radv: Enable ACO on all stages.
[mesa.git] / src / amd / vulkan / radv_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/disk_cache.h"
29 #include "util/mesa-sha1.h"
30 #include "util/u_atomic.h"
31 #include "radv_debug.h"
32 #include "radv_private.h"
33 #include "radv_cs.h"
34 #include "radv_shader.h"
35 #include "nir/nir.h"
36 #include "nir/nir_builder.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40
41 #include <llvm-c/Core.h>
42 #include <llvm-c/TargetMachine.h>
43
44 #include "sid.h"
45 #include "ac_binary.h"
46 #include "ac_llvm_util.h"
47 #include "ac_nir_to_llvm.h"
48 #include "vk_format.h"
49 #include "util/debug.h"
50 #include "ac_exp_param.h"
51 #include "ac_shader_util.h"
52 #include "main/menums.h"
53
54 struct radv_blend_state {
55 uint32_t blend_enable_4bit;
56 uint32_t need_src_alpha;
57
58 uint32_t cb_color_control;
59 uint32_t cb_target_mask;
60 uint32_t cb_target_enabled_4bit;
61 uint32_t sx_mrt_blend_opt[8];
62 uint32_t cb_blend_control[8];
63
64 uint32_t spi_shader_col_format;
65 uint32_t cb_shader_mask;
66 uint32_t db_alpha_to_mask;
67
68 uint32_t commutative_4bit;
69
70 bool single_cb_enable;
71 bool mrt0_is_dual_src;
72 };
73
74 struct radv_dsa_order_invariance {
75 /* Whether the final result in Z/S buffers is guaranteed to be
76 * invariant under changes to the order in which fragments arrive.
77 */
78 bool zs;
79
80 /* Whether the set of fragments that pass the combined Z/S test is
81 * guaranteed to be invariant under changes to the order in which
82 * fragments arrive.
83 */
84 bool pass_set;
85 };
86
87 struct radv_tessellation_state {
88 uint32_t ls_hs_config;
89 unsigned num_patches;
90 unsigned lds_size;
91 uint32_t tf_param;
92 };
93
94 static const VkPipelineMultisampleStateCreateInfo *
95 radv_pipeline_get_multisample_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
96 {
97 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
98 return pCreateInfo->pMultisampleState;
99 return NULL;
100 }
101
102 static const VkPipelineTessellationStateCreateInfo *
103 radv_pipeline_get_tessellation_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
104 {
105 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
106 if (pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
107 pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
108 return pCreateInfo->pTessellationState;
109 }
110 }
111 return NULL;
112 }
113
114 static const VkPipelineDepthStencilStateCreateInfo *
115 radv_pipeline_get_depth_stencil_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
116 {
117 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
118 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
119
120 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
121 subpass->depth_stencil_attachment)
122 return pCreateInfo->pDepthStencilState;
123 return NULL;
124 }
125
126 static const VkPipelineColorBlendStateCreateInfo *
127 radv_pipeline_get_color_blend_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
128 {
129 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
130 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
131
132 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
133 subpass->has_color_att)
134 return pCreateInfo->pColorBlendState;
135 return NULL;
136 }
137
138 bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline)
139 {
140 struct radv_shader_variant *variant = NULL;
141 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
142 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
143 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
144 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
145 else if (pipeline->shaders[MESA_SHADER_VERTEX])
146 variant = pipeline->shaders[MESA_SHADER_VERTEX];
147 else
148 return false;
149 return variant->info.is_ngg;
150 }
151
152 bool radv_pipeline_has_ngg_passthrough(const struct radv_pipeline *pipeline)
153 {
154 assert(radv_pipeline_has_ngg(pipeline));
155
156 struct radv_shader_variant *variant = NULL;
157 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
158 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
159 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
160 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
161 else if (pipeline->shaders[MESA_SHADER_VERTEX])
162 variant = pipeline->shaders[MESA_SHADER_VERTEX];
163 else
164 return false;
165 return variant->info.is_ngg_passthrough;
166 }
167
168 bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
169 {
170 if (!radv_pipeline_has_gs(pipeline))
171 return false;
172
173 /* The GS copy shader is required if the pipeline has GS on GFX6-GFX9.
174 * On GFX10, it might be required in rare cases if it's not possible to
175 * enable NGG.
176 */
177 if (radv_pipeline_has_ngg(pipeline))
178 return false;
179
180 assert(pipeline->gs_copy_shader);
181 return true;
182 }
183
184 static void
185 radv_pipeline_destroy(struct radv_device *device,
186 struct radv_pipeline *pipeline,
187 const VkAllocationCallbacks* allocator)
188 {
189 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
190 if (pipeline->shaders[i])
191 radv_shader_variant_destroy(device, pipeline->shaders[i]);
192
193 if (pipeline->gs_copy_shader)
194 radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
195
196 if(pipeline->cs.buf)
197 free(pipeline->cs.buf);
198 vk_free2(&device->alloc, allocator, pipeline);
199 }
200
201 void radv_DestroyPipeline(
202 VkDevice _device,
203 VkPipeline _pipeline,
204 const VkAllocationCallbacks* pAllocator)
205 {
206 RADV_FROM_HANDLE(radv_device, device, _device);
207 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
208
209 if (!_pipeline)
210 return;
211
212 radv_pipeline_destroy(device, pipeline, pAllocator);
213 }
214
215 static uint32_t get_hash_flags(struct radv_device *device)
216 {
217 uint32_t hash_flags = 0;
218
219 if (device->instance->debug_flags & RADV_DEBUG_NO_NGG)
220 hash_flags |= RADV_HASH_SHADER_NO_NGG;
221 if (device->physical_device->cs_wave_size == 32)
222 hash_flags |= RADV_HASH_SHADER_CS_WAVE32;
223 if (device->physical_device->ps_wave_size == 32)
224 hash_flags |= RADV_HASH_SHADER_PS_WAVE32;
225 if (device->physical_device->ge_wave_size == 32)
226 hash_flags |= RADV_HASH_SHADER_GE_WAVE32;
227 if (device->physical_device->use_aco)
228 hash_flags |= RADV_HASH_SHADER_ACO;
229 return hash_flags;
230 }
231
232 static VkResult
233 radv_pipeline_scratch_init(struct radv_device *device,
234 struct radv_pipeline *pipeline)
235 {
236 unsigned scratch_bytes_per_wave = 0;
237 unsigned max_waves = 0;
238 unsigned min_waves = 1;
239
240 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
241 if (pipeline->shaders[i] &&
242 pipeline->shaders[i]->config.scratch_bytes_per_wave) {
243 unsigned max_stage_waves = device->scratch_waves;
244
245 scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
246 pipeline->shaders[i]->config.scratch_bytes_per_wave);
247
248 max_stage_waves = MIN2(max_stage_waves,
249 4 * device->physical_device->rad_info.num_good_compute_units *
250 (256 / pipeline->shaders[i]->config.num_vgprs));
251 max_waves = MAX2(max_waves, max_stage_waves);
252 }
253 }
254
255 if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
256 unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
257 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
258 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
259 min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
260 }
261
262 pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
263 pipeline->max_waves = max_waves;
264 return VK_SUCCESS;
265 }
266
