radv: don't flush DB before subpass FS resolves
[mesa.git] / src / amd / vulkan / radv_meta_resolve_fs.c
1 /*
2 * Copyright © 2016 Dave Airlie
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24
25 #include <assert.h>
26 #include <stdbool.h>
27
28 #include "radv_meta.h"
29 #include "radv_private.h"
30 #include "nir/nir_builder.h"
31 #include "sid.h"
32 #include "vk_format.h"
33
34 static nir_shader *
35 build_nir_vertex_shader(void)
36 {
37 const struct glsl_type *vec4 = glsl_vec4_type();
38 nir_builder b;
39
40 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
41 b.shader->info.name = ralloc_strdup(b.shader, "meta_resolve_vs");
42
43 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
44 vec4, "gl_Position");
45 pos_out->data.location = VARYING_SLOT_POS;
46
47 nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b);
48
49 nir_store_var(&b, pos_out, outvec, 0xf);
50 return b.shader;
51 }
52
53 static nir_shader *
54 build_resolve_fragment_shader(struct radv_device *dev, bool is_integer, int samples)
55 {
56 nir_builder b;
57 char name[64];
58 const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
59 const struct glsl_type *vec4 = glsl_vec4_type();
60 const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
61 false,
62 false,
63 GLSL_TYPE_FLOAT);
64
65 snprintf(name, 64, "meta_resolve_fs-%d-%s", samples, is_integer ? "int" : "float");
66 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
67 b.shader->info.name = ralloc_strdup(b.shader, name);
68
69 nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
70 sampler_type, "s_tex");
71 input_img->data.descriptor_set = 0;
72 input_img->data.binding = 0;
73
74 nir_variable *fs_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec2, "fs_pos_in");
75 fs_pos_in->data.location = VARYING_SLOT_POS;
76
77 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
78 vec4, "f_color");
79 color_out->data.location = FRAG_RESULT_DATA0;
80
81 nir_ssa_def *pos_in = nir_load_var(&b, fs_pos_in);
82 nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
83 nir_intrinsic_set_base(src_offset, 0);
84 nir_intrinsic_set_range(src_offset, 8);
85 src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
86 src_offset->num_components = 2;
87 nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
88 nir_builder_instr_insert(&b, &src_offset->instr);
89
90 nir_ssa_def *pos_int = nir_f2i32(&b, pos_in);
91
92 nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, &src_offset->dest.ssa), 0x3);
93 nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
94
95 radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img,
96 color, img_coord);
97
98 nir_ssa_def *outval = nir_load_var(&b, color);
99 nir_store_var(&b, color_out, outval, 0xf);
100 return b.shader;
101 }
102
103
104 static VkResult
105 create_layout(struct radv_device *device)
106 {
107 VkResult result;
108 /*
109 * one descriptors for the image being sampled
110 */
111 VkDescriptorSetLayoutCreateInfo ds_create_info = {
112 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
113 .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
114 .bindingCount = 1,
115 .pBindings = (VkDescriptorSetLayoutBinding[]) {
116 {
117 .binding = 0,
118 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
119 .descriptorCount = 1,
120 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
121 .pImmutableSamplers = NULL
122 },
123 }
124 };
125
126 result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
127 &ds_create_info,
128 &device->meta_state.alloc,
129 &device->meta_state.resolve_fragment.ds_layout);
130 if (result != VK_SUCCESS)
131 goto fail;
132
133
134 VkPipelineLayoutCreateInfo pl_create_info = {
135 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
136 .setLayoutCount = 1,
137 .pSetLayouts = &device->meta_state.resolve_fragment.ds_layout,
138 .pushConstantRangeCount = 1,
139 .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8},
140 };
141
142 result = radv_CreatePipelineLayout(radv_device_to_handle(device),
143 &pl_create_info,
144 &device->meta_state.alloc,
