aco: don't combine minmax3 if there is a neg or abs modifier in between
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 };
86
87 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
88 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f;
89 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
90
91 struct ssa_info {
92 uint32_t val;
93 union {
94 Temp temp;
95 Instruction* instr;
96 };
97 uint32_t label;
98
99 void add_label(Label new_label)
100 {
101 /* Since all labels which use "instr" use it for the same thing
102 * (indicating the defining instruction), there is no need to clear
103 * any other instr labels. */
104 if (new_label & instr_labels)
105 label &= ~temp_labels; /* instr and temp alias */
106
107 if (new_label & temp_labels) {
108 label &= ~temp_labels;
109 label &= ~instr_labels; /* instr and temp alias */
110 }
111
112 if (new_label & val_labels)
113 label &= ~val_labels;
114
115 label |= new_label;
116 }
117
118 void set_vec(Instruction* vec)
119 {
120 add_label(label_vec);
121 instr = vec;
122 }
123
124 bool is_vec()
125 {
126 return label & label_vec;
127 }
128
129 void set_constant(uint32_t constant)
130 {
131 add_label(label_constant);
132 val = constant;
133 }
134
135 bool is_constant()
136 {
137 return label & label_constant;
138 }
139
140 void set_abs(Temp abs_temp)
141 {
142 add_label(label_abs);
143 temp = abs_temp;
144 }
145
146 bool is_abs()
147 {
148 return label & label_abs;
149 }
150
151 void set_neg(Temp neg_temp)
152 {
153 add_label(label_neg);
154 temp = neg_temp;
155 }
156
157 bool is_neg()
158 {
159 return label & label_neg;
160 }
161
162 void set_neg_abs(Temp neg_abs_temp)
163 {
164 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
165 temp = neg_abs_temp;
166 }
167
168 void set_mul(Instruction* mul)
169 {
170 add_label(label_mul);
171 instr = mul;
172 }
173
174 bool is_mul()
175 {
176 return label & label_mul;
177 }
178
179 void set_temp(Temp tmp)
180 {
181 add_label(label_temp);
182 temp = tmp;
183 }
184
185 bool is_temp()
186 {
187 return label & label_temp;
188 }
189
190 void set_literal(uint32_t lit)
191 {
192 add_label(label_literal);
193 val = lit;
194 }
195
196 bool is_literal()
197 {
198 return label & label_literal;
199 }
200
201 void set_mad(Instruction* mad, uint32_t mad_info_idx)
202 {
203 add_label(label_mad);
204 val = mad_info_idx;
205 instr = mad;
206 }
207
208 bool is_mad()
209 {
210 return label & label_mad;
211 }
212
213 void set_omod2()
214 {
215 add_label(label_omod2);
216 }
217
218 bool is_omod2()
219 {
220 return label & label_omod2;
221 }
222
223 void set_omod4()
224 {
225 add_label(label_omod4);
226 }
227
228 bool is_omod4()
229 {
230 return label & label_omod4;
231 }
232
233 void set_omod5()
234 {
235 add_label(label_omod5);
236 }
237
238 bool is_omod5()
239 {
240 return label & label_omod5;
241 }
242
243 void set_omod_success(Instruction* omod_instr)
244 {
245 add_label(label_omod_success);
246 instr = omod_instr;
247 }
248
249 bool is_omod_success()
250 {
251 return label & label_omod_success;
252 }
253
254 void set_clamp()
255 {
256 add_label(label_clamp);
257 }
258
259 bool is_clamp()
260 {
261 return label & label_clamp;
262 }
263
264 void set_clamp_success(Instruction* clamp_instr)
265 {
266 add_label(label_clamp_success);
267 instr = clamp_instr;
268 }
269
270 bool is_clamp_success()
271 {
272 return label & label_clamp_success;
273 }
274
275 void set_undefined()
276 {
277 add_label(label_undefined);
278 }
279
280 bool is_undefined()
281 {
282 return label & label_undefined;
283 }
284
285 void set_vcc(Temp vcc)
286 {
287 add_label(label_vcc);
288 temp = vcc;
289 }
290
291 bool is_vcc()
292 {
293 return label & label_vcc;
294 }
295
296 bool is_constant_or_literal()
297 {
298 return is_constant() || is_literal();
299 }
300
301 void set_b2f(Temp val)
302 {
303 add_label(label_b2f);
304 temp = val;
305 }
306
307 bool is_b2f()
308 {
309 return label & label_b2f;
310 }
311
312 void set_add_sub(Instruction *add_sub_instr)
313 {
314 add_label(label_add_sub);
315 instr = add_sub_instr;
316 }
317
318 bool is_add_sub()
319 {
320 return label & label_add_sub;
321 }
322
323 void set_bitwise(Instruction *bitwise_instr)
324 {
325 add_label(label_bitwise);
326 instr = bitwise_instr;
327 }
328
329 bool is_bitwise()
330 {
331 return label & label_bitwise;
332 }
333
334 void set_minmax(Instruction *minmax_instr)
335 {
336 add_label(label_minmax);
337 instr = minmax_instr;
338 }
339
340 bool is_minmax()
341 {
342 return label & label_minmax;
343 }
344
345 void set_fcmp(Instruction *fcmp_instr)
346 {
347 add_label(label_fcmp);
348 instr = fcmp_instr;
349 }
350
351 bool is_fcmp()
352 {
353 return label & label_fcmp;
354 }
355
356 };
357
358 struct opt_ctx {
359 Program* program;
360 std::vector<aco_ptr<Instruction>> instructions;
361 ssa_info* info;
362 std::pair<uint32_t,Temp> last_literal;
363 std::vector<mad_info> mad_infos;
364 std::vector<uint16_t> uses;
365 };
366
367 bool can_swap_operands(aco_ptr<Instruction>& instr)
368 {
369 if (instr->operands[0].isConstant() ||
370 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
371 return false;
372
373 switch (instr->opcode) {
374 case aco_opcode::v_add_f32:
375 case aco_opcode::v_mul_f32:
376 case aco_opcode::v_or_b32:
377 case aco_opcode::v_and_b32:
378 case aco_opcode::v_xor_b32:
379 case aco_opcode::v_max_f32:
380 case aco_opcode::v_min_f32:
381 case aco_opcode::v_cmp_eq_f32:
382 case aco_opcode::v_cmp_lg_f32:
383 return true;
384 case aco_opcode::v_sub_f32:
385 instr->opcode = aco_opcode::v_subrev_f32;
386 return true;
387 case aco_opcode::v_cmp_lt_f32:
388 instr->opcode = aco_opcode::v_cmp_gt_f32;
389 return true;
390 case aco_opcode::v_cmp_ge_f32:
391 instr->opcode = aco_opcode::v_cmp_le_f32;
392 return true;
393 case aco_opcode::v_cmp_lt_i32:
394 instr->opcode = aco_opcode::v_cmp_gt_i32;
395 return true;
396 default:
397 return false;
398 }
399 }
400
401 bool can_use_VOP3(aco_ptr<Instruction>& instr)
402 {
403 if (instr->operands.size() && instr->operands[0].isLiteral())
404 return false;
405
406 if (instr->isDPP() || instr->isSDWA())
407 return false;
408
409 return instr->opcode != aco_opcode::v_madmk_f32 &&
410 instr->opcode != aco_opcode::v_madak_f32 &&
411 instr->opcode != aco_opcode::v_madmk_f16 &&
412 instr->opcode != aco_opcode::v_madak_f16;
413 }
414
415 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
416 {
417 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
418 instr->opcode != aco_opcode::v_readlane_b32 &&
419 instr->opcode != aco_opcode::v_writelane_b32;
420 }
421
422 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
423 {
424 if (instr->isVOP3())
425 return;
426
427 assert(!instr->operands[0].isLiteral());
428 aco_ptr<Instruction> tmp = std::move(instr);
429 Format format = asVOP3(tmp->format);
430 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
431 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
432 for (unsigned i = 0; i < instr->definitions.size(); i++) {
433 instr->definitions[i] = tmp->definitions[i];
434 if (instr->definitions[i].isTemp()) {
435 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
436 if (info.label & instr_labels && info.instr == tmp.get())
437 info.instr = instr.get();
438 }
439 }
440 }
441
442 /* only covers special cases */
443 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
444 {
445 switch (instr->opcode) {
446 case aco_opcode::v_interp_p2_f32:
447 case aco_opcode::v_mac_f32:
448 case aco_opcode::v_writelane_b32:
449 case aco_opcode::v_cndmask_b32:
450 return operand != 2;
451 case aco_opcode::s_addk_i32:
452 case aco_opcode::s_mulk_i32:
453 case aco_opcode::p_wqm:
454 case aco_opcode::p_extract_vector:
455 case aco_opcode::p_split_vector:
456 case aco_opcode::v_readlane_b32:
457 case aco_opcode::v_readfirstlane_b32:
458 return operand != 0;
459 default:
460 if ((instr->format == Format::MUBUF ||
461 instr->format == Format::MIMG) &&
462 instr->definitions.size() == 1 &&
463 instr->operands.size() == 4) {
464 return operand != 3;
465 }
466 return true;
467 }
468 }
469
470 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
471 {
472 // TODO: VOP3 can take a literal on GFX10
473 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
474 operand == 0 && can_accept_constant(instr, operand);
475 }
476
477 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
478 {
479 Operand op = instr->operands[op_index];
480
481 if (!op.isTemp())
482 return false;
483 Temp tmp = op.getTemp();
484 if (!ctx.info[tmp.id()].is_add_sub())
485 return false;
486
487 Instruction *add_instr = ctx.info[tmp.id()].instr;
488
489 switch (add_instr->opcode) {
490 case aco_opcode::v_add_u32:
491 case aco_opcode::v_add_co_u32:
492 case aco_opcode::s_add_i32:
493 case aco_opcode::s_add_u32:
494 break;