267 static uint32_t si_translate_blend_logic_op(VkLogicOp op)
268 {
269 switch (op) {
270 case VK_LOGIC_OP_CLEAR:
271 return V_028808_ROP3_CLEAR;
272 case VK_LOGIC_OP_AND:
273 return V_028808_ROP3_AND;
274 case VK_LOGIC_OP_AND_REVERSE:
275 return V_028808_ROP3_AND_REVERSE;
276 case VK_LOGIC_OP_COPY:
277 return V_028808_ROP3_COPY;
278 case VK_LOGIC_OP_AND_INVERTED:
279 return V_028808_ROP3_AND_INVERTED;
280 case VK_LOGIC_OP_NO_OP:
281 return V_028808_ROP3_NO_OP;
282 case VK_LOGIC_OP_XOR:
283 return V_028808_ROP3_XOR;
284 case VK_LOGIC_OP_OR:
285 return V_028808_ROP3_OR;
286 case VK_LOGIC_OP_NOR:
287 return V_028808_ROP3_NOR;
288 case VK_LOGIC_OP_EQUIVALENT:
289 return V_028808_ROP3_EQUIVALENT;
290 case VK_LOGIC_OP_INVERT:
291 return V_028808_ROP3_INVERT;
292 case VK_LOGIC_OP_OR_REVERSE:
293 return V_028808_ROP3_OR_REVERSE;
294 case VK_LOGIC_OP_COPY_INVERTED:
295 return V_028808_ROP3_COPY_INVERTED;
296 case VK_LOGIC_OP_OR_INVERTED:
297 return V_028808_ROP3_OR_INVERTED;
298 case VK_LOGIC_OP_NAND:
299 return V_028808_ROP3_NAND;
300 case VK_LOGIC_OP_SET:
301 return V_028808_ROP3_SET;
302 default:
303 unreachable("Unhandled logic op");
304 }
305 }
306
307
308 static uint32_t si_translate_blend_function(VkBlendOp op)
309 {
310 switch (op) {
311 case VK_BLEND_OP_ADD:
312 return V_028780_COMB_DST_PLUS_SRC;
313 case VK_BLEND_OP_SUBTRACT:
314 return V_028780_COMB_SRC_MINUS_DST;
315 case VK_BLEND_OP_REVERSE_SUBTRACT:
316 return V_028780_COMB_DST_MINUS_SRC;
317 case VK_BLEND_OP_MIN:
318 return V_028780_COMB_MIN_DST_SRC;
319 case VK_BLEND_OP_MAX:
320 return V_028780_COMB_MAX_DST_SRC;
321 default:
322 return 0;
323 }
324 }
325
326 static uint32_t si_translate_blend_factor(VkBlendFactor factor)
327 {
328 switch (factor) {
329 case VK_BLEND_FACTOR_ZERO:
330 return V_028780_BLEND_ZERO;
331 case VK_BLEND_FACTOR_ONE:
332 return V_028780_BLEND_ONE;
333 case VK_BLEND_FACTOR_SRC_COLOR:
334 return V_028780_BLEND_SRC_COLOR;
335 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
336 return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
337 case VK_BLEND_FACTOR_DST_COLOR:
338 return V_028780_BLEND_DST_COLOR;
339 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
340 return V_028780_BLEND_ONE_MINUS_DST_COLOR;
341 case VK_BLEND_FACTOR_SRC_ALPHA:
342 return V_028780_BLEND_SRC_ALPHA;
343 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
344 return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
345 case VK_BLEND_FACTOR_DST_ALPHA:
346 return V_028780_BLEND_DST_ALPHA;
347 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
348 return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
349 case VK_BLEND_FACTOR_CONSTANT_COLOR:
350 return V_028780_BLEND_CONSTANT_COLOR;
351 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
352 return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
353 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
354 return V_028780_BLEND_CONSTANT_ALPHA;
355 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
356 return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
357 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
358 return V_028780_BLEND_SRC_ALPHA_SATURATE;
359 case VK_BLEND_FACTOR_SRC1_COLOR:
360 return V_028780_BLEND_SRC1_COLOR;
361 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
362 return V_028780_BLEND_INV_SRC1_COLOR;
363 case VK_BLEND_FACTOR_SRC1_ALPHA:
364 return V_028780_BLEND_SRC1_ALPHA;
365 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
366 return V_028780_BLEND_INV_SRC1_ALPHA;
367 default:
368 return 0;
369 }
370 }
371
372 static uint32_t si_translate_blend_opt_function(VkBlendOp op)
373 {
374 switch (op) {
375 case VK_BLEND_OP_ADD:
376 return V_028760_OPT_COMB_ADD;
377 case VK_BLEND_OP_SUBTRACT:
378 return V_028760_OPT_COMB_SUBTRACT;
379 case VK_BLEND_OP_REVERSE_SUBTRACT:
380 return V_028760_OPT_COMB_REVSUBTRACT;
381 case VK_BLEND_OP_MIN:
382 return V_028760_OPT_COMB_MIN;
383 case VK_BLEND_OP_MAX:
384 return V_028760_OPT_COMB_MAX;
385 default:
386 return V_028760_OPT_COMB_BLEND_DISABLED;
387 }
388 }
389
390 static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
391 {
392 switch (factor) {
393 case VK_BLEND_FACTOR_ZERO:
394 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
395 case VK_BLEND_FACTOR_ONE:
396 return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
397 case VK_BLEND_FACTOR_SRC_COLOR:
398 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
399 : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
400 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
401 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
402 : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
403 case VK_BLEND_FACTOR_SRC_ALPHA:
404 return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
405 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
406 return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
407 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
408 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
409 : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
410 default:
411 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
412 }
413 }
414
415 /**
416 * Get rid of DST in the blend factors by commuting the operands:
417 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
418 */
419 static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
420 unsigned *dst_factor, unsigned expected_dst,
421 unsigned replacement_src)
422 {
423 if (*src_factor == expected_dst &&
424 *dst_factor == VK_BLEND_FACTOR_ZERO) {
425 *src_factor = VK_BLEND_FACTOR_ZERO;
426 *dst_factor = replacement_src;
427
428 /* Commuting the operands requires reversing subtractions. */
429 if (*func == VK_BLEND_OP_SUBTRACT)
430 *func = VK_BLEND_OP_REVERSE_SUBTRACT;
431 else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
432 *func = VK_BLEND_OP_SUBTRACT;
433 }
434 }
435
436 static bool si_blend_factor_uses_dst(unsigned factor)
437 {
438 return factor == VK_BLEND_FACTOR_DST_COLOR ||
439 factor == VK_BLEND_FACTOR_DST_ALPHA ||
440 factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
441 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
442 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
443 }
444
445 static bool is_dual_src(VkBlendFactor factor)
446 {
447 switch (factor) {
448 case VK_BLEND_FACTOR_SRC1_COLOR:
449 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
450 case VK_BLEND_FACTOR_SRC1_ALPHA:
451 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
452 return true;
453 default:
454 return false;
455 }
456 }
457
458 static unsigned si_choose_spi_color_format(VkFormat vk_format,
459 bool blend_enable,
460 bool blend_need_alpha)
461 {
462 const struct vk_format_description *desc = vk_format_description(vk_format);
463 unsigned format, ntype, swap;
464
465 /* Alpha is needed for alpha-to-coverage.
466 * Blending may be with or without alpha.
467 */
468 unsigned normal = 0; /* most optimal, may not support blending or export alpha */
469 unsigned alpha = 0; /* exports alpha, but may not support blending */
470 unsigned blend = 0; /* supports blending, but may not export alpha */
471 unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
472
473 format = radv_translate_colorformat(vk_format);
474 ntype = radv_translate_color_numformat(vk_format, desc,
475 vk_format_get_first_non_void_channel(vk_format));
476 swap = radv_translate_colorswap(vk_format, false);
477
478 /* Choose the SPI color formats. These are required values for Stoney/RB+.
479 * Other chips have multiple choices, though they are not necessarily better.