145 &device->meta_state.resolve_fragment.p_layout);
146 if (result != VK_SUCCESS)
147 goto fail;
148 return VK_SUCCESS;
149 fail:
150 return result;
151 }
152
153 static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
154 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
155 .vertexBindingDescriptionCount = 0,
156 .vertexAttributeDescriptionCount = 0,
157 };
158
159 static VkFormat pipeline_formats[] = {
160 VK_FORMAT_R8G8B8A8_UNORM,
161 VK_FORMAT_R8G8B8A8_UINT,
162 VK_FORMAT_R8G8B8A8_SINT,
163 VK_FORMAT_A2R10G10B10_UINT_PACK32,
164 VK_FORMAT_A2R10G10B10_SINT_PACK32,
165 VK_FORMAT_R16G16B16A16_UNORM,
166 VK_FORMAT_R16G16B16A16_SNORM,
167 VK_FORMAT_R16G16B16A16_UINT,
168 VK_FORMAT_R16G16B16A16_SINT,
169 VK_FORMAT_R32_SFLOAT,
170 VK_FORMAT_R32G32_SFLOAT,
171 VK_FORMAT_R32G32B32A32_SFLOAT
172 };
173
174 static VkResult
175 create_resolve_pipeline(struct radv_device *device,
176 int samples_log2,
177 VkFormat format)
178 {
179 VkResult result;
180 bool is_integer = false;
181 uint32_t samples = 1 << samples_log2;
182 unsigned fs_key = radv_format_meta_fs_key(format);
183 const VkPipelineVertexInputStateCreateInfo *vi_create_info;
184 vi_create_info = &normal_vi_create_info;
185 if (vk_format_is_int(format))
186 is_integer = true;
187
188 struct radv_shader_module fs = { .nir = NULL };
189 fs.nir = build_resolve_fragment_shader(device, is_integer, samples);
190 struct radv_shader_module vs = {
191 .nir = build_nir_vertex_shader(),
192 };
193
194 VkRenderPass *rp = &device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][0];
195
196 assert(!*rp);
197
198 VkPipeline *pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
199 assert(!*pipeline);
200
201 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
202 {
203 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
204 .stage = VK_SHADER_STAGE_VERTEX_BIT,
205 .module = radv_shader_module_to_handle(&vs),
206 .pName = "main",
207 .pSpecializationInfo = NULL
208 }, {
209 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
210 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
211 .module = radv_shader_module_to_handle(&fs),
212 .pName = "main",
213 .pSpecializationInfo = NULL
214 },
215 };
216
217
218 for (unsigned dst_layout = 0; dst_layout < RADV_META_DST_LAYOUT_COUNT; ++dst_layout) {
219 VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout);
220 result = radv_CreateRenderPass(radv_device_to_handle(device),
221 &(VkRenderPassCreateInfo) {
222 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
223 .attachmentCount = 1,
224 .pAttachments = &(VkAttachmentDescription) {
225 .format = format,
226 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
227 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
228 .initialLayout = layout,
229 .finalLayout = layout,
230 },
231 .subpassCount = 1,
232 .pSubpasses = &(VkSubpassDescription) {
233 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
234 .inputAttachmentCount = 0,
235 .colorAttachmentCount = 1,
236 .pColorAttachments = &(VkAttachmentReference) {
237 .attachment = 0,
238 .layout = layout,
239 },
240 .pResolveAttachments = NULL,
241 .pDepthStencilAttachment = &(VkAttachmentReference) {
242 .attachment = VK_ATTACHMENT_UNUSED,
243 .layout = VK_IMAGE_LAYOUT_GENERAL,
244 },
245 .preserveAttachmentCount = 1,
246 .pPreserveAttachments = (uint32_t[]) { 0 },
247 },
248 .dependencyCount = 0,
249 }, &device->meta_state.alloc, rp + dst_layout);
250 }
251
252
253 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
254 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
255 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
256 .pStages = pipeline_shader_stages,
257 .pVertexInputState = vi_create_info,
258 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
259 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
260 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
261 .primitiveRestartEnable = false,
262 },
263 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
264 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
265 .viewportCount = 1,
266 .scissorCount = 1,
267 },
