radv: gather layer in the shader info pass
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "radv_shader_helper.h"
31 #include "nir/nir.h"
32
33 #include <llvm-c/Core.h>
34 #include <llvm-c/TargetMachine.h>
35 #include <llvm-c/Transforms/Scalar.h>
36 #include <llvm-c/Transforms/Utils.h>
37
38 #include "sid.h"
39 #include "ac_binary.h"
40 #include "ac_llvm_util.h"
41 #include "ac_llvm_build.h"
42 #include "ac_shader_abi.h"
43 #include "ac_shader_util.h"
44 #include "ac_exp_param.h"
45
46 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
47
48 struct radv_shader_context {
49 struct ac_llvm_context ac;
50 const struct radv_nir_compiler_options *options;
51 struct radv_shader_info *shader_info;
52 const struct nir_shader *shader;
53 struct ac_shader_abi abi;
54
55 unsigned max_workgroup_size;
56 LLVMContextRef context;
57 LLVMValueRef main_function;
58
59 LLVMValueRef descriptor_sets[MAX_SETS];
60 LLVMValueRef ring_offsets;
61
62 LLVMValueRef vertex_buffers;
63 LLVMValueRef rel_auto_id;
64 LLVMValueRef vs_prim_id;
65 LLVMValueRef es2gs_offset;
66
67 LLVMValueRef oc_lds;
68 LLVMValueRef merged_wave_info;
69 LLVMValueRef tess_factor_offset;
70 LLVMValueRef tes_rel_patch_id;
71 LLVMValueRef tes_u;
72 LLVMValueRef tes_v;
73
74 /* HW GS */
75 /* On gfx10:
76 * - bits 0..10: ordered_wave_id
77 * - bits 12..20: number of vertices in group
78 * - bits 22..30: number of primitives in group
79 */
80 LLVMValueRef gs_tg_info;
81 LLVMValueRef gs2vs_offset;
82 LLVMValueRef gs_wave_id;
83 LLVMValueRef gs_vtx_offset[6];
84
85 LLVMValueRef esgs_ring;
86 LLVMValueRef gsvs_ring[4];
87 LLVMValueRef hs_ring_tess_offchip;
88 LLVMValueRef hs_ring_tess_factor;
89
90 /* Streamout */
91 LLVMValueRef streamout_buffers;
92 LLVMValueRef streamout_write_idx;
93 LLVMValueRef streamout_config;
94 LLVMValueRef streamout_offset[4];
95
96 gl_shader_stage stage;
97
98 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
99
100 uint64_t output_mask;
101
102 bool is_gs_copy_shader;
103 LLVMValueRef gs_next_vertex[4];
104 LLVMValueRef gs_curprim_verts[4];
105 LLVMValueRef gs_generated_prims[4];
106 LLVMValueRef gs_ngg_emit;
107 LLVMValueRef gs_ngg_scratch;
108
109 uint32_t tcs_num_inputs;
110 uint32_t tcs_num_patches;
111 uint32_t max_gsvs_emit_size;
112 uint32_t gsvs_vertex_size;
113
114 LLVMValueRef vertexptr; /* GFX10 only */
115 };
116
117 struct radv_shader_output_values {
118 LLVMValueRef values[4];
119 unsigned slot_name;
120 unsigned slot_index;
121 unsigned usage_mask;
122 };
123
124 enum radeon_llvm_calling_convention {
125 RADEON_LLVM_AMDGPU_VS = 87,
126 RADEON_LLVM_AMDGPU_GS = 88,
127 RADEON_LLVM_AMDGPU_PS = 89,
128 RADEON_LLVM_AMDGPU_CS = 90,
129 RADEON_LLVM_AMDGPU_HS = 93,
130 };
131
132 static inline struct radv_shader_context *
133 radv_shader_context_from_abi(struct ac_shader_abi *abi)
134 {
135 struct radv_shader_context *ctx = NULL;
136 return container_of(abi, ctx, abi);
137 }
138
139 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
140 {
141 switch (ctx->stage) {
142 case MESA_SHADER_TESS_CTRL:
143 return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
144 case MESA_SHADER_TESS_EVAL:
145 return ctx->tes_rel_patch_id;
146 break;
147 default:
148 unreachable("Illegal stage");
149 }
150 }
151
152 static unsigned
153 get_tcs_num_patches(struct radv_shader_context *ctx)
154 {
155 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
156 unsigned num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
157 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
158 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
159 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
160 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->tcs.patch_outputs_written);
161 uint32_t output_vertex_size = num_tcs_outputs * 16;
162 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
163 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
164 unsigned num_patches;
165 unsigned hardware_lds_size;
166
167 /* Ensure that we only need one wave per SIMD so we don't need to check
168 * resource usage. Also ensures that the number of tcs in and out
169 * vertices per threadgroup are at most 256.
170 */
171 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
172 /* Make sure that the data fits in LDS. This assumes the shaders only
173 * use LDS for the inputs and outputs.
174 */
175 hardware_lds_size = 32768;
176
177 /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
178 * threadgroup, even though there is more than 32 KiB LDS.
179 *
180 * Test: dEQP-VK.tessellation.shader_input_output.barrier
181 */
182 if (ctx->options->chip_class >= GFX7 && ctx->options->family != CHIP_STONEY)
183 hardware_lds_size = 65536;
184
185 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
186 /* Make sure the output data fits in the offchip buffer */
187 num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
188 /* Not necessary for correctness, but improves performance. The
189 * specific value is taken from the proprietary driver.
190 */
191 num_patches = MIN2(num_patches, 40);
192
193 /* GFX6 bug workaround - limit LS-HS threadgroups to only one wave. */
194 if (ctx->options->chip_class == GFX6) {
195 unsigned one_wave = ctx->options->wave_size / MAX2(num_tcs_input_cp, num_tcs_output_cp);
196 num_patches = MIN2(num_patches, one_wave);
197 }
198 return num_patches;
199 }
200
201 static unsigned
202 calculate_tess_lds_size(struct radv_shader_context *ctx)
203 {
204 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
205 unsigned num_tcs_output_cp;
206 unsigned num_tcs_outputs, num_tcs_patch_outputs;
207 unsigned input_vertex_size, output_vertex_size;
208 unsigned input_patch_size, output_patch_size;
209 unsigned pervertex_output_patch_size;
210 unsigned output_patch0_offset;
211 unsigned num_patches;
212 unsigned lds_size;
213
214 num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
215 num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
216 num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->tcs.patch_outputs_written);
217
218 input_vertex_size = ctx->tcs_num_inputs * 16;
219 output_vertex_size = num_tcs_outputs * 16;
220
221 input_patch_size = num_tcs_input_cp * input_vertex_size;
222
223 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
224 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
225
226 num_patches = ctx->tcs_num_patches;
227 output_patch0_offset = input_patch_size * num_patches;
228
229 lds_size = output_patch0_offset + output_patch_size * num_patches;
230 return lds_size;
231 }
232
233 /* Tessellation shaders pass outputs to the next shader using LDS.
234 *
235 * LS outputs = TCS inputs
236 * TCS outputs = TES inputs
237 *
238 * The LDS layout is:
239 * - TCS inputs for patch 0
240 * - TCS inputs for patch 1
241 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
242 * - ...
243 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
244 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
245 * - TCS outputs for patch 1
246 * - Per-patch TCS outputs for patch 1
247 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
248 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
249 * - ...
250 *
251 * All three shaders VS(LS), TCS, TES share the same LDS space.
252 */
253 static LLVMValueRef
254 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
255 {
256 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
257 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
258 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
259
260 input_patch_size /= 4;
261 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
262 }
263
264 static LLVMValueRef
265 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
266 {
267 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
268 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->tcs.patch_outputs_written);
269 uint32_t output_vertex_size = num_tcs_outputs * 16;
270 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
271 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
272 output_patch_size /= 4;
273 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
274 }
275
276 static LLVMValueRef
277 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
278 {
279 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
280 uint32_t output_vertex_size = num_tcs_outputs * 16;
281 output_vertex_size /= 4;
282 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
283 }
284
285 static LLVMValueRef
286 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
287 {
288 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
289 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
290 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
291 uint32_t output_patch0_offset = input_patch_size;
292 unsigned num_patches = ctx->tcs_num_patches;
293
294 output_patch0_offset *= num_patches;
295 output_patch0_offset /= 4;
296 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
297 }
298
299 static LLVMValueRef
300 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
301 {
302 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
303 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
304 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
305 uint32_t output_patch0_offset = input_patch_size;
306
307 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
308 uint32_t output_vertex_size = num_tcs_outputs * 16;
309 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
310 unsigned num_patches = ctx->tcs_num_patches;
311
312 output_patch0_offset *= num_patches;
313 output_patch0_offset += pervertex_output_patch_size;
314 output_patch0_offset /= 4;
315 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
316 }
317
318 static LLVMValueRef
319 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
320 {
321 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
322 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
323
324 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
325 }
326
327 static LLVMValueRef
328 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
329 {
330 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
331 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
332 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
333
334 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
335 patch0_offset);
336 }
337
338 static LLVMValueRef
339 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
340 {
341 LLVMValueRef patch0_patch_data_offset =
342 get_tcs_out_patch0_patch_data_offset(ctx);
343 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
344 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
345
346 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
347 patch0_patch_data_offset);
348 }
349
350 #define MAX_ARGS 64
351 struct arg_info {
352 LLVMTypeRef types[MAX_ARGS];
353 LLVMValueRef *assign[MAX_ARGS];
354 uint8_t count;
355 uint8_t sgpr_count;
356 uint8_t num_sgprs_used;
357 uint8_t num_vgprs_used;
358 };
359
360 enum ac_arg_regfile {
361 ARG_SGPR,
362 ARG_VGPR,
363 };
364
365 static void
366 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
367 LLVMValueRef *param_ptr)
368 {
369 assert(info->count < MAX_ARGS);
370
371 info->assign[info->count] = param_ptr;
372 info->types[info->count] = type;
373 info->count++;
374
375 if (regfile == ARG_SGPR) {
376 info->num_sgprs_used += ac_get_type_size(type) / 4;
377 info->sgpr_count++;
378 } else {
379 assert(regfile == ARG_VGPR);
380 info->num_vgprs_used += ac_get_type_size(type) / 4;
381 }
382 }
383
384 static void assign_arguments(LLVMValueRef main_function,
385 struct arg_info *info)
386 {
387 unsigned i;
388 for (i = 0; i < info->count; i++) {
389 if (info->assign[i])
390 *info->assign[i] = LLVMGetParam(main_function, i);
391 }
392 }
393
394 static LLVMValueRef
395 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
396 LLVMBuilderRef builder, LLVMTypeRef *return_types,
397 unsigned num_return_elems,
398 struct arg_info *args,
399 unsigned max_workgroup_size,
400 const struct radv_nir_compiler_options *options)
401 {
402 LLVMTypeRef main_function_type, ret_type;
403 LLVMBasicBlockRef main_function_body;
404
405 if (num_return_elems)
406 ret_type = LLVMStructTypeInContext(ctx, return_types,
407 num_return_elems, true);
408 else
409 ret_type = LLVMVoidTypeInContext(ctx);
410
411 /* Setup the function */
412 main_function_type =
413 LLVMFunctionType(ret_type, args->types, args->count, 0);
414 LLVMValueRef main_function =
415 LLVMAddFunction(module, "main", main_function_type);
416 main_function_body =
417 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
418 LLVMPositionBuilderAtEnd(builder, main_function_body);
419
420 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
421 for (unsigned i = 0; i < args->sgpr_count; ++i) {
422 LLVMValueRef P = LLVMGetParam(main_function, i);
423
424 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
425
426 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
427 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
428 ac_add_attr_dereferenceable(P, UINT64_MAX);
429 }
430 }
431
432 if (options->address32_hi) {
433 ac_llvm_add_target_dep_function_attr(main_function,
434 "amdgpu-32bit-address-high-bits",
435 options->address32_hi);
436 }
437
438 ac_llvm_set_workgroup_size(main_function, max_workgroup_size);
439
440 if (options->unsafe_math) {
441 /* These were copied from some LLVM test. */
442 LLVMAddTargetDependentFunctionAttr(main_function,
443 "less-precise-fpmad",
444 "true");
445 LLVMAddTargetDependentFunctionAttr(main_function,
446 "no-infs-fp-math",
447 "true");
448 LLVMAddTargetDependentFunctionAttr(main_function,
449 "no-nans-fp-math",
450 "true");
451 LLVMAddTargetDependentFunctionAttr(main_function,
452 "unsafe-fp-math",
453 "true");
454 LLVMAddTargetDependentFunctionAttr(main_function,
455 "no-signed-zeros-fp-math",
456 "true");
457 }
458 return main_function;
459 }
460
461
462 static void
463 set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx,
464 uint8_t num_sgprs)
465 {
466 ud_info->sgpr_idx = *sgpr_idx;
467 ud_info->num_sgprs = num_sgprs;
468 *sgpr_idx += num_sgprs;
469 }
470
471 static void
472 set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
473 uint8_t num_sgprs)
474 {
475 struct radv_userdata_info *ud_info =
476 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
477 assert(ud_info);
478
479 set_loc(ud_info, sgpr_idx, num_sgprs);
480 }
481
482 static void
483 set_loc_shader_ptr(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
484 {
485 bool use_32bit_pointers = idx != AC_UD_SCRATCH_RING_OFFSETS;
486
487 set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
488 }
489
490 static void
491 set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
492 {
493 struct radv_userdata_locations *locs =
494 &ctx->shader_info->user_sgprs_locs;
495 struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
496 assert(ud_info);
497
498 set_loc(ud_info, sgpr_idx, 1);
499
500 locs->descriptor_sets_enabled |= 1 << idx;
501 }
502
503 struct user_sgpr_info {
504 bool need_ring_offsets;
505 bool indirect_all_descriptor_sets;
506 uint8_t remaining_sgprs;
507 };
508
509 static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
510 gl_shader_stage stage)
511 {
512 switch (stage) {
513 case MESA_SHADER_VERTEX:
514 if (ctx->shader_info->needs_multiview_view_index ||
515 (!ctx->options->key.vs_common_out.as_es && !ctx->options->key.vs_common_out.as_ls && ctx->options->key.has_multiview_view_index))
516 return true;
517 break;
518 case MESA_SHADER_TESS_EVAL:
519 if (ctx->shader_info->needs_multiview_view_index || (!ctx->options->key.vs_common_out.as_es && ctx->options->key.has_multiview_view_index))
520 return true;
521 break;
522 case MESA_SHADER_GEOMETRY:
523 case MESA_SHADER_TESS_CTRL:
524 if (ctx->shader_info->needs_multiview_view_index)
525 return true;
526 break;
527 default:
528 break;
529 }
530 return false;
531 }
532
533 static uint8_t
534 count_vs_user_sgprs(struct radv_shader_context *ctx)
535 {
536 uint8_t count = 0;
537
538 if (ctx->shader_info->vs.has_vertex_buffers)
539 count++;
540 count += ctx->shader_info->vs.needs_draw_id ? 3 : 2;
541
542 return count;
543 }
544
545 static void allocate_inline_push_consts(struct radv_shader_context *ctx,
546 struct user_sgpr_info *user_sgpr_info)
547 {
548 uint8_t remaining_sgprs = user_sgpr_info->remaining_sgprs;
549
550 /* Only supported if shaders use push constants. */
551 if (ctx->shader_info->min_push_constant_used == UINT8_MAX)
552 return;
553
554 /* Only supported if shaders don't have indirect push constants. */
555 if (ctx->shader_info->has_indirect_push_constants)
556 return;
557
558 /* Only supported for 32-bit push constants. */
559 if (!ctx->shader_info->has_only_32bit_push_constants)
560 return;
561
562 uint8_t num_push_consts =
563 (ctx->shader_info->max_push_constant_used -
564 ctx->shader_info->min_push_constant_used) / 4;
565
566 /* Check if the number of user SGPRs is large enough. */
567 if (num_push_consts < remaining_sgprs) {
568 ctx->shader_info->num_inline_push_consts = num_push_consts;
569 } else {
570 ctx->shader_info->num_inline_push_consts = remaining_sgprs;
571 }
572
573 /* Clamp to the maximum number of allowed inlined push constants. */
574 if (ctx->shader_info->num_inline_push_consts > AC_MAX_INLINE_PUSH_CONSTS)
575 ctx->shader_info->num_inline_push_consts = AC_MAX_INLINE_PUSH_CONSTS;
576
577 if (ctx->shader_info->num_inline_push_consts == num_push_consts &&
578 !ctx->shader_info->loads_dynamic_offsets) {
579 /* Disable the default push constants path if all constants are
580 * inlined and if shaders don't use dynamic descriptors.