480 */
481 switch (format) {
482 case V_028C70_COLOR_5_6_5:
483 case V_028C70_COLOR_1_5_5_5:
484 case V_028C70_COLOR_5_5_5_1:
485 case V_028C70_COLOR_4_4_4_4:
486 case V_028C70_COLOR_10_11_11:
487 case V_028C70_COLOR_11_11_10:
488 case V_028C70_COLOR_8:
489 case V_028C70_COLOR_8_8:
490 case V_028C70_COLOR_8_8_8_8:
491 case V_028C70_COLOR_10_10_10_2:
492 case V_028C70_COLOR_2_10_10_10:
493 if (ntype == V_028C70_NUMBER_UINT)
494 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
495 else if (ntype == V_028C70_NUMBER_SINT)
496 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
497 else
498 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
499 break;
500
501 case V_028C70_COLOR_16:
502 case V_028C70_COLOR_16_16:
503 case V_028C70_COLOR_16_16_16_16:
504 if (ntype == V_028C70_NUMBER_UNORM ||
505 ntype == V_028C70_NUMBER_SNORM) {
506 /* UNORM16 and SNORM16 don't support blending */
507 if (ntype == V_028C70_NUMBER_UNORM)
508 normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
509 else
510 normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
511
512 /* Use 32 bits per channel for blending. */
513 if (format == V_028C70_COLOR_16) {
514 if (swap == V_028C70_SWAP_STD) { /* R */
515 blend = V_028714_SPI_SHADER_32_R;
516 blend_alpha = V_028714_SPI_SHADER_32_AR;
517 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
518 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
519 else
520 assert(0);
521 } else if (format == V_028C70_COLOR_16_16) {
522 if (swap == V_028C70_SWAP_STD) { /* RG */
523 blend = V_028714_SPI_SHADER_32_GR;
524 blend_alpha = V_028714_SPI_SHADER_32_ABGR;
525 } else if (swap == V_028C70_SWAP_ALT) /* RA */
526 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
527 else
528 assert(0);
529 } else /* 16_16_16_16 */
530 blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
531 } else if (ntype == V_028C70_NUMBER_UINT)
532 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
533 else if (ntype == V_028C70_NUMBER_SINT)
534 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
535 else if (ntype == V_028C70_NUMBER_FLOAT)
536 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
537 else
538 assert(0);
539 break;
540
541 case V_028C70_COLOR_32:
542 if (swap == V_028C70_SWAP_STD) { /* R */
543 blend = normal = V_028714_SPI_SHADER_32_R;
544 alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
545 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
546 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
547 else
548 assert(0);
549 break;
550
551 case V_028C70_COLOR_32_32:
552 if (swap == V_028C70_SWAP_STD) { /* RG */
553 blend = normal = V_028714_SPI_SHADER_32_GR;
554 alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
555 } else if (swap == V_028C70_SWAP_ALT) /* RA */
556 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
557 else
558 assert(0);
559 break;
560
561 case V_028C70_COLOR_32_32_32_32:
562 case V_028C70_COLOR_8_24:
563 case V_028C70_COLOR_24_8:
564 case V_028C70_COLOR_X24_8_32_FLOAT:
565 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
566 break;
567
568 default:
569 unreachable("unhandled blend format");
570 }
571
572 if (blend_enable && blend_need_alpha)
573 return blend_alpha;
574 else if(blend_need_alpha)
575 return alpha;
576 else if(blend_enable)
577 return blend;
578 else
579 return normal;
580 }
581
582 static void
583 radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
584 const VkGraphicsPipelineCreateInfo *pCreateInfo,
585 struct radv_blend_state *blend)
586 {
587 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
588 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
589 unsigned col_format = 0;
590 unsigned num_targets;
591
592 for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) {
593 unsigned cf;
594
595 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
596 cf = V_028714_SPI_SHADER_ZERO;
597 } else {
598 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment;
599 bool blend_enable =
600 blend->blend_enable_4bit & (0xfu << (i * 4));
601
602 cf = si_choose_spi_color_format(attachment->format,
603 blend_enable,
604 blend->need_src_alpha & (1 << i));
605 }
606
607 col_format |= cf << (4 * i);
608 }
609
610 if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) {
611 /* When a subpass doesn't have any color attachments, write the
612 * alpha channel of MRT0 when alpha coverage is enabled because
613 * the depth attachment needs it.
614 */
615 col_format |= V_028714_SPI_SHADER_32_AR;
616 }
617
618 /* If the i-th target format is set, all previous target formats must
619 * be non-zero to avoid hangs.
620 */
621 num_targets = (util_last_bit(col_format) + 3) / 4;
622 for (unsigned i = 0; i < num_targets; i++) {
623 if (!(col_format & (0xf << (i * 4)))) {
624 col_format |= V_028714_SPI_SHADER_32_R << (i * 4);
625 }
626 }
627
628 /* The output for dual source blending should have the same format as
629 * the first output.
630 */
631 if (blend->mrt0_is_dual_src)
632 col_format |= (col_format & 0xf) << 4;
633
634 blend->cb_shader_mask = ac_get_cb_shader_mask(col_format);
635 blend->spi_shader_col_format = col_format;
636 }
637
638 static bool
639 format_is_int8(VkFormat format)
640 {
641 const struct vk_format_description *desc = vk_format_description(format);
642 int channel = vk_format_get_first_non_void_channel(format);
643
644 return channel >= 0 && desc->channel[channel].pure_integer &&
645 desc->channel[channel].size == 8;
646 }
647
648 static bool
649 format_is_int10(VkFormat format)
650 {
651 const struct vk_format_description *desc = vk_format_description(format);
652
653 if (desc->nr_channels != 4)
654 return false;
655 for (unsigned i = 0; i < 4; i++) {
656 if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
657 return true;
658 }
659 return false;
660 }
661
662 /*
663 * Ordered so that for each i,
664 * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
665 */
666 const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
667 VK_FORMAT_R32_SFLOAT,
668 VK_FORMAT_R32G32_SFLOAT,
669 VK_FORMAT_R8G8B8A8_UNORM,
670 VK_FORMAT_R16G16B16A16_UNORM,
671 VK_FORMAT_R16G16B16A16_SNORM,
672 VK_FORMAT_R16G16B16A16_UINT,
673 VK_FORMAT_R16G16B16A16_SINT,
674 VK_FORMAT_R32G32B32A32_SFLOAT,
675 VK_FORMAT_R8G8B8A8_UINT,
676 VK_FORMAT_R8G8B8A8_SINT,
677 VK_FORMAT_A2R10G10B10_UINT_PACK32,
678 VK_FORMAT_A2R10G10B10_SINT_PACK32,
679 };
680
681 unsigned radv_format_meta_fs_key(VkFormat format)
682 {
683 unsigned col_format = si_choose_spi_color_format(format, false, false);
684
685 assert(col_format != V_028714_SPI_SHADER_32_AR);
686 if (col_format >= V_028714_SPI_SHADER_32_AR)
687 --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
688
689 --col_format; /* Skip V_028714_SPI_SHADER_ZERO */
690 bool is_int8 = format_is_int8(format);
691 bool is_int10 = format_is_int10(format);
692
693 return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0);
694 }
695
696 static void
697 radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo,
698 unsigned *is_int8, unsigned *is_int10)
699 {
700 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
701 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
702 *is_int8 = 0;
703 *is_int10 = 0;
704
705 for (unsigned i = 0; i < subpass->color_count; ++i) {
706 struct radv_render_pass_attachment *attachment;
707
708 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
709 continue;
710
711 attachment = pass->attachments + subpass->color_attachments[i].attachment;
712
713 if (format_is_int8(attachment->format))
714 *is_int8 |= 1 << i;
715 if (format_is_int10(attachment->format))
716 *is_int10 |= 1 << i;
717 }
718 }
719
720 static void
721 radv_blend_check_commutativity(struct radv_blend_state *blend,
722 VkBlendOp op, VkBlendFactor src,
723 VkBlendFactor dst, unsigned chanmask)
724 {
725 /* Src factor is allowed when it does not depend on Dst. */
726 static const uint32_t src_allowed =
727 (1u << VK_BLEND_FACTOR_ONE) |
728 (1u << VK_BLEND_FACTOR_SRC_COLOR) |
729 (1u << VK_BLEND_FACTOR_SRC_ALPHA) |
730 (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) |
731 (1u << VK_BLEND_FACTOR_CONSTANT_COLOR) |
732 (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) |
733 (1u << VK_BLEND_FACTOR_SRC1_COLOR) |
734 (1u << VK_BLEND_FACTOR_SRC1_ALPHA) |
735 (1u << VK_BLEND_FACTOR_ZERO) |
736 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) |
737 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
738 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) |
739 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) |
740 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) |
741 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA);
742
743 if (dst == VK_BLEND_FACTOR_ONE &&
744 (src_allowed & (1u << src))) {
745 /* Addition is commutative, but floating point addition isn't
746 * associative: subtle changes can be introduced via different
747 * rounding. Be conservative, only enable for min and max.
