aco: Change isel inputs/outputs to a flat array.
[mesa.git] / src / amd / compiler / aco_instruction_selection_setup.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <array>
26 #include <unordered_map>
27 #include "aco_ir.h"
28 #include "nir.h"
29 #include "nir_control_flow.h"
30 #include "vulkan/radv_shader.h"
31 #include "vulkan/radv_descriptor_set.h"
32 #include "vulkan/radv_shader_args.h"
33 #include "sid.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36
37 #include "util/u_math.h"
38
39 #define MAX_INLINE_PUSH_CONSTS 8
40
41 namespace aco {
42
43 struct shader_io_state {
44 uint8_t mask[VARYING_SLOT_MAX];
45 Temp temps[VARYING_SLOT_MAX * 4u];
46
47 shader_io_state() {
48 memset(mask, 0, sizeof(mask));
49 std::fill_n(temps, VARYING_SLOT_MAX * 4u, Temp(0, RegClass::v1));
50 }
51 };
52
53 struct isel_context {
54 const struct radv_nir_compiler_options *options;
55 struct radv_shader_args *args;
56 Program *program;
57 nir_shader *shader;
58 uint32_t constant_data_offset;
59 Block *block;
60 bool *divergent_vals;
61 std::unique_ptr<Temp[]> allocated;
62 std::unordered_map<unsigned, std::array<Temp,NIR_MAX_VEC_COMPONENTS>> allocated_vec;
63 Stage stage; /* Stage */
64 bool has_gfx10_wave64_bpermute = false;
65 struct {
66 bool has_branch;
67 uint16_t loop_nest_depth = 0;
68 struct {
69 unsigned header_idx;
70 Block* exit;
71 bool has_divergent_continue = false;
72 bool has_divergent_branch = false;
73 } parent_loop;
74 struct {
75 bool is_divergent = false;
76 } parent_if;
77 bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */
78 uint16_t exec_potentially_empty_break_depth = UINT16_MAX;
79 /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth
80 * and parent_if.is_divergent==false. Called _break but it's also used for
81 * loop continues. */
82 bool exec_potentially_empty_break = false;
83 std::unique_ptr<unsigned[]> nir_to_aco; /* NIR block index to ACO block index */
84 } cf_info;
85
86 Temp arg_temps[AC_MAX_ARGS];
87
88 /* FS inputs */
89 Temp persp_centroid, linear_centroid;
90
91 /* GS inputs */
92 Temp gs_wave_id;
93
94 /* gathered information */
95 uint64_t input_masks[MESA_SHADER_COMPUTE];
96 uint64_t output_masks[MESA_SHADER_COMPUTE];
97
98 /* VS output information */
99 bool export_clip_dists;
100 unsigned num_clip_distances;
101 unsigned num_cull_distances;
102
103 /* tessellation information */
104 unsigned tcs_tess_lvl_out_loc;
105 unsigned tcs_tess_lvl_in_loc;
106 uint32_t tcs_num_inputs;
107 uint32_t tcs_num_patches;
108 bool tcs_in_out_eq = false;
109
110 /* I/O information */
111 shader_io_state inputs;
112 shader_io_state outputs;
113 };
114
115 Temp get_arg(isel_context *ctx, struct ac_arg arg)
116 {
117 assert(arg.used);
118 return ctx->arg_temps[arg.arg_index];
119 }
120
121 unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
122 {
123 switch (interp) {
124 case INTERP_MODE_SMOOTH:
125 case INTERP_MODE_NONE:
126 if (intrin == nir_intrinsic_load_barycentric_pixel ||
127 intrin == nir_intrinsic_load_barycentric_at_sample ||
128 intrin == nir_intrinsic_load_barycentric_at_offset)
129 return S_0286CC_PERSP_CENTER_ENA(1);
130 else if (intrin == nir_intrinsic_load_barycentric_centroid)
131 return S_0286CC_PERSP_CENTROID_ENA(1);
132 else if (intrin == nir_intrinsic_load_barycentric_sample)
133 return S_0286CC_PERSP_SAMPLE_ENA(1);
134 break;
135 case INTERP_MODE_NOPERSPECTIVE:
136 if (intrin == nir_intrinsic_load_barycentric_pixel)
137 return S_0286CC_LINEAR_CENTER_ENA(1);
138 else if (intrin == nir_intrinsic_load_barycentric_centroid)
139 return S_0286CC_LINEAR_CENTROID_ENA(1);
140 else if (intrin == nir_intrinsic_load_barycentric_sample)
141 return S_0286CC_LINEAR_SAMPLE_ENA(1);
142 break;
143 default:
144 break;
145 }
146 return 0;
147 }
148
149 /* If one side of a divergent IF ends in a branch and the other doesn't, we
150 * might have to emit the contents of the side without the branch at the merge
151 * block instead. This is so that we can use any SGPR live-out of the side
152 * without the branch without creating a linear phi in the invert or merge block. */
153 bool
154 sanitize_if(nir_function_impl *impl, bool *divergent, nir_if *nif)
155 {
156 if (!divergent[nif->condition.ssa->index])
157 return false;
158
159 nir_block *then_block = nir_if_last_then_block(nif);
160 nir_block *else_block = nir_if_last_else_block(nif);
161 bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
162 bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
163 if (then_jump == else_jump)
164 return false;
165
166 /* If the continue from block is empty then return as there is nothing to
167 * move.
168 */
169 if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
170 return false;
171
172 /* Even though this if statement has a jump on one side, we may still have
173 * phis afterwards. Single-source phis can be produced by loop unrolling
174 * or dead control-flow passes and are perfectly legal. Run a quick phi
175 * removal on the block after the if to clean up any such phis.
