aco: make 1/2*PI a literal constant on SI/CI
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 label_uniform_bool = 1 << 21,
86 };
87
88 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
89 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool;
90 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
91
92 struct ssa_info {
93 uint32_t val;
94 union {
95 Temp temp;
96 Instruction* instr;
97 };
98 uint32_t label;
99
100 void add_label(Label new_label)
101 {
102 /* Since all labels which use "instr" use it for the same thing
103 * (indicating the defining instruction), there is no need to clear
104 * any other instr labels. */
105 if (new_label & instr_labels)
106 label &= ~temp_labels; /* instr and temp alias */
107
108 if (new_label & temp_labels) {
109 label &= ~temp_labels;
110 label &= ~instr_labels; /* instr and temp alias */
111 }
112
113 if (new_label & val_labels)
114 label &= ~val_labels;
115
116 label |= new_label;
117 }
118
119 void set_vec(Instruction* vec)
120 {
121 add_label(label_vec);
122 instr = vec;
123 }
124
125 bool is_vec()
126 {
127 return label & label_vec;
128 }
129
130 void set_constant(uint32_t constant)
131 {
132 add_label(label_constant);
133 val = constant;
134 }
135
136 bool is_constant()
137 {
138 return label & label_constant;
139 }
140
141 void set_abs(Temp abs_temp)
142 {
143 add_label(label_abs);
144 temp = abs_temp;
145 }
146
147 bool is_abs()
148 {
149 return label & label_abs;
150 }
151
152 void set_neg(Temp neg_temp)
153 {
154 add_label(label_neg);
155 temp = neg_temp;
156 }
157
158 bool is_neg()
159 {
160 return label & label_neg;
161 }
162
163 void set_neg_abs(Temp neg_abs_temp)
164 {
165 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
166 temp = neg_abs_temp;
167 }
168
169 void set_mul(Instruction* mul)
170 {
171 add_label(label_mul);
172 instr = mul;
173 }
174
175 bool is_mul()
176 {
177 return label & label_mul;
178 }
179
180 void set_temp(Temp tmp)
181 {
182 add_label(label_temp);
183 temp = tmp;
184 }
185
186 bool is_temp()
187 {
188 return label & label_temp;
189 }
190
191 void set_literal(uint32_t lit)
192 {
193 add_label(label_literal);
194 val = lit;
195 }
196
197 bool is_literal()
198 {
199 return label & label_literal;
200 }
201
202 void set_mad(Instruction* mad, uint32_t mad_info_idx)
203 {
204 add_label(label_mad);
205 val = mad_info_idx;
206 instr = mad;
207 }
208
209 bool is_mad()
210 {
211 return label & label_mad;
212 }
213
214 void set_omod2()
215 {
216 add_label(label_omod2);
217 }
218
219 bool is_omod2()
220 {
221 return label & label_omod2;
222 }
223
224 void set_omod4()
225 {
226 add_label(label_omod4);
227 }
228
229 bool is_omod4()
230 {
231 return label & label_omod4;
232 }
233
234 void set_omod5()
235 {
236 add_label(label_omod5);
237 }
238
239 bool is_omod5()
240 {
241 return label & label_omod5;
242 }
243
244 void set_omod_success(Instruction* omod_instr)
245 {
246 add_label(label_omod_success);
247 instr = omod_instr;
248 }
249
250 bool is_omod_success()
251 {
252 return label & label_omod_success;
253 }
254
255 void set_clamp()
256 {
257 add_label(label_clamp);
258 }
259
260 bool is_clamp()
261 {
262 return label & label_clamp;
263 }
264
265 void set_clamp_success(Instruction* clamp_instr)
266 {
267 add_label(label_clamp_success);
268 instr = clamp_instr;
269 }
270
271 bool is_clamp_success()
272 {
273 return label & label_clamp_success;
274 }
275
276 void set_undefined()
277 {
278 add_label(label_undefined);
279 }
280
281 bool is_undefined()
282 {
283 return label & label_undefined;
284 }
285
286 void set_vcc(Temp vcc)
287 {
288 add_label(label_vcc);
289 temp = vcc;
290 }
291
292 bool is_vcc()
293 {
294 return label & label_vcc;
295 }
296
297 bool is_constant_or_literal()
298 {
299 return is_constant() || is_literal();
300 }
301
302 void set_b2f(Temp val)
303 {
304 add_label(label_b2f);
305 temp = val;
306 }
307
308 bool is_b2f()
309 {
310 return label & label_b2f;
311 }
312
313 void set_add_sub(Instruction *add_sub_instr)
314 {
315 add_label(label_add_sub);
316 instr = add_sub_instr;
317 }
318
319 bool is_add_sub()
320 {
321 return label & label_add_sub;
322 }
323
324 void set_bitwise(Instruction *bitwise_instr)
325 {
326 add_label(label_bitwise);
327 instr = bitwise_instr;
328 }
329
330 bool is_bitwise()
331 {
332 return label & label_bitwise;
333 }
334
335 void set_minmax(Instruction *minmax_instr)
336 {
337 add_label(label_minmax);
338 instr = minmax_instr;
339 }
340
341 bool is_minmax()
342 {
343 return label & label_minmax;
344 }
345
346 void set_fcmp(Instruction *fcmp_instr)
347 {
348 add_label(label_fcmp);
349 instr = fcmp_instr;
350 }
351
352 bool is_fcmp()
353 {
354 return label & label_fcmp;
355 }
356
357 void set_uniform_bool(Temp uniform_bool)
358 {
359 add_label(label_uniform_bool);
360 temp = uniform_bool;
361 }
362
363 bool is_uniform_bool()
364 {
365 return label & label_uniform_bool;
366 }
367
368 };
369
370 struct opt_ctx {
371 Program* program;
372 std::vector<aco_ptr<Instruction>> instructions;
373 ssa_info* info;
374 std::pair<uint32_t,Temp> last_literal;
375 std::vector<mad_info> mad_infos;
376 std::vector<uint16_t> uses;
377 };
378
379 bool can_swap_operands(aco_ptr<Instruction>& instr)
380 {
381 if (instr->operands[0].isConstant() ||
382 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
383 return false;
384
385 switch (instr->opcode) {
386 case aco_opcode::v_add_f32:
387 case aco_opcode::v_mul_f32:
388 case aco_opcode::v_or_b32:
389 case aco_opcode::v_and_b32:
390 case aco_opcode::v_xor_b32:
391 case aco_opcode::v_max_f32:
392 case aco_opcode::v_min_f32:
393 case aco_opcode::v_cmp_eq_f32:
394 case aco_opcode::v_cmp_lg_f32:
395 return true;
396 case aco_opcode::v_sub_f32:
397 instr->opcode = aco_opcode::v_subrev_f32;
398 return true;
399 case aco_opcode::v_cmp_lt_f32:
400 instr->opcode = aco_opcode::v_cmp_gt_f32;
401 return true;
402 case aco_opcode::v_cmp_ge_f32:
403 instr->opcode = aco_opcode::v_cmp_le_f32;
404 return true;
405 case aco_opcode::v_cmp_lt_i32:
406 instr->opcode = aco_opcode::v_cmp_gt_i32;
407 return true;
408 default:
409 return false;
410 }
411 }
412
413 bool can_use_VOP3(aco_ptr<Instruction>& instr)
414 {
415 if (instr->operands.size() && instr->operands[0].isLiteral())
416 return false;
417
418 if (instr->isDPP() || instr->isSDWA())
419 return false;
420
421 return instr->opcode != aco_opcode::v_madmk_f32 &&
422 instr->opcode != aco_opcode::v_madak_f32 &&
423 instr->opcode != aco_opcode::v_madmk_f16 &&
424 instr->opcode != aco_opcode::v_madak_f16 &&
425 instr->opcode != aco_opcode::v_readlane_b32 &&
426 instr->opcode != aco_opcode::v_writelane_b32 &&
427 instr->opcode != aco_opcode::v_readfirstlane_b32;
428 }
429
430 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
431 {
432 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
433 instr->opcode != aco_opcode::v_readlane_b32 &&
434 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
435 instr->opcode != aco_opcode::v_writelane_b32 &&
436 instr->opcode != aco_opcode::v_writelane_b32_e64;
437 }
438
439 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
440 {
441 if (instr->isVOP3())
442 return;
443
444 assert(!instr->operands[0].isLiteral());
445 aco_ptr<Instruction> tmp = std::move(instr);
446 Format format = asVOP3(tmp->format);
447 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
448 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
449 for (unsigned i = 0; i < instr->definitions.size(); i++) {
450 instr->definitions[i] = tmp->definitions[i];
451 if (instr->definitions[i].isTemp()) {
452 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
453 if (info.label & instr_labels && info.instr == tmp.get())
454 info.instr = instr.get();
455 }
456 }
457 }
458
459 /* only covers special cases */
460 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
461 {
462 switch (instr->opcode) {
463 case aco_opcode::v_interp_p2_f32:
464 case aco_opcode::v_mac_f32:
465 case aco_opcode::v_writelane_b32:
466 case aco_opcode::v_writelane_b32_e64:
467 case aco_opcode::v_cndmask_b32:
468 return operand != 2;
469 case aco_opcode::s_addk_i32:
470 case aco_opcode::s_mulk_i32:
471 case aco_opcode::p_wqm:
472 case aco_opcode::p_extract_vector:
473 case aco_opcode::p_split_vector:
474 case aco_opcode::v_readlane_b32:
475 case aco_opcode::v_readlane_b32_e64:
476 case aco_opcode::v_readfirstlane_b32:
477 return operand != 0;
478 default:
479 if ((instr->format == Format::MUBUF ||
480 instr->format == Format::MIMG) &&
481 instr->definitions.size() == 1 &&
482 instr->operands.size() == 4) {
483 return operand != 3;
484 }
485 return true;
486 }
487 }
488
489 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
490 {
491 /* instructions like v_cndmask_b32 can't take a literal because they always
492 * read SGPRs */
493 if (instr->operands.size() >= 3 &&
494 instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr)
495 return false;
496
497 // TODO: VOP3 can take a literal on GFX10
498 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
499 operand == 0 && can_accept_constant(instr, operand);
500 }
501