581 */
582 ctx->shader_info->loads_push_constants = false;
583 }
584
585 ctx->shader_info->base_inline_push_consts =
586 ctx->shader_info->min_push_constant_used / 4;
587 }
588
589 static void allocate_user_sgprs(struct radv_shader_context *ctx,
590 gl_shader_stage stage,
591 bool has_previous_stage,
592 gl_shader_stage previous_stage,
593 bool needs_view_index,
594 struct user_sgpr_info *user_sgpr_info)
595 {
596 uint8_t user_sgpr_count = 0;
597
598 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
599
600 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
601 if (stage == MESA_SHADER_GEOMETRY ||
602 stage == MESA_SHADER_VERTEX ||
603 stage == MESA_SHADER_TESS_CTRL ||
604 stage == MESA_SHADER_TESS_EVAL ||
605 ctx->is_gs_copy_shader)
606 user_sgpr_info->need_ring_offsets = true;
607
608 if (stage == MESA_SHADER_FRAGMENT &&
609 ctx->shader_info->ps.needs_sample_positions)
610 user_sgpr_info->need_ring_offsets = true;
611
612 /* 2 user sgprs will nearly always be allocated for scratch/rings */
613 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
614 user_sgpr_count += 2;
615 }
616
617 switch (stage) {
618 case MESA_SHADER_COMPUTE:
619 if (ctx->shader_info->cs.uses_grid_size)
620 user_sgpr_count += 3;
621 break;
622 case MESA_SHADER_FRAGMENT:
623 user_sgpr_count += ctx->shader_info->ps.needs_sample_positions;
624 break;
625 case MESA_SHADER_VERTEX:
626 if (!ctx->is_gs_copy_shader)
627 user_sgpr_count += count_vs_user_sgprs(ctx);
628 break;
629 case MESA_SHADER_TESS_CTRL:
630 if (has_previous_stage) {
631 if (previous_stage == MESA_SHADER_VERTEX)
632 user_sgpr_count += count_vs_user_sgprs(ctx);
633 }
634 break;
635 case MESA_SHADER_TESS_EVAL:
636 break;
637 case MESA_SHADER_GEOMETRY:
638 if (has_previous_stage) {
639 if (previous_stage == MESA_SHADER_VERTEX) {
640 user_sgpr_count += count_vs_user_sgprs(ctx);
641 }
642 }
643 break;
644 default:
645 break;
646 }
647
648 if (needs_view_index)
649 user_sgpr_count++;
650
651 if (ctx->shader_info->loads_push_constants)
652 user_sgpr_count++;
653
654 if (ctx->streamout_buffers)
655 user_sgpr_count++;
656
657 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && stage != MESA_SHADER_COMPUTE ? 32 : 16;
658 uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
659 uint32_t num_desc_set =
660 util_bitcount(ctx->shader_info->desc_set_used_mask);
661
662 if (remaining_sgprs < num_desc_set) {
663 user_sgpr_info->indirect_all_descriptor_sets = true;
664 user_sgpr_info->remaining_sgprs = remaining_sgprs - 1;
665 } else {
666 user_sgpr_info->remaining_sgprs = remaining_sgprs - num_desc_set;
667 }
668
669 allocate_inline_push_consts(ctx, user_sgpr_info);
670 }
671
672 static void
673 declare_global_input_sgprs(struct radv_shader_context *ctx,
674 const struct user_sgpr_info *user_sgpr_info,
675 struct arg_info *args,
676 LLVMValueRef *desc_sets)
677 {
678 LLVMTypeRef type = ac_array_in_const32_addr_space(ctx->ac.i8);
679
680 /* 1 for each descriptor set */
681 if (!user_sgpr_info->indirect_all_descriptor_sets) {
682 uint32_t mask = ctx->shader_info->desc_set_used_mask;
683
684 while (mask) {
685 int i = u_bit_scan(&mask);
686
687 add_arg(args, ARG_SGPR, type, &ctx->descriptor_sets[i]);
688 }
689 } else {
690 add_arg(args, ARG_SGPR, ac_array_in_const32_addr_space(type),
691 desc_sets);
692 }
693
694 if (ctx->shader_info->loads_push_constants) {
695 /* 1 for push constants and dynamic descriptors */
696 add_arg(args, ARG_SGPR, type, &ctx->abi.push_constants);
697 }
698
699 for (unsigned i = 0; i < ctx->shader_info->num_inline_push_consts; i++) {
700 add_arg(args, ARG_SGPR, ctx->ac.i32,
701 &ctx->abi.inline_push_consts[i]);
702 }
703 ctx->abi.num_inline_push_consts = ctx->shader_info->num_inline_push_consts;
704 ctx->abi.base_inline_push_consts = ctx->shader_info->base_inline_push_consts;
705
706 if (ctx->shader_info->so.num_outputs) {
707 add_arg(args, ARG_SGPR,
708 ac_array_in_const32_addr_space(ctx->ac.v4i32),
709 &ctx->streamout_buffers);
710 }
711 }
712
713 static void
714 declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
715 gl_shader_stage stage,
716 bool has_previous_stage,
717 gl_shader_stage previous_stage,
718 struct arg_info *args)
719 {
720 if (!ctx->is_gs_copy_shader &&
721 (stage == MESA_SHADER_VERTEX ||
722 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
723 if (ctx->shader_info->vs.has_vertex_buffers) {
724 add_arg(args, ARG_SGPR,
725 ac_array_in_const32_addr_space(ctx->ac.v4i32),
726 &ctx->vertex_buffers);
727 }
728 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
729 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
730 if (ctx->shader_info->vs.needs_draw_id) {
731 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
732 }
733 }
734 }
735
736 static void
737 declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
738 {
739 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
740 if (!ctx->is_gs_copy_shader) {
741 if (ctx->options->key.vs_common_out.as_ls) {
742 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
743 if (ctx->ac.chip_class >= GFX10) {
744 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
745 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
746 } else {
747 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
748 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
749 }
750 } else {
751 if (ctx->ac.chip_class >= GFX10) {
752 if (ctx->options->key.vs_common_out.as_ngg) {
753 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
754 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
755 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
756 } else {
757 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
758 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
759 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
760 }
761 } else {
762 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
763 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
764 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
765 }
766 }
767 }
768 }
769
770 static void
771 declare_streamout_sgprs(struct radv_shader_context *ctx, gl_shader_stage stage,
772 struct arg_info *args)
773 {
774 int i;
775
776 /* Streamout SGPRs. */
777 if (ctx->shader_info->so.num_outputs) {
778 assert(stage == MESA_SHADER_VERTEX ||
779 stage == MESA_SHADER_TESS_EVAL);
780
781 if (stage != MESA_SHADER_TESS_EVAL) {
782 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_config);
783 } else {
784 args->assign[args->count - 1] = &ctx->streamout_config;
785 args->types[args->count - 1] = ctx->ac.i32;
786 }
787
788 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_write_idx);
789 }
790
791 /* A streamout buffer offset is loaded if the stride is non-zero. */
792 for (i = 0; i < 4; i++) {
793 if (!ctx->shader_info->so.strides[i])
794 continue;
795
796 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_offset[i]);
797 }
798 }
799
800 static void
801 declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
802 {
803 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
804 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
805 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
806 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
807 }
808
809 static void
810 set_global_input_locs(struct radv_shader_context *ctx,
811 const struct user_sgpr_info *user_sgpr_info,
812 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
813 {
814 uint32_t mask = ctx->shader_info->desc_set_used_mask;
815
816 if (!user_sgpr_info->indirect_all_descriptor_sets) {
817 while (mask) {
818 int i = u_bit_scan(&mask);
819
820 set_loc_desc(ctx, i, user_sgpr_idx);
821 }
822 } else {
823 set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
824 user_sgpr_idx);
825
826 while (mask) {
827 int i = u_bit_scan(&mask);
828
829 ctx->descriptor_sets[i] =
830 ac_build_load_to_sgpr(&ctx->ac, desc_sets,
831 LLVMConstInt(ctx->ac.i32, i, false));
832
833 }
834
835 ctx->shader_info->need_indirect_descriptor_sets = true;
836 }
837
838 if (ctx->shader_info->loads_push_constants) {
839 set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx);
840 }
841
842 if (ctx->shader_info->num_inline_push_consts) {
843 set_loc_shader(ctx, AC_UD_INLINE_PUSH_CONSTANTS, user_sgpr_idx,
844 ctx->shader_info->num_inline_push_consts);
845 }
846
847 if (ctx->streamout_buffers) {
848 set_loc_shader_ptr(ctx, AC_UD_STREAMOUT_BUFFERS,
849 user_sgpr_idx);
850 }
851 }
852
853 static void
854 set_vs_specific_input_locs(struct radv_shader_context *ctx,
855 gl_shader_stage stage, bool has_previous_stage,
856 gl_shader_stage previous_stage,
857 uint8_t *user_sgpr_idx)
858 {
859 if (!ctx->is_gs_copy_shader &&
860 (stage == MESA_SHADER_VERTEX ||
861 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
862 if (ctx->shader_info->vs.has_vertex_buffers) {
863 set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS,
864 user_sgpr_idx);
865 }
866
867 unsigned vs_num = 2;
868 if (ctx->shader_info->vs.needs_draw_id)
869 vs_num++;
870
871 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
872 user_sgpr_idx, vs_num);
873 }
874 }
875
876 static void set_llvm_calling_convention(LLVMValueRef func,
877 gl_shader_stage stage)
878 {
879 enum radeon_llvm_calling_convention calling_conv;
880
881 switch (stage) {
882 case MESA_SHADER_VERTEX:
883 case MESA_SHADER_TESS_EVAL:
884 calling_conv = RADEON_LLVM_AMDGPU_VS;
885 break;
886 case MESA_SHADER_GEOMETRY:
887 calling_conv = RADEON_LLVM_AMDGPU_GS;
888 break;
889 case MESA_SHADER_TESS_CTRL:
890 calling_conv = RADEON_LLVM_AMDGPU_HS;
891 break;
892 case MESA_SHADER_FRAGMENT:
893 calling_conv = RADEON_LLVM_AMDGPU_PS;
894 break;
895 case MESA_SHADER_COMPUTE:
896 calling_conv = RADEON_LLVM_AMDGPU_CS;
897 break;
898 default:
899 unreachable("Unhandle shader type");
900 }
901
902 LLVMSetFunctionCallConv(func, calling_conv);
903 }
904
905 /* Returns whether the stage is a stage that can be directly before the GS */
906 static bool is_pre_gs_stage(gl_shader_stage stage)
907 {
908 return stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL;
909 }
910
911 static void create_function(struct radv_shader_context *ctx,
912 gl_shader_stage stage,
913 bool has_previous_stage,
914 gl_shader_stage previous_stage)
915 {
916 uint8_t user_sgpr_idx;
917 struct user_sgpr_info user_sgpr_info;
918 struct arg_info args = {};
919 LLVMValueRef desc_sets;
920 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
921
922 if (ctx->ac.chip_class >= GFX10) {
923 if (is_pre_gs_stage(stage) && ctx->options->key.vs_common_out.as_ngg) {
924 /* On GFX10, VS is merged into GS for NGG. */
925 previous_stage = stage;
926 stage = MESA_SHADER_GEOMETRY;
927 has_previous_stage = true;
928 }
929 }
930
931 allocate_user_sgprs(ctx, stage, has_previous_stage,
932 previous_stage, needs_view_index, &user_sgpr_info);
933
934 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
935 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
936 &ctx->ring_offsets);
937 }
938
939 switch (stage) {
940 case MESA_SHADER_COMPUTE:
941 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
942 &desc_sets);
943
944 if (ctx->shader_info->cs.uses_grid_size) {
945 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
946 &ctx->abi.num_work_groups);
947 }
948
949 for (int i = 0; i < 3; i++) {
950 ctx->abi.workgroup_ids[i] = NULL;
951 if (ctx->shader_info->cs.uses_block_id[i]) {
952 add_arg(&args, ARG_SGPR, ctx->ac.i32,
953 &ctx->abi.workgroup_ids[i]);
954 }
955 }
956
957 if (ctx->shader_info->cs.uses_local_invocation_idx)
958 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
959 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
960 &ctx->abi.local_invocation_ids);
961 break;
962 case MESA_SHADER_VERTEX:
963 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
964 &desc_sets);
965
966 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
967 previous_stage, &args);
968
969 if (needs_view_index)
970 add_arg(&args, ARG_SGPR, ctx->ac.i32,
971 &ctx->abi.view_index);
972 if (ctx->options->key.vs_common_out.as_es) {
973 add_arg(&args, ARG_SGPR, ctx->ac.i32,
974 &ctx->es2gs_offset);
975 } else if (ctx->options->key.vs_common_out.as_ls) {
976 /* no extra parameters */
977 } else {
978 declare_streamout_sgprs(ctx, stage, &args);
979 }
980
981 declare_vs_input_vgprs(ctx, &args);
982 break;
983 case MESA_SHADER_TESS_CTRL:
984 if (has_previous_stage) {
985 // First 6 system regs
986 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
987 add_arg(&args, ARG_SGPR, ctx->ac.i32,
988 &ctx->merged_wave_info);
989 add_arg(&args, ARG_SGPR, ctx->ac.i32,
990 &ctx->tess_factor_offset);
991
992 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
993 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
994 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
995
996 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
997 &desc_sets);
998
999 declare_vs_specific_input_sgprs(ctx, stage,
1000 has_previous_stage,
1001 previous_stage, &args);
1002
1003 if (needs_view_index)
1004 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1005 &ctx->abi.view_index);
1006
1007 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1008 &ctx->abi.tcs_patch_id);
1009 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1010 &ctx->abi.tcs_rel_ids);
1011
1012 declare_vs_input_vgprs(ctx, &args);
1013 } else {
1014 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1015 &desc_sets);
1016
1017 if (needs_view_index)
1018 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1019 &ctx->abi.view_index);
1020
1021 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1022 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1023 &ctx->tess_factor_offset);
1024 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1025 &ctx->abi.tcs_patch_id);
1026 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1027 &ctx->abi.tcs_rel_ids);
1028 }
1029 break;
1030 case MESA_SHADER_TESS_EVAL:
1031 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1032 &desc_sets);
1033
1034 if (needs_view_index)
1035 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1036 &ctx->abi.view_index);
1037
1038 if (ctx->options->key.vs_common_out.as_es) {
1039 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1040 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1041 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1042 &ctx->es2gs_offset);
1043 } else {
1044 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1045 declare_streamout_sgprs(ctx, stage, &args);
1046 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1047 }
1048 declare_tes_input_vgprs(ctx, &args);
1049 break;
1050 case MESA_SHADER_GEOMETRY:
1051 if (has_previous_stage) {
1052 // First 6 system regs
1053 if (ctx->options->key.vs_common_out.as_ngg) {
1054 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1055 &ctx->gs_tg_info);
1056 } else {
1057 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1058 &ctx->gs2vs_offset);
1059 }
1060
1061 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1062 &ctx->merged_wave_info);
1063 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1064
1065 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1066 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1067 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1068
1069 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1070 &desc_sets);
1071
1072 if (previous_stage != MESA_SHADER_TESS_EVAL) {
1073 declare_vs_specific_input_sgprs(ctx, stage,
1074 has_previous_stage,
1075 previous_stage,
1076 &args);
1077 }
1078
1079 if (needs_view_index)
1080 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1081 &ctx->abi.view_index);
1082
1083 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1084 &ctx->gs_vtx_offset[0]);
1085 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1086 &ctx->gs_vtx_offset[2]);
1087 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1088 &ctx->abi.gs_prim_id);
1089 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1090 &ctx->abi.gs_invocation_id);
1091 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1092 &ctx->gs_vtx_offset[4]);
1093
1094 if (previous_stage == MESA_SHADER_VERTEX) {
1095 declare_vs_input_vgprs(ctx, &args);
1096 } else {
1097 declare_tes_input_vgprs(ctx, &args);
1098 }
1099 } else {
1100 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1101 &desc_sets);
1102
1103 if (needs_view_index)
1104 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1105 &ctx->abi.view_index);
1106
1107 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
1108 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
1109 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1110 &ctx->gs_vtx_offset[0]);
1111 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1112 &ctx->gs_vtx_offset[1]);
1113 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1114 &ctx->abi.gs_prim_id);
1115 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1116 &ctx->gs_vtx_offset[2]);
1117 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1118 &ctx->gs_vtx_offset[3]);
1119 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1120 &ctx->gs_vtx_offset[4]);
1121 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1122 &ctx->gs_vtx_offset[5]);
1123 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1124 &ctx->abi.gs_invocation_id);
1125 }
1126 break;
1127 case MESA_SHADER_FRAGMENT:
1128 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1129 &desc_sets);
1130
1131 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1132 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_sample);
1133 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_center);
1134 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_centroid);
1135 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1136 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_sample);
1137 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_center);
1138 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_centroid);
1139 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1140 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1141 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1142 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1143 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1144 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1145 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1146 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1147 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1148 break;
1149 default:
1150 unreachable("Shader stage not implemented");
1151 }
1152
1153 ctx->main_function = create_llvm_function(
1154 ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
1155 ctx->max_workgroup_size, ctx->options);
1156 set_llvm_calling_convention(ctx->main_function, stage);
1157
1158
1159 ctx->shader_info->num_input_vgprs = 0;
1160 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1161
1162 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1163
1164 if (ctx->stage != MESA_SHADER_FRAGMENT)
1165 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1166
1167 assign_arguments(ctx->main_function, &args);
1168
1169 user_sgpr_idx = 0;
1170
1171 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1172 set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1173 &user_sgpr_idx);
1174 if (ctx->options->supports_spill) {
1175 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1176 LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
1177 NULL, 0, AC_FUNC_ATTR_READNONE);
1178 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
1179 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1180 }
1181 }
1182
1183 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1184 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1185 if (has_previous_stage)
1186 user_sgpr_idx = 0;
1187
1188 set_global_input_locs(ctx, &user_sgpr_info, desc_sets, &user_sgpr_idx);
1189
1190 switch (stage) {
1191 case MESA_SHADER_COMPUTE:
1192 if (ctx->shader_info->cs.uses_grid_size) {
1193 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1194 &user_sgpr_idx, 3);
1195 }
1196 break;
1197 case MESA_SHADER_VERTEX:
1198 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1199 previous_stage, &user_sgpr_idx);
1200 if (ctx->abi.view_index)
1201 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1202 break;
1203 case MESA_SHADER_TESS_CTRL:
1204 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1205 previous_stage, &user_sgpr_idx);
1206 if (ctx->abi.view_index)
1207 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1208 break;
1209 case MESA_SHADER_TESS_EVAL:
1210 if (ctx->abi.view_index)
1211 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1212 break;
1213 case MESA_SHADER_GEOMETRY:
1214 if (has_previous_stage) {
1215 if (previous_stage == MESA_SHADER_VERTEX)
1216 set_vs_specific_input_locs(ctx, stage,
1217 has_previous_stage,
1218 previous_stage,
1219 &user_sgpr_idx);
1220 }
1221 if (ctx->abi.view_index)
1222 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1223 break;
1224 case MESA_SHADER_FRAGMENT:
1225 break;
1226 default:
1227 unreachable("Shader stage not implemented");
1228 }
1229
1230 if (stage == MESA_SHADER_TESS_CTRL ||
1231 (stage == MESA_SHADER_VERTEX && ctx->options->key.vs_common_out.as_ls) ||
1232 /* GFX9 has the ESGS ring buffer in LDS. */
1233 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
1234 ac_declare_lds_as_pointer(&ctx->ac);
1235 }
1236
1237 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1238 }
1239
1240
1241 static LLVMValueRef
1242 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
1243 unsigned desc_set, unsigned binding)
1244 {
1245 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1246 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
1247 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
1248 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
1249 unsigned base_offset = layout->binding[binding].offset;
1250 LLVMValueRef offset, stride;
1251
1252 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1253 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1254 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
1255 layout->binding[binding].dynamic_offset_offset;
1256 desc_ptr = ctx->abi.push_constants;
1257 base_offset = pipeline_layout->push_constant_size + 16 * idx;
1258 stride = LLVMConstInt(ctx->ac.i32, 16, false);
1259 } else
1260 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
1261
1262 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
1263
1264 if (layout->binding[binding].type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
1265 offset = ac_build_imad(&ctx->ac, index, stride, offset);
1266 }
1267
1268 desc_ptr = LLVMBuildGEP(ctx->ac.builder, desc_ptr, &offset, 1, "");
1269 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
1270 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1271
1272 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
1273 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1274 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1275 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1276 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
1277
1278 if (ctx->ac.chip_class >= GFX10) {
1279 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1280 S_008F0C_OOB_SELECT(3) |
1281 S_008F0C_RESOURCE_LEVEL(1);
1282 } else {
1283 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1284 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1285 }
1286
1287 LLVMValueRef desc_components[4] = {
1288 LLVMBuildPtrToInt(ctx->ac.builder, desc_ptr, ctx->ac.intptr, ""),
1289 LLVMConstInt(ctx->ac.i32, S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi), false),
1290 /* High limit to support variable sizes. */
1291 LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
1292 LLVMConstInt(ctx->ac.i32, desc_type, false),
1293 };
1294
1295 return ac_build_gather_values(&ctx->ac, desc_components, 4);
1296 }
1297
1298 return desc_ptr;
1299 }
1300
1301
1302 /* The offchip buffer layout for TCS->TES is
1303 *
1304 * - attribute 0 of patch 0 vertex 0
1305 * - attribute 0 of patch 0 vertex 1
1306 * - attribute 0 of patch 0 vertex 2
1307 * ...