176 */
177 nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
178
179 /* Finally, move the continue from branch after the if-statement. */
180 nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
181 nir_block *first_continue_from_blk = else_jump ?
182 nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
183
184 nir_cf_list tmp;
185 nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
186 nir_after_block(last_continue_from_blk));
187 nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
188
189 /* nir_cf_extract() invalidates dominance metadata, but it should still be
190 * correct because of the specific type of transformation we did. Block
191 * indices are not valid except for block_0's, which is all we care about for
192 * nir_block_is_unreachable(). */
193 impl->valid_metadata =
194 (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index);
195
196 return true;
197 }
198
199 bool
200 sanitize_cf_list(nir_function_impl *impl, bool *divergent, struct exec_list *cf_list)
201 {
202 bool progress = false;
203 foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
204 switch (cf_node->type) {
205 case nir_cf_node_block:
206 break;
207 case nir_cf_node_if: {
208 nir_if *nif = nir_cf_node_as_if(cf_node);
209 progress |= sanitize_cf_list(impl, divergent, &nif->then_list);
210 progress |= sanitize_cf_list(impl, divergent, &nif->else_list);
211 progress |= sanitize_if(impl, divergent, nif);
212 break;
213 }
214 case nir_cf_node_loop: {
215 nir_loop *loop = nir_cf_node_as_loop(cf_node);
216 progress |= sanitize_cf_list(impl, divergent, &loop->body);
217 break;
218 }
219 case nir_cf_node_function:
220 unreachable("Invalid cf type");
221 }
222 }
223
224 return progress;
225 }
226
227 void init_context(isel_context *ctx, nir_shader *shader)
228 {
229 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
230 unsigned lane_mask_size = ctx->program->lane_mask.size();
231
232 ctx->shader = shader;
233 ctx->divergent_vals = nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
234
235 /* sanitize control flow */
236 nir_metadata_require(impl, nir_metadata_dominance);
237 sanitize_cf_list(impl, ctx->divergent_vals, &impl->body);
238 nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index);
239
240 /* we'll need this for isel */
241 nir_metadata_require(impl, nir_metadata_block_index);
242
243 if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
244 fprintf(stderr, "NIR shader before instruction selection:\n");
245 nir_print_shader(shader, stderr);
246 }
247
248 std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
249
250 unsigned spi_ps_inputs = 0;
251
252 std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
253
254 bool done = false;
255 while (!done) {
256 done = true;
257 nir_foreach_block(block, impl) {
258 nir_foreach_instr(instr, block) {
259 switch(instr->type) {
260 case nir_instr_type_alu: {
261 nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
262 unsigned size = alu_instr->dest.dest.ssa.num_components;
263 if (alu_instr->dest.dest.ssa.bit_size == 64)
264 size *= 2;
265 RegType type = RegType::sgpr;
266 switch(alu_instr->op) {
267 case nir_op_fmul:
268 case nir_op_fadd:
269 case nir_op_fsub:
270 case nir_op_fmax:
271 case nir_op_fmin:
272 case nir_op_fmax3:
273 case nir_op_fmin3:
274 case nir_op_fmed3:
275 case nir_op_fneg:
276 case nir_op_fabs:
277 case nir_op_fsat:
278 case nir_op_fsign:
279 case nir_op_frcp:
280 case nir_op_frsq:
281 case nir_op_fsqrt:
282 case nir_op_fexp2:
283 case nir_op_flog2:
284 case nir_op_ffract:
285 case nir_op_ffloor:
286 case nir_op_fceil:
287 case nir_op_ftrunc:
288 case nir_op_fround_even:
289 case nir_op_fsin:
290 case nir_op_fcos:
291 case nir_op_f2f32:
292 case nir_op_f2f64:
293 case nir_op_u2f32:
294 case nir_op_u2f64:
295 case nir_op_i2f32:
296 case nir_op_i2f64:
297 case nir_op_pack_half_2x16:
298 case nir_op_unpack_half_2x16_split_x:
299 case nir_op_unpack_half_2x16_split_y:
300 case nir_op_fddx:
301 case nir_op_fddy:
302 case nir_op_fddx_fine:
303 case nir_op_fddy_fine:
304 case nir_op_fddx_coarse:
305 case nir_op_fddy_coarse:
306 case nir_op_fquantize2f16:
307 case nir_op_ldexp:
308 case nir_op_frexp_sig:
309 case nir_op_frexp_exp:
310 case nir_op_cube_face_index:
311 case nir_op_cube_face_coord:
312 type = RegType::vgpr;
313 break;
314 case nir_op_flt:
315 case nir_op_fge:
316 case nir_op_feq:
317 case nir_op_fne:
318 case nir_op_ilt:
319 case nir_op_ige:
320 case nir_op_ult:
321 case nir_op_uge:
322 case nir_op_ieq:
323 case nir_op_ine:
324 case nir_op_i2b1:
325 size = lane_mask_size;
326 break;
327 case nir_op_f2i64:
328 case nir_op_f2u64:
329 case nir_op_b2i32:
330 case nir_op_b2f32:
331 case nir_op_f2i32:
332 case nir_op_f2u32:
333 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
334 break;
335 case nir_op_bcsel:
336 if (alu_instr->dest.dest.ssa.bit_size == 1) {
337 size = lane_mask_size;
338 } else {
339 if (ctx->divergent_vals[alu_instr->dest.dest.ssa.index]) {
340 type = RegType::vgpr;
341 } else {
342 if (allocated[alu_instr->src[1].src.ssa->index].type() == RegType::vgpr ||
343 allocated[alu_instr->src[2].src.ssa->index].type() == RegType::vgpr) {
344 type = RegType::vgpr;
345 }
346 }
347 if (alu_instr->src[1].src.ssa->num_components == 1 && alu_instr->src[2].src.ssa->num_components == 1) {
348 assert(allocated[alu_instr->src[1].src.ssa->index].size() == allocated[alu_instr->src[2].src.ssa->index].size());
