2], is_signed);
1537 result = LLVMBuildSelect(ctx->builder, icond, srcs[0], result, "");
1538 return result;
1539 }
1540
1541 static LLVMValueRef emit_bitfield_insert(struct ac_llvm_context *ctx,
1542 LLVMValueRef src0, LLVMValueRef src1,
1543 LLVMValueRef src2, LLVMValueRef src3)
1544 {
1545 LLVMValueRef bfi_args[3], result;
1546
1547 bfi_args[0] = LLVMBuildShl(ctx->builder,
1548 LLVMBuildSub(ctx->builder,
1549 LLVMBuildShl(ctx->builder,
1550 ctx->i32_1,
1551 src3, ""),
1552 ctx->i32_1, ""),
1553 src2, "");
1554 bfi_args[1] = LLVMBuildShl(ctx->builder, src1, src2, "");
1555 bfi_args[2] = src0;
1556
1557 LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, src3, LLVMConstInt(ctx->i32, 32, false), "");
1558
1559 /* Calculate:
1560 * (arg0 & arg1) | (~arg0 & arg2) = arg2 ^ (arg0 & (arg1 ^ arg2)
1561 * Use the right-hand side, which the LLVM backend can convert to V_BFI.
1562 */
1563 result = LLVMBuildXor(ctx->builder, bfi_args[2],
1564 LLVMBuildAnd(ctx->builder, bfi_args[0],
1565 LLVMBuildXor(ctx->builder, bfi_args[1], bfi_args[2], ""), ""), "");
1566
1567 result = LLVMBuildSelect(ctx->builder, icond, src1, result, "");
1568 return result;
1569 }
1570
1571 static LLVMValueRef emit_pack_half_2x16(struct ac_llvm_context *ctx,
1572 LLVMValueRef src0)
1573 {
1574 LLVMValueRef comp[2];
1575
1576 src0 = ac_to_float(ctx, src0);
1577 comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_0, "");
1578 comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_1, "");
1579
1580 return ac_build_cvt_pkrtz_f16(ctx, comp);
1581 }
1582
1583 static LLVMValueRef emit_unpack_half_2x16(struct ac_llvm_context *ctx,
1584 LLVMValueRef src0)
1585 {
1586 LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
1587 LLVMValueRef temps[2], result, val;
1588 int i;
1589
1590 for (i = 0; i < 2; i++) {
1591 val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
1592 val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
1593 val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
1594 temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
1595 }
1596
1597 result = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), temps[0],
1598 ctx->i32_0, "");
1599 result = LLVMBuildInsertElement(ctx->builder, result, temps[1],
1600 ctx->i32_1, "");
1601 return result;
1602 }
1603
1604 static LLVMValueRef emit_ddxy(struct ac_nir_context *ctx,
1605 nir_op op,
1606 LLVMValueRef src0)
1607 {
1608 unsigned mask;
1609 int idx;
1610 LLVMValueRef result;
1611
1612 if (op == nir_op_fddx_fine || op == nir_op_fddx)
1613 mask = AC_TID_MASK_LEFT;
1614 else if (op == nir_op_fddy_fine || op == nir_op_fddy)
1615 mask = AC_TID_MASK_TOP;
1616 else
1617 mask = AC_TID_MASK_TOP_LEFT;
1618
1619 /* for DDX we want to next X pixel, DDY next Y pixel. */
1620 if (op == nir_op_fddx_fine ||
1621 op == nir_op_fddx_coarse ||
1622 op == nir_op_fddx)
1623 idx = 1;
1624 else
1625 idx = 2;
1626
1627 result = ac_build_ddxy(&ctx->ac, mask, idx, src0);
1628 return result;
1629 }
1630
1631 /*
1632 * this takes an I,J coordinate pair,
1633 * and works out the X and Y derivatives.
1634 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
1635 */
1636 static LLVMValueRef emit_ddxy_interp(
1637 struct ac_nir_context *ctx,
1638 LLVMValueRef interp_ij)
1639 {
1640 LLVMValueRef result[4], a;
1641 unsigned i;
1642
1643 for (i = 0; i < 2; i++) {
1644 a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
1645 LLVMConstInt(ctx->ac.i32, i, false), "");
1646 result[i] = emit_ddxy(ctx, nir_op_fddx, a);
1647 result[2+i] = emit_ddxy(ctx, nir_op_fddy, a);
1648 }
1649 return ac_build_gather_values(&ctx->ac, result, 4);
1650 }
1651
1652 static void visit_alu(struct ac_nir_context *ctx, const nir_alu_instr *instr)
1653 {
1654 LLVMValueRef src[4], result = NULL;
1655 unsigned num_components = instr->dest.dest.ssa.num_components;
1656 unsigned src_components;
1657 LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa);
1658
1659 assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
1660 switch (instr->op) {
1661 case nir_op_vec2:
1662 case nir_op_vec3:
1663 case nir_op_vec4:
1664 src_components = 1;
1665 break;
1666 case nir_op_pack_half_2x16:
1667 src_components = 2;
1668 break;
1669 case nir_op_unpack_half_2x16:
1670 src_components = 1;
1671 break;
1672 default:
1673 src_components = num_components;
1674 break;
1675 }
1676 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1677 src[i] = get_alu_src(ctx, instr->src[i], src_components);
1678
1679 switch (instr->op) {
1680 case nir_op_fmov:
1681 case nir_op_imov:
1682 result = src[0];
1683 break;
1684 case nir_op_fneg:
1685 src[0] = ac_to_float(&ctx->ac, src[0]);
1686 result = LLVMBuildFNeg(ctx->ac.builder, src[0], "");
1687 break;
1688 case nir_op_ineg:
1689 result = LLVMBuildNeg(ctx->ac.builder, src[0], "");
1690 break;
1691 case nir_op_inot:
1692 result = LLVMBuildNot(ctx->ac.builder, src[0], "");
1693 break;
1694 case nir_op_iadd:
1695 result = LLVMBuildAdd(ctx->ac.builder, src[0], src[1], "");
1696 break;
1697 case nir_op_fadd:
1698 src[0] = ac_to_float(&ctx->ac, src[0]);
1699 src[1] = ac_to_float(&ctx->ac, src[1]);
1700 result = LLVMBuildFAdd(ctx->ac.builder, src[0], src[1], "");
1701 break;
1702 case nir_op_fsub:
1703 src[0] = ac_to_float(&ctx->ac, src[0]);
1704 src[1] = ac_to_float(&ctx->ac, src[1]);
1705 result = LLVMBuildFSub(ctx->ac.builder, src[0], src[1], "");
1706 break;
1707 case nir_op_isub:
1708 result = LLVMBuildSub(ctx->ac.builder, src[0], src[1], "");
1709 break;
1710 case nir_op_imul:
1711 result = LLVMBuildMul(ctx->ac.builder, src[0], src[1], "");
1712 break;
1713 case nir_op_imod:
1714 result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
1715 break;
1716 case nir_op_umod:
1717 result = LLVMBuildURem(ctx->ac.builder, src[0], src[1], "");
1718 break;
1719 case nir_op_fmod:
1720 src[0] = ac_to_float(&ctx->ac, src[0]);
1721 src[1] = ac_to_float(&ctx->ac, src[1]);
1722 result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
1723 result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
1724 ac_to_float_type(&ctx->ac, def_type), result);
1725 result = LLVMBuildFMul(ctx->ac.builder, src[1] , result, "");
1726 result = LLVMBuildFSub(ctx->ac.builder, src[0], result, "");
1727 break;
1728 case nir_op_frem:
1729 src[0] = ac_to_float(&ctx->ac, src[0]);
1730 src[1] = ac_to_float(&ctx->ac, src[1]);
1731 result = LLVMBuildFRem(ctx->ac.builder, src[0], src[1], "");
1732 break;
1733 case nir_op_irem:
1734 result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
1735 break;
1736 case nir_op_idiv:
1737 result = LLVMBuildSDiv(ctx->ac.builder, src[0], src[1], "");
1738 break;
1739 case nir_op_udiv:
1740 result = LLVMBuildUDiv(ctx->ac.builder, src[0], src[1], "");
1741 break;
1742 case nir_op_fmul:
1743 src[0] = ac_to_float(&ctx->ac, src[0]);
1744 src[1] = ac_to_float(&ctx->ac, src[1]);
1745 result = LLVMBuildFMul(ctx->ac.builder, src[0], src[1], "");
1746 break;
1747 case nir_op_frcp:
1748 src[0] = ac_to_float(&ctx->ac, src[0]);
1749 result = ac_build_fdiv(&ctx->ac, instr->dest.dest.ssa.bit_size == 32 ? ctx->ac.f32_1 : ctx->ac.f64_1,
1750 src[0]);
1751 break;
1752 case nir_op_iand:
1753 result = LLVMBuildAnd(ctx->ac.builder, src[0], src[1], "");
1754 break;
1755 case nir_op_ior:
1756 result = LLVMBuildOr(ctx->ac.builder, src[0], src[1], "");
1757 break;
1758 case nir_op_ixor:
1759 result = LLVMBuildXor(ctx->ac.builder, src[0], src[1], "");
1760 break;
1761 case nir_op_ishl:
1762 result = LLVMBuildShl(ctx->ac.builder, src[0],
1763 LLVMBuildZExt(ctx->ac.builder, src[1],
1764 LLVMTypeOf(src[0]), ""),
1765 "");
1766 break;
1767 case nir_op_ishr:
1768 result = LLVMBuildAShr(ctx->ac.builder, src[0],
1769 LLVMBuildZExt(ctx->ac.builder, src[1],
1770 LLVMTypeOf(src[0]), ""),
1771 "");
1772 break;
1773 case nir_op_ushr:
1774 result = LLVMBuildLShr(ctx->ac.builder, src[0],
1775 LLVMBuildZExt(ctx->ac.builder, src[1],
1776 LLVMTypeOf(src[0]), ""),
1777 "");
1778 break;
1779 case nir_op_ilt:
1780 result = emit_int_cmp(&ctx->ac, LLVMIntSLT, src[0], src[1]);
1781 break;
1782 case nir_op_ine:
1783 result = emit_int_cmp(&ctx->ac, LLVMIntNE, src[0], src[1]);
1784 break;
1785 case nir_op_ieq:
1786 result = emit_int_cmp(&ctx->ac, LLVMIntEQ, src[0], src[1]);
1787 break;
1788 case nir_op_ige:
1789 result = emit_int_cmp(&ctx->ac, LLVMIntSGE, src[0], src[1]);
1790 break;
1791 case nir_op_ult:
1792 result = emit_int_cmp(&ctx->ac, LLVMIntULT, src[0], src[1]);
1793 break;
1794 case nir_op_uge:
1795 result = emit_int_cmp(&ctx->ac, LLVMIntUGE, src[0], src[1]);
1796 break;
1797 case nir_op_feq:
1798 result = emit_float_cmp(&ctx->ac, LLVMRealUEQ, src[0], src[1]);
1799 break;
1800 case nir_op_fne:
1801 result = emit_float_cmp(&ctx->ac, LLVMRealUNE, src[0], src[1]);
1802 break;
1803 case nir_op_flt:
1804 result = emit_float_cmp(&ctx->ac, LLVMRealULT, src[0], src[1]);
1805 break;
1806 case nir_op_fge:
1807 result = emit_float_cmp(&ctx->ac, LLVMRealUGE, src[0], src[1]);
1808 break;
1809 case nir_op_fabs:
1810 result = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
1811 ac_to_float_type(&ctx->ac, def_type), src[0]);
1812 break;
1813 case nir_op_iabs:
1814 result = emit_iabs(&ctx->ac, src[0]);
1815 break;
1816 case nir_op_imax:
1817 result = emit_minmax_int(&ctx->ac, LLVMIntSGT, src[0], src[1]);
1818 break;
1819 case nir_op_imin:
1820 result = emit_minmax_int(&ctx->ac, LLVMIntSLT, src[0], src[1]);
1821 break;
1822 case nir_op_umax:
1823 result = emit_minmax_int(&ctx->ac, LLVMIntUGT, src[0], src[1]);
1824 break;
1825 case nir_op_umin:
1826 result = emit_minmax_int(&ctx->ac, LLVMIntULT, src[0], src[1]);
1827 break;
1828 case nir_op_isign:
1829 result = emit_isign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
1830 break;
1831 case nir_op_fsign:
1832 src[0] = ac_to_float(&ctx->ac, src[0]);
1833 result = emit_fsign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
1834 break;
1835 case nir_op_ffloor:
1836 result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
1837 ac_to_float_type(&ctx->ac, def_type), src[0]);
1838 break;
1839 case nir_op_ftrunc:
1840 result = emit_intrin_1f_param(&ctx->ac, "llvm.trunc",
1841 ac_to_float_type(&ctx->ac, def_type), src[0]);
1842 break;
1843 case nir_op_fceil:
1844 result = emit_intrin_1f_param(&ctx->ac, "llvm.ceil",
1845 ac_to_float_type(&ctx->ac, def_type), src[0]);
1846 break;
1847 case nir_op_fround_even:
1848 result = emit_intrin_1f_param(&ctx->ac, "llvm.rint",
1849 ac_to_float_type(&ctx->ac, def_type),src[0]);
1850 break;
1851 case nir_op_ffract:
1852 result = emit_ffract(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
1853 break;
1854 case nir_op_fsin:
1855 result = emit_intrin_1f_param(&ctx->ac, "llvm.sin",
1856 ac_to_float_type(&ctx->ac, def_type), src[0]);
1857 break;
1858 case nir_op_fcos:
1859 result = emit_intrin_1f_param(&ctx->ac, "llvm.cos",
1860 ac_to_float_type(&ctx->ac, def_type), src[0]);
1861 break;
1862 case nir_op_fsqrt:
1863 result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
1864 ac_to_float_type(&ctx->ac, def_type), src[0]);
1865 break;
1866 case nir_op_fexp2:
1867 result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2",
1868 ac_to_float_type(&ctx->ac, def_type), src[0]);
1869 break;
1870 case nir_op_flog2:
1871 result = emit_intrin_1f_param(&ctx->ac, "llvm.log2",
1872 ac_to_float_type(&ctx->ac, def_type), src[0]);
1873 break;
1874 case nir_op_frsq:
1875 result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
1876 ac_to_float_type(&ctx->ac, def_type), src[0]);
1877 result = ac_build_fdiv(&ctx->ac, instr->dest.dest.ssa.bit_size == 32 ? ctx->ac.f32_1 : ctx->ac.f64_1,
1878 result);
1879 break;
1880 case nir_op_fpow:
1881 result = emit_intrin_2f_param(&ctx->ac, "llvm.pow",
1882 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1883 break;
1884 case nir_op_fmax:
1885 result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
1886 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1887 if (ctx->ac.chip_class < GFX9 &&
1888 instr->dest.dest.ssa.bit_size == 32) {
1889 /* Only pre-GFX9 chips do not flush denorms. */
1890 result = emit_intrin_1f_param(&ctx->ac, "llvm.canonicalize",
1891 ac_to_float_type(&ctx->ac, def_type),
1892 result);
1893 }
1894 break;
1895 case nir_op_fmin:
1896 result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
1897 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1898 if (ctx->ac.chip_class < GFX9 &&
1899 instr->dest.dest.ssa.bit_size == 32) {
1900 /* Only pre-GFX9 chips do not flush denorms. */
1901 result = emit_intrin_1f_param(&ctx->ac, "llvm.canonicalize",
1902 ac_to_float_type(&ctx->ac, def_type),
1903 result);
1904 }
1905 break;
1906 case nir_op_ffma:
1907 result = emit_intrin_3f_param(&ctx->ac, "llvm.fmuladd",
1908 ac_to_float_type(&ctx->ac, def_type), src[0], src[1], src[2]);
1909 break;
1910 case nir_op_ibitfield_extract:
1911 result = emit_bitfield_extract(&ctx->ac, true, src);
1912 break;
1913 case nir_op_ubitfield_extract:
1914 result = emit_bitfield_extract(&ctx->ac, false, src);
1915 break;
1916 case nir_op_bitfield_insert:
1917 result = emit_bitfield_insert(&ctx->ac, src[0], src[1], src[2], src[3]);
1918 break;
1919 case nir_op_bitfield_reverse:
1920 result = ac_build_intrinsic(&ctx->ac, "llvm.bitreverse.i32", ctx->ac.i32, src, 1, AC_FUNC_ATTR_READNONE);
1921 break;
1922 case nir_op_bit_count:
1923 result = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32", ctx->ac.i32, src, 1, AC_FUNC_ATTR_READNONE);
1924 break;
1925 case nir_op_vec2:
1926 case nir_op_vec3:
1927 case nir_op_vec4:
1928 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1929 src[i] = ac_to_integer(&ctx->ac, src[i]);
1930 result = ac_build_gather_values(&ctx->ac, src, num_components);
1931 break;
1932 case nir_op_f2i32:
1933 case nir_op_f2i64:
1934 src[0] = ac_to_float(&ctx->ac, src[0]);
1935 result = LLVMBuildFPToSI(ctx->ac.builder, src[0], def_type, "");
1936 break;
1937 case nir_op_f2u32:
1938 case nir_op_f2u64:
1939 src[0] = ac_to_float(&ctx->ac, src[0]);
1940 result = LLVMBuildFPToUI(ctx->ac.builder, src[0], def_type, "");
1941 break;
1942 case nir_op_i2f32:
1943 case nir_op_i2f64:
1944 src[0] = ac_to_integer(&ctx->ac, src[0]);
1945 result = LLVMBuildSIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1946 break;
1947 case nir_op_u2f32:
1948 case nir_op_u2f64:
1949 src[0] = ac_to_integer(&ctx->ac, src[0]);
1950 result = LLVMBuildUIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1951 break;
1952 case nir_op_f2f64:
1953 src[0] = ac_to_float(&ctx->ac, src[0]);
1954 result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1955 break;
1956 case nir_op_f2f32:
1957 result = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
1958 break;
1959 case nir_op_u2u32:
1960 case nir_op_u2u64:
1961 src[0] = ac_to_integer(&ctx->ac, src[0]);
1962 if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
1963 result = LLVMBuildZExt(ctx->ac.builder, src[0], def_type, "");
1964 else
1965 result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
1966 break;
1967 case nir_op_i2i32:
1968 case nir_op_i2i64:
1969 src[0] = ac_to_integer(&ctx->ac, src[0]);
1970 if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
1971 result = LLVMBuildSExt(ctx->ac.builder, src[0], def_type, "");
1972 else
1973 result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
1974 break;
1975 case nir_op_bcsel:
1976 result = emit_bcsel(&ctx->ac, src[0], src[1], src[2]);
1977 break;
1978 case nir_op_find_lsb:
1979 src[0] = ac_to_integer(&ctx->ac, src[0]);
1980 result = ac_find_lsb(&ctx->ac, ctx->ac.i32, src[0]);
1981 break;
1982 case nir_op_ufind_msb:
1983 src[0] = ac_to_integer(&ctx->ac, src[0]);
1984 result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32);
1985 break;
1986 case nir_op_ifind_msb:
1987 src[0] = ac_to_integer(&ctx->ac, src[0]);
1988 result = ac_build_imsb(&ctx->ac, src[0], ctx->ac.i32);
1989 break;
1990 case nir_op_uadd_carry:
1991 src[0] = ac_to_integer(&ctx->ac, src[0]);
1992 src[1] = ac_to_integer(&ctx->ac, src[1]);
1993 result = emit_uint_carry(&ctx->ac, "llvm.uadd.with.overflow.i32", src[0], src[1]);
1994 break;
1995 case nir_op_usub_borrow:
1996 src[0] = ac_to_integer(&ctx->ac, src[0]);
1997 src[1] = ac_to_integer(&ctx->ac, src[1]);
1998 result = emit_uint_carry(&ctx->ac, "llvm.usub.with.overflow.i32", src[0], src[1]);
1999 break;
2000 case nir_op_b2f:
2001 result = emit_b2f(&ctx->ac, src[0]);
2002 break;
2003 case nir_op_f2b:
2004 result = emit_f2b(&ctx->ac, src[0]);
2005 break;
2006 case nir_op_b2i:
2007 result = emit_b2i(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
2008 break;
2009 case nir_op_i2b:
2010 src[0] = ac_to_integer(&ctx->ac, src[0]);
2011 result = emit_i2b(&ctx->ac, src[0]);
2012 break;
2013 case nir_op_fquantize2f16:
2014 result = emit_f2f16(ctx->nctx, src[0]);
2015 break;
2016 case nir_op_umul_high:
2017 src[0] = ac_to_integer(&ctx->ac, src[0]);
2018 src[1] = ac_to_integer(&ctx->ac, src[1]);
2019 result = emit_umul_high(&ctx->ac, src[0], src[1]);
2020 break;
2021 case nir_op_imul_high:
2022 src[0] = ac_to_integer(&ctx->ac, src[0]);
2023 src[1] = ac_to_integer(&ctx->ac, src[1]);
2024 result = emit_imul_high(&ctx->ac, src[0], src[1]);
2025 break;
2026 case nir_op_pack_half_2x16:
2027 result = emit_pack_half_2x16(&ctx->ac, src[0]);
2028 break;
2029 case nir_op_unpack_half_2x16:
2030 result = emit_unpack_half_2x16(&ctx->ac, src[0]);
2031 break;
2032 case nir_op_fddx:
2033 case nir_op_fddy:
2034 case nir_op_fddx_fine:
2035 case nir_op_fddy_fine:
2036 case nir_op_fddx_coarse:
2037 case nir_op_fddy_coarse:
2038 result = emit_ddxy(ctx, instr->op, src[0]);
2039 break;
2040
2041 case nir_op_unpack_64_2x32_split_x: {
2042 assert(instr->src[0].src.ssa->num_components == 1);
2043 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
2044 ctx->ac.v2i32,
2045 "");
2046 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
2047 ctx->ac.i32_0, "");
2048 break;
2049 }
2050
2051 case nir_op_unpack_64_2x32_split_y: {
2052 assert(instr->src[0].src.ssa->num_components == 1);
2053 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
2054 ctx->ac.v2i32,
2055 "");
2056 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
2057 ctx->ac.i32_1, "");
2058 break;
2059 }
2060
2061 case nir_op_pack_64_2x32_split: {
2062 LLVMValueRef tmp = LLVMGetUndef(ctx->ac.v2i32);
2063 tmp = LLVMBuildInsertElement(ctx->ac.builder, tmp,
2064 src[0], ctx->ac.i32_0, "");
2065 tmp = LLVMBuildInsertElement(ctx->ac.builder, tmp,
2066 src[1], ctx->ac.i32_1, "");
2067 result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i64, "");
2068 break;
2069 }
2070
2071 default:
2072 fprintf(stderr, "Unknown NIR alu instr: ");
2073 nir_print_instr(&instr->instr, stderr);
2074 fprintf(stderr, "\n");
2075 abort();
2076 }
2077
2078 if (result) {
2079 assert(instr->dest.dest.is_ssa);
2080 result = ac_to_integer(&ctx->ac, result);
2081 _mesa_hash_table_insert(ctx->defs, &instr->dest.dest.ssa,
2082 result);
2083 }
2084 }
2085
2086 static void visit_load_const(struct ac_nir_context *ctx,
2087 const nir_load_const_instr *instr)
2088 {
2089 LLVMValueRef values[4], value = NULL;
2090 LLVMTypeRef element_type =
2091 LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
2092
2093 for (unsigned i = 0; i < instr->def.num_components; ++i) {
2094 switch (instr->def.bit_size) {
2095 case 32:
2096 values[i] = LLVMConstInt(element_type,
2097 instr->value.u32[i], false);
2098 break;
2099 case 64:
2100 values[i] = LLVMConstInt(element_type,
2101 instr->value.u64[i], false);
2102 break;
2103 default:
2104 fprintf(stderr,
2105 "unsupported nir load_const bit_size: %d\n",
2106 instr->def.bit_size);
2107 abort();
2108 }
2109 }
2110 if (instr->def.num_components > 1) {
2111 value = LLVMConstVector(values, instr->def.num_components);
2112 } else
2113 value = values[0];
2114
2115 _mesa_hash_table_insert(ctx->defs, &instr->def, value);
2116 }
2117
2118 static LLVMValueRef cast_ptr(struct nir_to_llvm_context *ctx, LLVMValueRef ptr,
2119 LLVMTypeRef type)
2120 {
2121 int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
2122 return LLVMBuildBitCast(ctx->builder, ptr,
2123 LLVMPointerType(type, addr_space), "");
2124 }
2125
2126 static LLVMValueRef
2127 get_buffer_size(struct ac_nir_context *ctx, LLVMValueRef descriptor, bool in_elements)
2128 {
2129 LLVMValueRef size =
2130 LLVMBuildExtractElement(ctx->ac.builder, descriptor,
2131 LLVMConstInt(ctx->ac.i32, 2, false), "");
2132
2133 /* VI only */
2134 if (ctx->ac.chip_class == VI && in_elements) {
2135 /* On VI, the descriptor contains the size in bytes,
2136 * but TXQ must return the size in elements.
2137 * The stride is always non-zero for resources using TXQ.
2138 */
2139 LLVMValueRef stride =
2140 LLVMBuildExtractElement(ctx->ac.builder, descriptor,
2141 ctx->ac.i32_1, "");
2142 stride = LLVMBuildLShr(ctx->ac.builder, stride,
2143 LLVMConstInt(ctx->ac.i32, 16, false), "");
2144 stride = LLVMBuildAnd(ctx->ac.builder, stride,
2145 LLVMConstInt(ctx->ac.i32, 0x3fff, false), "");
2146
2147 size = LLVMBuildUDiv(ctx->ac.builder, size, stride, "");
2148 }
2149 return size;
2150 }
2151
2152 /**
2153 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
2154 * intrinsic names).
2155 */
2156 static void build_int_type_name(
2157 LLVMTypeRef type,
2158 char *buf, unsigned bufsize)
2159 {
2160 assert(bufsize >= 6);
2161
2162 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
2163 snprintf(buf, bufsize, "v%ui32",
2164 LLVMGetVectorSize(type));
2165 else
2166 strcpy(buf, "i32");
2167 }
2168
2169 static LLVMValueRef radv_lower_gather4_integer(struct ac_llvm_context *ctx,
2170 struct ac_image_args *args,
2171 const nir_tex_instr *instr)
2172 {
2173 enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
2174 LLVMValueRef coord = args->addr;
2175 LLVMValueRef half_texel[2];
2176 LLVMValueRef compare_cube_wa = NULL;
2177 LLVMValueRef result;
2178 int c;
2179 unsigned coord_vgpr_index = (unsigned)args->offset + (unsigned)args->compare;
2180
2181 //TODO Rect
2182 {
2183 struct ac_image_args txq_args = { 0 };
2184
2185 txq_args.da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
2186 txq_args.opcode = ac_image_get_resinfo;
2187 txq_args.dmask = 0xf;
2188 txq_args.addr = ctx->i32_0;
2189 txq_args.resource = args->resource;
2190 LLVMValueRef size = ac_build_image_opcode(ctx, &txq_args);
2191
2192 for (c = 0; c < 2; c++) {
2193 half_texel[c] = LLVMBuildExtractElement(ctx->builder, size,
2194 LLVMConstInt(ctx->i32, c, false), "");
2195 half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
2196 half_texel[c] = ac_build_fdiv(ctx, ctx->f32_1, half_texel[c]);
2197 half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c],
2198 LLVMConstReal(ctx->f32, -0.5), "");
2199 }
2200 }
2201
2202 LLVMValueRef orig_coords = args->addr;
2203
2204 for (c = 0; c < 2; c++) {
2205 LLVMValueRef tmp;
2206 LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
2207 tmp = LLVMBuildExtractElement(ctx->builder, coord, index, "");
2208 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
2209 tmp = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
2210 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
2211 coord = LLVMBuildInsertElement(ctx->builder, coord, tmp, index, "");
2212 }
2213
2214
2215 /*
2216 * Apparantly cube has issue with integer types that the workaround doesn't solve,
2217 * so this tests if the format is 8_8_8_8 and an integer type do an alternate
2218 * workaround by sampling using a scaled type and converting.
