aco: copy-propagate constants through p_extract_vector/p_split_vector
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool check_literal;
57
58 mad_info(aco_ptr<Instruction> instr, uint32_t id)
59 : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
60 };
61
62 enum Label {
63 label_vec = 1 << 0,
64 label_constant_32bit = 1 << 1,
65 /* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and
66 * 32-bit operations but this shouldn't cause any issues because we don't
67 * look through any conversions */
68 label_abs = 1 << 2,
69 label_neg = 1 << 3,
70 label_mul = 1 << 4,
71 label_temp = 1 << 5,
72 label_literal = 1 << 6,
73 label_mad = 1 << 7,
74 label_omod2 = 1 << 8,
75 label_omod4 = 1 << 9,
76 label_omod5 = 1 << 10,
77 label_omod_success = 1 << 11,
78 label_clamp = 1 << 12,
79 label_clamp_success = 1 << 13,
80 label_undefined = 1 << 14,
81 label_vcc = 1 << 15,
82 label_b2f = 1 << 16,
83 label_add_sub = 1 << 17,
84 label_bitwise = 1 << 18,
85 label_minmax = 1 << 19,
86 label_fcmp = 1 << 20,
87 label_uniform_bool = 1 << 21,
88 label_constant_64bit = 1 << 22,
89 label_uniform_bitwise = 1 << 23,
90 label_scc_invert = 1 << 24,
91 label_vcc_hint = 1 << 25,
92 label_scc_needed = 1 << 26,
93 label_b2i = 1 << 27,
94 label_constant_16bit = 1 << 29,
95 };
96
97 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
98 label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
99 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
100 label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert | label_b2i;
101 static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal | label_mad;
102
103 struct ssa_info {
104 uint32_t val;
105 union {
106 Temp temp;
107 Instruction* instr;
108 };
109 uint32_t label;
110
111 ssa_info() : label(0) {}
112
113 void add_label(Label new_label)
114 {
115 /* Since all labels which use "instr" use it for the same thing
116 * (indicating the defining instruction), there is no need to clear
117 * any other instr labels. */
118 if (new_label & instr_labels)
119 label &= ~temp_labels; /* instr and temp alias */
120
121 if (new_label & temp_labels) {
122 label &= ~temp_labels;
123 label &= ~instr_labels; /* instr and temp alias */
124 }
125
126 uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit;
127 if (new_label & const_labels)
128 label &= ~val_labels | const_labels;
129 else if (new_label & val_labels)
130 label &= ~val_labels;
131
132 label |= new_label;
133 }
134
135 void set_vec(Instruction* vec)
136 {
137 add_label(label_vec);
138 instr = vec;
139 }
140
141 bool is_vec()
142 {
143 return label & label_vec;
144 }
145
146 void set_constant(chip_class chip, uint64_t constant)
147 {
148 Operand op16((uint16_t)constant);
149 Operand op32((uint32_t)constant);
150 add_label(label_literal);
151 val = constant;
152
153 if (chip >= GFX8 && !op16.isLiteral())
154 add_label(label_constant_16bit);
155
156 if (!op32.isLiteral() || ((uint32_t)constant == 0x3e22f983 && chip >= GFX8))
157 add_label(label_constant_32bit);
158
159 if (constant <= 64) {
160 add_label(label_constant_64bit);
161 } else if (constant >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */
162 add_label(label_constant_64bit);
163 } else if (constant == 0x3FE0000000000000) { /* 0.5 */
164 add_label(label_constant_64bit);
165 } else if (constant == 0xBFE0000000000000) { /* -0.5 */
166 add_label(label_constant_64bit);
167 } else if (constant == 0x3FF0000000000000) { /* 1.0 */
168 add_label(label_constant_64bit);
169 } else if (constant == 0xBFF0000000000000) { /* -1.0 */
170 add_label(label_constant_64bit);
171 } else if (constant == 0x4000000000000000) { /* 2.0 */
172 add_label(label_constant_64bit);
173 } else if (constant == 0xC000000000000000) { /* -2.0 */
174 add_label(label_constant_64bit);
175 } else if (constant == 0x4010000000000000) { /* 4.0 */
176 add_label(label_constant_64bit);
177 } else if (constant == 0xC010000000000000) { /* -4.0 */
178 add_label(label_constant_64bit);
179 }
180
181 if (label & label_constant_64bit) {
182 val = Operand(constant).constantValue();
183 if (val != constant)
184 label &= ~(label_literal | label_constant_16bit | label_constant_32bit);
185 }
186 }
187
188 bool is_constant(unsigned bits)
189 {
190 switch (bits) {
191 case 8:
192 return label & label_literal;
193 case 16:
194 return label & label_constant_16bit;
195 case 32:
196 return label & label_constant_32bit;
197 case 64:
198 return label & label_constant_64bit;
199 }
200 return false;
201 }
202
203 bool is_literal(unsigned bits)
204 {
205 bool is_lit = label & label_literal;
206 switch (bits) {
207 case 8:
208 return false;
209 case 16:
210 return is_lit && ~(label & label_constant_16bit);
211 case 32:
212 return is_lit && ~(label & label_constant_32bit);
213 case 64:
214 return false;
215 }
216 return false;
217 }
218
219 bool is_constant_or_literal(unsigned bits)
220 {
221 if (bits == 64)
222 return label & label_constant_64bit;
223 else
224 return label & label_literal;
225 }
226
227 void set_abs(Temp abs_temp)
228 {
229 add_label(label_abs);
230 temp = abs_temp;
231 }
232
233 bool is_abs()
234 {
235 return label & label_abs;
236 }
237
238 void set_neg(Temp neg_temp)
239 {
240 add_label(label_neg);
241 temp = neg_temp;
242 }
243
244 bool is_neg()
245 {
246 return label & label_neg;
247 }
248
249 void set_neg_abs(Temp neg_abs_temp)
250 {
251 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
252 temp = neg_abs_temp;
253 }
254
255 void set_mul(Instruction* mul)
256 {
257 add_label(label_mul);
258 instr = mul;
259 }
260
261 bool is_mul()
262 {
263 return label & label_mul;
264 }
265
266 void set_temp(Temp tmp)
267 {
268 add_label(label_temp);
269 temp = tmp;
270 }
271
272 bool is_temp()
273 {
274 return label & label_temp;
275 }
276
277 void set_mad(Instruction* mad, uint32_t mad_info_idx)
278 {
279 add_label(label_mad);
280 val = mad_info_idx;
281 instr = mad;
282 }
283
284 bool is_mad()
285 {
286 return label & label_mad;
287 }
288
289 void set_omod2(Temp def)
290 {
291 add_label(label_omod2);
292 temp = def;
293 }
294
295 bool is_omod2()
296 {
297 return label & label_omod2;
298 }
299
300 void set_omod4(Temp def)
301 {
302 add_label(label_omod4);
303 temp = def;
304 }
305
306 bool is_omod4()
307 {
308 return label & label_omod4;
309 }
310
311 void set_omod5(Temp def)
312 {
313 add_label(label_omod5);
314 temp = def;
315 }
316
317 bool is_omod5()
318 {
319 return label & label_omod5;
320 }
321
322 void set_omod_success(Instruction* omod_instr)
323 {
324 add_label(label_omod_success);
325 instr = omod_instr;
326 }
327
328 bool is_omod_success()
329 {
330 return label & label_omod_success;
331 }
332
333 void set_clamp(Temp def)
334 {
335 add_label(label_clamp);
336 temp = def;
337 }
338
339 bool is_clamp()
340 {
341 return label & label_clamp;
342 }
343
344 void set_clamp_success(Instruction* clamp_instr)
345 {
346 add_label(label_clamp_success);
347 instr = clamp_instr;
348 }
349
350 bool is_clamp_success()
351 {
352 return label & label_clamp_success;
353 }
354
355 void set_undefined()
356 {
357 add_label(label_undefined);
358 }
359
360 bool is_undefined()
361 {
362 return label & label_undefined;
363 }
364
365 void set_vcc(Temp vcc)
366 {
367 add_label(label_vcc);
368 temp = vcc;
369 }
370
371 bool is_vcc()
372 {
373 return label & label_vcc;
374 }
375
376 void set_b2f(Temp val)
377 {
378 add_label(label_b2f);
379 temp = val;
380 }
381
382 bool is_b2f()
383 {
384 return label & label_b2f;
385 }
386
387 void set_add_sub(Instruction *add_sub_instr)
388 {
389 add_label(label_add_sub);
390 instr = add_sub_instr;
391 }
392
393 bool is_add_sub()
394 {
395 return label & label_add_sub;
396 }
397
398 void set_bitwise(Instruction *bitwise_instr)
399 {
400 add_label(label_bitwise);
401 instr = bitwise_instr;
402 }
403
404 bool is_bitwise()
405 {
406 return label & label_bitwise;
407 }
408
409 void set_uniform_bitwise()
410 {
411 add_label(label_uniform_bitwise);
412 }
413
414 bool is_uniform_bitwise()
415 {
416 return label & label_uniform_bitwise;
417 }
418
419 void set_minmax(Instruction *minmax_instr)
420 {
421 add_label(label_minmax);
422 instr = minmax_instr;
423 }
424
425 bool is_minmax()
426 {
427 return label & label_minmax;
428 }
429
430 void set_fcmp(Instruction *fcmp_instr)
431 {
432 add_label(label_fcmp);
433 instr = fcmp_instr;
434 }
435
436 bool is_fcmp()
437 {
438 return label & label_fcmp;
439 }
440
441 void set_scc_needed()
442 {
443 add_label(label_scc_needed);
444 }
445
446 bool is_scc_needed()
447 {
448 return label & label_scc_needed;
449 }
450
451 void set_scc_invert(Temp scc_inv)
452 {
453 add_label(label_scc_invert);
454 temp = scc_inv;
455 }
456
457 bool is_scc_invert()
458 {
459 return label & label_scc_invert;
460 }
461
462 void set_uniform_bool(Temp uniform_bool)
463 {
464 add_label(label_uniform_bool);
465 temp = uniform_bool;
466 }
467
468 bool is_uniform_bool()
469 {
470 return label & label_uniform_bool;
471 }
472
473 void set_vcc_hint()
474 {
475 add_label(label_vcc_hint);
476 }
477
478 bool is_vcc_hint()
479 {
480 return label & label_vcc_hint;
481 }
482
483 void set_b2i(Temp val)
484 {
485 add_label(label_b2i);
486 temp = val;
487 }
488
489 bool is_b2i()
490 {
491 return label & label_b2i;
492 }
493
494 };
495
496 struct opt_ctx {
497 Program* program;
498 std::vector<aco_ptr<Instruction>> instructions;
499 ssa_info* info;
500 std::pair<uint32_t,Temp> last_literal;
501 std::vector<mad_info> mad_infos;
502 std::vector<uint16_t> uses;
503 };
504
505 bool can_swap_operands(aco_ptr<Instruction>& instr)
506 {
507 if (instr->operands[0].isConstant() ||
508 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
509 return false;
510
511 switch (instr->opcode) {
512 case aco_opcode::v_add_f32:
513 case aco_opcode::v_mul_f32:
514 case aco_opcode::v_or_b32:
515 case aco_opcode::v_and_b32:
516 case aco_opcode::v_xor_b32:
517 case aco_opcode::v_max_f32:
518 case aco_opcode::v_min_f32:
519 case aco_opcode::v_max_i32:
520 case aco_opcode::v_min_i32:
521 case aco_opcode::v_max_u32:
522 case aco_opcode::v_min_u32:
523 case aco_opcode::v_cmp_eq_f32:
524 case aco_opcode::v_cmp_lg_f32:
525 return true;
526 case aco_opcode::v_sub_f32:
527 instr->opcode = aco_opcode::v_subrev_f32;
528 return true;
529 case aco_opcode::v_cmp_lt_f32:
530 instr->opcode = aco_opcode::v_cmp_gt_f32;
531 return true;
532 case aco_opcode::v_cmp_ge_f32:
533 instr->opcode = aco_opcode::v_cmp_le_f32;
534 return true;
535 case aco_opcode::v_cmp_lt_i32:
536 instr->opcode = aco_opcode::v_cmp_gt_i32;
537 return true;
538 default:
539 return false;
540 }
541 }
542
543 bool can_use_VOP3(opt_ctx& ctx, const aco_ptr<Instruction>& instr)
544 {
545 if (instr->isVOP3())
546 return true;
547
548 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
549 return false;
550
551 if (instr->isDPP() || instr->isSDWA())
552 return false;
553
554 return instr->opcode != aco_opcode::v_madmk_f32 &&
555 instr->opcode != aco_opcode::v_madak_f32 &&
556 instr->opcode != aco_opcode::v_madmk_f16 &&
557 instr->opcode != aco_opcode::v_madak_f16 &&
558 instr->opcode != aco_opcode::v_fmamk_f32 &&
559 instr->opcode != aco_opcode::v_fmaak_f32 &&
560 instr->opcode != aco_opcode::v_fmamk_f16 &&
561 instr->opcode != aco_opcode::v_fmaak_f16 &&
562 instr->opcode != aco_opcode::v_readlane_b32 &&
563 instr->opcode != aco_opcode::v_writelane_b32 &&
564 instr->opcode != aco_opcode::v_readfirstlane_b32;
565 }
566
567 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
568 {
569 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
570 instr->opcode != aco_opcode::v_readlane_b32 &&
571 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
572 instr->opcode != aco_opcode::v_writelane_b32 &&
573 instr->opcode != aco_opcode::v_writelane_b32_e64;
574 }
575
576 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
577 {
578 if (instr->isVOP3())
579 return;
580
581 aco_ptr<Instruction> tmp = std::move(instr);
582 Format format = asVOP3(tmp->format);
583 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
584 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
585 for (unsigned i = 0; i < instr->definitions.size(); i++) {
586 instr->definitions[i] = tmp->definitions[i];
587 if (instr->definitions[i].isTemp()) {
588 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
589 if (info.label & instr_labels && info.instr == tmp.get())
590 info.instr = instr.get();
591 }
592 }
593 }
594
595 /* only covers special cases */
596 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
597 {
598 switch (opcode) {
599 case aco_opcode::v_interp_p2_f32:
600 case aco_opcode::v_mac_f32:
601 case aco_opcode::v_writelane_b32:
602 case aco_opcode::v_writelane_b32_e64:
603 case aco_opcode::v_cndmask_b32:
604 return operand != 2;
605 case aco_opcode::s_addk_i32:
606 case aco_opcode::s_mulk_i32:
607 case aco_opcode::p_wqm:
608 case aco_opcode::p_extract_vector:
609 case aco_opcode::p_split_vector:
610 case aco_opcode::v_readlane_b32:
611 case aco_opcode::v_readlane_b32_e64:
612 case aco_opcode::v_readfirstlane_b32:
613 return operand != 0;
614 default:
615 return true;
616 }
617 }
618
619 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
620 {
621 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
622 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
623 return operand != 1;
624 return true;
625 }
626
627 /* check constant bus and literal limitations */
628 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
629 {
630 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
631 Operand literal32(s1);
632 Operand literal64(s2);
633 unsigned num_sgprs = 0;
634 unsigned sgpr[] = {0, 0};
635
636 for (unsigned i = 0; i < num_operands; i++) {
637 Operand op = operands[i];
638
639 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
640 /* two reads of the same SGPR count as 1 to the limit */
641 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
642 if (num_sgprs < 2)
643 sgpr[num_sgprs++] = op.tempId();
644 limit--;
645 if (limit < 0)
646 return false;
647 }
648 } else if (op.isLiteral()) {
649 if (ctx.program->chip_class < GFX10)
650 return false;
651
652 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
653 return false;
654 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
655 return false;
656
657 /* Any number of 32-bit literals counts as only 1 to the limit. Same
658 * (but separately) for 64-bit literals. */
659 if (op.size() == 1 && literal32.isUndefined()) {
660 limit--;
661 literal32 = op;
662 } else if (op.size() == 2 && literal64.isUndefined()) {
663 limit--;
664 literal64 = op;
665 }
666
667 if (limit < 0)
668 return false;
669 }
670 }
671
672 return true;
673 }
674
675 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
676 {
677 Operand op = instr->operands[op_index];
678
679 if (!op.isTemp())
680 return false;
681 Temp tmp = op.getTemp();
682 if (!ctx.info[tmp.id()].is_add_sub())
683 return false;
684
685 Instruction *add_instr = ctx.info[tmp.id()].instr;
686
687 switch (add_instr->opcode) {
688 case aco_opcode::v_add_u32:
689 case aco_opcode::v_add_co_u32:
690 case aco_opcode::v_add_co_u32_e64:
691 case aco_opcode::s_add_i32:
692 case aco_opcode::s_add_u32:
693 break;
694 default:
695 return false;
696 }
697
698 if (add_instr->usesModifiers())
699 return false;
700
701 for (unsigned i = 0; i < 2; i++) {
702 if (add_instr->operands[i].isConstant()) {
703 *offset = add_instr->operands[i].constantValue();
704 } else if (add_instr->operands[i].isTemp() &&
705 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) {
706 *offset = ctx.info[add_instr->operands[i].tempId()].val;
707 } else {
708 continue;
709 }
710 if (!add_instr->operands[!i].isTemp())
711 continue;
712
713 uint32_t offset2 = 0;
714 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
715 *offset += offset2;
716 } else {
717 *base = add_instr->operands[!i].getTemp();
718 }
719 return true;
720 }
721
722 return false;
723 }
724
725 unsigned get_operand_size(aco_ptr<Instruction>& instr, unsigned index)
726 {
727 if (instr->format == Format::PSEUDO)
728 return instr->operands[index].bytes() * 8u;
729 else if (instr->opcode == aco_opcode::v_mad_u64_u32 || instr->opcode == aco_opcode::v_mad_i64_i32)
730 return index == 2 ? 64 : 32;
731 else if (instr->isVALU() || instr->isSALU())
732 return instr_info.operand_size[(int)instr->opcode];
733 else
734 return 0;
735 }
736
737 Operand get_constant_op(opt_ctx &ctx, ssa_info info, uint32_t bits)
738 {
739 if (bits == 8)
740 return Operand((uint8_t)info.val);
741 if (bits == 16)
742 return Operand((uint16_t)info.val);
743 // TODO: this functions shouldn't be needed if we store Operand instead of value.
744 Operand op(info.val, bits == 64);
745 if (info.is_literal(32) && info.val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
746 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
747 return op;
748 }
749
750 bool fixed_to_exec(Operand op)
751 {
752 return op.isFixed() && op.physReg() == exec;
753 }
754
755 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
756 {
757 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
758 ASSERTED bool all_const = false;
759 for (Operand& op : instr->operands)
760 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal(32));
761 perfwarn(all_const, "All instruction operands are constant", instr.get());
762 }
763
764 for (unsigned i = 0; i < instr->operands.size(); i++)
765 {
766 if (!instr->operands[i].isTemp())
767 continue;
768
769 ssa_info info = ctx.info[instr->operands[i].tempId()];
770 /* propagate undef */
771 if (info.is_undefined() && is_phi(instr))
772 instr->operands[i] = Operand(instr->operands[i].regClass());
773 /* propagate reg->reg of same type */
774 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
775 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
776 info = ctx.info[info.temp.id()];
777 }
778
779 /* SALU / PSEUDO: propagate inline constants */
780 if (instr->isSALU() || instr->format == Format::PSEUDO) {
781 bool is_subdword = false;
782 // TODO: optimize SGPR propagation for subdword pseudo instructions on gfx9+
783 if (instr->format == Format::PSEUDO) {
784 is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
785 [] (const Definition& def) { return def.regClass().is_subdword();});
786 is_subdword = is_subdword || std::any_of(instr->operands.begin(), instr->operands.end(),
787 [] (const Operand& op) { return op.hasRegClass() && op.regClass().is_subdword();});
788 if (is_subdword && ctx.program->chip_class < GFX9)
789 continue;
790 }
791
792 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
793 instr->operands[i].setTemp(info.temp);
794 info = ctx.info[info.temp.id()];
795 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
796 /* propagate vgpr if it can take it */
797 switch (instr->opcode) {
798 case aco_opcode::p_create_vector:
799 case aco_opcode::p_split_vector:
800 case aco_opcode::p_extract_vector:
801 case aco_opcode::p_phi: {
802 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
803 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
804 if (all_vgpr) {
805 instr->operands[i] = Operand(info.temp);
806 info = ctx.info[info.temp.id()];
807 }
808 break;
809 }
810 default:
811 break;
812 }
813 }
814 unsigned bits = get_operand_size(instr, i);
815 if ((info.is_constant(bits) || (!is_subdword && info.is_literal(bits) && instr->format == Format::PSEUDO)) &&
816 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
817 instr->operands[i] = get_constant_op(ctx, info, bits);
818 continue;
819 }
820 }
821
822 /* VALU: propagate neg, abs & inline constants */
823 else if (instr->isVALU()) {
824 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
825 instr->operands[i].setTemp(info.temp);
826 info = ctx.info[info.temp.id()];
827 }
828
829 /* for instructions other than v_cndmask_b32, the size of the instruction should match the operand size */
830 unsigned can_use_mod = instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4;
831 can_use_mod = can_use_mod && instr_info.can_use_input_modifiers[(int)instr->opcode];
832
833 if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
834 if (!instr->isDPP())
835 to_VOP3(ctx, instr);
836 instr->operands[i] = Operand(info.temp);
837 if (instr->isDPP())
838 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
839 else
840 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
841 }
842 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
843 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
844 instr->operands[i].setTemp(info.temp);
845 continue;
846 } else if (info.is_neg() && instr->opcode == aco_opcode::v_add_f16) {
847 instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16;
848 instr->operands[i].setTemp(info.temp);
849 continue;
850 } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
851 if (!instr->isDPP())
852 to_VOP3(ctx, instr);
853 instr->operands[i].setTemp(info.temp);
854 if (instr->isDPP())
855 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
856 else
857 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
858 continue;
859 }
860 unsigned bits = get_operand_size(instr, i);
861 if (info.is_constant(bits) && alu_can_accept_constant(instr->opcode, i)) {
862 Operand op = get_constant_op(ctx, info, bits);
863 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
864 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
865 instr->operands[i] = op;
866 continue;
867 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
868 instr->operands[i] = instr->operands[0];
869 instr->operands[0] = op;
870 continue;
871 } else if (can_use_VOP3(ctx, instr)) {
872 to_VOP3(ctx, instr);
873 instr->operands[i] = op;
874 continue;
875 }
876 }
877 }
878
879 /* MUBUF: propagate constants and combine additions */
880 else if (instr->format == Format::MUBUF) {
881 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
882 Temp base;
883 uint32_t offset;
884 while (info.is_temp())
885 info = ctx.info[info.temp.id()];
886
887 if (mubuf->offen && i == 1 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
888 assert(!mubuf->idxen);
889 instr->operands[1] = Operand(v1);
890 mubuf->offset += info.val;
891 mubuf->offen = false;
892 continue;
893 } else if (i == 2 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
894 instr->operands[2] = Operand((uint32_t) 0);
895 mubuf->offset += info.val;
896 continue;
897 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
898 assert(!mubuf->idxen);
899 instr->operands[1].setTemp(base);
900 mubuf->offset += offset;
901 continue;
902 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
903 instr->operands[i].setTemp(base);
904 mubuf->offset += offset;
905 continue;
906 }
907 }
908
909 /* DS: combine additions */
910 else if (instr->format == Format::DS) {
911
912 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
913 Temp base;
914 uint32_t offset;
915 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
916 if (has_usable_ds_offset &&
917 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) &&
918 base.regClass() == instr->operands[i].regClass() &&
919 instr->opcode != aco_opcode::ds_swizzle_b32) {
920 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
921 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
922 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
923 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
924
925 if ((offset & mask) == 0 &&
926 ds->offset0 + (offset >> shifts) <= 255 &&
927 ds->offset1 + (offset >> shifts) <= 255) {
928 instr->operands[i].setTemp(base);
929 ds->offset0 += offset >> shifts;
930 ds->offset1 += offset >> shifts;
931 }
932 } else {
933 if (ds->offset0 + offset <= 65535) {
934 instr->operands[i].setTemp(base);
935 ds->offset0 += offset;
936 }
937 }
938 }
939 }
940
941 /* SMEM: propagate constants and combine additions */
942 else if (instr->format == Format::SMEM) {
943
944 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
945 Temp base;
946 uint32_t offset;
947 if (i == 1 && info.is_constant_or_literal(32) &&
948 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
949 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
950 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
951 instr->operands[i] = Operand(info.val);
952 continue;
953 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
954 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
955 if (soe &&
956 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal(32) ||
957 ctx.info[smem->operands.back().tempId()].val != 0)) {
958 continue;
959 }
960 if (soe) {
961 smem->operands[1] = Operand(offset);
962 smem->operands.back() = Operand(base);
963 } else {
964 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
965 new_instr->operands[0] = smem->operands[0];
966 new_instr->operands[1] = Operand(offset);
967 if (smem->definitions.empty())
968 new_instr->operands[2] = smem->operands[2];
969 new_instr->operands.back() = Operand(base);
970 if (!smem->definitions.empty())
971 new_instr->definitions[0] = smem->definitions[0];
972 new_instr->can_reorder = smem->can_reorder;
973 new_instr->barrier = smem->barrier;
974 new_instr->glc = smem->glc;
975 new_instr->dlc = smem->dlc;
976 new_instr->nv = smem->nv;
977 new_instr->disable_wqm = smem->disable_wqm;
978 instr.reset(new_instr);
979 smem = static_cast<SMEM_instruction *>(instr.get());
980 }
981 continue;
982 }
983 }
984
985 else if (instr->format == Format::PSEUDO_BRANCH) {