349 size = allocated[alu_instr->src[1].src.ssa->index].size();
350 }
351 }
352 break;
353 case nir_op_mov:
354 if (alu_instr->dest.dest.ssa.bit_size == 1) {
355 size = lane_mask_size;
356 } else {
357 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
358 }
359 break;
360 default:
361 if (alu_instr->dest.dest.ssa.bit_size == 1) {
362 size = lane_mask_size;
363 } else {
364 for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
365 if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
366 type = RegType::vgpr;
367 }
368 }
369 break;
370 }
371 allocated[alu_instr->dest.dest.ssa.index] = Temp(0, RegClass(type, size));
372 break;
373 }
374 case nir_instr_type_load_const: {
375 unsigned size = nir_instr_as_load_const(instr)->def.num_components;
376 if (nir_instr_as_load_const(instr)->def.bit_size == 64)
377 size *= 2;
378 else if (nir_instr_as_load_const(instr)->def.bit_size == 1)
379 size *= lane_mask_size;
380 allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
381 break;
382 }
383 case nir_instr_type_intrinsic: {
384 nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
385 if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
386 break;
387 unsigned size = intrinsic->dest.ssa.num_components;
388 if (intrinsic->dest.ssa.bit_size == 64)
389 size *= 2;
390 RegType type = RegType::sgpr;
391 switch(intrinsic->intrinsic) {
392 case nir_intrinsic_load_push_constant:
393 case nir_intrinsic_load_work_group_id:
394 case nir_intrinsic_load_num_work_groups:
395 case nir_intrinsic_load_subgroup_id:
396 case nir_intrinsic_load_num_subgroups:
397 case nir_intrinsic_load_first_vertex:
398 case nir_intrinsic_load_base_instance:
399 case nir_intrinsic_get_buffer_size:
400 case nir_intrinsic_vote_all:
401 case nir_intrinsic_vote_any:
402 case nir_intrinsic_read_first_invocation:
403 case nir_intrinsic_read_invocation:
404 case nir_intrinsic_first_invocation:
405 type = RegType::sgpr;
406 if (intrinsic->dest.ssa.bit_size == 1)
407 size = lane_mask_size;
408 break;
409 case nir_intrinsic_ballot:
410 type = RegType::sgpr;
411 break;
412 case nir_intrinsic_load_sample_id:
413 case nir_intrinsic_load_sample_mask_in:
414 case nir_intrinsic_load_input:
415 case nir_intrinsic_load_output:
416 case nir_intrinsic_load_input_vertex:
417 case nir_intrinsic_load_per_vertex_input:
418 case nir_intrinsic_load_per_vertex_output:
419 case nir_intrinsic_load_vertex_id:
420 case nir_intrinsic_load_vertex_id_zero_base:
421 case nir_intrinsic_load_barycentric_sample:
422 case nir_intrinsic_load_barycentric_pixel:
423 case nir_intrinsic_load_barycentric_model:
424 case nir_intrinsic_load_barycentric_centroid:
425 case nir_intrinsic_load_barycentric_at_sample:
426 case nir_intrinsic_load_barycentric_at_offset:
427 case nir_intrinsic_load_interpolated_input:
428 case nir_intrinsic_load_frag_coord:
429 case nir_intrinsic_load_sample_pos:
430 case nir_intrinsic_load_layer_id:
431 case nir_intrinsic_load_local_invocation_id:
432 case nir_intrinsic_load_local_invocation_index:
433 case nir_intrinsic_load_subgroup_invocation:
434 case nir_intrinsic_load_tess_coord:
435 case nir_intrinsic_write_invocation_amd:
436 case nir_intrinsic_mbcnt_amd:
437 case nir_intrinsic_load_instance_id:
438 case nir_intrinsic_ssbo_atomic_add:
439 case nir_intrinsic_ssbo_atomic_imin:
440 case nir_intrinsic_ssbo_atomic_umin:
441 case nir_intrinsic_ssbo_atomic_imax:
442 case nir_intrinsic_ssbo_atomic_umax:
443 case nir_intrinsic_ssbo_atomic_and:
444 case nir_intrinsic_ssbo_atomic_or:
445 case nir_intrinsic_ssbo_atomic_xor:
446 case nir_intrinsic_ssbo_atomic_exchange:
447 case nir_intrinsic_ssbo_atomic_comp_swap:
448 case nir_intrinsic_global_atomic_add:
449 case nir_intrinsic_global_atomic_imin:
450 case nir_intrinsic_global_atomic_umin:
451 case nir_intrinsic_global_atomic_imax:
452 case nir_intrinsic_global_atomic_umax:
453 case nir_intrinsic_global_atomic_and:
454 case nir_intrinsic_global_atomic_or:
455 case nir_intrinsic_global_atomic_xor:
456 case nir_intrinsic_global_atomic_exchange:
457 case nir_intrinsic_global_atomic_comp_swap:
458 case nir_intrinsic_image_deref_atomic_add:
459 case nir_intrinsic_image_deref_atomic_umin:
460 case nir_intrinsic_image_deref_atomic_imin:
461 case nir_intrinsic_image_deref_atomic_umax:
462 case nir_intrinsic_image_deref_atomic_imax:
463 case nir_intrinsic_image_deref_atomic_and:
464 case nir_intrinsic_image_deref_atomic_or:
465 case nir_intrinsic_image_deref_atomic_xor:
466 case nir_intrinsic_image_deref_atomic_exchange:
467 case nir_intrinsic_image_deref_atomic_comp_swap:
468 case nir_intrinsic_image_deref_size:
469 case nir_intrinsic_shared_atomic_add:
470 case nir_intrinsic_shared_atomic_imin:
471 case nir_intrinsic_shared_atomic_umin:
472 case nir_intrinsic_shared_atomic_imax:
473 case nir_intrinsic_shared_atomic_umax:
474 case nir_intrinsic_shared_atomic_and:
475 case nir_intrinsic_shared_atomic_or:
476 case nir_intrinsic_shared_atomic_xor:
477 case nir_intrinsic_shared_atomic_exchange:
478 case nir_intrinsic_shared_atomic_comp_swap:
479 case nir_intrinsic_load_scratch:
480 case nir_intrinsic_load_invocation_id:
481 case nir_intrinsic_load_primitive_id:
482 type = RegType::vgpr;
483 break;
484 case nir_intrinsic_shuffle:
485 case nir_intrinsic_quad_broadcast:
486 case nir_intrinsic_quad_swap_horizontal:
487 case nir_intrinsic_quad_swap_vertical:
488 case nir_intrinsic_quad_swap_diagonal:
489 case nir_intrinsic_quad_swizzle_amd:
490 case nir_intrinsic_masked_swizzle_amd:
491 case nir_intrinsic_inclusive_scan:
492 case nir_intrinsic_exclusive_scan:
493 if (intrinsic->dest.ssa.bit_size == 1) {
494 size = lane_mask_size;
495 type = RegType::sgpr;
496 } else if (!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
497 type = RegType::sgpr;
498 } else {
499 type = RegType::vgpr;
500 }
501 break;
502 case nir_intrinsic_load_view_index:
503 type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
504 break;
505 case nir_intrinsic_load_front_face:
506 case nir_intrinsic_load_helper_invocation:
507 case nir_intrinsic_is_helper_invocation:
508 type = RegType::sgpr;
509 size = lane_mask_size;
510 break;
511 case nir_intrinsic_reduce:
512 if (intrinsic->dest.ssa.bit_size == 1) {
513 size = lane_mask_size;
514 type = RegType::sgpr;
515 } else if (!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
516 type = RegType::sgpr;
517 } else {
518 type = RegType::vgpr;
519 }
520 break;
521 case nir_intrinsic_load_ubo:
522 case nir_intrinsic_load_ssbo:
523 case nir_intrinsic_load_global:
524 case nir_intrinsic_vulkan_resource_index:
525 type = ctx->divergent_vals[intrinsic->dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
526 break;
527 /* due to copy propagation, the swizzled imov is removed if num dest components == 1 */
528 case nir_intrinsic_load_shared:
529 if (ctx->divergent_vals[intrinsic->dest.ssa.index])
530 type = RegType::vgpr;
531 else
532 type = RegType::sgpr;
533 break;
534 default:
535 for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
536 if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
537 type = RegType::vgpr;
538 }
539 break;
540 }
541 allocated[intrinsic->dest.ssa.index] = Temp(0, RegClass(type, size));
542
543 switch(intrinsic->intrinsic) {
544 case nir_intrinsic_load_barycentric_sample:
545 case nir_intrinsic_load_barycentric_pixel:
546 case nir_intrinsic_load_barycentric_centroid:
547 case nir_intrinsic_load_barycentric_at_sample:
548 case nir_intrinsic_load_barycentric_at_offset: {
549 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
550 spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
551 break;
552 }
553 case nir_intrinsic_load_barycentric_model:
554 spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
555 break;
556 case nir_intrinsic_load_front_face:
557 spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
558 break;
559 case nir_intrinsic_load_frag_coord:
560 case nir_intrinsic_load_sample_pos: {
561 uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
562 for (unsigned i = 0; i < 4; i++) {
563 if (mask & (1 << i))
564 spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
565
566 }
567 break;
568 }
569 case nir_intrinsic_load_sample_id:
570 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
571 break;
572 case nir_intrinsic_load_sample_mask_in:
573 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
574 spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
575 break;
576 default:
577 break;
578 }
579 break;
580 }
581 case nir_instr_type_tex: {
582 nir_tex_instr* tex = nir_instr_as_tex(instr);
583 unsigned size = tex->dest.ssa.num_components;
584
585 if (tex->dest.ssa.bit_size == 64)
586 size *= 2;
587 if (tex->op == nir_texop_texture_samples)
588 assert(!ctx->divergent_vals[tex->dest.ssa.index]);
589 if (ctx->divergent_vals[tex->dest.ssa.index])
590 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
591 else
592 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
593 break;
594 }
595 case nir_instr_type_parallel_copy: {
596 nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
597 allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
598 }
599 break;
600 }
601 case nir_instr_type_ssa_undef: {
602 unsigned size = nir_instr_as_ssa_undef(instr)->def.num_components;
603 if (nir_instr_as_ssa_undef(instr)->def.bit_size == 64)
604 size *= 2;
605 else if (nir_instr_as_ssa_undef(instr)->def.bit_size == 1)
606 size *= lane_mask_size;
607 allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
608 break;
609 }
610 case nir_instr_type_phi: {
611 nir_phi_instr* phi = nir_instr_as_phi(instr);
612 RegType type;
613 unsigned size = phi->dest.ssa.num_components;
614
615 if (phi->dest.ssa.bit_size == 1) {
616 assert(size == 1 && "multiple components not yet supported on boolean phis.");
617 type = RegType::sgpr;
618 size *= lane_mask_size;
619 allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
620 break;
621 }
622
623 if (ctx->divergent_vals[phi->dest.ssa.index]) {
624 type = RegType::vgpr;
625 } else {
626 type = RegType::sgpr;
627 nir_foreach_phi_src (src, phi) {
628 if (allocated[src->src.ssa->index].type() == RegType::vgpr)
629 type = RegType::vgpr;
630 if (allocated[src->src.ssa->index].type() == RegType::none)
631 done = false;
632 }
633 }
634
635 size *= phi->dest.ssa.bit_size == 64 ? 2 : 1;
636 RegClass rc = RegClass(type, size);
637 if (rc != allocated[phi->dest.ssa.index].regClass()) {
638 done = false;
639 } else {
640 nir_foreach_phi_src(src, phi)
641 assert(allocated[src->src.ssa->index].size() == rc.size());
642 }
643 allocated[phi->dest.ssa.index] = Temp(0, rc);
644 break;
645 }
646 default:
647 break;
648 }
649 }
650 }
651 }
652