1308 * - attribute 0 of patch 1 vertex 0
1309 * - attribute 0 of patch 1 vertex 1
1310 * ...
1311 * - attribute 1 of patch 0 vertex 0
1312 * - attribute 1 of patch 0 vertex 1
1313 * ...
1314 * - per patch attribute 0 of patch 0
1315 * - per patch attribute 0 of patch 1
1316 * ...
1317 *
1318 * Note that every attribute has 4 components.
1319 */
1320 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
1321 {
1322 uint32_t num_patches = ctx->tcs_num_patches;
1323 uint32_t num_tcs_outputs;
1324 if (ctx->stage == MESA_SHADER_TESS_CTRL)
1325 num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
1326 else
1327 num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;
1328
1329 uint32_t output_vertex_size = num_tcs_outputs * 16;
1330 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
1331
1332 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
1333 }
1334
1335 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
1336 LLVMValueRef vertex_index)
1337 {
1338 LLVMValueRef param_stride;
1339 if (vertex_index)
1340 param_stride = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out * ctx->tcs_num_patches, false);
1341 else
1342 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
1343 return param_stride;
1344 }
1345
1346 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
1347 LLVMValueRef vertex_index,
1348 LLVMValueRef param_index)
1349 {
1350 LLVMValueRef base_addr;
1351 LLVMValueRef param_stride, constant16;
1352 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
1353 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out, false);
1354 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
1355 param_stride = calc_param_stride(ctx, vertex_index);
1356 if (vertex_index) {
1357 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
1358 vertices_per_patch, vertex_index);
1359 } else {
1360 base_addr = rel_patch_id;
1361 }
1362
1363 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1364 LLVMBuildMul(ctx->ac.builder, param_index,
1365 param_stride, ""), "");
1366
1367 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
1368
1369 if (!vertex_index) {
1370 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
1371
1372 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1373 patch_data_offset, "");
1374 }
1375 return base_addr;
1376 }
1377
1378 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
1379 unsigned param,
1380 unsigned const_index,
1381 bool is_compact,
1382 LLVMValueRef vertex_index,
1383 LLVMValueRef indir_index)
1384 {
1385 LLVMValueRef param_index;
1386
1387 if (indir_index)
1388 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
1389 indir_index, "");
1390 else {
1391 if (const_index && !is_compact)
1392 param += const_index;
1393 param_index = LLVMConstInt(ctx->ac.i32, param, false);
1394 }
1395 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
1396 }
1397
1398 static LLVMValueRef
1399 get_dw_address(struct radv_shader_context *ctx,
1400 LLVMValueRef dw_addr,
1401 unsigned param,
1402 unsigned const_index,
1403 bool compact_const_index,
1404 LLVMValueRef vertex_index,
1405 LLVMValueRef stride,
1406 LLVMValueRef indir_index)
1407
1408 {
1409
1410 if (vertex_index) {
1411 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1412 LLVMBuildMul(ctx->ac.builder,
1413 vertex_index,
1414 stride, ""), "");
1415 }
1416
1417 if (indir_index)
1418 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1419 LLVMBuildMul(ctx->ac.builder, indir_index,
1420 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
1421 else if (const_index && !compact_const_index)
1422 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1423 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
1424
1425 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1426 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
1427
1428 if (const_index && compact_const_index)
1429 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1430 LLVMConstInt(ctx->ac.i32, const_index, false), "");
1431 return dw_addr;
1432 }
1433
1434 static LLVMValueRef
1435 load_tcs_varyings(struct ac_shader_abi *abi,
1436 LLVMTypeRef type,
1437 LLVMValueRef vertex_index,
1438 LLVMValueRef indir_index,
1439 unsigned const_index,
1440 unsigned location,
1441 unsigned driver_location,
1442 unsigned component,
1443 unsigned num_components,
1444 bool is_patch,
1445 bool is_compact,
1446 bool load_input)
1447 {
1448 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1449 LLVMValueRef dw_addr, stride;
1450 LLVMValueRef value[4], result;
1451 unsigned param = shader_io_get_unique_index(location);
1452
1453 if (load_input) {
1454 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
1455 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
1456 dw_addr = get_tcs_in_current_patch_offset(ctx);
1457 } else {
1458 if (!is_patch) {
1459 stride = get_tcs_out_vertex_stride(ctx);
1460 dw_addr = get_tcs_out_current_patch_offset(ctx);
1461 } else {
1462 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1463 stride = NULL;
1464 }
1465 }
1466
1467 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1468 indir_index);
1469
1470 for (unsigned i = 0; i < num_components + component; i++) {
1471 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1472 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1473 ctx->ac.i32_1, "");
1474 }
1475 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1476 return result;
1477 }
1478
1479 static void
1480 store_tcs_output(struct ac_shader_abi *abi,
1481 const nir_variable *var,
1482 LLVMValueRef vertex_index,
1483 LLVMValueRef param_index,
1484 unsigned const_index,
1485 LLVMValueRef src,
1486 unsigned writemask)
1487 {
1488 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1489 const unsigned location = var->data.location;
1490 unsigned component = var->data.location_frac;
1491 const bool is_patch = var->data.patch;
1492 const bool is_compact = var->data.compact;
1493 LLVMValueRef dw_addr;
1494 LLVMValueRef stride = NULL;
1495 LLVMValueRef buf_addr = NULL;
1496 unsigned param;
1497 bool store_lds = true;
1498
1499 if (is_patch) {
1500 if (!(ctx->shader->info.patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
1501 store_lds = false;
1502 } else {
1503 if (!(ctx->shader->info.outputs_read & (1ULL << location)))
1504 store_lds = false;
1505 }
1506
1507 param = shader_io_get_unique_index(location);
1508 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1509 const_index += component;
1510 component = 0;
1511
1512 if (const_index >= 4) {
1513 const_index -= 4;
1514 param++;
1515 }
1516 }
1517
1518 if (!is_patch) {
1519 stride = get_tcs_out_vertex_stride(ctx);
1520 dw_addr = get_tcs_out_current_patch_offset(ctx);
1521 } else {
1522 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1523 }
1524
1525 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1526 param_index);
1527 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
1528 vertex_index, param_index);
1529
1530 bool is_tess_factor = false;
1531 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
1532 location == VARYING_SLOT_TESS_LEVEL_OUTER)
1533 is_tess_factor = true;
1534
1535 unsigned base = is_compact ? const_index : 0;
1536 for (unsigned chan = 0; chan < 8; chan++) {
1537 if (!(writemask & (1 << chan)))
1538 continue;
1539 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1540 value = ac_to_integer(&ctx->ac, value);
1541 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
1542
1543 if (store_lds || is_tess_factor) {
1544 LLVMValueRef dw_addr_chan =
1545 LLVMBuildAdd(ctx->ac.builder, dw_addr,
1546 LLVMConstInt(ctx->ac.i32, chan, false), "");
1547 ac_lds_store(&ctx->ac, dw_addr_chan, value);
1548 }
1549
1550 if (!is_tess_factor && writemask != 0xF)
1551 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
1552 buf_addr, ctx->oc_lds,
1553 4 * (base + chan), ac_glc, false);
1554 }
1555
1556 if (writemask == 0xF) {
1557 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
1558 buf_addr, ctx->oc_lds,
1559 (base * 4), ac_glc, false);
1560 }
1561 }
1562
1563 static LLVMValueRef
1564 load_tes_input(struct ac_shader_abi *abi,
1565 LLVMTypeRef type,
1566 LLVMValueRef vertex_index,
1567 LLVMValueRef param_index,
1568 unsigned const_index,
1569 unsigned location,
1570 unsigned driver_location,
1571 unsigned component,
1572 unsigned num_components,
1573 bool is_patch,
1574 bool is_compact,
1575 bool load_input)
1576 {
1577 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1578 LLVMValueRef buf_addr;
1579 LLVMValueRef result;
1580 unsigned param = shader_io_get_unique_index(location);
1581
1582 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1583 const_index += component;
1584 component = 0;
1585 if (const_index >= 4) {
1586 const_index -= 4;
1587 param++;
1588 }
1589 }
1590
1591 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
1592 is_compact, vertex_index, param_index);
1593
1594 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
1595 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
1596
1597 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
1598 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, ac_glc, true, false);
1599 result = ac_trim_vector(&ctx->ac, result, num_components);
1600 return result;
1601 }
1602
1603 static LLVMValueRef
1604 load_gs_input(struct ac_shader_abi *abi,
1605 unsigned location,
1606 unsigned driver_location,
1607 unsigned component,
1608 unsigned num_components,
1609 unsigned vertex_index,
1610 unsigned const_index,
1611 LLVMTypeRef type)
1612 {
1613 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1614 LLVMValueRef vtx_offset;
1615 unsigned param, vtx_offset_param;
1616 LLVMValueRef value[4], result;
1617
1618 vtx_offset_param = vertex_index;
1619 assert(vtx_offset_param < 6);
1620 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
1621 LLVMConstInt(ctx->ac.i32, 4, false), "");
1622
1623 param = shader_io_get_unique_index(location);
1624
1625 for (unsigned i = component; i < num_components + component; i++) {
1626 if (ctx->ac.chip_class >= GFX9) {
1627 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
1628 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1629 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
1630 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1631 } else {
1632 LLVMValueRef soffset =
1633 LLVMConstInt(ctx->ac.i32,
1634 (param * 4 + i + const_index) * 256,
1635 false);
1636
1637 value[i] = ac_build_buffer_load(&ctx->ac,
1638 ctx->esgs_ring, 1,
1639 ctx->ac.i32_0,
1640 vtx_offset, soffset,
1641 0, ac_glc, true, false);
1642 }
1643
1644 if (ac_get_type_size(type) == 2) {
1645 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
1646 value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
1647 }
1648 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
1649 }
1650 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1651 result = ac_to_integer(&ctx->ac, result);
1652 return result;
1653 }
1654
1655
1656 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
1657 {
1658 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1659 ac_build_kill_if_false(&ctx->ac, visible);
1660 }
1661
1662 static uint32_t
1663 radv_get_sample_pos_offset(uint32_t num_samples)
1664 {
1665 uint32_t sample_pos_offset = 0;
1666
1667 switch (num_samples) {
1668 case 2:
1669 sample_pos_offset = 1;
1670 break;
1671 case 4:
1672 sample_pos_offset = 3;
1673 break;
1674 case 8:
1675 sample_pos_offset = 7;
1676 break;
1677 default:
1678 break;
1679 }
1680 return sample_pos_offset;
1681 }
1682
1683 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
1684 LLVMValueRef sample_id)
1685 {
1686 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1687
1688 LLVMValueRef result;
1689 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false);
1690 LLVMValueRef ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ring_offsets, &index, 1, "");
1691
1692 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
1693 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
1694
1695 uint32_t sample_pos_offset =
1696 radv_get_sample_pos_offset(ctx->options->key.fs.num_samples);
1697
1698 sample_id =
1699 LLVMBuildAdd(ctx->ac.builder, sample_id,
1700 LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
1701 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
1702
1703 return result;
1704 }
1705
1706
1707 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1708 {
1709 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1710 uint8_t log2_ps_iter_samples;
1711
1712 if (ctx->shader_info->ps.force_persample) {
1713 log2_ps_iter_samples =
1714 util_logbase2(ctx->options->key.fs.num_samples);
1715 } else {
1716 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
1717 }
1718
1719 /* The bit pattern matches that used by fixed function fragment
1720 * processing. */
1721 static const uint16_t ps_iter_masks[] = {
1722 0xffff, /* not used */
1723 0x5555,
1724 0x1111,
1725 0x0101,
1726 0x0001,
1727 };
1728 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
1729
1730 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
1731
1732 LLVMValueRef result, sample_id;
1733 sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
1734 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
1735 result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
1736 return result;
1737 }
1738
1739
1740 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
1741 unsigned stream,
1742 LLVMValueRef *addrs);
1743
1744 static void
1745 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
1746 {
1747 LLVMValueRef gs_next_vertex;
1748 LLVMValueRef can_emit;
1749 unsigned offset = 0;
1750 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1751
1752 if (ctx->options->key.vs_common_out.as_ngg) {
1753 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
1754 return;
1755 }
1756
1757 /* Write vertex attribute values to GSVS ring */
1758 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
1759 ctx->gs_next_vertex[stream],
1760 "");
1761
1762 /* If this thread has already emitted the declared maximum number of
1763 * vertices, kill it: excessive vertex emissions are not supposed to
1764 * have any effect, and GS threads have no externally observable
1765 * effects other than emitting vertices.