2219 * This is taken from amdgpu-pro shaders.
2220 */
2221 /* NOTE this produces some ugly code compared to amdgpu-pro,
2222 * LLVM ends up dumping SGPRs into VGPRs to deal with the compare/select,
2223 * and then reads them back. -pro generates two selects,
2224 * one s_cmp for the descriptor rewriting
2225 * one v_cmp for the coordinate and result changes.
2226 */
2227 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
2228 LLVMValueRef tmp, tmp2;
2229
2230 /* workaround 8/8/8/8 uint/sint cube gather bug */
2231 /* first detect it then change to a scaled read and f2i */
2232 tmp = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32_1, "");
2233 tmp2 = tmp;
2234
2235 /* extract the DATA_FORMAT */
2236 tmp = ac_build_bfe(ctx, tmp, LLVMConstInt(ctx->i32, 20, false),
2237 LLVMConstInt(ctx->i32, 6, false), false);
2238
2239 /* is the DATA_FORMAT == 8_8_8_8 */
2240 compare_cube_wa = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tmp, LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false), "");
2241
2242 if (stype == GLSL_TYPE_UINT)
2243 /* Create a NUM FORMAT - 0x2 or 0x4 - USCALED or UINT */
2244 tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0x8000000, false),
2245 LLVMConstInt(ctx->i32, 0x10000000, false), "");
2246 else
2247 /* Create a NUM FORMAT - 0x3 or 0x5 - SSCALED or SINT */
2248 tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0xc000000, false),
2249 LLVMConstInt(ctx->i32, 0x14000000, false), "");
2250
2251 /* replace the NUM FORMAT in the descriptor */
2252 tmp2 = LLVMBuildAnd(ctx->builder, tmp2, LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT_GFX6, false), "");
2253 tmp2 = LLVMBuildOr(ctx->builder, tmp2, tmp, "");
2254
2255 args->resource = LLVMBuildInsertElement(ctx->builder, args->resource, tmp2, ctx->i32_1, "");
2256
2257 /* don't modify the coordinates for this case */
2258 coord = LLVMBuildSelect(ctx->builder, compare_cube_wa, orig_coords, coord, "");
2259 }
2260 args->addr = coord;
2261 result = ac_build_image_opcode(ctx, args);
2262
2263 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
2264 LLVMValueRef tmp, tmp2;
2265
2266 /* if the cube workaround is in place, f2i the result. */
2267 for (c = 0; c < 4; c++) {
2268 tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), "");
2269 if (stype == GLSL_TYPE_UINT)
2270 tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, "");
2271 else
2272 tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, "");
2273 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
2274 tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, "");
2275 tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, tmp2, tmp, "");
2276 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
2277 result = LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), "");
2278 }
2279 }
2280 return result;
2281 }
2282
2283 static LLVMValueRef build_tex_intrinsic(struct ac_nir_context *ctx,
2284 const nir_tex_instr *instr,
2285 bool lod_is_zero,
2286 struct ac_image_args *args)
2287 {
2288 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
2289 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
2290
2291 return ac_build_buffer_load_format(&ctx->ac,
2292 args->resource,
2293 args->addr,
2294 ctx->ac.i32_0,
2295 util_last_bit(mask),
2296 false, true);
2297 }
2298
2299 args->opcode = ac_image_sample;
2300 args->compare = instr->is_shadow;
2301
2302 switch (instr->op) {
2303 case nir_texop_txf:
2304 case nir_texop_txf_ms:
2305 case nir_texop_samples_identical:
2306 args->opcode = lod_is_zero ||
2307 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ?
2308 ac_image_load : ac_image_load_mip;
2309 args->compare = false;
2310 args->offset = false;
2311 break;
2312 case nir_texop_txb:
2313 args->bias = true;
2314 break;
2315 case nir_texop_txl:
2316 if (lod_is_zero)
2317 args->level_zero = true;
2318 else
2319 args->lod = true;
2320 break;
2321 case nir_texop_txs:
2322 case nir_texop_query_levels:
2323 args->opcode = ac_image_get_resinfo;
2324 break;
2325 case nir_texop_tex:
2326 if (ctx->stage != MESA_SHADER_FRAGMENT)
2327 args->level_zero = true;
2328 break;
2329 case nir_texop_txd:
2330 args->deriv = true;
2331 break;
2332 case nir_texop_tg4:
2333 args->opcode = ac_image_gather4;
2334 args->level_zero = true;
2335 break;
2336 case nir_texop_lod:
2337 args->opcode = ac_image_get_lod;
2338 args->compare = false;
2339 args->offset = false;
2340 break;
2341 default:
2342 break;
2343 }
2344
2345 if (instr->op == nir_texop_tg4 && ctx->ac.chip_class <= VI) {
2346 enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
2347 if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) {
2348 return radv_lower_gather4_integer(&ctx->ac, args, instr);
2349 }
2350 }
2351 return ac_build_image_opcode(&ctx->ac, args);
2352 }
2353
2354 static LLVMValueRef visit_vulkan_resource_index(struct nir_to_llvm_context *ctx,
2355 nir_intrinsic_instr *instr)
2356 {
2357 LLVMValueRef index = get_src(ctx->nir, instr->src[0]);
2358 unsigned desc_set = nir_intrinsic_desc_set(instr);
2359 unsigned binding = nir_intrinsic_binding(instr);
2360 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
2361 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
2362 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
2363 unsigned base_offset = layout->binding[binding].offset;
2364 LLVMValueRef offset, stride;
2365
2366 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2367 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2368 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
2369 layout->binding[binding].dynamic_offset_offset;
2370 desc_ptr = ctx->push_constants;
2371 base_offset = pipeline_layout->push_constant_size + 16 * idx;
2372 stride = LLVMConstInt(ctx->ac.i32, 16, false);
2373 } else
2374 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
2375
2376 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
2377 index = LLVMBuildMul(ctx->builder, index, stride, "");
2378 offset = LLVMBuildAdd(ctx->builder, offset, index, "");
2379
2380 desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset);
2381 desc_ptr = cast_ptr(ctx, desc_ptr, ctx->ac.v4i32);
2382 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
2383
2384 return desc_ptr;
2385 }
2386
2387 static LLVMValueRef visit_vulkan_resource_reindex(struct nir_to_llvm_context *ctx,
2388 nir_intrinsic_instr *instr)
2389 {
2390 LLVMValueRef ptr = get_src(ctx->nir, instr->src[0]);
2391 LLVMValueRef index = get_src(ctx->nir, instr->src[1]);
2392
2393 LLVMValueRef result = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
2394 LLVMSetMetadata(result, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
2395 return result;
2396 }
2397
2398 static LLVMValueRef visit_load_push_constant(struct nir_to_llvm_context *ctx,
2399 nir_intrinsic_instr *instr)
2400 {
2401 LLVMValueRef ptr, addr;
2402
2403 addr = LLVMConstInt(ctx->ac.i32, nir_intrinsic_base(instr), 0);
2404 addr = LLVMBuildAdd(ctx->builder, addr, get_src(ctx->nir, instr->src[0]), "");
2405
2406 ptr = ac_build_gep0(&ctx->ac, ctx->push_constants, addr);
2407 ptr = cast_ptr(ctx, ptr, get_def_type(ctx->nir, &instr->dest.ssa));
2408
2409 return LLVMBuildLoad(ctx->builder, ptr, "");
2410 }
2411
2412 static LLVMValueRef visit_get_buffer_size(struct ac_nir_context *ctx,
2413 const nir_intrinsic_instr *instr)
2414 {
2415 LLVMValueRef index = get_src(ctx, instr->src[0]);
2416
2417 return get_buffer_size(ctx, ctx->abi->load_ssbo(ctx->abi, index, false), false);
2418 }
2419
2420 static uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2421 {
2422 uint32_t new_mask = 0;
2423 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2424 if (mask & (1u << i))
2425 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2426 return new_mask;
2427 }
2428
2429 static LLVMValueRef extract_vector_range(struct ac_llvm_context *ctx, LLVMValueRef src,
2430 unsigned start, unsigned count)
2431 {
2432 LLVMTypeRef type = LLVMTypeOf(src);
2433
2434 if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) {
2435 assert(start == 0);
2436 assert(count == 1);
2437 return src;
2438 }
2439
2440 unsigned src_elements = LLVMGetVectorSize(type);
2441 assert(start < src_elements);
2442 assert(start + count <= src_elements);
2443
2444 if (start == 0 && count == src_elements)
2445 return src;
2446
2447 if (count == 1)
2448 return LLVMBuildExtractElement(ctx->builder, src, LLVMConstInt(ctx->i32, start, false), "");
2449
2450 assert(count <= 8);
2451 LLVMValueRef indices[8];
2452 for (unsigned i = 0; i < count; ++i)
2453 indices[i] = LLVMConstInt(ctx->i32, start + i, false);
2454
2455 LLVMValueRef swizzle = LLVMConstVector(indices, count);
2456 return LLVMBuildShuffleVector(ctx->builder, src, src, swizzle, "");
2457 }
2458
2459 static void visit_store_ssbo(struct ac_nir_context *ctx,
2460 nir_intrinsic_instr *instr)
2461 {
2462 const char *store_name;
2463 LLVMValueRef src_data = get_src(ctx, instr->src[0]);
2464 LLVMTypeRef data_type = ctx->ac.f32;
2465 int elem_size_mult = get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 32;
2466 int components_32bit = elem_size_mult * instr->num_components;
2467 unsigned writemask = nir_intrinsic_write_mask(instr);
2468 LLVMValueRef base_data, base_offset;
2469 LLVMValueRef params[6];
2470
2471 params[1] = ctx->abi->load_ssbo(ctx->abi,
2472 get_src(ctx, instr->src[1]), true);
2473 params[2] = ctx->ac.i32_0; /* vindex */
2474 params[4] = ctx->ac.i1false; /* glc */
2475 params[5] = ctx->ac.i1false; /* slc */
2476
2477 if (components_32bit > 1)
2478 data_type = LLVMVectorType(ctx->ac.f32, components_32bit);
2479
2480 writemask = widen_mask(writemask, elem_size_mult);
2481
2482 base_data = ac_to_float(&ctx->ac, src_data);
2483 base_data = trim_vector(&ctx->ac, base_data, instr->num_components);
2484 base_data = LLVMBuildBitCast(ctx->ac.builder, base_data,
2485 data_type, "");
2486 base_offset = get_src(ctx, instr->src[2]); /* voffset */
2487 while (writemask) {
2488 int start, count;
2489 LLVMValueRef data;
2490 LLVMValueRef offset;
2491
2492 u_bit_scan_consecutive_range(&writemask, &start, &count);
2493
2494 /* Due to an LLVM limitation, split 3-element writes
2495 * into a 2-element and a 1-element write. */
2496 if (count == 3) {
2497 writemask |= 1 << (start + 2);
2498 count = 2;
2499 }
2500
2501 if (count > 4) {
2502 writemask |= ((1u << (count - 4)) - 1u) << (start + 4);
2503 count = 4;
2504 }
2505
2506 if (count == 4) {
2507 store_name = "llvm.amdgcn.buffer.store.v4f32";
2508 } else if (count == 2) {
2509 store_name = "llvm.amdgcn.buffer.store.v2f32";
2510
2511 } else {
2512 assert(count == 1);
2513 store_name = "llvm.amdgcn.buffer.store.f32";
2514 }
2515 data = extract_vector_range(&ctx->ac, base_data, start, count);
2516
2517 offset = base_offset;
2518 if (start != 0) {
2519 offset = LLVMBuildAdd(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, start * 4, false), "");
2520 }
2521 params[0] = data;
2522 params[3] = offset;
2523 ac_build_intrinsic(&ctx->ac, store_name,
2524 ctx->ac.voidt, params, 6, 0);
2525 }
2526 }
2527
2528 static LLVMValueRef visit_atomic_ssbo(struct ac_nir_context *ctx,
2529 const nir_intrinsic_instr *instr)
2530 {
2531 const char *name;
2532 LLVMValueRef params[6];
2533 int arg_count = 0;
2534
2535 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
2536 params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[3]), 0);
2537 }
2538 params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
2539 params[arg_count++] = ctx->abi->load_ssbo(ctx->abi,
2540 get_src(ctx, instr->src[0]),
2541 true);
2542 params[arg_count++] = ctx->ac.i32_0; /* vindex */
2543 params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
2544 params[arg_count++] = LLVMConstInt(ctx->ac.i1, 0, false); /* slc */
2545
2546 switch (instr->intrinsic) {
2547 case nir_intrinsic_ssbo_atomic_add:
2548 name = "llvm.amdgcn.buffer.atomic.add";
2549 break;
2550 case nir_intrinsic_ssbo_atomic_imin:
2551 name = "llvm.amdgcn.buffer.atomic.smin";
2552 break;
2553 case nir_intrinsic_ssbo_atomic_umin:
2554 name = "llvm.amdgcn.buffer.atomic.umin";
2555 break;
2556 case nir_intrinsic_ssbo_atomic_imax:
2557 name = "llvm.amdgcn.buffer.atomic.smax";
2558 break;
2559 case nir_intrinsic_ssbo_atomic_umax:
2560 name = "llvm.amdgcn.buffer.atomic.umax";
2561 break;
2562 case nir_intrinsic_ssbo_atomic_and:
2563 name = "llvm.amdgcn.buffer.atomic.and";
2564 break;
2565 case nir_intrinsic_ssbo_atomic_or:
2566 name = "llvm.amdgcn.buffer.atomic.or";
2567 break;
2568 case nir_intrinsic_ssbo_atomic_xor:
2569 name = "llvm.amdgcn.buffer.atomic.xor";
2570 break;
2571 case nir_intrinsic_ssbo_atomic_exchange:
2572 name = "llvm.amdgcn.buffer.atomic.swap";
2573 break;
2574 case nir_intrinsic_ssbo_atomic_comp_swap:
2575 name = "llvm.amdgcn.buffer.atomic.cmpswap";
2576 break;
2577 default:
2578 abort();
2579 }
2580
2581 return ac_build_intrinsic(&ctx->ac, name, ctx->ac.i32, params, arg_count, 0);
2582 }
2583
2584 static LLVMValueRef visit_load_buffer(struct ac_nir_context *ctx,
2585 const nir_intrinsic_instr *instr)
2586 {
2587 LLVMValueRef results[2];
2588 int load_components;
2589 int num_components = instr->num_components;
2590 if (instr->dest.ssa.bit_size == 64)
2591 num_components *= 2;
2592
2593 for (int i = 0; i < num_components; i += load_components) {
2594 load_components = MIN2(num_components - i, 4);
2595 const char *load_name;
2596 LLVMTypeRef data_type = ctx->ac.f32;
2597 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, i * 4, false);
2598 offset = LLVMBuildAdd(ctx->ac.builder, get_src(ctx, instr->src[1]), offset, "");
2599
2600 if (load_components == 3)
2601 data_type = LLVMVectorType(ctx->ac.f32, 4);
2602 else if (load_components > 1)
2603 data_type = LLVMVectorType(ctx->ac.f32, load_components);
2604
2605 if (load_components >= 3)
2606 load_name = "llvm.amdgcn.buffer.load.v4f32";
2607 else if (load_components == 2)
2608 load_name = "llvm.amdgcn.buffer.load.v2f32";
2609 else if (load_components == 1)
2610 load_name = "llvm.amdgcn.buffer.load.f32";
2611 else
2612 unreachable("unhandled number of components");
2613
2614 LLVMValueRef params[] = {
2615 ctx->abi->load_ssbo(ctx->abi,
2616 get_src(ctx, instr->src[0]),
2617 false),
2618 ctx->ac.i32_0,
2619 offset,
2620 ctx->ac.i1false,
2621 ctx->ac.i1false,
2622 };
2623
2624 results[i > 0 ? 1 : 0] = ac_build_intrinsic(&ctx->ac, load_name, data_type, params, 5, 0);
2625 }
2626
2627 assume(results[0]);
2628 LLVMValueRef ret = results[0];
2629 if (num_components > 4 || num_components == 3) {
2630 LLVMValueRef masks[] = {
2631 LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
2632 LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
2633 LLVMConstInt(ctx->ac.i32, 4, false), LLVMConstInt(ctx->ac.i32, 5, false),
2634 LLVMConstInt(ctx->ac.i32, 6, false), LLVMConstInt(ctx->ac.i32, 7, false)
2635 };
2636
2637 LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
2638 ret = LLVMBuildShuffleVector(ctx->ac.builder, results[0],
2639 results[num_components > 4 ? 1 : 0], swizzle, "");
2640 }
2641
2642 return LLVMBuildBitCast(ctx->ac.builder, ret,
2643 get_def_type(ctx, &instr->dest.ssa), "");
2644 }
2645
2646 static LLVMValueRef visit_load_ubo_buffer(struct ac_nir_context *ctx,
2647 const nir_intrinsic_instr *instr)
2648 {
2649 LLVMValueRef ret;
2650 LLVMValueRef rsrc = get_src(ctx, instr->src[0]);
2651 LLVMValueRef offset = get_src(ctx, instr->src[1]);
2652 int num_components = instr->num_components;
2653
2654 if (ctx->abi->load_ubo)
2655 rsrc = ctx->abi->load_ubo(ctx->abi, rsrc);
2656
2657 if (instr->dest.ssa.bit_size == 64)
2658 num_components *= 2;
2659
2660 ret = ac_build_buffer_load(&ctx->ac, rsrc, num_components, NULL, offset,
2661 NULL, 0, false, false, true, true);
2662 ret = trim_vector(&ctx->ac, ret, num_components);
2663 return LLVMBuildBitCast(ctx->ac.builder, ret,
2664 get_def_type(ctx, &instr->dest.ssa), "");
2665 }
2666
2667 static void
2668 get_deref_offset(struct ac_nir_context *ctx, nir_deref_var *deref,
2669 bool vs_in, unsigned *vertex_index_out,
2670 LLVMValueRef *vertex_index_ref,
2671 unsigned *const_out, LLVMValueRef *indir_out)
2672 {
2673 unsigned const_offset = 0;
2674 nir_deref *tail = &deref->deref;
2675 LLVMValueRef offset = NULL;
2676
2677 if (vertex_index_out != NULL || vertex_index_ref != NULL) {
2678 tail = tail->child;
2679 nir_deref_array *deref_array = nir_deref_as_array(tail);
2680 if (vertex_index_out)
2681 *vertex_index_out = deref_array->base_offset;
2682
2683 if (vertex_index_ref) {
2684 LLVMValueRef vtx = LLVMConstInt(ctx->ac.i32, deref_array->base_offset, false);
2685 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
2686 vtx = LLVMBuildAdd(ctx->ac.builder, vtx, get_src(ctx, deref_array->indirect), "");
2687 }
2688 *vertex_index_ref = vtx;
2689 }
2690 }
2691
2692 if (deref->var->data.compact) {
2693 assert(tail->child->deref_type == nir_deref_type_array);
2694 assert(glsl_type_is_scalar(glsl_without_array(deref->var->type)));
2695 nir_deref_array *deref_array = nir_deref_as_array(tail->child);
2696 /* We always lower indirect dereferences for "compact" array vars. */
2697 assert(deref_array->deref_array_type == nir_deref_array_type_direct);
2698
2699 const_offset = deref_array->base_offset;
2700 goto out;
2701 }
2702
2703 while (tail->child != NULL) {
2704 const struct glsl_type *parent_type = tail->type;
2705 tail = tail->child;
2706
2707 if (tail->deref_type == nir_deref_type_array) {
2708 nir_deref_array *deref_array = nir_deref_as_array(tail);
2709 LLVMValueRef index, stride, local_offset;
2710 unsigned size = glsl_count_attribute_slots(tail->type, vs_in);
2711
2712 const_offset += size * deref_array->base_offset;
2713 if (deref_array->deref_array_type == nir_deref_array_type_direct)
2714 continue;
2715
2716 assert(deref_array->deref_array_type == nir_deref_array_type_indirect);
2717 index = get_src(ctx, deref_array->indirect);
2718 stride = LLVMConstInt(ctx->ac.i32, size, 0);
2719 local_offset = LLVMBuildMul(ctx->ac.builder, stride, index, "");
2720
2721 if (offset)
2722 offset = LLVMBuildAdd(ctx->ac.builder, offset, local_offset, "");
2723 else
2724 offset = local_offset;
2725 } else if (tail->deref_type == nir_deref_type_struct) {
2726 nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
2727
2728 for (unsigned i = 0; i < deref_struct->index; i++) {
2729 const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
2730 const_offset += glsl_count_attribute_slots(ft, vs_in);
2731 }
2732 } else
2733 unreachable("unsupported deref type");
2734
2735 }
2736 out:
2737 if (const_offset && offset)
2738 offset = LLVMBuildAdd(ctx->ac.builder, offset,
2739 LLVMConstInt(ctx->ac.i32, const_offset, 0),
2740 "");
2741
2742 *const_out = const_offset;
2743 *indir_out = offset;
2744 }
2745
2746
2747 /* The offchip buffer layout for TCS->TES is
2748 *
2749 * - attribute 0 of patch 0 vertex 0
2750 * - attribute 0 of patch 0 vertex 1
2751 * - attribute 0 of patch 0 vertex 2
2752 * ...
2753 * - attribute 0 of patch 1 vertex 0
2754 * - attribute 0 of patch 1 vertex 1
2755 * ...
2756 * - attribute 1 of patch 0 vertex 0
2757 * - attribute 1 of patch 0 vertex 1
2758 * ...
2759 * - per patch attribute 0 of patch 0
2760 * - per patch attribute 0 of patch 1
2761 * ...
2762 *
2763 * Note that every attribute has 4 components.