653 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
654 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
655 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
656 }
657
658 if (!(spi_ps_inputs & 0x7F)) {
659 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
660 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
661 }
662
663 ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
664 ctx->program->config->spi_ps_input_addr = spi_ps_inputs;
665
666 for (unsigned i = 0; i < impl->ssa_alloc; i++)
667 allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());
668
669 ctx->allocated.reset(allocated.release());
670 ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
671 }
672
673 Pseudo_instruction *add_startpgm(struct isel_context *ctx)
674 {
675 unsigned arg_count = ctx->args->ac.arg_count;
676 if (ctx->stage == fragment_fs) {
677 /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
678 * itself and then communicates the results back via the ELF binary.
679 * Mirror what LLVM does by re-mapping the VGPR arguments here.
680 *
681 * TODO: If we made the FS input scanning code into a separate pass that
682 * could run before argument setup, then this wouldn't be necessary
683 * anymore.
684 */
685 struct ac_shader_args *args = &ctx->args->ac;
686 arg_count = 0;
687 for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
688 if (args->args[i].file != AC_ARG_VGPR) {
689 arg_count++;
690 continue;
691 }
692
693 if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
694 args->args[i].skip = true;
695 } else {
696 args->args[i].offset = vgpr_reg;
697 vgpr_reg += args->args[i].size;
698 arg_count++;
699 }
700 vgpr_arg++;
701 }
702 }
703
704 aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
705 for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
706 if (ctx->args->ac.args[i].skip)
707 continue;
708
709 enum ac_arg_regfile file = ctx->args->ac.args[i].file;
710 unsigned size = ctx->args->ac.args[i].size;
711 unsigned reg = ctx->args->ac.args[i].offset;
712 RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
713 Temp dst = Temp{ctx->program->allocateId(), type};
714 ctx->arg_temps[i] = dst;
715 startpgm->definitions[arg] = Definition(dst);
716 startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
717 arg++;
718 }
719 startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask};
720 Pseudo_instruction *instr = startpgm.get();
721 ctx->block->instructions.push_back(std::move(startpgm));
722
723 /* Stash these in the program so that they can be accessed later when
724 * handling spilling.
725 */
726 ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
727 ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
728
729 return instr;
730 }
731
732 int
733 type_size(const struct glsl_type *type, bool bindless)
734 {
735 // TODO: don't we need type->std430_base_alignment() here?
736 return glsl_count_attribute_slots(type, false);
737 }
738
739 void
740 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
741 {
742 assert(glsl_type_is_vector_or_scalar(type));
743
744 uint32_t comp_size = glsl_type_is_boolean(type)
745 ? 4 : glsl_get_bit_size(type) / 8;
746 unsigned length = glsl_get_vector_elements(type);
747 *size = comp_size * length,
748 *align = comp_size;
749 }
750
751 static bool
752 mem_vectorize_callback(unsigned align, unsigned bit_size,
753 unsigned num_components, unsigned high_offset,
754 nir_intrinsic_instr *low, nir_intrinsic_instr *high)
755 {
756 if ((bit_size != 32 && bit_size != 64) || num_components > 4)
757 return false;
758
759 /* >128 bit loads are split except with SMEM */
760 if (bit_size * num_components > 128)
761 return false;
762
763 switch (low->intrinsic) {
764 case nir_intrinsic_load_ubo:
765 case nir_intrinsic_load_ssbo:
766 case nir_intrinsic_store_ssbo:
767 case nir_intrinsic_load_push_constant:
768 return align % 4 == 0;
769 case nir_intrinsic_load_deref:
770 case nir_intrinsic_store_deref:
771 assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
772 /* fallthrough */
773 case nir_intrinsic_load_shared:
774 case nir_intrinsic_store_shared:
775 if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
776 return align % 16 == 0;
777 else
778 return align % 4 == 0;
779 default:
780 return false;
781 }
782 return false;
783 }
784
785 void
786 setup_vs_output_info(isel_context *ctx, nir_shader *nir,
787 bool export_prim_id, bool export_clip_dists,
788 radv_vs_output_info *outinfo)
789 {
790 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
791 sizeof(outinfo->vs_output_param_offset));
792
793 outinfo->param_exports = 0;
794 int pos_written = 0x1;
795 if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
796 pos_written |= 1 << 1;
797
798 uint64_t mask = ctx->output_masks[nir->info.stage];
799 while (mask) {
800 int idx = u_bit_scan64(&mask);
801 if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID ||
802 ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
803 if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
804 outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
805 }
806 }
807 if (outinfo->writes_layer &&
808 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
809 /* when ctx->options->key.has_multiview_view_index = true, the layer
810 * variable isn't declared in NIR and it's isel's job to get the layer */
811 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
812 }
813
