aco: fix p_extract_vector optimization in presence of unequally sized vector operands
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool check_literal;
57
58 mad_info(aco_ptr<Instruction> instr, uint32_t id)
59 : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
60 };
61
62 enum Label {
63 label_vec = 1 << 0,
64 label_constant = 1 << 1,
65 label_abs = 1 << 2,
66 label_neg = 1 << 3,
67 label_mul = 1 << 4,
68 label_temp = 1 << 5,
69 label_literal = 1 << 6,
70 label_mad = 1 << 7,
71 label_omod2 = 1 << 8,
72 label_omod4 = 1 << 9,
73 label_omod5 = 1 << 10,
74 label_omod_success = 1 << 11,
75 label_clamp = 1 << 12,
76 label_clamp_success = 1 << 13,
77 label_undefined = 1 << 14,
78 label_vcc = 1 << 15,
79 label_b2f = 1 << 16,
80 label_add_sub = 1 << 17,
81 label_bitwise = 1 << 18,
82 label_minmax = 1 << 19,
83 label_fcmp = 1 << 20,
84 label_uniform_bool = 1 << 21,
85 label_constant_64bit = 1 << 22,
86 label_uniform_bitwise = 1 << 23,
87 label_scc_invert = 1 << 24,
88 label_vcc_hint = 1 << 25,
89 label_scc_needed = 1 << 26,
90 };
91
92 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
93 label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
94 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
95 label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert;
96 static constexpr uint32_t val_labels = label_constant | label_constant_64bit | label_literal | label_mad;
97
98 struct ssa_info {
99 uint32_t val;
100 union {
101 Temp temp;
102 Instruction* instr;
103 };
104 uint32_t label;
105
106 ssa_info() : label(0) {}
107
108 void add_label(Label new_label)
109 {
110 /* Since all labels which use "instr" use it for the same thing
111 * (indicating the defining instruction), there is no need to clear
112 * any other instr labels. */
113 if (new_label & instr_labels)
114 label &= ~temp_labels; /* instr and temp alias */
115
116 if (new_label & temp_labels) {
117 label &= ~temp_labels;
118 label &= ~instr_labels; /* instr and temp alias */
119 }
120
121 if (new_label & val_labels)
122 label &= ~val_labels;
123
124 label |= new_label;
125 }
126
127 void set_vec(Instruction* vec)
128 {
129 add_label(label_vec);
130 instr = vec;
131 }
132
133 bool is_vec()
134 {
135 return label & label_vec;
136 }
137
138 void set_constant(uint32_t constant)
139 {
140 add_label(label_constant);
141 val = constant;
142 }
143
144 bool is_constant()
145 {
146 return label & label_constant;
147 }
148
149 void set_constant_64bit(uint32_t constant)
150 {
151 add_label(label_constant_64bit);
152 val = constant;
153 }
154
155 bool is_constant_64bit()
156 {
157 return label & label_constant_64bit;
158 }
159
160 void set_abs(Temp abs_temp)
161 {
162 add_label(label_abs);
163 temp = abs_temp;
164 }
165
166 bool is_abs()
167 {
168 return label & label_abs;
169 }
170
171 void set_neg(Temp neg_temp)
172 {
173 add_label(label_neg);
174 temp = neg_temp;
175 }
176
177 bool is_neg()
178 {
179 return label & label_neg;
180 }
181
182 void set_neg_abs(Temp neg_abs_temp)
183 {
184 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
185 temp = neg_abs_temp;
186 }
187
188 void set_mul(Instruction* mul)
189 {
190 add_label(label_mul);
191 instr = mul;
192 }
193
194 bool is_mul()
195 {
196 return label & label_mul;
197 }
198
199 void set_temp(Temp tmp)
200 {
201 add_label(label_temp);
202 temp = tmp;
203 }
204
205 bool is_temp()
206 {
207 return label & label_temp;
208 }
209
210 void set_literal(uint32_t lit)
211 {
212 add_label(label_literal);
213 val = lit;
214 }
215
216 bool is_literal()
217 {
218 return label & label_literal;
219 }
220
221 void set_mad(Instruction* mad, uint32_t mad_info_idx)
222 {
223 add_label(label_mad);
224 val = mad_info_idx;
225 instr = mad;
226 }
227
228 bool is_mad()
229 {
230 return label & label_mad;
231 }
232
233 void set_omod2(Temp def)
234 {
235 add_label(label_omod2);
236 temp = def;
237 }
238
239 bool is_omod2()
240 {
241 return label & label_omod2;
242 }
243
244 void set_omod4(Temp def)
245 {
246 add_label(label_omod4);
247 temp = def;
248 }
249
250 bool is_omod4()
251 {
252 return label & label_omod4;
253 }
254
255 void set_omod5(Temp def)
256 {
257 add_label(label_omod5);
258 temp = def;
259 }
260
261 bool is_omod5()
262 {
263 return label & label_omod5;
264 }
265
266 void set_omod_success(Instruction* omod_instr)
267 {
268 add_label(label_omod_success);
269 instr = omod_instr;
270 }
271
272 bool is_omod_success()
273 {
274 return label & label_omod_success;
275 }
276
277 void set_clamp(Temp def)
278 {
279 add_label(label_clamp);
280 temp = def;
281 }
282
283 bool is_clamp()
284 {
285 return label & label_clamp;
286 }
287
288 void set_clamp_success(Instruction* clamp_instr)
289 {
290 add_label(label_clamp_success);
291 instr = clamp_instr;
292 }
293
294 bool is_clamp_success()
295 {
296 return label & label_clamp_success;
297 }
298
299 void set_undefined()
300 {
301 add_label(label_undefined);
302 }
303
304 bool is_undefined()
305 {
306 return label & label_undefined;
307 }
308
309 void set_vcc(Temp vcc)
310 {
311 add_label(label_vcc);
312 temp = vcc;
313 }
314
315 bool is_vcc()
316 {
317 return label & label_vcc;
318 }
319
320 bool is_constant_or_literal()
321 {
322 return is_constant() || is_literal();
323 }
324
325 void set_b2f(Temp val)
326 {
327 add_label(label_b2f);
328 temp = val;
329 }
330
331 bool is_b2f()
332 {
333 return label & label_b2f;
334 }
335
336 void set_add_sub(Instruction *add_sub_instr)
337 {
338 add_label(label_add_sub);
339 instr = add_sub_instr;
340 }
341
342 bool is_add_sub()
343 {
344 return label & label_add_sub;
345 }
346
347 void set_bitwise(Instruction *bitwise_instr)
348 {
349 add_label(label_bitwise);
350 instr = bitwise_instr;
351 }
352
353 bool is_bitwise()
354 {
355 return label & label_bitwise;
356 }
357
358 void set_uniform_bitwise()
359 {
360 add_label(label_uniform_bitwise);
361 }
362
363 bool is_uniform_bitwise()
364 {
365 return label & label_uniform_bitwise;
366 }
367
368 void set_minmax(Instruction *minmax_instr)
369 {
370 add_label(label_minmax);
371 instr = minmax_instr;
372 }
373
374 bool is_minmax()
375 {
376 return label & label_minmax;
377 }
378
379 void set_fcmp(Instruction *fcmp_instr)
380 {
381 add_label(label_fcmp);
382 instr = fcmp_instr;
383 }
384
385 bool is_fcmp()
386 {
387 return label & label_fcmp;
388 }
389
390 void set_scc_needed()
391 {
392 add_label(label_scc_needed);
393 }
394
395 bool is_scc_needed()
396 {
397 return label & label_scc_needed;
398 }
399
400 void set_scc_invert(Temp scc_inv)
401 {
402 add_label(label_scc_invert);
403 temp = scc_inv;
404 }
405
406 bool is_scc_invert()
407 {
408 return label & label_scc_invert;
409 }
410
411 void set_uniform_bool(Temp uniform_bool)
412 {
413 add_label(label_uniform_bool);
414 temp = uniform_bool;
415 }
416
417 bool is_uniform_bool()
418 {
419 return label & label_uniform_bool;
420 }
421
422 void set_vcc_hint()
423 {
424 add_label(label_vcc_hint);
425 }
426
427 bool is_vcc_hint()
428 {
429 return label & label_vcc_hint;
430 }
431 };
432
433 struct opt_ctx {
434 Program* program;
435 std::vector<aco_ptr<Instruction>> instructions;
436 ssa_info* info;
437 std::pair<uint32_t,Temp> last_literal;
438 std::vector<mad_info> mad_infos;
439 std::vector<uint16_t> uses;
440 };
441
442 bool can_swap_operands(aco_ptr<Instruction>& instr)
443 {
444 if (instr->operands[0].isConstant() ||
445 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
446 return false;
447
448 switch (instr->opcode) {
449 case aco_opcode::v_add_f32:
450 case aco_opcode::v_mul_f32:
451 case aco_opcode::v_or_b32:
452 case aco_opcode::v_and_b32:
453 case aco_opcode::v_xor_b32:
454 case aco_opcode::v_max_f32:
455 case aco_opcode::v_min_f32:
456 case aco_opcode::v_max_i32:
457 case aco_opcode::v_min_i32:
458 case aco_opcode::v_max_u32:
459 case aco_opcode::v_min_u32:
460 case aco_opcode::v_cmp_eq_f32:
461 case aco_opcode::v_cmp_lg_f32:
462 return true;
463 case aco_opcode::v_sub_f32:
464 instr->opcode = aco_opcode::v_subrev_f32;
465 return true;
466 case aco_opcode::v_cmp_lt_f32:
467 instr->opcode = aco_opcode::v_cmp_gt_f32;
468 return true;
469 case aco_opcode::v_cmp_ge_f32:
470 instr->opcode = aco_opcode::v_cmp_le_f32;
471 return true;
472 case aco_opcode::v_cmp_lt_i32:
473 instr->opcode = aco_opcode::v_cmp_gt_i32;
474 return true;
475 default:
476 return false;
477 }
478 }
479
480 bool can_use_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
481 {
482 if (instr->isVOP3())
483 return true;
484
485 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
486 return false;
487
488 if (instr->isDPP() || instr->isSDWA())
489 return false;
490
491 return instr->opcode != aco_opcode::v_madmk_f32 &&
492 instr->opcode != aco_opcode::v_madak_f32 &&
493 instr->opcode != aco_opcode::v_madmk_f16 &&
494 instr->opcode != aco_opcode::v_madak_f16 &&
495 instr->opcode != aco_opcode::v_fmamk_f32 &&
496 instr->opcode != aco_opcode::v_fmaak_f32 &&
497 instr->opcode != aco_opcode::v_fmamk_f16 &&
498 instr->opcode != aco_opcode::v_fmaak_f16 &&
499 instr->opcode != aco_opcode::v_readlane_b32 &&
500 instr->opcode != aco_opcode::v_writelane_b32 &&
501 instr->opcode != aco_opcode::v_readfirstlane_b32;
502 }
503
504 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
505 {
506 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
507 instr->opcode != aco_opcode::v_readlane_b32 &&
508 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
509 instr->opcode != aco_opcode::v_writelane_b32 &&
510 instr->opcode != aco_opcode::v_writelane_b32_e64;
511 }
512
513 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
514 {
515 if (instr->isVOP3())
516 return;
517
518 aco_ptr<Instruction> tmp = std::move(instr);
519 Format format = asVOP3(tmp->format);
520 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
521 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
522 for (unsigned i = 0; i < instr->definitions.size(); i++) {
523 instr->definitions[i] = tmp->definitions[i];
524 if (instr->definitions[i].isTemp()) {
525 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
526 if (info.label & instr_labels && info.instr == tmp.get())
527 info.instr = instr.get();
528 }
529 }
530 }
531
532 /* only covers special cases */
533 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
534 {
535 switch (opcode) {
536 case aco_opcode::v_interp_p2_f32:
537 case aco_opcode::v_mac_f32:
538 case aco_opcode::v_writelane_b32:
539 case aco_opcode::v_writelane_b32_e64:
540 case aco_opcode::v_cndmask_b32:
541 return operand != 2;
542 case aco_opcode::s_addk_i32:
543 case aco_opcode::s_mulk_i32:
544 case aco_opcode::p_wqm:
545 case aco_opcode::p_extract_vector:
546 case aco_opcode::p_split_vector:
547 case aco_opcode::v_readlane_b32:
548 case aco_opcode::v_readlane_b32_e64:
549 case aco_opcode::v_readfirstlane_b32:
550 return operand != 0;
551 default:
552 return true;
553 }
554 }
555
556 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
557 {
558 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
559 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
560 return operand != 1;
561 return true;
562 }
563
564 /* check constant bus and literal limitations */
565 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
566 {
567 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
568 Operand literal32(s1);
569 Operand literal64(s2);
570 unsigned num_sgprs = 0;
571 unsigned sgpr[] = {0, 0};
572
573 for (unsigned i = 0; i < num_operands; i++) {
574 Operand op = operands[i];
575
576 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
577 /* two reads of the same SGPR count as 1 to the limit */