502 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
503 {
504 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
505 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
506 return operand != 1;
507 return true;
508 }
509
510 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
511 {
512 Operand op = instr->operands[op_index];
513
514 if (!op.isTemp())
515 return false;
516 Temp tmp = op.getTemp();
517 if (!ctx.info[tmp.id()].is_add_sub())
518 return false;
519
520 Instruction *add_instr = ctx.info[tmp.id()].instr;
521
522 switch (add_instr->opcode) {
523 case aco_opcode::v_add_u32:
524 case aco_opcode::v_add_co_u32:
525 case aco_opcode::s_add_i32:
526 case aco_opcode::s_add_u32:
527 break;
528 default:
529 return false;
530 }
531
532 if (add_instr->usesModifiers())
533 return false;
534
535 for (unsigned i = 0; i < 2; i++) {
536 if (add_instr->operands[i].isConstant()) {
537 *offset = add_instr->operands[i].constantValue();
538 } else if (add_instr->operands[i].isTemp() &&
539 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
540 *offset = ctx.info[add_instr->operands[i].tempId()].val;
541 } else {
542 continue;
543 }
544 if (!add_instr->operands[!i].isTemp())
545 continue;
546
547 uint32_t offset2 = 0;
548 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
549 *offset += offset2;
550 } else {
551 *base = add_instr->operands[!i].getTemp();
552 }
553 return true;
554 }
555
556 return false;
557 }
558
559 Operand get_constant_op(opt_ctx &ctx, uint32_t val)
560 {
561 // TODO: this functions shouldn't be needed if we store Operand instead of value.
562 Operand op(val);
563 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
564 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
565 return op;
566 }
567
568 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
569 {
570 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
571 ASSERTED bool all_const = false;
572 for (Operand& op : instr->operands)
573 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
574 perfwarn(all_const, "All instruction operands are constant", instr.get());
575 }
576
577 for (unsigned i = 0; i < instr->operands.size(); i++)
578 {
579 if (!instr->operands[i].isTemp())
580 continue;
581
582 ssa_info info = ctx.info[instr->operands[i].tempId()];
583 /* propagate undef */
584 if (info.is_undefined() && is_phi(instr))
585 instr->operands[i] = Operand(instr->operands[i].regClass());
586 /* propagate reg->reg of same type */
587 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
588 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
589 info = ctx.info[info.temp.id()];
590 }
591
592 /* SALU / PSEUDO: propagate inline constants */
593 if (instr->isSALU() || instr->format == Format::PSEUDO) {
594 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
595 instr->operands[i].setTemp(info.temp);
596 info = ctx.info[info.temp.id()];
597 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
598 /* propagate vgpr if it can take it */
599 switch (instr->opcode) {
600 case aco_opcode::p_create_vector:
601 case aco_opcode::p_split_vector:
602 case aco_opcode::p_extract_vector:
603 case aco_opcode::p_phi: {
604 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
605 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
606 if (all_vgpr) {
607 instr->operands[i] = Operand(info.temp);
608 info = ctx.info[info.temp.id()];
609 }
610 break;
611 }
612 default:
613 break;
614 }
615 }
616 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
617 instr->operands[i] = get_constant_op(ctx, info.val);
618 continue;
619 }
620 }
621
622 /* VALU: propagate neg, abs & inline constants */
623 else if (instr->isVALU()) {
624 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
625 instr->operands[i].setTemp(info.temp);
626 info = ctx.info[info.temp.id()];
627 }
628 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
629 if (!instr->isDPP())
630 to_VOP3(ctx, instr);
631 instr->operands[i] = Operand(info.temp);
632 if (instr->isDPP())
633 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
634 else
635 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
636 }
637 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
638 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
639 instr->operands[i].setTemp(info.temp);
640 continue;
641 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
642 if (!instr->isDPP())
643 to_VOP3(ctx, instr);
644 instr->operands[i].setTemp(info.temp);
645 if (instr->isDPP())
646 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
647 else
648 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
649 continue;
650 }
651 if (info.is_constant() && can_accept_constant(instr, i)) {
652 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
653 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
654 instr->operands[i] = get_constant_op(ctx, info.val);
655 continue;
656 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
657 instr->operands[i] = instr->operands[0];
658 instr->operands[0] = get_constant_op(ctx, info.val);
659 continue;
660 } else if (can_use_VOP3(instr)) {
661 to_VOP3(ctx, instr);
662 instr->operands[i] = get_constant_op(ctx, info.val);
663 continue;
664 }
665 }
666 }
667
668 /* MUBUF: propagate constants and combine additions */
669 else if (instr->format == Format::MUBUF) {
670 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
671 Temp base;
672 uint32_t offset;
673 while (info.is_temp())
674 info = ctx.info[info.temp.id()];
675
676 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
677 assert(!mubuf->idxen);
678 instr->operands[i] = Operand(v1);
679 mubuf->offset += info.val;
680 mubuf->offen = false;
681 continue;
682 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
683 instr->operands[2] = Operand((uint32_t) 0);
684 mubuf->offset += info.val;
685 continue;
686 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
687 assert(!mubuf->idxen);
688 instr->operands[i].setTemp(base);
689 mubuf->offset += offset;
690 continue;
691 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
692 instr->operands[i].setTemp(base);
693 mubuf->offset += offset;
694 continue;
695 }
696 }
697
698 /* DS: combine additions */
699 else if (instr->format == Format::DS) {
700
701 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
702 Temp base;
703 uint32_t offset;
704 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
705 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
706 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
707 if (offset % 4 == 0 &&
708 ds->offset0 + (offset >> 2) <= 255 &&
709 ds->offset1 + (offset >> 2) <= 255) {
710 instr->operands[i].setTemp(base);
711 ds->offset0 += offset >> 2;
712 ds->offset1 += offset >> 2;
713 }
714 } else {
715 if (ds->offset0 + offset <= 65535) {
716 instr->operands[i].setTemp(base);
717 ds->offset0 += offset;
718 }
719 }
720 }
721 }
722
723 /* SMEM: propagate constants and combine additions */
724 else if (instr->format == Format::SMEM) {
725
726 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
727 Temp base;
728 uint32_t offset;
729 if (i == 1 && info.is_constant_or_literal() &&
730 (ctx.program->chip_class < GFX8 || info.val <= 0xFFFFF)) {
731 instr->operands[i] = Operand(info.val);
732 continue;
733 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
734 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
735 if (soe &&
736 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
737 ctx.info[smem->operands.back().tempId()].val != 0)) {
738 continue;
739 }
740 if (soe) {
741 smem->operands[1] = Operand(offset);
742 smem->operands.back() = Operand(base);
743 } else {
744 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
745 new_instr->operands[0] = smem->operands[0];
746 new_instr->operands[1] = Operand(offset);
747 if (smem->definitions.empty())
748 new_instr->operands[2] = smem->operands[2];
749 new_instr->operands.back() = Operand(base);
750 if (!smem->definitions.empty())
751 new_instr->definitions[0] = smem->definitions[0];
752 new_instr->can_reorder = smem->can_reorder;
753 new_instr->barrier = smem->barrier;
754 instr.reset(new_instr);
755 smem = static_cast<SMEM_instruction *>(instr.get());
756 }
757 continue;
758 }
759 }
760 }
761
762 /* if this instruction doesn't define anything, return */
763 if (instr->definitions.empty())
764 return;
765
766 switch (instr->opcode) {
767 case aco_opcode::p_create_vector: {
768 unsigned num_ops = instr->operands.size();
769 for (const Operand& op : instr->operands) {
770 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
771 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
772 }
773 if (num_ops != instr->operands.size()) {
774 aco_ptr<Instruction> old_vec = std::move(instr);
775 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
776 instr->definitions[0] = old_vec->definitions[0];
777 unsigned k = 0;
778 for (Operand& old_op : old_vec->operands) {
779 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
780 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++)
781 instr->operands[k++] = ctx.info[old_op.tempId()].instr->operands[j];
782 } else {
783 instr->operands[k++] = old_op;
784 }
785 }