495 default:
496 return false;
497 }
498
499 for (unsigned i = 0; i < 2; i++) {
500 if (add_instr->operands[i].isConstant()) {
501 *offset = add_instr->operands[i].constantValue();
502 } else if (add_instr->operands[i].isTemp() &&
503 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
504 *offset = ctx.info[add_instr->operands[i].tempId()].val;
505 } else {
506 continue;
507 }
508 if (!add_instr->operands[!i].isTemp())
509 continue;
510
511 uint32_t offset2 = 0;
512 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
513 *offset += offset2;
514 } else {
515 *base = add_instr->operands[!i].getTemp();
516 }
517 return true;
518 }
519
520 return false;
521 }
522
523 void label_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
524 {
525 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
526 ASSERTED bool all_const = false;
527 for (Operand& op : instr->operands)
528 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
529 perfwarn(all_const, "All instruction operands are constant", instr.get());
530 }
531
532 for (unsigned i = 0; i < instr->operands.size(); i++)
533 {
534 if (!instr->operands[i].isTemp())
535 continue;
536
537 ssa_info info = ctx.info[instr->operands[i].tempId()];
538 /* propagate undef */
539 if (info.is_undefined() && is_phi(instr))
540 instr->operands[i] = Operand(instr->operands[i].regClass());
541 /* propagate reg->reg of same type */
542 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
543 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
544 info = ctx.info[info.temp.id()];
545 }
546
547 /* SALU / PSEUDO: propagate inline constants */
548 if (instr->isSALU() || instr->format == Format::PSEUDO) {
549 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
550 instr->operands[i].setTemp(info.temp);
551 info = ctx.info[info.temp.id()];
552 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
553 /* propagate vgpr if it can take it */
554 switch (instr->opcode) {
555 case aco_opcode::p_create_vector:
556 case aco_opcode::p_split_vector:
557 case aco_opcode::p_extract_vector:
558 case aco_opcode::p_phi: {
559 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
560 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
561 if (all_vgpr) {
562 instr->operands[i] = Operand(info.temp);
563 info = ctx.info[info.temp.id()];
564 }
565 break;
566 }
567 default:
568 break;
569 }
570 }
571 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
572 instr->operands[i] = Operand(info.val);
573 continue;
574 }
575 }
576
577 /* VALU: propagate neg, abs & inline constants */
578 else if (instr->isVALU()) {
579 if (info.is_temp() && info.temp.type() == RegType::vgpr) {
580 instr->operands[i].setTemp(info.temp);
581 info = ctx.info[info.temp.id()];
582 }
583 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
584 if (!instr->isDPP())
585 to_VOP3(ctx, instr);
586 instr->operands[i] = Operand(info.temp);
587 if (instr->isDPP())
588 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
589 else
590 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
591 }
592 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
593 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
594 instr->operands[i].setTemp(info.temp);
595 continue;
596 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
597 if (!instr->isDPP())
598 to_VOP3(ctx, instr);
599 instr->operands[i].setTemp(info.temp);
600 if (instr->isDPP())
601 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
602 else
603 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
604 continue;
605 }
606 if (info.is_constant() && can_accept_constant(instr, i)) {
607 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
608 if (i == 0) {
609 instr->operands[i] = Operand(info.val);
610 continue;
611 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
612 instr->operands[i] = instr->operands[0];
613 instr->operands[0] = Operand(info.val);
614 continue;
615 } else if (can_use_VOP3(instr)) {
616 to_VOP3(ctx, instr);
617 instr->operands[i] = Operand(info.val);
618 continue;
619 }
620 }
621 }
622
623 /* MUBUF: propagate constants and combine additions */
624 else if (instr->format == Format::MUBUF) {
625 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
626 Temp base;
627 uint32_t offset;
628 while (info.is_temp())
629 info = ctx.info[info.temp.id()];
630
631 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
632 assert(!mubuf->idxen);
633 instr->operands[i] = Operand(v1);
634 mubuf->offset += info.val;
635 mubuf->offen = false;
636 continue;
637 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
638 instr->operands[2] = Operand((uint32_t) 0);
639 mubuf->offset += info.val;
640 continue;
641 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
642 assert(!mubuf->idxen);
643 instr->operands[i].setTemp(base);
644 mubuf->offset += offset;
645 continue;
646 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
647 instr->operands[i].setTemp(base);
648 mubuf->offset += offset;
649 continue;
650 }
651 }
652
653 /* DS: combine additions */
654 else if (instr->format == Format::DS) {
655
656 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
657 Temp base;
658 uint32_t offset;
659 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
660 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32) {
661 if (offset % 4 == 0 &&
662 ds->offset0 + (offset >> 2) <= 255 &&
663 ds->offset1 + (offset >> 2) <= 255) {
664 instr->operands[i].setTemp(base);
665 ds->offset0 += offset >> 2;
666 ds->offset1 += offset >> 2;
667 }
668 } else {
669 if (ds->offset0 + offset <= 65535) {
670 instr->operands[i].setTemp(base);
671 ds->offset0 += offset;
672 }
673 }
674 }
675 }
676
677 /* SMEM: propagate constants and combine additions */
678 else if (instr->format == Format::SMEM) {
679
680 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
681 Temp base;
682 uint32_t offset;
683 if (i == 1 && info.is_constant_or_literal() && info.val <= 0xFFFFF) {
684 instr->operands[i] = Operand(info.val);
685 continue;
686 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
687 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
688 if (soe &&
689 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
690 ctx.info[smem->operands.back().tempId()].val != 0)) {
691 continue;
692 }
693 if (soe) {
694 smem->operands[1] = Operand(offset);
695 smem->operands.back() = Operand(base);
696 } else {
697 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
698 new_instr->operands[0] = smem->operands[0];
699 new_instr->operands[1] = Operand(offset);
700 if (smem->definitions.empty())
701 new_instr->operands[2] = smem->operands[2];
702 new_instr->operands.back() = Operand(base);
703 if (!smem->definitions.empty())
704 new_instr->definitions[0] = smem->definitions[0];
705 instr.reset(new_instr);
706 smem = static_cast<SMEM_instruction *>(instr.get());
707 }
708 continue;
709 }
710 }
711 }
712
713 /* if this instruction doesn't define anything, return */
714 if (instr->definitions.empty())
715 return;
716
717 switch (instr->opcode) {
718 case aco_opcode::p_create_vector: {
719 unsigned num_ops = instr->operands.size();
720 for (const Operand& op : instr->operands) {
721 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
722 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
723 }
724 if (num_ops != instr->operands.size()) {
725 aco_ptr<Instruction> old_vec = std::move(instr);
726 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
727 instr->definitions[0] = old_vec->definitions[0];
728 unsigned k = 0;
729 for (Operand& old_op : old_vec->operands) {
730 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
731 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++)
732 instr->operands[k++] = ctx.info[old_op.tempId()].instr->operands[j];
733 } else {
734 instr->operands[k++] = old_op;
735 }
736 }
737 assert(k == num_ops);
738 }
739 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
740 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
741 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
742 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
743 break;
744 }
745 case aco_opcode::p_split_vector: {
746 if (!ctx.info[instr->operands[0].tempId()].is_vec())
747 break;
748 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
749 assert(instr->definitions.size() == vec->operands.size());
750 for (unsigned i = 0; i < instr->definitions.size(); i++) {
751 Operand vec_op = vec->operands[i];
752 if (vec_op.isConstant()) {
753 if (vec_op.isLiteral())
754 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
755 else
756 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
757 } else {
758 assert(vec_op.isTemp());
759 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
760 }
761 }
762 break;
763 }
764 case aco_opcode::p_extract_vector: { /* mov */