1766 */
1767 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
1768 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
1769 ac_build_kill_if_false(&ctx->ac, can_emit);
1770
1771 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1772 unsigned output_usage_mask =
1773 ctx->shader_info->gs.output_usage_mask[i];
1774 uint8_t output_stream =
1775 ctx->shader_info->gs.output_streams[i];
1776 LLVMValueRef *out_ptr = &addrs[i * 4];
1777 int length = util_last_bit(output_usage_mask);
1778
1779 if (!(ctx->output_mask & (1ull << i)) ||
1780 output_stream != stream)
1781 continue;
1782
1783 for (unsigned j = 0; j < length; j++) {
1784 if (!(output_usage_mask & (1 << j)))
1785 continue;
1786
1787 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1788 out_ptr[j], "");
1789 LLVMValueRef voffset =
1790 LLVMConstInt(ctx->ac.i32, offset *
1791 ctx->shader->info.gs.vertices_out, false);
1792
1793 offset++;
1794
1795 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1796 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1797
1798 out_val = ac_to_integer(&ctx->ac, out_val);
1799 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1800
1801 ac_build_buffer_store_dword(&ctx->ac,
1802 ctx->gsvs_ring[stream],
1803 out_val, 1,
1804 voffset, ctx->gs2vs_offset, 0,
1805 ac_glc | ac_slc, true);
1806 }
1807 }
1808
1809 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1810 ctx->ac.i32_1, "");
1811 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
1812
1813 ac_build_sendmsg(&ctx->ac,
1814 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
1815 ctx->gs_wave_id);
1816 }
1817
1818 static void
1819 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1820 {
1821 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1822
1823 if (ctx->options->key.vs_common_out.as_ngg) {
1824 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
1825 return;
1826 }
1827
1828 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1829 }
1830
1831 static LLVMValueRef
1832 load_tess_coord(struct ac_shader_abi *abi)
1833 {
1834 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1835
1836 LLVMValueRef coord[4] = {
1837 ctx->tes_u,
1838 ctx->tes_v,
1839 ctx->ac.f32_0,
1840 ctx->ac.f32_0,
1841 };
1842
1843 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES)
1844 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1845 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1846
1847 return ac_build_gather_values(&ctx->ac, coord, 3);
1848 }
1849
1850 static LLVMValueRef
1851 load_patch_vertices_in(struct ac_shader_abi *abi)
1852 {
1853 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1854 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
1855 }
1856
1857
1858 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1859 {
1860 return abi->base_vertex;
1861 }
1862
1863 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1864 LLVMValueRef buffer_ptr, bool write)
1865 {
1866 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1867 LLVMValueRef result;
1868
1869 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1870
1871 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1872 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1873
1874 return result;
1875 }
1876
1877 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1878 {
1879 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1880 LLVMValueRef result;
1881
1882 if (LLVMGetTypeKind(LLVMTypeOf(buffer_ptr)) != LLVMPointerTypeKind) {
1883 /* Do not load the descriptor for inlined uniform blocks. */
1884 return buffer_ptr;
1885 }
1886
1887 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1888
1889 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1890 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1891
1892 return result;
1893 }
1894
1895 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1896 unsigned descriptor_set,
1897 unsigned base_index,
1898 unsigned constant_index,
1899 LLVMValueRef index,
1900 enum ac_descriptor_type desc_type,
1901 bool image, bool write,
1902 bool bindless)
1903 {
1904 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1905 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
1906 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
1907 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
1908 unsigned offset = binding->offset;
1909 unsigned stride = binding->size;
1910 unsigned type_size;
1911 LLVMBuilderRef builder = ctx->ac.builder;
1912 LLVMTypeRef type;
1913
1914 assert(base_index < layout->binding_count);
1915
1916 switch (desc_type) {
1917 case AC_DESC_IMAGE:
1918 type = ctx->ac.v8i32;
1919 type_size = 32;
1920 break;
1921 case AC_DESC_FMASK:
1922 type = ctx->ac.v8i32;
1923 offset += 32;
1924 type_size = 32;
1925 break;
1926 case AC_DESC_SAMPLER:
1927 type = ctx->ac.v4i32;
1928 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
1929 offset += radv_combined_image_descriptor_sampler_offset(binding);
1930 }
1931
1932 type_size = 16;
1933 break;
1934 case AC_DESC_BUFFER:
1935 type = ctx->ac.v4i32;
1936 type_size = 16;
1937 break;
1938 case AC_DESC_PLANE_0:
1939 case AC_DESC_PLANE_1:
1940 case AC_DESC_PLANE_2:
1941 type = ctx->ac.v8i32;
1942 type_size = 32;
1943 offset += 32 * (desc_type - AC_DESC_PLANE_0);
1944 break;
1945 default:
1946 unreachable("invalid desc_type\n");
1947 }
1948
1949 offset += constant_index * stride;
1950
1951 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
1952 (!index || binding->immutable_samplers_equal)) {
1953 if (binding->immutable_samplers_equal)
1954 constant_index = 0;
1955
1956 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
1957
1958 LLVMValueRef constants[] = {
1959 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
1960 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
1961 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
1962 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
1963 };
1964 return ac_build_gather_values(&ctx->ac, constants, 4);
1965 }
1966
1967 assert(stride % type_size == 0);
1968
1969 LLVMValueRef adjusted_index = index;
1970 if (!adjusted_index)
1971 adjusted_index = ctx->ac.i32_0;
1972
1973 adjusted_index = LLVMBuildMul(builder, adjusted_index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
1974
1975 LLVMValueRef val_offset = LLVMConstInt(ctx->ac.i32, offset, 0);
1976 list = LLVMBuildGEP(builder, list, &val_offset, 1, "");
1977 list = LLVMBuildPointerCast(builder, list,
1978 ac_array_in_const32_addr_space(type), "");
1979
1980 LLVMValueRef descriptor = ac_build_load_to_sgpr(&ctx->ac, list, adjusted_index);
1981
1982 /* 3 plane formats always have same size and format for plane 1 & 2, so
1983 * use the tail from plane 1 so that we can store only the first 16 bytes
1984 * of the last plane. */
1985 if (desc_type == AC_DESC_PLANE_2) {
1986 LLVMValueRef descriptor2 = radv_get_sampler_desc(abi, descriptor_set, base_index, constant_index, index, AC_DESC_PLANE_1,image, write, bindless);
1987
1988 LLVMValueRef components[8];
1989 for (unsigned i = 0; i < 4; ++i)
1990 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor, i);
1991
1992 for (unsigned i = 4; i < 8; ++i)
1993 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor2, i);
1994 descriptor = ac_build_gather_values(&ctx->ac, components, 8);
1995 }
1996
1997 return descriptor;
1998 }
1999
2000 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
2001 * so we may need to fix it up. */
2002 static LLVMValueRef
2003 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
2004 unsigned adjustment,
2005 LLVMValueRef alpha)
2006 {
2007 if (adjustment == RADV_ALPHA_ADJUST_NONE)
2008 return alpha;
2009
2010 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
2011
2012 alpha = LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.f32, "");
2013
2014 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2015 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
2016 else
2017 alpha = ac_to_integer(&ctx->ac, alpha);
2018
2019 /* For the integer-like cases, do a natural sign extension.
2020 *
2021 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2022 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2023 * exponent.
2024 */
2025 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
2026 adjustment == RADV_ALPHA_ADJUST_SNORM ?
2027 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
2028 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
2029
2030 /* Convert back to the right type. */
2031 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2032 LLVMValueRef clamp;
2033 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
2034 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2035 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
2036 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
2037 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2038 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2039 }
2040
2041 return LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.i32, "");
2042 }
2043
2044 static unsigned
2045 get_num_channels_from_data_format(unsigned data_format)
2046 {
2047 switch (data_format) {
2048 case V_008F0C_BUF_DATA_FORMAT_8:
2049 case V_008F0C_BUF_DATA_FORMAT_16:
2050 case V_008F0C_BUF_DATA_FORMAT_32:
2051 return 1;
2052 case V_008F0C_BUF_DATA_FORMAT_8_8:
2053 case V_008F0C_BUF_DATA_FORMAT_16_16:
2054 case V_008F0C_BUF_DATA_FORMAT_32_32:
2055 return 2;
2056 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
2057 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
2058 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
2059 return 3;
2060 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
2061 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
2062 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
2063 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
2064 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
2065 return 4;
2066 default:
2067 break;
2068 }
2069
2070 return 4;
2071 }
2072
2073 static LLVMValueRef
2074 radv_fixup_vertex_input_fetches(struct radv_shader_context *ctx,
2075 LLVMValueRef value,
2076 unsigned num_channels,
2077 bool is_float)
2078 {
2079 LLVMValueRef zero = is_float ? ctx->ac.f32_0 : ctx->ac.i32_0;
2080 LLVMValueRef one = is_float ? ctx->ac.f32_1 : ctx->ac.i32_1;
2081 LLVMValueRef chan[4];
2082
2083 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
2084 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
2085
2086 if (num_channels == 4 && num_channels == vec_size)
2087 return value;
2088
2089 num_channels = MIN2(num_channels, vec_size);
2090
2091 for (unsigned i = 0; i < num_channels; i++)
2092 chan[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
2093 } else {
2094 if (num_channels) {
2095 assert(num_channels == 1);
2096 chan[0] = value;
2097 }
2098 }
2099
2100 for (unsigned i = num_channels; i < 4; i++) {
2101 chan[i] = i == 3 ? one : zero;
2102 chan[i] = ac_to_integer(&ctx->ac, chan[i]);
2103 }
2104
2105 return ac_build_gather_values(&ctx->ac, chan, 4);
2106 }
2107
2108 static void
2109 handle_vs_input_decl(struct radv_shader_context *ctx,
2110 struct nir_variable *variable)
2111 {
2112 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
2113 LLVMValueRef t_offset;
2114 LLVMValueRef t_list;
2115 LLVMValueRef input;
2116 LLVMValueRef buffer_index;
2117 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
2118 uint8_t input_usage_mask =
2119 ctx->shader_info->vs.input_usage_mask[variable->data.location];
2120 unsigned num_input_channels = util_last_bit(input_usage_mask);
2121
2122 variable->data.driver_location = variable->data.location * 4;
2123
2124 enum glsl_base_type type = glsl_get_base_type(variable->type);
2125 for (unsigned i = 0; i < attrib_count; ++i) {
2126 LLVMValueRef output[4];
2127 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
2128 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[attrib_index];
2129 unsigned data_format = attrib_format & 0x0f;
2130 unsigned num_format = (attrib_format >> 4) & 0x07;
2131 bool is_float = num_format != V_008F0C_BUF_NUM_FORMAT_UINT &&
2132 num_format != V_008F0C_BUF_NUM_FORMAT_SINT;
2133
2134 if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
2135 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];
2136
2137 if (divisor) {
2138 buffer_index = ctx->abi.instance_id;
2139
2140 if (divisor != 1) {
2141 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
2142 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
2143 }
2144 } else {
2145 buffer_index = ctx->ac.i32_0;
2146 }
2147
2148 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.start_instance, buffer_index, "");
2149 } else
2150 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
2151 ctx->abi.base_vertex, "");
2152
2153 /* Adjust the number of channels to load based on the vertex
2154 * attribute format.
2155 */
2156 unsigned num_format_channels = get_num_channels_from_data_format(data_format);
2157 unsigned num_channels = MIN2(num_input_channels, num_format_channels);
2158 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[attrib_index];
2159 unsigned attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[attrib_index];
2160 unsigned attrib_stride = ctx->options->key.vs.vertex_attribute_strides[attrib_index];
2161
2162 if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
2163 /* Always load, at least, 3 channels for formats that
2164 * need to be shuffled because X<->Z.
2165 */
2166 num_channels = MAX2(num_channels, 3);
2167 }
2168
2169 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
2170 LLVMValueRef buffer_offset =
2171 LLVMConstInt(ctx->ac.i32,
2172 attrib_offset / attrib_stride, false);
2173
2174 buffer_index = LLVMBuildAdd(ctx->ac.builder,
2175 buffer_index,
2176 buffer_offset, "");
2177
2178 attrib_offset = attrib_offset % attrib_stride;
2179 }
2180
2181 t_offset = LLVMConstInt(ctx->ac.i32, attrib_binding, false);
2182 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
2183
2184 input = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
2185 buffer_index,
2186 LLVMConstInt(ctx->ac.i32, attrib_offset, false),
2187 ctx->ac.i32_0, ctx->ac.i32_0,
2188 num_channels,
2189 data_format, num_format, 0, true);
2190
2191 if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
2192 LLVMValueRef c[4];
2193 c[0] = ac_llvm_extract_elem(&ctx->ac, input, 2);
2194 c[1] = ac_llvm_extract_elem(&ctx->ac, input, 1);
2195 c[2] = ac_llvm_extract_elem(&ctx->ac, input, 0);
2196 c[3] = ac_llvm_extract_elem(&ctx->ac, input, 3);
2197
2198 input = ac_build_gather_values(&ctx->ac, c, 4);
2199 }
2200
2201 input = radv_fixup_vertex_input_fetches(ctx, input, num_channels,
2202 is_float);
2203
2204 for (unsigned chan = 0; chan < 4; chan++) {
2205 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2206 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
2207 if (type == GLSL_TYPE_FLOAT16) {
2208 output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
2209 output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
2210 }
2211 }
2212
2213 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
2214 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
2215
2216 for (unsigned chan = 0; chan < 4; chan++) {
2217 output[chan] = ac_to_integer(&ctx->ac, output[chan]);
2218 if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
2219 output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
2220
2221 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
2222 }
2223 }
2224 }
2225
2226 static void
2227 handle_vs_inputs(struct radv_shader_context *ctx,
2228 struct nir_shader *nir) {
2229 nir_foreach_variable(variable, &nir->inputs)
2230 handle_vs_input_decl(ctx, variable);
2231 }
2232
2233 static void
2234 prepare_interp_optimize(struct radv_shader_context *ctx,
2235 struct nir_shader *nir)
2236 {
2237 bool uses_center = false;
2238 bool uses_centroid = false;
2239 nir_foreach_variable(variable, &nir->inputs) {
2240 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
2241 variable->data.sample)
2242 continue;
2243
2244 if (variable->data.centroid)
2245 uses_centroid = true;
2246 else
2247 uses_center = true;
2248 }
2249
2250 if (uses_center && uses_centroid) {
2251 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
2252 ctx->abi.persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->abi.persp_center, ctx->abi.persp_centroid, "");
2253 ctx->abi.linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->abi.linear_center, ctx->abi.linear_centroid, "");
2254 }
2255 }
2256
2257 static void
2258 scan_shader_output_decl(struct radv_shader_context *ctx,
2259 struct nir_variable *variable,
2260 struct nir_shader *shader,
2261 gl_shader_stage stage)
2262 {
2263 int idx = variable->data.location + variable->data.index;
2264 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2265 uint64_t mask_attribs;
2266
2267 variable->data.driver_location = idx * 4;
2268
2269 /* tess ctrl has it's own load/store paths for outputs */
2270 if (stage == MESA_SHADER_TESS_CTRL)
2271 return;
2272
2273 if (variable->data.compact) {
2274 unsigned component_count = variable->data.location_frac +
2275 glsl_get_length(variable->type);
2276 attrib_count = (component_count + 3) / 4;
2277 }
2278
2279 mask_attribs = ((1ull << attrib_count) - 1) << idx;
2280
2281 ctx->output_mask |= mask_attribs;
2282 }
2283
2284
2285 /* Initialize arguments for the shader export intrinsic */
2286 static void
2287 si_llvm_init_export_args(struct radv_shader_context *ctx,
2288 LLVMValueRef *values,
2289 unsigned enabled_channels,
2290 unsigned target,
2291 struct ac_export_args *args)
2292 {
2293 /* Specify the channels that are enabled. */
2294 args->enabled_channels = enabled_channels;
2295
2296 /* Specify whether the EXEC mask represents the valid mask */
2297 args->valid_mask = 0;
2298
2299 /* Specify whether this is the last export */
2300 args->done = 0;
2301
2302 /* Specify the target we are exporting */
2303 args->target = target;
2304
2305 args->compr = false;
2306 args->out[0] = LLVMGetUndef(ctx->ac.f32);
2307 args->out[1] = LLVMGetUndef(ctx->ac.f32);
2308 args->out[2] = LLVMGetUndef(ctx->ac.f32);
2309 args->out[3] = LLVMGetUndef(ctx->ac.f32);
2310
2311 if (!values)
2312 return;
2313
2314 bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
2315 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2316 unsigned index = target - V_008DFC_SQ_EXP_MRT;
2317 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2318 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2319 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2320 unsigned chan;
2321
2322 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2323 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2324 unsigned bits, bool hi) = NULL;
2325
2326 switch(col_format) {
2327 case V_028714_SPI_SHADER_ZERO:
2328 args->enabled_channels = 0; /* writemask */
2329 args->target = V_008DFC_SQ_EXP_NULL;
2330 break;
2331
2332 case V_028714_SPI_SHADER_32_R:
2333 args->enabled_channels = 1;
2334 args->out[0] = values[0];
2335 break;
2336
2337 case V_028714_SPI_SHADER_32_GR:
2338 args->enabled_channels = 0x3;
2339 args->out[0] = values[0];
2340 args->out[1] = values[1];
2341 break;
2342
2343 case V_028714_SPI_SHADER_32_AR:
2344 if (ctx->ac.chip_class >= GFX10) {
2345 args->enabled_channels = 0x3;
2346 args->out[0] = values[0];
2347 args->out[1] = values[3];
2348 } else {
2349 args->enabled_channels = 0x9;
2350 args->out[0] = values[0];
2351 args->out[3] = values[3];
2352 }
2353 break;
2354
2355 case V_028714_SPI_SHADER_FP16_ABGR:
2356 args->enabled_channels = 0x5;
2357 packf = ac_build_cvt_pkrtz_f16;
2358 if (is_16bit) {
2359 for (unsigned chan = 0; chan < 4; chan++)
2360 values[chan] = LLVMBuildFPExt(ctx->ac.builder,
2361 values[chan],
2362 ctx->ac.f32, "");
2363 }
2364 break;
2365
2366 case V_028714_SPI_SHADER_UNORM16_ABGR:
2367 args->enabled_channels = 0x5;
2368 packf = ac_build_cvt_pknorm_u16;
2369 break;
2370
2371 case V_028714_SPI_SHADER_SNORM16_ABGR:
2372 args->enabled_channels = 0x5;
2373 packf = ac_build_cvt_pknorm_i16;
2374 break;
2375
2376 case V_028714_SPI_SHADER_UINT16_ABGR:
2377 args->enabled_channels = 0x5;
2378 packi = ac_build_cvt_pk_u16;
2379 if (is_16bit) {
2380 for (unsigned chan = 0; chan < 4; chan++)
2381 values[chan] = LLVMBuildZExt(ctx->ac.builder,
2382 ac_to_integer(&ctx->ac, values[chan]),
2383 ctx->ac.i32, "");
2384 }
2385 break;
2386
2387 case V_028714_SPI_SHADER_SINT16_ABGR:
2388 args->enabled_channels = 0x5;
2389 packi = ac_build_cvt_pk_i16;
2390 if (is_16bit) {
2391 for (unsigned chan = 0; chan < 4; chan++)
2392 values[chan] = LLVMBuildSExt(ctx->ac.builder,
2393 ac_to_integer(&ctx->ac, values[chan]),
2394 ctx->ac.i32, "");
2395 }
2396 break;
2397
2398 default:
2399 case V_028714_SPI_SHADER_32_ABGR:
2400 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2401 break;
2402 }
2403
2404 /* Pack f16 or norm_i16/u16. */
2405 if (packf) {
2406 for (chan = 0; chan < 2; chan++) {
2407 LLVMValueRef pack_args[2] = {
2408 values[2 * chan],
2409 values[2 * chan + 1]
2410 };
2411 LLVMValueRef packed;
2412
2413 packed = packf(&ctx->ac, pack_args);
2414 args->out[chan] = ac_to_float(&ctx->ac, packed);
2415 }
2416 args->compr = 1; /* COMPR flag */
2417 }
2418
2419 /* Pack i16/u16. */
2420 if (packi) {
2421 for (chan = 0; chan < 2; chan++) {
2422 LLVMValueRef pack_args[2] = {
2423 ac_to_integer(&ctx->ac, values[2 * chan]),
2424 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2425 };
2426 LLVMValueRef packed;
2427
2428 packed = packi(&ctx->ac, pack_args,
2429 is_int8 ? 8 : is_int10 ? 10 : 16,
2430 chan == 1);
2431 args->out[chan] = ac_to_float(&ctx->ac, packed);
2432 }
2433 args->compr = 1; /* COMPR flag */
2434 }
2435 return;
2436 }
2437
2438 if (is_16bit) {
2439 for (unsigned chan = 0; chan < 4; chan++) {
2440 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
2441 args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
2442 }
2443 } else
2444 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2445
2446 for (unsigned i = 0; i < 4; ++i)
2447 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
2448 }
2449
2450 static void
2451 radv_export_param(struct radv_shader_context *ctx, unsigned index,
2452 LLVMValueRef *values, unsigned enabled_channels)
2453 {
2454 struct ac_export_args args;
2455
2456 si_llvm_init_export_args(ctx, values, enabled_channels,
2457 V_008DFC_SQ_EXP_PARAM + index, &args);
2458 ac_build_export(&ctx->ac, &args);
2459 }
2460
2461 static LLVMValueRef
2462 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
2463 {
2464 LLVMValueRef output = ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
2465 return LLVMBuildLoad(ctx->ac.builder, output, "");
2466 }
2467
2468 static void
2469 radv_emit_stream_output(struct radv_shader_context *ctx,
2470 LLVMValueRef const *so_buffers,
2471 LLVMValueRef const *so_write_offsets,
2472 const struct radv_stream_output *output,
2473 struct radv_shader_output_values *shader_out)
2474 {
2475 unsigned num_comps = util_bitcount(output->component_mask);
2476 unsigned buf = output->buffer;
2477 unsigned offset = output->offset;
2478 unsigned start;
2479 LLVMValueRef out[4];
2480
2481 assert(num_comps && num_comps <= 4);
2482 if (!num_comps || num_comps > 4)
2483 return;
2484
2485 /* Get the first component. */
2486 start = ffs(output->component_mask) - 1;
2487
2488 /* Load the output as int. */
2489 for (int i = 0; i < num_comps; i++) {
2490 out[i] = ac_to_integer(&ctx->ac, shader_out->values[start + i]);
2491 }
2492
2493 /* Pack the output. */
2494 LLVMValueRef vdata = NULL;
2495
2496 switch (num_comps) {
2497 case 1: /* as i32 */
2498 vdata = out[0];
2499 break;
2500 case 2: /* as v2i32 */
2501 case 3: /* as v4i32 (aligned to 4) */
2502 out[3] = LLVMGetUndef(ctx->ac.i32);
2503 /* fall through */
2504 case 4: /* as v4i32 */
2505 vdata = ac_build_gather_values(&ctx->ac, out,
2506 !ac_has_vec3_support(ctx->ac.chip_class, false) ?