786 assert(k == num_ops);
787 }
788 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
789 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
790 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
791 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
792 break;
793 }
794 case aco_opcode::p_split_vector: {
795 if (!ctx.info[instr->operands[0].tempId()].is_vec())
796 break;
797 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
798 assert(instr->definitions.size() == vec->operands.size());
799 for (unsigned i = 0; i < instr->definitions.size(); i++) {
800 Operand vec_op = vec->operands[i];
801 if (vec_op.isConstant()) {
802 if (vec_op.isLiteral())
803 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
804 else if (vec_op.size() == 1)
805 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
806 } else {
807 assert(vec_op.isTemp());
808 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
809 }
810 }
811 break;
812 }
813 case aco_opcode::p_extract_vector: { /* mov */
814 if (!ctx.info[instr->operands[0].tempId()].is_vec())
815 break;
816 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
817 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
818 vec->operands[0].size() == instr->definitions[0].size()) {
819
820 /* convert this extract into a mov instruction */
821 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
822 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
823 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
824 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
825 instr->opcode = opcode;
826 instr->format = format;
827 instr->operands = {instr->operands.begin(), 1 };
828 instr->operands[0] = vec_op;
829
830 if (vec_op.isConstant()) {
831 if (vec_op.isLiteral())
832 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
833 else if (vec_op.size() == 1)
834 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
835 } else {
836 assert(vec_op.isTemp());
837 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
838 }
839 }
840 break;
841 }
842 case aco_opcode::s_mov_b32: /* propagate */
843 case aco_opcode::s_mov_b64:
844 case aco_opcode::v_mov_b32:
845 case aco_opcode::p_as_uniform:
846 if (instr->definitions[0].isFixed()) {
847 /* don't copy-propagate copies into fixed registers */
848 } else if (instr->usesModifiers()) {
849 // TODO
850 } else if (instr->operands[0].isConstant()) {
851 if (instr->operands[0].isLiteral())
852 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
853 else if (instr->operands[0].size() == 1)
854 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
855 } else if (instr->operands[0].isTemp()) {
856 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
857 } else {
858 assert(instr->operands[0].isFixed());
859 }
860 break;
861 case aco_opcode::p_is_helper:
862 if (!ctx.program->needs_wqm)
863 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
864 break;
865 case aco_opcode::s_movk_i32: {
866 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
867 v = v & 0x8000 ? (v | 0xffff0000) : v;
868 if (v <= 64 || v >= 0xfffffff0)
869 ctx.info[instr->definitions[0].tempId()].set_constant(v);
870 else
871 ctx.info[instr->definitions[0].tempId()].set_literal(v);
872 break;
873 }
874 case aco_opcode::v_bfrev_b32:
875 case aco_opcode::s_brev_b32: {
876 if (instr->operands[0].isConstant()) {
877 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
878 if (v <= 64 || v >= 0xfffffff0)
879 ctx.info[instr->definitions[0].tempId()].set_constant(v);
880 else
881 ctx.info[instr->definitions[0].tempId()].set_literal(v);
882 }
883 break;
884 }
885 case aco_opcode::s_bfm_b32: {
886 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
887 unsigned size = instr->operands[0].constantValue() & 0x1f;
888 unsigned start = instr->operands[1].constantValue() & 0x1f;
889 uint32_t v = ((1u << size) - 1u) << start;
890 if (v <= 64 || v >= 0xfffffff0)
891 ctx.info[instr->definitions[0].tempId()].set_constant(v);
892 else
893 ctx.info[instr->definitions[0].tempId()].set_literal(v);
894 }
895 }
896 case aco_opcode::v_mul_f32: { /* omod */
897 /* TODO: try to move the negate/abs modifier to the consumer instead */
898 if (instr->usesModifiers())
899 break;
900
901 for (unsigned i = 0; i < 2; i++) {
902 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
903 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
904 ctx.info[instr->operands[i].tempId()].set_omod2();
905 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
906 ctx.info[instr->operands[i].tempId()].set_omod4();
907 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
908 ctx.info[instr->operands[i].tempId()].set_omod5();
909 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
910 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
911 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
912 } else {
913 continue;
914 }
915 break;
916 }
917 }
918 break;
919 }
920 case aco_opcode::v_and_b32: /* abs */
921 if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp())
922 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
923 else
924 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
925 break;
926 case aco_opcode::v_xor_b32: { /* neg */
927 if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
928 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
929 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
930 } else {
931 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
932 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
933 instr->opcode = aco_opcode::v_or_b32;
934 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
935 } else {
936 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
937 }
938 }
939 } else {
940 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
941 }
942 break;
943 }
944 case aco_opcode::v_med3_f32: { /* clamp */
945 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
946 if (vop3->abs[0] || vop3->neg[0] || vop3->opsel[0] ||
947 vop3->abs[1] || vop3->neg[1] || vop3->opsel[1] ||
948 vop3->abs[2] || vop3->neg[2] || vop3->opsel[2] ||
949 vop3->omod != 0)
950 break;
951
952 unsigned idx = 0;
953 bool found_zero = false, found_one = false;
954 for (unsigned i = 0; i < 3; i++)
955 {
956 if (instr->operands[i].constantEquals(0))
957 found_zero = true;
958 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
959 found_one = true;
960 else
961 idx = i;
962 }
963 if (found_zero && found_one && instr->operands[idx].isTemp()) {
964 ctx.info[instr->operands[idx].tempId()].set_clamp();
965 }
966 break;
967 }
968 case aco_opcode::v_cndmask_b32:
969 if (instr->operands[0].constantEquals(0) &&
970 instr->operands[1].constantEquals(0xFFFFFFFF) &&
971 instr->operands[2].isTemp())
972 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
973 else if (instr->operands[0].constantEquals(0) &&
974 instr->operands[1].constantEquals(0x3f800000u) &&
975 instr->operands[2].isTemp())
976 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
977 break;
978 case aco_opcode::v_cmp_lg_u32:
979 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
980 instr->operands[0].constantEquals(0) &&
981 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
982 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
983 break;
984 case aco_opcode::p_phi:
985 case aco_opcode::p_linear_phi: {
986 /* lower_bool_phis() can create phis like this */
987 bool all_same_temp = instr->operands[0].isTemp();
988 /* this check is needed when moving uniform loop counters out of a divergent loop */
989 if (all_same_temp)
990 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
991 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
992 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
993 all_same_temp = false;
994 }
995 if (all_same_temp) {
996 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
997 } else {
998 bool all_undef = instr->operands[0].isUndefined();
999 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1000 if (!instr->operands[i].isUndefined())
1001 all_undef = false;
1002 }
1003 if (all_undef)
1004 ctx.info[instr->definitions[0].tempId()].set_undefined();
1005 }
1006 break;
1007 }
1008 case aco_opcode::v_add_u32:
1009 case aco_opcode::v_add_co_u32:
1010 case aco_opcode::s_add_i32:
1011 case aco_opcode::s_add_u32:
1012 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1013 break;
1014 case aco_opcode::s_and_b32:
1015 case aco_opcode::s_and_b64:
1016 if (instr->operands[1].isFixed() && instr->operands[1].physReg() == exec &&
1017 instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1018 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1019 }
1020 /* fallthrough */
1021 case aco_opcode::s_not_b32:
1022 case aco_opcode::s_not_b64:
1023 case aco_opcode::s_or_b32:
1024 case aco_opcode::s_or_b64:
1025 case aco_opcode::s_xor_b32:
1026 case aco_opcode::s_xor_b64:
1027 case aco_opcode::s_lshl_b32:
1028 case aco_opcode::v_or_b32:
1029 case aco_opcode::v_lshlrev_b32:
1030 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1031 break;
1032 case aco_opcode::v_min_f32:
1033 case aco_opcode::v_min_f16:
1034 case aco_opcode::v_min_u32:
1035 case aco_opcode::v_min_i32:
1036 case aco_opcode::v_min_u16:
1037 case aco_opcode::v_min_i16:
1038 case aco_opcode::v_max_f32:
1039 case aco_opcode::v_max_f16:
1040 case aco_opcode::v_max_u32:
1041 case aco_opcode::v_max_i32:
1042 case aco_opcode::v_max_u16:
1043 case aco_opcode::v_max_i16:
1044 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1045 break;
1046 case aco_opcode::v_cmp_lt_f32:
1047 case aco_opcode::v_cmp_eq_f32:
1048 case aco_opcode::v_cmp_le_f32:
1049 case aco_opcode::v_cmp_gt_f32:
1050 case aco_opcode::v_cmp_lg_f32:
1051 case aco_opcode::v_cmp_ge_f32:
1052 case aco_opcode::v_cmp_o_f32:
1053 case aco_opcode::v_cmp_u_f32:
1054 case aco_opcode::v_cmp_nge_f32:
1055 case aco_opcode::v_cmp_nlg_f32:
1056 case aco_opcode::v_cmp_ngt_f32:
1057 case aco_opcode::v_cmp_nle_f32:
1058 case aco_opcode::v_cmp_neq_f32:
1059 case aco_opcode::v_cmp_nlt_f32:
1060 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1061 break;
1062 case aco_opcode::s_cselect_b64:
1063 case aco_opcode::s_cselect_b32:
1064 if (instr->operands[0].constantEquals((unsigned) -1) &&
1065 instr->operands[1].constantEquals(0)) {
1066 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1067 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1068 }
1069 break;
1070 default:
1071 break;
1072 }
1073 }
1074
1075 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1076 {
1077 *ordered = *unordered = op;
1078 switch (op) {
1079 #define CMP(ord, unord) \
1080 case aco_opcode::v_cmp_##ord##_f32:\
1081 case aco_opcode::v_cmp_n##unord##_f32:\
1082 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1083 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1084 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1085 return true;
1086 CMP(lt, /*n*/ge)
1087 CMP(eq, /*n*/lg)
1088 CMP(le, /*n*/gt)
1089 CMP(gt, /*n*/le)
1090 CMP(lg, /*n*/eq)
1091 CMP(ge, /*n*/lt)
1092 #undef CMP
1093 default:
1094 return false;
1095 }
1096 }
1097
1098 aco_opcode get_ordered(aco_opcode op)
1099 {
1100 aco_opcode ordered, unordered, inverse;
1101 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1102 }
1103
1104 aco_opcode get_unordered(aco_opcode op)
1105 {
1106 aco_opcode ordered, unordered, inverse;
1107 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1108 }
1109
1110 aco_opcode get_inverse(aco_opcode op)
1111 {
1112 aco_opcode ordered, unordered, inverse;
1113 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1114 }
1115
1116 bool is_cmp(aco_opcode op)
1117 {
1118 aco_opcode ordered, unordered, inverse;
1119 return get_cmp_info(op, &ordered, &unordered, &inverse);
1120 }
1121
1122 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1123 {
1124 if (ctx.info[tmp.id()].is_temp())
1125 return ctx.info[tmp.id()].temp.id();
1126 else
1127 return tmp.id();
1128 }
1129
1130 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1131 {
1132 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1133 for (const Operand& op : instr->operands) {
1134 if (op.isTemp())
1135 ctx.uses[op.tempId()]--;
1136 }
1137 }
1138 }
1139
1140 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1141 {
1142 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1143 return nullptr;
1144 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1145 return nullptr;
1146
1147 Instruction *instr = ctx.info[op.tempId()].instr;
1148
1149 if (instr->definitions.size() == 2) {
1150 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1151 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1152 return nullptr;
1153 }
1154
1155 return instr;
1156 }
1157
1158 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1159 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1160 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1161 {
1162 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1163 return false;
1164 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1165 return false;
1166
1167 bool neg[2] = {false, false};
1168 bool abs[2] = {false, false};
1169 bool opsel[2] = {false, false};
1170 Instruction *op_instr[2];
1171 Temp op[2];
1172
1173 for (unsigned i = 0; i < 2; i++) {
1174 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1175 if (!op_instr[i])
1176 return false;
1177
1178 aco_opcode expected_cmp = instr->opcode == aco_opcode::s_or_b64 ?
1179 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1180
1181 if (op_instr[i]->opcode != expected_cmp)
1182 return false;
1183 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1184 return false;
1185
1186 if (op_instr[i]->isVOP3()) {
1187 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1188 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel[0] != vop3->opsel[1])
1189 return false;
1190 neg[i] = vop3->neg[0];
1191 abs[i] = vop3->abs[0];
1192 opsel[i] = vop3->opsel[0];
1193 }
1194
1195 Temp op0 = op_instr[i]->operands[0].getTemp();
1196 Temp op1 = op_instr[i]->operands[1].getTemp();
1197 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1198 return false;
1199 /* shouldn't happen yet, but best to be safe */
1200 if (op1.type() != RegType::vgpr)
1201 return false;
1202
1203 op[i] = op1;
1204 }
1205
1206 ctx.uses[op[0].id()]++;
1207 ctx.uses[op[1].id()]++;
1208 decrease_uses(ctx, op_instr[0]);
1209 decrease_uses(ctx, op_instr[1]);
1210
1211 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1212 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1213 Instruction *new_instr;
1214 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel[0] || opsel[1]) {
1215 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1216 for (unsigned i = 0; i < 2; i++) {
1217 vop3->neg[i] = neg[i];
1218 vop3->abs[i] = abs[i];
1219 vop3->opsel[i] = opsel[i];
1220 }
1221 new_instr = static_cast<Instruction *>(vop3);
1222 } else {
1223 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1224 }
1225 new_instr->operands[0] = Operand(op[0]);
1226 new_instr->operands[1] = Operand(op[1]);
1227 new_instr->definitions[0] = instr->definitions[0];
1228
1229 ctx.info[instr->definitions[0].tempId()].label = 0;
1230 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1231
1232 instr.reset(new_instr);
1233
1234 return true;
1235 }
1236
1237 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1238 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1239 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1240 {
1241 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1242 return false;
1243 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1244 return false;
1245
1246 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1247 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1248
1249 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1250 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1251 if (!nan_test || !cmp)
1252 return false;
1253
1254 if (cmp->opcode == expected_nan_test)
1255 std::swap(nan_test, cmp);
1256 else if (nan_test->opcode != expected_nan_test)
1257 return false;
1258
1259 if (!is_cmp(cmp->opcode))
1260 return false;
1261
1262 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1263 return false;
1264 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1265 return false;
1266
1267 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1268 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1269 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1270 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1271 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1272 return false;
1273 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1274 return false;
1275
1276 ctx.uses[cmp->operands[0].tempId()]++;
1277 ctx.uses[cmp->operands[1].tempId()]++;
1278 decrease_uses(ctx, nan_test);
1279 decrease_uses(ctx, cmp);
1280
1281 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1282 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1283 Instruction *new_instr;
1284 if (cmp->isVOP3()) {
1285 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1286 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1287 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1288 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1289 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1290 new_vop3->clamp = cmp_vop3->clamp;
1291 new_vop3->omod = cmp_vop3->omod;
1292 new_instr = new_vop3;
1293 } else {
1294 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1295 }
1296 new_instr->operands[0] = cmp->operands[0];
1297 new_instr->operands[1] = cmp->operands[1];
1298 new_instr->definitions[0] = instr->definitions[0];
1299
1300 ctx.info[instr->definitions[0].tempId()].label = 0;
1301 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1302
1303 instr.reset(new_instr);
1304
1305 return true;
1306 }
1307
1308 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1309 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1310 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1311 {
1312 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1313 return false;
1314 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1315 return false;
1316
1317 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1318 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1319
1320 if (!nan_test || !cmp)