2764 */
2765 static LLVMValueRef get_tcs_tes_buffer_address(struct nir_to_llvm_context *ctx,
2766 LLVMValueRef vertex_index,
2767 LLVMValueRef param_index)
2768 {
2769 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
2770 LLVMValueRef param_stride, constant16;
2771 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
2772
2773 vertices_per_patch = unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 9, 6);
2774 num_patches = unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 0, 9);
2775 total_vertices = LLVMBuildMul(ctx->builder, vertices_per_patch,
2776 num_patches, "");
2777
2778 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
2779 if (vertex_index) {
2780 base_addr = LLVMBuildMul(ctx->builder, rel_patch_id,
2781 vertices_per_patch, "");
2782
2783 base_addr = LLVMBuildAdd(ctx->builder, base_addr,
2784 vertex_index, "");
2785
2786 param_stride = total_vertices;
2787 } else {
2788 base_addr = rel_patch_id;
2789 param_stride = num_patches;
2790 }
2791
2792 base_addr = LLVMBuildAdd(ctx->builder, base_addr,
2793 LLVMBuildMul(ctx->builder, param_index,
2794 param_stride, ""), "");
2795
2796 base_addr = LLVMBuildMul(ctx->builder, base_addr, constant16, "");
2797
2798 if (!vertex_index) {
2799 LLVMValueRef patch_data_offset =
2800 unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 16, 16);
2801
2802 base_addr = LLVMBuildAdd(ctx->builder, base_addr,
2803 patch_data_offset, "");
2804 }
2805 return base_addr;
2806 }
2807
2808 static LLVMValueRef get_tcs_tes_buffer_address_params(struct nir_to_llvm_context *ctx,
2809 unsigned param,
2810 unsigned const_index,
2811 bool is_compact,
2812 LLVMValueRef vertex_index,
2813 LLVMValueRef indir_index)
2814 {
2815 LLVMValueRef param_index;
2816
2817 if (indir_index)
2818 param_index = LLVMBuildAdd(ctx->builder, LLVMConstInt(ctx->ac.i32, param, false),
2819 indir_index, "");
2820 else {
2821 if (const_index && !is_compact)
2822 param += const_index;
2823 param_index = LLVMConstInt(ctx->ac.i32, param, false);
2824 }
2825 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
2826 }
2827
2828 static void
2829 mark_tess_output(struct nir_to_llvm_context *ctx,
2830 bool is_patch, uint32_t param)
2831
2832 {
2833 if (is_patch) {
2834 ctx->tess_patch_outputs_written |= (1ull << param);
2835 } else
2836 ctx->tess_outputs_written |= (1ull << param);
2837 }
2838
2839 static LLVMValueRef
2840 get_dw_address(struct nir_to_llvm_context *ctx,
2841 LLVMValueRef dw_addr,
2842 unsigned param,
2843 unsigned const_index,
2844 bool compact_const_index,
2845 LLVMValueRef vertex_index,
2846 LLVMValueRef stride,
2847 LLVMValueRef indir_index)
2848
2849 {
2850
2851 if (vertex_index) {
2852 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2853 LLVMBuildMul(ctx->builder,
2854 vertex_index,
2855 stride, ""), "");
2856 }
2857
2858 if (indir_index)
2859 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2860 LLVMBuildMul(ctx->builder, indir_index,
2861 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
2862 else if (const_index && !compact_const_index)
2863 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2864 LLVMConstInt(ctx->ac.i32, const_index, false), "");
2865
2866 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2867 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
2868
2869 if (const_index && compact_const_index)
2870 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2871 LLVMConstInt(ctx->ac.i32, const_index, false), "");
2872 return dw_addr;
2873 }
2874
2875 static LLVMValueRef
2876 load_tcs_varyings(struct ac_shader_abi *abi,
2877 LLVMValueRef vertex_index,
2878 LLVMValueRef indir_index,
2879 unsigned const_index,
2880 unsigned location,
2881 unsigned driver_location,
2882 unsigned component,
2883 unsigned num_components,
2884 bool is_patch,
2885 bool is_compact,
2886 bool load_input)
2887 {
2888 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
2889 LLVMValueRef dw_addr, stride;
2890 LLVMValueRef value[4], result;
2891 unsigned param = shader_io_get_unique_index(location);
2892
2893 if (load_input) {
2894 stride = unpack_param(&ctx->ac, ctx->tcs_in_layout, 13, 8);
2895 dw_addr = get_tcs_in_current_patch_offset(ctx);
2896 } else {
2897 if (!is_patch) {
2898 stride = unpack_param(&ctx->ac, ctx->tcs_out_layout, 13, 8);
2899 dw_addr = get_tcs_out_current_patch_offset(ctx);
2900 } else {
2901 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
2902 stride = NULL;
2903 }
2904 }
2905
2906 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
2907 indir_index);
2908
2909 for (unsigned i = 0; i < num_components + component; i++) {
2910 value[i] = ac_lds_load(&ctx->ac, dw_addr);
2911 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
2912 ctx->ac.i32_1, "");
2913 }
2914 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
2915 return result;
2916 }
2917
2918 static void
2919 store_tcs_output(struct ac_shader_abi *abi,
2920 LLVMValueRef vertex_index,
2921 LLVMValueRef param_index,
2922 unsigned const_index,
2923 unsigned location,
2924 unsigned driver_location,
2925 LLVMValueRef src,
2926 unsigned component,
2927 bool is_patch,
2928 bool is_compact,
2929 unsigned writemask)
2930 {
2931 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
2932 LLVMValueRef dw_addr;
2933 LLVMValueRef stride = NULL;
2934 LLVMValueRef buf_addr = NULL;
2935 unsigned param;
2936 bool store_lds = true;
2937
2938 if (is_patch) {
2939 if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
2940 store_lds = false;
2941 } else {
2942 if (!(ctx->tcs_outputs_read & (1ULL << location)))
2943 store_lds = false;
2944 }
2945
2946 param = shader_io_get_unique_index(location);
2947 if (location == VARYING_SLOT_CLIP_DIST0 &&
2948 is_compact && const_index > 3) {
2949 const_index -= 3;
2950 param++;
2951 }
2952
2953 if (!is_patch) {
2954 stride = unpack_param(&ctx->ac, ctx->tcs_out_layout, 13, 8);
2955 dw_addr = get_tcs_out_current_patch_offset(ctx);
2956 } else {
2957 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
2958 }
2959
2960 mark_tess_output(ctx, is_patch, param);
2961
2962 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
2963 param_index);
2964 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
2965 vertex_index, param_index);
2966
2967 bool is_tess_factor = false;
2968 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
2969 location == VARYING_SLOT_TESS_LEVEL_OUTER)
2970 is_tess_factor = true;
2971
2972 unsigned base = is_compact ? const_index : 0;
2973 for (unsigned chan = 0; chan < 8; chan++) {
2974 if (!(writemask & (1 << chan)))
2975 continue;
2976 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
2977
2978 if (store_lds || is_tess_factor) {
2979 LLVMValueRef dw_addr_chan =
2980 LLVMBuildAdd(ctx->builder, dw_addr,
2981 LLVMConstInt(ctx->ac.i32, chan, false), "");
2982 ac_lds_store(&ctx->ac, dw_addr_chan, value);
2983 }
2984
2985 if (!is_tess_factor && writemask != 0xF)
2986 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
2987 buf_addr, ctx->oc_lds,
2988 4 * (base + chan), 1, 0, true, false);
2989 }
2990
2991 if (writemask == 0xF) {
2992 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
2993 buf_addr, ctx->oc_lds,
2994 (base * 4), 1, 0, true, false);
2995 }
2996 }
2997
2998 static LLVMValueRef
2999 load_tes_input(struct ac_shader_abi *abi,
3000 LLVMValueRef vertex_index,
3001 LLVMValueRef param_index,
3002 unsigned const_index,
3003 unsigned location,
3004 unsigned driver_location,
3005 unsigned component,
3006 unsigned num_components,
3007 bool is_patch,
3008 bool is_compact,
3009 bool load_input)
3010 {
3011 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
3012 LLVMValueRef buf_addr;
3013 LLVMValueRef result;
3014 unsigned param = shader_io_get_unique_index(location);
3015
3016 if (location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) {
3017 const_index -= 3;
3018 param++;
3019 }
3020
3021 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
3022 is_compact, vertex_index, param_index);
3023
3024 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
3025 buf_addr = LLVMBuildAdd(ctx->builder, buf_addr, comp_offset, "");
3026
3027 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
3028 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false);
3029 result = trim_vector(&ctx->ac, result, num_components);
3030 return result;
3031 }
3032
3033 static LLVMValueRef
3034 load_gs_input(struct ac_shader_abi *abi,
3035 unsigned location,
3036 unsigned driver_location,
3037 unsigned component,
3038 unsigned num_components,
3039 unsigned vertex_index,
3040 unsigned const_index,
3041 LLVMTypeRef type)
3042 {
3043 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
3044 LLVMValueRef vtx_offset;
3045 unsigned param, vtx_offset_param;
3046 LLVMValueRef value[4], result;
3047
3048 vtx_offset_param = vertex_index;
3049 assert(vtx_offset_param < 6);
3050 vtx_offset = LLVMBuildMul(ctx->builder, ctx->gs_vtx_offset[vtx_offset_param],
3051 LLVMConstInt(ctx->ac.i32, 4, false), "");
3052
3053 param = shader_io_get_unique_index(location);
3054
3055 for (unsigned i = component; i < num_components + component; i++) {
3056 if (ctx->ac.chip_class >= GFX9) {
3057 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
3058 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
3059 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
3060 value[i] = ac_lds_load(&ctx->ac, dw_addr);
3061 } else {
3062 LLVMValueRef soffset =
3063 LLVMConstInt(ctx->ac.i32,
3064 (param * 4 + i + const_index) * 256,
3065 false);
3066
3067 value[i] = ac_build_buffer_load(&ctx->ac,
3068 ctx->esgs_ring, 1,
3069 ctx->ac.i32_0,
3070 vtx_offset, soffset,
3071 0, 1, 0, true, false);
3072
3073 value[i] = LLVMBuildBitCast(ctx->builder, value[i],
3074 type, "");
3075 }
3076 }
3077 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
3078 result = ac_to_integer(&ctx->ac, result);
3079 return result;
3080 }
3081
3082 static LLVMValueRef
3083 build_gep_for_deref(struct ac_nir_context *ctx,
3084 nir_deref_var *deref)
3085 {
3086 struct hash_entry *entry = _mesa_hash_table_search(ctx->vars, deref->var);
3087 assert(entry->data);
3088 LLVMValueRef val = entry->data;
3089 nir_deref *tail = deref->deref.child;
3090 while (tail != NULL) {
3091 LLVMValueRef offset;
3092 switch (tail->deref_type) {
3093 case nir_deref_type_array: {
3094 nir_deref_array *array = nir_deref_as_array(tail);
3095 offset = LLVMConstInt(ctx->ac.i32, array->base_offset, 0);
3096 if (array->deref_array_type ==
3097 nir_deref_array_type_indirect) {
3098 offset = LLVMBuildAdd(ctx->ac.builder, offset,
3099 get_src(ctx,
3100 array->indirect),
3101 "");
3102 }
3103 break;
3104 }
3105 case nir_deref_type_struct: {
3106 nir_deref_struct *deref_struct =
3107 nir_deref_as_struct(tail);
3108 offset = LLVMConstInt(ctx->ac.i32,
3109 deref_struct->index, 0);
3110 break;
3111 }
3112 default:
3113 unreachable("bad deref type");
3114 }
3115 val = ac_build_gep0(&ctx->ac, val, offset);
3116 tail = tail->child;
3117 }
3118 return val;
3119 }
3120
3121 static LLVMValueRef load_tess_varyings(struct ac_nir_context *ctx,
3122 nir_intrinsic_instr *instr,
3123 bool load_inputs)
3124 {
3125 LLVMValueRef result;
3126 LLVMValueRef vertex_index = NULL;
3127 LLVMValueRef indir_index = NULL;
3128 unsigned const_index = 0;
3129 unsigned location = instr->variables[0]->var->data.location;
3130 unsigned driver_location = instr->variables[0]->var->data.driver_location;
3131 const bool is_patch = instr->variables[0]->var->data.patch;
3132 const bool is_compact = instr->variables[0]->var->data.compact;
3133
3134 get_deref_offset(ctx, instr->variables[0],
3135 false, NULL, is_patch ? NULL : &vertex_index,
3136 &const_index, &indir_index);
3137
3138 result = ctx->abi->load_tess_varyings(ctx->abi, vertex_index, indir_index,
3139 const_index, location, driver_location,
3140 instr->variables[0]->var->data.location_frac,
3141 instr->num_components,
3142 is_patch, is_compact, load_inputs);
3143 return LLVMBuildBitCast(ctx->ac.builder, result, get_def_type(ctx, &instr->dest.ssa), "");
3144 }
3145
3146 static LLVMValueRef visit_load_var(struct ac_nir_context *ctx,
3147 nir_intrinsic_instr *instr)
3148 {
3149 LLVMValueRef values[8];
3150 int idx = instr->variables[0]->var->data.driver_location;
3151 int ve = instr->dest.ssa.num_components;
3152 unsigned comp = instr->variables[0]->var->data.location_frac;
3153 LLVMValueRef indir_index;
3154 LLVMValueRef ret;
3155 unsigned const_index;
3156 unsigned stride = instr->variables[0]->var->data.compact ? 1 : 4;
3157 bool vs_in = ctx->stage == MESA_SHADER_VERTEX &&
3158 instr->variables[0]->var->data.mode == nir_var_shader_in;
3159 get_deref_offset(ctx, instr->variables[0], vs_in, NULL, NULL,
3160 &const_index, &indir_index);
3161
3162 if (instr->dest.ssa.bit_size == 64)
3163 ve *= 2;
3164
3165 switch (instr->variables[0]->var->data.mode) {
3166 case nir_var_shader_in:
3167 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
3168 ctx->stage == MESA_SHADER_TESS_EVAL) {
3169 return load_tess_varyings(ctx, instr, true);
3170 }
3171
3172 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3173 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
3174 LLVMValueRef indir_index;
3175 unsigned const_index, vertex_index;
3176 get_deref_offset(ctx, instr->variables[0],
3177 false, &vertex_index, NULL,
3178 &const_index, &indir_index);
3179
3180 return ctx->abi->load_inputs(ctx->abi, instr->variables[0]->var->data.location,
3181 instr->variables[0]->var->data.driver_location,
3182 instr->variables[0]->var->data.location_frac, ve,
3183 vertex_index, const_index, type);
3184 }
3185
3186 for (unsigned chan = comp; chan < ve + comp; chan++) {
3187 if (indir_index) {
3188 unsigned count = glsl_count_attribute_slots(
3189 instr->variables[0]->var->type,
3190 ctx->stage == MESA_SHADER_VERTEX);
3191 count -= chan / 4;
3192 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3193 &ctx->ac, ctx->abi->inputs + idx + chan, count,
3194 stride, false, true);
3195
3196 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
3197 tmp_vec,
3198 indir_index, "");
3199 } else
3200 values[chan] = ctx->abi->inputs[idx + chan + const_index * stride];
3201 }
3202 break;
3203 case nir_var_local:
3204 for (unsigned chan = 0; chan < ve; chan++) {
3205 if (indir_index) {
3206 unsigned count = glsl_count_attribute_slots(
3207 instr->variables[0]->var->type, false);
3208 count -= chan / 4;
3209 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3210 &ctx->ac, ctx->locals + idx + chan, count,
3211 stride, true, true);
3212
3213 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
3214 tmp_vec,
3215 indir_index, "");
3216 } else {
3217 values[chan] = LLVMBuildLoad(ctx->ac.builder, ctx->locals[idx + chan + const_index * stride], "");
3218 }
3219 }
3220 break;
3221 case nir_var_shared: {
3222 LLVMValueRef address = build_gep_for_deref(ctx,
3223 instr->variables[0]);
3224 LLVMValueRef val = LLVMBuildLoad(ctx->ac.builder, address, "");
3225 return LLVMBuildBitCast(ctx->ac.builder, val,
3226 get_def_type(ctx, &instr->dest.ssa),
3227 "");
3228 }
3229 case nir_var_shader_out:
3230 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
3231 return load_tess_varyings(ctx, instr, false);
3232 }
3233
3234 for (unsigned chan = comp; chan < ve + comp; chan++) {
3235 if (indir_index) {
3236 unsigned count = glsl_count_attribute_slots(
3237 instr->variables[0]->var->type, false);
3238 count -= chan / 4;
3239 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3240 &ctx->ac, ctx->outputs + idx + chan, count,
3241 stride, true, true);
3242
3243 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
3244 tmp_vec,
3245 indir_index, "");
3246 } else {
3247 values[chan] = LLVMBuildLoad(ctx->ac.builder,
3248 ctx->outputs[idx + chan + const_index * stride],
3249 "");
3250 }
3251 }
3252 break;
3253 default:
3254 unreachable("unhandle variable mode");
3255 }
3256 ret = ac_build_varying_gather_values(&ctx->ac, values, ve, comp);
3257 return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
3258 }
3259
3260 static void
3261 visit_store_var(struct ac_nir_context *ctx,
3262 nir_intrinsic_instr *instr)
3263 {
3264 LLVMValueRef temp_ptr, value;
3265 int idx = instr->variables[0]->var->data.driver_location;
3266 unsigned comp = instr->variables[0]->var->data.location_frac;
3267 LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
3268 int writemask = instr->const_index[0] << comp;
3269 LLVMValueRef indir_index;
3270 unsigned const_index;
3271 get_deref_offset(ctx, instr->variables[0], false,
3272 NULL, NULL, &const_index, &indir_index);
3273
3274 if (get_elem_bits(&ctx->ac, LLVMTypeOf(src)) == 64) {
3275
3276 src = LLVMBuildBitCast(ctx->ac.builder, src,
3277 LLVMVectorType(ctx->ac.f32, ac_get_llvm_num_components(src) * 2),
3278 "");
3279
3280 writemask = widen_mask(writemask, 2);
3281 }
3282
3283 switch (instr->variables[0]->var->data.mode) {
3284 case nir_var_shader_out:
3285
3286 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
3287 LLVMValueRef vertex_index = NULL;
3288 LLVMValueRef indir_index = NULL;
3289 unsigned const_index = 0;
3290 const unsigned location = instr->variables[0]->var->data.location;
3291 const unsigned driver_location = instr->variables[0]->var->data.driver_location;
3292 const unsigned comp = instr->variables[0]->var->data.location_frac;
3293 const bool is_patch = instr->variables[0]->var->data.patch;
3294 const bool is_compact = instr->variables[0]->var->data.compact;
3295
3296 get_deref_offset(ctx, instr->variables[0],
3297 false, NULL, is_patch ? NULL : &vertex_index,
3298 &const_index, &indir_index);
3299
3300 ctx->abi->store_tcs_outputs(ctx->abi, vertex_index, indir_index,
3301 const_index, location, driver_location,
3302 src, comp, is_patch, is_compact, writemask);
3303 return;
3304 }
3305
3306 for (unsigned chan = 0; chan < 8; chan++) {
3307 int stride = 4;
3308 if (!(writemask & (1 << chan)))
3309 continue;
3310
3311 value = ac_llvm_extract_elem(&ctx->ac, src, chan - comp);
3312
3313 if (instr->variables[0]->var->data.compact)
3314 stride = 1;
3315 if (indir_index) {
3316 unsigned count = glsl_count_attribute_slots(
3317 instr->variables[0]->var->type, false);
3318 count -= chan / 4;
3319 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3320 &ctx->ac, ctx->outputs + idx + chan, count,
3321 stride, true, true);
3322
3323 tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
3324 value, indir_index, "");
3325 build_store_values_extended(&ctx->ac, ctx->outputs + idx + chan,
3326 count, stride, tmp_vec);
3327
3328 } else {
3329 temp_ptr = ctx->outputs[idx + chan + const_index * stride];
3330
3331 LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
3332 }
3333 }
3334 break;
3335 case nir_var_local:
3336 for (unsigned chan = 0; chan < 8; chan++) {
3337 if (!(writemask & (1 << chan)))
3338 continue;
3339
3340 value = ac_llvm_extract_elem(&ctx->ac, src, chan);
3341 if (indir_index) {
3342 unsigned count = glsl_count_attribute_slots(
3343 instr->variables[0]->var->type, false);
3344 count -= chan / 4;
3345 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
3346 &ctx->ac, ctx->locals + idx + chan, count,
3347 4, true, true);
3348
3349 tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
3350 value, indir_index, "");
3351 build_store_values_extended(&ctx->ac, ctx->locals + idx + chan,
3352 count, 4, tmp_vec);
3353 } else {
3354 temp_ptr = ctx->locals[idx + chan + const_index * 4];
3355
3356 LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
3357 }
3358 }
3359 break;
3360 case nir_var_shared: {
3361 int writemask = instr->const_index[0];
3362 LLVMValueRef address = build_gep_for_deref(ctx,
3363 instr->variables[0]);
3364 LLVMValueRef val = get_src(ctx, instr->src[0]);
3365 unsigned components =
3366 glsl_get_vector_elements(
3367 nir_deref_tail(&instr->variables[0]->deref)->type);
3368 if (writemask == (1 << components) - 1) {
3369 val = LLVMBuildBitCast(
3370 ctx->ac.builder, val,
3371 LLVMGetElementType(LLVMTypeOf(address)), "");
3372 LLVMBuildStore(ctx->ac.builder, val, address);
3373 } else {
3374 for (unsigned chan = 0; chan < 4; chan++) {
3375 if (!(writemask & (1 << chan)))
3376 continue;
3377 LLVMValueRef ptr =
3378 LLVMBuildStructGEP(ctx->ac.builder,
3379 address, chan, "");
3380 LLVMValueRef src = ac_llvm_extract_elem(&ctx->ac, val,
3381 chan);
3382 src = LLVMBuildBitCast(
3383 ctx->ac.builder, src,
3384 LLVMGetElementType(LLVMTypeOf(ptr)), "");
3385 LLVMBuildStore(ctx->ac.builder, src, ptr);
3386 }
3387 }
3388 break;
3389 }
3390 default:
3391 break;
3392 }
3393 }
3394
3395 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
3396 {
3397 switch (dim) {
3398 case GLSL_SAMPLER_DIM_BUF:
3399 return 1;
3400 case GLSL_SAMPLER_DIM_1D:
3401 return array ? 2 : 1;
3402 case GLSL_SAMPLER_DIM_2D:
3403 return array ? 3 : 2;
3404 case GLSL_SAMPLER_DIM_MS:
3405 return array ? 4 : 3;
3406 case GLSL_SAMPLER_DIM_3D:
3407 case GLSL_SAMPLER_DIM_CUBE:
3408 return 3;
3409 case GLSL_SAMPLER_DIM_RECT:
3410 case GLSL_SAMPLER_DIM_SUBPASS:
3411 return 2;
3412 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3413 return 3;
3414 default:
3415 break;
3416 }
3417 return 0;
3418 }
3419
3420
3421
3422 /* Adjust the sample index according to FMASK.
3423 *
3424 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3425 * which is the identity mapping. Each nibble says which physical sample
3426 * should be fetched to get that sample.
3427 *
3428 * For example, 0x11111100 means there are only 2 samples stored and
3429 * the second sample covers 3/4 of the pixel. When reading samples 0
3430 * and 1, return physical sample 0 (determined by the first two 0s
3431 * in FMASK), otherwise return physical sample 1.
3432 *
3433 * The sample index should be adjusted as follows:
3434 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3435 */
3436 static LLVMValueRef adjust_sample_index_using_fmask(struct ac_llvm_context *ctx,
3437 LLVMValueRef coord_x, LLVMValueRef coord_y,
3438 LLVMValueRef coord_z,
3439 LLVMValueRef sample_index,
3440 LLVMValueRef fmask_desc_ptr)
3441 {
3442 LLVMValueRef fmask_load_address[4];
3443 LLVMValueRef res;
3444
3445 fmask_load_address[0] = coord_x;
3446 fmask_load_address[1] = coord_y;
3447 if (coord_z) {
3448 fmask_load_address[2] = coord_z;
3449 fmask_load_address[3] = LLVMGetUndef(ctx->i32);
3450 }
3451
3452 struct ac_image_args args = {0};
3453
3454 args.opcode = ac_image_load;
3455 args.da = coord_z ? true : false;
3456 args.resource = fmask_desc_ptr;
3457 args.dmask = 0xf;
3458 args.addr = ac_build_gather_values(ctx, fmask_load_address, coord_z ? 4 : 2);
3459
3460 res = ac_build_image_opcode(ctx, &args);
3461
3462 res = ac_to_integer(ctx, res);
3463 LLVMValueRef four = LLVMConstInt(ctx->i32, 4, false);
3464 LLVMValueRef F = LLVMConstInt(ctx->i32, 0xf, false);
3465
3466 LLVMValueRef fmask = LLVMBuildExtractElement(ctx->builder,
3467 res,
3468 ctx->i32_0, "");
3469
3470 LLVMValueRef sample_index4 =
3471 LLVMBuildMul(ctx->builder, sample_index, four, "");
3472 LLVMValueRef shifted_fmask =
3473 LLVMBuildLShr(ctx->builder, fmask, sample_index4, "");
3474 LLVMValueRef final_sample =
3475 LLVMBuildAnd(ctx->builder, shifted_fmask, F, "");
3476
3477 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3478 * resource descriptor is 0 (invalid),
3479 */
3480 LLVMValueRef fmask_desc =
3481 LLVMBuildBitCast(ctx->builder, fmask_desc_ptr,
3482 ctx->v8i32, "");
3483
3484 LLVMValueRef fmask_word1 =
3485 LLVMBuildExtractElement(ctx->builder, fmask_desc,
3486 ctx->i32_1, "");
3487
3488 LLVMValueRef word1_is_nonzero =
3489 LLVMBuildICmp(ctx->builder, LLVMIntNE,
3490 fmask_word1, ctx->i32_0, "");
3491
3492 /* Replace the MSAA sample index. */
3493 sample_index =
3494 LLVMBuildSelect(ctx->builder, word1_is_nonzero,
3495 final_sample, sample_index, "");
3496 return sample_index;
3497 }
3498
3499 static LLVMValueRef get_image_coords(struct ac_nir_context *ctx,
3500 const nir_intrinsic_instr *instr)
3501 {
3502 const struct glsl_type *type = glsl_without_array(instr->variables[0]->var->type);
3503
3504 LLVMValueRef src0 = get_src(ctx, instr->src[0]);
3505 LLVMValueRef coords[4];
3506 LLVMValueRef masks[] = {
3507 LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
3508 LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
3509 };
3510 LLVMValueRef res;
3511 LLVMValueRef sample_index = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[1]), 0);
3512
3513 int count;
3514 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3515 bool is_array = glsl_sampler_type_is_array(type);
3516 bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS ||
3517 dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3518 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS ||
3519 dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3520 bool gfx9_1d = ctx->ac.chip_class >= GFX9 && dim == GLSL_SAMPLER_DIM_1D;
3521 count = image_type_to_components_count(dim, is_array);
3522
3523 if (is_ms) {
3524 LLVMValueRef fmask_load_address[3];
3525 int chan;
3526
3527 fmask_load_address[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
3528 fmask_load_address[1] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[1], "");
3529 if (is_array)
3530 fmask_load_address[2] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[2], "");
3531 else
3532 fmask_load_address[2] = NULL;
3533 if (add_frag_pos) {
3534 for (chan = 0; chan < 2; ++chan)
3535 fmask_load_address[chan] =
3536 LLVMBuildAdd(ctx->ac.builder, fmask_load_address[chan],
3537 LLVMBuildFPToUI(ctx->ac.builder, ctx->abi->frag_pos[chan],
3538 ctx->ac.i32, ""), "");
3539 fmask_load_address[2] = ac_to_integer(&ctx->ac, ctx->abi->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)]);
3540 }
3541 sample_index = adjust_sample_index_using_fmask(&ctx->ac,
3542 fmask_load_address[0],
3543 fmask_load_address[1],
3544 fmask_load_address[2],
3545 sample_index,
3546 get_sampler_desc(ctx, instr->variables[0], AC_DESC_FMASK, NULL, true, false));
3547 }
3548 if (count == 1 && !gfx9_1d) {