814 if (export_prim_id) {
815 assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
816 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
817 }
818
819 ctx->export_clip_dists = export_clip_dists;
820 ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
821 ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
822
823 assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
824
825 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
826 pos_written |= 1 << 2;
827 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
828 pos_written |= 1 << 3;
829
830 outinfo->pos_exports = util_bitcount(pos_written);
831 }
832
833 void
834 setup_vs_variables(isel_context *ctx, nir_shader *nir)
835 {
836 nir_foreach_variable(variable, &nir->inputs)
837 {
838 variable->data.driver_location = variable->data.location * 4;
839 }
840 nir_foreach_variable(variable, &nir->outputs)
841 {
842 if (ctx->stage == vertex_geometry_gs)
843 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
844 else if (ctx->stage == vertex_es ||
845 ctx->stage == vertex_ls ||
846 ctx->stage == vertex_tess_control_hs)
847 // TODO: make this more compact
848 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
849 else if (ctx->stage == vertex_vs)
850 variable->data.driver_location = variable->data.location * 4;
851 else
852 unreachable("Unsupported VS stage");
853 }
854
855 if (ctx->stage == vertex_vs) {
856 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
857 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
858 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
859 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == vertex_es) {
860 /* TODO: radv_nir_shader_info_pass() already sets this but it's larger
861 * than it needs to be in order to set it better, we have to improve
862 * radv_nir_shader_info_pass() because gfx9_get_gs_info() uses
863 * esgs_itemsize and has to be done before compilation
864 */
865 /* radv_es_output_info *outinfo = &ctx->program->info->vs.es_info;
866 outinfo->esgs_itemsize = util_bitcount64(ctx->output_masks[nir->info.stage]) * 16u; */
867 }
868 }
869
870 void setup_gs_variables(isel_context *ctx, nir_shader *nir)
871 {
872 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
873 nir_foreach_variable(variable, &nir->inputs) {
874 variable->data.driver_location = util_bitcount64(ctx->input_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
875 }
876 } else if (ctx->stage == geometry_gs) {
877 //TODO: make this more compact
878 nir_foreach_variable(variable, &nir->inputs) {
879 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot)variable->data.location) * 4;
880 }
881 } else {
882 unreachable("Unsupported GS stage.");
883 }
884
885 nir_foreach_variable(variable, &nir->outputs) {
886 variable->data.driver_location = variable->data.location * 4;
887 }
888
889 if (ctx->stage == vertex_geometry_gs)
890 ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
891 else if (ctx->stage == tess_eval_geometry_gs)
892 ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
893 }
894
895 void
896 setup_tcs_variables(isel_context *ctx, nir_shader *nir)
897 {
898 switch (ctx->stage) {
899 case tess_control_hs:
900 ctx->tcs_num_inputs = ctx->args->options->key.tcs.num_inputs;
901 break;
902 case vertex_tess_control_hs:
903 ctx->tcs_num_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
904 break;
905 default:
906 unreachable("Unsupported TCS shader stage");
907 }
908
909 /* When the number of TCS input and output vertices are the same (typically 3):
910 * - There is an equal amount of LS and HS invocations
911 * - In case of merged LSHS shaders, the LS and HS halves of the shader
912 * always process the exact same vertex. We can use this knowledge to optimize them.
913 */
914 ctx->tcs_in_out_eq =
915 ctx->stage == vertex_tess_control_hs &&
916 ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out;
917
918 ctx->tcs_num_patches = get_tcs_num_patches(
919 ctx->args->options->key.tcs.input_vertices,
920 nir->info.tess.tcs_vertices_out,
921 ctx->tcs_num_inputs,
922 ctx->args->shader_info->tcs.outputs_written,
923 ctx->args->shader_info->tcs.patch_outputs_written,
924 ctx->args->options->tess_offchip_block_dw_size,
925 ctx->args->options->chip_class,
926 ctx->args->options->family);
927 unsigned lds_size = calculate_tess_lds_size(
928 ctx->args->options->key.tcs.input_vertices,
929 nir->info.tess.tcs_vertices_out,
930 ctx->tcs_num_inputs,
931 ctx->tcs_num_patches,
932 ctx->args->shader_info->tcs.outputs_written,
933 ctx->args->shader_info->tcs.patch_outputs_written);
934
935 ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
936 ctx->args->shader_info->tcs.lds_size = lds_size;
937 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
938 ctx->program->lds_alloc_granule;
939
940 nir_foreach_variable(variable, &nir->inputs) {
941 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
942 }
943
944 nir_foreach_variable(variable, &nir->outputs) {
945 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
946 }
947
948 ctx->tcs_tess_lvl_out_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER) * 16u;
949 ctx->tcs_tess_lvl_in_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER) * 16u;
950 }
951
952 void
953 setup_tes_variables(isel_context *ctx, nir_shader *nir)
954 {
955 ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;
956