1321 return false;
1322
1323 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1324 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1325 if (cmp->opcode == expected_nan_test)
1326 std::swap(nan_test, cmp);
1327 else if (nan_test->opcode != expected_nan_test)
1328 return false;
1329
1330 if (!is_cmp(cmp->opcode))
1331 return false;
1332
1333 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1334 return false;
1335 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1336 return false;
1337
1338 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1339 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1340 if (prop_nan0 != prop_nan1)
1341 return false;
1342
1343 int constant_operand = -1;
1344 for (unsigned i = 0; i < 2; i++) {
1345 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1346 constant_operand = !i;
1347 break;
1348 }
1349 }
1350 if (constant_operand == -1)
1351 return false;
1352
1353 uint32_t constant;
1354 if (cmp->operands[constant_operand].isConstant()) {
1355 constant = cmp->operands[constant_operand].constantValue();
1356 } else if (cmp->operands[constant_operand].isTemp()) {
1357 unsigned id = cmp->operands[constant_operand].tempId();
1358 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1359 return false;
1360 constant = ctx.info[id].val;
1361 } else {
1362 return false;
1363 }
1364
1365 float constantf;
1366 memcpy(&constantf, &constant, 4);
1367 if (isnan(constantf))
1368 return false;
1369
1370 if (cmp->operands[0].isTemp())
1371 ctx.uses[cmp->operands[0].tempId()]++;
1372 if (cmp->operands[1].isTemp())
1373 ctx.uses[cmp->operands[1].tempId()]++;
1374 decrease_uses(ctx, nan_test);
1375 decrease_uses(ctx, cmp);
1376
1377 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1378 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1379 Instruction *new_instr;
1380 if (cmp->isVOP3()) {
1381 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1382 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1383 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1384 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1385 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1386 new_vop3->clamp = cmp_vop3->clamp;
1387 new_vop3->omod = cmp_vop3->omod;
1388 new_instr = new_vop3;
1389 } else {
1390 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1391 }
1392 new_instr->operands[0] = cmp->operands[0];
1393 new_instr->operands[1] = cmp->operands[1];
1394 new_instr->definitions[0] = instr->definitions[0];
1395
1396 ctx.info[instr->definitions[0].tempId()].label = 0;
1397 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1398
1399 instr.reset(new_instr);
1400
1401 return true;
1402 }
1403
1404 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1405 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1406 {
1407 if (instr->opcode != aco_opcode::s_not_b64)
1408 return false;
1409 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1410 return false;
1411 if (!instr->operands[0].isTemp())
1412 return false;
1413
1414 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1415 if (!cmp)
1416 return false;
1417
1418 aco_opcode new_opcode = get_inverse(cmp->opcode);
1419 if (new_opcode == aco_opcode::last_opcode)
1420 return false;
1421
1422 if (cmp->operands[0].isTemp())
1423 ctx.uses[cmp->operands[0].tempId()]++;
1424 if (cmp->operands[1].isTemp())
1425 ctx.uses[cmp->operands[1].tempId()]++;
1426 decrease_uses(ctx, cmp);
1427
1428 Instruction *new_instr;
1429 if (cmp->isVOP3()) {
1430 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1431 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1432 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1433 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1434 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1435 new_vop3->clamp = cmp_vop3->clamp;
1436 new_vop3->omod = cmp_vop3->omod;
1437 new_instr = new_vop3;
1438 } else {
1439 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1440 }
1441 new_instr->operands[0] = cmp->operands[0];
1442 new_instr->operands[1] = cmp->operands[1];
1443 new_instr->definitions[0] = instr->definitions[0];
1444
1445 ctx.info[instr->definitions[0].tempId()].label = 0;
1446 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1447
1448 instr.reset(new_instr);
1449
1450 return true;
1451 }
1452
1453 /* op1(op2(1, 2), 0) if swap = false
1454 * op1(0, op2(1, 2)) if swap = true */
1455 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1456 Instruction* op1_instr, bool swap, const char *shuffle_str,
1457 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1458 bool *op1_clamp, unsigned *op1_omod,
1459 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1460 {
1461 /* checks */
1462 if (op1_instr->opcode != op1)
1463 return false;
1464
1465 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1466 if (!op2_instr || op2_instr->opcode != op2)
1467 return false;
1468
1469 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1470 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1471
1472 /* don't support inbetween clamp/omod */
1473 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1474 return false;
1475
1476 /* get operands and modifiers and check inbetween modifiers */
1477 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1478 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1479
1480 if (inbetween_neg)
1481 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1482 else if (op1_vop3 && op1_vop3->neg[swap])
1483 return false;
1484
1485 if (inbetween_abs)
1486 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1487 else if (op1_vop3 && op1_vop3->abs[swap])
1488 return false;
1489
1490 if (inbetween_opsel)
1491 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel[swap] : false;
1492 else if (op1_vop3 && op1_vop3->opsel[swap])
1493 return false;
1494
1495 int shuffle[3];
1496 shuffle[shuffle_str[0] - '0'] = 0;
1497 shuffle[shuffle_str[1] - '0'] = 1;
1498 shuffle[shuffle_str[2] - '0'] = 2;
1499
1500 operands[shuffle[0]] = op1_instr->operands[!swap];
1501 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1502 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1503 opsel[shuffle[0]] = op1_vop3 ? op1_vop3->opsel[!swap] : false;
1504
1505 for (unsigned i = 0; i < 2; i++) {
1506 operands[shuffle[i + 1]] = op2_instr->operands[i];
1507 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1508 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1509 opsel[shuffle[i + 1]] = op2_vop3 ? op2_vop3->opsel[i] : false;
1510 }
1511
1512 /* check operands */
1513 unsigned sgpr_id = 0;
1514 for (unsigned i = 0; i < 3; i++) {
1515 Operand op = operands[i];
1516 if (op.isLiteral()) {
1517 return false;
1518 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1519 if (sgpr_id && sgpr_id != op.tempId())
1520 return false;
1521 sgpr_id = op.tempId();
1522 }
1523 }
1524
1525 return true;
1526 }
1527
1528 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1529 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1530 bool clamp, unsigned omod)
1531 {
1532 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1533 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1534 memcpy(new_instr->opsel, opsel, sizeof(bool[3]));
1535 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1536 new_instr->clamp = clamp;
1537 new_instr->omod = omod;
1538 new_instr->operands[0] = operands[0];
1539 new_instr->operands[1] = operands[1];
1540 new_instr->operands[2] = operands[2];
1541 new_instr->definitions[0] = instr->definitions[0];
1542 ctx.info[instr->definitions[0].tempId()].label = 0;
1543
1544 instr.reset(new_instr);
1545 }
1546
1547 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1548 {
1549 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1550 (label_omod_success | label_clamp_success);
1551
1552 for (unsigned swap = 0; swap < 2; swap++) {
1553 if (!((1 << swap) & ops))
1554 continue;
1555
1556 Operand operands[3];
1557 bool neg[3], abs[3], opsel[3], clamp;
1558 unsigned omod;
1559 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1560 instr.get(), swap, shuffle,
1561 operands, neg, abs, opsel,
1562 &clamp, &omod, NULL, NULL, NULL)) {
1563 ctx.uses[instr->operands[swap].tempId()]--;
1564 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1565 if (omod_clamp & label_omod_success)
1566 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1567 if (omod_clamp & label_clamp_success)
1568 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1569 return true;
1570 }
1571 }
1572 return false;
1573 }
1574
1575 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1576 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1577 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1578 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1579 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1580 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1581 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1582 {
1583 /* checks */
1584 if (!instr->operands[0].isTemp())
1585 return false;
1586 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1587 return false;
1588