3549 if (instr->src[0].ssa->num_components)
3550 res = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
3551 else
3552 res = src0;
3553 } else {
3554 int chan;
3555 if (is_ms)
3556 count--;
3557 for (chan = 0; chan < count; ++chan) {
3558 coords[chan] = ac_llvm_extract_elem(&ctx->ac, src0, chan);
3559 }
3560 if (add_frag_pos) {
3561 for (chan = 0; chan < 2; ++chan)
3562 coords[chan] = LLVMBuildAdd(ctx->ac.builder, coords[chan], LLVMBuildFPToUI(ctx->ac.builder, ctx->abi->frag_pos[chan],
3563 ctx->ac.i32, ""), "");
3564 coords[2] = ac_to_integer(&ctx->ac, ctx->abi->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)]);
3565 count++;
3566 }
3567
3568 if (gfx9_1d) {
3569 if (is_array) {
3570 coords[2] = coords[1];
3571 coords[1] = ctx->ac.i32_0;
3572 } else
3573 coords[1] = ctx->ac.i32_0;
3574 count++;
3575 }
3576
3577 if (is_ms) {
3578 coords[count] = sample_index;
3579 count++;
3580 }
3581
3582 if (count == 3) {
3583 coords[3] = LLVMGetUndef(ctx->ac.i32);
3584 count = 4;
3585 }
3586 res = ac_build_gather_values(&ctx->ac, coords, count);
3587 }
3588 return res;
3589 }
3590
3591 static LLVMValueRef visit_image_load(struct ac_nir_context *ctx,
3592 const nir_intrinsic_instr *instr)
3593 {
3594 LLVMValueRef params[7];
3595 LLVMValueRef res;
3596 char intrinsic_name[64];
3597 const nir_variable *var = instr->variables[0]->var;
3598 const struct glsl_type *type = var->type;
3599
3600 if(instr->variables[0]->deref.child)
3601 type = instr->variables[0]->deref.child->type;
3602
3603 type = glsl_without_array(type);
3604
3605 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3606 if (dim == GLSL_SAMPLER_DIM_BUF) {
3607 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
3608 unsigned num_channels = util_last_bit(mask);
3609 LLVMValueRef rsrc, vindex;
3610
3611 rsrc = get_sampler_desc(ctx, instr->variables[0], AC_DESC_BUFFER, NULL, true, false);
3612 vindex = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
3613 ctx->ac.i32_0, "");
3614
3615 /* TODO: set "glc" and "can_speculate" when OpenGL needs it. */
3616 res = ac_build_buffer_load_format(&ctx->ac, rsrc, vindex,
3617 ctx->ac.i32_0, num_channels,
3618 false, false);
3619 res = ac_build_expand_to_vec4(&ctx->ac, res, num_channels);
3620
3621 res = trim_vector(&ctx->ac, res, instr->dest.ssa.num_components);
3622 res = ac_to_integer(&ctx->ac, res);
3623 } else {
3624 bool is_da = glsl_sampler_type_is_array(type) ||
3625 dim == GLSL_SAMPLER_DIM_CUBE ||
3626 dim == GLSL_SAMPLER_DIM_3D ||
3627 dim == GLSL_SAMPLER_DIM_SUBPASS ||
3628 dim == GLSL_SAMPLER_DIM_SUBPASS_MS;
3629 LLVMValueRef da = is_da ? ctx->ac.i1true : ctx->ac.i1false;
3630 LLVMValueRef glc = ctx->ac.i1false;
3631 LLVMValueRef slc = ctx->ac.i1false;
3632
3633 params[0] = get_image_coords(ctx, instr);
3634 params[1] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, false);
3635 params[2] = LLVMConstInt(ctx->ac.i32, 15, false); /* dmask */
3636 params[3] = glc;
3637 params[4] = slc;
3638 params[5] = ctx->ac.i1false;
3639 params[6] = da;
3640
3641 ac_get_image_intr_name("llvm.amdgcn.image.load",
3642 ctx->ac.v4f32, /* vdata */
3643 LLVMTypeOf(params[0]), /* coords */
3644 LLVMTypeOf(params[1]), /* rsrc */
3645 intrinsic_name, sizeof(intrinsic_name));
3646
3647 res = ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.v4f32,
3648 params, 7, AC_FUNC_ATTR_READONLY);
3649 }
3650 return ac_to_integer(&ctx->ac, res);
3651 }
3652
3653 static void visit_image_store(struct ac_nir_context *ctx,
3654 nir_intrinsic_instr *instr)
3655 {
3656 LLVMValueRef params[8];
3657 char intrinsic_name[64];
3658 const nir_variable *var = instr->variables[0]->var;
3659 const struct glsl_type *type = glsl_without_array(var->type);
3660 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3661 LLVMValueRef glc = ctx->ac.i1false;
3662 bool force_glc = ctx->ac.chip_class == SI;
3663 if (force_glc)
3664 glc = ctx->ac.i1true;
3665
3666 if (dim == GLSL_SAMPLER_DIM_BUF) {
3667 params[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[2])); /* data */
3668 params[1] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_BUFFER, NULL, true, true);
3669 params[2] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
3670 ctx->ac.i32_0, ""); /* vindex */
3671 params[3] = ctx->ac.i32_0; /* voffset */
3672 params[4] = glc; /* glc */
3673 params[5] = ctx->ac.i1false; /* slc */
3674 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.store.format.v4f32", ctx->ac.voidt,
3675 params, 6, 0);
3676 } else {
3677 bool is_da = glsl_sampler_type_is_array(type) ||
3678 dim == GLSL_SAMPLER_DIM_CUBE ||
3679 dim == GLSL_SAMPLER_DIM_3D;
3680 LLVMValueRef da = is_da ? ctx->ac.i1true : ctx->ac.i1false;
3681 LLVMValueRef slc = ctx->ac.i1false;
3682
3683 params[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[2]));
3684 params[1] = get_image_coords(ctx, instr); /* coords */
3685 params[2] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, true);
3686 params[3] = LLVMConstInt(ctx->ac.i32, 15, false); /* dmask */
3687 params[4] = glc;
3688 params[5] = slc;
3689 params[6] = ctx->ac.i1false;
3690 params[7] = da;
3691
3692 ac_get_image_intr_name("llvm.amdgcn.image.store",
3693 LLVMTypeOf(params[0]), /* vdata */
3694 LLVMTypeOf(params[1]), /* coords */
3695 LLVMTypeOf(params[2]), /* rsrc */
3696 intrinsic_name, sizeof(intrinsic_name));
3697
3698 ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.voidt,
3699 params, 8, 0);
3700 }
3701
3702 }
3703
3704 static LLVMValueRef visit_image_atomic(struct ac_nir_context *ctx,
3705 const nir_intrinsic_instr *instr)
3706 {
3707 LLVMValueRef params[7];
3708 int param_count = 0;
3709 const nir_variable *var = instr->variables[0]->var;
3710
3711 const char *atomic_name;
3712 char intrinsic_name[41];
3713 const struct glsl_type *type = glsl_without_array(var->type);
3714 MAYBE_UNUSED int length;
3715
3716 bool is_unsigned = glsl_get_sampler_result_type(type) == GLSL_TYPE_UINT;
3717
3718 switch (instr->intrinsic) {
3719 case nir_intrinsic_image_atomic_add:
3720 atomic_name = "add";
3721 break;
3722 case nir_intrinsic_image_atomic_min:
3723 atomic_name = is_unsigned ? "umin" : "smin";
3724 break;
3725 case nir_intrinsic_image_atomic_max:
3726 atomic_name = is_unsigned ? "umax" : "smax";
3727 break;
3728 case nir_intrinsic_image_atomic_and:
3729 atomic_name = "and";
3730 break;
3731 case nir_intrinsic_image_atomic_or:
3732 atomic_name = "or";
3733 break;
3734 case nir_intrinsic_image_atomic_xor:
3735 atomic_name = "xor";
3736 break;
3737 case nir_intrinsic_image_atomic_exchange:
3738 atomic_name = "swap";
3739 break;
3740 case nir_intrinsic_image_atomic_comp_swap:
3741 atomic_name = "cmpswap";
3742 break;
3743 default:
3744 abort();
3745 }
3746
3747 if (instr->intrinsic == nir_intrinsic_image_atomic_comp_swap)
3748 params[param_count++] = get_src(ctx, instr->src[3]);
3749 params[param_count++] = get_src(ctx, instr->src[2]);
3750
3751 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
3752 params[param_count++] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_BUFFER,
3753 NULL, true, true);
3754 params[param_count++] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
3755 ctx->ac.i32_0, ""); /* vindex */
3756 params[param_count++] = ctx->ac.i32_0; /* voffset */
3757 params[param_count++] = ctx->ac.i1false; /* slc */
3758
3759 length = snprintf(intrinsic_name, sizeof(intrinsic_name),
3760 "llvm.amdgcn.buffer.atomic.%s", atomic_name);
3761 } else {
3762 char coords_type[8];
3763
3764 bool da = glsl_sampler_type_is_array(type) ||
3765 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
3766
3767 LLVMValueRef coords = params[param_count++] = get_image_coords(ctx, instr);
3768 params[param_count++] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE,
3769 NULL, true, true);
3770 params[param_count++] = ctx->ac.i1false; /* r128 */
3771 params[param_count++] = da ? ctx->ac.i1true : ctx->ac.i1false; /* da */
3772 params[param_count++] = ctx->ac.i1false; /* slc */
3773
3774 build_int_type_name(LLVMTypeOf(coords),
3775 coords_type, sizeof(coords_type));
3776
3777 length = snprintf(intrinsic_name, sizeof(intrinsic_name),
3778 "llvm.amdgcn.image.atomic.%s.%s", atomic_name, coords_type);
3779 }
3780
3781 assert(length < sizeof(intrinsic_name));
3782 return ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.i32, params, param_count, 0);
3783 }
3784
3785 static LLVMValueRef visit_image_size(struct ac_nir_context *ctx,
3786 const nir_intrinsic_instr *instr)
3787 {
3788 LLVMValueRef res;
3789 const nir_variable *var = instr->variables[0]->var;
3790 const struct glsl_type *type = instr->variables[0]->var->type;
3791 bool da = glsl_sampler_type_is_array(var->type) ||
3792 glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_CUBE ||
3793 glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_3D;
3794 if(instr->variables[0]->deref.child)
3795 type = instr->variables[0]->deref.child->type;
3796
3797 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF)
3798 return get_buffer_size(ctx,
3799 get_sampler_desc(ctx, instr->variables[0],
3800 AC_DESC_BUFFER, NULL, true, false), true);
3801
3802 struct ac_image_args args = { 0 };
3803
3804 args.da = da;
3805 args.dmask = 0xf;
3806 args.resource = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, false);
3807 args.opcode = ac_image_get_resinfo;
3808 args.addr = ctx->ac.i32_0;
3809
3810 res = ac_build_image_opcode(&ctx->ac, &args);
3811
3812 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
3813
3814 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
3815 glsl_sampler_type_is_array(type)) {
3816 LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
3817 LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
3818 z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
3819 res = LLVMBuildInsertElement(ctx->ac.builder, res, z, two, "");
3820 }
3821 if (ctx->ac.chip_class >= GFX9 &&
3822 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
3823 glsl_sampler_type_is_array(type)) {
3824 LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
3825 res = LLVMBuildInsertElement(ctx->ac.builder, res, layers,
3826 ctx->ac.i32_1, "");
3827
3828 }
3829 return res;
3830 }
3831
3832 #define NOOP_WAITCNT 0xf7f
3833 #define LGKM_CNT 0x07f
3834 #define VM_CNT 0xf70
3835
3836 static void emit_membar(struct nir_to_llvm_context *ctx,
3837 const nir_intrinsic_instr *instr)
3838 {
3839 unsigned waitcnt = NOOP_WAITCNT;
3840
3841 switch (instr->intrinsic) {
3842 case nir_intrinsic_memory_barrier:
3843 case nir_intrinsic_group_memory_barrier:
3844 waitcnt &= VM_CNT & LGKM_CNT;
3845 break;
3846 case nir_intrinsic_memory_barrier_atomic_counter:
3847 case nir_intrinsic_memory_barrier_buffer:
3848 case nir_intrinsic_memory_barrier_image:
3849 waitcnt &= VM_CNT;
3850 break;
3851 case nir_intrinsic_memory_barrier_shared:
3852 waitcnt &= LGKM_CNT;
3853 break;
3854 default:
3855 break;
3856 }
3857 if (waitcnt != NOOP_WAITCNT)
3858 ac_build_waitcnt(&ctx->ac, waitcnt);
3859 }
3860
3861 static void emit_barrier(struct ac_llvm_context *ac, gl_shader_stage stage)
3862 {
3863 /* SI only (thanks to a hw bug workaround):
3864 * The real barrier instruction isn’t needed, because an entire patch
3865 * always fits into a single wave.
3866 */
3867 if (ac->chip_class == SI && stage == MESA_SHADER_TESS_CTRL) {
3868 ac_build_waitcnt(ac, LGKM_CNT & VM_CNT);
3869 return;
3870 }
3871 ac_build_intrinsic(ac, "llvm.amdgcn.s.barrier",
3872 ac->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
3873 }
3874
3875 static void emit_discard(struct ac_nir_context *ctx,
3876 const nir_intrinsic_instr *instr)
3877 {
3878 LLVMValueRef cond;
3879
3880 if (instr->intrinsic == nir_intrinsic_discard_if) {
3881 cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3882 get_src(ctx, instr->src[0]),
3883 ctx->ac.i32_0, "");
3884 } else {
3885 assert(instr->intrinsic == nir_intrinsic_discard);
3886 cond = LLVMConstInt(ctx->ac.i1, false, 0);
3887 }
3888
3889 ac_build_kill_if_false(&ctx->ac, cond);
3890 }
3891
3892 static LLVMValueRef
3893 visit_load_helper_invocation(struct ac_nir_context *ctx)
3894 {
3895 LLVMValueRef result = ac_build_intrinsic(&ctx->ac,
3896 "llvm.amdgcn.ps.live",
3897 ctx->ac.i1, NULL, 0,
3898 AC_FUNC_ATTR_READNONE);
3899 result = LLVMBuildNot(ctx->ac.builder, result, "");
3900 return LLVMBuildSExt(ctx->ac.builder, result, ctx->ac.i32, "");
3901 }
3902
3903 static LLVMValueRef
3904 visit_load_local_invocation_index(struct nir_to_llvm_context *ctx)
3905 {
3906 LLVMValueRef result;
3907 LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac);
3908 result = LLVMBuildAnd(ctx->builder, ctx->tg_size,
3909 LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
3910
3911 return LLVMBuildAdd(ctx->builder, result, thread_id, "");
3912 }
3913
3914 static LLVMValueRef visit_var_atomic(struct nir_to_llvm_context *ctx,
3915 const nir_intrinsic_instr *instr)
3916 {
3917 LLVMValueRef ptr, result;
3918 LLVMValueRef src = get_src(ctx->nir, instr->src[0]);
3919 ptr = build_gep_for_deref(ctx->nir, instr->variables[0]);
3920
3921 if (instr->intrinsic == nir_intrinsic_var_atomic_comp_swap) {
3922 LLVMValueRef src1 = get_src(ctx->nir, instr->src[1]);
3923 result = LLVMBuildAtomicCmpXchg(ctx->builder,
3924 ptr, src, src1,
3925 LLVMAtomicOrderingSequentiallyConsistent,
3926 LLVMAtomicOrderingSequentiallyConsistent,
3927 false);
3928 } else {
3929 LLVMAtomicRMWBinOp op;
3930 switch (instr->intrinsic) {
3931 case nir_intrinsic_var_atomic_add:
3932 op = LLVMAtomicRMWBinOpAdd;
3933 break;
3934 case nir_intrinsic_var_atomic_umin:
3935 op = LLVMAtomicRMWBinOpUMin;
3936 break;
3937 case nir_intrinsic_var_atomic_umax:
3938 op = LLVMAtomicRMWBinOpUMax;
3939 break;
3940 case nir_intrinsic_var_atomic_imin:
3941 op = LLVMAtomicRMWBinOpMin;
3942 break;
3943 case nir_intrinsic_var_atomic_imax:
3944 op = LLVMAtomicRMWBinOpMax;
3945 break;
3946 case nir_intrinsic_var_atomic_and:
3947 op = LLVMAtomicRMWBinOpAnd;
3948 break;
3949 case nir_intrinsic_var_atomic_or:
3950 op = LLVMAtomicRMWBinOpOr;
3951 break;
3952 case nir_intrinsic_var_atomic_xor:
3953 op = LLVMAtomicRMWBinOpXor;
3954 break;
3955 case nir_intrinsic_var_atomic_exchange:
3956 op = LLVMAtomicRMWBinOpXchg;
3957 break;
3958 default:
3959 return NULL;
3960 }
3961
3962 result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, ac_to_integer(&ctx->ac, src),
3963 LLVMAtomicOrderingSequentiallyConsistent,
3964 false);
3965 }
3966 return result;
3967 }
3968
3969 static LLVMValueRef lookup_interp_param(struct ac_shader_abi *abi,
3970 enum glsl_interp_mode interp, unsigned location)
3971 {
3972 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
3973
3974 switch (interp) {
3975 case INTERP_MODE_FLAT:
3976 default:
3977 return NULL;
3978 case INTERP_MODE_SMOOTH:
3979 case INTERP_MODE_NONE:
3980 if (location == INTERP_CENTER)
3981 return ctx->persp_center;
3982 else if (location == INTERP_CENTROID)
3983 return ctx->persp_centroid;
3984 else if (location == INTERP_SAMPLE)
3985 return ctx->persp_sample;
3986 break;
3987 case INTERP_MODE_NOPERSPECTIVE:
3988 if (location == INTERP_CENTER)
3989 return ctx->linear_center;
3990 else if (location == INTERP_CENTROID)
3991 return ctx->linear_centroid;
3992 else if (location == INTERP_SAMPLE)
3993 return ctx->linear_sample;
3994 break;
3995 }
3996 return NULL;
3997 }
3998
3999 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
4000 LLVMValueRef sample_id)
4001 {
4002 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4003
4004 LLVMValueRef result;
4005 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false));
4006
4007 ptr = LLVMBuildBitCast(ctx->builder, ptr,
4008 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
4009
4010 sample_id = LLVMBuildAdd(ctx->builder, sample_id, ctx->sample_pos_offset, "");
4011 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
4012
4013 return result;
4014 }
4015
4016 static LLVMValueRef load_sample_pos(struct ac_nir_context *ctx)
4017 {
4018 LLVMValueRef values[2];
4019
4020 values[0] = emit_ffract(&ctx->ac, ctx->abi->frag_pos[0], 32);
4021 values[1] = emit_ffract(&ctx->ac, ctx->abi->frag_pos[1], 32);
4022 return ac_build_gather_values(&ctx->ac, values, 2);
4023 }
4024
4025 static LLVMValueRef load_sample_mask_in(struct ac_nir_context *ctx)
4026 {
4027 uint8_t log2_ps_iter_samples = ctx->nctx->shader_info->info.ps.force_persample ? ctx->nctx->options->key.fs.log2_num_samples : ctx->nctx->options->key.fs.log2_ps_iter_samples;
4028
4029 /* The bit pattern matches that used by fixed function fragment
4030 * processing. */
4031 static const uint16_t ps_iter_masks[] = {
4032 0xffff, /* not used */
4033 0x5555,
4034 0x1111,
4035 0x0101,
4036 0x0001,
4037 };
4038 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
4039
4040 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
4041
4042 LLVMValueRef result, sample_id;
4043 sample_id = unpack_param(&ctx->ac, ctx->abi->ancillary, 8, 4);
4044 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
4045 result = LLVMBuildAnd(ctx->ac.builder, sample_id, ctx->abi->sample_coverage, "");
4046 return result;
4047 }
4048
4049 static LLVMValueRef visit_interp(struct ac_nir_context *ctx,
4050 const nir_intrinsic_instr *instr)
4051 {
4052 LLVMValueRef result[4];
4053 LLVMValueRef interp_param, attr_number;
4054 unsigned location;
4055 unsigned chan;
4056 LLVMValueRef src_c0 = NULL;
4057 LLVMValueRef src_c1 = NULL;
4058 LLVMValueRef src0 = NULL;
4059 int input_index = instr->variables[0]->var->data.location - VARYING_SLOT_VAR0;
4060 switch (instr->intrinsic) {
4061 case nir_intrinsic_interp_var_at_centroid:
4062 location = INTERP_CENTROID;
4063 break;
4064 case nir_intrinsic_interp_var_at_sample:
4065 case nir_intrinsic_interp_var_at_offset:
4066 location = INTERP_CENTER;
4067 src0 = get_src(ctx, instr->src[0]);
4068 break;
4069 default:
4070 break;
4071 }
4072
4073 if (instr->intrinsic == nir_intrinsic_interp_var_at_offset) {
4074 src_c0 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, src0, ctx->ac.i32_0, ""));
4075 src_c1 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, src0, ctx->ac.i32_1, ""));
4076 } else if (instr->intrinsic == nir_intrinsic_interp_var_at_sample) {
4077 LLVMValueRef sample_position;
4078 LLVMValueRef halfval = LLVMConstReal(ctx->ac.f32, 0.5f);
4079
4080 /* fetch sample ID */
4081 sample_position = ctx->abi->load_sample_position(ctx->abi, src0);
4082
4083 src_c0 = LLVMBuildExtractElement(ctx->ac.builder, sample_position, ctx->ac.i32_0, "");
4084 src_c0 = LLVMBuildFSub(ctx->ac.builder, src_c0, halfval, "");
4085 src_c1 = LLVMBuildExtractElement(ctx->ac.builder, sample_position, ctx->ac.i32_1, "");
4086 src_c1 = LLVMBuildFSub(ctx->ac.builder, src_c1, halfval, "");
4087 }
4088 interp_param = ctx->abi->lookup_interp_param(ctx->abi, instr->variables[0]->var->data.interpolation, location);
4089 attr_number = LLVMConstInt(ctx->ac.i32, input_index, false);
4090
4091 if (location == INTERP_CENTER) {
4092 LLVMValueRef ij_out[2];
4093 LLVMValueRef ddxy_out = emit_ddxy_interp(ctx, interp_param);
4094
4095 /*
4096 * take the I then J parameters, and the DDX/Y for it, and
4097 * calculate the IJ inputs for the interpolator.
4098 * temp1 = ddx * offset/sample.x + I;
4099 * interp_param.I = ddy * offset/sample.y + temp1;
4100 * temp1 = ddx * offset/sample.x + J;
4101 * interp_param.J = ddy * offset/sample.y + temp1;
4102 */
4103 for (unsigned i = 0; i < 2; i++) {
4104 LLVMValueRef ix_ll = LLVMConstInt(ctx->ac.i32, i, false);
4105 LLVMValueRef iy_ll = LLVMConstInt(ctx->ac.i32, i + 2, false);
4106 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4107 ddxy_out, ix_ll, "");
4108 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4109 ddxy_out, iy_ll, "");
4110 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4111 interp_param, ix_ll, "");
4112 LLVMValueRef temp1, temp2;
4113
4114 interp_el = LLVMBuildBitCast(ctx->ac.builder, interp_el,
4115 ctx->ac.f32, "");
4116
4117 temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, src_c0, "");
4118 temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4119
4120 temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, src_c1, "");
4121 temp2 = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4122
4123 ij_out[i] = LLVMBuildBitCast(ctx->ac.builder,
4124 temp2, ctx->ac.i32, "");
4125 }
4126 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4127
4128 }
4129
4130 for (chan = 0; chan < 4; chan++) {
4131 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
4132
4133 if (interp_param) {
4134 interp_param = LLVMBuildBitCast(ctx->ac.builder,
4135 interp_param, ctx->ac.v2f32, "");
4136 LLVMValueRef i = LLVMBuildExtractElement(
4137 ctx->ac.builder, interp_param, ctx->ac.i32_0, "");
4138 LLVMValueRef j = LLVMBuildExtractElement(
4139 ctx->ac.builder, interp_param, ctx->ac.i32_1, "");
4140
4141 result[chan] = ac_build_fs_interp(&ctx->ac,
4142 llvm_chan, attr_number,
4143 ctx->abi->prim_mask, i, j);
4144 } else {
4145 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
4146 LLVMConstInt(ctx->ac.i32, 2, false),
4147 llvm_chan, attr_number,
4148 ctx->abi->prim_mask);
4149 }
4150 }
4151 return ac_build_varying_gather_values(&ctx->ac, result, instr->num_components,
4152 instr->variables[0]->var->data.location_frac);
4153 }
4154
4155 static void
4156 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
4157 {
4158 LLVMValueRef gs_next_vertex;
4159 LLVMValueRef can_emit;
4160 int idx;
4161 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4162
4163 assert(stream == 0);
4164
4165 /* Write vertex attribute values to GSVS ring */
4166 gs_next_vertex = LLVMBuildLoad(ctx->builder,
4167 ctx->gs_next_vertex,
4168 "");
4169
4170 /* If this thread has already emitted the declared maximum number of
4171 * vertices, kill it: excessive vertex emissions are not supposed to
4172 * have any effect, and GS threads have no externally observable
4173 * effects other than emitting vertices.
4174 */
4175 can_emit = LLVMBuildICmp(ctx->builder, LLVMIntULT, gs_next_vertex,
4176 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
4177 ac_build_kill_if_false(&ctx->ac, can_emit);
4178
4179 /* loop num outputs */
4180 idx = 0;
4181 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
4182 LLVMValueRef *out_ptr = &addrs[i * 4];
4183 int length = 4;
4184 int slot = idx;
4185 int slot_inc = 1;
4186
4187 if (!(ctx->output_mask & (1ull << i)))
4188 continue;
4189
4190 if (i == VARYING_SLOT_CLIP_DIST0) {
4191 /* pack clip and cull into a single set of slots */
4192 length = ctx->num_output_clips + ctx->num_output_culls;
4193 if (length > 4)
4194 slot_inc = 2;
4195 }
4196 for (unsigned j = 0; j < length; j++) {
4197 LLVMValueRef out_val = LLVMBuildLoad(ctx->builder,
4198 out_ptr[j], "");
4199 LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, (slot * 4 + j) * ctx->gs_max_out_vertices, false);
4200 voffset = LLVMBuildAdd(ctx->builder, voffset, gs_next_vertex, "");
4201 voffset = LLVMBuildMul(ctx->builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
4202
4203 out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->ac.i32, "");
4204
4205 ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring,
4206 out_val, 1,
4207 voffset, ctx->gs2vs_offset, 0,
4208 1, 1, true, true);
4209 }
4210 idx += slot_inc;
4211 }
4212
4213 gs_next_vertex = LLVMBuildAdd(ctx->builder, gs_next_vertex,
4214 ctx->ac.i32_1, "");
4215 LLVMBuildStore(ctx->builder, gs_next_vertex, ctx->gs_next_vertex);
4216
4217 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (0 << 8), ctx->gs_wave_id);
4218 }
4219
4220 static void
4221 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
4222 {
4223 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4224 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
4225 }
4226
4227 static LLVMValueRef
4228 load_tess_coord(struct ac_shader_abi *abi, LLVMTypeRef type,
4229 unsigned num_components)
4230 {
4231 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4232
4233 LLVMValueRef coord[4] = {
4234 ctx->tes_u,
4235 ctx->tes_v,
4236 ctx->ac.f32_0,
4237 ctx->ac.f32_0,
4238 };
4239
4240 if (ctx->tes_primitive_mode == GL_TRIANGLES)
4241 coord[2] = LLVMBuildFSub(ctx->builder, ctx->ac.f32_1,
4242 LLVMBuildFAdd(ctx->builder, coord[0], coord[1], ""), "");
4243
4244 LLVMValueRef result = ac_build_gather_values(&ctx->ac, coord, num_components);
4245 return LLVMBuildBitCast(ctx->builder, result, type, "");
4246 }
4247
4248 static LLVMValueRef
4249 load_patch_vertices_in(struct ac_shader_abi *abi)
4250 {
4251 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4252 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
4253 }
4254
4255 static void visit_intrinsic(struct ac_nir_context *ctx,
4256 nir_intrinsic_instr *instr)
4257 {
4258 LLVMValueRef result = NULL;
4259
4260 switch (instr->intrinsic) {
4261 case nir_intrinsic_ballot:
4262 result = ac_build_ballot(&ctx->ac, get_src(ctx, instr->src[0]));
4263 break;
4264 case nir_intrinsic_read_invocation:
4265 case nir_intrinsic_read_first_invocation: {
4266 LLVMValueRef args[2];
4267
4268 /* Value */
4269 args[0] = get_src(ctx, instr->src[0]);
4270
4271 unsigned num_args;
4272 const char *intr_name;
4273 if (instr->intrinsic == nir_intrinsic_read_invocation) {
4274 num_args = 2;
4275 intr_name = "llvm.amdgcn.readlane";
4276
4277 /* Invocation */
4278 args[1] = get_src(ctx, instr->src[1]);
4279 } else {
4280 num_args = 1;
4281 intr_name = "llvm.amdgcn.readfirstlane";
4282 }
4283
4284 /* We currently have no other way to prevent LLVM from lifting the icmp
4285 * calls to a dominating basic block.
4286 */
4287 ac_build_optimization_barrier(&ctx->ac, &args[0]);
4288
4289 result = ac_build_intrinsic(&ctx->ac, intr_name,
4290 ctx->ac.i32, args, num_args,
4291 AC_FUNC_ATTR_READNONE |
4292 AC_FUNC_ATTR_CONVERGENT);
4293 break;
4294 }
4295 case nir_intrinsic_load_subgroup_invocation:
4296 result = ac_get_thread_id(&ctx->ac);
4297 break;
4298 case nir_intrinsic_load_work_group_id: {
4299 LLVMValueRef values[3];
4300
4301 for (int i = 0; i < 3; i++) {
4302 values[i] = ctx->nctx->workgroup_ids[i] ?