765 if (!ctx.info[instr->operands[0].tempId()].is_vec())
766 break;
767 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
768 if (vec->definitions[0].getTemp().size() == vec->operands.size()) { /* TODO: what about 64bit or other combinations? */
769
770 /* convert this extract into a mov instruction */
771 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
772 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
773 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
774 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
775 instr->opcode = opcode;
776 instr->format = format;
777 instr->operands = {instr->operands.begin(), 1 };
778 instr->operands[0] = vec_op;
779
780 if (vec_op.isConstant()) {
781 if (vec_op.isLiteral())
782 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
783 else
784 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
785 } else {
786 assert(vec_op.isTemp());
787 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
788 }
789 }
790 break;
791 }
792 case aco_opcode::s_mov_b32: /* propagate */
793 case aco_opcode::s_mov_b64:
794 case aco_opcode::v_mov_b32:
795 case aco_opcode::p_as_uniform:
796 if (instr->definitions[0].isFixed()) {
797 /* don't copy-propagate copies into fixed registers */
798 } else if (instr->operands[0].isConstant()) {
799 if (instr->operands[0].isLiteral())
800 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
801 else
802 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
803 } else if (instr->isDPP()) {
804 // TODO
805 } else if (instr->operands[0].isTemp()) {
806 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
807 } else {
808 assert(instr->operands[0].isFixed());
809 }
810 break;
811 case aco_opcode::p_is_helper:
812 if (!ctx.program->needs_wqm)
813 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
814 break;
815 case aco_opcode::s_movk_i32: {
816 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
817 v = v & 0x8000 ? (v | 0xffff0000) : v;
818 if (v <= 64 || v >= 0xfffffff0)
819 ctx.info[instr->definitions[0].tempId()].set_constant(v);
820 else
821 ctx.info[instr->definitions[0].tempId()].set_literal(v);
822 break;
823 }
824 case aco_opcode::v_bfrev_b32:
825 case aco_opcode::s_brev_b32: {
826 if (instr->operands[0].isConstant()) {
827 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
828 if (v <= 64 || v >= 0xfffffff0)
829 ctx.info[instr->definitions[0].tempId()].set_constant(v);
830 else
831 ctx.info[instr->definitions[0].tempId()].set_literal(v);
832 }
833 break;
834 }
835 case aco_opcode::s_bfm_b32: {
836 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
837 unsigned size = instr->operands[0].constantValue() & 0x1f;
838 unsigned start = instr->operands[1].constantValue() & 0x1f;
839 uint32_t v = ((1u << size) - 1u) << start;
840 if (v <= 64 || v >= 0xfffffff0)
841 ctx.info[instr->definitions[0].tempId()].set_constant(v);
842 else
843 ctx.info[instr->definitions[0].tempId()].set_literal(v);
844 }
845 }
846 case aco_opcode::v_mul_f32: { /* omod */
847 /* TODO: try to move the negate/abs modifier to the consumer instead */
848 if (instr->isVOP3()) {
849 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
850 if (vop3->abs[0] || vop3->abs[1] || vop3->neg[0] || vop3->neg[1] || vop3->omod || vop3->clamp)
851 break;
852 }
853
854 for (unsigned i = 0; i < 2; i++) {
855 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
856 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
857 ctx.info[instr->operands[i].tempId()].set_omod2();
858 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
859 ctx.info[instr->operands[i].tempId()].set_omod4();
860 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
861 ctx.info[instr->operands[i].tempId()].set_omod5();
862 } else if (instr->operands[!i].constantValue() == 0x3f800000) { /* 1.0 */
863 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
864 } else {
865 continue;
866 }
867 break;
868 }
869 }
870 break;
871 }
872 case aco_opcode::v_and_b32: /* abs */
873 if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp())
874 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
875 else
876 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
877 break;
878 case aco_opcode::v_xor_b32: { /* neg */
879 if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
880 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
881 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
882 } else {
883 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
884 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
885 instr->opcode = aco_opcode::v_or_b32;
886 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
887 } else {
888 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
889 }
890 }
891 } else {
892 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
893 }
894 break;
895 }
896 case aco_opcode::v_med3_f32: { /* clamp */
897 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
898 if (vop3->abs[0] || vop3->neg[0] || vop3->opsel[0] ||
899 vop3->abs[1] || vop3->neg[1] || vop3->opsel[1] ||
900 vop3->abs[2] || vop3->neg[2] || vop3->opsel[2] ||
901 vop3->omod != 0)
902 break;
903
904 unsigned idx = 0;
905 bool found_zero = false, found_one = false;
906 for (unsigned i = 0; i < 3; i++)
907 {
908 if (instr->operands[i].constantEquals(0))
909 found_zero = true;
910 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
911 found_one = true;
912 else
913 idx = i;
914 }
915 if (found_zero && found_one && instr->operands[idx].isTemp()) {
916 ctx.info[instr->operands[idx].tempId()].set_clamp();
917 }
918 break;
919 }
920 case aco_opcode::v_cndmask_b32:
921 if (instr->operands[0].constantEquals(0) &&
922 instr->operands[1].constantEquals(0xFFFFFFFF) &&
923 instr->operands[2].isTemp())
924 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
925 else if (instr->operands[0].constantEquals(0) &&
926 instr->operands[1].constantEquals(0x3f800000u) &&
927 instr->operands[2].isTemp())
928 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
929 break;
930 case aco_opcode::v_cmp_lg_u32:
931 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
932 instr->operands[0].constantEquals(0) &&
933 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
934 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
935 break;
936 case aco_opcode::p_phi:
937 case aco_opcode::p_linear_phi: {
938 /* lower_bool_phis() can create phis like this */
939 bool all_same_temp = instr->operands[0].isTemp();
940 /* this check is needed when moving uniform loop counters out of a divergent loop */
941 if (all_same_temp)
942 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
943 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
944 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
945 all_same_temp = false;
946 }
947 if (all_same_temp) {
948 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
949 } else {
950 bool all_undef = instr->operands[0].isUndefined();
951 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
952 if (!instr->operands[i].isUndefined())
953 all_undef = false;
954 }
955 if (all_undef)
956 ctx.info[instr->definitions[0].tempId()].set_undefined();
957 }
958 break;
959 }
960 case aco_opcode::v_add_u32:
961 case aco_opcode::v_add_co_u32:
962 case aco_opcode::s_add_i32:
963 case aco_opcode::s_add_u32:
964 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
965 break;
966 case aco_opcode::s_not_b32:
967 case aco_opcode::s_not_b64:
968 case aco_opcode::s_and_b32:
969 case aco_opcode::s_and_b64:
970 case aco_opcode::s_or_b32:
971 case aco_opcode::s_or_b64:
972 case aco_opcode::s_xor_b32:
973 case aco_opcode::s_xor_b64:
974 case aco_opcode::s_lshl_b32:
975 case aco_opcode::v_or_b32:
976 case aco_opcode::v_lshlrev_b32:
977 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
978 break;
979 case aco_opcode::v_min_f32:
980 case aco_opcode::v_min_f16:
981 case aco_opcode::v_min_u32:
982 case aco_opcode::v_min_i32:
983 case aco_opcode::v_min_u16:
984 case aco_opcode::v_min_i16:
985 case aco_opcode::v_max_f32:
986 case aco_opcode::v_max_f16:
987 case aco_opcode::v_max_u32:
988 case aco_opcode::v_max_i32:
989 case aco_opcode::v_max_u16:
990 case aco_opcode::v_max_i16:
991 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
992 break;
993 case aco_opcode::v_cmp_lt_f32:
994 case aco_opcode::v_cmp_eq_f32:
995 case aco_opcode::v_cmp_le_f32:
996 case aco_opcode::v_cmp_gt_f32:
997 case aco_opcode::v_cmp_lg_f32:
998 case aco_opcode::v_cmp_ge_f32:
999 case aco_opcode::v_cmp_o_f32:
1000 case aco_opcode::v_cmp_u_f32:
1001 case aco_opcode::v_cmp_nge_f32:
1002 case aco_opcode::v_cmp_nlg_f32:
1003 case aco_opcode::v_cmp_ngt_f32:
1004 case aco_opcode::v_cmp_nle_f32:
1005 case aco_opcode::v_cmp_neq_f32:
1006 case aco_opcode::v_cmp_nlt_f32:
1007 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1008 break;