268 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
269 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
270 .rasterizerDiscardEnable = false,
271 .polygonMode = VK_POLYGON_MODE_FILL,
272 .cullMode = VK_CULL_MODE_NONE,
273 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
274 },
275 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
276 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
277 .rasterizationSamples = 1,
278 .sampleShadingEnable = false,
279 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
280 },
281 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
282 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
283 .attachmentCount = 1,
284 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
285 { .colorWriteMask =
286 VK_COLOR_COMPONENT_A_BIT |
287 VK_COLOR_COMPONENT_R_BIT |
288 VK_COLOR_COMPONENT_G_BIT |
289 VK_COLOR_COMPONENT_B_BIT },
290 }
291 },
292 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
293 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
294 .dynamicStateCount = 9,
295 .pDynamicStates = (VkDynamicState[]) {
296 VK_DYNAMIC_STATE_VIEWPORT,
297 VK_DYNAMIC_STATE_SCISSOR,
298 VK_DYNAMIC_STATE_LINE_WIDTH,
299 VK_DYNAMIC_STATE_DEPTH_BIAS,
300 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
301 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
302 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
303 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
304 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
305 },
306 },
307 .flags = 0,
308 .layout = device->meta_state.resolve_fragment.p_layout,
309 .renderPass = *rp,
310 .subpass = 0,
311 };
312
313 const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
314 .use_rectlist = true
315 };
316
317 result = radv_graphics_pipeline_create(radv_device_to_handle(device),
318 radv_pipeline_cache_to_handle(&device->meta_state.cache),
319 &vk_pipeline_info, &radv_pipeline_info,
320 &device->meta_state.alloc,
321 pipeline);
322 ralloc_free(vs.nir);
323 ralloc_free(fs.nir);
324
325 return result;
326 }
327
328 VkResult
329 radv_device_init_meta_resolve_fragment_state(struct radv_device *device)
330 {
331 VkResult res;
332
333 res = create_layout(device);
334 if (res != VK_SUCCESS)
335 goto fail;
336
337 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
338 for (unsigned j = 0; j < ARRAY_SIZE(pipeline_formats); ++j) {
339 res = create_resolve_pipeline(device, i, pipeline_formats[j]);
340 if (res != VK_SUCCESS)
341 goto fail;
342 }
343 }
344
345 return VK_SUCCESS;
346 fail:
347 radv_device_finish_meta_resolve_fragment_state(device);
348 return res;
349 }
350
351 void
352 radv_device_finish_meta_resolve_fragment_state(struct radv_device *device)
353 {
354 struct radv_meta_state *state = &device->meta_state;
355 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
356 for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
357 for(unsigned k =0; k < RADV_META_DST_LAYOUT_COUNT; ++k) {
358 radv_DestroyRenderPass(radv_device_to_handle(device),
359 state->resolve_fragment.rc[i].render_pass[j][k],
360 &state->alloc);
361 }
362 radv_DestroyPipeline(radv_device_to_handle(device),
363 state->resolve_fragment.rc[i].pipeline[j],
364 &state->alloc);
365 }
366 }
367
368 radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
369 state->resolve_fragment.ds_layout,
370 &state->alloc);
371 radv_DestroyPipelineLayout(radv_device_to_handle(device),
372 state->resolve_fragment.p_layout,
373 &state->alloc);
374 }
375
376 static void
377 emit_resolve(struct radv_cmd_buffer *cmd_buffer,
378 struct radv_image_view *src_iview,
379 struct radv_image_view *dest_iview,
380 const VkOffset2D *src_offset,
381 const VkOffset2D *dest_offset,
382 const VkExtent2D *resolve_extent)
383 {
384 struct radv_device *device = cmd_buffer->device;
385 VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
386 const uint32_t samples = src_iview->image->info.samples;
387 const uint32_t samples_log2 = ffs(samples) - 1;
388 radv_meta_push_descriptor_set(cmd_buffer,
389 VK_PIPELINE_BIND_POINT_GRAPHICS,