578 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
579 if (num_sgprs < 2)
580 sgpr[num_sgprs++] = op.tempId();
581 limit--;
582 if (limit < 0)
583 return false;
584 }
585 } else if (op.isLiteral()) {
586 if (ctx.program->chip_class < GFX10)
587 return false;
588
589 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
590 return false;
591 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
592 return false;
593
594 /* Any number of 32-bit literals counts as only 1 to the limit. Same
595 * (but separately) for 64-bit literals. */
596 if (op.size() == 1 && literal32.isUndefined()) {
597 limit--;
598 literal32 = op;
599 } else if (op.size() == 2 && literal64.isUndefined()) {
600 limit--;
601 literal64 = op;
602 }
603
604 if (limit < 0)
605 return false;
606 }
607 }
608
609 return true;
610 }
611
612 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
613 {
614 Operand op = instr->operands[op_index];
615
616 if (!op.isTemp())
617 return false;
618 Temp tmp = op.getTemp();
619 if (!ctx.info[tmp.id()].is_add_sub())
620 return false;
621
622 Instruction *add_instr = ctx.info[tmp.id()].instr;
623
624 switch (add_instr->opcode) {
625 case aco_opcode::v_add_u32:
626 case aco_opcode::v_add_co_u32:
627 case aco_opcode::v_add_co_u32_e64:
628 case aco_opcode::s_add_i32:
629 case aco_opcode::s_add_u32:
630 break;
631 default:
632 return false;
633 }
634
635 if (add_instr->usesModifiers())
636 return false;
637
638 for (unsigned i = 0; i < 2; i++) {
639 if (add_instr->operands[i].isConstant()) {
640 *offset = add_instr->operands[i].constantValue();
641 } else if (add_instr->operands[i].isTemp() &&
642 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
643 *offset = ctx.info[add_instr->operands[i].tempId()].val;
644 } else {
645 continue;
646 }
647 if (!add_instr->operands[!i].isTemp())
648 continue;
649
650 uint32_t offset2 = 0;
651 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
652 *offset += offset2;
653 } else {
654 *base = add_instr->operands[!i].getTemp();
655 }
656 return true;
657 }
658
659 return false;
660 }
661
662 Operand get_constant_op(opt_ctx &ctx, uint32_t val, bool is64bit = false)
663 {
664 // TODO: this functions shouldn't be needed if we store Operand instead of value.
665 Operand op(val, is64bit);
666 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
667 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
668 return op;
669 }
670
671 bool fixed_to_exec(Operand op)
672 {
673 return op.isFixed() && op.physReg() == exec;
674 }
675
676 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
677 {
678 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
679 ASSERTED bool all_const = false;
680 for (Operand& op : instr->operands)
681 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
682 perfwarn(all_const, "All instruction operands are constant", instr.get());
683 }
684
685 for (unsigned i = 0; i < instr->operands.size(); i++)
686 {
687 if (!instr->operands[i].isTemp())
688 continue;
689
690 ssa_info info = ctx.info[instr->operands[i].tempId()];
691 /* propagate undef */
692 if (info.is_undefined() && is_phi(instr))
693 instr->operands[i] = Operand(instr->operands[i].regClass());
694 /* propagate reg->reg of same type */
695 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
696 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
697 info = ctx.info[info.temp.id()];
698 }
699
700 /* SALU / PSEUDO: propagate inline constants */
701 if (instr->isSALU() || instr->format == Format::PSEUDO) {
702 const bool is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
703 [] (const Definition& def) { return def.regClass().is_subdword();});
704 // TODO: optimize SGPR and constant propagation for subdword pseudo instructions on gfx9+
705 if (is_subdword)
706 continue;
707
708 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
709 instr->operands[i].setTemp(info.temp);
710 info = ctx.info[info.temp.id()];
711 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
712 /* propagate vgpr if it can take it */
713 switch (instr->opcode) {
714 case aco_opcode::p_create_vector:
715 case aco_opcode::p_split_vector:
716 case aco_opcode::p_extract_vector:
717 case aco_opcode::p_phi: {
718 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
719 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
720 if (all_vgpr) {
721 instr->operands[i] = Operand(info.temp);
722 info = ctx.info[info.temp.id()];
723 }
724 break;
725 }
726 default:
727 break;
728 }
729 }
730 if ((info.is_constant() || info.is_constant_64bit() || (info.is_literal() && instr->format == Format::PSEUDO)) &&
731 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
732 instr->operands[i] = get_constant_op(ctx, info.val, info.is_constant_64bit());
733 continue;
734 }
735 }
736
737 /* VALU: propagate neg, abs & inline constants */
738 else if (instr->isVALU()) {
739 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
740 instr->operands[i].setTemp(info.temp);
741 info = ctx.info[info.temp.id()];
742 }
743 if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
744 if (!instr->isDPP())
745 to_VOP3(ctx, instr);
746 instr->operands[i] = Operand(info.temp);
747 if (instr->isDPP())
748 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
749 else
750 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
751 }
752 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
753 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
754 instr->operands[i].setTemp(info.temp);
755 continue;
756 } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
757 if (!instr->isDPP())
758 to_VOP3(ctx, instr);
759 instr->operands[i].setTemp(info.temp);
760 if (instr->isDPP())
761 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
762 else
763 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
764 continue;
765 }
766 if ((info.is_constant() || info.is_constant_64bit()) && alu_can_accept_constant(instr->opcode, i)) {
767 Operand op = get_constant_op(ctx, info.val, info.is_constant_64bit());
768 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
769 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
770 instr->operands[i] = op;
771 continue;
772 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
773 instr->operands[i] = instr->operands[0];
774 instr->operands[0] = op;
775 continue;
776 } else if (can_use_VOP3(ctx, instr)) {
777 to_VOP3(ctx, instr);
778 instr->operands[i] = op;
779 continue;
780 }
781 }
782 }
783
784 /* MUBUF: propagate constants and combine additions */
785 else if (instr->format == Format::MUBUF) {
786 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
787 Temp base;
788 uint32_t offset;
789 while (info.is_temp())
790 info = ctx.info[info.temp.id()];
791
792 if (mubuf->offen && i == 1 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
793 assert(!mubuf->idxen);
794 instr->operands[1] = Operand(v1);
795 mubuf->offset += info.val;
796 mubuf->offen = false;
797 continue;
798 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
799 instr->operands[2] = Operand((uint32_t) 0);
800 mubuf->offset += info.val;
801 continue;
802 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
803 assert(!mubuf->idxen);
804 instr->operands[1].setTemp(base);
805 mubuf->offset += offset;
806 continue;
807 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
808 instr->operands[i].setTemp(base);
809 mubuf->offset += offset;
810 continue;
811 }
812 }
813
814 /* DS: combine additions */
815 else if (instr->format == Format::DS) {
816
817 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
818 Temp base;
819 uint32_t offset;
820 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
821 if (has_usable_ds_offset &&
822 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) &&
823 base.regClass() == instr->operands[i].regClass() &&
824 instr->opcode != aco_opcode::ds_swizzle_b32) {
825 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
826 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
827 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
828 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
829
830 if ((offset & mask) == 0 &&
831 ds->offset0 + (offset >> shifts) <= 255 &&
832 ds->offset1 + (offset >> shifts) <= 255) {
833 instr->operands[i].setTemp(base);
834 ds->offset0 += offset >> shifts;
835 ds->offset1 += offset >> shifts;
836 }
837 } else {
838 if (ds->offset0 + offset <= 65535) {
839 instr->operands[i].setTemp(base);
840 ds->offset0 += offset;
841 }
842 }
843 }
844 }
845
846 /* SMEM: propagate constants and combine additions */
847 else if (instr->format == Format::SMEM) {
848
849 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
850 Temp base;
851 uint32_t offset;
852 if (i == 1 && info.is_constant_or_literal() &&
853 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
854 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
855 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
856 instr->operands[i] = Operand(info.val);
857 continue;
858 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
859 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
860 if (soe &&
861 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
862 ctx.info[smem->operands.back().tempId()].val != 0)) {
863 continue;
864 }
865 if (soe) {
866 smem->operands[1] = Operand(offset);
867 smem->operands.back() = Operand(base);
868 } else {
869 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
870 new_instr->operands[0] = smem->operands[0];
871 new_instr->operands[1] = Operand(offset);
872 if (smem->definitions.empty())
873 new_instr->operands[2] = smem->operands[2];
874 new_instr->operands.back() = Operand(base);
875 if (!smem->definitions.empty())
876 new_instr->definitions[0] = smem->definitions[0];
877 new_instr->can_reorder = smem->can_reorder;
878 new_instr->barrier = smem->barrier;
879 instr.reset(new_instr);
880 smem = static_cast<SMEM_instruction *>(instr.get());
881 }
882 continue;
883 }
884 }
885
886 else if (instr->format == Format::PSEUDO_BRANCH) {
887 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
888 /* Flip the branch instruction to get rid of the scc_invert instruction */
889 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
890 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
891 }
892 }
893 }
894
895 /* if this instruction doesn't define anything, return */
896 if (instr->definitions.empty())
897 return;
898
899 switch (instr->opcode) {
900 case aco_opcode::p_create_vector: {
901 unsigned num_ops = instr->operands.size();
902 for (const Operand& op : instr->operands) {
903 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
904 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
905 }
906 if (num_ops != instr->operands.size()) {
907 aco_ptr<Instruction> old_vec = std::move(instr);
908 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
909 instr->definitions[0] = old_vec->definitions[0];
910 unsigned k = 0;
911 for (Operand& old_op : old_vec->operands) {
912 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
913 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
914 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
915 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
916 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
917 op.setTemp(ctx.info[op.tempId()].temp);
918 instr->operands[k++] = op;
919 }
920 } else {
921 instr->operands[k++] = old_op;
922 }
923 }
924 assert(k == num_ops);
925 }
926 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
927 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
928 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
929 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