986 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
987 /* Flip the branch instruction to get rid of the scc_invert instruction */
988 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
989 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
990 }
991 }
992 }
993
994 /* if this instruction doesn't define anything, return */
995 if (instr->definitions.empty())
996 return;
997
998 switch (instr->opcode) {
999 case aco_opcode::p_create_vector: {
1000 bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() &&
1001 instr->operands[0].regClass() == instr->definitions[0].regClass();
1002 if (copy_prop) {
1003 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1004 break;
1005 }
1006
1007 unsigned num_ops = instr->operands.size();
1008 for (const Operand& op : instr->operands) {
1009 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
1010 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
1011 }
1012 if (num_ops != instr->operands.size()) {
1013 aco_ptr<Instruction> old_vec = std::move(instr);
1014 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
1015 instr->definitions[0] = old_vec->definitions[0];
1016 unsigned k = 0;
1017 for (Operand& old_op : old_vec->operands) {
1018 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
1019 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
1020 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
1021 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
1022 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
1023 op.setTemp(ctx.info[op.tempId()].temp);
1024 instr->operands[k++] = op;
1025 }
1026 } else {
1027 instr->operands[k++] = old_op;
1028 }
1029 }
1030 assert(k == num_ops);
1031 }
1032
1033 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
1034 break;
1035 }
1036 case aco_opcode::p_split_vector: {
1037 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1038
1039 if (info.is_constant_or_literal(32)) {
1040 uint32_t val = info.val;
1041 for (Definition def : instr->definitions) {
1042 uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u);
1043 ctx.info[def.tempId()].set_constant(ctx.program->chip_class, val & mask);
1044 val >>= def.bytes() * 8u;
1045 }
1046 break;
1047 } else if (!info.is_vec()) {
1048 break;
1049 }
1050
1051 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
1052 unsigned split_offset = 0;
1053 unsigned vec_offset = 0;
1054 unsigned vec_index = 0;
1055 for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
1056 while (vec_offset < split_offset && vec_index < vec->operands.size())
1057 vec_offset += vec->operands[vec_index++].bytes();
1058
1059 if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
1060 continue;
1061
1062 Operand vec_op = vec->operands[vec_index];
1063 if (vec_op.isConstant()) {
1064 ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->chip_class, vec_op.constantValue64());
1065 } else if (vec_op.isUndefined()) {
1066 ctx.info[instr->definitions[i].tempId()].set_undefined();
1067 } else {
1068 assert(vec_op.isTemp());
1069 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
1070 }
1071 }
1072 break;
1073 }
1074 case aco_opcode::p_extract_vector: { /* mov */
1075 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1076 const unsigned index = instr->operands[1].constantValue();
1077 const unsigned dst_offset = index * instr->definitions[0].bytes();
1078
1079 if (info.is_constant_or_literal(32)) {
1080 uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u);
1081 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, (info.val >> (dst_offset * 8u)) & mask);
1082 break;
1083 } else if (!info.is_vec()) {
1084 break;
1085 }
1086
1087 /* check if we index directly into a vector element */
1088 Instruction* vec = info.instr;
1089 unsigned offset = 0;
1090
1091 for (const Operand& op : vec->operands) {
1092 if (offset < dst_offset) {
1093 offset += op.bytes();
1094 continue;
1095 } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
1096 break;
1097 }
1098
1099 /* convert this extract into a copy instruction */
1100 instr->opcode = aco_opcode::p_parallelcopy;
1101 instr->operands.pop_back();
1102 instr->operands[0] = op;
1103
1104 if (op.isConstant()) {
1105 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, op.constantValue64());
1106 } else if (op.isUndefined()) {
1107 ctx.info[instr->definitions[0].tempId()].set_undefined();
1108 } else {
1109 assert(op.isTemp());
1110 ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
1111 }
1112 break;
1113 }
1114 break;
1115 }
1116 case aco_opcode::s_mov_b32: /* propagate */
1117 case aco_opcode::s_mov_b64:
1118 case aco_opcode::v_mov_b32:
1119 case aco_opcode::p_as_uniform:
1120 if (instr->definitions[0].isFixed()) {
1121 /* don't copy-propagate copies into fixed registers */
1122 } else if (instr->usesModifiers()) {
1123 // TODO
1124 } else if (instr->operands[0].isConstant()) {
1125 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, instr->operands[0].constantValue64());
1126 } else if (instr->operands[0].isTemp()) {
1127 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1128 } else {
1129 assert(instr->operands[0].isFixed());
1130 }
1131 break;
1132 case aco_opcode::p_is_helper:
1133 if (!ctx.program->needs_wqm)
1134 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, 0u);
1135 break;
1136 case aco_opcode::s_movk_i32: {
1137 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
1138 v = v & 0x8000 ? (v | 0xffff0000) : v;
1139 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1140 break;
1141 }
1142 case aco_opcode::v_bfrev_b32:
1143 case aco_opcode::s_brev_b32: {
1144 if (instr->operands[0].isConstant()) {
1145 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
1146 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1147 }
1148 break;
1149 }
1150 case aco_opcode::s_bfm_b32: {
1151 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
1152 unsigned size = instr->operands[0].constantValue() & 0x1f;
1153 unsigned start = instr->operands[1].constantValue() & 0x1f;
1154 uint32_t v = ((1u << size) - 1u) << start;
1155 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1156 }
1157 break;
1158 }
1159 case aco_opcode::v_mul_f16:
1160 case aco_opcode::v_mul_f32: { /* omod */
1161 /* TODO: try to move the negate/abs modifier to the consumer instead */
1162 if (instr->usesModifiers())
1163 break;
1164
1165 bool fp16 = instr->opcode == aco_opcode::v_mul_f16;
1166
1167 for (unsigned i = 0; i < 2; i++) {
1168 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1169 if (instr->operands[!i].constantValue() == (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */
1170 ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
1171 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */
1172 ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
1173 } else if (instr->operands[!i].constantValue() == (fp16 ? 0xb800 : 0x3f000000)) { /* 0.5 */
1174 ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
1175 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x3c00 : 0x3f800000) &&
1176 !(fp16 ? block.fp_mode.must_flush_denorms16_64 : block.fp_mode.must_flush_denorms32)) { /* 1.0 */
1177 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1178 } else {
1179 continue;
1180 }
1181 break;
1182 }
1183 }
1184 break;
1185 }
1186 case aco_opcode::v_and_b32: { /* abs */
1187 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1188 instr->operands[1].getTemp().type() == RegType::vgpr &&
1189 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x7FFFFFFFu)) ||
1190 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x7FFFu))))
1191 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1192 else
1193 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1194 break;
1195 }
1196 case aco_opcode::v_xor_b32: { /* neg */
1197 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1198 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x80000000u)) ||
1199 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x8000u)))) {
1200 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1201 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1202 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1203 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1204 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1205 instr->opcode = aco_opcode::v_or_b32;
1206 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1207 } else {
1208 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1209 }
1210 }
1211 } else {
1212 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1213 }
1214 break;
1215 }
1216 case aco_opcode::v_med3_f16:
1217 case aco_opcode::v_med3_f32: { /* clamp */
1218 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1219 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1220 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1221 vop3->omod != 0 || vop3->opsel != 0)
1222 break;
1223
1224 unsigned idx = 0;
1225 bool found_zero = false, found_one = false;
1226 bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
1227 for (unsigned i = 0; i < 3; i++)
1228 {
1229 if (instr->operands[i].constantEquals(0))
1230 found_zero = true;
1231 else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
1232 found_one = true;
1233 else
1234 idx = i;
1235 }
1236 if (found_zero && found_one && instr->operands[idx].isTemp()) {
1237 ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
1238 }
1239 break;
1240 }
1241 case aco_opcode::v_cndmask_b32:
1242 if (instr->operands[0].constantEquals(0) &&
1243 instr->operands[1].constantEquals(0xFFFFFFFF))
1244 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1245 else if (instr->operands[0].constantEquals(0) &&
1246 instr->operands[1].constantEquals(0x3f800000u))
1247 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1248 else if (instr->operands[0].constantEquals(0) &&
1249 instr->operands[1].constantEquals(1))
1250 ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp());
1251
1252 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1253 break;
1254 case aco_opcode::v_cmp_lg_u32:
1255 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1256 instr->operands[0].constantEquals(0) &&
1257 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1258 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1259 break;
1260 case aco_opcode::p_phi:
1261 case aco_opcode::p_linear_phi: {
1262 /* lower_bool_phis() can create phis like this */
1263 bool all_same_temp = instr->operands[0].isTemp();
1264 /* this check is needed when moving uniform loop counters out of a divergent loop */
1265 if (all_same_temp)
1266 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1267 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1268 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1269 all_same_temp = false;
1270 }
1271 if (all_same_temp) {
1272 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1273 } else {
1274 bool all_undef = instr->operands[0].isUndefined();
1275 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1276 if (!instr->operands[i].isUndefined())
1277 all_undef = false;
1278 }
1279 if (all_undef)
1280 ctx.info[instr->definitions[0].tempId()].set_undefined();
1281 }
1282 break;
1283 }
1284 case aco_opcode::v_add_u32:
1285 case aco_opcode::v_add_co_u32:
1286 case aco_opcode::v_add_co_u32_e64:
1287 case aco_opcode::s_add_i32:
1288 case aco_opcode::s_add_u32:
1289 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1290 break;
1291 case aco_opcode::s_not_b32:
1292 case aco_opcode::s_not_b64:
1293 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1294 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1295 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1296 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1297 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1298 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1299 }
1300 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1301 break;
1302 case aco_opcode::s_and_b32:
1303 case aco_opcode::s_and_b64:
1304 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1305 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1306 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1307 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1308 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1309 break;
1310 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1311 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1312 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1313 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1314 break;
1315 }
1316 }
1317 /* fallthrough */
1318 case aco_opcode::s_or_b32:
1319 case aco_opcode::s_or_b64:
1320 case aco_opcode::s_xor_b32:
1321 case aco_opcode::s_xor_b64:
1322 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1323 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1324 })) {
1325 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1326 }
1327 /* fallthrough */
1328 case aco_opcode::s_lshl_b32:
1329 case aco_opcode::v_or_b32:
1330 case aco_opcode::v_lshlrev_b32:
1331 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1332 break;
1333 case aco_opcode::v_min_f32:
1334 case aco_opcode::v_min_f16:
1335 case aco_opcode::v_min_u32:
1336 case aco_opcode::v_min_i32:
1337 case aco_opcode::v_min_u16:
1338 case aco_opcode::v_min_i16:
1339 case aco_opcode::v_max_f32:
1340 case aco_opcode::v_max_f16:
1341 case aco_opcode::v_max_u32:
1342 case aco_opcode::v_max_i32:
1343 case aco_opcode::v_max_u16:
1344 case aco_opcode::v_max_i16:
1345 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1346 break;
1347 case aco_opcode::v_cmp_lt_f32:
1348 case aco_opcode::v_cmp_eq_f32:
1349 case aco_opcode::v_cmp_le_f32:
1350 case aco_opcode::v_cmp_gt_f32:
1351 case aco_opcode::v_cmp_lg_f32:
1352 case aco_opcode::v_cmp_ge_f32:
1353 case aco_opcode::v_cmp_o_f32:
1354 case aco_opcode::v_cmp_u_f32:
1355 case aco_opcode::v_cmp_nge_f32:
1356 case aco_opcode::v_cmp_nlg_f32:
1357 case aco_opcode::v_cmp_ngt_f32:
1358 case aco_opcode::v_cmp_nle_f32:
1359 case aco_opcode::v_cmp_neq_f32:
1360 case aco_opcode::v_cmp_nlt_f32:
1361 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1362 break;
1363 case aco_opcode::s_cselect_b64:
1364 case aco_opcode::s_cselect_b32:
1365 if (instr->operands[0].constantEquals((unsigned) -1) &&
1366 instr->operands[1].constantEquals(0)) {
1367 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1368 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1369 }
1370 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1371 /* Flip the operands to get rid of the scc_invert instruction */
1372 std::swap(instr->operands[0], instr->operands[1]);
1373 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1374 }
1375 break;
1376 case aco_opcode::p_wqm:
1377 if (instr->operands[0].isTemp() &&
1378 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1379 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1380 }
1381 break;
1382 default:
1383 break;
1384 }
1385 }
1386
1387 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1388 {
1389 *ordered = *unordered = op;
1390 switch (op) {
1391 #define CMP(ord, unord) \
1392 case aco_opcode::v_cmp_##ord##_f32:\
1393 case aco_opcode::v_cmp_n##unord##_f32:\
1394 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1395 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1396 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1397 return true;
1398 CMP(lt, /*n*/ge)
1399 CMP(eq, /*n*/lg)
1400 CMP(le, /*n*/gt)
1401 CMP(gt, /*n*/le)
1402 CMP(lg, /*n*/eq)
1403 CMP(ge, /*n*/lt)
1404 #undef CMP
1405 default:
1406 return false;
1407 }
1408 }
1409
1410 aco_opcode get_ordered(aco_opcode op)
1411 {
1412 aco_opcode ordered, unordered, inverse;
1413 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::num_opcodes;
1414 }
1415
1416 aco_opcode get_unordered(aco_opcode op)
1417 {
1418 aco_opcode ordered, unordered, inverse;
1419 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::num_opcodes;
1420 }
1421
1422 aco_opcode get_inverse(aco_opcode op)
1423 {
1424 aco_opcode ordered, unordered, inverse;
1425 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::num_opcodes;
1426 }
1427
1428 bool is_cmp(aco_opcode op)
1429 {
1430 aco_opcode ordered, unordered, inverse;
1431 return get_cmp_info(op, &ordered, &unordered, &inverse);
1432 }
1433
1434 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1435 {
1436 if (ctx.info[tmp.id()].is_temp())
1437 return ctx.info[tmp.id()].temp.id();
1438 else
1439 return tmp.id();
1440 }
1441
1442 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1443 {
1444 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1445 for (const Operand& op : instr->operands) {
1446 if (op.isTemp())
1447 ctx.uses[op.tempId()]--;
1448 }
1449 }
1450 }
1451
1452 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1453 {
1454 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1455 return nullptr;
1456 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1457 return nullptr;
1458
1459 Instruction *instr = ctx.info[op.tempId()].instr;
1460
1461 if (instr->definitions.size() == 2) {
1462 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1463 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1464 return nullptr;
1465 }
1466
1467 return instr;
1468 }
1469
1470 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1471 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1472 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1473 {
1474 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1475 return false;
1476 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1477 return false;
1478
1479 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1480
1481 bool neg[2] = {false, false};
1482 bool abs[2] = {false, false};
1483 uint8_t opsel = 0;
1484 Instruction *op_instr[2];
1485 Temp op[2];
1486
1487 for (unsigned i = 0; i < 2; i++) {
1488 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1489 if (!op_instr[i])
1490 return false;
1491
1492 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1493
1494 if (op_instr[i]->opcode != expected_cmp)
1495 return false;
1496 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1497 return false;
1498
1499 if (op_instr[i]->isVOP3()) {
1500 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1501 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1502 return false;
1503 neg[i] = vop3->neg[0];
1504 abs[i] = vop3->abs[0];
1505 opsel |= (vop3->opsel & 1) << i;
1506 }
1507
1508 Temp op0 = op_instr[i]->operands[0].getTemp();
1509 Temp op1 = op_instr[i]->operands[1].getTemp();
1510 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1511 return false;
1512
1513 op[i] = op1;
1514 }
1515
1516 if (op[1].type() == RegType::sgpr)
1517 std::swap(op[0], op[1]);
1518 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1519 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1520 return false;
1521
1522 ctx.uses[op[0].id()]++;
1523 ctx.uses[op[1].id()]++;
1524 decrease_uses(ctx, op_instr[0]);
1525 decrease_uses(ctx, op_instr[1]);
1526
1527 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1528 Instruction *new_instr;
1529 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1530 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1531 for (unsigned i = 0; i < 2; i++) {
1532 vop3->neg[i] = neg[i];
1533 vop3->abs[i] = abs[i];
1534 }
1535 vop3->opsel = opsel;
1536 new_instr = static_cast<Instruction *>(vop3);
1537 } else {
1538 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1539 }
1540 new_instr->operands[0] = Operand(op[0]);
1541 new_instr->operands[1] = Operand(op[1]);
1542 new_instr->definitions[0] = instr->definitions[0];
1543
1544 ctx.info[instr->definitions[0].tempId()].label = 0;
1545 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1546
1547 instr.reset(new_instr);
1548
1549 return true;
1550 }
1551
1552 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1553 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1554 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1555 {
1556 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1557 return false;
1558 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1559 return false;
1560
1561 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1562 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1563
1564 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1565 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1566 if (!nan_test || !cmp)
1567 return false;
1568
1569 if (cmp->opcode == expected_nan_test)
1570 std::swap(nan_test, cmp);
1571 else if (nan_test->opcode != expected_nan_test)
1572 return false;
1573
1574 if (!is_cmp(cmp->opcode))
1575 return false;
1576
1577 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1578 return false;
1579 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1580 return false;
1581
1582 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1583 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1584 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1585 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1586 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1587 return false;
1588 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1589 return false;
1590
1591 ctx.uses[cmp->operands[0].tempId()]++;
1592 ctx.uses[cmp->operands[1].tempId()]++;
1593 decrease_uses(ctx, nan_test);
1594 decrease_uses(ctx, cmp);
1595
1596 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1597 Instruction *new_instr;
1598 if (cmp->isVOP3()) {
1599 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1600 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1601 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1602 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1603 new_vop3->clamp = cmp_vop3->clamp;
1604 new_vop3->omod = cmp_vop3->omod;
1605 new_vop3->opsel = cmp_vop3->opsel;
1606 new_instr = new_vop3;
1607 } else {
1608 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1609 }
1610 new_instr->operands[0] = cmp->operands[0];
1611 new_instr->operands[1] = cmp->operands[1];
1612 new_instr->definitions[0] = instr->definitions[0];
1613
1614 ctx.info[instr->definitions[0].tempId()].label = 0;
1615 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1616
1617 instr.reset(new_instr);
1618
1619 return true;
1620 }
1621
1622 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1623 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1624 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1625 {
1626 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1627 return false;
1628 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1629 return false;
1630
1631 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1632
1633 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1634 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1635
1636 if (!nan_test || !cmp)
1637 return false;
1638
1639 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1640 if (cmp->opcode == expected_nan_test)
1641 std::swap(nan_test, cmp);
1642 else if (nan_test->opcode != expected_nan_test)
1643 return false;
1644
1645 if (!is_cmp(cmp->opcode))
1646 return false;
1647
1648 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1649 return false;
1650 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1651 return false;
1652
1653 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1654 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1655 if (prop_nan0 != prop_nan1)
1656 return false;
1657
1658 if (nan_test->isVOP3()) {
1659 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1660 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1661 return false;
1662 }
1663
1664 int constant_operand = -1;
1665 for (unsigned i = 0; i < 2; i++) {
1666 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1667 constant_operand = !i;
1668 break;
1669 }
1670 }
1671 if (constant_operand == -1)
1672 return false;
1673
1674 uint32_t constant;
1675 if (cmp->operands[constant_operand].isConstant()) {
1676 constant = cmp->operands[constant_operand].constantValue();
1677 } else if (cmp->operands[constant_operand].isTemp()) {
1678 Temp tmp = cmp->operands[constant_operand].getTemp();
1679 unsigned id = original_temp_id(ctx, tmp);
1680 if (!ctx.info[id].is_constant_or_literal(32))
1681 return false;
1682 constant = ctx.info[id].val;
1683 } else {
1684 return false;
1685 }
1686
1687 float constantf;
1688 memcpy(&constantf, &constant, 4);
1689 if (isnan(constantf))
1690 return false;
1691
1692 if (cmp->operands[0].isTemp())
1693 ctx.uses[cmp->operands[0].tempId()]++;
1694 if (cmp->operands[1].isTemp())
1695 ctx.uses[cmp->operands[1].tempId()]++;
1696 decrease_uses(ctx, nan_test);
1697 decrease_uses(ctx, cmp);
1698
1699 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1700 Instruction *new_instr;
1701 if (cmp->isVOP3()) {
1702 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1703 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1704 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1705 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1706 new_vop3->clamp = cmp_vop3->clamp;
1707 new_vop3->omod = cmp_vop3->omod;
1708 new_vop3->opsel = cmp_vop3->opsel;
1709 new_instr = new_vop3;
1710 } else {
1711 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1712 }
1713 new_instr->operands[0] = cmp->operands[0];
1714 new_instr->operands[1] = cmp->operands[1];
1715 new_instr->definitions[0] = instr->definitions[0];
