aco: consider non-hazard writes in handle_raw_hazard_internal
[mesa.git] / src / amd / compiler / aco_insert_NOPs.cpp
1 /*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <algorithm>
26
27 #include "aco_ir.h"
28 #include <stack>
29 #include <functional>
30
31 #include <time.h>
32
33 namespace aco {
34 namespace {
35
36 struct NOP_ctx_gfx6 {
37 void join(const NOP_ctx_gfx6 &other) {
38 set_vskip_mode_then_vector = MAX2(set_vskip_mode_then_vector, other.set_vskip_mode_then_vector);
39 valu_wr_vcc_then_vccz = MAX2(valu_wr_vcc_then_vccz, other.valu_wr_vcc_then_vccz);
40 valu_wr_exec_then_execz = MAX2(valu_wr_exec_then_execz, other.valu_wr_exec_then_execz);
41 valu_wr_vcc_then_div_fmas = MAX2(valu_wr_vcc_then_div_fmas, other.valu_wr_vcc_then_div_fmas);
42 salu_wr_m0_then_gds_msg_ttrace = MAX2(salu_wr_m0_then_gds_msg_ttrace, other.salu_wr_m0_then_gds_msg_ttrace);
43 valu_wr_exec_then_dpp = MAX2(valu_wr_exec_then_dpp, other.valu_wr_exec_then_dpp);
44 salu_wr_m0_then_lds = MAX2(salu_wr_m0_then_lds, other.salu_wr_m0_then_lds);
45 salu_wr_m0_then_moverel = MAX2(salu_wr_m0_then_moverel, other.salu_wr_m0_then_moverel);
46 setreg_then_getsetreg = MAX2(setreg_then_getsetreg, other.setreg_then_getsetreg);
47 vmem_store_then_wr_data |= other.vmem_store_then_wr_data;
48 smem_clause |= other.smem_clause;
49 smem_write |= other.smem_write;
50 for (unsigned i = 0; i < BITSET_WORDS(128); i++) {
51 smem_clause_read_write[i] |= other.smem_clause_read_write[i];
52 smem_clause_write[i] |= other.smem_clause_write[i];
53 }
54 }
55
56 bool operator==(const NOP_ctx_gfx6 &other)
57 {
58 return
59 set_vskip_mode_then_vector == other.set_vskip_mode_then_vector &&
60 valu_wr_vcc_then_vccz == other.valu_wr_vcc_then_vccz &&
61 valu_wr_exec_then_execz == other.valu_wr_exec_then_execz &&
62 valu_wr_vcc_then_div_fmas == other.valu_wr_vcc_then_div_fmas &&
63 vmem_store_then_wr_data == other.vmem_store_then_wr_data &&
64 salu_wr_m0_then_gds_msg_ttrace == other.salu_wr_m0_then_gds_msg_ttrace &&
65 valu_wr_exec_then_dpp == other.valu_wr_exec_then_dpp &&
66 salu_wr_m0_then_lds == other.salu_wr_m0_then_lds &&
67 salu_wr_m0_then_moverel == other.salu_wr_m0_then_moverel &&
68 setreg_then_getsetreg == other.setreg_then_getsetreg &&
69 smem_clause == other.smem_clause &&
70 smem_write == other.smem_write &&
71 BITSET_EQUAL(smem_clause_read_write, other.smem_clause_read_write) &&
72 BITSET_EQUAL(smem_clause_write, other.smem_clause_write);
73 }
74
75 void add_wait_states(unsigned amount)
76 {
77 if ((set_vskip_mode_then_vector -= amount) < 0)
78 set_vskip_mode_then_vector = 0;
79
80 if ((valu_wr_vcc_then_vccz -= amount) < 0)
81 valu_wr_vcc_then_vccz = 0;
82
83 if ((valu_wr_exec_then_execz -= amount) < 0)
84 valu_wr_exec_then_execz = 0;
85
86 if ((valu_wr_vcc_then_div_fmas -= amount) < 0)
87 valu_wr_vcc_then_div_fmas = 0;
88
89 if ((salu_wr_m0_then_gds_msg_ttrace -= amount) < 0)
90 salu_wr_m0_then_gds_msg_ttrace = 0;
91
92 if ((valu_wr_exec_then_dpp -= amount) < 0)
93 valu_wr_exec_then_dpp = 0;
94
95 if ((salu_wr_m0_then_lds -= amount) < 0)
96 salu_wr_m0_then_lds = 0;
97
98 if ((salu_wr_m0_then_moverel -= amount) < 0)
99 salu_wr_m0_then_moverel = 0;
100
101 if ((setreg_then_getsetreg -= amount) < 0)
102 setreg_then_getsetreg = 0;
103