930 break;
931 }
932 case aco_opcode::p_split_vector: {
933 if (!ctx.info[instr->operands[0].tempId()].is_vec())
934 break;
935 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
936 if (instr->definitions.size() != vec->operands.size())
937 break;
938 for (unsigned i = 0; i < instr->definitions.size(); i++) {
939 Operand vec_op = vec->operands[i];
940 if (vec_op.isConstant()) {
941 if (vec_op.isLiteral())
942 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
943 else if (vec_op.size() == 1)
944 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
945 else if (vec_op.size() == 2)
946 ctx.info[instr->definitions[i].tempId()].set_constant_64bit(vec_op.constantValue());
947 } else {
948 assert(vec_op.isTemp());
949 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
950 }
951 }
952 break;
953 }
954 case aco_opcode::p_extract_vector: { /* mov */
955 if (!ctx.info[instr->operands[0].tempId()].is_vec())
956 break;
957
958 /* check if we index directly into a vector element */
959 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
960 const unsigned index = instr->operands[1].constantValue();
961 const unsigned dst_offset = index * instr->definitions[0].bytes();
962 unsigned offset = 0;
963
964 for (const Operand& op : vec->operands) {
965 if (offset < dst_offset) {
966 offset += op.bytes();
967 continue;
968 } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
969 break;
970 }
971
972 /* convert this extract into a copy instruction */
973 instr->opcode = aco_opcode::p_parallelcopy;
974 instr->operands.pop_back();
975 instr->operands[0] = op;
976
977 if (op.isConstant()) {
978 if (op.isLiteral())
979 ctx.info[instr->definitions[0].tempId()].set_literal(op.constantValue());
980 else if (op.size() == 1)
981 ctx.info[instr->definitions[0].tempId()].set_constant(op.constantValue());
982 else if (op.size() == 2)
983 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(op.constantValue());
984 } else {
985 assert(op.isTemp());
986 ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
987 }
988 break;
989 }
990 break;
991 }
992 case aco_opcode::s_mov_b32: /* propagate */
993 case aco_opcode::s_mov_b64:
994 case aco_opcode::v_mov_b32:
995 case aco_opcode::p_as_uniform:
996 if (instr->definitions[0].isFixed()) {
997 /* don't copy-propagate copies into fixed registers */
998 } else if (instr->usesModifiers()) {
999 // TODO
1000 } else if (instr->operands[0].isConstant()) {
1001 if (instr->operands[0].isLiteral())
1002 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
1003 else if (instr->operands[0].size() == 1)
1004 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
1005 else if (instr->operands[0].size() == 2)
1006 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(instr->operands[0].constantValue());
1007 } else if (instr->operands[0].isTemp()) {
1008 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1009 } else {
1010 assert(instr->operands[0].isFixed());
1011 }
1012 break;
1013 case aco_opcode::p_is_helper:
1014 if (!ctx.program->needs_wqm)
1015 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
1016 break;
1017 case aco_opcode::s_movk_i32: {
1018 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
1019 v = v & 0x8000 ? (v | 0xffff0000) : v;
1020 if (v <= 64 || v >= 0xfffffff0)
1021 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1022 else
1023 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1024 break;
1025 }
1026 case aco_opcode::v_bfrev_b32:
1027 case aco_opcode::s_brev_b32: {
1028 if (instr->operands[0].isConstant()) {
1029 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
1030 if (v <= 64 || v >= 0xfffffff0)
1031 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1032 else
1033 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1034 }
1035 break;
1036 }
1037 case aco_opcode::s_bfm_b32: {
1038 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
1039 unsigned size = instr->operands[0].constantValue() & 0x1f;
1040 unsigned start = instr->operands[1].constantValue() & 0x1f;
1041 uint32_t v = ((1u << size) - 1u) << start;
1042 if (v <= 64 || v >= 0xfffffff0)
1043 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1044 else
1045 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1046 }
1047 }
1048 case aco_opcode::v_mul_f32: { /* omod */
1049 /* TODO: try to move the negate/abs modifier to the consumer instead */
1050 if (instr->usesModifiers())
1051 break;
1052
1053 for (unsigned i = 0; i < 2; i++) {
1054 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1055 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
1056 ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
1057 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
1058 ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
1059 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
1060 ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
1061 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
1062 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
1063 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1064 } else {
1065 continue;
1066 }
1067 break;
1068 }
1069 }
1070 break;
1071 }
1072 case aco_opcode::v_and_b32: /* abs */
1073 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x7FFFFFFF) &&
1074 instr->operands[1].isTemp() && instr->operands[1].getTemp().type() == RegType::vgpr)
1075 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1076 else
1077 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1078 break;
1079 case aco_opcode::v_xor_b32: { /* neg */
1080 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
1081 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1082 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1083 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1084 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1085 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1086 instr->opcode = aco_opcode::v_or_b32;
1087 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1088 } else {
1089 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1090 }
1091 }
1092 } else {
1093 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1094 }
1095 break;
1096 }
1097 case aco_opcode::v_med3_f32: { /* clamp */
1098 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1099 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1100 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1101 vop3->omod != 0 || vop3->opsel != 0)
1102 break;
1103
1104 unsigned idx = 0;
1105 bool found_zero = false, found_one = false;
1106 for (unsigned i = 0; i < 3; i++)
1107 {
1108 if (instr->operands[i].constantEquals(0))
1109 found_zero = true;
1110 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1111 found_one = true;
1112 else
1113 idx = i;
1114 }
1115 if (found_zero && found_one && instr->operands[idx].isTemp()) {
1116 ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
1117 }
1118 break;
1119 }
1120 case aco_opcode::v_cndmask_b32:
1121 if (instr->operands[0].constantEquals(0) &&
1122 instr->operands[1].constantEquals(0xFFFFFFFF) &&
1123 instr->operands[2].isTemp())
1124 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1125 else if (instr->operands[0].constantEquals(0) &&
1126 instr->operands[1].constantEquals(0x3f800000u) &&
1127 instr->operands[2].isTemp())
1128 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1129
1130 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1131 break;
1132 case aco_opcode::v_cmp_lg_u32:
1133 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1134 instr->operands[0].constantEquals(0) &&
1135 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1136 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1137 break;
1138 case aco_opcode::p_phi:
1139 case aco_opcode::p_linear_phi: {
1140 /* lower_bool_phis() can create phis like this */
1141 bool all_same_temp = instr->operands[0].isTemp();
1142 /* this check is needed when moving uniform loop counters out of a divergent loop */
1143 if (all_same_temp)
1144 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1145 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1146 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1147 all_same_temp = false;
1148 }
1149 if (all_same_temp) {
1150 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1151 } else {
1152 bool all_undef = instr->operands[0].isUndefined();
1153 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1154 if (!instr->operands[i].isUndefined())
1155 all_undef = false;
1156 }
1157 if (all_undef)
1158 ctx.info[instr->definitions[0].tempId()].set_undefined();
1159 }
1160 break;
1161 }
1162 case aco_opcode::v_add_u32:
1163 case aco_opcode::v_add_co_u32:
1164 case aco_opcode::v_add_co_u32_e64:
1165 case aco_opcode::s_add_i32:
1166 case aco_opcode::s_add_u32:
1167 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1168 break;
1169 case aco_opcode::s_not_b32:
1170 case aco_opcode::s_not_b64:
1171 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1172 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1173 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1174 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1175 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1176 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1177 }
1178 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1179 break;
1180 case aco_opcode::s_and_b32:
1181 case aco_opcode::s_and_b64:
1182 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1183 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1184 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1185 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1186 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1187 break;
1188 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1189 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1190 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1191 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1192 break;
1193 }
1194 }
1195 /* fallthrough */
1196 case aco_opcode::s_or_b32:
1197 case aco_opcode::s_or_b64:
1198 case aco_opcode::s_xor_b32:
1199 case aco_opcode::s_xor_b64:
1200 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1201 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1202 })) {
1203 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1204 }
1205 /* fallthrough */
1206 case aco_opcode::s_lshl_b32:
1207 case aco_opcode::v_or_b32:
1208 case aco_opcode::v_lshlrev_b32:
1209 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1210 break;
1211 case aco_opcode::v_min_f32:
1212 case aco_opcode::v_min_f16:
1213 case aco_opcode::v_min_u32:
1214 case aco_opcode::v_min_i32:
1215 case aco_opcode::v_min_u16:
1216 case aco_opcode::v_min_i16:
1217 case aco_opcode::v_max_f32:
1218 case aco_opcode::v_max_f16:
1219 case aco_opcode::v_max_u32:
1220 case aco_opcode::v_max_i32:
1221 case aco_opcode::v_max_u16:
1222 case aco_opcode::v_max_i16:
1223 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1224 break;
1225 case aco_opcode::v_cmp_lt_f32:
1226 case aco_opcode::v_cmp_eq_f32:
1227 case aco_opcode::v_cmp_le_f32:
1228 case aco_opcode::v_cmp_gt_f32:
1229 case aco_opcode::v_cmp_lg_f32:
1230 case aco_opcode::v_cmp_ge_f32:
1231 case aco_opcode::v_cmp_o_f32:
1232 case aco_opcode::v_cmp_u_f32:
1233 case aco_opcode::v_cmp_nge_f32:
1234 case aco_opcode::v_cmp_nlg_f32:
1235 case aco_opcode::v_cmp_ngt_f32:
1236 case aco_opcode::v_cmp_nle_f32:
1237 case aco_opcode::v_cmp_neq_f32:
1238 case aco_opcode::v_cmp_nlt_f32:
1239 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1240 break;
1241 case aco_opcode::s_cselect_b64:
1242 case aco_opcode::s_cselect_b32:
1243 if (instr->operands[0].constantEquals((unsigned) -1) &&
1244 instr->operands[1].constantEquals(0)) {
1245 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1246 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1247 }
1248 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1249 /* Flip the operands to get rid of the scc_invert instruction */
1250 std::swap(instr->operands[0], instr->operands[1]);
1251 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1252 }
1253 break;
1254 case aco_opcode::p_wqm:
1255 if (instr->operands[0].isTemp() &&
1256 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1257 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1258 }
1259 break;
1260 default:
1261 break;
1262 }
1263 }
1264
1265 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1266 {
1267 *ordered = *unordered = op;
1268 switch (op) {
1269 #define CMP(ord, unord) \
1270 case aco_opcode::v_cmp_##ord##_f32:\
1271 case aco_opcode::v_cmp_n##unord##_f32:\
1272 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1273 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1274 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1275 return true;
1276 CMP(lt, /*n*/ge)
1277 CMP(eq, /*n*/lg)
1278 CMP(le, /*n*/gt)
1279 CMP(gt, /*n*/le)
1280 CMP(lg, /*n*/eq)
1281 CMP(ge, /*n*/lt)
1282 #undef CMP
1283 default:
1284 return false;
1285 }
1286 }
1287
1288 aco_opcode get_ordered(aco_opcode op)
1289 {
1290 aco_opcode ordered, unordered, inverse;
1291 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1292 }
1293
1294 aco_opcode get_unordered(aco_opcode op)
1295 {
1296 aco_opcode ordered, unordered, inverse;
1297 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1298 }
1299
1300 aco_opcode get_inverse(aco_opcode op)
1301 {
1302 aco_opcode ordered, unordered, inverse;
1303 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1304 }
1305
1306 bool is_cmp(aco_opcode op)
1307 {
1308 aco_opcode ordered, unordered, inverse;
1309 return get_cmp_info(op, &ordered, &unordered, &inverse);
1310 }
1311
1312 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1313 {
1314 if (ctx.info[tmp.id()].is_temp())
1315 return ctx.info[tmp.id()].temp.id();
1316 else
1317 return tmp.id();
1318 }
1319
1320 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1321 {
1322 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1323 for (const Operand& op : instr->operands) {
1324 if (op.isTemp())
1325 ctx.uses[op.tempId()]--;
1326 }
1327 }
1328 }
1329
1330 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1331 {
1332 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1333 return nullptr;
1334 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1335 return nullptr;
1336
1337 Instruction *instr = ctx.info[op.tempId()].instr;
1338
1339 if (instr->definitions.size() == 2) {
1340 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1341 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1342 return nullptr;
1343 }
1344
1345 return instr;
1346 }
1347
1348 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1349 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1350 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1351 {
1352 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1353 return false;
1354 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1355 return false;
1356
1357 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1358
1359 bool neg[2] = {false, false};
1360 bool abs[2] = {false, false};
1361 uint8_t opsel = 0;
1362 Instruction *op_instr[2];
1363 Temp op[2];
1364
1365 for (unsigned i = 0; i < 2; i++) {
1366 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1367 if (!op_instr[i])
1368 return false;
1369
1370 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1371
1372 if (op_instr[i]->opcode != expected_cmp)
1373 return false;
1374 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1375 return false;
1376
1377 if (op_instr[i]->isVOP3()) {
1378 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1379 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1380 return false;
1381 neg[i] = vop3->neg[0];
1382 abs[i] = vop3->abs[0];
1383 opsel |= (vop3->opsel & 1) << i;
1384 }
1385
1386 Temp op0 = op_instr[i]->operands[0].getTemp();
1387 Temp op1 = op_instr[i]->operands[1].getTemp();
1388 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1389 return false;
1390
1391 op[i] = op1;
1392 }
1393
1394 if (op[1].type() == RegType::sgpr)
1395 std::swap(op[0], op[1]);
1396 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1397 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1398 return false;
1399
1400 ctx.uses[op[0].id()]++;
1401 ctx.uses[op[1].id()]++;
1402 decrease_uses(ctx, op_instr[0]);
1403 decrease_uses(ctx, op_instr[1]);
1404
1405 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1406 Instruction *new_instr;
1407 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1408 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1409 for (unsigned i = 0; i < 2; i++) {
1410 vop3->neg[i] = neg[i];
1411 vop3->abs[i] = abs[i];
1412 }
1413 vop3->opsel = opsel;
1414 new_instr = static_cast<Instruction *>(vop3);
1415 } else {
1416 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1417 }
1418 new_instr->operands[0] = Operand(op[0]);
1419 new_instr->operands[1] = Operand(op[1]);
1420 new_instr->definitions[0] = instr->definitions[0];
1421
1422 ctx.info[instr->definitions[0].tempId()].label = 0;
1423 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1424
1425 instr.reset(new_instr);
1426
1427 return true;
1428 }
1429
1430 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1431 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1432 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1433 {
1434 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1435 return false;
1436 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1437 return false;
1438
1439 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1440 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1441
1442 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1443 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1444 if (!nan_test || !cmp)
1445 return false;
1446
1447 if (cmp->opcode == expected_nan_test)
1448 std::swap(nan_test, cmp);
1449 else if (nan_test->opcode != expected_nan_test)
1450 return false;
1451
1452 if (!is_cmp(cmp->opcode))
1453 return false;
1454
1455 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1456 return false;
1457 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1458 return false;
1459
1460 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1461 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1462 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1463 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1464 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1465 return false;
1466 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1467 return false;
1468
1469 ctx.uses[cmp->operands[0].tempId()]++;
1470 ctx.uses[cmp->operands[1].tempId()]++;
1471 decrease_uses(ctx, nan_test);
1472 decrease_uses(ctx, cmp);
1473
1474 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1475 Instruction *new_instr;
1476 if (cmp->isVOP3()) {
1477 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1478 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1479 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1480 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1481 new_vop3->clamp = cmp_vop3->clamp;
1482 new_vop3->omod = cmp_vop3->omod;
1483 new_vop3->opsel = cmp_vop3->opsel;
1484 new_instr = new_vop3;
1485 } else {
1486 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1487 }
1488 new_instr->operands[0] = cmp->operands[0];
1489 new_instr->operands[1] = cmp->operands[1];
1490 new_instr->definitions[0] = instr->definitions[0];
1491
1492 ctx.info[instr->definitions[0].tempId()].label = 0;
1493 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1494
1495 instr.reset(new_instr);
1496
1497 return true;
1498 }
1499
1500 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1501 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1502 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1503 {
1504 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1505 return false;
1506 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1507 return false;
1508
1509 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1510
1511 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1512 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1513
1514 if (!nan_test || !cmp)
1515 return false;
1516
1517 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1518 if (cmp->opcode == expected_nan_test)
1519 std::swap(nan_test, cmp);
1520 else if (nan_test->opcode != expected_nan_test)
1521 return false;
1522
1523 if (!is_cmp(cmp->opcode))
1524 return false;
1525
1526 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1527 return false;
1528 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1529 return false;
1530
1531 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1532 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1533 if (prop_nan0 != prop_nan1)
1534 return false;
1535
1536 if (nan_test->isVOP3()) {
1537 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1538 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1539 return false;
1540 }
1541
1542 int constant_operand = -1;
1543 for (unsigned i = 0; i < 2; i++) {
1544 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1545 constant_operand = !i;
1546 break;
1547 }
1548 }
1549 if (constant_operand == -1)
1550 return false;
1551
1552 uint32_t constant;
1553 if (cmp->operands[constant_operand].isConstant()) {
1554 constant = cmp->operands[constant_operand].constantValue();
1555 } else if (cmp->operands[constant_operand].isTemp()) {
1556 Temp tmp = cmp->operands[constant_operand].getTemp();
1557 unsigned id = original_temp_id(ctx, tmp);
1558 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1559 return false;
1560 constant = ctx.info[id].val;
1561 } else {
1562 return false;
1563 }
1564
1565 float constantf;
1566 memcpy(&constantf, &constant, 4);
1567 if (isnan(constantf))
1568 return false;
1569
1570 if (cmp->operands[0].isTemp())
1571 ctx.uses[cmp->operands[0].tempId()]++;
1572 if (cmp->operands[1].isTemp())
1573 ctx.uses[cmp->operands[1].tempId()]++;
1574 decrease_uses(ctx, nan_test);
1575 decrease_uses(ctx, cmp);
1576
1577 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1578 Instruction *new_instr;
1579 if (cmp->isVOP3()) {
1580 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1581 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1582 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1583 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1584 new_vop3->clamp = cmp_vop3->clamp;
1585 new_vop3->omod = cmp_vop3->omod;
1586 new_vop3->opsel = cmp_vop3->opsel;
1587 new_instr = new_vop3;
1588 } else {
1589 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1590 }
1591 new_instr->operands[0] = cmp->operands[0];
1592 new_instr->operands[1] = cmp->operands[1];
1593 new_instr->definitions[0] = instr->definitions[0];
1594
1595 ctx.info[instr->definitions[0].tempId()].label = 0;
1596 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1597
1598 instr.reset(new_instr);
1599
1600 return true;
1601 }
1602
1603 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1604 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1605 {
1606 if (instr->opcode != aco_opcode::s_not_b64)
1607 return false;
1608 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1609 return false;