4303 ctx->nctx->workgroup_ids[i] : ctx->ac.i32_0;
4304 }
4305
4306 result = ac_build_gather_values(&ctx->ac, values, 3);
4307 break;
4308 }
4309 case nir_intrinsic_load_base_vertex: {
4310 result = ctx->abi->base_vertex;
4311 break;
4312 }
4313 case nir_intrinsic_load_vertex_id_zero_base: {
4314 result = ctx->abi->vertex_id;
4315 break;
4316 }
4317 case nir_intrinsic_load_local_invocation_id: {
4318 result = ctx->nctx->local_invocation_ids;
4319 break;
4320 }
4321 case nir_intrinsic_load_base_instance:
4322 result = ctx->abi->start_instance;
4323 break;
4324 case nir_intrinsic_load_draw_id:
4325 result = ctx->abi->draw_id;
4326 break;
4327 case nir_intrinsic_load_view_index:
4328 result = ctx->nctx->view_index ? ctx->nctx->view_index : ctx->ac.i32_0;
4329 break;
4330 case nir_intrinsic_load_invocation_id:
4331 if (ctx->stage == MESA_SHADER_TESS_CTRL)
4332 result = unpack_param(&ctx->ac, ctx->abi->tcs_rel_ids, 8, 5);
4333 else
4334 result = ctx->abi->gs_invocation_id;
4335 break;
4336 case nir_intrinsic_load_primitive_id:
4337 if (ctx->stage == MESA_SHADER_GEOMETRY) {
4338 result = ctx->abi->gs_prim_id;
4339 } else if (ctx->stage == MESA_SHADER_TESS_CTRL) {
4340 result = ctx->abi->tcs_patch_id;
4341 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
4342 result = ctx->abi->tes_patch_id;
4343 } else
4344 fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage);
4345 break;
4346 case nir_intrinsic_load_sample_id:
4347 result = unpack_param(&ctx->ac, ctx->abi->ancillary, 8, 4);
4348 break;
4349 case nir_intrinsic_load_sample_pos:
4350 result = load_sample_pos(ctx);
4351 break;
4352 case nir_intrinsic_load_sample_mask_in:
4353 if (ctx->nctx)
4354 result = load_sample_mask_in(ctx);
4355 else
4356 result = ctx->abi->sample_coverage;
4357 break;
4358 case nir_intrinsic_load_frag_coord: {
4359 LLVMValueRef values[4] = {
4360 ctx->abi->frag_pos[0],
4361 ctx->abi->frag_pos[1],
4362 ctx->abi->frag_pos[2],
4363 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, ctx->abi->frag_pos[3])
4364 };
4365 result = ac_build_gather_values(&ctx->ac, values, 4);
4366 break;
4367 }
4368 case nir_intrinsic_load_front_face:
4369 result = ctx->abi->front_face;
4370 break;
4371 case nir_intrinsic_load_helper_invocation:
4372 result = visit_load_helper_invocation(ctx);
4373 break;
4374 case nir_intrinsic_load_instance_id:
4375 result = ctx->abi->instance_id;
4376 break;
4377 case nir_intrinsic_load_num_work_groups:
4378 result = ctx->nctx->num_work_groups;
4379 break;
4380 case nir_intrinsic_load_local_invocation_index:
4381 result = visit_load_local_invocation_index(ctx->nctx);
4382 break;
4383 case nir_intrinsic_load_push_constant:
4384 result = visit_load_push_constant(ctx->nctx, instr);
4385 break;
4386 case nir_intrinsic_vulkan_resource_index:
4387 result = visit_vulkan_resource_index(ctx->nctx, instr);
4388 break;
4389 case nir_intrinsic_vulkan_resource_reindex:
4390 result = visit_vulkan_resource_reindex(ctx->nctx, instr);
4391 break;
4392 case nir_intrinsic_store_ssbo:
4393 visit_store_ssbo(ctx, instr);
4394 break;
4395 case nir_intrinsic_load_ssbo:
4396 result = visit_load_buffer(ctx, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_add:
4399 case nir_intrinsic_ssbo_atomic_imin:
4400 case nir_intrinsic_ssbo_atomic_umin:
4401 case nir_intrinsic_ssbo_atomic_imax:
4402 case nir_intrinsic_ssbo_atomic_umax:
4403 case nir_intrinsic_ssbo_atomic_and:
4404 case nir_intrinsic_ssbo_atomic_or:
4405 case nir_intrinsic_ssbo_atomic_xor:
4406 case nir_intrinsic_ssbo_atomic_exchange:
4407 case nir_intrinsic_ssbo_atomic_comp_swap:
4408 result = visit_atomic_ssbo(ctx, instr);
4409 break;
4410 case nir_intrinsic_load_ubo:
4411 result = visit_load_ubo_buffer(ctx, instr);
4412 break;
4413 case nir_intrinsic_get_buffer_size:
4414 result = visit_get_buffer_size(ctx, instr);
4415 break;
4416 case nir_intrinsic_load_var:
4417 result = visit_load_var(ctx, instr);
4418 break;
4419 case nir_intrinsic_store_var:
4420 visit_store_var(ctx, instr);
4421 break;
4422 case nir_intrinsic_image_load:
4423 result = visit_image_load(ctx, instr);
4424 break;
4425 case nir_intrinsic_image_store:
4426 visit_image_store(ctx, instr);
4427 break;
4428 case nir_intrinsic_image_atomic_add:
4429 case nir_intrinsic_image_atomic_min:
4430 case nir_intrinsic_image_atomic_max:
4431 case nir_intrinsic_image_atomic_and:
4432 case nir_intrinsic_image_atomic_or:
4433 case nir_intrinsic_image_atomic_xor:
4434 case nir_intrinsic_image_atomic_exchange:
4435 case nir_intrinsic_image_atomic_comp_swap:
4436 result = visit_image_atomic(ctx, instr);
4437 break;
4438 case nir_intrinsic_image_size:
4439 result = visit_image_size(ctx, instr);
4440 break;
4441 case nir_intrinsic_discard:
4442 case nir_intrinsic_discard_if:
4443 emit_discard(ctx, instr);
4444 break;
4445 case nir_intrinsic_memory_barrier:
4446 case nir_intrinsic_group_memory_barrier:
4447 case nir_intrinsic_memory_barrier_atomic_counter:
4448 case nir_intrinsic_memory_barrier_buffer:
4449 case nir_intrinsic_memory_barrier_image:
4450 case nir_intrinsic_memory_barrier_shared:
4451 emit_membar(ctx->nctx, instr);
4452 break;
4453 case nir_intrinsic_barrier:
4454 emit_barrier(&ctx->ac, ctx->stage);
4455 break;
4456 case nir_intrinsic_var_atomic_add:
4457 case nir_intrinsic_var_atomic_imin:
4458 case nir_intrinsic_var_atomic_umin:
4459 case nir_intrinsic_var_atomic_imax:
4460 case nir_intrinsic_var_atomic_umax:
4461 case nir_intrinsic_var_atomic_and:
4462 case nir_intrinsic_var_atomic_or:
4463 case nir_intrinsic_var_atomic_xor:
4464 case nir_intrinsic_var_atomic_exchange:
4465 case nir_intrinsic_var_atomic_comp_swap:
4466 result = visit_var_atomic(ctx->nctx, instr);
4467 break;
4468 case nir_intrinsic_interp_var_at_centroid:
4469 case nir_intrinsic_interp_var_at_sample:
4470 case nir_intrinsic_interp_var_at_offset:
4471 result = visit_interp(ctx, instr);
4472 break;
4473 case nir_intrinsic_emit_vertex:
4474 ctx->abi->emit_vertex(ctx->abi, nir_intrinsic_stream_id(instr), ctx->outputs);
4475 break;
4476 case nir_intrinsic_end_primitive:
4477 ctx->abi->emit_primitive(ctx->abi, nir_intrinsic_stream_id(instr));
4478 break;
4479 case nir_intrinsic_load_tess_coord: {
4480 LLVMTypeRef type = ctx->nctx ?
4481 get_def_type(ctx->nctx->nir, &instr->dest.ssa) :
4482 NULL;
4483 result = ctx->abi->load_tess_coord(ctx->abi, type, instr->num_components);
4484 break;
4485 }
4486 case nir_intrinsic_load_tess_level_outer:
4487 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER);
4488 break;
4489 case nir_intrinsic_load_tess_level_inner:
4490 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER);
4491 break;
4492 case nir_intrinsic_load_patch_vertices_in:
4493 result = ctx->abi->load_patch_vertices_in(ctx->abi);
4494 break;
4495 case nir_intrinsic_vote_all: {
4496 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, get_src(ctx, instr->src[0]));
4497 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
4498 break;
4499 }
4500 case nir_intrinsic_vote_any: {
4501 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, get_src(ctx, instr->src[0]));
4502 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
4503 break;
4504 }
4505 case nir_intrinsic_vote_eq: {
4506 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, get_src(ctx, instr->src[0]));
4507 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
4508 break;
4509 }
4510 default:
4511 fprintf(stderr, "Unknown intrinsic: ");
4512 nir_print_instr(&instr->instr, stderr);
4513 fprintf(stderr, "\n");
4514 break;
4515 }
4516 if (result) {
4517 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
4518 }
4519 }
4520
4521 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
4522 LLVMValueRef buffer_ptr, bool write)
4523 {
4524 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4525 LLVMValueRef result;
4526
4527 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
4528
4529 result = LLVMBuildLoad(ctx->builder, buffer_ptr, "");
4530 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
4531
4532 return result;
4533 }
4534
4535 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
4536 {
4537 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4538 LLVMValueRef result;
4539
4540 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
4541
4542 result = LLVMBuildLoad(ctx->builder, buffer_ptr, "");
4543 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
4544
4545 return result;
4546 }
4547
4548 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
4549 unsigned descriptor_set,
4550 unsigned base_index,
4551 unsigned constant_index,
4552 LLVMValueRef index,
4553 enum ac_descriptor_type desc_type,
4554 bool image, bool write)
4555 {
4556 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
4557 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
4558 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4559 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4560 unsigned offset = binding->offset;
4561 unsigned stride = binding->size;
4562 unsigned type_size;
4563 LLVMBuilderRef builder = ctx->builder;
4564 LLVMTypeRef type;
4565
4566 assert(base_index < layout->binding_count);
4567
4568 switch (desc_type) {
4569 case AC_DESC_IMAGE:
4570 type = ctx->ac.v8i32;
4571 type_size = 32;
4572 break;
4573 case AC_DESC_FMASK:
4574 type = ctx->ac.v8i32;
4575 offset += 32;
4576 type_size = 32;
4577 break;
4578 case AC_DESC_SAMPLER:
4579 type = ctx->ac.v4i32;
4580 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4581 offset += 64;
4582
4583 type_size = 16;
4584 break;
4585 case AC_DESC_BUFFER:
4586 type = ctx->ac.v4i32;
4587 type_size = 16;
4588 break;
4589 default:
4590 unreachable("invalid desc_type\n");
4591 }
4592
4593 offset += constant_index * stride;
4594
4595 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
4596 (!index || binding->immutable_samplers_equal)) {
4597 if (binding->immutable_samplers_equal)
4598 constant_index = 0;
4599
4600 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4601
4602 LLVMValueRef constants[] = {
4603 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
4604 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
4605 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
4606 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
4607 };
4608 return ac_build_gather_values(&ctx->ac, constants, 4);
4609 }
4610
4611 assert(stride % type_size == 0);
4612
4613 if (!index)
4614 index = ctx->ac.i32_0;
4615
4616 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
4617
4618 list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->ac.i32, offset, 0));
4619 list = LLVMBuildPointerCast(builder, list, ac_array_in_const_addr_space(type), "");
4620
4621 return ac_build_load_to_sgpr(&ctx->ac, list, index);
4622 }
4623
4624 static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
4625 const nir_deref_var *deref,
4626 enum ac_descriptor_type desc_type,
4627 const nir_tex_instr *tex_instr,
4628 bool image, bool write)
4629 {
4630 LLVMValueRef index = NULL;
4631 unsigned constant_index = 0;
4632 unsigned descriptor_set;
4633 unsigned base_index;
4634
4635 if (!deref) {
4636 assert(tex_instr && !image);
4637 descriptor_set = 0;
4638 base_index = tex_instr->sampler_index;
4639 } else {
4640 const nir_deref *tail = &deref->deref;
4641 while (tail->child) {
4642 const nir_deref_array *child = nir_deref_as_array(tail->child);
4643 unsigned array_size = glsl_get_aoa_size(tail->child->type);
4644
4645 if (!array_size)
4646 array_size = 1;
4647
4648 assert(child->deref_array_type != nir_deref_array_type_wildcard);
4649
4650 if (child->deref_array_type == nir_deref_array_type_indirect) {
4651 LLVMValueRef indirect = get_src(ctx, child->indirect);
4652
4653 indirect = LLVMBuildMul(ctx->ac.builder, indirect,
4654 LLVMConstInt(ctx->ac.i32, array_size, false), "");
4655
4656 if (!index)
4657 index = indirect;
4658 else
4659 index = LLVMBuildAdd(ctx->ac.builder, index, indirect, "");
4660 }
4661
4662 constant_index += child->base_offset * array_size;
4663
4664 tail = &child->deref;
4665 }
4666 descriptor_set = deref->var->data.descriptor_set;
4667 base_index = deref->var->data.binding;
4668 }
4669
4670 return ctx->abi->load_sampler_desc(ctx->abi,
4671 descriptor_set,
4672 base_index,
4673 constant_index, index,
4674 desc_type, image, write);
4675 }
4676
4677 static void set_tex_fetch_args(struct ac_llvm_context *ctx,
4678 struct ac_image_args *args,
4679 const nir_tex_instr *instr,
4680 nir_texop op,
4681 LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
4682 LLVMValueRef *param, unsigned count,
4683 unsigned dmask)
4684 {
4685 unsigned is_rect = 0;
4686 bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
4687
4688 if (op == nir_texop_lod)
4689 da = false;
4690 /* Pad to power of two vector */
4691 while (count < util_next_power_of_two(count))
4692 param[count++] = LLVMGetUndef(ctx->i32);
4693
4694 if (count > 1)
4695 args->addr = ac_build_gather_values(ctx, param, count);
4696 else
4697 args->addr = param[0];
4698
4699 args->resource = res_ptr;
4700 args->sampler = samp_ptr;
4701
4702 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF && op == nir_texop_txf) {
4703 args->addr = param[0];
4704 return;
4705 }
4706
4707 args->dmask = dmask;
4708 args->unorm = is_rect;
4709 args->da = da;
4710 }
4711
4712 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
4713 *
4714 * SI-CI:
4715 * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
4716 * filtering manually. The driver sets img7 to a mask clearing
4717 * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
4718 * s_and_b32 samp0, samp0, img7
4719 *
4720 * VI:
4721 * The ANISO_OVERRIDE sampler field enables this fix in TA.
4722 */
4723 static LLVMValueRef sici_fix_sampler_aniso(struct ac_nir_context *ctx,
4724 LLVMValueRef res, LLVMValueRef samp)
4725 {
4726 LLVMBuilderRef builder = ctx->ac.builder;
4727 LLVMValueRef img7, samp0;
4728
4729 if (ctx->ac.chip_class >= VI)
4730 return samp;
4731
4732 img7 = LLVMBuildExtractElement(builder, res,
4733 LLVMConstInt(ctx->ac.i32, 7, 0), "");
4734 samp0 = LLVMBuildExtractElement(builder, samp,
4735 LLVMConstInt(ctx->ac.i32, 0, 0), "");
4736 samp0 = LLVMBuildAnd(builder, samp0, img7, "");
4737 return LLVMBuildInsertElement(builder, samp, samp0,
4738 LLVMConstInt(ctx->ac.i32, 0, 0), "");
4739 }
4740
4741 static void tex_fetch_ptrs(struct ac_nir_context *ctx,
4742 nir_tex_instr *instr,
4743 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
4744 LLVMValueRef *fmask_ptr)
4745 {
4746 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4747 *res_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_BUFFER, instr, false, false);
4748 else
4749 *res_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_IMAGE, instr, false, false);
4750 if (samp_ptr) {
4751 if (instr->sampler)
4752 *samp_ptr = get_sampler_desc(ctx, instr->sampler, AC_DESC_SAMPLER, instr, false, false);
4753 else
4754 *samp_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_SAMPLER, instr, false, false);
4755 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
4756 *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
4757 }
4758 if (fmask_ptr && !instr->sampler && (instr->op == nir_texop_txf_ms ||
4759 instr->op == nir_texop_samples_identical))
4760 *fmask_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_FMASK, instr, false, false);
4761 }
4762
4763 static LLVMValueRef apply_round_slice(struct ac_llvm_context *ctx,
4764 LLVMValueRef coord)
4765 {
4766 coord = ac_to_float(ctx, coord);
4767 coord = ac_build_intrinsic(ctx, "llvm.rint.f32", ctx->f32, &coord, 1, 0);
4768 coord = ac_to_integer(ctx, coord);
4769 return coord;
4770 }
4771
4772 static void visit_tex(struct ac_nir_context *ctx, nir_tex_instr *instr)
4773 {
4774 LLVMValueRef result = NULL;
4775 struct ac_image_args args = { 0 };
4776 unsigned dmask = 0xf;
4777 LLVMValueRef address[16];
4778 LLVMValueRef coords[5];
4779 LLVMValueRef coord = NULL, lod = NULL, comparator = NULL;
4780 LLVMValueRef bias = NULL, offsets = NULL;
4781 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL, sample_index = NULL;
4782 LLVMValueRef ddx = NULL, ddy = NULL;
4783 LLVMValueRef derivs[6];
4784 unsigned chan, count = 0;
4785 unsigned const_src = 0, num_deriv_comp = 0;
4786 bool lod_is_zero = false;
4787
4788 tex_fetch_ptrs(ctx, instr, &res_ptr, &samp_ptr, &fmask_ptr);
4789
4790 for (unsigned i = 0; i < instr->num_srcs; i++) {
4791 switch (instr->src[i].src_type) {
4792 case nir_tex_src_coord:
4793 coord = get_src(ctx, instr->src[i].src);
4794 break;
4795 case nir_tex_src_projector:
4796 break;
4797 case nir_tex_src_comparator:
4798 comparator = get_src(ctx, instr->src[i].src);
4799 break;
4800 case nir_tex_src_offset:
4801 offsets = get_src(ctx, instr->src[i].src);
4802 const_src = i;
4803 break;
4804 case nir_tex_src_bias:
4805 bias = get_src(ctx, instr->src[i].src);
4806 break;
4807 case nir_tex_src_lod: {
4808 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
4809
4810 if (val && val->i32[0] == 0)
4811 lod_is_zero = true;
4812 lod = get_src(ctx, instr->src[i].src);
4813 break;
4814 }
4815 case nir_tex_src_ms_index:
4816 sample_index = get_src(ctx, instr->src[i].src);
4817 break;
4818 case nir_tex_src_ms_mcs:
4819 break;
4820 case nir_tex_src_ddx:
4821 ddx = get_src(ctx, instr->src[i].src);
4822 num_deriv_comp = instr->src[i].src.ssa->num_components;
4823 break;
4824 case nir_tex_src_ddy:
4825 ddy = get_src(ctx, instr->src[i].src);
4826 break;
4827 case nir_tex_src_texture_offset:
4828 case nir_tex_src_sampler_offset:
4829 case nir_tex_src_plane:
4830 default:
4831 break;
4832 }
4833 }
4834
4835 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
4836 result = get_buffer_size(ctx, res_ptr, true);
4837 goto write_result;
4838 }
4839
4840 if (instr->op == nir_texop_texture_samples) {
4841 LLVMValueRef res, samples, is_msaa;
4842 res = LLVMBuildBitCast(ctx->ac.builder, res_ptr, ctx->ac.v8i32, "");
4843 samples = LLVMBuildExtractElement(ctx->ac.builder, res,
4844 LLVMConstInt(ctx->ac.i32, 3, false), "");
4845 is_msaa = LLVMBuildLShr(ctx->ac.builder, samples,
4846 LLVMConstInt(ctx->ac.i32, 28, false), "");
4847 is_msaa = LLVMBuildAnd(ctx->ac.builder, is_msaa,
4848 LLVMConstInt(ctx->ac.i32, 0xe, false), "");
4849 is_msaa = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, is_msaa,
4850 LLVMConstInt(ctx->ac.i32, 0xe, false), "");
4851
4852 samples = LLVMBuildLShr(ctx->ac.builder, samples,
4853 LLVMConstInt(ctx->ac.i32, 16, false), "");
4854 samples = LLVMBuildAnd(ctx->ac.builder, samples,
4855 LLVMConstInt(ctx->ac.i32, 0xf, false), "");
4856 samples = LLVMBuildShl(ctx->ac.builder, ctx->ac.i32_1,
4857 samples, "");
4858 samples = LLVMBuildSelect(ctx->ac.builder, is_msaa, samples,
4859 ctx->ac.i32_1, "");
4860 result = samples;
4861 goto write_result;
4862 }
4863
4864 if (coord)
4865 for (chan = 0; chan < instr->coord_components; chan++)
4866 coords[chan] = ac_llvm_extract_elem(&ctx->ac, coord, chan);
4867
4868 if (offsets && instr->op != nir_texop_txf) {
4869 LLVMValueRef offset[3], pack;
4870 for (chan = 0; chan < 3; ++chan)
4871 offset[chan] = ctx->ac.i32_0;
4872
4873 args.offset = true;
4874 for (chan = 0; chan < ac_get_llvm_num_components(offsets); chan++) {
4875 offset[chan] = ac_llvm_extract_elem(&ctx->ac, offsets, chan);
4876 offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
4877 LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
4878 if (chan)
4879 offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
4880 LLVMConstInt(ctx->ac.i32, chan * 8, false), "");
4881 }
4882 pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
4883 pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
4884 address[count++] = pack;
4885
4886 }
4887 /* pack LOD bias value */
4888 if (instr->op == nir_texop_txb && bias) {
4889 address[count++] = bias;
4890 }
4891
4892 /* Pack depth comparison value */
4893 if (instr->is_shadow && comparator) {
4894 LLVMValueRef z = ac_to_float(&ctx->ac,
4895 ac_llvm_extract_elem(&ctx->ac, comparator, 0));
4896
4897 /* TC-compatible HTILE on radeonsi promotes Z16 and Z24 to Z32_FLOAT,
4898 * so the depth comparison value isn't clamped for Z16 and
4899 * Z24 anymore. Do it manually here.
4900 *
4901 * It's unnecessary if the original texture format was
4902 * Z32_FLOAT, but we don't know that here.