104 vmem_store_then_wr_data.reset();
105 }
106
107 /* setting MODE.vskip and then any vector op requires 2 wait states */
108 int8_t set_vskip_mode_then_vector = 0;
109
110 /* VALU writing VCC/EXEC and then a VALU reading VCCZ/EXECZ requires 5 wait states */
111 int8_t valu_wr_vcc_then_vccz = 0;
112 int8_t valu_wr_exec_then_execz = 0;
113
114 /* VALU writing VCC followed by v_div_fmas require 4 wait states */
115 int8_t valu_wr_vcc_then_div_fmas = 0;
116
117 /* SALU writing M0 followed by GDS, s_sendmsg or s_ttrace_data requires 1 wait state */
118 int8_t salu_wr_m0_then_gds_msg_ttrace = 0;
119
120 /* VALU writing EXEC followed by DPP requires 5 wait states */
121 int8_t valu_wr_exec_then_dpp = 0;
122
123 /* SALU writing M0 followed by some LDS instructions requires 1 wait state on GFX10 */
124 int8_t salu_wr_m0_then_lds = 0;
125
126 /* SALU writing M0 followed by s_moverel requires 1 wait state on GFX9 */
127 int8_t salu_wr_m0_then_moverel = 0;
128
129 /* s_setreg followed by a s_getreg/s_setreg of the same register needs 2 wait states
130 * currently we don't look at the actual register */
131 int8_t setreg_then_getsetreg = 0;
132
133 /* some memory instructions writing >64bit followed by a instructions
134 * writing the VGPRs holding the writedata requires 1 wait state */
135 std::bitset<256> vmem_store_then_wr_data;
136
137 /* we break up SMEM clauses that contain stores or overwrite an
138 * operand/definition of another instruction in the clause */
139 bool smem_clause = false;
140 bool smem_write = false;
141 BITSET_DECLARE(smem_clause_read_write, 128) = {0};
142 BITSET_DECLARE(smem_clause_write, 128) = {0};
143 };
144
145 struct NOP_ctx_gfx10 {
146 bool has_VOPC = false;
147 bool has_nonVALU_exec_read = false;
148 bool has_VMEM = false;
149 bool has_branch_after_VMEM = false;
150 bool has_DS = false;
151 bool has_branch_after_DS = false;
152 std::bitset<128> sgprs_read_by_VMEM;
153 std::bitset<128> sgprs_read_by_SMEM;
154
155 void join(const NOP_ctx_gfx10 &other) {
156 has_VOPC |= other.has_VOPC;
157 has_nonVALU_exec_read |= other.has_nonVALU_exec_read;
158 has_VMEM |= other.has_VMEM;
159 has_branch_after_VMEM |= other.has_branch_after_VMEM;
160 has_DS |= other.has_DS;
161 has_branch_after_DS |= other.has_branch_after_DS;
162 sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM;
163 sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM;
164 }
165
166 bool operator==(const NOP_ctx_gfx10 &other)
167 {
168 return
169 has_VOPC == other.has_VOPC &&
170 has_nonVALU_exec_read == other.has_nonVALU_exec_read &&
171 has_VMEM == other.has_VMEM &&
172 has_branch_after_VMEM == other.has_branch_after_VMEM &&
173 has_DS == other.has_DS &&
174 has_branch_after_DS == other.has_branch_after_DS &&
175 sgprs_read_by_VMEM == other.sgprs_read_by_VMEM &&
176 sgprs_read_by_SMEM == other.sgprs_read_by_SMEM;
177 }
178 };
179
180 int get_wait_states(aco_ptr<Instruction>& instr)
181 {
182 if (instr->opcode == aco_opcode::s_nop)
183 return static_cast<SOPP_instruction*>(instr.get())->imm + 1;
184 else if (instr->opcode == aco_opcode::p_constaddr)
185 return 3; /* lowered to 3 instructions in the assembler */
186 else
187 return 1;
188 }
189
190 bool regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
191 {
192 return a_reg > b_reg ?