390 cmd_buffer->device->meta_state.resolve_fragment.p_layout,
391 0, /* set */
392 1, /* descriptorWriteCount */
393 (VkWriteDescriptorSet[]) {
394 {
395 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
396 .dstBinding = 0,
397 .dstArrayElement = 0,
398 .descriptorCount = 1,
399 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
400 .pImageInfo = (VkDescriptorImageInfo[]) {
401 {
402 .sampler = VK_NULL_HANDLE,
403 .imageView = radv_image_view_to_handle(src_iview),
404 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
405 },
406 }
407 },
408 });
409
410 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
411
412 unsigned push_constants[2] = {
413 src_offset->x - dest_offset->x,
414 src_offset->y - dest_offset->y,
415 };
416 radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
417 device->meta_state.resolve_fragment.p_layout,
418 VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8,
419 push_constants);
420
421 unsigned fs_key = radv_format_meta_fs_key(dest_iview->vk_format);
422 VkPipeline pipeline_h = device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
423
424 radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
425 pipeline_h);
426
427 radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) {
428 .x = dest_offset->x,
429 .y = dest_offset->y,
430 .width = resolve_extent->width,
431 .height = resolve_extent->height,
432 .minDepth = 0.0f,
433 .maxDepth = 1.0f
434 });
435
436 radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) {
437 .offset = *dest_offset,
438 .extent = *resolve_extent,
439 });
440
441 radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
442 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
443 }
444
445 void radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer,
446 struct radv_image *src_image,
447 VkImageLayout src_image_layout,
448 struct radv_image *dest_image,
449 VkImageLayout dest_image_layout,
450 uint32_t region_count,
451 const VkImageResolve *regions)
452 {
453 struct radv_device *device = cmd_buffer->device;
454 struct radv_meta_saved_state saved_state;
455 const uint32_t samples = src_image->info.samples;
456 const uint32_t samples_log2 = ffs(samples) - 1;
457 unsigned fs_key = radv_format_meta_fs_key(dest_image->vk_format);
458 unsigned dst_layout = radv_meta_dst_layout_from_layout(dest_image_layout);
459 VkRenderPass rp;
460
461 radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout,
462 region_count, regions);
463
464 rp = device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout];
465
466 radv_meta_save(&saved_state, cmd_buffer,
467 RADV_META_SAVE_GRAPHICS_PIPELINE |
468 RADV_META_SAVE_CONSTANTS |
469 RADV_META_SAVE_DESCRIPTORS);
470
471 for (uint32_t r = 0; r < region_count; ++r) {
472 const VkImageResolve *region = &regions[r];
473
474 assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
475 assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
476 assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
477
478 const uint32_t src_base_layer =
479 radv_meta_get_iview_layer(src_image, &region->srcSubresource,
480 &region->srcOffset);
481
482 const uint32_t dest_base_layer =
483 radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
484 &region->dstOffset);
485
486 const struct VkExtent3D extent =
487 radv_sanitize_image_extent(src_image->type, region->extent);
488 const struct VkOffset3D srcOffset =
489 radv_sanitize_image_offset(src_image->type, region->srcOffset);
490 const struct VkOffset3D dstOffset =
491 radv_sanitize_image_offset(dest_image->type, region->dstOffset);
492
493 for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
494 ++layer) {
495
496 struct radv_image_view src_iview;
497 radv_image_view_init(&src_iview, cmd_buffer->device,
498 &(VkImageViewCreateInfo) {
499 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
500 .image = radv_image_to_handle(src_image),
501 .viewType = radv_meta_get_view_type(src_image),
502 .format = src_image->vk_format,
503 .subresourceRange = {
504 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