1716
1717 ctx.info[instr->definitions[0].tempId()].label = 0;
1718 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1719
1720 instr.reset(new_instr);
1721
1722 return true;
1723 }
1724
1725 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1726 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1727 {
1728 if (instr->opcode != aco_opcode::s_not_b64)
1729 return false;
1730 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1731 return false;
1732 if (!instr->operands[0].isTemp())
1733 return false;
1734
1735 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1736 if (!cmp)
1737 return false;
1738
1739 aco_opcode new_opcode = get_inverse(cmp->opcode);
1740 if (new_opcode == aco_opcode::num_opcodes)
1741 return false;
1742
1743 if (cmp->operands[0].isTemp())
1744 ctx.uses[cmp->operands[0].tempId()]++;
1745 if (cmp->operands[1].isTemp())
1746 ctx.uses[cmp->operands[1].tempId()]++;
1747 decrease_uses(ctx, cmp);
1748
1749 Instruction *new_instr;
1750 if (cmp->isVOP3()) {
1751 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1752 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1753 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1754 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1755 new_vop3->clamp = cmp_vop3->clamp;
1756 new_vop3->omod = cmp_vop3->omod;
1757 new_vop3->opsel = cmp_vop3->opsel;
1758 new_instr = new_vop3;
1759 } else {
1760 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1761 }
1762 new_instr->operands[0] = cmp->operands[0];
1763 new_instr->operands[1] = cmp->operands[1];
1764 new_instr->definitions[0] = instr->definitions[0];
1765
1766 ctx.info[instr->definitions[0].tempId()].label = 0;
1767 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1768
1769 instr.reset(new_instr);
1770
1771 return true;
1772 }
1773
1774 /* op1(op2(1, 2), 0) if swap = false
1775 * op1(0, op2(1, 2)) if swap = true */
1776 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1777 Instruction* op1_instr, bool swap, const char *shuffle_str,
1778 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1779 bool *op1_clamp, uint8_t *op1_omod,
1780 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1781 {
1782 /* checks */
1783 if (op1_instr->opcode != op1)
1784 return false;
1785
1786 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1787 if (!op2_instr || op2_instr->opcode != op2)
1788 return false;
1789 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1790 return false;
1791
1792 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1793 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1794
1795 /* don't support inbetween clamp/omod */
1796 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1797 return false;
1798
1799 /* get operands and modifiers and check inbetween modifiers */
1800 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1801 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1802
1803 if (inbetween_neg)
1804 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1805 else if (op1_vop3 && op1_vop3->neg[swap])
1806 return false;
1807
1808 if (inbetween_abs)
1809 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1810 else if (op1_vop3 && op1_vop3->abs[swap])
1811 return false;
1812
1813 if (inbetween_opsel)
1814 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1815 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1816 return false;
1817
1818 int shuffle[3];
1819 shuffle[shuffle_str[0] - '0'] = 0;
1820 shuffle[shuffle_str[1] - '0'] = 1;
1821 shuffle[shuffle_str[2] - '0'] = 2;
1822
1823 operands[shuffle[0]] = op1_instr->operands[!swap];
1824 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1825 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1826 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1827 *opsel |= 1 << shuffle[0];
1828
1829 for (unsigned i = 0; i < 2; i++) {
1830 operands[shuffle[i + 1]] = op2_instr->operands[i];
1831 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1832 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1833 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1834 *opsel |= 1 << shuffle[i + 1];
1835 }
1836
1837 /* check operands */
1838 if (!check_vop3_operands(ctx, 3, operands))
1839 return false;
1840
1841 return true;
1842 }
1843
1844 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1845 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1846 bool clamp, unsigned omod)
1847 {
1848 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1849 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1850 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1851 new_instr->clamp = clamp;
1852 new_instr->omod = omod;
1853 new_instr->opsel = opsel;
1854 new_instr->operands[0] = operands[0];
1855 new_instr->operands[1] = operands[1];
1856 new_instr->operands[2] = operands[2];
1857 new_instr->definitions[0] = instr->definitions[0];
1858 ctx.info[instr->definitions[0].tempId()].label = 0;
1859
1860 instr.reset(new_instr);
1861 }
1862
1863 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1864 {
1865 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1866 (label_omod_success | label_clamp_success);
1867
1868 for (unsigned swap = 0; swap < 2; swap++) {
1869 if (!((1 << swap) & ops))
1870 continue;
1871
1872 Operand operands[3];
1873 bool neg[3], abs[3], clamp;
1874 uint8_t opsel = 0, omod = 0;
1875 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1876 instr.get(), swap, shuffle,
1877 operands, neg, abs, &opsel,
1878 &clamp, &omod, NULL, NULL, NULL)) {
1879 ctx.uses[instr->operands[swap].tempId()]--;
1880 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1881 if (omod_clamp & label_omod_success)
1882 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1883 if (omod_clamp & label_clamp_success)
1884 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1885 return true;
1886 }
1887 }
1888 return false;
1889 }
1890
1891 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
1892 {
1893 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
1894 return true;
1895
1896 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1897 (label_omod_success | label_clamp_success);
1898
1899 /* min(-max(a, b), c) -> min3(-a, -b, c) *
1900 * max(-min(a, b), c) -> max3(-a, -b, c) */
1901 for (unsigned swap = 0; swap < 2; swap++) {
1902 Operand operands[3];
1903 bool neg[3], abs[3], clamp;
1904 uint8_t opsel = 0, omod = 0;
1905 bool inbetween_neg;
1906 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
1907 instr.get(), swap, "012",
1908 operands, neg, abs, &opsel,
1909 &clamp, &omod, &inbetween_neg, NULL, NULL) &&
1910 inbetween_neg) {
1911 ctx.uses[instr->operands[swap].tempId()]--;
1912 neg[1] = true;
1913 neg[2] = true;
1914 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
1915 if (omod_clamp & label_omod_success)
1916 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1917 if (omod_clamp & label_clamp_success)
1918 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1919 return true;
1920 }
1921 }
1922 return false;
1923 }
1924
1925 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1926 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1927 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1928 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1929 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1930 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1931 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1932 {
1933 /* checks */
1934 if (!instr->operands[0].isTemp())
1935 return false;
1936 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1937 return false;
1938
1939 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1940 if (!op2_instr)
1941 return false;
1942 switch (op2_instr->opcode) {
1943 case aco_opcode::s_and_b32:
1944 case aco_opcode::s_or_b32:
1945 case aco_opcode::s_xor_b32:
1946 case aco_opcode::s_and_b64:
1947 case aco_opcode::s_or_b64:
1948 case aco_opcode::s_xor_b64:
1949 break;
1950 default:
1951 return false;
1952 }
1953
1954 /* create instruction */
1955 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1956 std::swap(instr->definitions[1], op2_instr->definitions[1]);
1957 ctx.uses[instr->operands[0].tempId()]--;
1958 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1959
1960 switch (op2_instr->opcode) {
1961 case aco_opcode::s_and_b32:
1962 op2_instr->opcode = aco_opcode::s_nand_b32;
1963 break;
1964 case aco_opcode::s_or_b32:
1965 op2_instr->opcode = aco_opcode::s_nor_b32;
1966 break;
1967 case aco_opcode::s_xor_b32:
1968 op2_instr->opcode = aco_opcode::s_xnor_b32;
1969 break;
1970 case aco_opcode::s_and_b64:
1971 op2_instr->opcode = aco_opcode::s_nand_b64;
1972 break;
1973 case aco_opcode::s_or_b64:
1974 op2_instr->opcode = aco_opcode::s_nor_b64;
1975 break;
1976 case aco_opcode::s_xor_b64:
1977 op2_instr->opcode = aco_opcode::s_xnor_b64;
1978 break;
1979 default:
1980 break;
1981 }
1982
1983 return true;
1984 }
1985
1986 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1987 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1988 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1989 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1990 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1991 {
1992 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
1993 return false;
1994
1995 for (unsigned i = 0; i < 2; i++) {
1996 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1997 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1998 continue;
1999 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
2000 continue;
2001
2002 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2003 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2004 continue;
2005
2006 ctx.uses[instr->operands[i].tempId()]--;
2007 instr->operands[0] = instr->operands[!i];
2008 instr->operands[1] = op2_instr->operands[0];
2009 ctx.info[instr->definitions[0].tempId()].label = 0;
2010
2011 switch (instr->opcode) {
2012 case aco_opcode::s_and_b32:
2013 instr->opcode = aco_opcode::s_andn2_b32;
2014 break;
2015 case aco_opcode::s_or_b32:
2016 instr->opcode = aco_opcode::s_orn2_b32;
2017 break;
2018 case aco_opcode::s_and_b64:
2019 instr->opcode = aco_opcode::s_andn2_b64;
2020 break;
2021 case aco_opcode::s_or_b64:
2022 instr->opcode = aco_opcode::s_orn2_b64;
2023 break;
2024 default:
2025 break;
2026 }
2027
2028 return true;
2029 }
2030 return false;
2031 }
2032
2033 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
2034 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2035 {
2036 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
2037 return false;
2038
2039 for (unsigned i = 0; i < 2; i++) {
2040 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
2041 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
2042 ctx.uses[op2_instr->definitions[1].tempId()])
2043 continue;
2044 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
2045 continue;
2046
2047 uint32_t shift = op2_instr->operands[1].constantValue();
2048 if (shift < 1 || shift > 4)
2049 continue;
2050
2051 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2052 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2053 continue;
2054
2055 ctx.uses[instr->operands[i].tempId()]--;
2056 instr->operands[1] = instr->operands[!i];
2057 instr->operands[0] = op2_instr->operands[0];
2058 ctx.info[instr->definitions[0].tempId()].label = 0;
2059
2060 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
2061 aco_opcode::s_lshl2_add_u32,
2062 aco_opcode::s_lshl3_add_u32,
2063 aco_opcode::s_lshl4_add_u32})[shift - 1];
2064
2065 return true;
2066 }
2067 return false;
2068 }
2069
2070 bool combine_add_sub_b2i(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode new_op, uint8_t ops)
2071 {
2072 if (instr->usesModifiers())
2073 return false;
2074
2075 for (unsigned i = 0; i < 2; i++) {
2076 if (!((1 << i) & ops))
2077 continue;
2078 if (instr->operands[i].isTemp() &&
2079 ctx.info[instr->operands[i].tempId()].is_b2i() &&
2080 ctx.uses[instr->operands[i].tempId()] == 1) {
2081
2082 aco_ptr<Instruction> new_instr;
2083 if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2084 new_instr.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 2));
2085 } else if (ctx.program->chip_class >= GFX10 ||
2086 (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) {
2087 new_instr.reset(create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOP2), 3, 2));
2088 } else {
2089 return false;
2090 }
2091 ctx.uses[instr->operands[i].tempId()]--;
2092 new_instr->definitions[0] = instr->definitions[0];
2093 new_instr->definitions[1] = instr->definitions.size() == 2 ? instr->definitions[1] :
2094 Definition(ctx.program->allocateId(), ctx.program->lane_mask);
2095 new_instr->definitions[1].setHint(vcc);