193 (a_reg - b_reg < b_size) :
194 (b_reg - a_reg < a_size);
195 }
196
197 template <bool Valu, bool Vintrp, bool Salu>
198 int handle_raw_hazard_internal(Program *program, Block *block,
199 int nops_needed, PhysReg reg, uint32_t mask)
200 {
201 unsigned mask_size = util_last_bit(mask);
202 for (int pred_idx = block->instructions.size() - 1; pred_idx >= 0; pred_idx--) {
203 aco_ptr<Instruction>& pred = block->instructions[pred_idx];
204
205 uint32_t writemask = 0;
206 for (Definition& def : pred->definitions) {
207 if (regs_intersect(reg, mask_size, def.physReg(), def.size())) {
208 unsigned start = def.physReg() > reg ? def.physReg() - reg : 0;
209 unsigned end = MIN2(mask_size, start + def.size());
210 writemask |= u_bit_consecutive(start, end - start);
211 }
212 }
213
214 bool is_hazard = writemask != 0 &&
215 ((pred->isVALU() && Valu) ||
216 (pred->format == Format::VINTRP && Vintrp) ||
217 (pred->isSALU() && Salu));
218 if (is_hazard)
219 return nops_needed;
220
221 mask &= ~writemask;
222 nops_needed -= get_wait_states(pred);
223
224 if (nops_needed <= 0 || mask == 0)
225 return 0;
226 }
227
228 return 0;
229 }
230
231 template <bool Valu, bool Vintrp, bool Salu>
232 void handle_raw_hazard(Program *program, Block *cur_block, int *NOPs, int min_states, Operand op)
233 {
234 if (*NOPs >= min_states)
235 return;
236 int res = handle_raw_hazard_internal<Valu, Vintrp, Salu>(program, cur_block, min_states, op.physReg(), u_bit_consecutive(0, op.size()));
237 *NOPs = MAX2(*NOPs, res);
238 }
239
240 static auto handle_valu_then_read_hazard = handle_raw_hazard<true, true, false>;
241 static auto handle_vintrp_then_read_hazard = handle_raw_hazard<false, true, false>;
242 static auto handle_valu_salu_then_read_hazard = handle_raw_hazard<true, true, true>;
243
244 void set_bitset_range(BITSET_WORD *words, unsigned start, unsigned size) {
245 unsigned end = start + size - 1;
246 unsigned start_mod = start % BITSET_WORDBITS;
247 if (start_mod + size <= BITSET_WORDBITS) {
248 BITSET_SET_RANGE(words, start, end);
249 } else {
250 unsigned first_size = BITSET_WORDBITS - start_mod;
251 set_bitset_range(words, start, BITSET_WORDBITS - start_mod);
252 set_bitset_range(words, start + first_size, size - first_size);
253 }
254 }
255
256 bool test_bitset_range(BITSET_WORD *words, unsigned start, unsigned size) {
257 unsigned end = start + size - 1;
258 unsigned start_mod = start % BITSET_WORDBITS;
259 if (start_mod + size <= BITSET_WORDBITS) {
260 return BITSET_TEST_RANGE(words, start, end);
261 } else {
262 unsigned first_size = BITSET_WORDBITS - start_mod;
263 return test_bitset_range(words, start, BITSET_WORDBITS - start_mod) ||
264 test_bitset_range(words, start + first_size, size - first_size);
265 }
266 }
267
268 /* TODO: we don't handle accessing VCC using the actual SGPR instead of using the alias */
269 void handle_instruction_gfx6(Program *program, Block *cur_block, NOP_ctx_gfx6 &ctx,
270 aco_ptr<Instruction>& instr, std::vector<aco_ptr<Instruction>>& new_instructions)
271 {
272 /* check hazards */
273 int NOPs = 0;
274
275 if (instr->format == Format::SMEM) {
276 if (program->chip_class == GFX6) {
277 /* A read of an SGPR by SMRD instruction requires 4 wait states
278 * when the SGPR was written by a VALU instruction. According to LLVM,
279 * there is also an undocumented hardware behavior when the buffer