748 */
749 if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN)
750 blend->commutative_4bit |= chanmask;
751 }
752 }
753
754 static struct radv_blend_state
755 radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
756 const VkGraphicsPipelineCreateInfo *pCreateInfo,
757 const struct radv_graphics_pipeline_create_info *extra)
758 {
759 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
760 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
761 struct radv_blend_state blend = {0};
762 unsigned mode = V_028808_CB_NORMAL;
763 int i;
764
765 if (extra && extra->custom_blend_mode) {
766 blend.single_cb_enable = true;
767 mode = extra->custom_blend_mode;
768 }
769
770 blend.cb_color_control = 0;
771 if (vkblend) {
772 if (vkblend->logicOpEnable)
773 blend.cb_color_control |= S_028808_ROP3(si_translate_blend_logic_op(vkblend->logicOp));
774 else
775 blend.cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
776 }
777
778 blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) |
779 S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
780 S_028B70_ALPHA_TO_MASK_OFFSET2(0) |
781 S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
782 S_028B70_OFFSET_ROUND(1);
783
784 if (vkms && vkms->alphaToCoverageEnable) {
785 blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
786 blend.need_src_alpha |= 0x1;
787 }
788
789 blend.cb_target_mask = 0;
790 if (vkblend) {
791 for (i = 0; i < vkblend->attachmentCount; i++) {
792 const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
793 unsigned blend_cntl = 0;
794 unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
795 VkBlendOp eqRGB = att->colorBlendOp;
796 VkBlendFactor srcRGB = att->srcColorBlendFactor;
797 VkBlendFactor dstRGB = att->dstColorBlendFactor;
798 VkBlendOp eqA = att->alphaBlendOp;
799 VkBlendFactor srcA = att->srcAlphaBlendFactor;
800 VkBlendFactor dstA = att->dstAlphaBlendFactor;
801
802 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
803
804 if (!att->colorWriteMask)
805 continue;
806
807 blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
808 blend.cb_target_enabled_4bit |= 0xf << (4 * i);
809 if (!att->blendEnable) {
810 blend.cb_blend_control[i] = blend_cntl;
811 continue;
812 }
813
814 if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
815 if (i == 0)
816 blend.mrt0_is_dual_src = true;
817
818 if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
819 srcRGB = VK_BLEND_FACTOR_ONE;
820 dstRGB = VK_BLEND_FACTOR_ONE;
821 }
822 if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
823 srcA = VK_BLEND_FACTOR_ONE;
824 dstA = VK_BLEND_FACTOR_ONE;
825 }
826
827 radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB,
828 0x7 << (4 * i));
829 radv_blend_check_commutativity(&blend, eqA, srcA, dstA,
830 0x8 << (4 * i));
831
832 /* Blending optimizations for RB+.
833 * These transformations don't change the behavior.
834 *
835 * First, get rid of DST in the blend factors:
836 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
837 */
838 si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
839 VK_BLEND_FACTOR_DST_COLOR,
840 VK_BLEND_FACTOR_SRC_COLOR);
841
842 si_blend_remove_dst(&eqA, &srcA, &dstA,
843 VK_BLEND_FACTOR_DST_COLOR,
844 VK_BLEND_FACTOR_SRC_COLOR);
845
846 si_blend_remove_dst(&eqA, &srcA, &dstA,
847 VK_BLEND_FACTOR_DST_ALPHA,
848 VK_BLEND_FACTOR_SRC_ALPHA);
849
850 /* Look up the ideal settings from tables. */
851 srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
852 dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
853 srcA_opt = si_translate_blend_opt_factor(srcA, true);
854 dstA_opt = si_translate_blend_opt_factor(dstA, true);
855
856 /* Handle interdependencies. */
857 if (si_blend_factor_uses_dst(srcRGB))
858 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
859 if (si_blend_factor_uses_dst(srcA))
860 dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
861
862 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
863 (dstRGB == VK_BLEND_FACTOR_ZERO ||
864 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
865 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
866 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
867
868 /* Set the final value. */
869 blend.sx_mrt_blend_opt[i] =
870 S_028760_COLOR_SRC_OPT(srcRGB_opt) |
871 S_028760_COLOR_DST_OPT(dstRGB_opt) |
872 S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
873 S_028760_ALPHA_SRC_OPT(srcA_opt) |
874 S_028760_ALPHA_DST_OPT(dstA_opt) |
875 S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
876 blend_cntl |= S_028780_ENABLE(1);
877
878 blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
879 blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
880 blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
881 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
882 blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
883 blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
884 blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
885 blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
886 }
887 blend.cb_blend_control[i] = blend_cntl;
888
889 blend.blend_enable_4bit |= 0xfu << (i * 4);
890
891 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
892 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
893 srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
894 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
895 srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
896 dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
897 blend.need_src_alpha |= 1 << i;
898 }
899 for (i = vkblend->attachmentCount; i < 8; i++) {
900 blend.cb_blend_control[i] = 0;
901 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
902 }
903 }
904
905 if (pipeline->device->physical_device->rad_info.has_rbplus) {
906 /* Disable RB+ blend optimizations for dual source blending. */
907 if (blend.mrt0_is_dual_src) {
908 for (i = 0; i < 8; i++) {
909 blend.sx_mrt_blend_opt[i] =
910 S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
911 S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
912 }
913 }
914
915 /* RB+ doesn't work with dual source blending, logic op and
916 * RESOLVE.
917 */
918 if (blend.mrt0_is_dual_src ||
919 (vkblend && vkblend->logicOpEnable) ||
920 mode == V_028808_CB_RESOLVE)
921 blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
922 }
923
924 if (blend.cb_target_mask)
925 blend.cb_color_control |= S_028808_MODE(mode);
926 else
927 blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
928
929 radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend);
930 return blend;
931 }
932
933 static uint32_t si_translate_stencil_op(enum VkStencilOp op)
934 {
935 switch (op) {
936 case VK_STENCIL_OP_KEEP:
937 return V_02842C_STENCIL_KEEP;
938 case VK_STENCIL_OP_ZERO:
939 return V_02842C_STENCIL_ZERO;
940 case VK_STENCIL_OP_REPLACE:
941 return V_02842C_STENCIL_REPLACE_TEST;
942 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
943 return V_02842C_STENCIL_ADD_CLAMP;
944 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
945 return V_02842C_STENCIL_SUB_CLAMP;
946 case VK_STENCIL_OP_INVERT:
947 return V_02842C_STENCIL_INVERT;
948 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
949 return V_02842C_STENCIL_ADD_WRAP;
950 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
951 return V_02842C_STENCIL_SUB_WRAP;
952 default:
953 return 0;
954 }
955 }
956
957 static uint32_t si_translate_fill(VkPolygonMode func)
958 {
959 switch(func) {
960 case VK_POLYGON_MODE_FILL:
961 return V_028814_X_DRAW_TRIANGLES;
962 case VK_POLYGON_MODE_LINE:
963 return V_028814_X_DRAW_LINES;
964 case VK_POLYGON_MODE_POINT:
965 return V_028814_X_DRAW_POINTS;
966 default:
967 assert(0);
968 return V_028814_X_DRAW_POINTS;
969 }
970 }
971
972 static uint8_t radv_pipeline_get_ps_iter_samples(const VkGraphicsPipelineCreateInfo *pCreateInfo)
973 {
974 const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
975 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
976 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
977 uint32_t ps_iter_samples = 1;
978 uint32_t num_samples;
979
980 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
981 *
982 * "If the VK_AMD_mixed_attachment_samples extension is enabled and the
983 * subpass uses color attachments, totalSamples is the number of
984 * samples of the color attachments. Otherwise, totalSamples is the
985 * value of VkPipelineMultisampleStateCreateInfo::rasterizationSamples
986 * specified at pipeline creation time."