1589 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1590 if (!op2_instr)
1591 return false;
1592 switch (op2_instr->opcode) {
1593 case aco_opcode::s_and_b32:
1594 case aco_opcode::s_or_b32:
1595 case aco_opcode::s_xor_b32:
1596 case aco_opcode::s_and_b64:
1597 case aco_opcode::s_or_b64:
1598 case aco_opcode::s_xor_b64:
1599 break;
1600 default:
1601 return false;
1602 }
1603
1604 /* create instruction */
1605 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1606 ctx.uses[instr->operands[0].tempId()]--;
1607 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1608
1609 switch (op2_instr->opcode) {
1610 case aco_opcode::s_and_b32:
1611 op2_instr->opcode = aco_opcode::s_nand_b32;
1612 break;
1613 case aco_opcode::s_or_b32:
1614 op2_instr->opcode = aco_opcode::s_nor_b32;
1615 break;
1616 case aco_opcode::s_xor_b32:
1617 op2_instr->opcode = aco_opcode::s_xnor_b32;
1618 break;
1619 case aco_opcode::s_and_b64:
1620 op2_instr->opcode = aco_opcode::s_nand_b64;
1621 break;
1622 case aco_opcode::s_or_b64:
1623 op2_instr->opcode = aco_opcode::s_nor_b64;
1624 break;
1625 case aco_opcode::s_xor_b64:
1626 op2_instr->opcode = aco_opcode::s_xnor_b64;
1627 break;
1628 default:
1629 break;
1630 }
1631
1632 return true;
1633 }
1634
1635 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1636 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1637 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1638 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1639 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1640 {
1641 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1642 return false;
1643
1644 for (unsigned i = 0; i < 2; i++) {
1645 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1646 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1647 continue;
1648
1649 ctx.uses[instr->operands[i].tempId()]--;
1650 instr->operands[0] = instr->operands[!i];
1651 instr->operands[1] = op2_instr->operands[0];
1652 ctx.info[instr->definitions[0].tempId()].label = 0;
1653
1654 switch (instr->opcode) {
1655 case aco_opcode::s_and_b32:
1656 instr->opcode = aco_opcode::s_andn2_b32;
1657 break;
1658 case aco_opcode::s_or_b32:
1659 instr->opcode = aco_opcode::s_orn2_b32;
1660 break;
1661 case aco_opcode::s_and_b64:
1662 instr->opcode = aco_opcode::s_andn2_b64;
1663 break;
1664 case aco_opcode::s_or_b64:
1665 instr->opcode = aco_opcode::s_orn2_b64;
1666 break;
1667 default:
1668 break;
1669 }
1670
1671 return true;
1672 }
1673 return false;
1674 }
1675
1676 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1677 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1678 {
1679 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1680 return false;
1681
1682 for (unsigned i = 0; i < 2; i++) {
1683 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1684 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1685 continue;
1686
1687 uint32_t shift = op2_instr->operands[1].constantValue();
1688 if (shift < 1 || shift > 4)
1689 continue;
1690
1691 ctx.uses[instr->operands[i].tempId()]--;
1692 instr->operands[1] = instr->operands[!i];
1693 instr->operands[0] = op2_instr->operands[0];
1694 ctx.info[instr->definitions[0].tempId()].label = 0;
1695
1696 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1697 aco_opcode::s_lshl2_add_u32,
1698 aco_opcode::s_lshl3_add_u32,
1699 aco_opcode::s_lshl4_add_u32})[shift - 1];
1700
1701 return true;
1702 }
1703 return false;
1704 }
1705
1706 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1707 {
1708 switch (op) {
1709 #define MINMAX(type, gfx9) \
1710 case aco_opcode::v_min_##type:\
1711 case aco_opcode::v_max_##type:\
1712 case aco_opcode::v_med3_##type:\
1713 *min = aco_opcode::v_min_##type;\
1714 *max = aco_opcode::v_max_##type;\
1715 *med3 = aco_opcode::v_med3_##type;\
1716 *min3 = aco_opcode::v_min3_##type;\
1717 *max3 = aco_opcode::v_max3_##type;\
1718 *some_gfx9_only = gfx9;\
1719 return true;
1720 MINMAX(f32, false)
1721 MINMAX(u32, false)
1722 MINMAX(i32, false)
1723 MINMAX(f16, true)
1724 MINMAX(u16, true)
1725 MINMAX(i16, true)
1726 #undef MINMAX
1727 default:
1728 return false;
1729 }
1730 }
1731
1732 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1733 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1734 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1735 aco_opcode min, aco_opcode max, aco_opcode med)
1736 {
1737 aco_opcode other_op;
1738 if (instr->opcode == min)
1739 other_op = max;
1740 else if (instr->opcode == max)
1741 other_op = min;
1742 else
1743 return false;
1744
1745 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1746 (label_omod_success | label_clamp_success);
1747
1748 for (unsigned swap = 0; swap < 2; swap++) {
1749 Operand operands[3];
1750 bool neg[3], abs[3], opsel[3], clamp, inbetween_neg, inbetween_abs;
1751 unsigned omod;
1752 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1753 "012", operands, neg, abs, opsel,
1754 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1755 int const0_idx = -1, const1_idx = -1;
1756 uint32_t const0 = 0, const1 = 0;
1757 for (int i = 0; i < 3; i++) {
1758 uint32_t val;
1759 if (operands[i].isConstant()) {
1760 val = operands[i].constantValue();
1761 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1762 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1763 val = ctx.info[operands[i].tempId()].val;
1764 } else {
1765 continue;
1766 }
1767 if (const0_idx >= 0) {
1768 const1_idx = i;
1769 const1 = val;
1770 } else {
1771 const0_idx = i;
1772 const0 = val;
1773 }
1774 }
1775 if (const0_idx < 0 || const1_idx < 0)
1776 continue;
1777
1778 if (opsel[const0_idx])
1779 const0 >>= 16;
1780 if (opsel[const1_idx])
1781 const1 >>= 16;
1782
1783 int lower_idx = const0_idx;
1784 switch (min) {
1785 case aco_opcode::v_min_f32:
1786 case aco_opcode::v_min_f16: {
1787 float const0_f, const1_f;
1788 if (min == aco_opcode::v_min_f32) {
1789 memcpy(&const0_f, &const0, 4);
1790 memcpy(&const1_f, &const1, 4);
1791 } else {
1792 const0_f = _mesa_half_to_float(const0);
1793 const1_f = _mesa_half_to_float(const1);
1794 }
1795 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1796 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1797 if (neg[const0_idx]) const0_f = -const0_f;
1798 if (neg[const1_idx]) const1_f = -const1_f;
1799 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1800 break;
1801 }
1802 case aco_opcode::v_min_u32: {
1803 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1804 break;
1805 }
1806 case aco_opcode::v_min_u16: {
1807 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1808 break;
1809 }
1810 case aco_opcode::v_min_i32: {
1811 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1812 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1813 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1814 break;
1815 }
1816 case aco_opcode::v_min_i16: {
1817 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1818 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1819 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1820 break;
1821 }
1822 default:
1823 break;
1824 }
1825 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1826
1827 if (instr->opcode == min) {
1828 if (upper_idx != 0 || lower_idx == 0)
1829 return false;
1830 } else {
1831 if (upper_idx == 0 || lower_idx != 0)
1832 return false;
1833 }
1834
1835 neg[1] ^= inbetween_neg;
1836 neg[2] ^= inbetween_neg;
1837 abs[1] |= inbetween_abs;
1838 abs[2] |= inbetween_abs;
1839
1840 ctx.uses[instr->operands[swap].tempId()]--;
1841 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1842 if (omod_clamp & label_omod_success)
1843 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1844 if (omod_clamp & label_clamp_success)
1845 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1846
1847 return true;
1848 }
1849 }
1850
1851 return false;
1852 }
1853
1854
1855 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1856 {
1857 /* apply sgprs */
1858 uint32_t sgpr_idx = 0;
1859 uint32_t sgpr_info_id = 0;
1860 bool has_sgpr = false;
1861 uint32_t sgpr_ssa_id = 0;
1862 /* find 'best' possible sgpr */
1863 for (unsigned i = 0; i < instr->operands.size(); i++)
1864 {
1865 if (instr->operands[i].isLiteral()) {
1866 has_sgpr = true;
1867 break;
1868 }
1869 if (!instr->operands[i].isTemp())
1870 continue;
1871 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1872 has_sgpr = true;
1873 sgpr_ssa_id = instr->operands[i].tempId();
1874 continue;
1875 }
1876 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1877 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1878 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1879 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1880 sgpr_idx = i;
1881 sgpr_info_id = instr->operands[i].tempId();
1882 }
1883 }
1884 }
1885 if (!has_sgpr && sgpr_info_id != 0) {
1886 ssa_info& info = ctx.info[sgpr_info_id];
1887 if (sgpr_idx == 0 || instr->isVOP3()) {
1888 instr->operands[sgpr_idx] = Operand(info.temp);
1889 ctx.uses[sgpr_info_id]--;
1890 ctx.uses[info.temp.id()]++;
1891 } else if (can_swap_operands(instr)) {
1892 instr->operands[sgpr_idx] = instr->operands[0];
1893 instr->operands[0] = Operand(info.temp);