1610 if (!instr->operands[0].isTemp())
1611 return false;
1612
1613 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1614 if (!cmp)
1615 return false;
1616
1617 aco_opcode new_opcode = get_inverse(cmp->opcode);
1618 if (new_opcode == aco_opcode::last_opcode)
1619 return false;
1620
1621 if (cmp->operands[0].isTemp())
1622 ctx.uses[cmp->operands[0].tempId()]++;
1623 if (cmp->operands[1].isTemp())
1624 ctx.uses[cmp->operands[1].tempId()]++;
1625 decrease_uses(ctx, cmp);
1626
1627 Instruction *new_instr;
1628 if (cmp->isVOP3()) {
1629 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1630 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1631 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1632 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1633 new_vop3->clamp = cmp_vop3->clamp;
1634 new_vop3->omod = cmp_vop3->omod;
1635 new_vop3->opsel = cmp_vop3->opsel;
1636 new_instr = new_vop3;
1637 } else {
1638 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1639 }
1640 new_instr->operands[0] = cmp->operands[0];
1641 new_instr->operands[1] = cmp->operands[1];
1642 new_instr->definitions[0] = instr->definitions[0];
1643
1644 ctx.info[instr->definitions[0].tempId()].label = 0;
1645 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1646
1647 instr.reset(new_instr);
1648
1649 return true;
1650 }
1651
1652 /* op1(op2(1, 2), 0) if swap = false
1653 * op1(0, op2(1, 2)) if swap = true */
1654 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1655 Instruction* op1_instr, bool swap, const char *shuffle_str,
1656 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1657 bool *op1_clamp, uint8_t *op1_omod,
1658 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1659 {
1660 /* checks */
1661 if (op1_instr->opcode != op1)
1662 return false;
1663
1664 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1665 if (!op2_instr || op2_instr->opcode != op2)
1666 return false;
1667 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1668 return false;
1669
1670 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1671 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1672
1673 /* don't support inbetween clamp/omod */
1674 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1675 return false;
1676
1677 /* get operands and modifiers and check inbetween modifiers */
1678 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1679 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1680
1681 if (inbetween_neg)
1682 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1683 else if (op1_vop3 && op1_vop3->neg[swap])
1684 return false;
1685
1686 if (inbetween_abs)
1687 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1688 else if (op1_vop3 && op1_vop3->abs[swap])
1689 return false;
1690
1691 if (inbetween_opsel)
1692 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1693 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1694 return false;
1695
1696 int shuffle[3];
1697 shuffle[shuffle_str[0] - '0'] = 0;
1698 shuffle[shuffle_str[1] - '0'] = 1;
1699 shuffle[shuffle_str[2] - '0'] = 2;
1700
1701 operands[shuffle[0]] = op1_instr->operands[!swap];
1702 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1703 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1704 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1705 *opsel |= 1 << shuffle[0];
1706
1707 for (unsigned i = 0; i < 2; i++) {
1708 operands[shuffle[i + 1]] = op2_instr->operands[i];
1709 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1710 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1711 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1712 *opsel |= 1 << shuffle[i + 1];
1713 }
1714
1715 /* check operands */
1716 if (!check_vop3_operands(ctx, 3, operands))
1717 return false;
1718
1719 return true;
1720 }
1721
1722 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1723 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1724 bool clamp, unsigned omod)
1725 {
1726 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1727 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1728 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1729 new_instr->clamp = clamp;
1730 new_instr->omod = omod;
1731 new_instr->opsel = opsel;
1732 new_instr->operands[0] = operands[0];
1733 new_instr->operands[1] = operands[1];
1734 new_instr->operands[2] = operands[2];
1735 new_instr->definitions[0] = instr->definitions[0];
1736 ctx.info[instr->definitions[0].tempId()].label = 0;
1737
1738 instr.reset(new_instr);
1739 }
1740
1741 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1742 {
1743 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1744 (label_omod_success | label_clamp_success);
1745
1746 for (unsigned swap = 0; swap < 2; swap++) {
1747 if (!((1 << swap) & ops))
1748 continue;
1749
1750 Operand operands[3];
1751 bool neg[3], abs[3], clamp;
1752 uint8_t opsel = 0, omod = 0;
1753 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1754 instr.get(), swap, shuffle,
1755 operands, neg, abs, &opsel,
1756 &clamp, &omod, NULL, NULL, NULL)) {
1757 ctx.uses[instr->operands[swap].tempId()]--;
1758 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1759 if (omod_clamp & label_omod_success)
1760 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1761 if (omod_clamp & label_clamp_success)
1762 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1763 return true;
1764 }
1765 }
1766 return false;
1767 }
1768
1769 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
1770 {
1771 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
1772 return true;
1773
1774 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1775 (label_omod_success | label_clamp_success);
1776
1777 /* min(-max(a, b), c) -> min3(-a, -b, c) *
1778 * max(-min(a, b), c) -> max3(-a, -b, c) */
1779 for (unsigned swap = 0; swap < 2; swap++) {
1780 Operand operands[3];
1781 bool neg[3], abs[3], clamp;
1782 uint8_t opsel = 0, omod = 0;
1783 bool inbetween_neg;
1784 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
1785 instr.get(), swap, "012",
1786 operands, neg, abs, &opsel,
1787 &clamp, &omod, &inbetween_neg, NULL, NULL) &&
1788 inbetween_neg) {
1789 ctx.uses[instr->operands[swap].tempId()]--;
1790 neg[1] = true;
1791 neg[2] = true;
1792 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
1793 if (omod_clamp & label_omod_success)
1794 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1795 if (omod_clamp & label_clamp_success)
1796 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1797 return true;
1798 }
1799 }
1800 return false;
1801 }
1802
1803 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1804 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1805 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1806 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1807 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1808 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1809 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1810 {
1811 /* checks */
1812 if (!instr->operands[0].isTemp())
1813 return false;
1814 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1815 return false;
1816
1817 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1818 if (!op2_instr)
1819 return false;
1820 switch (op2_instr->opcode) {
1821 case aco_opcode::s_and_b32:
1822 case aco_opcode::s_or_b32:
1823 case aco_opcode::s_xor_b32:
1824 case aco_opcode::s_and_b64:
1825 case aco_opcode::s_or_b64:
1826 case aco_opcode::s_xor_b64:
1827 break;
1828 default:
1829 return false;
1830 }
1831
1832 /* create instruction */
1833 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1834 std::swap(instr->definitions[1], op2_instr->definitions[1]);
1835 ctx.uses[instr->operands[0].tempId()]--;
1836 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1837
1838 switch (op2_instr->opcode) {
1839 case aco_opcode::s_and_b32:
1840 op2_instr->opcode = aco_opcode::s_nand_b32;
1841 break;
1842 case aco_opcode::s_or_b32:
1843 op2_instr->opcode = aco_opcode::s_nor_b32;
1844 break;
1845 case aco_opcode::s_xor_b32:
1846 op2_instr->opcode = aco_opcode::s_xnor_b32;
1847 break;
1848 case aco_opcode::s_and_b64:
1849 op2_instr->opcode = aco_opcode::s_nand_b64;
1850 break;
1851 case aco_opcode::s_or_b64:
1852 op2_instr->opcode = aco_opcode::s_nor_b64;
1853 break;
1854 case aco_opcode::s_xor_b64:
1855 op2_instr->opcode = aco_opcode::s_xnor_b64;
1856 break;
1857 default:
1858 break;
1859 }
1860
1861 return true;
1862 }
1863
1864 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1865 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1866 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1867 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1868 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1869 {
1870 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
1871 return false;
1872
1873 for (unsigned i = 0; i < 2; i++) {
1874 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1875 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1876 continue;
1877 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
1878 continue;
1879
1880 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1881 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1882 continue;
1883
1884 ctx.uses[instr->operands[i].tempId()]--;
1885 instr->operands[0] = instr->operands[!i];
1886 instr->operands[1] = op2_instr->operands[0];
1887 ctx.info[instr->definitions[0].tempId()].label = 0;
1888
1889 switch (instr->opcode) {
1890 case aco_opcode::s_and_b32:
1891 instr->opcode = aco_opcode::s_andn2_b32;
1892 break;
1893 case aco_opcode::s_or_b32:
1894 instr->opcode = aco_opcode::s_orn2_b32;
1895 break;
1896 case aco_opcode::s_and_b64:
1897 instr->opcode = aco_opcode::s_andn2_b64;
1898 break;
1899 case aco_opcode::s_or_b64:
1900 instr->opcode = aco_opcode::s_orn2_b64;
1901 break;
1902 default:
1903 break;
1904 }
1905
1906 return true;
1907 }
1908 return false;
1909 }
1910
1911 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1912 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1913 {
1914 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
1915 return false;
1916
1917 for (unsigned i = 0; i < 2; i++) {
1918 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1919 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
1920 ctx.uses[op2_instr->definitions[1].tempId()])
1921 continue;
1922 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
1923 continue;
1924
1925 uint32_t shift = op2_instr->operands[1].constantValue();
1926 if (shift < 1 || shift > 4)
1927 continue;
1928
1929 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1930 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1931 continue;
1932
1933 ctx.uses[instr->operands[i].tempId()]--;
1934 instr->operands[1] = instr->operands[!i];
1935 instr->operands[0] = op2_instr->operands[0];
1936 ctx.info[instr->definitions[0].tempId()].label = 0;
1937
1938 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1939 aco_opcode::s_lshl2_add_u32,
1940 aco_opcode::s_lshl3_add_u32,
1941 aco_opcode::s_lshl4_add_u32})[shift - 1];
1942
1943 return true;
1944 }
1945 return false;
1946 }
1947
1948 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1949 {
1950 switch (op) {
1951 #define MINMAX(type, gfx9) \
1952 case aco_opcode::v_min_##type:\
1953 case aco_opcode::v_max_##type:\
1954 case aco_opcode::v_med3_##type:\
1955 *min = aco_opcode::v_min_##type;\
1956 *max = aco_opcode::v_max_##type;\
1957 *med3 = aco_opcode::v_med3_##type;\
1958 *min3 = aco_opcode::v_min3_##type;\
1959 *max3 = aco_opcode::v_max3_##type;\
1960 *some_gfx9_only = gfx9;\
1961 return true;
1962 MINMAX(f32, false)
1963 MINMAX(u32, false)