1009 default:
1010 break;
1011 }
1012 }
1013
1014 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1015 {
1016 *ordered = *unordered = op;
1017 switch (op) {
1018 #define CMP(ord, unord) \
1019 case aco_opcode::v_cmp_##ord##_f32:\
1020 case aco_opcode::v_cmp_n##unord##_f32:\
1021 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1022 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1023 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1024 return true;
1025 CMP(lt, /*n*/ge)
1026 CMP(eq, /*n*/lg)
1027 CMP(le, /*n*/gt)
1028 CMP(gt, /*n*/le)
1029 CMP(lg, /*n*/eq)
1030 CMP(ge, /*n*/lt)
1031 #undef CMP
1032 default:
1033 return false;
1034 }
1035 }
1036
1037 aco_opcode get_ordered(aco_opcode op)
1038 {
1039 aco_opcode ordered, unordered, inverse;
1040 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1041 }
1042
1043 aco_opcode get_unordered(aco_opcode op)
1044 {
1045 aco_opcode ordered, unordered, inverse;
1046 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1047 }
1048
1049 aco_opcode get_inverse(aco_opcode op)
1050 {
1051 aco_opcode ordered, unordered, inverse;
1052 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1053 }
1054
1055 bool is_cmp(aco_opcode op)
1056 {
1057 aco_opcode ordered, unordered, inverse;
1058 return get_cmp_info(op, &ordered, &unordered, &inverse);
1059 }
1060
1061 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1062 {
1063 if (ctx.info[tmp.id()].is_temp())
1064 return ctx.info[tmp.id()].temp.id();
1065 else
1066 return tmp.id();
1067 }
1068
1069 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1070 {
1071 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1072 for (const Operand& op : instr->operands) {
1073 if (op.isTemp())
1074 ctx.uses[op.tempId()]--;
1075 }
1076 }
1077 }
1078
1079 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1080 {
1081 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1082 return nullptr;
1083 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1084 return nullptr;
1085
1086 Instruction *instr = ctx.info[op.tempId()].instr;
1087
1088 if (instr->definitions.size() == 2) {
1089 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1090 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1091 return nullptr;
1092 }
1093
1094 return instr;
1095 }
1096
1097 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1098 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1099 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1100 {
1101 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1102 return false;
1103 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1104 return false;
1105
1106 bool neg[2] = {false, false};
1107 bool abs[2] = {false, false};
1108 bool opsel[2] = {false, false};
1109 Instruction *op_instr[2];
1110 Temp op[2];
1111
1112 for (unsigned i = 0; i < 2; i++) {
1113 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1114 if (!op_instr[i])
1115 return false;
1116
1117 aco_opcode expected_cmp = instr->opcode == aco_opcode::s_or_b64 ?
1118 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1119
1120 if (op_instr[i]->opcode != expected_cmp)
1121 return false;
1122 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1123 return false;
1124
1125 if (op_instr[i]->isVOP3()) {
1126 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1127 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel[0] != vop3->opsel[1])
1128 return false;
1129 neg[i] = vop3->neg[0];
1130 abs[i] = vop3->abs[0];
1131 opsel[i] = vop3->opsel[0];
1132 }
1133
1134 Temp op0 = op_instr[i]->operands[0].getTemp();
1135 Temp op1 = op_instr[i]->operands[1].getTemp();
1136 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1137 return false;
1138 /* shouldn't happen yet, but best to be safe */
1139 if (op1.type() != RegType::vgpr)
1140 return false;
1141
1142 op[i] = op1;
1143 }
1144
1145 ctx.uses[op[0].id()]++;
1146 ctx.uses[op[1].id()]++;
1147 decrease_uses(ctx, op_instr[0]);
1148 decrease_uses(ctx, op_instr[1]);
1149
1150 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1151 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1152 Instruction *new_instr;
1153 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel[0] || opsel[1]) {
1154 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1155 for (unsigned i = 0; i < 2; i++) {
1156 vop3->neg[i] = neg[i];
1157 vop3->abs[i] = abs[i];
1158 vop3->opsel[i] = opsel[i];
1159 }
1160 new_instr = static_cast<Instruction *>(vop3);
1161 } else {
1162 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1163 }
1164 new_instr->operands[0] = Operand(op[0]);
1165 new_instr->operands[1] = Operand(op[1]);
1166 new_instr->definitions[0] = instr->definitions[0];
1167
1168 ctx.info[instr->definitions[0].tempId()].label = 0;
1169 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1170
1171 instr.reset(new_instr);
1172
1173 return true;
1174 }
1175
1176 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1177 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1178 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1179 {
1180 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1181 return false;
1182 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1183 return false;
1184
1185 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1186 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1187
1188 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1189 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1190 if (!nan_test || !cmp)
1191 return false;
1192
1193 if (cmp->opcode == expected_nan_test)
1194 std::swap(nan_test, cmp);
1195 else if (nan_test->opcode != expected_nan_test)
1196 return false;
1197
1198 if (!is_cmp(cmp->opcode))
1199 return false;
1200
1201 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1202 return false;
1203 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1204 return false;
1205
1206 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1207 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1208 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1209 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1210 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1211 return false;
1212 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1213 return false;
1214
1215 ctx.uses[cmp->operands[0].tempId()]++;
1216 ctx.uses[cmp->operands[1].tempId()]++;
1217 decrease_uses(ctx, nan_test);
1218 decrease_uses(ctx, cmp);
1219
1220 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1221 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1222 Instruction *new_instr;
1223 if (cmp->isVOP3()) {
1224 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1225 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1226 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1227 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1228 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1229 new_vop3->clamp = cmp_vop3->clamp;
1230 new_vop3->omod = cmp_vop3->omod;
1231 new_instr = new_vop3;
1232 } else {
1233 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1234 }
1235 new_instr->operands[0] = cmp->operands[0];
1236 new_instr->operands[1] = cmp->operands[1];
1237 new_instr->definitions[0] = instr->definitions[0];
1238
1239 ctx.info[instr->definitions[0].tempId()].label = 0;
1240 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1241
1242 instr.reset(new_instr);
1243
1244 return true;
1245 }
1246
1247 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1248 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1249 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1250 {
1251 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1252 return false;
1253 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1254 return false;
1255
1256 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1257 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1258
1259 if (!nan_test || !cmp)
1260 return false;
1261
1262 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1263 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1264 if (cmp->opcode == expected_nan_test)
1265 std::swap(nan_test, cmp);
1266 else if (nan_test->opcode != expected_nan_test)
1267 return false;
1268
1269 if (!is_cmp(cmp->opcode))
1270 return false;
1271
1272 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1273 return false;
1274 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1275 return false;
1276
1277 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1278 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1279 if (prop_nan0 != prop_nan1)
1280 return false;
1281
1282 int constant_operand = -1;
1283 for (unsigned i = 0; i < 2; i++) {
1284 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1285 constant_operand = !i;