1894 ctx.uses[sgpr_info_id]--;
1895 ctx.uses[info.temp.id()]++;
1896 } else if (can_use_VOP3(instr)) {
1897 to_VOP3(ctx, instr);
1898 instr->operands[sgpr_idx] = Operand(info.temp);
1899 ctx.uses[sgpr_info_id]--;
1900 ctx.uses[info.temp.id()]++;
1901 }
1902
1903 /* we can have two sgprs on one instruction if it is the same sgpr! */
1904 } else if (sgpr_info_id != 0 &&
1905 sgpr_ssa_id == sgpr_info_id &&
1906 ctx.uses[sgpr_info_id] == 1 &&
1907 can_use_VOP3(instr)) {
1908 to_VOP3(ctx, instr);
1909 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1910 ctx.uses[sgpr_info_id]--;
1911 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1912 }
1913 }
1914
1915 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1916 {
1917 /* check if we could apply omod on predecessor */
1918 if (instr->opcode == aco_opcode::v_mul_f32) {
1919 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) {
1920
1921 /* omod was successfully applied */
1922 /* if the omod instruction is v_mad, we also have to change the original add */
1923 if (ctx.info[instr->operands[1].tempId()].is_mad()) {
1924 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get();
1925 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1926 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1927 add_instr->definitions[0] = instr->definitions[0];
1928 }
1929
1930 Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr;
1931 /* check if we have an additional clamp modifier */
1932 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1933 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1934 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1935 }
1936 /* change definition ssa-id of modified instruction */
1937 omod_instr->definitions[0] = instr->definitions[0];
1938
1939 /* change the definition of instr to something unused, e.g. the original omod def */
1940 instr->definitions[0] = Definition(instr->operands[1].getTemp());
1941 ctx.uses[instr->definitions[0].tempId()] = 0;
1942 return true;
1943 }
1944 if (!ctx.info[instr->definitions[0].tempId()].label) {
1945 /* in all other cases, label this instruction as option for multiply-add */
1946 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1947 }
1948 }
1949
1950 /* check if we could apply clamp on predecessor */
1951 if (instr->opcode == aco_opcode::v_med3_f32) {
1952 unsigned idx = 0;
1953 bool found_zero = false, found_one = false;
1954 for (unsigned i = 0; i < 3; i++)
1955 {
1956 if (instr->operands[i].constantEquals(0))
1957 found_zero = true;
1958 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1959 found_one = true;
1960 else
1961 idx = i;
1962 }
1963 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1964 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1965 /* clamp was successfully applied */
1966 /* if the clamp instruction is v_mad, we also have to change the original add */
1967 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1968 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1969 add_instr->definitions[0] = instr->definitions[0];
1970 }
1971 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1972 /* change definition ssa-id of modified instruction */
1973 clamp_instr->definitions[0] = instr->definitions[0];
1974
1975 /* change the definition of instr to something unused, e.g. the original omod def */
1976 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1977 ctx.uses[instr->definitions[0].tempId()] = 0;
1978 return true;
1979 }
1980 }
1981
1982 /* omod has no effect if denormals are enabled */
1983 bool can_use_omod = block.fp_mode.denorm32 == 0;
1984
1985 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
1986 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
1987 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
1988 if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod2()) {
1989 to_VOP3(ctx, instr);
1990 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
1991 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1992 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod4()) {
1993 to_VOP3(ctx, instr);
1994 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
1995 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1996 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod5()) {
1997 to_VOP3(ctx, instr);
1998 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
1999 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2000 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
2001 to_VOP3(ctx, instr);
2002 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2003 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2004 }
2005 }
2006
2007 return false;
2008 }
2009
2010 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2011 // this would mean that we'd have to fix the instruction uses while value propagation
2012
2013 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2014 {
2015 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
2016 return;
2017
2018 if (instr->isVALU()) {
2019 if (can_apply_sgprs(instr))
2020 apply_sgprs(ctx, instr);
2021 if (apply_omod_clamp(ctx, block, instr))
2022 return;
2023 }
2024
2025 /* TODO: There are still some peephole optimizations that could be done:
2026 * - abs(a - b) -> s_absdiff_i32
2027 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2028 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2029 * These aren't probably too interesting though.
2030 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2031 * probably more useful than the previously mentioned optimizations.
2032 * The various comparison optimizations also currently only work with 32-bit
2033 * floats. */
2034
2035 /* neg(mul(a, b)) -> mul(neg(a), b) */
2036 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2037 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2038
2039 if (!ctx.info[val.id()].is_mul())
2040 return;
2041
2042 Instruction* mul_instr = ctx.info[val.id()].instr;
2043
2044 if (mul_instr->operands[0].isLiteral())
2045 return;
2046 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2047 return;
2048
2049 /* convert to mul(neg(a), b) */
2050 ctx.uses[mul_instr->definitions[0].tempId()]--;
2051 Definition def = instr->definitions[0];
2052 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2053 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2054 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2055 instr->operands[0] = mul_instr->operands[0];
2056 instr->operands[1] = mul_instr->operands[1];
2057 instr->definitions[0] = def;
2058 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2059 if (mul_instr->isVOP3()) {
2060 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2061 new_mul->neg[0] = mul->neg[0] && !is_abs;
2062 new_mul->neg[1] = mul->neg[1] && !is_abs;
2063 new_mul->abs[0] = mul->abs[0] || is_abs;
2064 new_mul->abs[1] = mul->abs[1] || is_abs;
2065 new_mul->omod = mul->omod;
2066 }
2067 new_mul->neg[0] ^= true;
2068 new_mul->clamp = false;
2069
2070 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2071 return;
2072 }
2073 /* combine mul+add -> mad */
2074 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2075 instr->opcode == aco_opcode::v_sub_f32 ||
2076 instr->opcode == aco_opcode::v_subrev_f32) &&
2077 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2078 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2079
2080 uint32_t uses_src0 = UINT32_MAX;
2081 uint32_t uses_src1 = UINT32_MAX;
2082 Instruction* mul_instr = nullptr;
2083 unsigned add_op_idx;
2084 /* check if any of the operands is a multiplication */
2085 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2086 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2087 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2088 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2089
2090 /* find the 'best' mul instruction to combine with the add */
2091 if (uses_src0 < uses_src1) {
2092 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2093 add_op_idx = 1;
2094 } else if (uses_src1 < uses_src0) {
2095 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2096 add_op_idx = 0;
2097 } else if (uses_src0 != UINT32_MAX) {
2098 /* tiebreaker: quite random what to pick */
2099 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2100 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2101 add_op_idx = 0;
2102 } else {
2103 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2104 add_op_idx = 1;
2105 }
2106 }
2107 if (mul_instr) {
2108 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2109 bool neg[3] = {false, false, false};
2110 bool abs[3] = {false, false, false};
2111 unsigned omod = 0;
2112 bool clamp = false;
2113 bool need_vop3 = false;
2114 int num_sgpr = 0;
2115 op[0] = mul_instr->operands[0];
2116 op[1] = mul_instr->operands[1];
2117 op[2] = instr->operands[add_op_idx];
2118 for (unsigned i = 0; i < 3; i++)
2119 {
2120 if (op[i].isLiteral())
2121 return;
2122 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2123 num_sgpr++;
2124 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2125 need_vop3 = true;
2126 }
2127 // TODO: would be better to check this before selecting a mul instr?