987 */
988 if (subpass->has_color_att) {
989 num_samples = subpass->color_sample_count;
990 } else {
991 num_samples = vkms->rasterizationSamples;
992 }
993
994 if (vkms->sampleShadingEnable) {
995 ps_iter_samples = ceil(vkms->minSampleShading * num_samples);
996 ps_iter_samples = util_next_power_of_two(ps_iter_samples);
997 }
998 return ps_iter_samples;
999 }
1000
1001 static bool
1002 radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
1003 {
1004 return pCreateInfo->depthTestEnable &&
1005 pCreateInfo->depthWriteEnable &&
1006 pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER;
1007 }
1008
1009 static bool
1010 radv_writes_stencil(const VkStencilOpState *state)
1011 {
1012 return state->writeMask &&
1013 (state->failOp != VK_STENCIL_OP_KEEP ||
1014 state->passOp != VK_STENCIL_OP_KEEP ||
1015 state->depthFailOp != VK_STENCIL_OP_KEEP);
1016 }
1017
1018 static bool
1019 radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
1020 {
1021 return pCreateInfo->stencilTestEnable &&
1022 (radv_writes_stencil(&pCreateInfo->front) ||
1023 radv_writes_stencil(&pCreateInfo->back));
1024 }
1025
1026 static bool
1027 radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
1028 {
1029 return radv_is_depth_write_enabled(pCreateInfo) ||
1030 radv_is_stencil_write_enabled(pCreateInfo);
1031 }
1032
1033 static bool
1034 radv_order_invariant_stencil_op(VkStencilOp op)
1035 {
1036 /* REPLACE is normally order invariant, except when the stencil
1037 * reference value is written by the fragment shader. Tracking this
1038 * interaction does not seem worth the effort, so be conservative.
1039 */
1040 return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP &&
1041 op != VK_STENCIL_OP_DECREMENT_AND_CLAMP &&
1042 op != VK_STENCIL_OP_REPLACE;
1043 }
1044
1045 static bool
1046 radv_order_invariant_stencil_state(const VkStencilOpState *state)
1047 {
1048 /* Compute whether, assuming Z writes are disabled, this stencil state
1049 * is order invariant in the sense that the set of passing fragments as
1050 * well as the final stencil buffer result does not depend on the order
1051 * of fragments.
1052 */
1053 return !state->writeMask ||
1054 /* The following assumes that Z writes are disabled. */
1055 (state->compareOp == VK_COMPARE_OP_ALWAYS &&
1056 radv_order_invariant_stencil_op(state->passOp) &&
1057 radv_order_invariant_stencil_op(state->depthFailOp)) ||
1058 (state->compareOp == VK_COMPARE_OP_NEVER &&
1059 radv_order_invariant_stencil_op(state->failOp));
1060 }
1061
1062 static bool
1063 radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline,
1064 struct radv_blend_state *blend,
1065 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1066 {
1067 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1068 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
1069 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
1070 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
1071 unsigned colormask = blend->cb_target_enabled_4bit;
1072
1073 if (!pipeline->device->physical_device->out_of_order_rast_allowed)
1074 return false;
1075
1076 /* Be conservative if a logic operation is enabled with color buffers. */
1077 if (colormask && vkblend && vkblend->logicOpEnable)
1078 return false;
1079
1080 /* Default depth/stencil invariance when no attachment is bound. */
1081 struct radv_dsa_order_invariance dsa_order_invariant = {
1082 .zs = true, .pass_set = true
1083 };
1084
1085 if (vkds) {
1086 struct radv_render_pass_attachment *attachment =
1087 pass->attachments + subpass->depth_stencil_attachment->attachment;
1088 bool has_stencil = vk_format_is_stencil(attachment->format);
1089 struct radv_dsa_order_invariance order_invariance[2];
1090 struct radv_shader_variant *ps =
1091 pipeline->shaders[MESA_SHADER_FRAGMENT];
1092
1093 /* Compute depth/stencil order invariance in order to know if
1094 * it's safe to enable out-of-order.
1095 */
1096 bool zfunc_is_ordered =
1097 vkds->depthCompareOp == VK_COMPARE_OP_NEVER ||
1098 vkds->depthCompareOp == VK_COMPARE_OP_LESS ||
1099 vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL ||
1100 vkds->depthCompareOp == VK_COMPARE_OP_GREATER ||
1101 vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL;
1102
1103 bool nozwrite_and_order_invariant_stencil =
1104 !radv_is_ds_write_enabled(vkds) ||
1105 (!radv_is_depth_write_enabled(vkds) &&
1106 radv_order_invariant_stencil_state(&vkds->front) &&
1107 radv_order_invariant_stencil_state(&vkds->back));
1108
1109 order_invariance[1].zs =
1110 nozwrite_and_order_invariant_stencil ||
1111 (!radv_is_stencil_write_enabled(vkds) &&
1112 zfunc_is_ordered);
1113 order_invariance[0].zs =
1114 !radv_is_depth_write_enabled(vkds) || zfunc_is_ordered;
1115
1116 order_invariance[1].pass_set =
1117 nozwrite_and_order_invariant_stencil ||
1118 (!radv_is_stencil_write_enabled(vkds) &&
1119 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1120 vkds->depthCompareOp == VK_COMPARE_OP_NEVER));
1121 order_invariance[0].pass_set =
1122 !radv_is_depth_write_enabled(vkds) ||
1123 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1124 vkds->depthCompareOp == VK_COMPARE_OP_NEVER);
1125
1126 dsa_order_invariant = order_invariance[has_stencil];
1127 if (!dsa_order_invariant.zs)
1128 return false;
1129
1130 /* The set of PS invocations is always order invariant,
1131 * except when early Z/S tests are requested.
1132 */
1133 if (ps &&
1134 ps->info.ps.writes_memory &&
1135 ps->info.ps.early_fragment_test &&
1136 !dsa_order_invariant.pass_set)
1137 return false;
1138
1139 /* Determine if out-of-order rasterization should be disabled
1140 * when occlusion queries are used.
1141 */
1142 pipeline->graphics.disable_out_of_order_rast_for_occlusion =
1143 !dsa_order_invariant.pass_set;
1144 }
1145
1146 /* No color buffers are enabled for writing. */
1147 if (!colormask)
1148 return true;
1149
1150 unsigned blendmask = colormask & blend->blend_enable_4bit;
1151
1152 if (blendmask) {
1153 /* Only commutative blending. */
1154 if (blendmask & ~blend->commutative_4bit)
1155 return false;
1156
1157 if (!dsa_order_invariant.pass_set)
1158 return false;
1159 }
1160
1161 if (colormask & ~blendmask)
1162 return false;
1163
1164 return true;
1165 }
1166
1167 static void
1168 radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
1169 struct radv_blend_state *blend,
1170 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1171 {
1172 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
1173 struct radv_multisample_state *ms = &pipeline->graphics.ms;
1174 unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
1175 bool out_of_order_rast = false;
1176 int ps_iter_samples = 1;
1177 uint32_t mask = 0xffff;
1178
1179 if (vkms) {
1180 ms->num_samples = vkms->rasterizationSamples;
1181
1182 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
1183 *
1184 * "Sample shading is enabled for a graphics pipeline:
1185 *
1186 * - If the interface of the fragment shader entry point of the
1187 * graphics pipeline includes an input variable decorated
1188 * with SampleId or SamplePosition. In this case
1189 * minSampleShadingFactor takes the value 1.0.