1286 break;
1287 }
1288 }
1289 if (constant_operand == -1)
1290 return false;
1291
1292 uint32_t constant;
1293 if (cmp->operands[constant_operand].isConstant()) {
1294 constant = cmp->operands[constant_operand].constantValue();
1295 } else if (cmp->operands[constant_operand].isTemp()) {
1296 unsigned id = cmp->operands[constant_operand].tempId();
1297 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1298 return false;
1299 constant = ctx.info[id].val;
1300 } else {
1301 return false;
1302 }
1303
1304 float constantf;
1305 memcpy(&constantf, &constant, 4);
1306 if (isnan(constantf))
1307 return false;
1308
1309 if (cmp->operands[0].isTemp())
1310 ctx.uses[cmp->operands[0].tempId()]++;
1311 if (cmp->operands[1].isTemp())
1312 ctx.uses[cmp->operands[1].tempId()]++;
1313 decrease_uses(ctx, nan_test);
1314 decrease_uses(ctx, cmp);
1315
1316 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1317 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1318 Instruction *new_instr;
1319 if (cmp->isVOP3()) {
1320 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1321 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1322 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1323 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1324 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1325 new_vop3->clamp = cmp_vop3->clamp;
1326 new_vop3->omod = cmp_vop3->omod;
1327 new_instr = new_vop3;
1328 } else {
1329 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1330 }
1331 new_instr->operands[0] = cmp->operands[0];
1332 new_instr->operands[1] = cmp->operands[1];
1333 new_instr->definitions[0] = instr->definitions[0];
1334
1335 ctx.info[instr->definitions[0].tempId()].label = 0;
1336 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1337
1338 instr.reset(new_instr);
1339
1340 return true;
1341 }
1342
1343 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1344 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1345 {
1346 if (instr->opcode != aco_opcode::s_not_b64)
1347 return false;
1348 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1349 return false;
1350 if (!instr->operands[0].isTemp())
1351 return false;
1352
1353 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1354 if (!cmp)
1355 return false;
1356
1357 aco_opcode new_opcode = get_inverse(cmp->opcode);
1358 if (new_opcode == aco_opcode::last_opcode)
1359 return false;
1360
1361 if (cmp->operands[0].isTemp())
1362 ctx.uses[cmp->operands[0].tempId()]++;
1363 if (cmp->operands[1].isTemp())
1364 ctx.uses[cmp->operands[1].tempId()]++;
1365 decrease_uses(ctx, cmp);
1366
1367 Instruction *new_instr;
1368 if (cmp->isVOP3()) {
1369 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1370 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1371 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1372 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1373 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1374 new_vop3->clamp = cmp_vop3->clamp;
1375 new_vop3->omod = cmp_vop3->omod;
1376 new_instr = new_vop3;
1377 } else {
1378 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1379 }
1380 new_instr->operands[0] = cmp->operands[0];
1381 new_instr->operands[1] = cmp->operands[1];
1382 new_instr->definitions[0] = instr->definitions[0];
1383
1384 ctx.info[instr->definitions[0].tempId()].label = 0;
1385 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1386
1387 instr.reset(new_instr);
1388
1389 return true;
1390 }
1391
1392 /* op1(op2(1, 2), 0) if swap = false
1393 * op1(0, op2(1, 2)) if swap = true */
1394 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1395 Instruction* op1_instr, bool swap, const char *shuffle_str,
1396 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1397 bool *op1_clamp, unsigned *op1_omod,
1398 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1399 {
1400 /* checks */
1401 if (op1_instr->opcode != op1)
1402 return false;
1403
1404 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1405 if (!op2_instr || op2_instr->opcode != op2)
1406 return false;
1407
1408 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1409 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1410
1411 /* don't support inbetween clamp/omod */
1412 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1413 return false;
1414
1415 /* get operands and modifiers and check inbetween modifiers */
1416 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1417 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1418
1419 if (inbetween_neg)
1420 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1421 else if (op1_vop3 && op1_vop3->neg[swap])
1422 return false;
1423
1424 if (inbetween_abs)
1425 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1426 else if (op1_vop3 && op1_vop3->abs[swap])
1427 return false;
1428
1429 if (inbetween_opsel)
1430 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel[swap] : false;
1431 else if (op1_vop3 && op1_vop3->opsel[swap])
1432 return false;
1433
1434 int shuffle[3];
1435 shuffle[shuffle_str[0] - '0'] = 0;
1436 shuffle[shuffle_str[1] - '0'] = 1;
1437 shuffle[shuffle_str[2] - '0'] = 2;
1438
1439 operands[shuffle[0]] = op1_instr->operands[!swap];
1440 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1441 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1442 opsel[shuffle[0]] = op1_vop3 ? op1_vop3->opsel[!swap] : false;
1443
1444 for (unsigned i = 0; i < 2; i++) {
1445 operands[shuffle[i + 1]] = op2_instr->operands[i];
1446 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1447 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1448 opsel[shuffle[i + 1]] = op2_vop3 ? op2_vop3->opsel[i] : false;
1449 }
1450
1451 /* check operands */
1452 unsigned sgpr_id = 0;
1453 for (unsigned i = 0; i < 3; i++) {
1454 Operand op = operands[i];
1455 if (op.isLiteral()) {
1456 return false;
1457 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1458 if (sgpr_id && sgpr_id != op.tempId())
1459 return false;
1460 sgpr_id = op.tempId();
1461 }
1462 }
1463
1464 return true;
1465 }
1466
1467 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1468 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1469 bool clamp, unsigned omod)
1470 {
1471 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1472 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1473 memcpy(new_instr->opsel, opsel, sizeof(bool[3]));
1474 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1475 new_instr->clamp = clamp;
1476 new_instr->omod = omod;
1477 new_instr->operands[0] = operands[0];
1478 new_instr->operands[1] = operands[1];
1479 new_instr->operands[2] = operands[2];
1480 new_instr->definitions[0] = instr->definitions[0];
1481 ctx.info[instr->definitions[0].tempId()].label = 0;
1482
1483 instr.reset(new_instr);
1484 }
1485
1486 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1487 {
1488 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1489 (label_omod_success | label_clamp_success);
1490
1491 for (unsigned swap = 0; swap < 2; swap++) {
1492 if (!((1 << swap) & ops))
1493 continue;
1494
1495 Operand operands[3];
1496 bool neg[3], abs[3], opsel[3], clamp;
1497 unsigned omod;
1498 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1499 instr.get(), swap, shuffle,
1500 operands, neg, abs, opsel,
1501 &clamp, &omod, NULL, NULL, NULL)) {
1502 ctx.uses[instr->operands[swap].tempId()]--;
1503 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1504 if (omod_clamp & label_omod_success)
1505 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1506 if (omod_clamp & label_clamp_success)
1507 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1508 return true;
1509 }
1510 }
1511 return false;
1512 }
1513
1514 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1515 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1516 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1517 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1518 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1519 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1520 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1521 {
1522 /* checks */
1523 if (!instr->operands[0].isTemp())
1524 return false;
1525 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1526 return false;
1527
1528 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1529 if (!op2_instr)
1530 return false;
1531 switch (op2_instr->opcode) {
1532 case aco_opcode::s_and_b32:
1533 case aco_opcode::s_or_b32:
1534 case aco_opcode::s_xor_b32:
1535 case aco_opcode::s_and_b64:
1536 case aco_opcode::s_or_b64:
1537 case aco_opcode::s_xor_b64:
1538 break;
1539 default:
1540 return false;
1541 }
1542
1543 /* create instruction */
1544 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1545 ctx.uses[instr->operands[0].tempId()]--;