280 * descriptor is written by a SALU instruction */
281 for (unsigned i = 0; i < instr->operands.size(); i++) {
282 Operand op = instr->operands[i];
283 if (op.isConstant())
284 continue;
285
286 bool is_buffer_desc = i == 0 && op.size() > 2;
287 if (is_buffer_desc)
288 handle_valu_salu_then_read_hazard(program, cur_block, &NOPs, 4, op);
289 else
290 handle_valu_then_read_hazard(program, cur_block, &NOPs, 4, op);
291 }
292 }
293
294 /* break off from prevous SMEM clause if needed */
295 if (!NOPs & (ctx.smem_clause || ctx.smem_write)) {
296 /* Don't allow clauses with store instructions since the clause's
297 * instructions may use the same address. */
298 if (ctx.smem_write || instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) {
299 NOPs = 1;
300 } else {
301 for (Operand op : instr->operands) {
302 if (!op.isConstant() && test_bitset_range(ctx.smem_clause_write, op.physReg(), op.size())) {
303 NOPs = 1;
304 break;
305 }
306 }
307 Definition def = instr->definitions[0];
308 if (!NOPs && test_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size()))
309 NOPs = 1;
310 }
311 }
312 } else if (instr->isSALU()) {
313 if (instr->opcode == aco_opcode::s_setreg_b32 || instr->opcode == aco_opcode::s_setreg_imm32_b32 ||
314 instr->opcode == aco_opcode::s_getreg_b32) {
315 NOPs = MAX2(NOPs, ctx.setreg_then_getsetreg);
316 }
317
318 if (program->chip_class == GFX9) {
319 if (instr->opcode == aco_opcode::s_movrels_b32 || instr->opcode == aco_opcode::s_movrels_b64 ||
320 instr->opcode == aco_opcode::s_movreld_b32 || instr->opcode == aco_opcode::s_movreld_b64) {
321 NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_moverel);
322 }
323 }
324
325 if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_ttracedata)
326 NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
327 } else if (instr->format == Format::DS && static_cast<DS_instruction *>(instr.get())->gds) {
328 NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
329 } else if (instr->isVALU() || instr->format == Format::VINTRP) {
330 for (Operand op : instr->operands) {
331 if (op.physReg() == vccz)
332 NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_vccz);
333 if (op.physReg() == execz)
334 NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_execz);
335 }
336
337 if (instr->isDPP()) {
338 NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_dpp);
339 handle_valu_then_read_hazard(program, cur_block, &NOPs, 2, instr->operands[0]);
340 }
341
342 for (Definition def : instr->definitions) {
343 if (def.regClass().type() != RegType::sgpr) {
344 for (unsigned i = 0; i < def.size(); i++)
345 NOPs = MAX2(NOPs, ctx.vmem_store_then_wr_data[(def.physReg() & 0xff) + i]);
346 }
347 }
348
349 if ((instr->opcode == aco_opcode::v_readlane_b32 ||
350 instr->opcode == aco_opcode::v_readlane_b32_e64 ||
351 instr->opcode == aco_opcode::v_writelane_b32 ||
352 instr->opcode == aco_opcode::v_writelane_b32_e64) &&
353 !instr->operands[1].isConstant()) {
354 handle_valu_then_read_hazard(program, cur_block, &NOPs, 4, instr->operands[1]);
355 }
356
357 /* It's required to insert 1 wait state if the dst VGPR of any v_interp_*
358 * is followed by a read with v_readfirstlane or v_readlane to fix GPU
359 * hangs on GFX6. Note that v_writelane_* is apparently not affected.
360 * This hazard isn't documented anywhere but AMD confirmed that hazard.