2507 util_next_power_of_two(num_comps) :
2508 num_comps);
2509 break;
2510 }
2511
2512 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
2513 vdata, num_comps, so_write_offsets[buf],
2514 ctx->ac.i32_0, offset,
2515 ac_glc | ac_slc, false);
2516 }
2517
2518 static void
2519 radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
2520 {
2521 int i;
2522
2523 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2524 assert(ctx->streamout_config);
2525 LLVMValueRef so_vtx_count =
2526 ac_build_bfe(&ctx->ac, ctx->streamout_config,
2527 LLVMConstInt(ctx->ac.i32, 16, false),
2528 LLVMConstInt(ctx->ac.i32, 7, false), false);
2529
2530 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2531
2532 /* can_emit = tid < so_vtx_count; */
2533 LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
2534 tid, so_vtx_count, "");
2535
2536 /* Emit the streamout code conditionally. This actually avoids
2537 * out-of-bounds buffer access. The hw tells us via the SGPR
2538 * (so_vtx_count) which threads are allowed to emit streamout data.
2539 */
2540 ac_build_ifcc(&ctx->ac, can_emit, 6501);
2541 {
2542 /* The buffer offset is computed as follows:
2543 * ByteOffset = streamout_offset[buffer_id]*4 +
2544 * (streamout_write_index + thread_id)*stride[buffer_id] +
2545 * attrib_offset
2546 */
2547 LLVMValueRef so_write_index = ctx->streamout_write_idx;
2548
2549 /* Compute (streamout_write_index + thread_id). */
2550 so_write_index =
2551 LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");
2552
2553 /* Load the descriptor and compute the write offset for each
2554 * enabled buffer.
2555 */
2556 LLVMValueRef so_write_offset[4] = {};
2557 LLVMValueRef so_buffers[4] = {};
2558 LLVMValueRef buf_ptr = ctx->streamout_buffers;
2559
2560 for (i = 0; i < 4; i++) {
2561 uint16_t stride = ctx->shader_info->so.strides[i];
2562
2563 if (!stride)
2564 continue;
2565
2566 LLVMValueRef offset =
2567 LLVMConstInt(ctx->ac.i32, i, false);
2568
2569 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
2570 buf_ptr, offset);
2571
2572 LLVMValueRef so_offset = ctx->streamout_offset[i];
2573
2574 so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
2575 LLVMConstInt(ctx->ac.i32, 4, false), "");
2576
2577 so_write_offset[i] =
2578 ac_build_imad(&ctx->ac, so_write_index,
2579 LLVMConstInt(ctx->ac.i32,
2580 stride * 4, false),
2581 so_offset);
2582 }
2583
2584 /* Write streamout data. */
2585 for (i = 0; i < ctx->shader_info->so.num_outputs; i++) {
2586 struct radv_shader_output_values shader_out = {};
2587 struct radv_stream_output *output =
2588 &ctx->shader_info->so.outputs[i];
2589
2590 if (stream != output->stream)
2591 continue;
2592
2593 for (int j = 0; j < 4; j++) {
2594 shader_out.values[j] =
2595 radv_load_output(ctx, output->location, j);
2596 }
2597
2598 radv_emit_stream_output(ctx, so_buffers,so_write_offset,
2599 output, &shader_out);
2600 }
2601 }
2602 ac_build_endif(&ctx->ac, 6501);
2603 }
2604
2605 static void
2606 radv_build_param_exports(struct radv_shader_context *ctx,
2607 struct radv_shader_output_values *outputs,
2608 unsigned noutput,
2609 struct radv_vs_output_info *outinfo,
2610 bool export_clip_dists)
2611 {
2612 unsigned param_count = 0;
2613
2614 for (unsigned i = 0; i < noutput; i++) {
2615 unsigned slot_name = outputs[i].slot_name;
2616 unsigned usage_mask = outputs[i].usage_mask;
2617
2618 if (slot_name != VARYING_SLOT_LAYER &&
2619 slot_name != VARYING_SLOT_PRIMITIVE_ID &&
2620 slot_name != VARYING_SLOT_CLIP_DIST0 &&
2621 slot_name != VARYING_SLOT_CLIP_DIST1 &&
2622 slot_name < VARYING_SLOT_VAR0)
2623 continue;
2624
2625 if ((slot_name == VARYING_SLOT_CLIP_DIST0 ||
2626 slot_name == VARYING_SLOT_CLIP_DIST1) && !export_clip_dists)
2627 continue;
2628
2629 radv_export_param(ctx, param_count, outputs[i].values, usage_mask);
2630
2631 assert(i < ARRAY_SIZE(outinfo->vs_output_param_offset));
2632 outinfo->vs_output_param_offset[slot_name] = param_count++;
2633 }
2634
2635 outinfo->param_exports = param_count;
2636 }
2637
2638 /* Generate export instructions for hardware VS shader stage or NGG GS stage
2639 * (position and parameter data only).
2640 */
2641 static void
2642 radv_llvm_export_vs(struct radv_shader_context *ctx,
2643 struct radv_shader_output_values *outputs,
2644 unsigned noutput,
2645 struct radv_vs_output_info *outinfo,
2646 bool export_clip_dists)
2647 {
2648 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_value = NULL;
2649 struct ac_export_args pos_args[4] = {};
2650 unsigned pos_idx, index;
2651 int i;
2652
2653 /* Build position exports */
2654 for (i = 0; i < noutput; i++) {
2655 switch (outputs[i].slot_name) {
2656 case VARYING_SLOT_POS:
2657 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
2658 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2659 break;
2660 case VARYING_SLOT_PSIZ:
2661 psize_value = outputs[i].values[0];
2662 break;
2663 case VARYING_SLOT_LAYER:
2664 layer_value = outputs[i].values[0];
2665 break;
2666 case VARYING_SLOT_VIEWPORT:
2667 viewport_value = outputs[i].values[0];
2668 break;
2669 case VARYING_SLOT_CLIP_DIST0:
2670 case VARYING_SLOT_CLIP_DIST1:
2671 index = 2 + outputs[i].slot_index;
2672 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
2673 V_008DFC_SQ_EXP_POS + index,
2674 &pos_args[index]);
2675 break;
2676 default:
2677 break;
2678 }
2679 }
2680
2681 /* We need to add the position output manually if it's missing. */
2682 if (!pos_args[0].out[0]) {
2683 pos_args[0].enabled_channels = 0xf; /* writemask */
2684 pos_args[0].valid_mask = 0; /* EXEC mask */
2685 pos_args[0].done = 0; /* last export? */
2686 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2687 pos_args[0].compr = 0; /* COMPR flag */
2688 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2689 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2690 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2691 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2692 }
2693
2694 if (outinfo->writes_pointsize ||
2695 outinfo->writes_layer ||
2696 outinfo->writes_viewport_index) {
2697 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
2698 (outinfo->writes_layer == true ? 4 : 0));
2699 pos_args[1].valid_mask = 0;
2700 pos_args[1].done = 0;
2701 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2702 pos_args[1].compr = 0;
2703 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2704 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2705 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2706 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2707
2708 if (outinfo->writes_pointsize == true)
2709 pos_args[1].out[0] = psize_value;
2710 if (outinfo->writes_layer == true)
2711 pos_args[1].out[2] = layer_value;
2712 if (outinfo->writes_viewport_index == true) {
2713 if (ctx->options->chip_class >= GFX9) {
2714 /* GFX9 has the layer in out.z[10:0] and the viewport
2715 * index in out.z[19:16].
2716 */
2717 LLVMValueRef v = viewport_value;
2718 v = ac_to_integer(&ctx->ac, v);
2719 v = LLVMBuildShl(ctx->ac.builder, v,
2720 LLVMConstInt(ctx->ac.i32, 16, false),
2721 "");
2722 v = LLVMBuildOr(ctx->ac.builder, v,
2723 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2724
2725 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2726 pos_args[1].enabled_channels |= 1 << 2;
2727 } else {
2728 pos_args[1].out[3] = viewport_value;
2729 pos_args[1].enabled_channels |= 1 << 3;
2730 }
2731 }
2732 }
2733
2734 for (i = 0; i < 4; i++) {
2735 if (pos_args[i].out[0])
2736 outinfo->pos_exports++;
2737 }
2738
2739 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
2740 * Setting valid_mask=1 prevents it and has no other effect.
2741 */
2742 if (ctx->ac.family == CHIP_NAVI10 ||
2743 ctx->ac.family == CHIP_NAVI12 ||
2744 ctx->ac.family == CHIP_NAVI14)
2745 pos_args[0].valid_mask = 1;
2746
2747 pos_idx = 0;
2748 for (i = 0; i < 4; i++) {
2749 if (!pos_args[i].out[0])
2750 continue;
2751
2752 /* Specify the target we are exporting */
2753 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2754
2755 if (pos_idx == outinfo->pos_exports)
2756 /* Specify that this is the last export */
2757 pos_args[i].done = 1;
2758
2759 ac_build_export(&ctx->ac, &pos_args[i]);
2760 }
2761
2762 /* Build parameter exports */
2763 radv_build_param_exports(ctx, outputs, noutput, outinfo, export_clip_dists);
2764 }
2765
2766 static void
2767 handle_vs_outputs_post(struct radv_shader_context *ctx,
2768 bool export_prim_id,
2769 bool export_clip_dists,
2770 struct radv_vs_output_info *outinfo)
2771 {
2772 struct radv_shader_output_values *outputs;
2773 unsigned noutput = 0;
2774
2775 if (ctx->options->key.has_multiview_view_index) {
2776 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2777 if(!*tmp_out) {
2778 for(unsigned i = 0; i < 4; ++i)
2779 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2780 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2781 }
2782
2783 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index), *tmp_out);
2784 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2785 }
2786
2787 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2788 sizeof(outinfo->vs_output_param_offset));
2789 outinfo->pos_exports = 0;
2790
2791 if (ctx->shader_info->so.num_outputs &&
2792 !ctx->is_gs_copy_shader) {
2793 /* The GS copy shader emission already emits streamout. */
2794 radv_emit_streamout(ctx, 0);
2795 }
2796
2797 /* Allocate a temporary array for the output values. */
2798 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_prim_id;
2799 outputs = malloc(num_outputs * sizeof(outputs[0]));
2800
2801 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2802 if (!(ctx->output_mask & (1ull << i)))
2803 continue;
2804
2805 outputs[noutput].slot_name = i;
2806 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
2807
2808 if (ctx->stage == MESA_SHADER_VERTEX &&
2809 !ctx->is_gs_copy_shader) {
2810 outputs[noutput].usage_mask =
2811 ctx->shader_info->vs.output_usage_mask[i];
2812 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2813 outputs[noutput].usage_mask =
2814 ctx->shader_info->tes.output_usage_mask[i];
2815 } else {
2816 assert(ctx->is_gs_copy_shader);
2817 outputs[noutput].usage_mask =
2818 ctx->shader_info->gs.output_usage_mask[i];
2819 }
2820
2821 for (unsigned j = 0; j < 4; j++) {
2822 outputs[noutput].values[j] =
2823 ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2824 }
2825
2826 noutput++;
2827 }
2828
2829 /* Export PrimitiveID. */
2830 if (export_prim_id) {
2831 outinfo->export_prim_id = true;
2832
2833 outputs[noutput].slot_name = VARYING_SLOT_PRIMITIVE_ID;
2834 outputs[noutput].slot_index = 0;
2835 outputs[noutput].usage_mask = 0x1;
2836 outputs[noutput].values[0] = ctx->vs_prim_id;
2837 for (unsigned j = 1; j < 4; j++)
2838 outputs[noutput].values[j] = ctx->ac.f32_0;
2839 noutput++;
2840 }
2841
2842 radv_llvm_export_vs(ctx, outputs, noutput, outinfo, export_clip_dists);
2843
2844 free(outputs);
2845 }
2846
2847 static void
2848 handle_es_outputs_post(struct radv_shader_context *ctx,
2849 struct radv_es_output_info *outinfo)
2850 {
2851 int j;
2852 uint64_t max_output_written = 0;
2853 LLVMValueRef lds_base = NULL;
2854
2855 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2856 int param_index;
2857
2858 if (!(ctx->output_mask & (1ull << i)))
2859 continue;
2860
2861 param_index = shader_io_get_unique_index(i);
2862
2863 max_output_written = MAX2(param_index, max_output_written);
2864 }
2865
2866 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
2867
2868 if (ctx->ac.chip_class >= GFX9) {
2869 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
2870 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
2871 LLVMValueRef wave_idx = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
2872 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
2873 LLVMBuildMul(ctx->ac.builder, wave_idx,
2874 LLVMConstInt(ctx->ac.i32,
2875 ctx->ac.wave_size, false), ""), "");
2876 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
2877 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
2878 }
2879
2880 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2881 LLVMValueRef dw_addr = NULL;
2882 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2883 unsigned output_usage_mask;
2884 int param_index;
2885
2886 if (!(ctx->output_mask & (1ull << i)))
2887 continue;
2888
2889 if (ctx->stage == MESA_SHADER_VERTEX) {
2890 output_usage_mask =
2891 ctx->shader_info->vs.output_usage_mask[i];
2892 } else {
2893 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
2894 output_usage_mask =
2895 ctx->shader_info->tes.output_usage_mask[i];
2896 }
2897
2898 param_index = shader_io_get_unique_index(i);
2899
2900 if (lds_base) {
2901 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
2902 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
2903 "");
2904 }
2905
2906 for (j = 0; j < 4; j++) {
2907 if (!(output_usage_mask & (1 << j)))
2908 continue;
2909
2910 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2911 out_val = ac_to_integer(&ctx->ac, out_val);
2912 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
2913
2914 if (ctx->ac.chip_class >= GFX9) {
2915 LLVMValueRef dw_addr_offset =
2916 LLVMBuildAdd(ctx->ac.builder, dw_addr,
2917 LLVMConstInt(ctx->ac.i32,
2918 j, false), "");
2919
2920 ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
2921 } else {
2922 ac_build_buffer_store_dword(&ctx->ac,
2923 ctx->esgs_ring,
2924 out_val, 1,
2925 NULL, ctx->es2gs_offset,
2926 (4 * param_index + j) * 4,
2927 ac_glc | ac_slc, true);
2928 }
2929 }
2930 }
2931 }
2932
2933 static void
2934 handle_ls_outputs_post(struct radv_shader_context *ctx)
2935 {
2936 LLVMValueRef vertex_id = ctx->rel_auto_id;
2937 uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->vs.ls_outputs_written);
2938 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
2939 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
2940 vertex_dw_stride, "");
2941
2942 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2943 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2944
2945 if (!(ctx->output_mask & (1ull << i)))
2946 continue;
2947
2948 int param = shader_io_get_unique_index(i);
2949 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
2950 LLVMConstInt(ctx->ac.i32, param * 4, false),
2951 "");
2952 for (unsigned j = 0; j < 4; j++) {
2953 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2954 value = ac_to_integer(&ctx->ac, value);
2955 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
2956 ac_lds_store(&ctx->ac, dw_addr, value);
2957 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
2958 }
2959 }
2960 }
2961
2962 static LLVMValueRef get_wave_id_in_tg(struct radv_shader_context *ctx)
2963 {
2964 return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
2965 }
2966
2967 static LLVMValueRef get_tgsize(struct radv_shader_context *ctx)
2968 {
2969 return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 28, 4);
2970 }
2971
2972 static LLVMValueRef get_thread_id_in_tg(struct radv_shader_context *ctx)
2973 {
2974 LLVMBuilderRef builder = ctx->ac.builder;
2975 LLVMValueRef tmp;
2976 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
2977 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
2978 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
2979 }
2980
2981 static LLVMValueRef ngg_get_vtx_cnt(struct radv_shader_context *ctx)
2982 {
2983 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
2984 LLVMConstInt(ctx->ac.i32, 12, false),
2985 LLVMConstInt(ctx->ac.i32, 9, false),
2986 false);
2987 }
2988
2989 static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
2990 {
2991 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
2992 LLVMConstInt(ctx->ac.i32, 22, false),
2993 LLVMConstInt(ctx->ac.i32, 9, false),
2994 false);
2995 }
2996
2997 static LLVMValueRef
2998 ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
2999 {
3000 unsigned num_outputs = util_bitcount64(ctx->output_mask);
3001
3002 LLVMTypeRef elements[2] = {
3003 LLVMArrayType(ctx->ac.i32, 4 * num_outputs),
3004 LLVMArrayType(ctx->ac.i8, 4),
3005 };
3006 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
3007 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
3008 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
3009 }
3010
3011 /**
3012 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
3013 * is in emit order; that is:
3014 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
3015 * - during vertex emit, i.e. while the API GS shader invocation is running,
3016 * N = threadidx * gs_max_out_vertices + emitidx
3017 *
3018 * Goals of the LDS memory layout:
3019 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
3020 * in uniform control flow
3021 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
3022 * culling
3023 * 3. Agnostic to the number of waves (since we don't know it before compiling)
3024 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
3025 * 5. Avoid wasting memory.