1546 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1547
1548 switch (op2_instr->opcode) {
1549 case aco_opcode::s_and_b32:
1550 op2_instr->opcode = aco_opcode::s_nand_b32;
1551 break;
1552 case aco_opcode::s_or_b32:
1553 op2_instr->opcode = aco_opcode::s_nor_b32;
1554 break;
1555 case aco_opcode::s_xor_b32:
1556 op2_instr->opcode = aco_opcode::s_xnor_b32;
1557 break;
1558 case aco_opcode::s_and_b64:
1559 op2_instr->opcode = aco_opcode::s_nand_b64;
1560 break;
1561 case aco_opcode::s_or_b64:
1562 op2_instr->opcode = aco_opcode::s_nor_b64;
1563 break;
1564 case aco_opcode::s_xor_b64:
1565 op2_instr->opcode = aco_opcode::s_xnor_b64;
1566 break;
1567 default:
1568 break;
1569 }
1570
1571 return true;
1572 }
1573
1574 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1575 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1576 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1577 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1578 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1579 {
1580 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1581 return false;
1582
1583 for (unsigned i = 0; i < 2; i++) {
1584 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1585 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1586 continue;
1587
1588 ctx.uses[instr->operands[i].tempId()]--;
1589 instr->operands[0] = instr->operands[!i];
1590 instr->operands[1] = op2_instr->operands[0];
1591 ctx.info[instr->definitions[0].tempId()].label = 0;
1592
1593 switch (instr->opcode) {
1594 case aco_opcode::s_and_b32:
1595 instr->opcode = aco_opcode::s_andn2_b32;
1596 break;
1597 case aco_opcode::s_or_b32:
1598 instr->opcode = aco_opcode::s_orn2_b32;
1599 break;
1600 case aco_opcode::s_and_b64:
1601 instr->opcode = aco_opcode::s_andn2_b64;
1602 break;
1603 case aco_opcode::s_or_b64:
1604 instr->opcode = aco_opcode::s_orn2_b64;
1605 break;
1606 default:
1607 break;
1608 }
1609
1610 return true;
1611 }
1612 return false;
1613 }
1614
1615 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1616 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1617 {
1618 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1619 return false;
1620
1621 for (unsigned i = 0; i < 2; i++) {
1622 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1623 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1624 continue;
1625
1626 uint32_t shift = op2_instr->operands[1].constantValue();
1627 if (shift < 1 || shift > 4)
1628 continue;
1629
1630 ctx.uses[instr->operands[i].tempId()]--;
1631 instr->operands[1] = instr->operands[!i];
1632 instr->operands[0] = op2_instr->operands[0];
1633 ctx.info[instr->definitions[0].tempId()].label = 0;
1634
1635 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1636 aco_opcode::s_lshl2_add_u32,
1637 aco_opcode::s_lshl3_add_u32,
1638 aco_opcode::s_lshl4_add_u32})[shift - 1];
1639
1640 return true;
1641 }
1642 return false;
1643 }
1644
1645 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1646 {
1647 switch (op) {
1648 #define MINMAX(type, gfx9) \
1649 case aco_opcode::v_min_##type:\
1650 case aco_opcode::v_max_##type:\
1651 case aco_opcode::v_med3_##type:\
1652 *min = aco_opcode::v_min_##type;\
1653 *max = aco_opcode::v_max_##type;\
1654 *med3 = aco_opcode::v_med3_##type;\
1655 *min3 = aco_opcode::v_min3_##type;\
1656 *max3 = aco_opcode::v_max3_##type;\
1657 *some_gfx9_only = gfx9;\
1658 return true;
1659 MINMAX(f32, false)
1660 MINMAX(u32, false)
1661 MINMAX(i32, false)
1662 MINMAX(f16, true)
1663 MINMAX(u16, true)
1664 MINMAX(i16, true)
1665 #undef MINMAX
1666 default:
1667 return false;
1668 }
1669 }
1670
1671 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1672 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1673 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1674 aco_opcode min, aco_opcode max, aco_opcode med)
1675 {
1676 aco_opcode other_op;
1677 if (instr->opcode == min)
1678 other_op = max;
1679 else if (instr->opcode == max)
1680 other_op = min;
1681 else
1682 return false;
1683
1684 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1685 (label_omod_success | label_clamp_success);
1686
1687 for (unsigned swap = 0; swap < 2; swap++) {
1688 Operand operands[3];
1689 bool neg[3], abs[3], opsel[3], clamp, inbetween_neg, inbetween_abs;
1690 unsigned omod;
1691 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1692 "012", operands, neg, abs, opsel,
1693 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1694 int const0_idx = -1, const1_idx = -1;
1695 uint32_t const0 = 0, const1 = 0;
1696 for (int i = 0; i < 3; i++) {
1697 uint32_t val;
1698 if (operands[i].isConstant()) {
1699 val = operands[i].constantValue();
1700 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1701 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1702 val = ctx.info[operands[i].tempId()].val;
1703 } else {
1704 continue;
1705 }
1706 if (const0_idx >= 0) {
1707 const1_idx = i;
1708 const1 = val;
1709 } else {
1710 const0_idx = i;
1711 const0 = val;
1712 }
1713 }
1714 if (const0_idx < 0 || const1_idx < 0)
1715 continue;
1716
1717 if (opsel[const0_idx])
1718 const0 >>= 16;
1719 if (opsel[const1_idx])
1720 const1 >>= 16;
1721
1722 int lower_idx = const0_idx;
1723 switch (min) {
1724 case aco_opcode::v_min_f32:
1725 case aco_opcode::v_min_f16: {
1726 float const0_f, const1_f;
1727 if (min == aco_opcode::v_min_f32) {
1728 memcpy(&const0_f, &const0, 4);
1729 memcpy(&const1_f, &const1, 4);
1730 } else {
1731 const0_f = _mesa_half_to_float(const0);
1732 const1_f = _mesa_half_to_float(const1);
1733 }
1734 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1735 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1736 if (neg[const0_idx]) const0_f = -const0_f;
1737 if (neg[const1_idx]) const1_f = -const1_f;
1738 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1739 break;
1740 }
1741 case aco_opcode::v_min_u32: {
1742 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1743 break;
1744 }
1745 case aco_opcode::v_min_u16: {
1746 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1747 break;
1748 }
1749 case aco_opcode::v_min_i32: {
1750 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1751 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1752 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1753 break;
1754 }
1755 case aco_opcode::v_min_i16: {
1756 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1757 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1758 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1759 break;
1760 }
1761 default:
1762 break;
1763 }
1764 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1765
1766 if (instr->opcode == min) {
1767 if (upper_idx != 0 || lower_idx == 0)
1768 return false;
1769 } else {
1770 if (upper_idx == 0 || lower_idx != 0)
1771 return false;
1772 }
1773
1774 neg[1] ^= inbetween_neg;
1775 neg[2] ^= inbetween_neg;
1776 abs[1] |= inbetween_abs;
1777 abs[2] |= inbetween_abs;
1778
1779 ctx.uses[instr->operands[swap].tempId()]--;
1780 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1781 if (omod_clamp & label_omod_success)
1782 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1783 if (omod_clamp & label_clamp_success)
1784 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1785
1786 return true;
1787 }
1788 }
1789
1790 return false;
1791 }
1792
1793
1794 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1795 {
1796 /* apply sgprs */
1797 uint32_t sgpr_idx = 0;
1798 uint32_t sgpr_info_id = 0;
1799 bool has_sgpr = false;
1800 uint32_t sgpr_ssa_id = 0;
1801 /* find 'best' possible sgpr */
1802 for (unsigned i = 0; i < instr->operands.size(); i++)
1803 {
1804 if (instr->operands[i].isLiteral()) {
1805 has_sgpr = true;
1806 break;
1807 }
1808 if (!instr->operands[i].isTemp())
1809 continue;
1810 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1811 has_sgpr = true;
1812 sgpr_ssa_id = instr->operands[i].tempId();
1813 continue;
1814 }
1815 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1816 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1817 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1818 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1819 sgpr_idx = i;
1820 sgpr_info_id = instr->operands[i].tempId();
1821 }
1822 }
1823 }
1824 if (!has_sgpr && sgpr_info_id != 0) {
1825 ssa_info& info = ctx.info[sgpr_info_id];
1826 if (sgpr_idx == 0 || instr->isVOP3()) {
1827 instr->operands[sgpr_idx] = Operand(info.temp);
1828 ctx.uses[sgpr_info_id]--;
1829 ctx.uses[info.temp.id()]++;
1830 } else if (can_swap_operands(instr)) {
1831 instr->operands[sgpr_idx] = instr->operands[0];
1832 instr->operands[0] = Operand(info.temp);
1833 ctx.uses[sgpr_info_id]--;
1834 ctx.uses[info.temp.id()]++;
1835 } else if (can_use_VOP3(instr)) {
1836 to_VOP3(ctx, instr);