1190 * - Else if the sampleShadingEnable member of the
1191 * VkPipelineMultisampleStateCreateInfo structure specified
1192 * when creating the graphics pipeline is set to VK_TRUE. In
1193 * this case minSampleShadingFactor takes the value of
1194 * VkPipelineMultisampleStateCreateInfo::minSampleShading.
1195 *
1196 * Otherwise, sample shading is considered disabled."
1197 */
1198 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.force_persample) {
1199 ps_iter_samples = ms->num_samples;
1200 } else {
1201 ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
1202 }
1203 } else {
1204 ms->num_samples = 1;
1205 }
1206
1207 const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
1208 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
1209 if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
1210 /* Out-of-order rasterization is explicitly enabled by the
1211 * application.
1212 */
1213 out_of_order_rast = true;
1214 } else {
1215 /* Determine if the driver can enable out-of-order
1216 * rasterization internally.
1217 */
1218 out_of_order_rast =
1219 radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo);
1220 }
1221
1222 ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
1223 ms->pa_sc_aa_config = 0;
1224 ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
1225 S_028804_INCOHERENT_EQAA_READS(1) |
1226 S_028804_INTERPOLATE_COMP_Z(1) |
1227 S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
1228 ms->pa_sc_mode_cntl_1 =
1229 S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
1230 S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
1231 S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
1232 S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
1233 /* always 1: */
1234 S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
1235 S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
1236 S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
1237 S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
1238 S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
1239 S_028A4C_FORCE_EOV_REZ_ENABLE(1);
1240 ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
1241 S_028A48_VPORT_SCISSOR_ENABLE(1);
1242
1243 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line =
1244 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1245 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1246 if (rast_line) {
1247 ms->pa_sc_mode_cntl_0 |= S_028A48_LINE_STIPPLE_ENABLE(rast_line->stippledLineEnable);
1248 if (rast_line->lineRasterizationMode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT) {
1249 /* From the Vulkan spec 1.1.129:
1250 *
1251 * "When VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT lines
1252 * are being rasterized, sample locations may all be
1253 * treated as being at the pixel center (this may
1254 * affect attribute and depth interpolation)."
1255 */
1256 ms->num_samples = 1;
1257 }
1258 }
1259
1260 if (ms->num_samples > 1) {
1261 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1262 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1263 uint32_t z_samples = subpass->depth_stencil_attachment ? subpass->depth_sample_count : ms->num_samples;
1264 unsigned log_samples = util_logbase2(ms->num_samples);
1265 unsigned log_z_samples = util_logbase2(z_samples);
1266 unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
1267 ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
1268 ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
1269 ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) |
1270 S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
1271 S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
1272 S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
1273 ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
1274 S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) |
1275 S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
1276 ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
1277 if (ps_iter_samples > 1)
1278 pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1279 }
1280
1281 if (vkms && vkms->pSampleMask) {
1282 mask = vkms->pSampleMask[0] & 0xffff;
1283 }
1284
1285 ms->pa_sc_aa_mask[0] = mask | (mask << 16);
1286 ms->pa_sc_aa_mask[1] = mask | (mask << 16);
1287 }
1288
1289 static bool
1290 radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
1291 {
1292 switch (topology) {
1293 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1294 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1295 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1296 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1297 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1298 return false;
1299 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1300 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1301 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1302 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1303 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1304 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1305 return true;
1306 default:
1307 unreachable("unhandled primitive type");
1308 }
1309 }
1310
1311 static uint32_t
1312 si_translate_prim(enum VkPrimitiveTopology topology)
1313 {
1314 switch (topology) {
1315 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1316 return V_008958_DI_PT_POINTLIST;
1317 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1318 return V_008958_DI_PT_LINELIST;
1319 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1320 return V_008958_DI_PT_LINESTRIP;
1321 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1322 return V_008958_DI_PT_TRILIST;
1323 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1324 return V_008958_DI_PT_TRISTRIP;
1325 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1326 return V_008958_DI_PT_TRIFAN;
1327 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1328 return V_008958_DI_PT_LINELIST_ADJ;
1329 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1330 return V_008958_DI_PT_LINESTRIP_ADJ;
1331 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1332 return V_008958_DI_PT_TRILIST_ADJ;
1333 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1334 return V_008958_DI_PT_TRISTRIP_ADJ;
1335 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1336 return V_008958_DI_PT_PATCH;
1337 default:
1338 assert(0);
1339 return 0;
1340 }
1341 }
1342
1343 static uint32_t
1344 si_conv_gl_prim_to_gs_out(unsigned gl_prim)
1345 {
1346 switch (gl_prim) {
1347 case 0: /* GL_POINTS */
1348 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1349 case 1: /* GL_LINES */
1350 case 3: /* GL_LINE_STRIP */
1351 case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
1352 case 0x8E7A: /* GL_ISOLINES */
1353 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1354
1355 case 4: /* GL_TRIANGLES */
1356 case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
1357 case 5: /* GL_TRIANGLE_STRIP */
1358 case 7: /* GL_QUADS */
1359 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1360 default:
1361 assert(0);
1362 return 0;
1363 }
1364 }
1365
1366 static uint32_t
1367 si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
1368 {
1369 switch (topology) {
1370 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1371 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1372 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1373 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1374 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1375 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1376 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1377 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1378 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1379 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1380 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1381 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1382 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1383 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1384 default:
1385 assert(0);
1386 return 0;
1387 }
1388 }
1389
1390 static unsigned radv_dynamic_state_mask(VkDynamicState state)
1391 {
1392 switch(state) {
1393 case VK_DYNAMIC_STATE_VIEWPORT:
1394 return RADV_DYNAMIC_VIEWPORT;
1395 case VK_DYNAMIC_STATE_SCISSOR:
1396 return RADV_DYNAMIC_SCISSOR;
1397 case VK_DYNAMIC_STATE_LINE_WIDTH:
1398 return RADV_DYNAMIC_LINE_WIDTH;
1399 case VK_DYNAMIC_STATE_DEPTH_BIAS:
1400 return RADV_DYNAMIC_DEPTH_BIAS;
1401 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1402 return RADV_DYNAMIC_BLEND_CONSTANTS;
1403 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
1404 return RADV_DYNAMIC_DEPTH_BOUNDS;
1405 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
1406 return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
1407 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
1408 return RADV_DYNAMIC_STENCIL_WRITE_MASK;
1409 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
1410 return RADV_DYNAMIC_STENCIL_REFERENCE;
1411 case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
1412 return RADV_DYNAMIC_DISCARD_RECTANGLE;
1413 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
1414 return RADV_DYNAMIC_SAMPLE_LOCATIONS;
1415 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
1416 return RADV_DYNAMIC_LINE_STIPPLE;
1417 default:
1418 unreachable("Unhandled dynamic state");
1419 }
1420 }
1421
1422 static uint32_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
1423 {
1424 uint32_t states = RADV_DYNAMIC_ALL;
1425
1426 /* If rasterization is disabled we do not care about any of the dynamic states,