1964 MINMAX(i32, false)
1965 MINMAX(f16, true)
1966 MINMAX(u16, true)
1967 MINMAX(i16, true)
1968 #undef MINMAX
1969 default:
1970 return false;
1971 }
1972 }
1973
1974 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1975 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1976 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1977 aco_opcode min, aco_opcode max, aco_opcode med)
1978 {
1979 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
1980 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
1981 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
1982 aco_opcode other_op;
1983 if (instr->opcode == min)
1984 other_op = max;
1985 else if (instr->opcode == max)
1986 other_op = min;
1987 else
1988 return false;
1989
1990 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1991 (label_omod_success | label_clamp_success);
1992
1993 for (unsigned swap = 0; swap < 2; swap++) {
1994 Operand operands[3];
1995 bool neg[3], abs[3], clamp;
1996 uint8_t opsel = 0, omod = 0;
1997 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1998 "012", operands, neg, abs, &opsel,
1999 &clamp, &omod, NULL, NULL, NULL)) {
2000 int const0_idx = -1, const1_idx = -1;
2001 uint32_t const0 = 0, const1 = 0;
2002 for (int i = 0; i < 3; i++) {
2003 uint32_t val;
2004 if (operands[i].isConstant()) {
2005 val = operands[i].constantValue();
2006 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal()) {
2007 val = ctx.info[operands[i].tempId()].val;
2008 } else {
2009 continue;
2010 }
2011 if (const0_idx >= 0) {
2012 const1_idx = i;
2013 const1 = val;
2014 } else {
2015 const0_idx = i;
2016 const0 = val;
2017 }
2018 }
2019 if (const0_idx < 0 || const1_idx < 0)
2020 continue;
2021
2022 if (opsel & (1 << const0_idx))
2023 const0 >>= 16;
2024 if (opsel & (1 << const1_idx))
2025 const1 >>= 16;
2026
2027 int lower_idx = const0_idx;
2028 switch (min) {
2029 case aco_opcode::v_min_f32:
2030 case aco_opcode::v_min_f16: {
2031 float const0_f, const1_f;
2032 if (min == aco_opcode::v_min_f32) {
2033 memcpy(&const0_f, &const0, 4);
2034 memcpy(&const1_f, &const1, 4);
2035 } else {
2036 const0_f = _mesa_half_to_float(const0);
2037 const1_f = _mesa_half_to_float(const1);
2038 }
2039 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2040 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2041 if (neg[const0_idx]) const0_f = -const0_f;
2042 if (neg[const1_idx]) const1_f = -const1_f;
2043 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2044 break;
2045 }
2046 case aco_opcode::v_min_u32: {
2047 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2048 break;
2049 }
2050 case aco_opcode::v_min_u16: {
2051 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2052 break;
2053 }
2054 case aco_opcode::v_min_i32: {
2055 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2056 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2057 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2058 break;
2059 }
2060 case aco_opcode::v_min_i16: {
2061 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2062 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2063 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2064 break;
2065 }
2066 default:
2067 break;
2068 }
2069 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2070
2071 if (instr->opcode == min) {
2072 if (upper_idx != 0 || lower_idx == 0)
2073 return false;
2074 } else {
2075 if (upper_idx == 0 || lower_idx != 0)
2076 return false;
2077 }
2078
2079 ctx.uses[instr->operands[swap].tempId()]--;
2080 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2081 if (omod_clamp & label_omod_success)
2082 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2083 if (omod_clamp & label_clamp_success)
2084 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2085
2086 return true;
2087 }
2088 }
2089
2090 return false;
2091 }
2092
2093
2094 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2095 {
2096 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2097 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2098 instr->opcode == aco_opcode::v_ashrrev_i64;
2099
2100 /* find candidates and create the set of sgprs already read */
2101 unsigned sgpr_ids[2] = {0, 0};
2102 uint32_t operand_mask = 0;
2103 bool has_literal = false;
2104 for (unsigned i = 0; i < instr->operands.size(); i++) {
2105 if (instr->operands[i].isLiteral())
2106 has_literal = true;
2107 if (!instr->operands[i].isTemp())
2108 continue;
2109 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2110 if (instr->operands[i].tempId() != sgpr_ids[0])
2111 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2112 }
2113 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2114 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2115 operand_mask |= 1u << i;
2116 }
2117 unsigned max_sgprs = 1;
2118 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2119 max_sgprs = 2;
2120 if (has_literal)
2121 max_sgprs--;
2122
2123 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2124
2125 /* keep on applying sgprs until there is nothing left to be done */
2126 while (operand_mask) {
2127 uint32_t sgpr_idx = 0;
2128 uint32_t sgpr_info_id = 0;
2129 uint32_t mask = operand_mask;
2130 /* choose a sgpr */
2131 while (mask) {
2132 unsigned i = u_bit_scan(&mask);
2133 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2134 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2135 sgpr_idx = i;
2136 sgpr_info_id = instr->operands[i].tempId();
2137 }
2138 }
2139 operand_mask &= ~(1u << sgpr_idx);
2140
2141 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2142 * definitively beneficial.
2143 * TODO: this is too conservative because later the use count could be reduced to 1 */
2144 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
2145 break;
2146
2147 Temp sgpr = ctx.info[sgpr_info_id].temp;
2148 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2149 if (new_sgpr && num_sgprs >= max_sgprs)
2150 continue;
2151
2152 if (sgpr_idx == 0 || instr->isVOP3()) {
2153 instr->operands[sgpr_idx] = Operand(sgpr);
2154 } else if (can_swap_operands(instr)) {
2155 instr->operands[sgpr_idx] = instr->operands[0];
2156 instr->operands[0] = Operand(sgpr);
2157 /* swap bits using a 4-entry LUT */
2158 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2159 operand_mask = (operand_mask & ~0x3) | swapped;
2160 } else if (can_use_VOP3(ctx, instr)) {
2161 to_VOP3(ctx, instr);
2162 instr->operands[sgpr_idx] = Operand(sgpr);
2163 } else {
2164 continue;
2165 }
2166
2167 if (new_sgpr)
2168 sgpr_ids[num_sgprs++] = sgpr.id();
2169 ctx.uses[sgpr_info_id]--;
2170 ctx.uses[sgpr.id()]++;
2171 }
2172 }
2173
2174 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2175 {
2176 /* check if we could apply omod on predecessor */
2177 if (instr->opcode == aco_opcode::v_mul_f32) {
2178 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
2179 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
2180 if (op0 || op1) {
2181 unsigned idx = op0 ? 0 : 1;
2182 /* omod was successfully applied */
2183 /* if the omod instruction is v_mad, we also have to change the original add */
2184 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2185 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2186 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
2187 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
2188 add_instr->definitions[0] = instr->definitions[0];
2189 }
2190
2191 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
2192 /* check if we have an additional clamp modifier */
2193 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2194 ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
2195 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
2196 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
2197 }
2198 /* change definition ssa-id of modified instruction */
2199 omod_instr->definitions[0] = instr->definitions[0];
2200
2201 /* change the definition of instr to something unused, e.g. the original omod def */
2202 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2203 ctx.uses[instr->definitions[0].tempId()] = 0;
2204 return true;
2205 }
2206 if (!ctx.info[instr->definitions[0].tempId()].label) {
2207 /* in all other cases, label this instruction as option for multiply-add */
2208 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2209 }
2210 }
2211
2212 /* check if we could apply clamp on predecessor */
2213 if (instr->opcode == aco_opcode::v_med3_f32) {
2214 unsigned idx = 0;
2215 bool found_zero = false, found_one = false;
2216 for (unsigned i = 0; i < 3; i++)
2217 {
2218 if (instr->operands[i].constantEquals(0))
2219 found_zero = true;
2220 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
2221 found_one = true;
2222 else
2223 idx = i;
2224 }
2225 if (found_zero && found_one && instr->operands[idx].isTemp() &&
2226 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
2227 /* clamp was successfully applied */
2228 /* if the clamp instruction is v_mad, we also have to change the original add */
2229 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2230 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2231 add_instr->definitions[0] = instr->definitions[0];
2232 }
2233 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
2234 /* change definition ssa-id of modified instruction */
2235 clamp_instr->definitions[0] = instr->definitions[0];
2236
2237 /* change the definition of instr to something unused, e.g. the original omod def */
2238 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2239 ctx.uses[instr->definitions[0].tempId()] = 0;
2240 return true;
2241 }
2242 }
2243
2244 /* omod has no effect if denormals are enabled */
2245 bool can_use_omod = block.fp_mode.denorm32 == 0;
2246
2247 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2248 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2249 can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2250 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2251 if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
2252 to_VOP3(ctx, instr);
2253 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2254 def_info.set_omod_success(instr.get());
2255 } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
2256 to_VOP3(ctx, instr);
2257 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2258 def_info.set_omod_success(instr.get());
2259 } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
2260 to_VOP3(ctx, instr);
2261 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2262 def_info.set_omod_success(instr.get());
2263 } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
2264 to_VOP3(ctx, instr);
2265 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2266 def_info.set_clamp_success(instr.get());
2267 }
2268 }
2269
2270 return false;
2271 }
2272
2273 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2274 // this would mean that we'd have to fix the instruction uses while value propagation
2275
2276 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2277 {
2278 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2279 return;
2280
2281 if (instr->isVALU()) {
2282 if (can_apply_sgprs(instr))
2283 apply_sgprs(ctx, instr);
2284 if (apply_omod_clamp(ctx, block, instr))
2285 return;
2286 }
2287
2288 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2289 instr->definitions[0].setHint(vcc);
2290 }
2291
2292 /* TODO: There are still some peephole optimizations that could be done:
2293 * - abs(a - b) -> s_absdiff_i32
2294 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2295 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2296 * These aren't probably too interesting though.