4903 */
4904 if (ctx->ac.chip_class == VI && ctx->abi->clamp_shadow_reference)
4905 z = ac_build_clamp(&ctx->ac, z);
4906
4907 address[count++] = z;
4908 }
4909
4910 /* pack derivatives */
4911 if (ddx || ddy) {
4912 int num_src_deriv_channels, num_dest_deriv_channels;
4913 switch (instr->sampler_dim) {
4914 case GLSL_SAMPLER_DIM_3D:
4915 case GLSL_SAMPLER_DIM_CUBE:
4916 num_deriv_comp = 3;
4917 num_src_deriv_channels = 3;
4918 num_dest_deriv_channels = 3;
4919 break;
4920 case GLSL_SAMPLER_DIM_2D:
4921 default:
4922 num_src_deriv_channels = 2;
4923 num_dest_deriv_channels = 2;
4924 num_deriv_comp = 2;
4925 break;
4926 case GLSL_SAMPLER_DIM_1D:
4927 num_src_deriv_channels = 1;
4928 if (ctx->ac.chip_class >= GFX9) {
4929 num_dest_deriv_channels = 2;
4930 num_deriv_comp = 2;
4931 } else {
4932 num_dest_deriv_channels = 1;
4933 num_deriv_comp = 1;
4934 }
4935 break;
4936 }
4937
4938 for (unsigned i = 0; i < num_src_deriv_channels; i++) {
4939 derivs[i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddx, i));
4940 derivs[num_dest_deriv_channels + i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddy, i));
4941 }
4942 for (unsigned i = num_src_deriv_channels; i < num_dest_deriv_channels; i++) {
4943 derivs[i] = ctx->ac.f32_0;
4944 derivs[num_dest_deriv_channels + i] = ctx->ac.f32_0;
4945 }
4946 }
4947
4948 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && coord) {
4949 for (chan = 0; chan < instr->coord_components; chan++)
4950 coords[chan] = ac_to_float(&ctx->ac, coords[chan]);
4951 if (instr->coord_components == 3)
4952 coords[3] = LLVMGetUndef(ctx->ac.f32);
4953 ac_prepare_cube_coords(&ctx->ac,
4954 instr->op == nir_texop_txd, instr->is_array,
4955 instr->op == nir_texop_lod, coords, derivs);
4956 if (num_deriv_comp)
4957 num_deriv_comp--;
4958 }
4959
4960 if (ddx || ddy) {
4961 for (unsigned i = 0; i < num_deriv_comp * 2; i++)
4962 address[count++] = derivs[i];
4963 }
4964
4965 /* Pack texture coordinates */
4966 if (coord) {
4967 address[count++] = coords[0];
4968 if (instr->coord_components > 1) {
4969 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array && instr->op != nir_texop_txf) {
4970 coords[1] = apply_round_slice(&ctx->ac, coords[1]);
4971 }
4972 address[count++] = coords[1];
4973 }
4974 if (instr->coord_components > 2) {
4975 /* This seems like a bit of a hack - but it passes Vulkan CTS with it */
4976 if (instr->sampler_dim != GLSL_SAMPLER_DIM_3D &&
4977 instr->sampler_dim != GLSL_SAMPLER_DIM_CUBE &&
4978 instr->op != nir_texop_txf) {
4979 coords[2] = apply_round_slice(&ctx->ac, coords[2]);
4980 }
4981 address[count++] = coords[2];
4982 }
4983
4984 if (ctx->ac.chip_class >= GFX9) {
4985 LLVMValueRef filler;
4986 if (instr->op == nir_texop_txf)
4987 filler = ctx->ac.i32_0;
4988 else
4989 filler = LLVMConstReal(ctx->ac.f32, 0.5);
4990
4991 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D) {
4992 /* No nir_texop_lod, because it does not take a slice
4993 * even with array textures. */
4994 if (instr->is_array && instr->op != nir_texop_lod ) {
4995 address[count] = address[count - 1];
4996 address[count - 1] = filler;
4997 count++;
4998 } else
4999 address[count++] = filler;
5000 }
5001 }
5002 }
5003
5004 /* Pack LOD */
5005 if (lod && ((instr->op == nir_texop_txl && !lod_is_zero) ||
5006 instr->op == nir_texop_txf)) {
5007 address[count++] = lod;
5008 } else if (instr->op == nir_texop_txf_ms && sample_index) {
5009 address[count++] = sample_index;
5010 } else if(instr->op == nir_texop_txs) {
5011 count = 0;
5012 if (lod)
5013 address[count++] = lod;
5014 else
5015 address[count++] = ctx->ac.i32_0;
5016 }
5017
5018 for (chan = 0; chan < count; chan++) {
5019 address[chan] = LLVMBuildBitCast(ctx->ac.builder,
5020 address[chan], ctx->ac.i32, "");
5021 }
5022
5023 if (instr->op == nir_texop_samples_identical) {
5024 LLVMValueRef txf_address[4];
5025 struct ac_image_args txf_args = { 0 };
5026 unsigned txf_count = count;
5027 memcpy(txf_address, address, sizeof(txf_address));
5028
5029 if (!instr->is_array)
5030 txf_address[2] = ctx->ac.i32_0;
5031 txf_address[3] = ctx->ac.i32_0;
5032
5033 set_tex_fetch_args(&ctx->ac, &txf_args, instr, nir_texop_txf,
5034 fmask_ptr, NULL,
5035 txf_address, txf_count, 0xf);
5036
5037 result = build_tex_intrinsic(ctx, instr, false, &txf_args);
5038
5039 result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
5040 result = emit_int_cmp(&ctx->ac, LLVMIntEQ, result, ctx->ac.i32_0);
5041 goto write_result;
5042 }
5043
5044 if (instr->sampler_dim == GLSL_SAMPLER_DIM_MS &&
5045 instr->op != nir_texop_txs) {
5046 unsigned sample_chan = instr->is_array ? 3 : 2;
5047 address[sample_chan] = adjust_sample_index_using_fmask(&ctx->ac,
5048 address[0],
5049 address[1],
5050 instr->is_array ? address[2] : NULL,
5051 address[sample_chan],
5052 fmask_ptr);
5053 }
5054
5055 if (offsets && instr->op == nir_texop_txf) {
5056 nir_const_value *const_offset =
5057 nir_src_as_const_value(instr->src[const_src].src);
5058 int num_offsets = instr->src[const_src].src.ssa->num_components;
5059 assert(const_offset);
5060 num_offsets = MIN2(num_offsets, instr->coord_components);
5061 if (num_offsets > 2)
5062 address[2] = LLVMBuildAdd(ctx->ac.builder,
5063 address[2], LLVMConstInt(ctx->ac.i32, const_offset->i32[2], false), "");
5064 if (num_offsets > 1)
5065 address[1] = LLVMBuildAdd(ctx->ac.builder,
5066 address[1], LLVMConstInt(ctx->ac.i32, const_offset->i32[1], false), "");
5067 address[0] = LLVMBuildAdd(ctx->ac.builder,
5068 address[0], LLVMConstInt(ctx->ac.i32, const_offset->i32[0], false), "");
5069
5070 }
5071
5072 /* TODO TG4 support */
5073 if (instr->op == nir_texop_tg4) {
5074 if (instr->is_shadow)
5075 dmask = 1;
5076 else
5077 dmask = 1 << instr->component;
5078 }
5079 set_tex_fetch_args(&ctx->ac, &args, instr, instr->op,
5080 res_ptr, samp_ptr, address, count, dmask);
5081
5082 result = build_tex_intrinsic(ctx, instr, lod_is_zero, &args);
5083
5084 if (instr->op == nir_texop_query_levels)
5085 result = LLVMBuildExtractElement(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 3, false), "");
5086 else if (instr->is_shadow && instr->is_new_style_shadow &&
5087 instr->op != nir_texop_txs && instr->op != nir_texop_lod &&
5088 instr->op != nir_texop_tg4)
5089 result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
5090 else if (instr->op == nir_texop_txs &&
5091 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
5092 instr->is_array) {
5093 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
5094 LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
5095 LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
5096 z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
5097 result = LLVMBuildInsertElement(ctx->ac.builder, result, z, two, "");
5098 } else if (ctx->ac.chip_class >= GFX9 &&
5099 instr->op == nir_texop_txs &&
5100 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
5101 instr->is_array) {
5102 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
5103 LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
5104 result = LLVMBuildInsertElement(ctx->ac.builder, result, layers,
5105 ctx->ac.i32_1, "");
5106 } else if (instr->dest.ssa.num_components != 4)
5107 result = trim_vector(&ctx->ac, result, instr->dest.ssa.num_components);
5108
5109 write_result:
5110 if (result) {
5111 assert(instr->dest.is_ssa);
5112 result = ac_to_integer(&ctx->ac, result);
5113 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
5114 }
5115 }
5116
5117
5118 static void visit_phi(struct ac_nir_context *ctx, nir_phi_instr *instr)
5119 {
5120 LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
5121 LLVMValueRef result = LLVMBuildPhi(ctx->ac.builder, type, "");
5122
5123 _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
5124 _mesa_hash_table_insert(ctx->phis, instr, result);
5125 }
5126
5127 static void visit_post_phi(struct ac_nir_context *ctx,
5128 nir_phi_instr *instr,
5129 LLVMValueRef llvm_phi)
5130 {
5131 nir_foreach_phi_src(src, instr) {
5132 LLVMBasicBlockRef block = get_block(ctx, src->pred);
5133 LLVMValueRef llvm_src = get_src(ctx, src->src);
5134
5135 LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
5136 }
5137 }
5138
5139 static void phi_post_pass(struct ac_nir_context *ctx)
5140 {
5141 struct hash_entry *entry;
5142 hash_table_foreach(ctx->phis, entry) {
5143 visit_post_phi(ctx, (nir_phi_instr*)entry->key,
5144 (LLVMValueRef)entry->data);
5145 }
5146 }
5147
5148
5149 static void visit_ssa_undef(struct ac_nir_context *ctx,
5150 const nir_ssa_undef_instr *instr)
5151 {
5152 unsigned num_components = instr->def.num_components;
5153 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
5154 LLVMValueRef undef;
5155
5156 if (num_components == 1)
5157 undef = LLVMGetUndef(type);
5158 else {
5159 undef = LLVMGetUndef(LLVMVectorType(type, num_components));
5160 }
5161 _mesa_hash_table_insert(ctx->defs, &instr->def, undef);
5162 }
5163
5164 static void visit_jump(struct ac_nir_context *ctx,
5165 const nir_jump_instr *instr)
5166 {
5167 switch (instr->type) {
5168 case nir_jump_break:
5169 LLVMBuildBr(ctx->ac.builder, ctx->break_block);
5170 LLVMClearInsertionPosition(ctx->ac.builder);
5171 break;
5172 case nir_jump_continue:
5173 LLVMBuildBr(ctx->ac.builder, ctx->continue_block);
5174 LLVMClearInsertionPosition(ctx->ac.builder);
5175 break;
5176 default:
5177 fprintf(stderr, "Unknown NIR jump instr: ");
5178 nir_print_instr(&instr->instr, stderr);
5179 fprintf(stderr, "\n");
5180 abort();
5181 }
5182 }
5183
5184 static void visit_cf_list(struct ac_nir_context *ctx,
5185 struct exec_list *list);
5186
5187 static void visit_block(struct ac_nir_context *ctx, nir_block *block)
5188 {
5189 LLVMBasicBlockRef llvm_block = LLVMGetInsertBlock(ctx->ac.builder);
5190 nir_foreach_instr(instr, block)
5191 {
5192 switch (instr->type) {
5193 case nir_instr_type_alu:
5194 visit_alu(ctx, nir_instr_as_alu(instr));
5195 break;
5196 case nir_instr_type_load_const:
5197 visit_load_const(ctx, nir_instr_as_load_const(instr));
5198 break;
5199 case nir_instr_type_intrinsic:
5200 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
5201 break;
5202 case nir_instr_type_tex:
5203 visit_tex(ctx, nir_instr_as_tex(instr));
5204 break;
5205 case nir_instr_type_phi:
5206 visit_phi(ctx, nir_instr_as_phi(instr));
5207 break;
5208 case nir_instr_type_ssa_undef:
5209 visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
5210 break;
5211 case nir_instr_type_jump:
5212 visit_jump(ctx, nir_instr_as_jump(instr));
5213 break;
5214 default:
5215 fprintf(stderr, "Unknown NIR instr type: ");
5216 nir_print_instr(instr, stderr);
5217 fprintf(stderr, "\n");
5218 abort();
5219 }
5220 }
5221
5222 _mesa_hash_table_insert(ctx->defs, block, llvm_block);
5223 }
5224
5225 static void visit_if(struct ac_nir_context *ctx, nir_if *if_stmt)
5226 {
5227 LLVMValueRef value = get_src(ctx, if_stmt->condition);
5228
5229 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
5230 LLVMBasicBlockRef merge_block =
5231 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5232 LLVMBasicBlockRef if_block =
5233 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5234 LLVMBasicBlockRef else_block = merge_block;
5235 if (!exec_list_is_empty(&if_stmt->else_list))
5236 else_block = LLVMAppendBasicBlockInContext(
5237 ctx->ac.context, fn, "");
5238
5239 LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, value,
5240 ctx->ac.i32_0, "");
5241 LLVMBuildCondBr(ctx->ac.builder, cond, if_block, else_block);
5242
5243 LLVMPositionBuilderAtEnd(ctx->ac.builder, if_block);
5244 visit_cf_list(ctx, &if_stmt->then_list);
5245 if (LLVMGetInsertBlock(ctx->ac.builder))
5246 LLVMBuildBr(ctx->ac.builder, merge_block);
5247
5248 if (!exec_list_is_empty(&if_stmt->else_list)) {
5249 LLVMPositionBuilderAtEnd(ctx->ac.builder, else_block);
5250 visit_cf_list(ctx, &if_stmt->else_list);
5251 if (LLVMGetInsertBlock(ctx->ac.builder))
5252 LLVMBuildBr(ctx->ac.builder, merge_block);
5253 }
5254
5255 LLVMPositionBuilderAtEnd(ctx->ac.builder, merge_block);
5256 }
5257
5258 static void visit_loop(struct ac_nir_context *ctx, nir_loop *loop)
5259 {
5260 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
5261 LLVMBasicBlockRef continue_parent = ctx->continue_block;
5262 LLVMBasicBlockRef break_parent = ctx->break_block;
5263
5264 ctx->continue_block =
5265 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5266 ctx->break_block =
5267 LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
5268
5269 LLVMBuildBr(ctx->ac.builder, ctx->continue_block);
5270 LLVMPositionBuilderAtEnd(ctx->ac.builder, ctx->continue_block);
5271 visit_cf_list(ctx, &loop->body);
5272
5273 if (LLVMGetInsertBlock(ctx->ac.builder))
5274 LLVMBuildBr(ctx->ac.builder, ctx->continue_block);
5275 LLVMPositionBuilderAtEnd(ctx->ac.builder, ctx->break_block);
5276
5277 ctx->continue_block = continue_parent;
5278 ctx->break_block = break_parent;
5279 }
5280
5281 static void visit_cf_list(struct ac_nir_context *ctx,
5282 struct exec_list *list)
5283 {
5284 foreach_list_typed(nir_cf_node, node, node, list)
5285 {
5286 switch (node->type) {
5287 case nir_cf_node_block:
5288 visit_block(ctx, nir_cf_node_as_block(node));
5289 break;
5290
5291 case nir_cf_node_if:
5292 visit_if(ctx, nir_cf_node_as_if(node));
5293 break;
5294
5295 case nir_cf_node_loop:
5296 visit_loop(ctx, nir_cf_node_as_loop(node));
5297 break;
5298
5299 default:
5300 assert(0);
5301 }
5302 }
5303 }
5304
5305 static void
5306 handle_vs_input_decl(struct nir_to_llvm_context *ctx,
5307 struct nir_variable *variable)
5308 {
5309 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
5310 LLVMValueRef t_offset;
5311 LLVMValueRef t_list;
5312 LLVMValueRef input;
5313 LLVMValueRef buffer_index;
5314 int index = variable->data.location - VERT_ATTRIB_GENERIC0;
5315 int idx = variable->data.location;
5316 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
5317
5318 variable->data.driver_location = idx * 4;
5319
5320 for (unsigned i = 0; i < attrib_count; ++i, ++idx) {
5321 if (ctx->options->key.vs.instance_rate_inputs & (1u << (index + i))) {
5322 buffer_index = LLVMBuildAdd(ctx->builder, ctx->abi.instance_id,
5323 ctx->abi.start_instance, "");
5324 if (ctx->options->key.vs.as_ls) {
5325 ctx->shader_info->vs.vgpr_comp_cnt =
5326 MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt);
5327 } else {
5328 ctx->shader_info->vs.vgpr_comp_cnt =
5329 MAX2(1, ctx->shader_info->vs.vgpr_comp_cnt);
5330 }
5331 } else
5332 buffer_index = LLVMBuildAdd(ctx->builder, ctx->abi.vertex_id,
5333 ctx->abi.base_vertex, "");
5334 t_offset = LLVMConstInt(ctx->ac.i32, index + i, false);
5335
5336 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
5337
5338 input = ac_build_buffer_load_format(&ctx->ac, t_list,
5339 buffer_index,
5340 ctx->ac.i32_0,
5341 4, false, true);
5342
5343 for (unsigned chan = 0; chan < 4; chan++) {
5344 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
5345 ctx->inputs[radeon_llvm_reg_index_soa(idx, chan)] =
5346 ac_to_integer(&ctx->ac, LLVMBuildExtractElement(ctx->builder,
5347 input, llvm_chan, ""));
5348 }
5349 }
5350 }
5351
5352 static void interp_fs_input(struct nir_to_llvm_context *ctx,
5353 unsigned attr,
5354 LLVMValueRef interp_param,
5355 LLVMValueRef prim_mask,
5356 LLVMValueRef result[4])
5357 {
5358 LLVMValueRef attr_number;
5359 unsigned chan;
5360 LLVMValueRef i, j;
5361 bool interp = interp_param != NULL;
5362
5363 attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
5364
5365 /* fs.constant returns the param from the middle vertex, so it's not
5366 * really useful for flat shading. It's meant to be used for custom
5367 * interpolation (but the intrinsic can't fetch from the other two
5368 * vertices).
5369 *
5370 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
5371 * to do the right thing. The only reason we use fs.constant is that
5372 * fs.interp cannot be used on integers, because they can be equal
5373 * to NaN.
5374 */
5375 if (interp) {
5376 interp_param = LLVMBuildBitCast(ctx->builder, interp_param,
5377 ctx->ac.v2f32, "");
5378
5379 i = LLVMBuildExtractElement(ctx->builder, interp_param,
5380 ctx->ac.i32_0, "");
5381 j = LLVMBuildExtractElement(ctx->builder, interp_param,
5382 ctx->ac.i32_1, "");
5383 }
5384
5385 for (chan = 0; chan < 4; chan++) {
5386 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
5387
5388 if (interp) {
5389 result[chan] = ac_build_fs_interp(&ctx->ac,
5390 llvm_chan,
5391 attr_number,
5392 prim_mask, i, j);
5393 } else {
5394 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
5395 LLVMConstInt(ctx->ac.i32, 2, false),
5396 llvm_chan,
5397 attr_number,
5398 prim_mask);
5399 }
5400 }
5401 }
5402
5403 static void
5404 handle_fs_input_decl(struct nir_to_llvm_context *ctx,
5405 struct nir_variable *variable)
5406 {
5407 int idx = variable->data.location;
5408 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5409 LLVMValueRef interp;
5410
5411 variable->data.driver_location = idx * 4;
5412 ctx->input_mask |= ((1ull << attrib_count) - 1) << variable->data.location;
5413
5414 if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) {
5415 unsigned interp_type;
5416 if (variable->data.sample) {
5417 interp_type = INTERP_SAMPLE;
5418 ctx->shader_info->info.ps.force_persample = true;
5419 } else if (variable->data.centroid)
5420 interp_type = INTERP_CENTROID;
5421 else
5422 interp_type = INTERP_CENTER;
5423
5424 interp = lookup_interp_param(&ctx->abi, variable->data.interpolation, interp_type);
5425 } else
5426 interp = NULL;
5427
5428 for (unsigned i = 0; i < attrib_count; ++i)
5429 ctx->inputs[radeon_llvm_reg_index_soa(idx + i, 0)] = interp;
5430
5431 }
5432
5433 static void
5434 handle_vs_inputs(struct nir_to_llvm_context *ctx,
5435 struct nir_shader *nir) {
5436 nir_foreach_variable(variable, &nir->inputs)
5437 handle_vs_input_decl(ctx, variable);
5438 }
5439
5440 static void
5441 prepare_interp_optimize(struct nir_to_llvm_context *ctx,
5442 struct nir_shader *nir)
5443 {
5444 if (!ctx->options->key.fs.multisample)
5445 return;
5446
5447 bool uses_center = false;
5448 bool uses_centroid = false;
5449 nir_foreach_variable(variable, &nir->inputs) {
5450 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
5451 variable->data.sample)
5452 continue;
5453
5454 if (variable->data.centroid)
5455 uses_centroid = true;
5456 else
5457 uses_center = true;
5458 }
5459
5460 if (uses_center && uses_centroid) {
5461 LLVMValueRef sel = LLVMBuildICmp(ctx->builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
5462 ctx->persp_centroid = LLVMBuildSelect(ctx->builder, sel, ctx->persp_center, ctx->persp_centroid, "");
5463 ctx->linear_centroid = LLVMBuildSelect(ctx->builder, sel, ctx->linear_center, ctx->linear_centroid, "");
5464 }
5465 }
5466
5467 static void
5468 handle_fs_inputs(struct nir_to_llvm_context *ctx,
5469 struct nir_shader *nir)
5470 {
5471 prepare_interp_optimize(ctx, nir);
5472
5473 nir_foreach_variable(variable, &nir->inputs)
5474 handle_fs_input_decl(ctx, variable);
5475
5476 unsigned index = 0;
5477
5478 if (ctx->shader_info->info.ps.uses_input_attachments ||
5479 ctx->shader_info->info.needs_multiview_view_index)
5480 ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
5481
5482 for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
5483 LLVMValueRef interp_param;
5484 LLVMValueRef *inputs = ctx->inputs +radeon_llvm_reg_index_soa(i, 0);
5485
5486 if (!(ctx->input_mask & (1ull << i)))
5487 continue;
5488
5489 if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
5490 i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
5491 interp_param = *inputs;
5492 interp_fs_input(ctx, index, interp_param, ctx->abi.prim_mask,
5493 inputs);
5494
5495 if (!interp_param)
5496 ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
5497 ++index;
5498 } else if (i == VARYING_SLOT_POS) {
5499 for(int i = 0; i < 3; ++i)
5500 inputs[i] = ctx->abi.frag_pos[i];
5501
5502 inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
5503 ctx->abi.frag_pos[3]);
5504 }
5505 }
5506 ctx->shader_info->fs.num_interp = index;
5507 if (ctx->input_mask & (1 << VARYING_SLOT_PNTC))
5508 ctx->shader_info->fs.has_pcoord = true;
5509 if (ctx->input_mask & (1 << VARYING_SLOT_PRIMITIVE_ID))
5510 ctx->shader_info->fs.prim_id_input = true;
5511 if (ctx->input_mask & (1 << VARYING_SLOT_LAYER))
5512 ctx->shader_info->fs.layer_input = true;
5513 ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
5514
5515 if (ctx->shader_info->info.needs_multiview_view_index)
5516 ctx->view_index = ctx->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
5517 }
5518
5519 static LLVMValueRef
5520 ac_build_alloca(struct ac_llvm_context *ac,
5521 LLVMTypeRef type,
5522 const char *name)
5523 {
5524 LLVMBuilderRef builder = ac->builder;
5525 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
5526 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
5527 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
5528 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
5529 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context);
5530 LLVMValueRef res;
5531
5532 if (first_instr) {
5533 LLVMPositionBuilderBefore(first_builder, first_instr);
5534 } else {
5535 LLVMPositionBuilderAtEnd(first_builder, first_block);
5536 }
5537
5538 res = LLVMBuildAlloca(first_builder, type, name);
5539 LLVMBuildStore(builder, LLVMConstNull(type), res);
5540
5541 LLVMDisposeBuilder(first_builder);
5542
5543 return res;
5544 }
5545
5546 static LLVMValueRef si_build_alloca_undef(struct ac_llvm_context *ac,
5547 LLVMTypeRef type,
5548 const char *name)
5549 {
5550 LLVMValueRef ptr = ac_build_alloca(ac, type, name);
5551 LLVMBuildStore(ac->builder, LLVMGetUndef(type), ptr);
5552 return ptr;
5553 }
5554
5555 static void
5556 scan_shader_output_decl(struct nir_to_llvm_context *ctx,
5557 struct nir_variable *variable,
5558 struct nir_shader *shader,
5559 gl_shader_stage stage)
5560 {
5561 int idx = variable->data.location + variable->data.index;
5562 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5563 uint64_t mask_attribs;
5564
5565 variable->data.driver_location = idx * 4;
5566
5567 /* tess ctrl has it's own load/store paths for outputs */
5568 if (stage == MESA_SHADER_TESS_CTRL)
5569 return;
5570
5571 mask_attribs = ((1ull << attrib_count) - 1) << idx;
5572 if (stage == MESA_SHADER_VERTEX ||
5573 stage == MESA_SHADER_TESS_EVAL ||
5574 stage == MESA_SHADER_GEOMETRY) {
5575 if (idx == VARYING_SLOT_CLIP_DIST0) {
5576 int length = shader->info.clip_distance_array_size +
5577 shader->info.cull_distance_array_size;
5578 if (stage == MESA_SHADER_VERTEX) {
5579 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
5580 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
5581 }
5582 if (stage == MESA_SHADER_TESS_EVAL) {
5583 ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
5584 ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
5585 }
5586
5587 if (length > 4)
5588 attrib_count = 2;
5589 else
5590 attrib_count = 1;
5591 mask_attribs = 1ull << idx;
5592 }
5593 }
5594
5595 ctx->output_mask |= mask_attribs;
5596 }
5597
5598 static void