2096 new_instr->operands[0] = Operand(0u);
2097 new_instr->operands[1] = instr->operands[!i];
2098 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2099 instr = std::move(new_instr);
2100 ctx.info[instr->definitions[0].tempId()].label = 0;
2101 return true;
2102 }
2103 }
2104
2105 return false;
2106 }
2107
2108 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
2109 {
2110 switch (op) {
2111 #define MINMAX(type, gfx9) \
2112 case aco_opcode::v_min_##type:\
2113 case aco_opcode::v_max_##type:\
2114 case aco_opcode::v_med3_##type:\
2115 *min = aco_opcode::v_min_##type;\
2116 *max = aco_opcode::v_max_##type;\
2117 *med3 = aco_opcode::v_med3_##type;\
2118 *min3 = aco_opcode::v_min3_##type;\
2119 *max3 = aco_opcode::v_max3_##type;\
2120 *some_gfx9_only = gfx9;\
2121 return true;
2122 MINMAX(f32, false)
2123 MINMAX(u32, false)
2124 MINMAX(i32, false)
2125 MINMAX(f16, true)
2126 MINMAX(u16, true)
2127 MINMAX(i16, true)
2128 #undef MINMAX
2129 default:
2130 return false;
2131 }
2132 }
2133
2134 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
2135 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
2136 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
2137 aco_opcode min, aco_opcode max, aco_opcode med)
2138 {
2139 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
2140 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
2141 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
2142 aco_opcode other_op;
2143 if (instr->opcode == min)
2144 other_op = max;
2145 else if (instr->opcode == max)
2146 other_op = min;
2147 else
2148 return false;
2149
2150 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
2151 (label_omod_success | label_clamp_success);
2152
2153 for (unsigned swap = 0; swap < 2; swap++) {
2154 Operand operands[3];
2155 bool neg[3], abs[3], clamp;
2156 uint8_t opsel = 0, omod = 0;
2157 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
2158 "012", operands, neg, abs, &opsel,
2159 &clamp, &omod, NULL, NULL, NULL)) {
2160 int const0_idx = -1, const1_idx = -1;
2161 uint32_t const0 = 0, const1 = 0;
2162 for (int i = 0; i < 3; i++) {
2163 uint32_t val;
2164 if (operands[i].isConstant()) {
2165 val = operands[i].constantValue();
2166 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) {
2167 val = ctx.info[operands[i].tempId()].val;
2168 } else {
2169 continue;
2170 }
2171 if (const0_idx >= 0) {
2172 const1_idx = i;
2173 const1 = val;
2174 } else {
2175 const0_idx = i;
2176 const0 = val;
2177 }
2178 }
2179 if (const0_idx < 0 || const1_idx < 0)
2180 continue;
2181
2182 if (opsel & (1 << const0_idx))
2183 const0 >>= 16;
2184 if (opsel & (1 << const1_idx))
2185 const1 >>= 16;
2186
2187 int lower_idx = const0_idx;
2188 switch (min) {
2189 case aco_opcode::v_min_f32:
2190 case aco_opcode::v_min_f16: {
2191 float const0_f, const1_f;
2192 if (min == aco_opcode::v_min_f32) {
2193 memcpy(&const0_f, &const0, 4);
2194 memcpy(&const1_f, &const1, 4);
2195 } else {
2196 const0_f = _mesa_half_to_float(const0);
2197 const1_f = _mesa_half_to_float(const1);
2198 }
2199 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2200 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2201 if (neg[const0_idx]) const0_f = -const0_f;
2202 if (neg[const1_idx]) const1_f = -const1_f;
2203 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2204 break;
2205 }
2206 case aco_opcode::v_min_u32: {
2207 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2208 break;
2209 }
2210 case aco_opcode::v_min_u16: {
2211 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2212 break;
2213 }
2214 case aco_opcode::v_min_i32: {
2215 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2216 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2217 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2218 break;
2219 }
2220 case aco_opcode::v_min_i16: {
2221 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2222 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2223 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2224 break;
2225 }
2226 default:
2227 break;
2228 }
2229 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2230
2231 if (instr->opcode == min) {
2232 if (upper_idx != 0 || lower_idx == 0)
2233 return false;
2234 } else {
2235 if (upper_idx == 0 || lower_idx != 0)
2236 return false;
2237 }
2238
2239 ctx.uses[instr->operands[swap].tempId()]--;
2240 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2241 if (omod_clamp & label_omod_success)
2242 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2243 if (omod_clamp & label_clamp_success)
2244 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2245
2246 return true;
2247 }
2248 }
2249
2250 return false;
2251 }
2252
2253
2254 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2255 {
2256 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2257 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2258 instr->opcode == aco_opcode::v_ashrrev_i64;
2259
2260 /* find candidates and create the set of sgprs already read */
2261 unsigned sgpr_ids[2] = {0, 0};
2262 uint32_t operand_mask = 0;
2263 bool has_literal = false;
2264 for (unsigned i = 0; i < instr->operands.size(); i++) {
2265 if (instr->operands[i].isLiteral())
2266 has_literal = true;
2267 if (!instr->operands[i].isTemp())
2268 continue;
2269 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2270 if (instr->operands[i].tempId() != sgpr_ids[0])
2271 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2272 }
2273 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2274 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2275 operand_mask |= 1u << i;
2276 }
2277 unsigned max_sgprs = 1;
2278 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2279 max_sgprs = 2;
2280 if (has_literal)
2281 max_sgprs--;
2282
2283 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2284
2285 /* keep on applying sgprs until there is nothing left to be done */
2286 while (operand_mask) {
2287 uint32_t sgpr_idx = 0;
2288 uint32_t sgpr_info_id = 0;
2289 uint32_t mask = operand_mask;
2290 /* choose a sgpr */
2291 while (mask) {
2292 unsigned i = u_bit_scan(&mask);
2293 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2294 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2295 sgpr_idx = i;
2296 sgpr_info_id = instr->operands[i].tempId();
2297 }
2298 }
2299 operand_mask &= ~(1u << sgpr_idx);
2300
2301 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2302 * definitively beneficial.
2303 * TODO: this is too conservative because later the use count could be reduced to 1 */
2304 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
2305 break;
2306
2307 Temp sgpr = ctx.info[sgpr_info_id].temp;
2308 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2309 if (new_sgpr && num_sgprs >= max_sgprs)
2310 continue;
2311
2312 if (sgpr_idx == 0 || instr->isVOP3()) {
2313 instr->operands[sgpr_idx] = Operand(sgpr);
2314 } else if (can_swap_operands(instr)) {
2315 instr->operands[sgpr_idx] = instr->operands[0];
2316 instr->operands[0] = Operand(sgpr);
2317 /* swap bits using a 4-entry LUT */
2318 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2319 operand_mask = (operand_mask & ~0x3) | swapped;
2320 } else if (can_use_VOP3(ctx, instr)) {
2321 to_VOP3(ctx, instr);
2322 instr->operands[sgpr_idx] = Operand(sgpr);
2323 } else {
2324 continue;
2325 }
2326
2327 if (new_sgpr)
2328 sgpr_ids[num_sgprs++] = sgpr.id();
2329 ctx.uses[sgpr_info_id]--;
2330 ctx.uses[sgpr.id()]++;
2331 }
2332 }
2333
2334 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2335 {
2336 /* check if we could apply omod on predecessor */
2337 if (instr->opcode == aco_opcode::v_mul_f32 || instr->opcode == aco_opcode::v_mul_f16) {
2338 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
2339 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
2340 if (op0 || op1) {
2341 unsigned idx = op0 ? 0 : 1;
2342 /* omod was successfully applied */
2343 /* if the omod instruction is v_mad, we also have to change the original add */
2344 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2345 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2346 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
2347 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
2348 add_instr->definitions[0] = instr->definitions[0];
2349 }
2350
2351 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
2352 /* check if we have an additional clamp modifier */
2353 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2354 ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
2355 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
2356 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
2357 }
2358 /* change definition ssa-id of modified instruction */
2359 omod_instr->definitions[0] = instr->definitions[0];
2360
2361 /* change the definition of instr to something unused, e.g. the original omod def */
2362 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2363 ctx.uses[instr->definitions[0].tempId()] = 0;
2364 return true;
2365 }
2366 if (!ctx.info[instr->definitions[0].tempId()].label) {
2367 /* in all other cases, label this instruction as option for multiply-add */
2368 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2369 }
2370 }
2371
2372 /* check if we could apply clamp on predecessor */
2373 if (instr->opcode == aco_opcode::v_med3_f32 || instr->opcode == aco_opcode::v_med3_f16) {
2374 bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
2375 unsigned idx = 0;
2376 bool found_zero = false, found_one = false;
2377 for (unsigned i = 0; i < 3; i++)
2378 {
2379 if (instr->operands[i].constantEquals(0))
2380 found_zero = true;
2381 else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
2382 found_one = true;
2383 else
2384 idx = i;
2385 }
2386 if (found_zero && found_one && instr->operands[idx].isTemp() &&
2387 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
2388 /* clamp was successfully applied */
2389 /* if the clamp instruction is v_mad, we also have to change the original add */
2390 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2391 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2392 add_instr->definitions[0] = instr->definitions[0];
2393 }
2394 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
2395 /* change definition ssa-id of modified instruction */
2396 clamp_instr->definitions[0] = instr->definitions[0];
2397
2398 /* change the definition of instr to something unused, e.g. the original omod def */
2399 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2400 ctx.uses[instr->definitions[0].tempId()] = 0;
2401 return true;
2402 }
2403 }
2404
2405 /* omod has no effect if denormals are enabled */
2406 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2407 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2408 can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2409 bool can_use_omod = (instr->definitions[0].bytes() == 4 ? block.fp_mode.denorm32 : block.fp_mode.denorm16_64) == 0;
2410 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2411 if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
2412 to_VOP3(ctx, instr);
2413 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2414 def_info.set_omod_success(instr.get());
2415 } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
2416 to_VOP3(ctx, instr);
2417 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2418 def_info.set_omod_success(instr.get());
2419 } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
2420 to_VOP3(ctx, instr);
2421 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2422 def_info.set_omod_success(instr.get());
2423 } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
2424 to_VOP3(ctx, instr);
2425 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2426 def_info.set_clamp_success(instr.get());
2427 }
2428 }
2429
2430 return false;
2431 }
2432
2433 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2434 // this would mean that we'd have to fix the instruction uses while value propagation
2435
2436 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2437 {
2438 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2439 return;
2440
2441 if (instr->isVALU()) {
2442 if (can_apply_sgprs(instr))
2443 apply_sgprs(ctx, instr);
2444 if (apply_omod_clamp(ctx, block, instr))
2445 return;
2446 }
2447
2448 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2449 instr->definitions[0].setHint(vcc);
2450 }
2451
2452 /* TODO: There are still some peephole optimizations that could be done:
2453 * - abs(a - b) -> s_absdiff_i32
2454 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2455 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2456 * These aren't probably too interesting though.