1837 instr->operands[sgpr_idx] = Operand(info.temp);
1838 ctx.uses[sgpr_info_id]--;
1839 ctx.uses[info.temp.id()]++;
1840 }
1841
1842 /* we can have two sgprs on one instruction if it is the same sgpr! */
1843 } else if (sgpr_info_id != 0 &&
1844 sgpr_ssa_id == sgpr_info_id &&
1845 ctx.uses[sgpr_info_id] == 1 &&
1846 can_use_VOP3(instr)) {
1847 to_VOP3(ctx, instr);
1848 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1849 ctx.uses[sgpr_info_id]--;
1850 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1851 }
1852 }
1853
1854 bool apply_omod_clamp(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1855 {
1856 /* check if we could apply omod on predecessor */
1857 if (instr->opcode == aco_opcode::v_mul_f32) {
1858 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) {
1859
1860 /* omod was successfully applied */
1861 /* if the omod instruction is v_mad, we also have to change the original add */
1862 if (ctx.info[instr->operands[1].tempId()].is_mad()) {
1863 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get();
1864 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1865 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1866 add_instr->definitions[0] = instr->definitions[0];
1867 }
1868
1869 Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr;
1870 /* check if we have an additional clamp modifier */
1871 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1872 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1873 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1874 }
1875 /* change definition ssa-id of modified instruction */
1876 omod_instr->definitions[0] = instr->definitions[0];
1877
1878 /* change the definition of instr to something unused, e.g. the original omod def */
1879 instr->definitions[0] = Definition(instr->operands[1].getTemp());
1880 ctx.uses[instr->definitions[0].tempId()] = 0;
1881 return true;
1882 }
1883 if (!ctx.info[instr->definitions[0].tempId()].label) {
1884 /* in all other cases, label this instruction as option for multiply-add */
1885 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1886 }
1887 }
1888
1889 /* check if we could apply clamp on predecessor */
1890 if (instr->opcode == aco_opcode::v_med3_f32) {
1891 unsigned idx = 0;
1892 bool found_zero = false, found_one = false;
1893 for (unsigned i = 0; i < 3; i++)
1894 {
1895 if (instr->operands[i].constantEquals(0))
1896 found_zero = true;
1897 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1898 found_one = true;
1899 else
1900 idx = i;
1901 }
1902 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1903 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1904 /* clamp was successfully applied */
1905 /* if the clamp instruction is v_mad, we also have to change the original add */
1906 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1907 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1908 add_instr->definitions[0] = instr->definitions[0];
1909 }
1910 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1911 /* change definition ssa-id of modified instruction */
1912 clamp_instr->definitions[0] = instr->definitions[0];
1913
1914 /* change the definition of instr to something unused, e.g. the original omod def */
1915 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1916 ctx.uses[instr->definitions[0].tempId()] = 0;
1917 return true;
1918 }
1919 }
1920
1921 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
1922 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
1923 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
1924 if(ctx.info[instr->definitions[0].tempId()].is_omod2()) {
1925 to_VOP3(ctx, instr);
1926 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
1927 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1928 } else if (ctx.info[instr->definitions[0].tempId()].is_omod4()) {
1929 to_VOP3(ctx, instr);
1930 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
1931 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1932 } else if (ctx.info[instr->definitions[0].tempId()].is_omod5()) {
1933 to_VOP3(ctx, instr);
1934 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
1935 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1936 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
1937 to_VOP3(ctx, instr);
1938 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
1939 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1940 }
1941 }
1942
1943 return false;
1944 }
1945
1946 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
1947 // this would mean that we'd have to fix the instruction uses while value propagation
1948
1949 void combine_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1950 {
1951 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
1952 return;
1953
1954 if (instr->isVALU()) {
1955 if (can_apply_sgprs(instr))
1956 apply_sgprs(ctx, instr);
1957 if (apply_omod_clamp(ctx, instr))
1958 return;
1959 }
1960
1961 /* TODO: There are still some peephole optimizations that could be done:
1962 * - abs(a - b) -> s_absdiff_i32
1963 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
1964 * - patterns for v_alignbit_b32 and v_alignbyte_b32
1965 * These aren't probably too interesting though.
1966 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
1967 * probably more useful than the previously mentioned optimizations.
1968 * The various comparison optimizations also currently only work with 32-bit
1969 * floats. */
1970
1971 /* neg(mul(a, b)) -> mul(neg(a), b) */
1972 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
1973 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
1974
1975 if (!ctx.info[val.id()].is_mul())
1976 return;
1977
1978 Instruction* mul_instr = ctx.info[val.id()].instr;
1979
1980 if (mul_instr->operands[0].isLiteral())
1981 return;
1982 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
1983 return;
1984
1985 /* convert to mul(neg(a), b) */
1986 ctx.uses[mul_instr->definitions[0].tempId()]--;
1987 Definition def = instr->definitions[0];
1988 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
1989 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
1990 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
1991 instr->operands[0] = mul_instr->operands[0];
1992 instr->operands[1] = mul_instr->operands[1];
1993 instr->definitions[0] = def;
1994 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
1995 if (mul_instr->isVOP3()) {
1996 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
1997 new_mul->neg[0] = mul->neg[0] && !is_abs;
1998 new_mul->neg[1] = mul->neg[1] && !is_abs;
1999 new_mul->abs[0] = mul->abs[0] || is_abs;
2000 new_mul->abs[1] = mul->abs[1] || is_abs;
2001 new_mul->omod = mul->omod;
2002 }
2003 new_mul->neg[0] ^= true;
2004 new_mul->clamp = false;
2005
2006 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2007 return;
2008 }
2009 /* combine mul+add -> mad */
2010 else if (instr->opcode == aco_opcode::v_add_f32 ||
2011 instr->opcode == aco_opcode::v_sub_f32 ||
2012 instr->opcode == aco_opcode::v_subrev_f32) {
2013
2014 uint32_t uses_src0 = UINT32_MAX;
2015 uint32_t uses_src1 = UINT32_MAX;
2016 Instruction* mul_instr = nullptr;
2017 unsigned add_op_idx;
2018 /* check if any of the operands is a multiplication */
2019 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2020 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2021 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2022 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2023
2024 /* find the 'best' mul instruction to combine with the add */
2025 if (uses_src0 < uses_src1) {
2026 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2027 add_op_idx = 1;
2028 } else if (uses_src1 < uses_src0) {
2029 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2030 add_op_idx = 0;
2031 } else if (uses_src0 != UINT32_MAX) {
2032 /* tiebreaker: quite random what to pick */
2033 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2034 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2035 add_op_idx = 0;
2036 } else {
2037 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2038 add_op_idx = 1;
2039 }
2040 }
2041 if (mul_instr) {
2042 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2043 bool neg[3] = {false, false, false};
2044 bool abs[3] = {false, false, false};
2045 unsigned omod = 0;
2046 bool clamp = false;
2047 bool need_vop3 = false;
2048 int num_sgpr = 0;
2049 op[0] = mul_instr->operands[0];
2050 op[1] = mul_instr->operands[1];
2051 op[2] = instr->operands[add_op_idx];
2052 for (unsigned i = 0; i < 3; i++)
2053 {
2054 if (op[i].isLiteral())
2055 return;
2056 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2057 num_sgpr++;
2058 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2059 need_vop3 = true;
2060 }
2061 // TODO: would be better to check this before selecting a mul instr?