5599 handle_shader_output_decl(struct ac_nir_context *ctx,
5600 struct nir_shader *nir,
5601 struct nir_variable *variable)
5602 {
5603 unsigned output_loc = variable->data.driver_location / 4;
5604 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5605
5606 /* tess ctrl has it's own load/store paths for outputs */
5607 if (ctx->stage == MESA_SHADER_TESS_CTRL)
5608 return;
5609
5610 if (ctx->stage == MESA_SHADER_VERTEX ||
5611 ctx->stage == MESA_SHADER_TESS_EVAL ||
5612 ctx->stage == MESA_SHADER_GEOMETRY) {
5613 int idx = variable->data.location + variable->data.index;
5614 if (idx == VARYING_SLOT_CLIP_DIST0) {
5615 int length = nir->info.clip_distance_array_size +
5616 nir->info.cull_distance_array_size;
5617
5618 if (length > 4)
5619 attrib_count = 2;
5620 else
5621 attrib_count = 1;
5622 }
5623 }
5624
5625 for (unsigned i = 0; i < attrib_count; ++i) {
5626 for (unsigned chan = 0; chan < 4; chan++) {
5627 ctx->outputs[radeon_llvm_reg_index_soa(output_loc + i, chan)] =
5628 si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
5629 }
5630 }
5631 }
5632
5633 static LLVMTypeRef
5634 glsl_base_to_llvm_type(struct nir_to_llvm_context *ctx,
5635 enum glsl_base_type type)
5636 {
5637 switch (type) {
5638 case GLSL_TYPE_INT:
5639 case GLSL_TYPE_UINT:
5640 case GLSL_TYPE_BOOL:
5641 case GLSL_TYPE_SUBROUTINE:
5642 return ctx->ac.i32;
5643 case GLSL_TYPE_FLOAT: /* TODO handle mediump */
5644 return ctx->ac.f32;
5645 case GLSL_TYPE_INT64:
5646 case GLSL_TYPE_UINT64:
5647 return ctx->ac.i64;
5648 case GLSL_TYPE_DOUBLE:
5649 return ctx->ac.f64;
5650 default:
5651 unreachable("unknown GLSL type");
5652 }
5653 }
5654
5655 static LLVMTypeRef
5656 glsl_to_llvm_type(struct nir_to_llvm_context *ctx,
5657 const struct glsl_type *type)
5658 {
5659 if (glsl_type_is_scalar(type)) {
5660 return glsl_base_to_llvm_type(ctx, glsl_get_base_type(type));
5661 }
5662
5663 if (glsl_type_is_vector(type)) {
5664 return LLVMVectorType(
5665 glsl_base_to_llvm_type(ctx, glsl_get_base_type(type)),
5666 glsl_get_vector_elements(type));
5667 }
5668
5669 if (glsl_type_is_matrix(type)) {
5670 return LLVMArrayType(
5671 glsl_to_llvm_type(ctx, glsl_get_column_type(type)),
5672 glsl_get_matrix_columns(type));
5673 }
5674
5675 if (glsl_type_is_array(type)) {
5676 return LLVMArrayType(
5677 glsl_to_llvm_type(ctx, glsl_get_array_element(type)),
5678 glsl_get_length(type));
5679 }
5680
5681 assert(glsl_type_is_struct(type));
5682
5683 LLVMTypeRef member_types[glsl_get_length(type)];
5684
5685 for (unsigned i = 0; i < glsl_get_length(type); i++) {
5686 member_types[i] =
5687 glsl_to_llvm_type(ctx,
5688 glsl_get_struct_field(type, i));
5689 }
5690
5691 return LLVMStructTypeInContext(ctx->context, member_types,
5692 glsl_get_length(type), false);
5693 }
5694
5695 static void
5696 setup_locals(struct ac_nir_context *ctx,
5697 struct nir_function *func)
5698 {
5699 int i, j;
5700 ctx->num_locals = 0;
5701 nir_foreach_variable(variable, &func->impl->locals) {
5702 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
5703 variable->data.driver_location = ctx->num_locals * 4;
5704 variable->data.location_frac = 0;
5705 ctx->num_locals += attrib_count;
5706 }
5707 ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef));
5708 if (!ctx->locals)
5709 return;
5710
5711 for (i = 0; i < ctx->num_locals; i++) {
5712 for (j = 0; j < 4; j++) {
5713 ctx->locals[i * 4 + j] =
5714 si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "temp");
5715 }
5716 }
5717 }
5718
5719 static void
5720 setup_shared(struct ac_nir_context *ctx,
5721 struct nir_shader *nir)
5722 {
5723 nir_foreach_variable(variable, &nir->shared) {
5724 LLVMValueRef shared =
5725 LLVMAddGlobalInAddressSpace(
5726 ctx->ac.module, glsl_to_llvm_type(ctx->nctx, variable->type),
5727 variable->name ? variable->name : "",
5728 AC_LOCAL_ADDR_SPACE);
5729 _mesa_hash_table_insert(ctx->vars, variable, shared);
5730 }
5731 }
5732
5733 static LLVMValueRef
5734 emit_float_saturate(struct ac_llvm_context *ctx, LLVMValueRef v, float lo, float hi)
5735 {
5736 v = ac_to_float(ctx, v);
5737 v = emit_intrin_2f_param(ctx, "llvm.maxnum", ctx->f32, v, LLVMConstReal(ctx->f32, lo));
5738 return emit_intrin_2f_param(ctx, "llvm.minnum", ctx->f32, v, LLVMConstReal(ctx->f32, hi));
5739 }
5740
5741
5742 static LLVMValueRef emit_pack_int16(struct nir_to_llvm_context *ctx,
5743 LLVMValueRef src0, LLVMValueRef src1)
5744 {
5745 LLVMValueRef const16 = LLVMConstInt(ctx->ac.i32, 16, false);
5746 LLVMValueRef comp[2];
5747
5748 comp[0] = LLVMBuildAnd(ctx->builder, src0, LLVMConstInt(ctx->ac.i32, 65535, 0), "");
5749 comp[1] = LLVMBuildAnd(ctx->builder, src1, LLVMConstInt(ctx->ac.i32, 65535, 0), "");
5750 comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, "");
5751 return LLVMBuildOr(ctx->builder, comp[0], comp[1], "");
5752 }
5753
5754 /* Initialize arguments for the shader export intrinsic */
5755 static void
5756 si_llvm_init_export_args(struct nir_to_llvm_context *ctx,
5757 LLVMValueRef *values,
5758 unsigned target,
5759 struct ac_export_args *args)
5760 {
5761 /* Default is 0xf. Adjusted below depending on the format. */
5762 args->enabled_channels = 0xf;
5763
5764 /* Specify whether the EXEC mask represents the valid mask */
5765 args->valid_mask = 0;
5766
5767 /* Specify whether this is the last export */
5768 args->done = 0;
5769
5770 /* Specify the target we are exporting */
5771 args->target = target;
5772
5773 args->compr = false;
5774 args->out[0] = LLVMGetUndef(ctx->ac.f32);
5775 args->out[1] = LLVMGetUndef(ctx->ac.f32);
5776 args->out[2] = LLVMGetUndef(ctx->ac.f32);
5777 args->out[3] = LLVMGetUndef(ctx->ac.f32);
5778
5779 if (!values)
5780 return;
5781
5782 if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) {
5783 LLVMValueRef val[4];
5784 unsigned index = target - V_008DFC_SQ_EXP_MRT;
5785 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
5786 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
5787 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
5788
5789 switch(col_format) {
5790 case V_028714_SPI_SHADER_ZERO:
5791 args->enabled_channels = 0; /* writemask */
5792 args->target = V_008DFC_SQ_EXP_NULL;
5793 break;
5794
5795 case V_028714_SPI_SHADER_32_R:
5796 args->enabled_channels = 1;
5797 args->out[0] = values[0];
5798 break;
5799
5800 case V_028714_SPI_SHADER_32_GR:
5801 args->enabled_channels = 0x3;
5802 args->out[0] = values[0];
5803 args->out[1] = values[1];
5804 break;
5805
5806 case V_028714_SPI_SHADER_32_AR:
5807 args->enabled_channels = 0x9;
5808 args->out[0] = values[0];
5809 args->out[3] = values[3];
5810 break;
5811
5812 case V_028714_SPI_SHADER_FP16_ABGR:
5813 args->compr = 1;
5814
5815 for (unsigned chan = 0; chan < 2; chan++) {
5816 LLVMValueRef pack_args[2] = {
5817 values[2 * chan],
5818 values[2 * chan + 1]
5819 };
5820 LLVMValueRef packed;
5821
5822 packed = ac_build_cvt_pkrtz_f16(&ctx->ac, pack_args);
5823 args->out[chan] = packed;
5824 }
5825 break;
5826
5827 case V_028714_SPI_SHADER_UNORM16_ABGR:
5828 for (unsigned chan = 0; chan < 4; chan++) {
5829 val[chan] = ac_build_clamp(&ctx->ac, values[chan]);
5830 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
5831 LLVMConstReal(ctx->ac.f32, 65535), "");
5832 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
5833 LLVMConstReal(ctx->ac.f32, 0.5), "");
5834 val[chan] = LLVMBuildFPToUI(ctx->builder, val[chan],
5835 ctx->ac.i32, "");
5836 }
5837
5838 args->compr = 1;
5839 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5840 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5841 break;
5842
5843 case V_028714_SPI_SHADER_SNORM16_ABGR:
5844 for (unsigned chan = 0; chan < 4; chan++) {
5845 val[chan] = emit_float_saturate(&ctx->ac, values[chan], -1, 1);
5846 val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
5847 LLVMConstReal(ctx->ac.f32, 32767), "");
5848
5849 /* If positive, add 0.5, else add -0.5. */
5850 val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
5851 LLVMBuildSelect(ctx->builder,
5852 LLVMBuildFCmp(ctx->builder, LLVMRealOGE,
5853 val[chan], ctx->ac.f32_0, ""),
5854 LLVMConstReal(ctx->ac.f32, 0.5),
5855 LLVMConstReal(ctx->ac.f32, -0.5), ""), "");
5856 val[chan] = LLVMBuildFPToSI(ctx->builder, val[chan], ctx->ac.i32, "");
5857 }
5858
5859 args->compr = 1;
5860 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5861 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5862 break;
5863
5864 case V_028714_SPI_SHADER_UINT16_ABGR: {
5865 LLVMValueRef max_rgb = LLVMConstInt(ctx->ac.i32,
5866 is_int8 ? 255 : is_int10 ? 1023 : 65535, 0);
5867 LLVMValueRef max_alpha = !is_int10 ? max_rgb : LLVMConstInt(ctx->ac.i32, 3, 0);
5868
5869 for (unsigned chan = 0; chan < 4; chan++) {
5870 val[chan] = ac_to_integer(&ctx->ac, values[chan]);
5871 val[chan] = emit_minmax_int(&ctx->ac, LLVMIntULT, val[chan], chan == 3 ? max_alpha : max_rgb);
5872 }
5873
5874 args->compr = 1;
5875 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5876 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5877 break;
5878 }
5879
5880 case V_028714_SPI_SHADER_SINT16_ABGR: {
5881 LLVMValueRef max_rgb = LLVMConstInt(ctx->ac.i32,
5882 is_int8 ? 127 : is_int10 ? 511 : 32767, 0);
5883 LLVMValueRef min_rgb = LLVMConstInt(ctx->ac.i32,
5884 is_int8 ? -128 : is_int10 ? -512 : -32768, 0);
5885 LLVMValueRef max_alpha = !is_int10 ? max_rgb : ctx->ac.i32_1;
5886 LLVMValueRef min_alpha = !is_int10 ? min_rgb : LLVMConstInt(ctx->ac.i32, -2, 0);
5887
5888 /* Clamp. */
5889 for (unsigned chan = 0; chan < 4; chan++) {
5890 val[chan] = ac_to_integer(&ctx->ac, values[chan]);
5891 val[chan] = emit_minmax_int(&ctx->ac, LLVMIntSLT, val[chan], chan == 3 ? max_alpha : max_rgb);
5892 val[chan] = emit_minmax_int(&ctx->ac, LLVMIntSGT, val[chan], chan == 3 ? min_alpha : min_rgb);
5893 }
5894
5895 args->compr = 1;
5896 args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
5897 args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
5898 break;
5899 }
5900
5901 default:
5902 case V_028714_SPI_SHADER_32_ABGR:
5903 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
5904 break;
5905 }
5906 } else
5907 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
5908
5909 for (unsigned i = 0; i < 4; ++i)
5910 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
5911 }
5912
5913 static void
5914 handle_vs_outputs_post(struct nir_to_llvm_context *ctx,
5915 bool export_prim_id,
5916 struct ac_vs_output_info *outinfo)
5917 {
5918 uint32_t param_count = 0;
5919 unsigned target;
5920 unsigned pos_idx, num_pos_exports = 0;
5921 struct ac_export_args args, pos_args[4] = {};
5922 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
5923 int i;
5924
5925 if (ctx->options->key.has_multiview_view_index) {
5926 LLVMValueRef* tmp_out = &ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
5927 if(!*tmp_out) {
5928 for(unsigned i = 0; i < 4; ++i)
5929 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
5930 si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
5931 }
5932
5933 LLVMBuildStore(ctx->builder, ac_to_float(&ctx->ac, ctx->view_index), *tmp_out);
5934 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
5935 }
5936
5937 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
5938 sizeof(outinfo->vs_output_param_offset));
5939
5940 if (ctx->output_mask & (1ull << VARYING_SLOT_CLIP_DIST0)) {
5941 LLVMValueRef slots[8];
5942 unsigned j;
5943
5944 if (outinfo->cull_dist_mask)
5945 outinfo->cull_dist_mask <<= ctx->num_output_clips;
5946
5947 i = VARYING_SLOT_CLIP_DIST0;
5948 for (j = 0; j < ctx->num_output_clips + ctx->num_output_culls; j++)
5949 slots[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
5950 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
5951
5952 for (i = ctx->num_output_clips + ctx->num_output_culls; i < 8; i++)
5953 slots[i] = LLVMGetUndef(ctx->ac.f32);
5954
5955 if (ctx->num_output_clips + ctx->num_output_culls > 4) {
5956 target = V_008DFC_SQ_EXP_POS + 3;
5957 si_llvm_init_export_args(ctx, &slots[4], target, &args);
5958 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
5959 &args, sizeof(args));
5960 }
5961
5962 target = V_008DFC_SQ_EXP_POS + 2;
5963 si_llvm_init_export_args(ctx, &slots[0], target, &args);
5964 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
5965 &args, sizeof(args));
5966
5967 }
5968
5969 LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
5970 if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
5971 for (unsigned j = 0; j < 4; j++)
5972 pos_values[j] = LLVMBuildLoad(ctx->builder,
5973 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_POS, j)], "");
5974 }
5975 si_llvm_init_export_args(ctx, pos_values, V_008DFC_SQ_EXP_POS, &pos_args[0]);
5976
5977 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
5978 outinfo->writes_pointsize = true;
5979 psize_value = LLVMBuildLoad(ctx->builder,
5980 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_PSIZ, 0)], "");
5981 }
5982
5983 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
5984 outinfo->writes_layer = true;
5985 layer_value = LLVMBuildLoad(ctx->builder,
5986 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)], "");
5987 }
5988
5989 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
5990 outinfo->writes_viewport_index = true;
5991 viewport_index_value = LLVMBuildLoad(ctx->builder,
5992 ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_VIEWPORT, 0)], "");
5993 }
5994
5995 if (outinfo->writes_pointsize ||
5996 outinfo->writes_layer ||
5997 outinfo->writes_viewport_index) {
5998 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
5999 (outinfo->writes_layer == true ? 4 : 0));
6000 pos_args[1].valid_mask = 0;
6001 pos_args[1].done = 0;
6002 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
6003 pos_args[1].compr = 0;
6004 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
6005 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
6006 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
6007 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
6008
6009 if (outinfo->writes_pointsize == true)
6010 pos_args[1].out[0] = psize_value;
6011 if (outinfo->writes_layer == true)
6012 pos_args[1].out[2] = layer_value;
6013 if (outinfo->writes_viewport_index == true) {
6014 if (ctx->options->chip_class >= GFX9) {
6015 /* GFX9 has the layer in out.z[10:0] and the viewport
6016 * index in out.z[19:16].
6017 */
6018 LLVMValueRef v = viewport_index_value;
6019 v = ac_to_integer(&ctx->ac, v);
6020 v = LLVMBuildShl(ctx->builder, v,
6021 LLVMConstInt(ctx->ac.i32, 16, false),
6022 "");
6023 v = LLVMBuildOr(ctx->builder, v,
6024 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
6025
6026 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
6027 pos_args[1].enabled_channels |= 1 << 2;
6028 } else {
6029 pos_args[1].out[3] = viewport_index_value;
6030 pos_args[1].enabled_channels |= 1 << 3;
6031 }
6032 }
6033 }
6034 for (i = 0; i < 4; i++) {
6035 if (pos_args[i].out[0])
6036 num_pos_exports++;
6037 }
6038
6039 pos_idx = 0;
6040 for (i = 0; i < 4; i++) {
6041 if (!pos_args[i].out[0])
6042 continue;
6043
6044 /* Specify the target we are exporting */
6045 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
6046 if (pos_idx == num_pos_exports)
6047 pos_args[i].done = 1;
6048 ac_build_export(&ctx->ac, &pos_args[i]);
6049 }
6050
6051 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6052 LLVMValueRef values[4];
6053 if (!(ctx->output_mask & (1ull << i)))
6054 continue;
6055
6056 for (unsigned j = 0; j < 4; j++)
6057 values[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6058 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
6059
6060 if (i == VARYING_SLOT_LAYER) {
6061 target = V_008DFC_SQ_EXP_PARAM + param_count;
6062 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count;
6063 param_count++;
6064 } else if (i == VARYING_SLOT_PRIMITIVE_ID) {
6065 target = V_008DFC_SQ_EXP_PARAM + param_count;
6066 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count;
6067 param_count++;
6068 } else if (i >= VARYING_SLOT_VAR0) {
6069 outinfo->export_mask |= 1u << (i - VARYING_SLOT_VAR0);
6070 target = V_008DFC_SQ_EXP_PARAM + param_count;
6071 outinfo->vs_output_param_offset[i] = param_count;
6072 param_count++;
6073 } else
6074 continue;
6075
6076 si_llvm_init_export_args(ctx, values, target, &args);
6077
6078 if (target >= V_008DFC_SQ_EXP_POS &&
6079 target <= (V_008DFC_SQ_EXP_POS + 3)) {
6080 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
6081 &args, sizeof(args));
6082 } else {
6083 ac_build_export(&ctx->ac, &args);
6084 }
6085 }
6086
6087 if (export_prim_id) {
6088 LLVMValueRef values[4];
6089 target = V_008DFC_SQ_EXP_PARAM + param_count;
6090 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count;
6091 param_count++;
6092
6093 values[0] = ctx->vs_prim_id;
6094 ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2,
6095 ctx->shader_info->vs.vgpr_comp_cnt);
6096 for (unsigned j = 1; j < 4; j++)
6097 values[j] = ctx->ac.f32_0;
6098 si_llvm_init_export_args(ctx, values, target, &args);
6099 ac_build_export(&ctx->ac, &args);
6100 outinfo->export_prim_id = true;
6101 }
6102
6103 outinfo->pos_exports = num_pos_exports;
6104 outinfo->param_exports = param_count;
6105 }
6106
6107 static void
6108 handle_es_outputs_post(struct nir_to_llvm_context *ctx,
6109 struct ac_es_output_info *outinfo)
6110 {
6111 int j;
6112 uint64_t max_output_written = 0;
6113 LLVMValueRef lds_base = NULL;
6114
6115 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6116 int param_index;
6117 int length = 4;
6118
6119 if (!(ctx->output_mask & (1ull << i)))
6120 continue;
6121
6122 if (i == VARYING_SLOT_CLIP_DIST0)
6123 length = ctx->num_output_clips + ctx->num_output_culls;
6124
6125 param_index = shader_io_get_unique_index(i);
6126
6127 max_output_written = MAX2(param_index + (length > 4), max_output_written);
6128 }
6129
6130 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
6131
6132 if (ctx->ac.chip_class >= GFX9) {
6133 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
6134 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
6135 LLVMValueRef wave_idx = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
6136 LLVMConstInt(ctx->ac.i32, 24, false),
6137 LLVMConstInt(ctx->ac.i32, 4, false), false);
6138 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
6139 LLVMBuildMul(ctx->ac.builder, wave_idx,
6140 LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
6141 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
6142 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
6143 }
6144
6145 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6146 LLVMValueRef dw_addr;
6147 LLVMValueRef *out_ptr = &ctx->nir->outputs[i * 4];
6148 int param_index;
6149 int length = 4;
6150
6151 if (!(ctx->output_mask & (1ull << i)))
6152 continue;
6153
6154 if (i == VARYING_SLOT_CLIP_DIST0)
6155 length = ctx->num_output_clips + ctx->num_output_culls;
6156
6157 param_index = shader_io_get_unique_index(i);
6158
6159 if (lds_base) {
6160 dw_addr = LLVMBuildAdd(ctx->builder, lds_base,
6161 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
6162 "");
6163 }
6164 for (j = 0; j < length; j++) {
6165 LLVMValueRef out_val = LLVMBuildLoad(ctx->builder, out_ptr[j], "");
6166 out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->ac.i32, "");
6167
6168 if (ctx->ac.chip_class >= GFX9) {
6169 ac_lds_store(&ctx->ac, dw_addr,
6170 LLVMBuildLoad(ctx->builder, out_ptr[j], ""));
6171 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->ac.i32_1, "");
6172 } else {
6173 ac_build_buffer_store_dword(&ctx->ac,
6174 ctx->esgs_ring,
6175 out_val, 1,
6176 NULL, ctx->es2gs_offset,
6177 (4 * param_index + j) * 4,
6178 1, 1, true, true);
6179 }
6180 }
6181 }
6182 }
6183
6184 static void
6185 handle_ls_outputs_post(struct nir_to_llvm_context *ctx)
6186 {
6187 LLVMValueRef vertex_id = ctx->rel_auto_id;
6188 LLVMValueRef vertex_dw_stride = unpack_param(&ctx->ac, ctx->ls_out_layout, 13, 8);
6189 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->builder, vertex_id,
6190 vertex_dw_stride, "");
6191
6192 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6193 LLVMValueRef *out_ptr = &ctx->nir->outputs[i * 4];
6194 int length = 4;
6195
6196 if (!(ctx->output_mask & (1ull << i)))
6197 continue;
6198
6199 if (i == VARYING_SLOT_CLIP_DIST0)
6200 length = ctx->num_output_clips + ctx->num_output_culls;
6201 int param = shader_io_get_unique_index(i);
6202 mark_tess_output(ctx, false, param);
6203 if (length > 4)
6204 mark_tess_output(ctx, false, param + 1);
6205 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->builder, base_dw_addr,
6206 LLVMConstInt(ctx->ac.i32, param * 4, false),
6207 "");
6208 for (unsigned j = 0; j < length; j++) {
6209 ac_lds_store(&ctx->ac, dw_addr,
6210 LLVMBuildLoad(ctx->builder, out_ptr[j], ""));
6211 dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->ac.i32_1, "");
6212 }
6213 }
6214 }
6215
6216 struct ac_build_if_state
6217 {
6218 struct nir_to_llvm_context *ctx;
6219 LLVMValueRef condition;
6220 LLVMBasicBlockRef entry_block;
6221 LLVMBasicBlockRef true_block;
6222 LLVMBasicBlockRef false_block;
6223 LLVMBasicBlockRef merge_block;
6224 };
6225
6226 static LLVMBasicBlockRef
6227 ac_build_insert_new_block(struct nir_to_llvm_context *ctx, const char *name)
6228 {
6229 LLVMBasicBlockRef current_block;
6230 LLVMBasicBlockRef next_block;
6231 LLVMBasicBlockRef new_block;
6232
6233 /* get current basic block */
6234 current_block = LLVMGetInsertBlock(ctx->builder);
6235
6236 /* chqeck if there's another block after this one */
6237 next_block = LLVMGetNextBasicBlock(current_block);
6238 if (next_block) {
6239 /* insert the new block before the next block */
6240 new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
6241 }
6242 else {
6243 /* append new block after current block */
6244 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
6245 new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
6246 }
6247 return new_block;
6248 }
6249
6250 static void
6251 ac_nir_build_if(struct ac_build_if_state *ifthen,
6252 struct nir_to_llvm_context *ctx,
6253 LLVMValueRef condition)
6254 {
6255 LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->builder);
6256
6257 memset(ifthen, 0, sizeof *ifthen);
6258 ifthen->ctx = ctx;
6259 ifthen->condition = condition;
6260 ifthen->entry_block = block;
6261
6262 /* create endif/merge basic block for the phi functions */
6263 ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
6264
6265 /* create/insert true_block before merge_block */
6266 ifthen->true_block =
6267 LLVMInsertBasicBlockInContext(ctx->context,
6268 ifthen->merge_block,
6269 "if-true-block");
6270
6271 /* successive code goes into the true block */
6272 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->true_block);
6273 }
6274
6275 /**
6276 * End a conditional.
6277 */
6278 static void
6279 ac_nir_build_endif(struct ac_build_if_state *ifthen)
6280 {
6281 LLVMBuilderRef builder = ifthen->ctx->builder;
6282
6283 /* Insert branch to the merge block from current block */
6284 LLVMBuildBr(builder, ifthen->merge_block);
6285
6286 /*
6287 * Now patch in the various branch instructions.