1427 * since they are all rasterization related only. */
1428 if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
1429 return 0;
1430
1431 if (!pCreateInfo->pRasterizationState->depthBiasEnable)
1432 states &= ~RADV_DYNAMIC_DEPTH_BIAS;
1433
1434 if (!pCreateInfo->pDepthStencilState ||
1435 !pCreateInfo->pDepthStencilState->depthBoundsTestEnable)
1436 states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
1437
1438 if (!pCreateInfo->pDepthStencilState ||
1439 !pCreateInfo->pDepthStencilState->stencilTestEnable)
1440 states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK |
1441 RADV_DYNAMIC_STENCIL_WRITE_MASK |
1442 RADV_DYNAMIC_STENCIL_REFERENCE);
1443
1444 if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT))
1445 states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
1446
1447 if (!pCreateInfo->pMultisampleState ||
1448 !vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1449 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT))
1450 states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
1451
1452 if (!pCreateInfo->pRasterizationState ||
1453 !vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1454 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT))
1455 states &= ~RADV_DYNAMIC_LINE_STIPPLE;
1456
1457 /* TODO: blend constants & line width. */
1458
1459 return states;
1460 }
1461
1462
1463 static void
1464 radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
1465 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1466 {
1467 uint32_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo);
1468 uint32_t states = needed_states;
1469 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1470 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1471
1472 pipeline->dynamic_state = default_dynamic_state;
1473 pipeline->graphics.needed_dynamic_state = needed_states;
1474
1475 if (pCreateInfo->pDynamicState) {
1476 /* Remove all of the states that are marked as dynamic */
1477 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1478 for (uint32_t s = 0; s < count; s++)
1479 states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
1480 }
1481
1482 struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
1483
1484 if (needed_states & RADV_DYNAMIC_VIEWPORT) {
1485 assert(pCreateInfo->pViewportState);
1486
1487 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1488 if (states & RADV_DYNAMIC_VIEWPORT) {
1489 typed_memcpy(dynamic->viewport.viewports,
1490 pCreateInfo->pViewportState->pViewports,
1491 pCreateInfo->pViewportState->viewportCount);
1492 }
1493 }
1494
1495 if (needed_states & RADV_DYNAMIC_SCISSOR) {
1496 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1497 if (states & RADV_DYNAMIC_SCISSOR) {
1498 typed_memcpy(dynamic->scissor.scissors,
1499 pCreateInfo->pViewportState->pScissors,
1500 pCreateInfo->pViewportState->scissorCount);
1501 }
1502 }
1503
1504 if (states & RADV_DYNAMIC_LINE_WIDTH) {
1505 assert(pCreateInfo->pRasterizationState);
1506 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1507 }
1508
1509 if (states & RADV_DYNAMIC_DEPTH_BIAS) {
1510 assert(pCreateInfo->pRasterizationState);
1511 dynamic->depth_bias.bias =
1512 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1513 dynamic->depth_bias.clamp =
1514 pCreateInfo->pRasterizationState->depthBiasClamp;
1515 dynamic->depth_bias.slope =
1516 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1517 }
1518
1519 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1520 *
1521 * pColorBlendState is [...] NULL if the pipeline has rasterization
1522 * disabled or if the subpass of the render pass the pipeline is
1523 * created against does not use any color attachments.
1524 */
1525 if (subpass->has_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) {
1526 assert(pCreateInfo->pColorBlendState);
1527 typed_memcpy(dynamic->blend_constants,
1528 pCreateInfo->pColorBlendState->blendConstants, 4);
1529 }
1530
1531 /* If there is no depthstencil attachment, then don't read
1532 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1533 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1534 * no need to override the depthstencil defaults in
1535 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
1536 *
1537 * Section 9.2 of the Vulkan 1.0.15 spec says:
1538 *
1539 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1540 * disabled or if the subpass of the render pass the pipeline is created
1541 * against does not use a depth/stencil attachment.
1542 */
1543 if (needed_states && subpass->depth_stencil_attachment) {
1544 assert(pCreateInfo->pDepthStencilState);
1545
1546 if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
1547 dynamic->depth_bounds.min =
1548 pCreateInfo->pDepthStencilState->minDepthBounds;
1549 dynamic->depth_bounds.max =
1550 pCreateInfo->pDepthStencilState->maxDepthBounds;
1551 }
1552
1553 if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
1554 dynamic->stencil_compare_mask.front =
1555 pCreateInfo->pDepthStencilState->front.compareMask;
1556 dynamic->stencil_compare_mask.back =
1557 pCreateInfo->pDepthStencilState->back.compareMask;
1558 }
1559
1560 if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
1561 dynamic->stencil_write_mask.front =
1562 pCreateInfo->pDepthStencilState->front.writeMask;
1563 dynamic->stencil_write_mask.back =
1564 pCreateInfo->pDepthStencilState->back.writeMask;
1565 }
1566
1567 if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
1568 dynamic->stencil_reference.front =
1569 pCreateInfo->pDepthStencilState->front.reference;
1570 dynamic->stencil_reference.back =
1571 pCreateInfo->pDepthStencilState->back.reference;
1572 }
1573 }
1574
1575 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
1576 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
1577 if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1578 dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount;
1579 if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1580 typed_memcpy(dynamic->discard_rectangle.rectangles,
1581 discard_rectangle_info->pDiscardRectangles,
1582 discard_rectangle_info->discardRectangleCount);
1583 }
1584 }
1585
1586 if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
1587 const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info =
1588 vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1589 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
1590 /* If sampleLocationsEnable is VK_FALSE, the default sample
1591 * locations are used and the values specified in
1592 * sampleLocationsInfo are ignored.
1593 */
1594 if (sample_location_info->sampleLocationsEnable) {
1595 const VkSampleLocationsInfoEXT *pSampleLocationsInfo =
1596 &sample_location_info->sampleLocationsInfo;
1597
1598 assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
1599
1600 dynamic->sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
1601 dynamic->sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
1602 dynamic->sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
1603 typed_memcpy(&dynamic->sample_location.locations[0],
1604 pSampleLocationsInfo->pSampleLocations,
1605 pSampleLocationsInfo->sampleLocationsCount);
1606 }
1607 }
1608
1609 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line_info =
1610 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1611 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1612 if (needed_states & RADV_DYNAMIC_LINE_STIPPLE) {
1613 dynamic->line_stipple.factor = rast_line_info->lineStippleFactor;
1614 dynamic->line_stipple.pattern = rast_line_info->lineStipplePattern;
1615 }
1616
1617 pipeline->dynamic_state.mask = states;
1618 }
1619
1620 static void
1621 gfx9_get_gs_info(const struct radv_pipeline_key *key,
1622 const struct radv_pipeline *pipeline,
1623 nir_shader **nir,
1624 struct radv_shader_info *infos,
1625 struct gfx9_gs_info *out)
1626 {
1627 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1628 struct radv_es_output_info *es_info;
1629 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
1630 es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1631 else
1632 es_info = nir[MESA_SHADER_TESS_CTRL] ?
1633 &infos[MESA_SHADER_TESS_EVAL].tes.es_info :
1634 &infos[MESA_SHADER_VERTEX].vs.es_info;
1635
1636 unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
1637 bool uses_adjacency;
1638 switch(key->topology) {
1639 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1640 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1641 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1642 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1643 uses_adjacency = true;
1644 break;
1645 default:
1646 uses_adjacency = false;
1647 break;
1648 }
1649
1650 /* All these are in dwords: */
1651 /* We can't allow using the whole LDS, because GS waves compete with
1652 * other shader stages for LDS space. */
1653 const unsigned max_lds_size = 8 * 1024;
1654 const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
1655 unsigned esgs_lds_size;
1656
1657 /* All these are per subgroup: */
1658 const unsigned max_out_prims = 32 * 1024;
1659 const unsigned max_es_verts = 255;
1660 const unsigned ideal_gs_prims = 64;
1661 unsigned max_gs_prims, gs_prims;
1662 unsigned min_es_verts, es_verts, worst_case_es_verts;
1663
1664 if (uses_adjacency || gs_num_invocations > 1)
1665 max_gs_prims = 127 / gs_num_invocations;
1666 else
1667 max_gs_prims = 255;
1668
1669 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
1670 * Make sure we don't go over the maximum value.