3026 *
3027 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
3028 * layout, elimination of bank conflicts requires that each vertex occupy an
3029 * odd number of dwords. We use the additional dword to store the output stream
3030 * index as well as a flag to indicate whether this vertex ends a primitive
3031 * for rasterization.
3032 *
3033 * Swizzling is required to satisfy points 1 and 2 simultaneously.
3034 *
3035 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
3036 * Indices are swizzled in groups of 32, which ensures point 1 without
3037 * disturbing point 2.
3038 *
3039 * \return an LDS pointer to type {[N x i32], [4 x i8]}
3040 */
3041 static LLVMValueRef
3042 ngg_gs_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef vertexidx)
3043 {
3044 LLVMBuilderRef builder = ctx->ac.builder;
3045 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
3046
3047 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
3048 unsigned write_stride_2exp = ffs(ctx->shader->info.gs.vertices_out) - 1;
3049 if (write_stride_2exp) {
3050 LLVMValueRef row =
3051 LLVMBuildLShr(builder, vertexidx,
3052 LLVMConstInt(ctx->ac.i32, 5, false), "");
3053 LLVMValueRef swizzle =
3054 LLVMBuildAnd(builder, row,
3055 LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
3056 false), "");
3057 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
3058 }
3059
3060 return ac_build_gep0(&ctx->ac, storage, vertexidx);
3061 }
3062
3063 static LLVMValueRef
3064 ngg_gs_emit_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef gsthread,
3065 LLVMValueRef emitidx)
3066 {
3067 LLVMBuilderRef builder = ctx->ac.builder;
3068 LLVMValueRef tmp;
3069
3070 tmp = LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false);
3071 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
3072 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
3073 return ngg_gs_vertex_ptr(ctx, vertexidx);
3074 }
3075
3076 /* Send GS Alloc Req message from the first wave of the group to SPI.
3077 * Message payload is:
3078 * - bits 0..10: vertices in group
3079 * - bits 12..22: primitives in group
3080 */
3081 static void build_sendmsg_gs_alloc_req(struct radv_shader_context *ctx,
3082 LLVMValueRef vtx_cnt,
3083 LLVMValueRef prim_cnt)
3084 {
3085 LLVMBuilderRef builder = ctx->ac.builder;
3086 LLVMValueRef tmp;
3087
3088 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
3089 ac_build_ifcc(&ctx->ac, tmp, 5020);
3090
3091 tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
3092 tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
3093 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
3094
3095 ac_build_endif(&ctx->ac, 5020);
3096 }
3097
3098 struct ngg_prim {
3099 unsigned num_vertices;
3100 LLVMValueRef isnull;
3101 LLVMValueRef index[3];
3102 LLVMValueRef edgeflag[3];
3103 };
3104
3105 static void build_export_prim(struct radv_shader_context *ctx,
3106 const struct ngg_prim *prim)
3107 {
3108 LLVMBuilderRef builder = ctx->ac.builder;
3109 struct ac_export_args args;
3110 LLVMValueRef tmp;
3111
3112 tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
3113 args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
3114
3115 for (unsigned i = 0; i < prim->num_vertices; ++i) {
3116 tmp = LLVMBuildShl(builder, prim->index[i],
3117 LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
3118 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
3119 tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
3120 tmp = LLVMBuildShl(builder, tmp,
3121 LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
3122 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
3123 }
3124
3125 args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
3126 args.out[1] = LLVMGetUndef(ctx->ac.f32);
3127 args.out[2] = LLVMGetUndef(ctx->ac.f32);
3128 args.out[3] = LLVMGetUndef(ctx->ac.f32);
3129
3130 args.target = V_008DFC_SQ_EXP_PRIM;
3131 args.enabled_channels = 1;
3132 args.done = true;
3133 args.valid_mask = false;
3134 args.compr = false;
3135
3136 ac_build_export(&ctx->ac, &args);
3137 }
3138
3139 static void
3140 handle_ngg_outputs_post(struct radv_shader_context *ctx)
3141 {
3142 LLVMBuilderRef builder = ctx->ac.builder;
3143 unsigned num_vertices = 3;
3144 LLVMValueRef tmp;
3145
3146 assert((ctx->stage == MESA_SHADER_VERTEX ||
3147 ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->is_gs_copy_shader);
3148
3149 LLVMValueRef prims_in_wave = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
3150 LLVMValueRef vtx_in_wave = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 0, 8);
3151 LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
3152 ac_get_thread_id(&ctx->ac), prims_in_wave, "");
3153 LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
3154 ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
3155 LLVMValueRef vtxindex[] = {
3156 ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[0], 0, 16),
3157 ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[0], 16, 16),
3158 ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[2], 0, 16),
3159 };
3160
3161 /* TODO: streamout */
3162
3163 /* Copy Primitive IDs from GS threads to the LDS address corresponding
3164 * to the ES thread of the provoking vertex.
3165 */
3166 if (ctx->stage == MESA_SHADER_VERTEX &&
3167 ctx->options->key.vs_common_out.export_prim_id) {
3168 /* TODO: streamout */
3169
3170 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
3171 /* Extract the PROVOKING_VTX_INDEX field. */
3172 LLVMValueRef provoking_vtx_in_prim =
3173 LLVMConstInt(ctx->ac.i32, 0, false);
3174
3175 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
3176 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
3177 LLVMValueRef provoking_vtx_index =
3178 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
3179
3180 LLVMBuildStore(builder, ctx->abi.gs_prim_id,
3181 ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
3182 ac_build_endif(&ctx->ac, 5400);
3183 }
3184
3185 /* TODO: primitive culling */
3186
3187 build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
3188
3189 /* TODO: streamout queries */
3190 /* Export primitive data to the index buffer. Format is:
3191 * - bits 0..8: index 0
3192 * - bit 9: edge flag 0
3193 * - bits 10..18: index 1
3194 * - bit 19: edge flag 1
3195 * - bits 20..28: index 2
3196 * - bit 29: edge flag 2
3197 * - bit 31: null primitive (skip)
3198 *
3199 * For the first version, we will always build up all three indices
3200 * independent of the primitive type. The additional garbage data
3201 * shouldn't hurt.
3202 *
3203 * TODO: culling depends on the primitive type, so can have some
3204 * interaction here.
3205 */
3206 ac_build_ifcc(&ctx->ac, is_gs_thread, 6001);
3207 {
3208 struct ngg_prim prim = {};
3209
3210 prim.num_vertices = num_vertices;
3211 prim.isnull = ctx->ac.i1false;
3212 memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
3213
3214 for (unsigned i = 0; i < num_vertices; ++i) {
3215 tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id,
3216 LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
3217 prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3218 }
3219
3220 build_export_prim(ctx, &prim);
3221 }
3222 ac_build_endif(&ctx->ac, 6001);
3223
3224 /* Export per-vertex data (positions and parameters). */
3225 ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
3226 {
3227 struct radv_vs_output_info *outinfo =
3228 ctx->stage == MESA_SHADER_TESS_EVAL ? &ctx->shader_info->tes.outinfo : &ctx->shader_info->vs.outinfo;
3229
3230 /* Exporting the primitive ID is handled below. */
3231 /* TODO: use the new VS export path */
3232 handle_vs_outputs_post(ctx, false,
3233 ctx->options->key.vs_common_out.export_clip_dists,
3234 outinfo);
3235
3236 if (ctx->options->key.vs_common_out.export_prim_id) {
3237 unsigned param_count = outinfo->param_exports;
3238 LLVMValueRef values[4];
3239
3240 if (ctx->stage == MESA_SHADER_VERTEX) {
3241 /* Wait for GS stores to finish. */
3242 ac_build_s_barrier(&ctx->ac);
3243
3244 tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
3245 get_thread_id_in_tg(ctx));
3246 values[0] = LLVMBuildLoad(builder, tmp, "");
3247 } else {
3248 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
3249 values[0] = ctx->abi.tes_patch_id;
3250 }
3251
3252 values[0] = ac_to_float(&ctx->ac, values[0]);
3253 for (unsigned j = 1; j < 4; j++)
3254 values[j] = ctx->ac.f32_0;
3255
3256 radv_export_param(ctx, param_count, values, 0x1);
3257
3258 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
3259 outinfo->export_prim_id = true;
3260 outinfo->param_exports = param_count;
3261 }
3262 }
3263 ac_build_endif(&ctx->ac, 6002);
3264 }
3265
3266 static void gfx10_ngg_gs_emit_prologue(struct radv_shader_context *ctx)
3267 {
3268 /* Zero out the part of LDS scratch that is used to accumulate the
3269 * per-stream generated primitive count.
3270 */
3271 LLVMBuilderRef builder = ctx->ac.builder;
3272 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
3273 LLVMValueRef tid = get_thread_id_in_tg(ctx);
3274 LLVMBasicBlockRef merge_block;
3275 LLVMValueRef cond;
3276
3277 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
3278 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3279 merge_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3280
3281 cond = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
3282 LLVMBuildCondBr(ctx->ac.builder, cond, then_block, merge_block);
3283 LLVMPositionBuilderAtEnd(ctx->ac.builder, then_block);
3284
3285 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
3286 LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
3287
3288 LLVMBuildBr(ctx->ac.builder, merge_block);
3289 LLVMPositionBuilderAtEnd(ctx->ac.builder, merge_block);
3290
3291 ac_build_s_barrier(&ctx->ac);
3292 }
3293
3294 static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
3295 {
3296 LLVMBuilderRef builder = ctx->ac.builder;
3297 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
3298 LLVMValueRef tmp;
3299
3300 /* Zero out remaining (non-emitted) primitive flags.
3301 *
3302 * Note: Alternatively, we could pass the relevant gs_next_vertex to
3303 * the emit threads via LDS. This is likely worse in the expected
3304 * typical case where each GS thread emits the full set of
3305 * vertices.
3306 */
3307 for (unsigned stream = 0; stream < 4; ++stream) {
3308 unsigned num_components;
3309
3310 num_components =
3311 ctx->shader_info->gs.num_stream_output_components[stream];
3312 if (!num_components)
3313 continue;
3314
3315 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
3316
3317 ac_build_bgnloop(&ctx->ac, 5100);
3318
3319 const LLVMValueRef vertexidx =
3320 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3321 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
3322 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
3323 ac_build_ifcc(&ctx->ac, tmp, 5101);
3324 ac_build_break(&ctx->ac);
3325 ac_build_endif(&ctx->ac, 5101);
3326
3327 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3328 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3329
3330 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
3331 LLVMValueRef gep_idx[3] = {
3332 ctx->ac.i32_0, /* implied C-style array */
3333 ctx->ac.i32_1, /* second entry of struct */
3334 LLVMConstInt(ctx->ac.i32, stream, false),
3335 };
3336 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3337 LLVMBuildStore(builder, i8_0, tmp);
3338
3339 ac_build_endloop(&ctx->ac, 5100);
3340 }
3341 }
3342
3343 static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
3344 {
3345 const unsigned verts_per_prim = si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive);
3346 LLVMBuilderRef builder = ctx->ac.builder;
3347 LLVMValueRef tmp, tmp2;
3348
3349 ac_build_s_barrier(&ctx->ac);
3350
3351 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
3352 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
3353
3354 /* TODO: streamout */
3355
3356 /* TODO: culling */
3357
3358 /* Determine vertex liveness. */
3359 LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
3360
3361 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3362 ac_build_ifcc(&ctx->ac, tmp, 5120);
3363 {
3364 for (unsigned i = 0; i < verts_per_prim; ++i) {
3365 const LLVMValueRef primidx =
3366 LLVMBuildAdd(builder, tid,
3367 LLVMConstInt(ctx->ac.i32, i, false), "");
3368
3369 if (i > 0) {
3370 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
3371 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
3372 }
3373
3374 /* Load primitive liveness */
3375 tmp = ngg_gs_vertex_ptr(ctx, primidx);
3376 LLVMValueRef gep_idx[3] = {
3377 ctx->ac.i32_0, /* implicit C-style array */
3378 ctx->ac.i32_1, /* second value of struct */
3379 ctx->ac.i32_0, /* stream 0 */
3380 };
3381 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3382 tmp = LLVMBuildLoad(builder, tmp, "");
3383 const LLVMValueRef primlive =
3384 LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3385
3386 tmp = LLVMBuildLoad(builder, vertliveptr, "");
3387 tmp = LLVMBuildOr(builder, tmp, primlive, ""),
3388 LLVMBuildStore(builder, tmp, vertliveptr);
3389
3390 if (i > 0)
3391 ac_build_endif(&ctx->ac, 5121 + i);
3392 }
3393 }
3394 ac_build_endif(&ctx->ac, 5120);
3395
3396 /* Inclusive scan addition across the current wave. */
3397 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
3398 struct ac_wg_scan vertlive_scan = {};
3399 vertlive_scan.op = nir_op_iadd;
3400 vertlive_scan.enable_reduce = true;
3401 vertlive_scan.enable_exclusive = true;
3402 vertlive_scan.src = vertlive;
3403 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
3404 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
3405 vertlive_scan.numwaves = get_tgsize(ctx);
3406 vertlive_scan.maxwaves = 8;
3407
3408 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
3409
3410 /* Skip all exports (including index exports) when possible. At least on
3411 * early gfx10 revisions this is also to avoid hangs.
3412 */
3413 LLVMValueRef have_exports =
3414 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
3415 num_emit_threads =
3416 LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
3417
3418 /* Allocate export space. Send this message as early as possible, to
3419 * hide the latency of the SQ <-> SPI roundtrip.
3420 *
3421 * Note: We could consider compacting primitives for export as well.
3422 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
3423 * prim data per clock and skips null primitives at no additional
3424 * cost. So compacting primitives can only be beneficial when
3425 * there are 4 or more contiguous null primitives in the export
3426 * (in the common case of single-dword prim exports).
3427 */
3428 build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
3429
3430 /* Setup the reverse vertex compaction permutation. We re-use stream 1
3431 * of the primitive liveness flags, relying on the fact that each
3432 * threadgroup can have at most 256 threads. */
3433 ac_build_ifcc(&ctx->ac, vertlive, 5130);
3434 {
3435 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
3436 LLVMValueRef gep_idx[3] = {
3437 ctx->ac.i32_0, /* implicit C-style array */
3438 ctx->ac.i32_1, /* second value of struct */
3439 ctx->ac.i32_1, /* stream 1 */
3440 };
3441 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3442 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
3443 LLVMBuildStore(builder, tmp2, tmp);
3444 }
3445 ac_build_endif(&ctx->ac, 5130);
3446
3447 ac_build_s_barrier(&ctx->ac);
3448
3449 /* Export primitive data */
3450 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3451 ac_build_ifcc(&ctx->ac, tmp, 5140);
3452 {
3453 struct ngg_prim prim = {};
3454 prim.num_vertices = verts_per_prim;
3455
3456 tmp = ngg_gs_vertex_ptr(ctx, tid);
3457 LLVMValueRef gep_idx[3] = {
3458 ctx->ac.i32_0, /* implicit C-style array */
3459 ctx->ac.i32_1, /* second value of struct */
3460 ctx->ac.i32_0, /* primflag */
3461 };
3462 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3463 tmp = LLVMBuildLoad(builder, tmp, "");
3464 prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
3465 LLVMConstInt(ctx->ac.i8, 0, false), "");
3466
3467 for (unsigned i = 0; i < verts_per_prim; ++i) {
3468 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
3469 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
3470 prim.edgeflag[i] = ctx->ac.i1false;
3471 }
3472
3473 build_export_prim(ctx, &prim);
3474 }
3475 ac_build_endif(&ctx->ac, 5140);
3476
3477 /* Export position and parameter data */
3478 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
3479 ac_build_ifcc(&ctx->ac, tmp, 5145);
3480 {
3481 struct radv_vs_output_info *outinfo = &ctx->shader_info->vs.outinfo;
3482 bool export_view_index = ctx->options->key.has_multiview_view_index;
3483 struct radv_shader_output_values *outputs;
3484 unsigned noutput = 0;
3485
3486 /* Allocate a temporary array for the output values. */
3487 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_view_index;
3488 outputs = calloc(num_outputs, sizeof(outputs[0]));
3489
3490 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
3491 sizeof(outinfo->vs_output_param_offset));
3492 outinfo->pos_exports = 0;
3493
3494 tmp = ngg_gs_vertex_ptr(ctx, tid);
3495 LLVMValueRef gep_idx[3] = {
3496 ctx->ac.i32_0, /* implicit C-style array */
3497 ctx->ac.i32_1, /* second value of struct */
3498 ctx->ac.i32_1, /* stream 1: source data index */
3499 };
3500 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3501 tmp = LLVMBuildLoad(builder, tmp, "");
3502 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
3503 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
3504
3505 unsigned out_idx = 0;
3506 gep_idx[1] = ctx->ac.i32_0;
3507 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3508 if (!(ctx->output_mask & (1ull << i)))
3509 continue;
3510
3511 outputs[noutput].slot_name = i;
3512 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
3513
3514 outputs[noutput].usage_mask = ctx->shader_info->gs.output_usage_mask[i];
3515 int length = util_last_bit(outputs[noutput].usage_mask);
3516
3517 for (unsigned j = 0; j < length; j++, out_idx++) {
3518 gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
3519 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3520 tmp = LLVMBuildLoad(builder, tmp, "");
3521
3522 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
3523 if (ac_get_type_size(type) == 2) {
3524 tmp = ac_to_integer(&ctx->ac, tmp);
3525 tmp = LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i16, "");
3526 }
3527
3528 outputs[noutput].values[j] = ac_to_float(&ctx->ac, tmp);
3529 }
3530
3531 for (unsigned j = length; j < 4; j++)
3532 outputs[noutput].values[j] = LLVMGetUndef(ctx->ac.f32);
3533
3534 noutput++;
3535 }
3536
3537 /* Export ViewIndex. */
3538 if (export_view_index) {
3539 outputs[noutput].slot_name = VARYING_SLOT_LAYER;
3540 outputs[noutput].slot_index = 0;
3541 outputs[noutput].usage_mask = 0x1;
3542 outputs[noutput].values[0] = ac_to_float(&ctx->ac, ctx->abi.view_index);
3543 for (unsigned j = 1; j < 4; j++)
3544 outputs[noutput].values[j] = ctx->ac.f32_0;
3545 noutput++;
3546 }
3547
3548 radv_llvm_export_vs(ctx, outputs, noutput, outinfo,
3549 ctx->options->key.vs_common_out.export_clip_dists);
3550 FREE(outputs);
3551 }
3552 ac_build_endif(&ctx->ac, 5145);
3553 }
3554
3555 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
3556 unsigned stream,
3557 LLVMValueRef *addrs)
3558 {
3559 LLVMBuilderRef builder = ctx->ac.builder;
3560 LLVMValueRef tmp;
3561 const LLVMValueRef vertexidx =
3562 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3563
3564 /* If this thread has already emitted the declared maximum number of
3565 * vertices, skip the write: excessive vertex emissions are not
3566 * supposed to have any effect.