361 */
362 if (program->chip_class == GFX6 &&
363 (instr->opcode == aco_opcode::v_readlane_b32 || /* GFX6 doesn't have v_readlane_b32_e64 */
364 instr->opcode == aco_opcode::v_readfirstlane_b32)) {
365 handle_vintrp_then_read_hazard(program, cur_block, &NOPs, 1, instr->operands[0]);
366 }
367
368 if (instr->opcode == aco_opcode::v_div_fmas_f32 || instr->opcode == aco_opcode::v_div_fmas_f64)
369 NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_div_fmas);
370 } else if (instr->isVMEM() || instr->isFlatOrGlobal() || instr->format == Format::SCRATCH) {
371 /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
372 for (Operand op : instr->operands) {
373 if (!op.isConstant() && !op.isUndefined() && op.regClass().type() == RegType::sgpr)
374 handle_valu_then_read_hazard(program, cur_block, &NOPs, 5, op);
375 }
376 }
377
378 if (!instr->isSALU() && instr->format != Format::SMEM)
379 NOPs = MAX2(NOPs, ctx.set_vskip_mode_then_vector);
380
381 if (program->chip_class == GFX9) {
382 bool lds_scratch_global = (instr->format == Format::SCRATCH || instr->format == Format::GLOBAL) &&
383 static_cast<FLAT_instruction *>(instr.get())->lds;
384 if (instr->format == Format::VINTRP ||
385 instr->opcode == aco_opcode::ds_read_addtid_b32 ||
386 instr->opcode == aco_opcode::ds_write_addtid_b32 ||
387 instr->opcode == aco_opcode::buffer_store_lds_dword ||
388 lds_scratch_global) {
389 NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_lds);
390 }
391 }
392
393 ctx.add_wait_states(NOPs + get_wait_states(instr));
394
395 // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles
396 if (NOPs) {
397 /* create NOP */
398 aco_ptr<SOPP_instruction> nop{create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
399 nop->imm = NOPs - 1;
400 nop->block = -1;
401 new_instructions.emplace_back(std::move(nop));
402 }
403
404 /* update information to check for later hazards */
405 if ((ctx.smem_clause || ctx.smem_write) && (NOPs || instr->format != Format::SMEM)) {
406 ctx.smem_clause = false;
407 ctx.smem_write = false;
408 BITSET_ZERO(ctx.smem_clause_read_write);
409 BITSET_ZERO(ctx.smem_clause_write);
410 }
411
412 if (instr->format == Format::SMEM) {
413 if (instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) {
414 ctx.smem_write = true;
415 } else {
416 ctx.smem_clause = true;
417
418 for (Operand op : instr->operands) {
419 if (!op.isConstant()) {
420 set_bitset_range(ctx.smem_clause_read_write, op.physReg(), op.size());
421 }
422 }
423
424 Definition def = instr->definitions[0];
425 set_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size());
426 set_bitset_range(ctx.smem_clause_write, def.physReg(), def.size());
427 }
428 } else if (instr->isVALU()) {
429 for (Definition def : instr->definitions) {
430 if (def.regClass().type() == RegType::sgpr) {
431 if (def.physReg() == vcc || def.physReg() == vcc_hi) {
432 ctx.valu_wr_vcc_then_vccz = 5;
433 ctx.valu_wr_vcc_then_div_fmas = 4;
434 }
435 if (def.physReg() == exec || def.physReg() == exec_hi) {
436 ctx.valu_wr_exec_then_execz = 5;
437 ctx.valu_wr_exec_then_dpp = 5;
438 }
439 }
440 }
441 } else if (instr->isSALU() && !instr->definitions.empty()) {
442 if (!instr->definitions.empty()) {
443 /* all other definitions should be SCC */
444 Definition def = instr->definitions[0];
445 if (def.physReg() == m0) {
446 ctx.salu_wr_m0_then_gds_msg_ttrace = 1;
447 ctx.salu_wr_m0_then_lds = 1;
448 ctx.salu_wr_m0_then_moverel = 1;
449 }
450 } else if (instr->opcode == aco_opcode::s_setreg_b32 || instr->opcode == aco_opcode::s_setreg_imm32_b32) {
451 SOPK_instruction *sopk = static_cast<SOPK_instruction *>(instr.get());
452 unsigned offset = (sopk->imm >> 6) & 0x1f;
453 unsigned size = ((sopk->imm >> 11) & 0x1f) + 1;
454 unsigned reg = sopk->imm & 0x3f;
455 ctx.setreg_then_getsetreg = 2;
456
457 if (reg == 1 && offset >= 28 && size > (28 - offset))
458 ctx.set_vskip_mode_then_vector = 2;
459 }
460 } else if (instr->isVMEM() || instr->isFlatOrGlobal() || instr->format == Format::SCRATCH) {
461 /* >64-bit MUBUF/MTBUF store with a constant in SOFFSET */