2128 if (num_sgpr > 1)
2129 return;
2130
2131 if (mul_instr->isVOP3()) {
2132 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2133 neg[0] = vop3->neg[0];
2134 neg[1] = vop3->neg[1];
2135 abs[0] = vop3->abs[0];
2136 abs[1] = vop3->abs[1];
2137 need_vop3 = true;
2138 /* we cannot use these modifiers between mul and add */
2139 if (vop3->clamp || vop3->omod)
2140 return;
2141 }
2142
2143 /* convert to mad */
2144 ctx.uses[mul_instr->definitions[0].tempId()]--;
2145 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2146 if (op[0].isTemp())
2147 ctx.uses[op[0].tempId()]++;
2148 if (op[1].isTemp())
2149 ctx.uses[op[1].tempId()]++;
2150 }
2151
2152 if (instr->isVOP3()) {
2153 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2154 neg[2] = vop3->neg[add_op_idx];
2155 abs[2] = vop3->abs[add_op_idx];
2156 omod = vop3->omod;
2157 clamp = vop3->clamp;
2158 /* abs of the multiplication result */
2159 if (vop3->abs[1 - add_op_idx]) {
2160 neg[0] = false;
2161 neg[1] = false;
2162 abs[0] = true;
2163 abs[1] = true;
2164 }
2165 /* neg of the multiplication result */
2166 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2167 need_vop3 = true;
2168 }
2169 if (instr->opcode == aco_opcode::v_sub_f32) {
2170 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2171 need_vop3 = true;
2172 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2173 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2174 need_vop3 = true;
2175 }
2176
2177 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2178 for (unsigned i = 0; i < 3; i++)
2179 {
2180 mad->operands[i] = op[i];
2181 mad->neg[i] = neg[i];
2182 mad->abs[i] = abs[i];
2183 }
2184 mad->omod = omod;
2185 mad->clamp = clamp;
2186 mad->definitions[0] = instr->definitions[0];
2187
2188 /* mark this ssa_def to be re-checked for profitability and literals */
2189 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2190 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2191 instr.reset(mad.release());
2192 return;
2193 }
2194 }
2195 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2196 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2197 for (unsigned i = 0; i < 2; i++) {
2198 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2199 ctx.uses[instr->operands[i].tempId()] == 1 &&
2200 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2201 ctx.uses[instr->operands[i].tempId()]--;
2202 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2203
2204 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2205 new_instr->operands[0] = Operand(0u);
2206 new_instr->operands[1] = instr->operands[!i];
2207 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2208 new_instr->definitions[0] = instr->definitions[0];
2209 instr.reset(new_instr.release());
2210 ctx.info[instr->definitions[0].tempId()].label = 0;
2211 return;
2212 }
2213 }
2214 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2215 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2216 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2217 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2218 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2219 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2220 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2221 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2222 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2223 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2224 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2225 combine_salu_lshl_add(ctx, instr);
2226 } else if (instr->opcode == aco_opcode::s_not_b32) {
2227 combine_salu_not_bitwise(ctx, instr);
2228 } else if (instr->opcode == aco_opcode::s_not_b64) {
2229 if (combine_inverse_comparison(ctx, instr)) ;
2230 else combine_salu_not_bitwise(ctx, instr);
2231 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32) {
2232 combine_salu_n2(ctx, instr);
2233 } else if (instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2234 if (combine_ordering_test(ctx, instr)) ;
2235 else if (combine_comparison_ordering(ctx, instr)) ;
2236 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2237 else combine_salu_n2(ctx, instr);
2238 } else {
2239 aco_opcode min, max, min3, max3, med3;
2240 bool some_gfx9_only;
2241 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2242 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2243 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2244 else combine_clamp(ctx, instr, min, max, med3);
2245 }
2246 }
2247 }
2248
2249
2250 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2251 {
2252 const uint32_t threshold = 4;
2253
2254 /* Dead Code Elimination:
2255 * We remove instructions if they define temporaries which all are unused */
2256 const bool is_used = instr->definitions.empty() ||
2257 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2258 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2259 if (!is_used) {
2260 instr.reset();
2261 return;
2262 }
2263
2264 /* convert split_vector into extract_vector if only one definition is ever used */
2265 if (instr->opcode == aco_opcode::p_split_vector) {
2266 unsigned num_used = 0;
2267 unsigned idx = 0;
2268 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2269 if (ctx.uses[instr->definitions[i].tempId()]) {
2270 num_used++;
2271 idx = i;
2272 }
2273 }
2274 if (num_used == 1) {
2275 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2276 extract->operands[0] = instr->operands[0];
2277 extract->operands[1] = Operand((uint32_t) idx);
2278 extract->definitions[0] = instr->definitions[idx];
2279 instr.reset(extract.release());
2280 }
2281 }
2282
2283 /* re-check mad instructions */
2284 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2285 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2286 /* first, check profitability */
2287 if (ctx.uses[info->mul_temp_id]) {
2288 ctx.uses[info->mul_temp_id]++;
2289 instr.swap(info->add_instr);
2290
2291 /* second, check possible literals */
2292 } else if (!info->needs_vop3) {
2293 uint32_t literal_idx = 0;
2294 uint32_t literal_uses = UINT32_MAX;
2295 for (unsigned i = 0; i < instr->operands.size(); i++)
2296 {
2297 if (!instr->operands[i].isTemp())
2298 continue;
2299 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2300 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2301 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2302 literal_uses = ctx.uses[instr->operands[i].tempId()];
2303 literal_idx = i;
2304 } else {
2305 literal_uses = UINT32_MAX;
2306 }
2307 break;
2308 }
2309 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2310 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2311 literal_uses = ctx.uses[instr->operands[i].tempId()];
2312 literal_idx = i;
2313 }
2314 }
2315 if (literal_uses < threshold) {
2316 ctx.uses[instr->operands[literal_idx].tempId()]--;
2317 info->check_literal = true;
2318 info->literal_idx = literal_idx;
2319 }
2320 }
2321 return;
2322 }
2323
2324 /* check for literals */
2325 /* we do not apply the literals yet as we don't know if it is profitable */
2326 if (instr->isSALU()) {
2327 uint32_t literal_idx = 0;
2328 uint32_t literal_uses = UINT32_MAX;
2329 bool has_literal = false;
2330 for (unsigned i = 0; i < instr->operands.size(); i++)
2331 {
2332 if (instr->operands[i].isLiteral()) {
2333 has_literal = true;
2334 break;
2335 }
2336 if (!instr->operands[i].isTemp())
2337 continue;
2338 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2339 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2340 literal_uses = ctx.uses[instr->operands[i].tempId()];
2341 literal_idx = i;
2342 }
2343 }
2344 if (!has_literal && literal_uses < threshold) {
2345 ctx.uses[instr->operands[literal_idx].tempId()]--;
2346 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2347 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2348 }
2349 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2350 instr->operands[0].isTemp() &&
2351 ctx.info[instr->operands[0].tempId()].is_literal() &&
2352 ctx.uses[instr->operands[0].tempId()] < threshold) {
2353 ctx.uses[instr->operands[0].tempId()]--;
2354 if (ctx.uses[instr->operands[0].tempId()] == 0)
2355 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2356 }
2357
2358 }
2359
2360
2361 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2362 {
2363 /* Cleanup Dead Instructions */
2364 if (!instr)
2365 return;
2366
2367 /* apply literals on SALU */
2368 if (instr->isSALU()) {
2369 for (Operand& op : instr->operands) {
2370 if (!op.isTemp())
2371 continue;
2372 if (op.isLiteral())
2373 break;
2374 if (ctx.info[op.tempId()].is_literal() &&
2375 ctx.uses[op.tempId()] == 0)
2376 op = Operand(ctx.info[op.tempId()].val);
2377 }
2378 }
2379
2380 /* apply literals on VALU */
2381 else if (instr->isVALU() && !instr->isVOP3() &&
2382 instr->operands[0].isTemp() &&
2383 ctx.info[instr->operands[0].tempId()].is_literal() &&
2384 ctx.uses[instr->operands[0].tempId()] == 0) {
2385 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2386 }
2387
2388 /* apply literals on MAD */
2389 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2390 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2391 aco_ptr<Instruction> new_mad;
2392 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2393 if (info->literal_idx == 2) { /* add literal -> madak */
2394 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2395 new_mad->operands[0] = instr->operands[0];
2396 new_mad->operands[1] = instr->operands[1];
2397 } else { /* mul literal -> madmk */
2398 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2399 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2400 new_mad->operands[1] = instr->operands[2];
2401 }
2402 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2403 new_mad->definitions[0] = instr->definitions[0];
2404 instr.swap(new_mad);
2405 }
2406 }
2407
2408 ctx.instructions.emplace_back(std::move(instr));
2409 }
2410
2411
2412 void optimize(Program* program)
2413 {
2414 opt_ctx ctx;
2415 ctx.program = program;
2416 std::vector<ssa_info> info(program->peekAllocationId());
2417 ctx.info = info.data();
2418
2419 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2420 for (Block& block : program->blocks) {
2421 for (aco_ptr<Instruction>& instr : block.instructions)
2422 label_instruction(ctx, block, instr);
2423 }
2424
2425 ctx.uses = std::move(dead_code_analysis(program));
2426
2427 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2428 for (Block& block : program->blocks) {
2429 for (aco_ptr<Instruction>& instr : block.instructions)
2430 combine_instruction(ctx, block, instr);
2431 }
2432
2433 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2434 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2435 Block* block = &(*it);
2436 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2437 select_instruction(ctx, *it);
2438 }
2439
2440 /* 4. Add literals to instructions */
2441 for (Block& block : program->blocks) {
2442 ctx.instructions.clear();
2443 for (aco_ptr<Instruction>& instr : block.instructions)
2444 apply_literals(ctx, instr);
2445 block.instructions.swap(ctx.instructions);
2446 }
2447
2448 }
2449
2450 }