957 nir_foreach_variable(variable, &nir->inputs) {
958 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
959 }
960
961 nir_foreach_variable(variable, &nir->outputs) {
962 if (ctx->stage == tess_eval_vs)
963 variable->data.driver_location = variable->data.location * 4;
964 else if (ctx->stage == tess_eval_es)
965 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
966 else if (ctx->stage == tess_eval_geometry_gs)
967 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
968 else
969 unreachable("Unsupported TES shader stage");
970 }
971
972 if (ctx->stage == tess_eval_vs) {
973 radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
974 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
975 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
976 }
977 }
978
979 void
980 setup_variables(isel_context *ctx, nir_shader *nir)
981 {
982 switch (nir->info.stage) {
983 case MESA_SHADER_FRAGMENT: {
984 nir_foreach_variable(variable, &nir->outputs)
985 {
986 int idx = variable->data.location + variable->data.index;
987 variable->data.driver_location = idx * 4;
988 }
989 break;
990 }
991 case MESA_SHADER_COMPUTE: {
992 ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
993 ctx->program->lds_alloc_granule;
994 break;
995 }
996 case MESA_SHADER_VERTEX: {
997 setup_vs_variables(ctx, nir);
998 break;
999 }
1000 case MESA_SHADER_GEOMETRY: {
1001 setup_gs_variables(ctx, nir);
1002 break;
1003 }
1004 case MESA_SHADER_TESS_CTRL: {
1005 setup_tcs_variables(ctx, nir);
1006 break;
1007 }
1008 case MESA_SHADER_TESS_EVAL: {
1009 setup_tes_variables(ctx, nir);
1010 break;
1011 }
1012 default:
1013 unreachable("Unhandled shader stage.");
1014 }
1015 }
1016
1017 void
1018 get_io_masks(isel_context *ctx, unsigned shader_count, struct nir_shader *const *shaders)
1019 {
1020 for (unsigned i = 0; i < shader_count; i++) {
1021 nir_shader *nir = shaders[i];
1022 if (nir->info.stage == MESA_SHADER_COMPUTE)
1023 continue;
1024
1025 uint64_t output_mask = 0;
1026 nir_foreach_variable(variable, &nir->outputs) {
1027 const glsl_type *type = variable->type;
1028 if (nir_is_per_vertex_io(variable, nir->info.stage))
1029 type = type->fields.array;
1030 unsigned slots = type->count_attribute_slots(false);
1031 if (variable->data.compact) {
1032 unsigned component_count = variable->data.location_frac + type->length;
1033 slots = (component_count + 3) / 4;
1034 }
1035 output_mask |= ((1ull << slots) - 1) << variable->data.location;
1036 }
1037
1038 uint64_t input_mask = 0;
1039 nir_foreach_variable(variable, &nir->inputs) {
1040 const glsl_type *type = variable->type;
1041 if (nir_is_per_vertex_io(variable, nir->info.stage))
1042 type = type->fields.array;
1043 unsigned slots = type->count_attribute_slots(false);
1044 if (variable->data.compact) {
1045 unsigned component_count = variable->data.location_frac + type->length;
1046 slots = (component_count + 3) / 4;
1047 }
1048 input_mask |= ((1ull << slots) - 1) << variable->data.location;
1049 }
1050
1051 ctx->output_masks[nir->info.stage] |= output_mask;
1052 if (i + 1 < shader_count)
1053 ctx->input_masks[shaders[i + 1]->info.stage] |= output_mask;
1054
1055 ctx->input_masks[nir->info.stage] |= input_mask;
1056 if (i)
1057 ctx->output_masks[shaders[i - 1]->info.stage] |= input_mask;
1058 }
1059 }
1060
1061 void
1062 setup_nir(isel_context *ctx, nir_shader *nir)
1063 {
1064 Program *program = ctx->program;
1065
1066 /* align and copy constant data */
1067 while (program->constant_data.size() % 4u)
1068 program->constant_data.push_back(0);
1069 ctx->constant_data_offset = program->constant_data.size();
1070 program->constant_data.insert(program->constant_data.end(),
1071 (uint8_t*)nir->constant_data,
1072 (uint8_t*)nir->constant_data + nir->constant_data_size);
1073
1074 /* the variable setup has to be done before lower_io / CSE */
1075 setup_variables(ctx, nir);
1076
1077 /* optimize and lower memory operations */
1078 bool lower_to_scalar = false;
1079 bool lower_pack = false;
1080 if (nir_opt_load_store_vectorize(nir,
1081 (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
1082 nir_var_mem_push_const | nir_var_mem_shared),
1083 mem_vectorize_callback)) {
1084 lower_to_scalar = true;
1085 lower_pack = true;
1086 }
1087 if (nir->info.stage != MESA_SHADER_COMPUTE)
1088 nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
1089 nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global);
1090
1091 if (lower_to_scalar)
1092 nir_lower_alu_to_scalar(nir, NULL, NULL);
1093 if (lower_pack)
1094 nir_lower_pack(nir);
1095
1096 /* lower ALU operations */
1097 // TODO: implement logic64 in aco, it's more effective for sgprs
1098 nir_lower_int64(nir, nir->options->lower_int64_options);
1099
1100 nir_opt_idiv_const(nir, 32);
1101 nir_lower_idiv(nir, nir_lower_idiv_precise);
1102
1103 /* optimize the lowered ALU operations */
1104 bool more_algebraic = true;
1105 while (more_algebraic) {
1106 more_algebraic = false;
1107 NIR_PASS_V(nir, nir_copy_prop);
1108 NIR_PASS_V(nir, nir_opt_dce);
1109 NIR_PASS_V(nir, nir_opt_constant_folding);
1110 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
1111 }
1112
1113 /* Do late algebraic optimization to turn add(a, neg(b)) back into
1114 * subs, then the mandatory cleanup after algebraic. Note that it may
1115 * produce fnegs, and if so then we need to keep running to squash
1116 * fneg(fneg(a)).