2297 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2298 * probably more useful than the previously mentioned optimizations.
2299 * The various comparison optimizations also currently only work with 32-bit
2300 * floats. */
2301
2302 /* neg(mul(a, b)) -> mul(neg(a), b) */
2303 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2304 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2305
2306 if (!ctx.info[val.id()].is_mul())
2307 return;
2308
2309 Instruction* mul_instr = ctx.info[val.id()].instr;
2310
2311 if (mul_instr->operands[0].isLiteral())
2312 return;
2313 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2314 return;
2315
2316 /* convert to mul(neg(a), b) */
2317 ctx.uses[mul_instr->definitions[0].tempId()]--;
2318 Definition def = instr->definitions[0];
2319 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2320 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2321 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2322 instr->operands[0] = mul_instr->operands[0];
2323 instr->operands[1] = mul_instr->operands[1];
2324 instr->definitions[0] = def;
2325 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2326 if (mul_instr->isVOP3()) {
2327 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2328 new_mul->neg[0] = mul->neg[0] && !is_abs;
2329 new_mul->neg[1] = mul->neg[1] && !is_abs;
2330 new_mul->abs[0] = mul->abs[0] || is_abs;
2331 new_mul->abs[1] = mul->abs[1] || is_abs;
2332 new_mul->omod = mul->omod;
2333 }
2334 new_mul->neg[0] ^= true;
2335 new_mul->clamp = false;
2336
2337 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2338 return;
2339 }
2340 /* combine mul+add -> mad */
2341 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2342 instr->opcode == aco_opcode::v_sub_f32 ||
2343 instr->opcode == aco_opcode::v_subrev_f32) &&
2344 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2345 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2346
2347 uint32_t uses_src0 = UINT32_MAX;
2348 uint32_t uses_src1 = UINT32_MAX;
2349 Instruction* mul_instr = nullptr;
2350 unsigned add_op_idx;
2351 /* check if any of the operands is a multiplication */
2352 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2353 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2354 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2355 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2356
2357 /* find the 'best' mul instruction to combine with the add */
2358 if (uses_src0 < uses_src1) {
2359 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2360 add_op_idx = 1;
2361 } else if (uses_src1 < uses_src0) {
2362 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2363 add_op_idx = 0;
2364 } else if (uses_src0 != UINT32_MAX) {
2365 /* tiebreaker: quite random what to pick */
2366 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2367 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2368 add_op_idx = 0;
2369 } else {
2370 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2371 add_op_idx = 1;
2372 }
2373 }
2374 if (mul_instr) {
2375 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2376 bool neg[3] = {false, false, false};
2377 bool abs[3] = {false, false, false};
2378 unsigned omod = 0;
2379 bool clamp = false;
2380 op[0] = mul_instr->operands[0];
2381 op[1] = mul_instr->operands[1];
2382 op[2] = instr->operands[add_op_idx];
2383 // TODO: would be better to check this before selecting a mul instr?
2384 if (!check_vop3_operands(ctx, 3, op))
2385 return;
2386
2387 if (mul_instr->isVOP3()) {
2388 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2389 neg[0] = vop3->neg[0];
2390 neg[1] = vop3->neg[1];
2391 abs[0] = vop3->abs[0];
2392 abs[1] = vop3->abs[1];
2393 /* we cannot use these modifiers between mul and add */
2394 if (vop3->clamp || vop3->omod)
2395 return;
2396 }
2397
2398 /* convert to mad */
2399 ctx.uses[mul_instr->definitions[0].tempId()]--;
2400 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2401 if (op[0].isTemp())
2402 ctx.uses[op[0].tempId()]++;
2403 if (op[1].isTemp())
2404 ctx.uses[op[1].tempId()]++;
2405 }
2406
2407 if (instr->isVOP3()) {
2408 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2409 neg[2] = vop3->neg[add_op_idx];
2410 abs[2] = vop3->abs[add_op_idx];
2411 omod = vop3->omod;
2412 clamp = vop3->clamp;
2413 /* abs of the multiplication result */
2414 if (vop3->abs[1 - add_op_idx]) {
2415 neg[0] = false;
2416 neg[1] = false;
2417 abs[0] = true;
2418 abs[1] = true;
2419 }
2420 /* neg of the multiplication result */
2421 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2422 }
2423 if (instr->opcode == aco_opcode::v_sub_f32)
2424 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2425 else if (instr->opcode == aco_opcode::v_subrev_f32)
2426 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2427
2428 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2429 for (unsigned i = 0; i < 3; i++)
2430 {
2431 mad->operands[i] = op[i];
2432 mad->neg[i] = neg[i];
2433 mad->abs[i] = abs[i];
2434 }
2435 mad->omod = omod;
2436 mad->clamp = clamp;
2437 mad->definitions[0] = instr->definitions[0];
2438
2439 /* mark this ssa_def to be re-checked for profitability and literals */
2440 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2441 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2442 instr.reset(mad.release());
2443 return;
2444 }
2445 }
2446 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2447 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2448 for (unsigned i = 0; i < 2; i++) {
2449 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2450 ctx.uses[instr->operands[i].tempId()] == 1 &&
2451 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2452 ctx.uses[instr->operands[i].tempId()]--;
2453 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2454
2455 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2456 new_instr->operands[0] = Operand(0u);
2457 new_instr->operands[1] = instr->operands[!i];
2458 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2459 new_instr->definitions[0] = instr->definitions[0];
2460 instr.reset(new_instr.release());
2461 ctx.info[instr->definitions[0].tempId()].label = 0;
2462 return;
2463 }
2464 }
2465 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2466 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2467 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2468 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2469 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2470 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2471 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2472 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2473 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2474 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2475 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2476 combine_salu_lshl_add(ctx, instr);
2477 } else if (instr->opcode == aco_opcode::s_not_b32) {
2478 combine_salu_not_bitwise(ctx, instr);
2479 } else if (instr->opcode == aco_opcode::s_not_b64) {
2480 if (combine_inverse_comparison(ctx, instr)) ;
2481 else combine_salu_not_bitwise(ctx, instr);
2482 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2483 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2484 if (combine_ordering_test(ctx, instr)) ;
2485 else if (combine_comparison_ordering(ctx, instr)) ;
2486 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2487 else combine_salu_n2(ctx, instr);
2488 } else {
2489 aco_opcode min, max, min3, max3, med3;
2490 bool some_gfx9_only;
2491 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2492 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2493 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2494 else combine_clamp(ctx, instr, min, max, med3);
2495 }
2496 }
2497 }
2498
2499 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2500 {
2501 switch (instr->opcode) {
2502 case aco_opcode::s_and_b32:
2503 case aco_opcode::s_and_b64:
2504 instr->opcode = aco_opcode::s_and_b32;
2505 break;
2506 case aco_opcode::s_or_b32:
2507 case aco_opcode::s_or_b64:
2508 instr->opcode = aco_opcode::s_or_b32;
2509 break;
2510 case aco_opcode::s_xor_b32:
2511 case aco_opcode::s_xor_b64:
2512 instr->opcode = aco_opcode::s_absdiff_i32;
2513 break;
2514 default:
2515 /* Don't transform other instructions. They are very unlikely to appear here. */
2516 return false;
2517 }
2518
2519 for (Operand &op : instr->operands) {
2520 ctx.uses[op.tempId()]--;
2521
2522 if (ctx.info[op.tempId()].is_uniform_bool()) {
2523 /* Just use the uniform boolean temp. */
2524 op.setTemp(ctx.info[op.tempId()].temp);
2525 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2526 /* Use the SCC definition of the predecessor instruction.