505 .baseMipLevel = region->srcSubresource.mipLevel,
506 .levelCount = 1,
507 .baseArrayLayer = src_base_layer + layer,
508 .layerCount = 1,
509 },
510 });
511
512 struct radv_image_view dest_iview;
513 radv_image_view_init(&dest_iview, cmd_buffer->device,
514 &(VkImageViewCreateInfo) {
515 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
516 .image = radv_image_to_handle(dest_image),
517 .viewType = radv_meta_get_view_type(dest_image),
518 .format = dest_image->vk_format,
519 .subresourceRange = {
520 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
521 .baseMipLevel = region->dstSubresource.mipLevel,
522 .levelCount = 1,
523 .baseArrayLayer = dest_base_layer + layer,
524 .layerCount = 1,
525 },
526 });
527
528
529 VkFramebuffer fb;
530 radv_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device),
531 &(VkFramebufferCreateInfo) {
532 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
533 .attachmentCount = 1,
534 .pAttachments = (VkImageView[]) {
535 radv_image_view_to_handle(&dest_iview),
536 },
537 .width = extent.width + dstOffset.x,
538 .height = extent.height + dstOffset.y,
539 .layers = 1
540 }, &cmd_buffer->pool->alloc, &fb);
541
542 radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer),
543 &(VkRenderPassBeginInfo) {
544 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
545 .renderPass = rp,
546 .framebuffer = fb,
547 .renderArea = {
548 .offset = { dstOffset.x, dstOffset.y, },
549 .extent = { extent.width, extent.height },
550 },
551 .clearValueCount = 0,
552 .pClearValues = NULL,
553 }, VK_SUBPASS_CONTENTS_INLINE);
554
555
556
557 emit_resolve(cmd_buffer,
558 &src_iview,
559 &dest_iview,
560 &(VkOffset2D) { srcOffset.x, srcOffset.y },
561 &(VkOffset2D) { dstOffset.x, dstOffset.y },
562 &(VkExtent2D) { extent.width, extent.height });
563
564 radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer));
565
566 radv_DestroyFramebuffer(radv_device_to_handle(cmd_buffer->device), fb, &cmd_buffer->pool->alloc);
567 }
568 }
569
570 radv_meta_restore(&saved_state, cmd_buffer);
571 }
572
573
574 /**
575 * Emit any needed resolves for the current subpass.
576 */
577 void
578 radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer)
579 {
580 struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
581 const struct radv_subpass *subpass = cmd_buffer->state.subpass;
582 struct radv_meta_saved_state saved_state;
583 struct radv_subpass_barrier barrier;
584
585 /* Resolves happen before the end-of-subpass barriers get executed,
586 * so we have to make the attachment shader-readable */
587 barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
588 barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
589 barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
590 radv_subpass_barrier(cmd_buffer, &barrier);
591
592 radv_decompress_resolve_subpass_src(cmd_buffer);
593
594 radv_meta_save(&saved_state, cmd_buffer,
595 RADV_META_SAVE_GRAPHICS_PIPELINE |
596 RADV_META_SAVE_CONSTANTS |
597 RADV_META_SAVE_DESCRIPTORS);
598
599 for (uint32_t i = 0; i < subpass->color_count; ++i) {
600 struct radv_subpass_attachment src_att = subpass->color_attachments[i];
601 struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i];
602
603 if (src_att.attachment == VK_ATTACHMENT_UNUSED ||
604 dest_att.attachment == VK_ATTACHMENT_UNUSED)
605 continue;
606
607 struct radv_image_view *dest_iview = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment;
608 struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment;
609
610 struct radv_subpass resolve_subpass = {
611 .color_count = 1,
612 .color_attachments = (struct radv_subpass_attachment[]) { dest_att },
613 .depth_stencil_attachment = { .attachment = VK_ATTACHMENT_UNUSED },
614 };
615
616 radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass, false);
617
618 emit_resolve(cmd_buffer,
619 src_iview,
620 dest_iview,
621 &(VkOffset2D) { 0, 0 },
622 &(VkOffset2D) { 0, 0 },
623 &(VkExtent2D) { fb->width, fb->height });
624 }
625
626 cmd_buffer->state.subpass = subpass;
627 radv_meta_restore(&saved_state, cmd_buffer);
628 }