1117 */
1118 bool more_late_algebraic = true;
1119 while (more_late_algebraic) {
1120 more_late_algebraic = false;
1121 NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
1122 NIR_PASS_V(nir, nir_opt_constant_folding);
1123 NIR_PASS_V(nir, nir_copy_prop);
1124 NIR_PASS_V(nir, nir_opt_dce);
1125 NIR_PASS_V(nir, nir_opt_cse);
1126 }
1127
1128 /* cleanup passes */
1129 nir_lower_load_const_to_scalar(nir);
1130 nir_opt_shrink_load(nir);
1131 nir_move_options move_opts = (nir_move_options)(
1132 nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
1133 nir_move_comparisons | nir_move_copies);
1134 nir_opt_sink(nir, move_opts);
1135 nir_opt_move(nir, move_opts);
1136 nir_convert_to_lcssa(nir, true, false);
1137 nir_lower_phis_to_scalar(nir);
1138
1139 nir_function_impl *func = nir_shader_get_entrypoint(nir);
1140 nir_index_ssa_defs(func);
1141 }
1142
1143 isel_context
1144 setup_isel_context(Program* program,
1145 unsigned shader_count,
1146 struct nir_shader *const *shaders,
1147 ac_shader_config* config,
1148 struct radv_shader_args *args,
1149 bool is_gs_copy_shader)
1150 {
1151 program->stage = 0;
1152 for (unsigned i = 0; i < shader_count; i++) {
1153 switch (shaders[i]->info.stage) {
1154 case MESA_SHADER_VERTEX:
1155 program->stage |= sw_vs;
1156 break;
1157 case MESA_SHADER_TESS_CTRL:
1158 program->stage |= sw_tcs;
1159 break;
1160 case MESA_SHADER_TESS_EVAL:
1161 program->stage |= sw_tes;
1162 break;
1163 case MESA_SHADER_GEOMETRY:
1164 program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
1165 break;
1166 case MESA_SHADER_FRAGMENT:
1167 program->stage |= sw_fs;
1168 break;
1169 case MESA_SHADER_COMPUTE:
1170 program->stage |= sw_cs;
1171 break;
1172 default:
1173 unreachable("Shader stage not implemented");
1174 }
1175 }
1176 bool gfx9_plus = args->options->chip_class >= GFX9;
1177 bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
1178 if (program->stage == sw_vs && args->shader_info->vs.as_es)
1179 program->stage |= hw_es;
1180 else if (program->stage == sw_vs && !args->shader_info->vs.as_ls)
1181 program->stage |= hw_vs;
1182 else if (program->stage == sw_gs)
1183 program->stage |= hw_gs;
1184 else if (program->stage == sw_fs)
1185 program->stage |= hw_fs;
1186 else if (program->stage == sw_cs)
1187 program->stage |= hw_cs;
1188 else if (program->stage == sw_gs_copy)
1189 program->stage |= hw_vs;
1190 else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
1191 program->stage |= hw_gs;
1192 else if (program->stage == sw_vs && args->shader_info->vs.as_ls)
1193 program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
1194 else if (program->stage == sw_tcs)
1195 program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
1196 else if (program->stage == (sw_vs | sw_tcs))
1197 program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
1198 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
1199 program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
1200 else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg)
1201 program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */
1202 else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
1203 program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
1204 else
1205 unreachable("Shader stage not implemented");
1206
1207 program->config = config;
1208 program->info = args->shader_info;
1209 program->chip_class = args->options->chip_class;
1210 program->family = args->options->family;
1211 program->wave_size = args->shader_info->wave_size;
1212 program->lane_mask = program->wave_size == 32 ? s1 : s2;
1213
1214 program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256;
1215 program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768;
1216 /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
1217 program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY;
1218
1219 program->vgpr_limit = 256;
1220 program->vgpr_alloc_granule = 3;
1221
1222 if (args->options->chip_class >= GFX10) {
1223 program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
1224 program->sgpr_alloc_granule = 127;
1225 program->sgpr_limit = 106;
1226 program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
1227 } else if (program->chip_class >= GFX8) {
1228 program->physical_sgprs = 800;
1229 program->sgpr_alloc_granule = 15;
1230 if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND)
1231 program->sgpr_limit = 94; /* workaround hardware bug */
1232 else
1233 program->sgpr_limit = 102;
1234 } else {
1235 program->physical_sgprs = 512;
1236 program->sgpr_alloc_granule = 7;
1237 program->sgpr_limit = 104;
1238 }
1239
1240 calc_min_waves(program);
1241 program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
1242 program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
1243
1244 isel_context ctx = {};
1245 ctx.program = program;
1246 ctx.args = args;
1247 ctx.options = args->options;
1248 ctx.stage = program->stage;
1249
1250 get_io_masks(&ctx, shader_count, shaders);
1251
1252 unsigned scratch_size = 0;
1253 if (program->stage == gs_copy_vs) {
1254 assert(shader_count == 1);
1255 setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
1256 } else {
1257 for (unsigned i = 0; i < shader_count; i++) {
1258 nir_shader *nir = shaders[i];
1259 setup_nir(&ctx, nir);
1260 }
1261
1262 for (unsigned i = 0; i < shader_count; i++)
1263 scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
1264 }
1265
1266 ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
1267
1268 ctx.block = ctx.program->create_and_insert_block();
1269 ctx.block->loop_nest_depth = 0;
1270 ctx.block->kind = block_kind_top_level;
1271
1272 return ctx;
1273 }
1274
1275 }