462 bool consider_buf = (instr->format == Format::MUBUF || instr->format == Format::MTBUF) &&
463 instr->operands.size() == 4 &&
464 instr->operands[3].size() > 2 &&
465 instr->operands[2].physReg() >= 128;
466 /* MIMG store with a 128-bit T# with more than two bits set in dmask (making it a >64-bit store) */
467 bool consider_mimg = instr->format == Format::MIMG &&
468 instr->operands[1].regClass().type() == RegType::vgpr &&
469 instr->operands[1].size() > 2 &&
470 instr->operands[0].size() == 4;
471 /* FLAT/GLOBAL/SCRATCH store with >64-bit data */
472 bool consider_flat = (instr->isFlatOrGlobal() || instr->format == Format::SCRATCH) &&
473 instr->operands.size() == 3 &&
474 instr->operands[2].size() > 2;
475 if (consider_buf || consider_mimg || consider_flat) {
476 PhysReg wrdata = instr->operands[consider_flat ? 2 : 3].physReg();
477 unsigned size = instr->operands[consider_flat ? 2 : 3].size();
478 for (unsigned i = 0; i < size; i++)
479 ctx.vmem_store_then_wr_data[(wrdata & 0xff) + i] = 1;
480 }
481 }
482 }
483
484 template <std::size_t N>
485 bool check_written_regs(const aco_ptr<Instruction> &instr, const std::bitset<N> &check_regs)
486 {
487 return std::any_of(instr->definitions.begin(), instr->definitions.end(), [&check_regs](const Definition &def) -> bool {
488 bool writes_any = false;
489 for (unsigned i = 0; i < def.size(); i++) {
490 unsigned def_reg = def.physReg() + i;
491 writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
492 }
493 return writes_any;
494 });
495 }
496
497 template <std::size_t N>
498 void mark_read_regs(const aco_ptr<Instruction> &instr, std::bitset<N> &reg_reads)
499 {
500 for (const Operand &op : instr->operands) {
501 for (unsigned i = 0; i < op.size(); i++) {
502 unsigned reg = op.physReg() + i;
503 if (reg < reg_reads.size())
504 reg_reads.set(reg);
505 }
506 }
507 }
508
509 bool VALU_writes_sgpr(aco_ptr<Instruction>& instr)
510 {
511 if ((uint32_t) instr->format & (uint32_t) Format::VOPC)
512 return true;
513 if (instr->isVOP3() && instr->definitions.size() == 2)
514 return true;
515 if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
516 instr->opcode == aco_opcode::v_readlane_b32 ||
517 instr->opcode == aco_opcode::v_readlane_b32_e64)
518 return true;
519 return false;
520 }
521
522 bool instr_writes_exec(const aco_ptr<Instruction>& instr)
523 {
524 return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
525 return def.physReg() == exec_lo || def.physReg() == exec_hi;
526 });
527 }
528
529 bool instr_writes_sgpr(const aco_ptr<Instruction>& instr)
530 {
531 return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
532 return def.getTemp().type() == RegType::sgpr;
533 });
534 }
535
536 inline bool instr_is_branch(const aco_ptr<Instruction>& instr)
537 {
538 return instr->opcode == aco_opcode::s_branch ||
539 instr->opcode == aco_opcode::s_cbranch_scc0 ||
540 instr->opcode == aco_opcode::s_cbranch_scc1 ||
541 instr->opcode == aco_opcode::s_cbranch_vccz ||
542 instr->opcode == aco_opcode::s_cbranch_vccnz ||
543 instr->opcode == aco_opcode::s_cbranch_execz ||
544 instr->opcode == aco_opcode::s_cbranch_execnz ||
545 instr->opcode == aco_opcode::s_cbranch_cdbgsys ||
546 instr->opcode == aco_opcode::s_cbranch_cdbguser ||
547 instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user ||
548 instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user ||
549 instr->opcode == aco_opcode::s_subvector_loop_begin ||
550 instr->opcode == aco_opcode::s_subvector_loop_end ||
551 instr->opcode == aco_opcode::s_setpc_b64 ||
552 instr->opcode == aco_opcode::s_swappc_b64 ||
553 instr->opcode == aco_opcode::s_getpc_b64 ||
554 instr->opcode == aco_opcode::s_call_b64;
555 }
556
557 void handle_instruction_gfx10(Program *program, Block *cur_block, NOP_ctx_gfx10 &ctx,
558 aco_ptr<Instruction>& instr, std::vector<aco_ptr<Instruction>>& new_instructions)
559 {
560 //TODO: s_dcache_inv needs to be in it's own group on GFX10
561
562 /* VMEMtoScalarWriteHazard
563 * Handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)" in-between.