2527 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2528 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2529 */
2530 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2531 assert(pred_instr->definitions.size() >= 2);
2532 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2533 op.setTemp(pred_instr->definitions[1].getTemp());
2534 } else {
2535 unreachable("Invalid operand on uniform bitwise instruction.");
2536 }
2537
2538 ctx.uses[op.tempId()]++;
2539 }
2540
2541 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2542 assert(instr->operands[0].regClass() == s1);
2543 assert(instr->operands[1].regClass() == s1);
2544 return true;
2545 }
2546
2547 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2548 {
2549 const uint32_t threshold = 4;
2550
2551 if (is_dead(ctx.uses, instr.get())) {
2552 instr.reset();
2553 return;
2554 }
2555
2556 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2557 if (instr->opcode == aco_opcode::p_split_vector) {
2558 unsigned num_used = 0;
2559 unsigned idx = 0;
2560 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2561 if (ctx.uses[instr->definitions[i].tempId()]) {
2562 num_used++;
2563 idx = i;
2564 }
2565 }
2566 bool done = false;
2567 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2568 ctx.uses[instr->operands[0].tempId()] == 1) {
2569 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2570
2571 unsigned off = 0;
2572 Operand op;
2573 for (Operand& vec_op : vec->operands) {
2574 if (off == idx * instr->definitions[0].size()) {
2575 op = vec_op;
2576 break;
2577 }
2578 off += vec_op.size();
2579 }
2580 if (off != instr->operands[0].size()) {
2581 ctx.uses[instr->operands[0].tempId()]--;
2582 for (Operand& vec_op : vec->operands) {
2583 if (vec_op.isTemp())
2584 ctx.uses[vec_op.tempId()]--;
2585 }
2586 if (op.isTemp())
2587 ctx.uses[op.tempId()]++;
2588
2589 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
2590 extract->operands[0] = op;
2591 extract->definitions[0] = instr->definitions[idx];
2592 instr.reset(extract.release());
2593
2594 done = true;
2595 }
2596 }
2597
2598 if (!done && num_used == 1) {
2599 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2600 extract->operands[0] = instr->operands[0];
2601 extract->operands[1] = Operand((uint32_t) idx);
2602 extract->definitions[0] = instr->definitions[idx];
2603 instr.reset(extract.release());
2604 }
2605 }
2606
2607 mad_info* mad_info = NULL;
2608 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2609 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2610 /* re-check mad instructions */
2611 if (ctx.uses[mad_info->mul_temp_id]) {
2612 ctx.uses[mad_info->mul_temp_id]++;
2613 if (instr->operands[0].isTemp())
2614 ctx.uses[instr->operands[0].tempId()]--;
2615 if (instr->operands[1].isTemp())
2616 ctx.uses[instr->operands[1].tempId()]--;
2617 instr.swap(mad_info->add_instr);
2618 mad_info = NULL;
2619 }
2620 /* check literals */
2621 else if (!instr->usesModifiers()) {
2622 bool sgpr_used = false;
2623 uint32_t literal_idx = 0;
2624 uint32_t literal_uses = UINT32_MAX;
2625 for (unsigned i = 0; i < instr->operands.size(); i++)
2626 {
2627 if (instr->operands[i].isConstant() && i > 0) {
2628 literal_uses = UINT32_MAX;
2629 break;
2630 }
2631 if (!instr->operands[i].isTemp())
2632 continue;
2633 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
2634 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
2635 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal()) {
2636 literal_uses = ctx.uses[instr->operands[i].tempId()];
2637 literal_idx = i;
2638 } else {
2639 literal_uses = UINT32_MAX;
2640 }
2641 sgpr_used = true;
2642 /* don't break because we still need to check constants */
2643 } else if (!sgpr_used &&
2644 ctx.info[instr->operands[i].tempId()].is_literal() &&
2645 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2646 literal_uses = ctx.uses[instr->operands[i].tempId()];
2647 literal_idx = i;
2648 }
2649 }
2650
2651 /* Limit the number of literals to apply to not increase the code
2652 * size too much, but always apply literals for v_mad->v_madak
2653 * because both instructions are 64-bit and this doesn't increase
2654 * code size.
2655 * TODO: try to apply the literals earlier to lower the number of
2656 * uses below threshold
2657 */
2658 if (literal_uses < threshold || literal_idx == 2) {
2659 ctx.uses[instr->operands[literal_idx].tempId()]--;
2660 mad_info->check_literal = true;
2661 mad_info->literal_idx = literal_idx;
2662 return;
2663 }
2664 }
2665 }
2666
2667 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
2668 if (instr->format == Format::PSEUDO_BRANCH &&
2669 instr->operands.size() &&
2670 instr->operands[0].isTemp()) {
2671 ctx.info[instr->operands[0].tempId()].set_scc_needed();
2672 return;
2673 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
2674 instr->opcode == aco_opcode::s_cselect_b32) &&
2675 instr->operands[2].isTemp()) {
2676 ctx.info[instr->operands[2].tempId()].set_scc_needed();
2677 }
2678
2679 /* check for literals */
2680 if (!instr->isSALU() && !instr->isVALU())
2681 return;
2682
2683 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
2684 if (instr->definitions.size() &&
2685 ctx.uses[instr->definitions[0].tempId()] == 0 &&
2686 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
2687 bool transform_done = to_uniform_bool_instr(ctx, instr);
2688
2689 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
2690 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
2691 uint32_t def0_id = instr->definitions[0].getTemp().id();
2692 uint32_t def1_id = instr->definitions[1].getTemp().id();
2693 instr->definitions[0].setTemp(Temp(def1_id, s1));
2694 instr->definitions[1].setTemp(Temp(def0_id, s1));
2695 }
2696
2697 return;
2698 }
2699
2700 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
2701 return; /* some encodings can't ever take literals */
2702
2703 /* we do not apply the literals yet as we don't know if it is profitable */
2704 Operand current_literal(s1);
2705
2706 unsigned literal_id = 0;
2707 unsigned literal_uses = UINT32_MAX;
2708 Operand literal(s1);
2709 unsigned num_operands = 1;
2710 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
2711 num_operands = instr->operands.size();
2712 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
2713 else if (instr->isVALU() && instr->operands.size() >= 3)
2714 return;
2715
2716 unsigned sgpr_ids[2] = {0, 0};
2717 bool is_literal_sgpr = false;
2718 uint32_t mask = 0;
2719
2720 /* choose a literal to apply */
2721 for (unsigned i = 0; i < num_operands; i++) {
2722 Operand op = instr->operands[i];
2723
2724 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
2725 op.tempId() != sgpr_ids[0])
2726 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
2727
2728 if (op.isLiteral()) {
2729 current_literal = op;
2730 continue;
2731 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal()) {
2732 continue;
2733 }
2734
2735 if (!alu_can_accept_constant(instr->opcode, i))
2736 continue;
2737
2738 if (ctx.uses[op.tempId()] < literal_uses) {
2739 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
2740 mask = 0;
2741 literal = Operand(ctx.info[op.tempId()].val);
2742 literal_uses = ctx.uses[op.tempId()];
2743 literal_id = op.tempId();
2744 }
2745
2746 mask |= (op.tempId() == literal_id) << i;
2747 }
2748
2749
2750 /* don't go over the constant bus limit */
2751 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2752 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2753 instr->opcode == aco_opcode::v_ashrrev_i64;
2754 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
2755 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2756 const_bus_limit = 2;
2757
2758 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2759 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
2760 return;
2761
2762 if (literal_id && literal_uses < threshold &&
2763 (current_literal.isUndefined() ||
2764 (current_literal.size() == literal.size() &&
2765 current_literal.constantValue() == literal.constantValue()))) {
2766 /* mark the literal to be applied */
2767 while (mask) {
2768 unsigned i = u_bit_scan(&mask);
2769 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
2770 ctx.uses[instr->operands[i].tempId()]--;
2771 }
2772 }
2773 }
2774
2775
2776 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2777 {
2778 /* Cleanup Dead Instructions */
2779 if (!instr)
2780 return;
2781
2782 /* apply literals on MAD */
2783 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2784 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2785 if (info->check_literal &&
2786 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
2787 aco_ptr<Instruction> new_mad;
2788 if (info->literal_idx == 2) { /* add literal -> madak */
2789 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2790 new_mad->operands[0] = instr->operands[0];
2791 new_mad->operands[1] = instr->operands[1];
2792 } else { /* mul literal -> madmk */
2793 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2794 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2795 new_mad->operands[1] = instr->operands[2];
2796 }
2797 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2798 new_mad->definitions[0] = instr->definitions[0];
2799 ctx.instructions.emplace_back(std::move(new_mad));
2800 return;
2801 }
2802 }
2803
2804 /* apply literals on other SALU/VALU */
2805 if (instr->isSALU() || instr->isVALU()) {
2806 for (unsigned i = 0; i < instr->operands.size(); i++) {
2807 Operand op = instr->operands[i];
2808 if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {
2809 Operand literal(ctx.info[op.tempId()].val);
2810 if (instr->isVALU() && i > 0)
2811 to_VOP3(ctx, instr);
2812 instr->operands[i] = literal;
2813 }
2814 }
2815 }
2816
2817 ctx.instructions.emplace_back(std::move(instr));
2818 }
2819
2820
2821 void optimize(Program* program)
2822 {
2823 opt_ctx ctx;
2824 ctx.program = program;
2825 std::vector<ssa_info> info(program->peekAllocationId());
2826 ctx.info = info.data();
2827
2828 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2829 for (Block& block : program->blocks) {
2830 for (aco_ptr<Instruction>& instr : block.instructions)
2831 label_instruction(ctx, block, instr);
2832 }
2833
2834 ctx.uses = std::move(dead_code_analysis(program));
2835
2836 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2837 for (Block& block : program->blocks) {
2838 for (aco_ptr<Instruction>& instr : block.instructions)
2839 combine_instruction(ctx, block, instr);
2840 }
2841
2842 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2843 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2844 Block* block = &(*it);
2845 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2846 select_instruction(ctx, *it);
2847 }
2848
2849 /* 4. Add literals to instructions */
2850 for (Block& block : program->blocks) {
2851 ctx.instructions.clear();
2852 for (aco_ptr<Instruction>& instr : block.instructions)
2853 apply_literals(ctx, instr);
2854 block.instructions.swap(ctx.instructions);
2855 }
2856
2857 }
2858
2859 }