3567 */
3568 const LLVMValueRef can_emit =
3569 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
3570 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
3571 ac_build_kill_if_false(&ctx->ac, can_emit);
3572
3573 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3574 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
3575 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3576
3577 const LLVMValueRef vertexptr =
3578 ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
3579 unsigned out_idx = 0;
3580 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3581 unsigned output_usage_mask =
3582 ctx->shader_info->gs.output_usage_mask[i];
3583 uint8_t output_stream =
3584 ctx->shader_info->gs.output_streams[i];
3585 LLVMValueRef *out_ptr = &addrs[i * 4];
3586 int length = util_last_bit(output_usage_mask);
3587
3588 if (!(ctx->output_mask & (1ull << i)) ||
3589 output_stream != stream)
3590 continue;
3591
3592 for (unsigned j = 0; j < length; j++, out_idx++) {
3593 if (!(output_usage_mask & (1 << j)))
3594 continue;
3595
3596 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
3597 out_ptr[j], "");
3598 LLVMValueRef gep_idx[3] = {
3599 ctx->ac.i32_0, /* implied C-style array */
3600 ctx->ac.i32_0, /* first entry of struct */
3601 LLVMConstInt(ctx->ac.i32, out_idx, false),
3602 };
3603 LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3604
3605 out_val = ac_to_integer(&ctx->ac, out_val);
3606 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
3607
3608 LLVMBuildStore(builder, out_val, ptr);
3609 }
3610 }
3611 assert(out_idx * 4 <= ctx->gsvs_vertex_size);
3612
3613 /* Determine and store whether this vertex completed a primitive. */
3614 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
3615
3616 tmp = LLVMConstInt(ctx->ac.i32, si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive) - 1, false);
3617 const LLVMValueRef iscompleteprim =
3618 LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
3619
3620 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
3621 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
3622
3623 LLVMValueRef gep_idx[3] = {
3624 ctx->ac.i32_0, /* implied C-style array */
3625 ctx->ac.i32_1, /* second struct entry */
3626 LLVMConstInt(ctx->ac.i32, stream, false),
3627 };
3628 const LLVMValueRef primflagptr =
3629 LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3630
3631 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
3632 LLVMBuildStore(builder, tmp, primflagptr);
3633
3634 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
3635 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
3636 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
3637 }
3638
3639 static void
3640 write_tess_factors(struct radv_shader_context *ctx)
3641 {
3642 unsigned stride, outer_comps, inner_comps;
3643 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
3644 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
3645 unsigned tess_inner_index = 0, tess_outer_index;
3646 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
3647 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3648 int i;
3649 ac_emit_barrier(&ctx->ac, ctx->stage);
3650
3651 switch (ctx->options->key.tcs.primitive_mode) {
3652 case GL_ISOLINES:
3653 stride = 2;
3654 outer_comps = 2;
3655 inner_comps = 0;
3656 break;
3657 case GL_TRIANGLES:
3658 stride = 4;
3659 outer_comps = 3;
3660 inner_comps = 1;
3661 break;
3662 case GL_QUADS:
3663 stride = 6;
3664 outer_comps = 4;
3665 inner_comps = 2;
3666 break;
3667 default:
3668 return;
3669 }
3670
3671 ac_build_ifcc(&ctx->ac,
3672 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3673 invocation_id, ctx->ac.i32_0, ""), 6503);
3674
3675 lds_base = get_tcs_out_current_patch_data_offset(ctx);
3676
3677 if (inner_comps) {
3678 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3679 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3680 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
3681 }
3682
3683 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3684 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3685 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
3686
3687 for (i = 0; i < 4; i++) {
3688 inner[i] = LLVMGetUndef(ctx->ac.i32);
3689 outer[i] = LLVMGetUndef(ctx->ac.i32);
3690 }
3691
3692 // LINES reversal
3693 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
3694 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
3695 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3696 ctx->ac.i32_1, "");
3697 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
3698 } else {
3699 for (i = 0; i < outer_comps; i++) {
3700 outer[i] = out[i] =
3701 ac_lds_load(&ctx->ac, lds_outer);
3702 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3703 ctx->ac.i32_1, "");
3704 }
3705 for (i = 0; i < inner_comps; i++) {
3706 inner[i] = out[outer_comps+i] =
3707 ac_lds_load(&ctx->ac, lds_inner);
3708 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
3709 ctx->ac.i32_1, "");
3710 }
3711 }
3712
3713 /* Convert the outputs to vectors for stores. */
3714 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3715 vec1 = NULL;
3716
3717 if (stride > 4)
3718 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
3719
3720
3721 buffer = ctx->hs_ring_tess_factor;
3722 tf_base = ctx->tess_factor_offset;
3723 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3724 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
3725 unsigned tf_offset = 0;
3726
3727 if (ctx->options->chip_class <= GFX8) {
3728 ac_build_ifcc(&ctx->ac,
3729 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3730 rel_patch_id, ctx->ac.i32_0, ""), 6504);
3731
3732 /* Store the dynamic HS control word. */
3733 ac_build_buffer_store_dword(&ctx->ac, buffer,
3734 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
3735 1, ctx->ac.i32_0, tf_base,
3736 0, ac_glc, false);
3737 tf_offset += 4;
3738
3739 ac_build_endif(&ctx->ac, 6504);
3740 }
3741
3742 /* Store the tessellation factors. */
3743 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3744 MIN2(stride, 4), byteoffset, tf_base,
3745 tf_offset, ac_glc, false);
3746 if (vec1)
3747 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3748 stride - 4, byteoffset, tf_base,
3749 16 + tf_offset, ac_glc, false);
3750
3751 //store to offchip for TES to read - only if TES reads them
3752 if (ctx->options->key.tcs.tes_reads_tess_factors) {
3753 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
3754 LLVMValueRef tf_inner_offset;
3755 unsigned param_outer, param_inner;
3756
3757 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3758 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
3759 LLVMConstInt(ctx->ac.i32, param_outer, 0));
3760
3761 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3762 util_next_power_of_two(outer_comps));
3763
3764 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
3765 outer_comps, tf_outer_offset,
3766 ctx->oc_lds, 0, ac_glc, false);
3767 if (inner_comps) {
3768 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3769 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
3770 LLVMConstInt(ctx->ac.i32, param_inner, 0));
3771
3772 inner_vec = inner_comps == 1 ? inner[0] :
3773 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3774 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
3775 inner_comps, tf_inner_offset,
3776 ctx->oc_lds, 0, ac_glc, false);
3777 }
3778 }
3779
3780 ac_build_endif(&ctx->ac, 6503);
3781 }
3782
3783 static void
3784 handle_tcs_outputs_post(struct radv_shader_context *ctx)
3785 {
3786 write_tess_factors(ctx);
3787 }
3788
3789 static bool
3790 si_export_mrt_color(struct radv_shader_context *ctx,
3791 LLVMValueRef *color, unsigned index,
3792 struct ac_export_args *args)
3793 {
3794 /* Export */
3795 si_llvm_init_export_args(ctx, color, 0xf,
3796 V_008DFC_SQ_EXP_MRT + index, args);
3797 if (!args->enabled_channels)
3798 return false; /* unnecessary NULL export */
3799
3800 return true;
3801 }
3802
3803 static void
3804 radv_export_mrt_z(struct radv_shader_context *ctx,
3805 LLVMValueRef depth, LLVMValueRef stencil,
3806 LLVMValueRef samplemask)
3807 {
3808 struct ac_export_args args;
3809
3810 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3811
3812 ac_build_export(&ctx->ac, &args);
3813 }
3814
3815 static void
3816 handle_fs_outputs_post(struct radv_shader_context *ctx)
3817 {
3818 unsigned index = 0;
3819 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3820 struct ac_export_args color_args[8];
3821
3822 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3823 LLVMValueRef values[4];
3824
3825 if (!(ctx->output_mask & (1ull << i)))
3826 continue;
3827
3828 if (i < FRAG_RESULT_DATA0)
3829 continue;
3830
3831 for (unsigned j = 0; j < 4; j++)
3832 values[j] = ac_to_float(&ctx->ac,
3833 radv_load_output(ctx, i, j));
3834
3835 bool ret = si_export_mrt_color(ctx, values,
3836 i - FRAG_RESULT_DATA0,
3837 &color_args[index]);
3838 if (ret)
3839 index++;
3840 }
3841
3842 /* Process depth, stencil, samplemask. */
3843 if (ctx->shader_info->ps.writes_z) {
3844 depth = ac_to_float(&ctx->ac,
3845 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
3846 }
3847 if (ctx->shader_info->ps.writes_stencil) {
3848 stencil = ac_to_float(&ctx->ac,
3849 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
3850 }
3851 if (ctx->shader_info->ps.writes_sample_mask) {
3852 samplemask = ac_to_float(&ctx->ac,
3853 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
3854 }
3855
3856 /* Set the DONE bit on last non-null color export only if Z isn't
3857 * exported.
3858 */
3859 if (index > 0 &&
3860 !ctx->shader_info->ps.writes_z &&
3861 !ctx->shader_info->ps.writes_stencil &&
3862 !ctx->shader_info->ps.writes_sample_mask) {
3863 unsigned last = index - 1;
3864
3865 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
3866 color_args[last].done = 1; /* DONE bit */
3867 }
3868
3869 /* Export PS outputs. */
3870 for (unsigned i = 0; i < index; i++)
3871 ac_build_export(&ctx->ac, &color_args[i]);
3872
3873 if (depth || stencil || samplemask)
3874 radv_export_mrt_z(ctx, depth, stencil, samplemask);
3875 else if (!index)
3876 ac_build_export_null(&ctx->ac);
3877 }
3878
3879 static void
3880 emit_gs_epilogue(struct radv_shader_context *ctx)
3881 {
3882 if (ctx->options->key.vs_common_out.as_ngg) {
3883 gfx10_ngg_gs_emit_epilogue_1(ctx);
3884 return;
3885 }
3886
3887 if (ctx->ac.chip_class >= GFX10)
3888 LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
3889
3890 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
3891 }
3892
3893 static void
3894 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
3895 LLVMValueRef *addrs)
3896 {
3897 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
3898
3899 switch (ctx->stage) {
3900 case MESA_SHADER_VERTEX:
3901 if (ctx->options->key.vs_common_out.as_ls)
3902 handle_ls_outputs_post(ctx);
3903 else if (ctx->options->key.vs_common_out.as_es)
3904 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
3905 else if (ctx->options->key.vs_common_out.as_ngg)
3906 break; /* handled outside of the shader body */
3907 else
3908 handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
3909 ctx->options->key.vs_common_out.export_clip_dists,
3910 &ctx->shader_info->vs.outinfo);
3911 break;
3912 case MESA_SHADER_FRAGMENT:
3913 handle_fs_outputs_post(ctx);
3914 break;
3915 case MESA_SHADER_GEOMETRY:
3916 emit_gs_epilogue(ctx);
3917 break;
3918 case MESA_SHADER_TESS_CTRL:
3919 handle_tcs_outputs_post(ctx);
3920 break;
3921 case MESA_SHADER_TESS_EVAL:
3922 if (ctx->options->key.vs_common_out.as_es)
3923 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
3924 else if (ctx->options->key.vs_common_out.as_ngg)
3925 break; /* handled outside of the shader body */
3926 else
3927 handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
3928 ctx->options->key.vs_common_out.export_clip_dists,
3929 &ctx->shader_info->tes.outinfo);
3930 break;
3931 default:
3932 break;
3933 }
3934 }
3935
3936 static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
3937 LLVMPassManagerRef passmgr,
3938 const struct radv_nir_compiler_options *options)
3939 {
3940 LLVMRunPassManager(passmgr, ctx->ac.module);
3941 LLVMDisposeBuilder(ctx->ac.builder);
3942
3943 ac_llvm_context_dispose(&ctx->ac);
3944 }
3945
3946 static void
3947 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
3948 {
3949 struct radv_vs_output_info *outinfo;
3950
3951 switch (ctx->stage) {
3952 case MESA_SHADER_FRAGMENT:
3953 case MESA_SHADER_COMPUTE:
3954 case MESA_SHADER_TESS_CTRL:
3955 case MESA_SHADER_GEOMETRY:
3956 return;
3957 case MESA_SHADER_VERTEX:
3958 if (ctx->options->key.vs_common_out.as_ls ||
3959 ctx->options->key.vs_common_out.as_es)
3960 return;
3961 outinfo = &ctx->shader_info->vs.outinfo;
3962 break;
3963 case MESA_SHADER_TESS_EVAL:
3964 if (ctx->options->key.vs_common_out.as_es)
3965 return;
3966 outinfo = &ctx->shader_info->tes.outinfo;
3967 break;
3968 default:
3969 unreachable("Unhandled shader type");
3970 }
3971
3972 ac_optimize_vs_outputs(&ctx->ac,
3973 ctx->main_function,
3974 outinfo->vs_output_param_offset,
3975 VARYING_SLOT_MAX,
3976 &outinfo->param_exports);
3977 }
3978
3979 static void
3980 ac_setup_rings(struct radv_shader_context *ctx)
3981 {
3982 if (ctx->options->chip_class <= GFX8 &&
3983 (ctx->stage == MESA_SHADER_GEOMETRY ||
3984 ctx->options->key.vs_common_out.as_es || ctx->options->key.vs_common_out.as_es)) {
3985 unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
3986 : RING_ESGS_VS;
3987 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
3988
3989 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
3990 ctx->ring_offsets,
3991 offset);
3992 }
3993
3994 if (ctx->is_gs_copy_shader) {
3995 ctx->gsvs_ring[0] =
3996 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3997 LLVMConstInt(ctx->ac.i32,
3998 RING_GSVS_VS, false));
3999 }
4000
4001 if (ctx->stage == MESA_SHADER_GEOMETRY) {
4002 /* The conceptual layout of the GSVS ring is
4003 * v0c0 .. vLv0 v0c1 .. vLc1 ..
4004 * but the real memory layout is swizzled across
4005 * threads:
4006 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
4007 * t16v0c0 ..
4008 * Override the buffer descriptor accordingly.
4009 */
4010 LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
4011 uint64_t stream_offset = 0;
4012 unsigned num_records = ctx->ac.wave_size;
4013 LLVMValueRef base_ring;
4014
4015 base_ring =
4016 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
4017 LLVMConstInt(ctx->ac.i32,
4018 RING_GSVS_GS, false));
4019
4020 for (unsigned stream = 0; stream < 4; stream++) {
4021 unsigned num_components, stride;
4022 LLVMValueRef ring, tmp;
4023
4024 num_components =
4025 ctx->shader_info->gs.num_stream_output_components[stream];
4026
4027 if (!num_components)
4028 continue;
4029
4030 stride = 4 * num_components * ctx->shader->info.gs.vertices_out;
4031
4032 /* Limit on the stride field for <= GFX7. */
4033 assert(stride < (1 << 14));
4034
4035 ring = LLVMBuildBitCast(ctx->ac.builder,
4036 base_ring, v2i64, "");
4037 tmp = LLVMBuildExtractElement(ctx->ac.builder,
4038 ring, ctx->ac.i32_0, "");
4039 tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
4040 LLVMConstInt(ctx->ac.i64,
4041 stream_offset, 0), "");
4042 ring = LLVMBuildInsertElement(ctx->ac.builder,
4043 ring, tmp, ctx->ac.i32_0, "");
4044
4045 stream_offset += stride * ctx->ac.wave_size;
4046
4047 ring = LLVMBuildBitCast(ctx->ac.builder, ring,
4048 ctx->ac.v4i32, "");
4049
4050 tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
4051 ctx->ac.i32_1, "");
4052 tmp = LLVMBuildOr(ctx->ac.builder, tmp,
4053 LLVMConstInt(ctx->ac.i32,
4054 S_008F04_STRIDE(stride), false), "");
4055 ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
4056 ctx->ac.i32_1, "");
4057
4058 ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
4059 LLVMConstInt(ctx->ac.i32,
4060 num_records, false),
4061 LLVMConstInt(ctx->ac.i32, 2, false), "");
4062
4063 ctx->gsvs_ring[stream] = ring;
4064 }
4065 }
4066
4067 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
4068 ctx->stage == MESA_SHADER_TESS_EVAL) {
4069 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
4070 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
4071 }
4072 }
4073
4074 unsigned
4075 radv_nir_get_max_workgroup_size(enum chip_class chip_class,
4076 gl_shader_stage stage,
4077 const struct nir_shader *nir)
4078 {
4079 const unsigned backup_sizes[] = {chip_class >= GFX9 ? 128 : 64, 1, 1};
4080 return radv_get_max_workgroup_size(chip_class, stage, nir ? nir->info.cs.local_size : backup_sizes);
4081 }
4082
4083 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
4084 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
4085 {
4086 LLVMValueRef count = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
4087 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
4088 ctx->ac.i32_0, "");
4089 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
4090 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
4091 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
4092 }
4093
4094 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
4095 {
4096 for(int i = 5; i >= 0; --i) {
4097 ctx->gs_vtx_offset[i] = ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
4098 (i & 1) * 16, 16);
4099 }
4100
4101 ctx->gs_wave_id = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 16, 8);
4102 }
4103
4104 /* Ensure that the esgs ring is declared.