2457 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2458 * probably more useful than the previously mentioned optimizations.
2459 * The various comparison optimizations also currently only work with 32-bit
2460 * floats. */
2461
2462 /* neg(mul(a, b)) -> mul(neg(a), b) */
2463 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2464 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2465
2466 if (!ctx.info[val.id()].is_mul())
2467 return;
2468
2469 Instruction* mul_instr = ctx.info[val.id()].instr;
2470
2471 if (mul_instr->operands[0].isLiteral())
2472 return;
2473 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2474 return;
2475
2476 /* convert to mul(neg(a), b) */
2477 ctx.uses[mul_instr->definitions[0].tempId()]--;
2478 Definition def = instr->definitions[0];
2479 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2480 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2481 instr.reset(create_instruction<VOP3A_instruction>(mul_instr->opcode, asVOP3(Format::VOP2), 2, 1));
2482 instr->operands[0] = mul_instr->operands[0];
2483 instr->operands[1] = mul_instr->operands[1];
2484 instr->definitions[0] = def;
2485 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2486 if (mul_instr->isVOP3()) {
2487 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2488 new_mul->neg[0] = mul->neg[0] && !is_abs;
2489 new_mul->neg[1] = mul->neg[1] && !is_abs;
2490 new_mul->abs[0] = mul->abs[0] || is_abs;
2491 new_mul->abs[1] = mul->abs[1] || is_abs;
2492 new_mul->omod = mul->omod;
2493 }
2494 new_mul->neg[0] ^= true;
2495 new_mul->clamp = false;
2496
2497 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2498 return;
2499 }
2500
2501 /* combine mul+add -> mad */
2502 bool mad32 = instr->opcode == aco_opcode::v_add_f32 ||
2503 instr->opcode == aco_opcode::v_sub_f32 ||
2504 instr->opcode == aco_opcode::v_subrev_f32;
2505 bool mad16 = instr->opcode == aco_opcode::v_add_f16 ||
2506 instr->opcode == aco_opcode::v_sub_f16 ||
2507 instr->opcode == aco_opcode::v_subrev_f16;
2508 if (mad16 || mad32) {
2509 bool need_fma = mad32 ? block.fp_mode.denorm32 != 0 :
2510 (block.fp_mode.denorm16_64 != 0 || ctx.program->chip_class >= GFX10);
2511 if (need_fma && instr->definitions[0].isPrecise())
2512 return;
2513 if (need_fma && mad32 && !ctx.program->has_fast_fma32)
2514 return;
2515
2516 uint32_t uses_src0 = UINT32_MAX;
2517 uint32_t uses_src1 = UINT32_MAX;
2518 Instruction* mul_instr = nullptr;
2519 unsigned add_op_idx;
2520 /* check if any of the operands is a multiplication */
2521 ssa_info *op0_info = instr->operands[0].isTemp() ? &ctx.info[instr->operands[0].tempId()] : NULL;
2522 ssa_info *op1_info = instr->operands[1].isTemp() ? &ctx.info[instr->operands[1].tempId()] : NULL;
2523 if (op0_info && op0_info->is_mul() && (!need_fma || !op0_info->instr->definitions[0].isPrecise()))
2524 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2525 if (op1_info && op1_info->is_mul() && (!need_fma || !op1_info->instr->definitions[0].isPrecise()))
2526 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2527
2528 /* find the 'best' mul instruction to combine with the add */
2529 if (uses_src0 < uses_src1) {
2530 mul_instr = op0_info->instr;
2531 add_op_idx = 1;
2532 } else if (uses_src1 < uses_src0) {
2533 mul_instr = op1_info->instr;
2534 add_op_idx = 0;
2535 } else if (uses_src0 != UINT32_MAX) {
2536 /* tiebreaker: quite random what to pick */
2537 if (op0_info->instr->operands[0].isLiteral()) {
2538 mul_instr = op1_info->instr;
2539 add_op_idx = 0;
2540 } else {
2541 mul_instr = op0_info->instr;
2542 add_op_idx = 1;
2543 }
2544 }
2545 if (mul_instr) {
2546 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2547 bool neg[3] = {false, false, false};
2548 bool abs[3] = {false, false, false};
2549 unsigned omod = 0;
2550 bool clamp = false;
2551 op[0] = mul_instr->operands[0];
2552 op[1] = mul_instr->operands[1];
2553 op[2] = instr->operands[add_op_idx];
2554 // TODO: would be better to check this before selecting a mul instr?
2555 if (!check_vop3_operands(ctx, 3, op))
2556 return;
2557
2558 if (mul_instr->isVOP3()) {
2559 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2560 neg[0] = vop3->neg[0];
2561 neg[1] = vop3->neg[1];
2562 abs[0] = vop3->abs[0];
2563 abs[1] = vop3->abs[1];
2564 /* we cannot use these modifiers between mul and add */
2565 if (vop3->clamp || vop3->omod)
2566 return;
2567 }
2568
2569 /* convert to mad */
2570 ctx.uses[mul_instr->definitions[0].tempId()]--;
2571 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2572 if (op[0].isTemp())
2573 ctx.uses[op[0].tempId()]++;
2574 if (op[1].isTemp())
2575 ctx.uses[op[1].tempId()]++;
2576 }
2577
2578 if (instr->isVOP3()) {
2579 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2580 neg[2] = vop3->neg[add_op_idx];
2581 abs[2] = vop3->abs[add_op_idx];
2582 omod = vop3->omod;
2583 clamp = vop3->clamp;
2584 /* abs of the multiplication result */
2585 if (vop3->abs[1 - add_op_idx]) {
2586 neg[0] = false;
2587 neg[1] = false;
2588 abs[0] = true;
2589 abs[1] = true;
2590 }
2591 /* neg of the multiplication result */
2592 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2593 }
2594 if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16)
2595 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2596 else if (instr->opcode == aco_opcode::v_subrev_f32 || instr->opcode == aco_opcode::v_subrev_f16)
2597 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2598
2599 aco_opcode mad_op = need_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
2600 if (mad16)
2601 mad_op = need_fma ? (ctx.program->chip_class == GFX8 ? aco_opcode::v_fma_legacy_f16 : aco_opcode::v_fma_f16) :
2602 (ctx.program->chip_class == GFX8 ? aco_opcode::v_mad_legacy_f16 : aco_opcode::v_mad_f16);
2603
2604 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(mad_op, Format::VOP3A, 3, 1)};
2605 for (unsigned i = 0; i < 3; i++)
2606 {
2607 mad->operands[i] = op[i];
2608 mad->neg[i] = neg[i];
2609 mad->abs[i] = abs[i];
2610 }
2611 mad->omod = omod;
2612 mad->clamp = clamp;
2613 mad->definitions[0] = instr->definitions[0];
2614
2615 /* mark this ssa_def to be re-checked for profitability and literals */
2616 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2617 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2618 instr.reset(mad.release());
2619 return;
2620 }
2621 }
2622 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2623 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2624 for (unsigned i = 0; i < 2; i++) {
2625 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2626 ctx.uses[instr->operands[i].tempId()] == 1 &&
2627 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2628 ctx.uses[instr->operands[i].tempId()]--;
2629 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2630
2631 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2632 new_instr->operands[0] = Operand(0u);
2633 new_instr->operands[1] = instr->operands[!i];
2634 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2635 new_instr->definitions[0] = instr->definitions[0];
2636 instr.reset(new_instr.release());
2637 ctx.info[instr->definitions[0].tempId()].label = 0;
2638 return;
2639 }
2640 }
2641 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2642 if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2643 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2644 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2645 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2646 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "120", 1 | 2)) ;
2647 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2648 } else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->chip_class >= GFX10) {
2649 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) ;
2650 else combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2);
2651 } else if (instr->opcode == aco_opcode::v_add_u32) {
2652 if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) ;
2653 else if (ctx.program->chip_class >= GFX9) {
2654 if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2655 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2656 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2657 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2658 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2659 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "120", 1 | 2)) ;
2660 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2661 }
2662 } else if (instr->opcode == aco_opcode::v_add_co_u32 ||
2663 instr->opcode == aco_opcode::v_add_co_u32_e64) {
2664 combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2);
2665 } else if (instr->opcode == aco_opcode::v_sub_u32 ||
2666 instr->opcode == aco_opcode::v_sub_co_u32 ||
2667 instr->opcode == aco_opcode::v_sub_co_u32_e64) {
2668 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2);
2669 } else if (instr->opcode == aco_opcode::v_subrev_u32 ||
2670 instr->opcode == aco_opcode::v_subrev_co_u32 ||
2671 instr->opcode == aco_opcode::v_subrev_co_u32_e64) {
2672 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1);
2673 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2674 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2675 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2676 combine_salu_lshl_add(ctx, instr);
2677 } else if (instr->opcode == aco_opcode::s_not_b32) {
2678 combine_salu_not_bitwise(ctx, instr);
2679 } else if (instr->opcode == aco_opcode::s_not_b64) {
2680 if (combine_inverse_comparison(ctx, instr)) ;
2681 else combine_salu_not_bitwise(ctx, instr);
2682 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2683 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2684 if (combine_ordering_test(ctx, instr)) ;
2685 else if (combine_comparison_ordering(ctx, instr)) ;
2686 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2687 else combine_salu_n2(ctx, instr);
2688 } else {
2689 aco_opcode min, max, min3, max3, med3;
2690 bool some_gfx9_only;
2691 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2692 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2693 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2694 else combine_clamp(ctx, instr, min, max, med3);
2695 }
2696 }
2697 }
2698
2699 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2700 {
2701 switch (instr->opcode) {
2702 case aco_opcode::s_and_b32:
2703 case aco_opcode::s_and_b64:
2704 instr->opcode = aco_opcode::s_and_b32;
2705 break;
2706 case aco_opcode::s_or_b32:
2707 case aco_opcode::s_or_b64:
2708 instr->opcode = aco_opcode::s_or_b32;
2709 break;
2710 case aco_opcode::s_xor_b32:
2711 case aco_opcode::s_xor_b64:
2712 instr->opcode = aco_opcode::s_absdiff_i32;
2713 break;
2714 default:
2715 /* Don't transform other instructions. They are very unlikely to appear here. */
2716 return false;
2717 }
2718
2719 for (Operand &op : instr->operands) {
2720 ctx.uses[op.tempId()]--;
2721
2722 if (ctx.info[op.tempId()].is_uniform_bool()) {
2723 /* Just use the uniform boolean temp. */
2724 op.setTemp(ctx.info[op.tempId()].temp);
2725 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2726 /* Use the SCC definition of the predecessor instruction.