6288 */
6289
6290 /* Insert the conditional branch instruction at the end of entry_block */
6291 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
6292 if (ifthen->false_block) {
6293 /* we have an else clause */
6294 LLVMBuildCondBr(builder, ifthen->condition,
6295 ifthen->true_block, ifthen->false_block);
6296 }
6297 else {
6298 /* no else clause */
6299 LLVMBuildCondBr(builder, ifthen->condition,
6300 ifthen->true_block, ifthen->merge_block);
6301 }
6302
6303 /* Resume building code at end of the ifthen->merge_block */
6304 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
6305 }
6306
6307 static void
6308 write_tess_factors(struct nir_to_llvm_context *ctx)
6309 {
6310 unsigned stride, outer_comps, inner_comps;
6311 struct ac_build_if_state if_ctx, inner_if_ctx;
6312 LLVMValueRef invocation_id = unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
6313 LLVMValueRef rel_patch_id = unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
6314 unsigned tess_inner_index, tess_outer_index;
6315 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
6316 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
6317 int i;
6318 emit_barrier(&ctx->ac, ctx->stage);
6319
6320 switch (ctx->options->key.tcs.primitive_mode) {
6321 case GL_ISOLINES:
6322 stride = 2;
6323 outer_comps = 2;
6324 inner_comps = 0;
6325 break;
6326 case GL_TRIANGLES:
6327 stride = 4;
6328 outer_comps = 3;
6329 inner_comps = 1;
6330 break;
6331 case GL_QUADS:
6332 stride = 6;
6333 outer_comps = 4;
6334 inner_comps = 2;
6335 break;
6336 default:
6337 return;
6338 }
6339
6340 ac_nir_build_if(&if_ctx, ctx,
6341 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
6342 invocation_id, ctx->ac.i32_0, ""));
6343
6344 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
6345 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
6346
6347 mark_tess_output(ctx, true, tess_inner_index);
6348 mark_tess_output(ctx, true, tess_outer_index);
6349 lds_base = get_tcs_out_current_patch_data_offset(ctx);
6350 lds_inner = LLVMBuildAdd(ctx->builder, lds_base,
6351 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
6352 lds_outer = LLVMBuildAdd(ctx->builder, lds_base,
6353 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
6354
6355 for (i = 0; i < 4; i++) {
6356 inner[i] = LLVMGetUndef(ctx->ac.i32);
6357 outer[i] = LLVMGetUndef(ctx->ac.i32);
6358 }
6359
6360 // LINES reverseal
6361 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
6362 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
6363 lds_outer = LLVMBuildAdd(ctx->builder, lds_outer,
6364 ctx->ac.i32_1, "");
6365 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
6366 } else {
6367 for (i = 0; i < outer_comps; i++) {
6368 outer[i] = out[i] =
6369 ac_lds_load(&ctx->ac, lds_outer);
6370 lds_outer = LLVMBuildAdd(ctx->builder, lds_outer,
6371 ctx->ac.i32_1, "");
6372 }
6373 for (i = 0; i < inner_comps; i++) {
6374 inner[i] = out[outer_comps+i] =
6375 ac_lds_load(&ctx->ac, lds_inner);
6376 lds_inner = LLVMBuildAdd(ctx->builder, lds_inner,
6377 ctx->ac.i32_1, "");
6378 }
6379 }
6380
6381 /* Convert the outputs to vectors for stores. */
6382 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
6383 vec1 = NULL;
6384
6385 if (stride > 4)
6386 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
6387
6388
6389 buffer = ctx->hs_ring_tess_factor;
6390 tf_base = ctx->tess_factor_offset;
6391 byteoffset = LLVMBuildMul(ctx->builder, rel_patch_id,
6392 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
6393 unsigned tf_offset = 0;
6394
6395 if (ctx->options->chip_class <= VI) {
6396 ac_nir_build_if(&inner_if_ctx, ctx,
6397 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
6398 rel_patch_id, ctx->ac.i32_0, ""));
6399
6400 /* Store the dynamic HS control word. */
6401 ac_build_buffer_store_dword(&ctx->ac, buffer,
6402 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
6403 1, ctx->ac.i32_0, tf_base,
6404 0, 1, 0, true, false);
6405 tf_offset += 4;
6406
6407 ac_nir_build_endif(&inner_if_ctx);
6408 }
6409
6410 /* Store the tessellation factors. */
6411 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
6412 MIN2(stride, 4), byteoffset, tf_base,
6413 tf_offset, 1, 0, true, false);
6414 if (vec1)
6415 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
6416 stride - 4, byteoffset, tf_base,
6417 16 + tf_offset, 1, 0, true, false);
6418
6419 //store to offchip for TES to read - only if TES reads them
6420 if (ctx->options->key.tcs.tes_reads_tess_factors) {
6421 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
6422 LLVMValueRef tf_inner_offset;
6423 unsigned param_outer, param_inner;
6424
6425 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
6426 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
6427 LLVMConstInt(ctx->ac.i32, param_outer, 0));
6428
6429 outer_vec = ac_build_gather_values(&ctx->ac, outer,
6430 util_next_power_of_two(outer_comps));
6431
6432 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
6433 outer_comps, tf_outer_offset,
6434 ctx->oc_lds, 0, 1, 0, true, false);
6435 if (inner_comps) {
6436 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
6437 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
6438 LLVMConstInt(ctx->ac.i32, param_inner, 0));
6439
6440 inner_vec = inner_comps == 1 ? inner[0] :
6441 ac_build_gather_values(&ctx->ac, inner, inner_comps);
6442 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
6443 inner_comps, tf_inner_offset,
6444 ctx->oc_lds, 0, 1, 0, true, false);
6445 }
6446 }
6447 ac_nir_build_endif(&if_ctx);
6448 }
6449
6450 static void
6451 handle_tcs_outputs_post(struct nir_to_llvm_context *ctx)
6452 {
6453 write_tess_factors(ctx);
6454 }
6455
6456 static bool
6457 si_export_mrt_color(struct nir_to_llvm_context *ctx,
6458 LLVMValueRef *color, unsigned param, bool is_last,
6459 struct ac_export_args *args)
6460 {
6461 /* Export */
6462 si_llvm_init_export_args(ctx, color, param,
6463 args);
6464
6465 if (is_last) {
6466 args->valid_mask = 1; /* whether the EXEC mask is valid */
6467 args->done = 1; /* DONE bit */
6468 } else if (!args->enabled_channels)
6469 return false; /* unnecessary NULL export */
6470
6471 return true;
6472 }
6473
6474 static void
6475 radv_export_mrt_z(struct nir_to_llvm_context *ctx,
6476 LLVMValueRef depth, LLVMValueRef stencil,
6477 LLVMValueRef samplemask)
6478 {
6479 struct ac_export_args args;
6480
6481 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
6482
6483 ac_build_export(&ctx->ac, &args);
6484 }
6485
6486 static void
6487 handle_fs_outputs_post(struct nir_to_llvm_context *ctx)
6488 {
6489 unsigned index = 0;
6490 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
6491 struct ac_export_args color_args[8];
6492
6493 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
6494 LLVMValueRef values[4];
6495
6496 if (!(ctx->output_mask & (1ull << i)))
6497 continue;
6498
6499 if (i == FRAG_RESULT_DEPTH) {
6500 ctx->shader_info->fs.writes_z = true;
6501 depth = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6502 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
6503 } else if (i == FRAG_RESULT_STENCIL) {
6504 ctx->shader_info->fs.writes_stencil = true;
6505 stencil = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6506 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
6507 } else if (i == FRAG_RESULT_SAMPLE_MASK) {
6508 ctx->shader_info->fs.writes_sample_mask = true;
6509 samplemask = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6510 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
6511 } else {
6512 bool last = false;
6513 for (unsigned j = 0; j < 4; j++)
6514 values[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
6515 ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
6516
6517 if (!ctx->shader_info->fs.writes_z && !ctx->shader_info->fs.writes_stencil && !ctx->shader_info->fs.writes_sample_mask)
6518 last = ctx->output_mask <= ((1ull << (i + 1)) - 1);
6519
6520 bool ret = si_export_mrt_color(ctx, values, V_008DFC_SQ_EXP_MRT + (i - FRAG_RESULT_DATA0), last, &color_args[index]);
6521 if (ret)
6522 index++;
6523 }
6524 }
6525
6526 for (unsigned i = 0; i < index; i++)
6527 ac_build_export(&ctx->ac, &color_args[i]);
6528 if (depth || stencil || samplemask)
6529 radv_export_mrt_z(ctx, depth, stencil, samplemask);
6530 else if (!index) {
6531 si_export_mrt_color(ctx, NULL, V_008DFC_SQ_EXP_NULL, true, &color_args[0]);
6532 ac_build_export(&ctx->ac, &color_args[0]);
6533 }
6534 }
6535
6536 static void
6537 emit_gs_epilogue(struct nir_to_llvm_context *ctx)
6538 {
6539 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
6540 }
6541
6542 static void
6543 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
6544 LLVMValueRef *addrs)
6545 {
6546 struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
6547
6548 switch (ctx->stage) {
6549 case MESA_SHADER_VERTEX:
6550 if (ctx->options->key.vs.as_ls)
6551 handle_ls_outputs_post(ctx);
6552 else if (ctx->options->key.vs.as_es)
6553 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
6554 else
6555 handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
6556 &ctx->shader_info->vs.outinfo);
6557 break;
6558 case MESA_SHADER_FRAGMENT:
6559 handle_fs_outputs_post(ctx);
6560 break;
6561 case MESA_SHADER_GEOMETRY:
6562 emit_gs_epilogue(ctx);
6563 break;
6564 case MESA_SHADER_TESS_CTRL:
6565 handle_tcs_outputs_post(ctx);
6566 break;
6567 case MESA_SHADER_TESS_EVAL:
6568 if (ctx->options->key.tes.as_es)
6569 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
6570 else
6571 handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
6572 &ctx->shader_info->tes.outinfo);
6573 break;
6574 default:
6575 break;
6576 }
6577 }
6578
6579 static void ac_llvm_finalize_module(struct nir_to_llvm_context * ctx)
6580 {
6581 LLVMPassManagerRef passmgr;
6582 /* Create the pass manager */
6583 passmgr = LLVMCreateFunctionPassManagerForModule(
6584 ctx->module);
6585
6586 /* This pass should eliminate all the load and store instructions */
6587 LLVMAddPromoteMemoryToRegisterPass(passmgr);
6588
6589 /* Add some optimization passes */
6590 LLVMAddScalarReplAggregatesPass(passmgr);
6591 LLVMAddLICMPass(passmgr);
6592 LLVMAddAggressiveDCEPass(passmgr);
6593 LLVMAddCFGSimplificationPass(passmgr);
6594 LLVMAddInstructionCombiningPass(passmgr);
6595
6596 /* Run the pass */
6597 LLVMInitializeFunctionPassManager(passmgr);
6598 LLVMRunFunctionPassManager(passmgr, ctx->main_function);
6599 LLVMFinalizeFunctionPassManager(passmgr);
6600
6601 LLVMDisposeBuilder(ctx->builder);
6602 LLVMDisposePassManager(passmgr);
6603 }
6604
6605 static void
6606 ac_nir_eliminate_const_vs_outputs(struct nir_to_llvm_context *ctx)
6607 {
6608 struct ac_vs_output_info *outinfo;
6609
6610 switch (ctx->stage) {
6611 case MESA_SHADER_FRAGMENT:
6612 case MESA_SHADER_COMPUTE:
6613 case MESA_SHADER_TESS_CTRL:
6614 case MESA_SHADER_GEOMETRY:
6615 return;
6616 case MESA_SHADER_VERTEX:
6617 if (ctx->options->key.vs.as_ls ||
6618 ctx->options->key.vs.as_es)
6619 return;
6620 outinfo = &ctx->shader_info->vs.outinfo;
6621 break;
6622 case MESA_SHADER_TESS_EVAL:
6623 if (ctx->options->key.vs.as_es)
6624 return;
6625 outinfo = &ctx->shader_info->tes.outinfo;
6626 break;
6627 default:
6628 unreachable("Unhandled shader type");
6629 }
6630
6631 ac_optimize_vs_outputs(&ctx->ac,
6632 ctx->main_function,
6633 outinfo->vs_output_param_offset,
6634 VARYING_SLOT_MAX,
6635 &outinfo->param_exports);
6636 }
6637
6638 static void
6639 ac_setup_rings(struct nir_to_llvm_context *ctx)
6640 {
6641 if ((ctx->stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_es) ||
6642 (ctx->stage == MESA_SHADER_TESS_EVAL && ctx->options->key.tes.as_es)) {
6643 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_VS, false));
6644 }
6645
6646 if (ctx->is_gs_copy_shader) {
6647 ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_VS, false));
6648 }
6649 if (ctx->stage == MESA_SHADER_GEOMETRY) {
6650 LLVMValueRef tmp;
6651 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_GS, false));
6652 ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_GS, false));
6653
6654 ctx->gsvs_ring = LLVMBuildBitCast(ctx->builder, ctx->gsvs_ring, ctx->ac.v4i32, "");
6655
6656 ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, ctx->gsvs_num_entries, LLVMConstInt(ctx->ac.i32, 2, false), "");
6657 tmp = LLVMBuildExtractElement(ctx->builder, ctx->gsvs_ring, ctx->ac.i32_1, "");
6658 tmp = LLVMBuildOr(ctx->builder, tmp, ctx->gsvs_ring_stride, "");
6659 ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, tmp, ctx->ac.i32_1, "");
6660 }
6661
6662 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
6663 ctx->stage == MESA_SHADER_TESS_EVAL) {
6664 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
6665 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
6666 }
6667 }
6668
6669 static unsigned
6670 ac_nir_get_max_workgroup_size(enum chip_class chip_class,
6671 const struct nir_shader *nir)
6672 {
6673 switch (nir->info.stage) {
6674 case MESA_SHADER_TESS_CTRL:
6675 return chip_class >= CIK ? 128 : 64;
6676 case MESA_SHADER_GEOMETRY:
6677 return chip_class >= GFX9 ? 128 : 64;
6678 case MESA_SHADER_COMPUTE:
6679 break;
6680 default:
6681 return 0;
6682 }
6683
6684 unsigned max_workgroup_size = nir->info.cs.local_size[0] *
6685 nir->info.cs.local_size[1] *
6686 nir->info.cs.local_size[2];
6687 return max_workgroup_size;
6688 }
6689
6690 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
6691 static void ac_nir_fixup_ls_hs_input_vgprs(struct nir_to_llvm_context *ctx)
6692 {
6693 LLVMValueRef count = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
6694 LLVMConstInt(ctx->ac.i32, 8, false),
6695 LLVMConstInt(ctx->ac.i32, 8, false), false);
6696 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
6697 ctx->ac.i32_0, "");
6698 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
6699 ctx->vs_prim_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.vertex_id, ctx->vs_prim_id, "");
6700 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
6701 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
6702 }
6703
6704 static void prepare_gs_input_vgprs(struct nir_to_llvm_context *ctx)
6705 {
6706 for(int i = 5; i >= 0; --i) {
6707 ctx->gs_vtx_offset[i] = ac_build_bfe(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
6708 LLVMConstInt(ctx->ac.i32, (i & 1) * 16, false),
6709 LLVMConstInt(ctx->ac.i32, 16, false), false);
6710 }
6711
6712 ctx->gs_wave_id = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
6713 LLVMConstInt(ctx->ac.i32, 16, false),
6714 LLVMConstInt(ctx->ac.i32, 8, false), false);
6715 }
6716
6717 void ac_nir_translate(struct ac_llvm_context *ac, struct ac_shader_abi *abi,
6718 struct nir_shader *nir, struct nir_to_llvm_context *nctx)
6719 {
6720 struct ac_nir_context ctx = {};
6721 struct nir_function *func;
6722
6723 ctx.ac = *ac;
6724 ctx.abi = abi;
6725
6726 ctx.nctx = nctx;
6727 if (nctx)
6728 nctx->nir = &ctx;
6729
6730 ctx.stage = nir->info.stage;
6731
6732 ctx.main_function = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
6733
6734 nir_foreach_variable(variable, &nir->outputs)
6735 handle_shader_output_decl(&ctx, nir, variable);
6736
6737 ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
6738 _mesa_key_pointer_equal);
6739 ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
6740 _mesa_key_pointer_equal);
6741 ctx.vars = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
6742 _mesa_key_pointer_equal);
6743
6744 func = (struct nir_function *)exec_list_get_head(&nir->functions);
6745
6746 setup_locals(&ctx, func);
6747
6748 if (nir->info.stage == MESA_SHADER_COMPUTE)
6749 setup_shared(&ctx, nir);
6750
6751 visit_cf_list(&ctx, &func->impl->body);
6752 phi_post_pass(&ctx);
6753
6754 ctx.abi->emit_outputs(ctx.abi, RADEON_LLVM_MAX_OUTPUTS,
6755 ctx.outputs);
6756
6757 free(ctx.locals);
6758 ralloc_free(ctx.defs);
6759 ralloc_free(ctx.phis);
6760 ralloc_free(ctx.vars);
6761
6762 if (nctx)
6763 nctx->nir = NULL;
6764 }
6765
6766 static
6767 LLVMModuleRef ac_translate_nir_to_llvm(LLVMTargetMachineRef tm,
6768 struct nir_shader *const *shaders,
6769 int shader_count,
6770 struct ac_shader_variant_info *shader_info,
6771 const struct ac_nir_compiler_options *options)
6772 {
6773 struct nir_to_llvm_context ctx = {0};
6774 unsigned i;
6775 ctx.options = options;
6776 ctx.shader_info = shader_info;
6777 ctx.context = LLVMContextCreate();
6778 ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
6779
6780 ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
6781 options->family);
6782 ctx.ac.module = ctx.module;
6783 LLVMSetTarget(ctx.module, options->supports_spill ? "amdgcn-mesa-mesa3d" : "amdgcn--");
6784
6785 LLVMTargetDataRef data_layout = LLVMCreateTargetDataLayout(tm);
6786 char *data_layout_str = LLVMCopyStringRepOfTargetData(data_layout);
6787 LLVMSetDataLayout(ctx.module, data_layout_str);
6788 LLVMDisposeTargetData(data_layout);
6789 LLVMDisposeMessage(data_layout_str);
6790
6791 enum ac_float_mode float_mode =
6792 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
6793 AC_FLOAT_MODE_DEFAULT;
6794
6795 ctx.builder = ac_create_builder(ctx.context, float_mode);
6796 ctx.ac.builder = ctx.builder;
6797
6798 memset(shader_info, 0, sizeof(*shader_info));
6799
6800 for(int i = 0; i < shader_count; ++i)
6801 ac_nir_shader_info_pass(shaders[i], options, &shader_info->info);
6802
6803 for (i = 0; i < AC_UD_MAX_SETS; i++)
6804 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
6805 for (i = 0; i < AC_UD_MAX_UD; i++)
6806 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
6807
6808 ctx.max_workgroup_size = 0;
6809 for (int i = 0; i < shader_count; ++i) {
6810 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
6811 ac_nir_get_max_workgroup_size(ctx.options->chip_class,
6812 shaders[i]));
6813 }
6814
6815 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
6816 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
6817
6818 ctx.abi.inputs = &ctx.inputs[0];
6819 ctx.abi.emit_outputs = handle_shader_outputs_post;
6820 ctx.abi.emit_vertex = visit_emit_vertex;
6821 ctx.abi.load_ubo = radv_load_ubo;
6822 ctx.abi.load_ssbo = radv_load_ssbo;
6823 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
6824 ctx.abi.clamp_shadow_reference = false;
6825
6826 if (shader_count >= 2)
6827 ac_init_exec_full_mask(&ctx.ac);
6828
6829 if (ctx.ac.chip_class == GFX9 &&
6830 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
6831 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
6832
6833 for(int i = 0; i < shader_count; ++i) {
6834 ctx.stage = shaders[i]->info.stage;
6835 ctx.output_mask = 0;
6836 ctx.tess_outputs_written = 0;
6837 ctx.num_output_clips = shaders[i]->info.clip_distance_array_size;
6838 ctx.num_output_culls = shaders[i]->info.cull_distance_array_size;
6839
6840 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
6841 ctx.gs_next_vertex = ac_build_alloca(&ctx.ac, ctx.ac.i32, "gs_next_vertex");
6842 ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
6843 ctx.abi.load_inputs = load_gs_input;
6844 ctx.abi.emit_primitive = visit_end_primitive;
6845 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
6846 ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
6847 ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
6848 ctx.abi.load_tess_varyings = load_tcs_varyings;
6849 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
6850 ctx.abi.store_tcs_outputs = store_tcs_output;
6851 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
6852 ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
6853 ctx.abi.load_tess_varyings = load_tes_input;
6854 ctx.abi.load_tess_coord = load_tess_coord;
6855 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
6856 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
6857 if (shader_info->info.vs.needs_instance_id) {
6858 if (ctx.options->key.vs.as_ls) {
6859 ctx.shader_info->vs.vgpr_comp_cnt =
6860 MAX2(2, ctx.shader_info->vs.vgpr_comp_cnt);
6861 } else {
6862 ctx.shader_info->vs.vgpr_comp_cnt =
6863 MAX2(1, ctx.shader_info->vs.vgpr_comp_cnt);
6864 }
6865 }
6866 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
6867 shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
6868 ctx.abi.lookup_interp_param = lookup_interp_param;
6869 ctx.abi.load_sample_position = load_sample_position;
6870 }
6871
6872 if (i)
6873 emit_barrier(&ctx.ac, ctx.stage);
6874
6875 ac_setup_rings(&ctx);
6876
6877 LLVMBasicBlockRef merge_block;
6878 if (shader_count >= 2) {
6879 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
6880 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
6881 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
6882
6883 LLVMValueRef count = ac_build_bfe(&ctx.ac, ctx.merged_wave_info,
6884 LLVMConstInt(ctx.ac.i32, 8 * i, false),
6885 LLVMConstInt(ctx.ac.i32, 8, false), false);
6886 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
6887 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
6888 thread_id, count, "");
6889 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
6890
6891 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
6892 }
6893
6894 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
6895 handle_fs_inputs(&ctx, shaders[i]);
6896 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
6897 handle_vs_inputs(&ctx, shaders[i]);
6898 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
6899 prepare_gs_input_vgprs(&ctx);
6900
6901 nir_foreach_variable(variable, &shaders[i]->outputs)
6902 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
6903
6904 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i], &ctx);
6905
6906 if (shader_count >= 2) {
6907 LLVMBuildBr(ctx.ac.builder, merge_block);
6908 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
6909 }
6910
6911 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
6912 unsigned addclip = shaders[i]->info.clip_distance_array_size +
6913 shaders[i]->info.cull_distance_array_size > 4;
6914 shader_info->gs.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
6915 shader_info->gs.max_gsvs_emit_size = shader_info->gs.gsvs_vertex_size *
6916 shaders[i]->info.gs.vertices_out;
6917 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
6918 shader_info->tcs.outputs_written = ctx.tess_outputs_written;
6919 shader_info->tcs.patch_outputs_written = ctx.tess_patch_outputs_written;
6920 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX && ctx.options->key.vs.as_ls) {
6921 shader_info->vs.outputs_written = ctx.tess_outputs_written;
6922 }
6923 }
6924
6925 LLVMBuildRetVoid(ctx.builder);
6926
6927 if (options->dump_preoptir)
6928 ac_dump_module(ctx.module);
6929
6930 ac_llvm_finalize_module(&ctx);
6931
6932 if (shader_count == 1)
6933 ac_nir_eliminate_const_vs_outputs(&ctx);
6934
6935 return ctx.module;
6936 }
6937
6938 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
6939 {
6940 unsigned *retval = (unsigned *)context;
6941 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
6942 char *description = LLVMGetDiagInfoDescription(di);
6943
6944 if (severity == LLVMDSError) {
6945 *retval = 1;
6946 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
6947 description);
6948 }
6949
6950 LLVMDisposeMessage(description);
6951 }
6952
6953 static unsigned ac_llvm_compile(LLVMModuleRef M,
6954 struct ac_shader_binary *binary,
6955 LLVMTargetMachineRef tm)
6956 {
6957 unsigned retval = 0;
6958 char *err;
6959 LLVMContextRef llvm_ctx;
6960 LLVMMemoryBufferRef out_buffer;
6961 unsigned buffer_size;
6962 const char *buffer_data;
6963 LLVMBool mem_err;
6964
6965 /* Setup Diagnostic Handler*/
6966 llvm_ctx = LLVMGetModuleContext(M);
6967
6968 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
6969 &retval);
6970
6971 /* Compile IR*/
6972 mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile,
6973 &err, &out_buffer);
6974
6975 /* Process Errors/Warnings */
6976 if (mem_err) {
6977 fprintf(stderr, "%s: %s", __FUNCTION__, err);
6978 free(err);
6979 retval = 1;
6980 goto out;
6981 }
6982
6983 /* Extract Shader Code*/
6984 buffer_size = LLVMGetBufferSize(out_buffer);
6985 buffer_data = LLVMGetBufferStart(out_buffer);
6986
6987 ac_elf_read(buffer_data, buffer_size, binary);
6988
6989 /* Clean up */
6990 LLVMDisposeMemoryBuffer(out_buffer);
6991
6992 out:
6993 return retval;
6994 }
6995
6996 static void ac_compile_llvm_module(LLVMTargetMachineRef tm,
6997 LLVMModuleRef llvm_module,
6998 struct ac_shader_binary *binary,
6999 struct ac_shader_config *config,
7000 struct ac_shader_variant_info *shader_info,
7001 gl_shader_stage stage,
7002 bool dump_shader, bool supports_spill)
7003 {
7004 if (dump_shader)
7005 ac_dump_module(llvm_module);
7006
7007 memset(binary, 0, sizeof(*binary));
7008 int v = ac_llvm_compile(llvm_module, binary, tm);
7009 if (v) {
7010 fprintf(stderr, "compile failed\n");
7011 }
7012
7013 if (dump_shader)
7014 fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
7015
7016 ac_shader_binary_read_config(binary, config, 0, supports_spill);
7017
7018 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
7019 LLVMDisposeModule(llvm_module);
7020 LLVMContextDispose(ctx);
7021
7022 if (stage == MESA_SHADER_FRAGMENT) {
7023 shader_info->num_input_vgprs = 0;
7024 if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
7025 shader_info->num_input_vgprs += 2;
7026 if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
7027 shader_info->num_input_vgprs += 2;
7028 if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
7029 shader_info->num_input_vgprs += 2;
7030 if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
7031 shader_info->num_input_vgprs += 3;
7032 if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
7033 shader_info->num_input_vgprs += 2;
7034 if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
7035 shader_info->num_input_vgprs += 2;
7036 if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
7037 shader_info->num_input_vgprs += 2;
7038 if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
7039 shader_info->num_input_vgprs += 1;
7040 if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
7041 shader_info->num_input_vgprs += 1;
7042 if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
7043 shader_info->num_input_vgprs += 1;
7044 if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
7045 shader_info->num_input_vgprs += 1;
7046 if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
7047 shader_info->num_input_vgprs += 1;
7048 if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
7049 shader_info->num_input_vgprs += 1;
7050 if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
7051 shader_info->num_input_vgprs += 1;
7052 if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
7053 shader_info->num_input_vgprs += 1;
7054 if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
7055 shader_info->num_input_vgprs += 1;
7056 }
7057 config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
7058
7059 /* +3 for scratch wave offset and VCC */
7060 config->num_sgprs = MAX2(config->num_sgprs,
7061 shader_info->num_input_sgprs + 3);
7062
7063 /* Enable 64-bit and 16-bit denormals, because there is no performance
7064 * cost.
7065 *
7066 * If denormals are enabled, all floating-point output modifiers are
7067 * ignored.
7068 *
7069 * Don't enable denormals for 32-bit floats, because:
7070 * - Floating-point output modifiers would be ignored by the hw.
7071 * - Some opcodes don't support denormals, such as v_mad_f32. We would
7072 * have to stop using those.
7073 * - SI & CI would be very slow.
7074 */
7075 config->float_mode |= V_00B028_FP_64_DENORMS;
7076 }
7077
7078 static void
7079 ac_fill_shader_info(struct ac_shader_variant_info *shader_info, struct nir_shader *nir, const struct ac_nir_compiler_options *options)
7080 {
7081 switch (nir->info.stage) {
7082 case MESA_SHADER_COMPUTE:
7083 for (int i = 0; i < 3; ++i)
7084 shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
7085 break;
7086 case MESA_SHADER_FRAGMENT:
7087 shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
7088 break;
7089 case MESA_SHADER_GEOMETRY:
7090 shader_info->gs.vertices_in = nir->info.gs.vertices_in;
7091 shader_info->gs.vertices_out = nir->info.gs.vertices_out;
7092 shader_info->gs.output_prim = nir->info.gs.output_primitive;
7093 shader_info->gs.invocations = nir->info.gs.invocations;
7094 break;
7095 case MESA_SHADER_TESS_EVAL:
7096 shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
7097 shader_info->tes.spacing = nir->info.tess.spacing;
7098 shader_info->tes.ccw = nir->info.tess.ccw;
7099 shader_info->tes.point_mode = nir->info.tess.point_mode;
7100 shader_info->tes.as_es = options->key.tes.as_es;
7101 break;
7102 case MESA_SHADER_TESS_CTRL:
7103 shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
7104 break;
7105 case MESA_SHADER_VERTEX:
7106 shader_info->vs.as_es = options->key.vs.as_es;
7107 shader_info->vs.as_ls = options->key.vs.as_ls;
7108 /* in LS mode we need at least 1, invocation id needs 2, handled elsewhere */
7109 if (options->key.vs.as_ls)
7110 shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt);
7111 break;
7112 default:
7113 break;
7114 }
7115 }
7116
7117 void ac_compile_nir_shader(LLVMTargetMachineRef tm,
7118 struct ac_shader_binary *binary,
7119 struct ac_shader_config *config,
7120 struct ac_shader_variant_info *shader_info,
7121 struct nir_shader *const *nir,
7122 int nir_count,
7123 const struct ac_nir_compiler_options *options,
7124 bool dump_shader)
7125 {
7126
7127 LLVMModuleRef llvm_module = ac_translate_nir_to_llvm(tm, nir, nir_count, shader_info,
7128 options);
7129
7130 ac_compile_llvm_module(tm, llvm_module, binary, config, shader_info, nir[0]->info.stage, dump_shader, options->supports_spill);
7131 for (int i = 0; i < nir_count; ++i)
7132 ac_fill_shader_info(shader_info, nir[i], options);
7133
7134 /* Determine the ES type (VS or TES) for the GS on GFX9. */
7135 if (options->chip_class == GFX9) {
7136 if (nir_count == 2 &&
7137 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
7138 shader_info->gs.es_type = nir[0]->info.stage;
7139 }
7140 }
7141 }
7142
7143 static void
7144 ac_gs_copy_shader_emit(struct nir_to_llvm_context *ctx)
7145 {
7146 LLVMValueRef vtx_offset =
7147 LLVMBuildMul(ctx->builder, ctx->abi.vertex_id,
7148 LLVMConstInt(ctx->ac.i32, 4, false), "");
7149 int idx = 0;
7150
7151 for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
7152 int length = 4;
7153 int slot = idx;
7154 int slot_inc = 1;
7155 if (!(ctx->output_mask & (1ull << i)))
7156 continue;
7157
7158 if (i == VARYING_SLOT_CLIP_DIST0) {
7159 /* unpack clip and cull from a single set of slots */
7160 length = ctx->num_output_clips + ctx->num_output_culls;
7161 if (length > 4)
7162 slot_inc = 2;
7163 }
7164
7165 for (unsigned j = 0; j < length; j++) {
7166 LLVMValueRef value, soffset;
7167
7168 soffset = LLVMConstInt(ctx->ac.i32,
7169 (slot * 4 + j) *
7170 ctx->gs_max_out_vertices * 16 * 4, false);
7171
7172 value = ac_build_buffer_load(&ctx->ac, ctx->gsvs_ring,
7173 1, ctx->ac.i32_0,
7174 vtx_offset, soffset,
7175 0, 1, 1, true, false);
7176
7177 LLVMBuildStore(ctx->builder,
7178 ac_to_float(&ctx->ac, value), ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)]);
7179 }
7180 idx += slot_inc;
7181 }
7182 handle_vs_outputs_post(ctx, false, &ctx->shader_info->vs.outinfo);
7183 }
7184
7185 void ac_create_gs_copy_shader(LLVMTargetMachineRef tm,
7186 struct nir_shader *geom_shader,
7187 struct ac_shader_binary *binary,
7188 struct ac_shader_config *config,
7189 struct ac_shader_variant_info *shader_info,
7190 const struct ac_nir_compiler_options *options,
7191 bool dump_shader)
7192 {
7193 struct nir_to_llvm_context ctx = {0};
7194 ctx.context = LLVMContextCreate();
7195 ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
7196 ctx.options = options;
7197 ctx.shader_info = shader_info;
7198
7199 ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
7200 options->family);
7201 ctx.ac.module = ctx.module;
7202
7203 ctx.is_gs_copy_shader = true;
7204 LLVMSetTarget(ctx.module, "amdgcn--");
7205
7206 enum ac_float_mode float_mode =
7207 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
7208 AC_FLOAT_MODE_DEFAULT;
7209
7210 ctx.builder = ac_create_builder(ctx.context, float_mode);
7211 ctx.ac.builder = ctx.builder;
7212 ctx.stage = MESA_SHADER_VERTEX;
7213
7214 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
7215
7216 ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
7217 ac_setup_rings(&ctx);
7218
7219 ctx.num_output_clips = geom_shader->info.clip_distance_array_size;
7220 ctx.num_output_culls = geom_shader->info.cull_distance_array_size;
7221
7222 struct ac_nir_context nir_ctx = {};
7223 nir_ctx.ac = ctx.ac;
7224 nir_ctx.abi = &ctx.abi;
7225
7226 nir_ctx.nctx = &ctx;
7227 ctx.nir = &nir_ctx;
7228
7229 nir_foreach_variable(variable, &geom_shader->outputs) {
7230 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
7231 handle_shader_output_decl(&nir_ctx, geom_shader, variable);
7232 }
7233
7234 ac_gs_copy_shader_emit(&ctx);
7235
7236 ctx.nir = NULL;
7237
7238 LLVMBuildRetVoid(ctx.builder);
7239
7240 ac_llvm_finalize_module(&ctx);
7241
7242 ac_compile_llvm_module(tm, ctx.module, binary, config, shader_info,
7243 MESA_SHADER_VERTEX,
7244 dump_shader, options->supports_spill);
7245 }