564 */
565 if (instr->isVMEM() || instr->format == Format::FLAT || instr->format == Format::GLOBAL ||
566 instr->format == Format::SCRATCH || instr->format == Format::DS) {
567 /* Remember all SGPRs that are read by the VMEM instruction */
568 mark_read_regs(instr, ctx.sgprs_read_by_VMEM);
569 ctx.sgprs_read_by_VMEM.set(exec);
570 if (program->wave_size == 64)
571 ctx.sgprs_read_by_VMEM.set(exec_hi);
572 } else if (instr->isSALU() || instr->format == Format::SMEM) {
573 /* Check if SALU writes an SGPR that was previously read by the VALU */
574 if (check_written_regs(instr, ctx.sgprs_read_by_VMEM)) {
575 ctx.sgprs_read_by_VMEM.reset();
576
577 /* Insert v_nop to mitigate the problem */
578 aco_ptr<VOP1_instruction> nop{create_instruction<VOP1_instruction>(aco_opcode::v_nop, Format::VOP1, 0, 0)};
579 new_instructions.emplace_back(std::move(nop));
580 }
581 } else if (instr->opcode == aco_opcode::s_waitcnt) {
582 /* Hazard is mitigated by "s_waitcnt vmcnt(0)" */
583 uint16_t imm = static_cast<SOPP_instruction*>(instr.get())->imm;
584 unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
585 if (vmcnt == 0)
586 ctx.sgprs_read_by_VMEM.reset();
587 } else if (instr->isVALU()) {
588 /* Hazard is mitigated by any VALU instruction */
589 ctx.sgprs_read_by_VMEM.reset();
590 }
591
592 /* VcmpxPermlaneHazard
593 * Handle any permlane following a VOPC instruction, insert v_mov between them.
594 */
595 if (instr->format == Format::VOPC) {
596 ctx.has_VOPC = true;
597 } else if (ctx.has_VOPC &&
598 (instr->opcode == aco_opcode::v_permlane16_b32 ||
599 instr->opcode == aco_opcode::v_permlanex16_b32)) {
600 ctx.has_VOPC = false;
601
602 /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
603 aco_ptr<VOP1_instruction> v_mov{create_instruction<VOP1_instruction>(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)};
604 v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1);
605 v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1);
606 new_instructions.emplace_back(std::move(v_mov));
607 } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
608 ctx.has_VOPC = false;
609 }
610
611 /* VcmpxExecWARHazard
612 * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
613 */
614 if (!instr->isVALU() && instr->reads_exec()) {
615 ctx.has_nonVALU_exec_read = true;
616 } else if (instr->isVALU()) {
617 if (instr_writes_exec(instr)) {
618 ctx.has_nonVALU_exec_read = false;
619
620 /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
621 aco_ptr<SOPP_instruction> depctr{create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
622 depctr->imm = 0xfffe;
623 depctr->block = -1;
624 new_instructions.emplace_back(std::move(depctr));
625 } else if (instr_writes_sgpr(instr)) {
626 /* Any VALU instruction that writes an SGPR mitigates the problem */
627 ctx.has_nonVALU_exec_read = false;
628 }
629 } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
630 /* s_waitcnt_depctr can mitigate the problem if it has a magic imm */
631 const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
632 if ((sopp->imm & 0xfffe) == 0xfffe)
633 ctx.has_nonVALU_exec_read = false;
634 }
635
636 /* SMEMtoVectorWriteHazard
637 * Handle any VALU instruction writing an SGPR after an SMEM reads it.
638 */
639 if (instr->format == Format::SMEM) {
640 /* Remember all SGPRs that are read by the SMEM instruction */
641 mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
642 } else if (VALU_writes_sgpr(instr)) {
643 /* Check if VALU writes an SGPR that was previously read by SMEM */
644 if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
645 ctx.sgprs_read_by_SMEM.reset();
646
647 /* Insert s_mov to mitigate the problem */
648 aco_ptr<SOP1_instruction> s_mov{create_instruction<SOP1_instruction>(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)};
649 s_mov->definitions[0] = Definition(sgpr_null, s1);
650 s_mov->operands[0] = Operand(0u);
651 new_instructions.emplace_back(std::move(s_mov));
652 }
653 } else if (instr->isSALU()) {
654 if (instr->format != Format::SOPP) {
655 /* SALU can mitigate the hazard */
656 ctx.sgprs_read_by_SMEM.reset();
657 } else {
658 /* Reducing lgkmcnt count to 0 always mitigates the hazard. */
659 const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
660 if (sopp->opcode == aco_opcode::s_waitcnt_lgkmcnt) {
661 if (sopp->imm == 0 && sopp->definitions[0].physReg() == sgpr_null)
662 ctx.sgprs_read_by_SMEM.reset();
663 } else if (sopp->opcode == aco_opcode::s_waitcnt) {
664 unsigned lgkm = (sopp->imm >> 8) & 0x3f;
665 if (lgkm == 0)
666 ctx.sgprs_read_by_SMEM.reset();
667 }
668 }
669 }
670
671 /* LdsBranchVmemWARHazard
672 * Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns.