2727 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2728 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2729 */
2730 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2731 assert(pred_instr->definitions.size() >= 2);
2732 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2733 op.setTemp(pred_instr->definitions[1].getTemp());
2734 } else {
2735 unreachable("Invalid operand on uniform bitwise instruction.");
2736 }
2737
2738 ctx.uses[op.tempId()]++;
2739 }
2740
2741 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2742 assert(instr->operands[0].regClass() == s1);
2743 assert(instr->operands[1].regClass() == s1);
2744 return true;
2745 }
2746
2747 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2748 {
2749 const uint32_t threshold = 4;
2750
2751 if (is_dead(ctx.uses, instr.get())) {
2752 instr.reset();
2753 return;
2754 }
2755
2756 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2757 if (instr->opcode == aco_opcode::p_split_vector) {
2758 unsigned num_used = 0;
2759 unsigned idx = 0;
2760 unsigned split_offset = 0;
2761 for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
2762 if (ctx.uses[instr->definitions[i].tempId()]) {
2763 num_used++;
2764 idx = i;
2765 split_offset = offset;
2766 }
2767 }
2768 bool done = false;
2769 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2770 ctx.uses[instr->operands[0].tempId()] == 1) {
2771 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2772
2773 unsigned off = 0;
2774 Operand op;
2775 for (Operand& vec_op : vec->operands) {
2776 if (off == split_offset) {
2777 op = vec_op;
2778 break;
2779 }
2780 off += vec_op.bytes();
2781 }
2782 if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
2783 ctx.uses[instr->operands[0].tempId()]--;
2784 for (Operand& vec_op : vec->operands) {
2785 if (vec_op.isTemp())
2786 ctx.uses[vec_op.tempId()]--;
2787 }
2788 if (op.isTemp())
2789 ctx.uses[op.tempId()]++;
2790
2791 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
2792 extract->operands[0] = op;
2793 extract->definitions[0] = instr->definitions[idx];
2794 instr.reset(extract.release());
2795
2796 done = true;
2797 }
2798 }
2799
2800 if (!done && num_used == 1 &&
2801 instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
2802 split_offset % instr->definitions[idx].bytes() == 0) {
2803 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2804 extract->operands[0] = instr->operands[0];
2805 extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
2806 extract->definitions[0] = instr->definitions[idx];
2807 instr.reset(extract.release());
2808 }
2809 }
2810
2811 mad_info* mad_info = NULL;
2812 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2813 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2814 /* re-check mad instructions */
2815 if (ctx.uses[mad_info->mul_temp_id]) {
2816 ctx.uses[mad_info->mul_temp_id]++;
2817 if (instr->operands[0].isTemp())
2818 ctx.uses[instr->operands[0].tempId()]--;
2819 if (instr->operands[1].isTemp())
2820 ctx.uses[instr->operands[1].tempId()]--;
2821 instr.swap(mad_info->add_instr);
2822 mad_info = NULL;
2823 }
2824 /* check literals */
2825 else if (!instr->usesModifiers()) {
2826 /* FMA can only take literals on GFX10+ */
2827 if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) &&
2828 ctx.program->chip_class < GFX10)
2829 return;
2830
2831 bool sgpr_used = false;
2832 uint32_t literal_idx = 0;
2833 uint32_t literal_uses = UINT32_MAX;
2834 for (unsigned i = 0; i < instr->operands.size(); i++)
2835 {
2836 if (instr->operands[i].isConstant() && i > 0) {
2837 literal_uses = UINT32_MAX;
2838 break;
2839 }
2840 if (!instr->operands[i].isTemp())
2841 continue;
2842 unsigned bits = get_operand_size(instr, i);
2843 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
2844 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
2845 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits)) {
2846 literal_uses = ctx.uses[instr->operands[i].tempId()];
2847 literal_idx = i;
2848 } else {
2849 literal_uses = UINT32_MAX;
2850 }
2851 sgpr_used = true;
2852 /* don't break because we still need to check constants */
2853 } else if (!sgpr_used &&
2854 ctx.info[instr->operands[i].tempId()].is_literal(bits) &&
2855 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2856 literal_uses = ctx.uses[instr->operands[i].tempId()];
2857 literal_idx = i;
2858 }
2859 }
2860
2861 /* Limit the number of literals to apply to not increase the code
2862 * size too much, but always apply literals for v_mad->v_madak
2863 * because both instructions are 64-bit and this doesn't increase
2864 * code size.
2865 * TODO: try to apply the literals earlier to lower the number of
2866 * uses below threshold
2867 */
2868 if (literal_uses < threshold || literal_idx == 2) {
2869 ctx.uses[instr->operands[literal_idx].tempId()]--;
2870 mad_info->check_literal = true;
2871 mad_info->literal_idx = literal_idx;
2872 return;
2873 }
2874 }
2875 }
2876
2877 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
2878 if (instr->format == Format::PSEUDO_BRANCH &&
2879 instr->operands.size() &&
2880 instr->operands[0].isTemp()) {
2881 ctx.info[instr->operands[0].tempId()].set_scc_needed();
2882 return;
2883 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
2884 instr->opcode == aco_opcode::s_cselect_b32) &&
2885 instr->operands[2].isTemp()) {
2886 ctx.info[instr->operands[2].tempId()].set_scc_needed();
2887 }
2888
2889 /* check for literals */
2890 if (!instr->isSALU() && !instr->isVALU())
2891 return;
2892
2893 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
2894 if (instr->definitions.size() &&
2895 ctx.uses[instr->definitions[0].tempId()] == 0 &&
2896 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
2897 bool transform_done = to_uniform_bool_instr(ctx, instr);
2898
2899 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
2900 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
2901 uint32_t def0_id = instr->definitions[0].getTemp().id();
2902 uint32_t def1_id = instr->definitions[1].getTemp().id();
2903 instr->definitions[0].setTemp(Temp(def1_id, s1));
2904 instr->definitions[1].setTemp(Temp(def0_id, s1));
2905 }
2906
2907 return;
2908 }
2909
2910 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
2911 return; /* some encodings can't ever take literals */
2912
2913 /* we do not apply the literals yet as we don't know if it is profitable */
2914 Operand current_literal(s1);
2915
2916 unsigned literal_id = 0;
2917 unsigned literal_uses = UINT32_MAX;
2918 Operand literal(s1);
2919 unsigned num_operands = 1;
2920 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
2921 num_operands = instr->operands.size();
2922 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
2923 else if (instr->isVALU() && instr->operands.size() >= 3)
2924 return;
2925
2926 unsigned sgpr_ids[2] = {0, 0};
2927 bool is_literal_sgpr = false;
2928 uint32_t mask = 0;
2929
2930 /* choose a literal to apply */
2931 for (unsigned i = 0; i < num_operands; i++) {
2932 Operand op = instr->operands[i];
2933 unsigned bits = get_operand_size(instr, i);
2934
2935 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
2936 op.tempId() != sgpr_ids[0])
2937 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
2938
2939 if (op.isLiteral()) {
2940 current_literal = op;
2941 continue;
2942 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) {
2943 continue;
2944 }
2945
2946 if (!alu_can_accept_constant(instr->opcode, i))
2947 continue;
2948
2949 if (ctx.uses[op.tempId()] < literal_uses) {
2950 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
2951 mask = 0;
2952 literal = Operand(ctx.info[op.tempId()].val);
2953 literal_uses = ctx.uses[op.tempId()];
2954 literal_id = op.tempId();
2955 }
2956
2957 mask |= (op.tempId() == literal_id) << i;
2958 }
2959
2960
2961 /* don't go over the constant bus limit */
2962 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2963 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2964 instr->opcode == aco_opcode::v_ashrrev_i64;
2965 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
2966 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2967 const_bus_limit = 2;
2968
2969 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2970 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
2971 return;
2972
2973 if (literal_id && literal_uses < threshold &&
2974 (current_literal.isUndefined() ||
2975 (current_literal.size() == literal.size() &&
2976 current_literal.constantValue() == literal.constantValue()))) {
2977 /* mark the literal to be applied */
2978 while (mask) {
2979 unsigned i = u_bit_scan(&mask);
2980 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
2981 ctx.uses[instr->operands[i].tempId()]--;
2982 }
2983 }
2984 }
2985
2986
2987 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2988 {
2989 /* Cleanup Dead Instructions */
2990 if (!instr)
2991 return;
2992
2993 /* apply literals on MAD */
2994 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2995 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2996 if (info->check_literal &&
2997 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
2998 aco_ptr<Instruction> new_mad;
2999
3000 aco_opcode new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32;
3001 if (instr->opcode == aco_opcode::v_fma_f32)
3002 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
3003 else if (instr->opcode == aco_opcode::v_mad_f16 || instr->opcode == aco_opcode::v_mad_legacy_f16)
3004 new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16;
3005 else if (instr->opcode == aco_opcode::v_fma_f16)
3006 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16;
3007
3008 new_mad.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 1));
3009 if (info->literal_idx == 2) { /* add literal -> madak */
3010 new_mad->operands[0] = instr->operands[0];
3011 new_mad->operands[1] = instr->operands[1];
3012 } else { /* mul literal -> madmk */
3013 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
3014 new_mad->operands[1] = instr->operands[2];
3015 }
3016 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
3017 new_mad->definitions[0] = instr->definitions[0];
3018 ctx.instructions.emplace_back(std::move(new_mad));
3019 return;
3020 }
3021 }
3022
3023 /* apply literals on other SALU/VALU */
3024 if (instr->isSALU() || instr->isVALU()) {
3025 for (unsigned i = 0; i < instr->operands.size(); i++) {
3026 Operand op = instr->operands[i];
3027 unsigned bits = get_operand_size(instr, i);
3028 if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) {
3029 Operand literal(ctx.info[op.tempId()].val);
3030 if (instr->isVALU() && i > 0)
3031 to_VOP3(ctx, instr);
3032 instr->operands[i] = literal;
3033 }
3034 }
3035 }
3036
3037 ctx.instructions.emplace_back(std::move(instr));
3038 }
3039
3040
3041 void optimize(Program* program)
3042 {
3043 opt_ctx ctx;
3044 ctx.program = program;
3045 std::vector<ssa_info> info(program->peekAllocationId());
3046 ctx.info = info.data();
3047
3048 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
3049 for (Block& block : program->blocks) {
3050 for (aco_ptr<Instruction>& instr : block.instructions)
3051 label_instruction(ctx, block, instr);
3052 }
3053
3054 ctx.uses = dead_code_analysis(program);
3055
3056 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
3057 for (Block& block : program->blocks) {
3058 for (aco_ptr<Instruction>& instr : block.instructions)
3059 combine_instruction(ctx, block, instr);
3060 }
3061
3062 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
3063 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
3064 Block* block = &(*it);
3065 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
3066 select_instruction(ctx, *it);
3067 }
3068
3069 /* 4. Add literals to instructions */
3070 for (Block& block : program->blocks) {
3071 ctx.instructions.clear();
3072 for (aco_ptr<Instruction>& instr : block.instructions)
3073 apply_literals(ctx, instr);
3074 block.instructions.swap(ctx.instructions);
3075 }
3076
3077 }
3078
3079 }