2062 if (num_sgpr > 1)
2063 return;
2064
2065 if (mul_instr->isVOP3()) {
2066 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2067 neg[0] = vop3->neg[0];
2068 neg[1] = vop3->neg[1];
2069 abs[0] = vop3->abs[0];
2070 abs[1] = vop3->abs[1];
2071 need_vop3 = true;
2072 /* we cannot use these modifiers between mul and add */
2073 if (vop3->clamp || vop3->omod)
2074 return;
2075 }
2076
2077 /* convert to mad */
2078 ctx.uses[mul_instr->definitions[0].tempId()]--;
2079 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2080 if (op[0].isTemp())
2081 ctx.uses[op[0].tempId()]++;
2082 if (op[1].isTemp())
2083 ctx.uses[op[1].tempId()]++;
2084 }
2085
2086 if (instr->isVOP3()) {
2087 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2088 neg[2] = vop3->neg[add_op_idx];
2089 abs[2] = vop3->abs[add_op_idx];
2090 omod = vop3->omod;
2091 clamp = vop3->clamp;
2092 /* abs of the multiplication result */
2093 if (vop3->abs[1 - add_op_idx]) {
2094 neg[0] = false;
2095 neg[1] = false;
2096 abs[0] = true;
2097 abs[1] = true;
2098 }
2099 /* neg of the multiplication result */
2100 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2101 need_vop3 = true;
2102 }
2103 if (instr->opcode == aco_opcode::v_sub_f32) {
2104 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2105 need_vop3 = true;
2106 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2107 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2108 need_vop3 = true;
2109 }
2110
2111 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2112 for (unsigned i = 0; i < 3; i++)
2113 {
2114 mad->operands[i] = op[i];
2115 mad->neg[i] = neg[i];
2116 mad->abs[i] = abs[i];
2117 }
2118 mad->omod = omod;
2119 mad->clamp = clamp;
2120 mad->definitions[0] = instr->definitions[0];
2121
2122 /* mark this ssa_def to be re-checked for profitability and literals */
2123 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2124 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2125 instr.reset(mad.release());
2126 return;
2127 }
2128 }
2129 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2130 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2131 for (unsigned i = 0; i < 2; i++) {
2132 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2133 ctx.uses[instr->operands[i].tempId()] == 1 &&
2134 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2135 ctx.uses[instr->operands[i].tempId()]--;
2136 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2137
2138 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2139 new_instr->operands[0] = Operand(0u);
2140 new_instr->operands[1] = instr->operands[!i];
2141 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2142 new_instr->definitions[0] = instr->definitions[0];
2143 instr.reset(new_instr.release());
2144 ctx.info[instr->definitions[0].tempId()].label = 0;
2145 return;
2146 }
2147 }
2148 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2149 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2150 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2151 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2152 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2153 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2154 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2155 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2156 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2157 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2158 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2159 combine_salu_lshl_add(ctx, instr);
2160 } else if (instr->opcode == aco_opcode::s_not_b32) {
2161 combine_salu_not_bitwise(ctx, instr);
2162 } else if (instr->opcode == aco_opcode::s_not_b64) {
2163 if (combine_inverse_comparison(ctx, instr)) ;
2164 else combine_salu_not_bitwise(ctx, instr);
2165 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32) {
2166 combine_salu_n2(ctx, instr);
2167 } else if (instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2168 if (combine_ordering_test(ctx, instr)) ;
2169 else if (combine_comparison_ordering(ctx, instr)) ;
2170 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2171 else combine_salu_n2(ctx, instr);
2172 } else {
2173 aco_opcode min, max, min3, max3, med3;
2174 bool some_gfx9_only;
2175 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2176 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2177 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2178 else combine_clamp(ctx, instr, min, max, med3);
2179 }
2180 }
2181 }
2182
2183
2184 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2185 {
2186 const uint32_t threshold = 4;
2187
2188 /* Dead Code Elimination:
2189 * We remove instructions if they define temporaries which all are unused */
2190 const bool is_used = instr->definitions.empty() ||
2191 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2192 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2193 if (!is_used) {
2194 instr.reset();
2195 return;
2196 }
2197
2198 /* convert split_vector into extract_vector if only one definition is ever used */
2199 if (instr->opcode == aco_opcode::p_split_vector) {
2200 unsigned num_used = 0;
2201 unsigned idx = 0;
2202 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2203 if (ctx.uses[instr->definitions[i].tempId()]) {
2204 num_used++;
2205 idx = i;
2206 }
2207 }
2208 if (num_used == 1) {
2209 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2210 extract->operands[0] = instr->operands[0];
2211 extract->operands[1] = Operand((uint32_t) idx);
2212 extract->definitions[0] = instr->definitions[idx];
2213 instr.reset(extract.release());
2214 }
2215 }
2216
2217 /* re-check mad instructions */
2218 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2219 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2220 /* first, check profitability */
2221 if (ctx.uses[info->mul_temp_id]) {
2222 ctx.uses[info->mul_temp_id]++;
2223 instr.swap(info->add_instr);
2224
2225 /* second, check possible literals */
2226 } else if (!info->needs_vop3) {
2227 uint32_t literal_idx = 0;
2228 uint32_t literal_uses = UINT32_MAX;
2229 for (unsigned i = 0; i < instr->operands.size(); i++)
2230 {
2231 if (!instr->operands[i].isTemp())
2232 continue;
2233 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2234 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2235 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2236 literal_uses = ctx.uses[instr->operands[i].tempId()];
2237 literal_idx = i;
2238 } else {
2239 literal_uses = UINT32_MAX;
2240 }
2241 break;
2242 }
2243 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2244 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2245 literal_uses = ctx.uses[instr->operands[i].tempId()];
2246 literal_idx = i;
2247 }
2248 }
2249 if (literal_uses < threshold) {
2250 ctx.uses[instr->operands[literal_idx].tempId()]--;
2251 info->check_literal = true;
2252 info->literal_idx = literal_idx;
2253 }
2254 }
2255 return;
2256 }
2257
2258 /* check for literals */
2259 /* we do not apply the literals yet as we don't know if it is profitable */
2260 if (instr->isSALU()) {
2261 uint32_t literal_idx = 0;
2262 uint32_t literal_uses = UINT32_MAX;
2263 bool has_literal = false;
2264 for (unsigned i = 0; i < instr->operands.size(); i++)
2265 {
2266 if (instr->operands[i].isLiteral()) {
2267 has_literal = true;
2268 break;
2269 }
2270 if (!instr->operands[i].isTemp())
2271 continue;
2272 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2273 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2274 literal_uses = ctx.uses[instr->operands[i].tempId()];
2275 literal_idx = i;
2276 }
2277 }
2278 if (!has_literal && literal_uses < threshold) {
2279 ctx.uses[instr->operands[literal_idx].tempId()]--;
2280 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2281 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2282 }
2283 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2284 instr->operands[0].isTemp() &&
2285 ctx.info[instr->operands[0].tempId()].is_literal() &&
2286 ctx.uses[instr->operands[0].tempId()] < threshold) {
2287 ctx.uses[instr->operands[0].tempId()]--;
2288 if (ctx.uses[instr->operands[0].tempId()] == 0)
2289 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2290 }
2291
2292 }
2293
2294
2295 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2296 {
2297 /* Cleanup Dead Instructions */
2298 if (!instr)
2299 return;
2300
2301 /* apply literals on SALU */
2302 if (instr->isSALU()) {
2303 for (Operand& op : instr->operands) {
2304 if (!op.isTemp())
2305 continue;
2306 if (op.isLiteral())
2307 break;
2308 if (ctx.info[op.tempId()].is_literal() &&
2309 ctx.uses[op.tempId()] == 0)
2310 op = Operand(ctx.info[op.tempId()].val);
2311 }
2312 }
2313
2314 /* apply literals on VALU */
2315 else if (instr->isVALU() && !instr->isVOP3() &&
2316 instr->operands[0].isTemp() &&
2317 ctx.info[instr->operands[0].tempId()].is_literal() &&
2318 ctx.uses[instr->operands[0].tempId()] == 0) {
2319 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2320 }
2321
2322 /* apply literals on MAD */
2323 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2324 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2325 aco_ptr<Instruction> new_mad;
2326 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2327 if (info->literal_idx == 2) { /* add literal -> madak */
2328 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2329 new_mad->operands[0] = instr->operands[0];
2330 new_mad->operands[1] = instr->operands[1];
2331 } else { /* mul literal -> madmk */
2332 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2333 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2334 new_mad->operands[1] = instr->operands[2];
2335 }
2336 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2337 new_mad->definitions[0] = instr->definitions[0];
2338 instr.swap(new_mad);
2339 }
2340 }
2341
2342 ctx.instructions.emplace_back(std::move(instr));
2343 }
2344
2345
2346 void optimize(Program* program)
2347 {
2348 opt_ctx ctx;
2349 ctx.program = program;
2350 std::vector<ssa_info> info(program->peekAllocationId());
2351 ctx.info = info.data();
2352
2353 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2354 for (Block& block : program->blocks) {
2355 for (aco_ptr<Instruction>& instr : block.instructions)
2356 label_instruction(ctx, instr);
2357 }
2358
2359 ctx.uses = std::move(dead_code_analysis(program));
2360
2361 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2362 for (Block& block : program->blocks) {
2363 for (aco_ptr<Instruction>& instr : block.instructions)
2364 combine_instruction(ctx, instr);
2365 }
2366
2367 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2368 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2369 Block* block = &(*it);
2370 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2371 select_instruction(ctx, *it);
2372 }
2373
2374 /* 4. Add literals to instructions */
2375 for (Block& block : program->blocks) {
2376 ctx.instructions.clear();
2377 for (aco_ptr<Instruction>& instr : block.instructions)
2378 apply_literals(ctx, instr);
2379 block.instructions.swap(ctx.instructions);
2380 }
2381
2382 }
2383
2384 }