673 */
674 if (instr->isVMEM() || instr->format == Format::GLOBAL || instr->format == Format::SCRATCH) {
675 ctx.has_VMEM = true;
676 ctx.has_branch_after_VMEM = false;
677 /* Mitigation for DS is needed only if there was already a branch after */
678 ctx.has_DS = ctx.has_branch_after_DS;
679 } else if (instr->format == Format::DS) {
680 ctx.has_DS = true;
681 ctx.has_branch_after_DS = false;
682 /* Mitigation for VMEM is needed only if there was already a branch after */
683 ctx.has_VMEM = ctx.has_branch_after_VMEM;
684 } else if (instr_is_branch(instr)) {
685 ctx.has_branch_after_VMEM = ctx.has_VMEM;
686 ctx.has_branch_after_DS = ctx.has_DS;
687 } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
688 /* Only s_waitcnt_vscnt can mitigate the hazard */
689 const SOPK_instruction *sopk = static_cast<const SOPK_instruction *>(instr.get());
690 if (sopk->definitions[0].physReg() == sgpr_null && sopk->imm == 0)
691 ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
692 }
693 if ((ctx.has_VMEM && ctx.has_branch_after_DS) || (ctx.has_DS && ctx.has_branch_after_VMEM)) {
694 ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
695
696 /* Insert s_waitcnt_vscnt to mitigate the problem */
697 aco_ptr<SOPK_instruction> wait{create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1)};
698 wait->definitions[0] = Definition(sgpr_null, s1);
699 wait->imm = 0;
700 new_instructions.emplace_back(std::move(wait));
701 }
702 }
703
704 template <typename Ctx>
705 using HandleInstr = void (*)(Program *, Block *block, Ctx&, aco_ptr<Instruction>&,
706 std::vector<aco_ptr<Instruction>>&);
707
708 template <typename Ctx, HandleInstr<Ctx> Handle>
709 void handle_block(Program *program, Ctx& ctx, Block& block)
710 {
711 if (block.instructions.empty())
712 return;
713
714 std::vector<aco_ptr<Instruction>> old_instructions = std::move(block.instructions);
715
716 block.instructions.reserve(block.instructions.size());
717
718 for (aco_ptr<Instruction>& instr : old_instructions) {
719 Handle(program, &block, ctx, instr, block.instructions);
720 block.instructions.emplace_back(std::move(instr));
721 }
722 }
723
724 template <typename Ctx, HandleInstr<Ctx> Handle>
725 void mitigate_hazards(Program *program)
726 {
727 std::vector<Ctx> all_ctx(program->blocks.size());
728 std::stack<unsigned> loop_header_indices;
729
730 for (unsigned i = 0; i < program->blocks.size(); i++) {
731 Block& block = program->blocks[i];
732 Ctx &ctx = all_ctx[i];
733
734 if (block.kind & block_kind_loop_header) {
735 loop_header_indices.push(i);
736 } else if (block.kind & block_kind_loop_exit) {
737 /* Go through the whole loop again */
738 for (unsigned idx = loop_header_indices.top(); idx < i; idx++) {
739 Ctx loop_block_ctx;
740 for (unsigned b : program->blocks[idx].linear_preds)
741 loop_block_ctx.join(all_ctx[b]);
742
743 handle_block<Ctx, Handle>(program, loop_block_ctx, program->blocks[idx]);
744
745 /* We only need to continue if the loop header context changed */
746 if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx])
747 break;
748
749 all_ctx[idx] = loop_block_ctx;
750 }
751
752 loop_header_indices.pop();
753 }
754
755 for (unsigned b : block.linear_preds)
756 ctx.join(all_ctx[b]);
757
758 handle_block<Ctx, Handle>(program, ctx, block);
759 }
760 }
761
762 } /* end namespace */
763
764 void insert_NOPs(Program* program)
765 {
766 if (program->chip_class >= GFX10) {
767 mitigate_hazards<NOP_ctx_gfx10, handle_instruction_gfx10>(program);
768 } else {
769 for (Block& block : program->blocks) {
770 NOP_ctx_gfx6 ctx;
771 handle_block<NOP_ctx_gfx6, handle_instruction_gfx6>(program, ctx, block);
772 }
773 }
774 }
775
776 }