4105 *
4106 * We declare it with 64KB alignment as a hint that the
4107 * pointer value will always be 0.
4108 */
4109 static void declare_esgs_ring(struct radv_shader_context *ctx)
4110 {
4111 if (ctx->esgs_ring)
4112 return;
4113
4114 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
4115
4116 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
4117 ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
4118 "esgs_ring",
4119 AC_ADDR_SPACE_LDS);
4120 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
4121 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
4122 }
4123
4124 static
4125 LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
4126 struct nir_shader *const *shaders,
4127 int shader_count,
4128 struct radv_shader_info *shader_info,
4129 const struct radv_nir_compiler_options *options)
4130 {
4131 struct radv_shader_context ctx = {0};
4132 unsigned i;
4133 ctx.options = options;
4134 ctx.shader_info = shader_info;
4135
4136 enum ac_float_mode float_mode =
4137 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
4138 AC_FLOAT_MODE_DEFAULT;
4139
4140 ac_llvm_context_init(&ctx.ac, ac_llvm, options->chip_class,
4141 options->family, float_mode, options->wave_size, 64);
4142 ctx.context = ctx.ac.context;
4143
4144 radv_nir_shader_info_init(shader_info);
4145
4146 for(int i = 0; i < shader_count; ++i)
4147 radv_nir_shader_info_pass(shaders[i], options, shader_info);
4148
4149 for (i = 0; i < MAX_SETS; i++)
4150 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
4151 for (i = 0; i < AC_UD_MAX_UD; i++)
4152 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
4153
4154 ctx.max_workgroup_size = 0;
4155 for (int i = 0; i < shader_count; ++i) {
4156 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
4157 radv_nir_get_max_workgroup_size(ctx.options->chip_class,
4158 shaders[i]->info.stage,
4159 shaders[i]));
4160 }
4161
4162 if (ctx.ac.chip_class >= GFX10) {
4163 if (is_pre_gs_stage(shaders[0]->info.stage) &&
4164 options->key.vs_common_out.as_ngg) {
4165 ctx.max_workgroup_size = 128;
4166 }
4167 }
4168
4169 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
4170 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
4171
4172 ctx.abi.inputs = &ctx.inputs[0];
4173 ctx.abi.emit_outputs = handle_shader_outputs_post;
4174 ctx.abi.emit_vertex = visit_emit_vertex;
4175 ctx.abi.load_ubo = radv_load_ubo;
4176 ctx.abi.load_ssbo = radv_load_ssbo;
4177 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
4178 ctx.abi.load_resource = radv_load_resource;
4179 ctx.abi.clamp_shadow_reference = false;
4180 ctx.abi.robust_buffer_access = options->robust_buffer_access;
4181
4182 bool is_ngg = is_pre_gs_stage(shaders[0]->info.stage) && ctx.options->key.vs_common_out.as_ngg;
4183 if (shader_count >= 2 || is_ngg)
4184 ac_init_exec_full_mask(&ctx.ac);
4185
4186 if (options->has_ls_vgpr_init_bug &&
4187 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
4188 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
4189
4190 for(int i = 0; i < shader_count; ++i) {
4191 ctx.stage = shaders[i]->info.stage;
4192 ctx.shader = shaders[i];
4193 ctx.output_mask = 0;
4194
4195 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4196 for (int i = 0; i < 4; i++) {
4197 ctx.gs_next_vertex[i] =
4198 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4199 }
4200 if (ctx.options->key.vs_common_out.as_ngg) {
4201 for (unsigned i = 0; i < 4; ++i) {
4202 ctx.gs_curprim_verts[i] =
4203 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4204 ctx.gs_generated_prims[i] =
4205 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4206 }
4207
4208 /* TODO: streamout */
4209
4210 LLVMTypeRef ai32 = LLVMArrayType(ctx.ac.i32, 8);
4211 ctx.gs_ngg_scratch =
4212 LLVMAddGlobalInAddressSpace(ctx.ac.module,
4213 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
4214 LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(ai32));
4215 LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
4216
4217 ctx.gs_ngg_emit = LLVMBuildIntToPtr(ctx.ac.builder, ctx.ac.i32_0,
4218 LLVMPointerType(LLVMArrayType(ctx.ac.i32, 0), AC_ADDR_SPACE_LDS),
4219 "ngg_emit");
4220 }
4221
4222 ctx.abi.load_inputs = load_gs_input;
4223 ctx.abi.emit_primitive = visit_end_primitive;
4224 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4225 ctx.abi.load_tess_varyings = load_tcs_varyings;
4226 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4227 ctx.abi.store_tcs_outputs = store_tcs_output;
4228 if (shader_count == 1)
4229 ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
4230 else
4231 ctx.tcs_num_inputs = util_last_bit64(shader_info->vs.ls_outputs_written);
4232 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
4233 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
4234 ctx.abi.load_tess_varyings = load_tes_input;
4235 ctx.abi.load_tess_coord = load_tess_coord;
4236 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4237 ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
4238 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
4239 ctx.abi.load_base_vertex = radv_load_base_vertex;
4240 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
4241 ctx.abi.load_sample_position = load_sample_position;
4242 ctx.abi.load_sample_mask_in = load_sample_mask_in;
4243 ctx.abi.emit_kill = radv_emit_kill;
4244 }
4245
4246 if (shaders[i]->info.stage == MESA_SHADER_VERTEX &&
4247 ctx.options->key.vs_common_out.as_ngg &&
4248 ctx.options->key.vs_common_out.export_prim_id) {
4249 declare_esgs_ring(&ctx);
4250 }
4251
4252 bool nested_barrier = false;
4253
4254 if (i) {
4255 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4256 ctx.options->key.vs_common_out.as_ngg) {
4257 gfx10_ngg_gs_emit_prologue(&ctx);
4258 nested_barrier = false;
4259 } else {
4260 nested_barrier = true;
4261 }
4262 }
4263
4264 if (nested_barrier) {
4265 /* Execute a barrier before the second shader in
4266 * a merged shader.
4267 *
4268 * Execute the barrier inside the conditional block,
4269 * so that empty waves can jump directly to s_endpgm,
4270 * which will also signal the barrier.
4271 *
4272 * This is possible in gfx9, because an empty wave
4273 * for the second shader does not participate in
4274 * the epilogue. With NGG, empty waves may still
4275 * be required to export data (e.g. GS output vertices),
4276 * so we cannot let them exit early.
4277 *
4278 * If the shader is TCS and the TCS epilog is present
4279 * and contains a barrier, it will wait there and then
4280 * reach s_endpgm.
4281 */
4282 ac_emit_barrier(&ctx.ac, ctx.stage);
4283 }
4284
4285 nir_foreach_variable(variable, &shaders[i]->outputs)
4286 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
4287
4288 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4289 unsigned addclip = shaders[i]->info.clip_distance_array_size +
4290 shaders[i]->info.cull_distance_array_size > 4;
4291 ctx.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
4292 ctx.max_gsvs_emit_size = ctx.gsvs_vertex_size *
4293 shaders[i]->info.gs.vertices_out;
4294 }
4295
4296 ac_setup_rings(&ctx);
4297
4298 LLVMBasicBlockRef merge_block;
4299 if (shader_count >= 2 || is_ngg) {
4300 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
4301 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4302 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4303
4304 LLVMValueRef count = ac_unpack_param(&ctx.ac, ctx.merged_wave_info, 8 * i, 8);
4305 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
4306 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
4307 thread_id, count, "");
4308 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
4309
4310 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
4311 }
4312
4313 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
4314 prepare_interp_optimize(&ctx, shaders[i]);
4315 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
4316 handle_vs_inputs(&ctx, shaders[i]);
4317 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
4318 prepare_gs_input_vgprs(&ctx);
4319
4320 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);
4321
4322 if (shader_count >= 2 || is_ngg) {
4323 LLVMBuildBr(ctx.ac.builder, merge_block);
4324 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
4325 }
4326
4327 /* This needs to be outside the if wrapping the shader body, as sometimes
4328 * the HW generates waves with 0 es/vs threads. */
4329 if (is_pre_gs_stage(shaders[i]->info.stage) &&
4330 ctx.options->key.vs_common_out.as_ngg &&
4331 i == shader_count - 1) {
4332 handle_ngg_outputs_post(&ctx);
4333 } else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4334 ctx.options->key.vs_common_out.as_ngg) {
4335 gfx10_ngg_gs_emit_epilogue_2(&ctx);
4336 }
4337
4338 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4339 shader_info->gs.gsvs_vertex_size = ctx.gsvs_vertex_size;
4340 shader_info->gs.max_gsvs_emit_size = ctx.max_gsvs_emit_size;
4341 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4342 shader_info->tcs.num_patches = ctx.tcs_num_patches;
4343 shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
4344 }
4345 }
4346
4347 LLVMBuildRetVoid(ctx.ac.builder);
4348
4349 if (options->dump_preoptir) {
4350 fprintf(stderr, "%s LLVM IR:\n\n",
4351 radv_get_shader_name(shader_info,
4352 shaders[shader_count - 1]->info.stage));
4353 ac_dump_module(ctx.ac.module);
4354 fprintf(stderr, "\n");
4355 }
4356
4357 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
4358
4359 if (shader_count == 1)
4360 ac_nir_eliminate_const_vs_outputs(&ctx);
4361
4362 if (options->dump_shader) {
4363 ctx.shader_info->private_mem_vgprs =
4364 ac_count_scratch_private_memory(ctx.main_function);
4365 }
4366
4367 return ctx.ac.module;
4368 }
4369
4370 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
4371 {
4372 unsigned *retval = (unsigned *)context;
4373 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
4374 char *description = LLVMGetDiagInfoDescription(di);
4375
4376 if (severity == LLVMDSError) {
4377 *retval = 1;
4378 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
4379 description);
4380 }
4381
4382 LLVMDisposeMessage(description);
4383 }
4384
4385 static unsigned radv_llvm_compile(LLVMModuleRef M,
4386 char **pelf_buffer, size_t *pelf_size,
4387 struct ac_llvm_compiler *ac_llvm)
4388 {
4389 unsigned retval = 0;
4390 LLVMContextRef llvm_ctx;
4391
4392 /* Setup Diagnostic Handler*/
4393 llvm_ctx = LLVMGetModuleContext(M);
4394
4395 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
4396 &retval);
4397
4398 /* Compile IR*/
4399 if (!radv_compile_to_elf(ac_llvm, M, pelf_buffer, pelf_size))
4400 retval = 1;
4401 return retval;
4402 }
4403
4404 static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
4405 LLVMModuleRef llvm_module,
4406 struct radv_shader_binary **rbinary,
4407 gl_shader_stage stage,
4408 const char *name,
4409 const struct radv_nir_compiler_options *options)
4410 {
4411 char *elf_buffer = NULL;
4412 size_t elf_size = 0;
4413 char *llvm_ir_string = NULL;
4414
4415 if (options->dump_shader) {
4416 fprintf(stderr, "%s LLVM IR:\n\n", name);
4417 ac_dump_module(llvm_module);
4418 fprintf(stderr, "\n");
4419 }
4420
4421 if (options->record_llvm_ir) {
4422 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
4423 llvm_ir_string = strdup(llvm_ir);
4424 LLVMDisposeMessage(llvm_ir);
4425 }
4426
4427 int v = radv_llvm_compile(llvm_module, &elf_buffer, &elf_size, ac_llvm);
4428 if (v) {
4429 fprintf(stderr, "compile failed\n");
4430 }
4431
4432 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
4433 LLVMDisposeModule(llvm_module);
4434 LLVMContextDispose(ctx);
4435
4436 size_t llvm_ir_size = llvm_ir_string ? strlen(llvm_ir_string) : 0;
4437 size_t alloc_size = sizeof(struct radv_shader_binary_rtld) + elf_size + llvm_ir_size + 1;
4438 struct radv_shader_binary_rtld *rbin = calloc(1, alloc_size);
4439 memcpy(rbin->data, elf_buffer, elf_size);
4440 if (llvm_ir_string)
4441 memcpy(rbin->data + elf_size, llvm_ir_string, llvm_ir_size + 1);
4442
4443 rbin->base.type = RADV_BINARY_TYPE_RTLD;
4444 rbin->base.stage = stage;
4445 rbin->base.total_size = alloc_size;
4446 rbin->elf_size = elf_size;
4447 rbin->llvm_ir_size = llvm_ir_size;
4448 *rbinary = &rbin->base;
4449
4450 free(llvm_ir_string);
4451 free(elf_buffer);
4452 }
4453
4454 void
4455 radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
4456 struct radv_shader_binary **rbinary,
4457 struct radv_shader_info *shader_info,
4458 struct nir_shader *const *nir,
4459 int nir_count,
4460 const struct radv_nir_compiler_options *options)
4461 {
4462
4463 LLVMModuleRef llvm_module;
4464
4465 llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, shader_info,
4466 options);
4467
4468 ac_compile_llvm_module(ac_llvm, llvm_module, rbinary,
4469 nir[nir_count - 1]->info.stage,
4470 radv_get_shader_name(shader_info,
4471 nir[nir_count - 1]->info.stage),
4472 options);
4473
4474 /* Determine the ES type (VS or TES) for the GS on GFX9. */
4475 if (options->chip_class >= GFX9) {
4476 if (nir_count == 2 &&
4477 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
4478 shader_info->gs.es_type = nir[0]->info.stage;
4479 }
4480 }
4481 shader_info->wave_size = options->wave_size;
4482 }
4483
4484 static void
4485 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
4486 {
4487 LLVMValueRef vtx_offset =
4488 LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
4489 LLVMConstInt(ctx->ac.i32, 4, false), "");
4490 LLVMValueRef stream_id;
4491
4492 /* Fetch the vertex stream ID. */
4493 if (ctx->shader_info->so.num_outputs) {
4494 stream_id =
4495 ac_unpack_param(&ctx->ac, ctx->streamout_config, 24, 2);
4496 } else {
4497 stream_id = ctx->ac.i32_0;
4498 }
4499
4500 LLVMBasicBlockRef end_bb;
4501 LLVMValueRef switch_inst;
4502
4503 end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
4504 ctx->main_function, "end");
4505 switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);
4506
4507 for (unsigned stream = 0; stream < 4; stream++) {
4508 unsigned num_components =
4509 ctx->shader_info->gs.num_stream_output_components[stream];
4510 LLVMBasicBlockRef bb;
4511 unsigned offset;
4512
4513 if (!num_components)
4514 continue;
4515
4516 if (stream > 0 && !ctx->shader_info->so.num_outputs)
4517 continue;
4518
4519 bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
4520 LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
4521 LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);
4522
4523 offset = 0;
4524 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
4525 unsigned output_usage_mask =
4526 ctx->shader_info->gs.output_usage_mask[i];
4527 unsigned output_stream =
4528 ctx->shader_info->gs.output_streams[i];
4529 int length = util_last_bit(output_usage_mask);
4530
4531 if (!(ctx->output_mask & (1ull << i)) ||
4532 output_stream != stream)
4533 continue;
4534
4535 for (unsigned j = 0; j < length; j++) {
4536 LLVMValueRef value, soffset;
4537
4538 if (!(output_usage_mask & (1 << j)))
4539 continue;
4540
4541 soffset = LLVMConstInt(ctx->ac.i32,
4542 offset *
4543 ctx->shader->info.gs.vertices_out * 16 * 4, false);
4544
4545 offset++;
4546
4547 value = ac_build_buffer_load(&ctx->ac,
4548 ctx->gsvs_ring[0],
4549 1, ctx->ac.i32_0,
4550 vtx_offset, soffset,
4551 0, ac_glc | ac_slc, true, false);
4552
4553 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4554 if (ac_get_type_size(type) == 2) {
4555 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
4556 value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
4557 }
4558
4559 LLVMBuildStore(ctx->ac.builder,
4560 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4561 }
4562 }
4563
4564 if (ctx->shader_info->so.num_outputs)
4565 radv_emit_streamout(ctx, stream);
4566
4567 if (stream == 0) {
4568 handle_vs_outputs_post(ctx, false, true,
4569 &ctx->shader_info->vs.outinfo);
4570 }
4571
4572 LLVMBuildBr(ctx->ac.builder, end_bb);
4573 }
4574
4575 LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
4576 }
4577
4578 void
4579 radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
4580 struct nir_shader *geom_shader,
4581 struct radv_shader_binary **rbinary,
4582 struct radv_shader_info *shader_info,
4583 const struct radv_nir_compiler_options *options)
4584 {
4585 struct radv_shader_context ctx = {0};
4586 ctx.options = options;
4587 ctx.shader_info = shader_info;
4588
4589 enum ac_float_mode float_mode =
4590 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
4591 AC_FLOAT_MODE_DEFAULT;
4592
4593 ac_llvm_context_init(&ctx.ac, ac_llvm, options->chip_class,
4594 options->family, float_mode, 64, 64);
4595 ctx.context = ctx.ac.context;
4596
4597 ctx.is_gs_copy_shader = true;
4598 ctx.stage = MESA_SHADER_VERTEX;
4599 ctx.shader = geom_shader;
4600
4601 radv_nir_shader_info_pass(geom_shader, options, shader_info);
4602
4603 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
4604
4605 ac_setup_rings(&ctx);
4606
4607 nir_foreach_variable(variable, &geom_shader->outputs) {
4608 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
4609 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
4610 variable, MESA_SHADER_VERTEX);
4611 }
4612
4613 ac_gs_copy_shader_emit(&ctx);
4614
4615 LLVMBuildRetVoid(ctx.ac.builder);
4616
4617 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
4618
4619 ac_compile_llvm_module(ac_llvm, ctx.ac.module, rbinary,
4620 MESA_SHADER_VERTEX, "GS Copy Shader", options);
4621 (*rbinary)->is_gs_copy_shader = true;
4622
4623 }