1671 */
1672 if (gs_info->gs.vertices_out > 0) {
1673 max_gs_prims = MIN2(max_gs_prims,
1674 max_out_prims /
1675 (gs_info->gs.vertices_out * gs_num_invocations));
1676 }
1677 assert(max_gs_prims > 0);
1678
1679 /* If the primitive has adjacency, halve the number of vertices
1680 * that will be reused in multiple primitives.
1681 */
1682 min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
1683
1684 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
1685 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
1686
1687 /* Compute ESGS LDS size based on the worst case number of ES vertices
1688 * needed to create the target number of GS prims per subgroup.
1689 */
1690 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1691
1692 /* If total LDS usage is too big, refactor partitions based on ratio
1693 * of ESGS item sizes.
1694 */
1695 if (esgs_lds_size > max_lds_size) {
1696 /* Our target GS Prims Per Subgroup was too large. Calculate
1697 * the maximum number of GS Prims Per Subgroup that will fit
1698 * into LDS, capped by the maximum that the hardware can support.
1699 */
1700 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
1701 max_gs_prims);
1702 assert(gs_prims > 0);
1703 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
1704 max_es_verts);
1705
1706 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1707 assert(esgs_lds_size <= max_lds_size);
1708 }
1709
1710 /* Now calculate remaining ESGS information. */
1711 if (esgs_lds_size)
1712 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
1713 else
1714 es_verts = max_es_verts;
1715
1716 /* Vertices for adjacency primitives are not always reused, so restore
1717 * it for ES_VERTS_PER_SUBGRP.
1718 */
1719 min_es_verts = gs_info->gs.vertices_in;
1720
1721 /* For normal primitives, the VGT only checks if they are past the ES
1722 * verts per subgroup after allocating a full GS primitive and if they
1723 * are, kick off a new subgroup. But if those additional ES verts are
1724 * unique (e.g. not reused) we need to make sure there is enough LDS
1725 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
1726 */
1727 es_verts -= min_es_verts - 1;
1728
1729 uint32_t es_verts_per_subgroup = es_verts;
1730 uint32_t gs_prims_per_subgroup = gs_prims;
1731 uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
1732 uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
1733 out->lds_size = align(esgs_lds_size, 128) / 128;
1734 out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
1735 S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
1736 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
1737 out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
1738 out->vgt_esgs_ring_itemsize = esgs_itemsize;
1739 assert(max_prims_per_subgroup <= max_out_prims);
1740 }
1741
1742 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1743 unsigned min_verts_per_prim, bool use_adjacency)
1744 {
1745 unsigned max_reuse = max_esverts - min_verts_per_prim;
1746 if (use_adjacency)
1747 max_reuse /= 2;
1748 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1749 }
1750
1751 static unsigned
1752 radv_get_num_input_vertices(nir_shader **nir)
1753 {
1754 if (nir[MESA_SHADER_GEOMETRY]) {
1755 nir_shader *gs = nir[MESA_SHADER_GEOMETRY];
1756
1757 return gs->info.gs.vertices_in;
1758 }
1759
1760 if (nir[MESA_SHADER_TESS_CTRL]) {
1761 nir_shader *tes = nir[MESA_SHADER_TESS_EVAL];
1762
1763 if (tes->info.tess.point_mode)
1764 return 1;
1765 if (tes->info.tess.primitive_mode == GL_ISOLINES)
1766 return 2;
1767 return 3;
1768 }
1769
1770 return 3;
1771 }
1772
1773 static void
1774 gfx10_get_ngg_info(const struct radv_pipeline_key *key,
1775 struct radv_pipeline *pipeline,
1776 nir_shader **nir,
1777 struct radv_shader_info *infos,
1778 struct gfx10_ngg_info *ngg)
1779 {
1780 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1781 struct radv_es_output_info *es_info =
1782 nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1783 unsigned gs_type = nir[MESA_SHADER_GEOMETRY] ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX;
1784 unsigned max_verts_per_prim = radv_get_num_input_vertices(nir);
1785 unsigned min_verts_per_prim =
1786 gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1787 unsigned gs_num_invocations = nir[MESA_SHADER_GEOMETRY] ? MAX2(gs_info->gs.invocations, 1) : 1;
1788 bool uses_adjacency;
1789 switch(key->topology) {
1790 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1791 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1792 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1793 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1794 uses_adjacency = true;
1795 break;
1796 default:
1797 uses_adjacency = false;
1798 break;
1799 }
1800
1801 /* All these are in dwords: */
1802 /* We can't allow using the whole LDS, because GS waves compete with
1803 * other shader stages for LDS space.
1804 *
1805 * TODO: We should really take the shader's internal LDS use into
1806 * account. The linker will fail if the size is greater than
1807 * 8K dwords.
1808 */
1809 const unsigned max_lds_size = 8 * 1024 - 768;
1810 const unsigned target_lds_size = max_lds_size;
1811 unsigned esvert_lds_size = 0;
1812 unsigned gsprim_lds_size = 0;
1813
1814 /* All these are per subgroup: */
1815 bool max_vert_out_per_gs_instance = false;
1816 unsigned max_esverts_base = 256;
1817 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1818
1819 /* Hardware has the following non-natural restrictions on the value
1820 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1821 * the draw:
1822 * - at most 252 for any line input primitive type
1823 * - at most 251 for any quad input primitive type
1824 * - at most 251 for triangle strips with adjacency (this happens to
1825 * be the natural limit for triangle *lists* with adjacency)
1826 */
1827 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1828
1829 if (gs_type == MESA_SHADER_GEOMETRY) {
1830 unsigned max_out_verts_per_gsprim =
1831 gs_info->gs.vertices_out * gs_num_invocations;
1832
1833 if (max_out_verts_per_gsprim <= 256) {
1834 if (max_out_verts_per_gsprim) {
1835 max_gsprims_base = MIN2(max_gsprims_base,
1836 256 / max_out_verts_per_gsprim);
1837 }
1838 } else {
1839 /* Use special multi-cycling mode in which each GS
1840 * instance gets its own subgroup. Does not work with
1841 * tessellation. */
1842 max_vert_out_per_gs_instance = true;
1843 max_gsprims_base = 1;
1844 max_out_verts_per_gsprim = gs_info->gs.vertices_out;
1845 }
1846
1847 esvert_lds_size = es_info->esgs_itemsize / 4;
1848 gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1849 } else {
1850 /* VS and TES. */
1851 /* LDS size for passing data from GS to ES. */
1852 struct radv_streamout_info *so_info = nir[MESA_SHADER_TESS_CTRL]
1853 ? &infos[MESA_SHADER_TESS_EVAL].so
1854 : &infos[MESA_SHADER_VERTEX].so;
1855
1856 if (so_info->num_outputs)
1857 esvert_lds_size = 4 * so_info->num_outputs + 1;
1858
1859 /* GS stores Primitive IDs (one DWORD) into LDS at the address
1860 * corresponding to the ES thread of the provoking vertex. All
1861 * ES threads load and export PrimitiveID for their thread.
1862 */
1863 if (!nir[MESA_SHADER_TESS_CTRL] &&
1864 infos[MESA_SHADER_VERTEX].vs.outinfo.export_prim_id)
1865 esvert_lds_size = MAX2(esvert_lds_size, 1);
1866 }
1867
1868 unsigned max_gsprims = max_gsprims_base;
1869 unsigned max_esverts = max_esverts_base;
1870
1871 if (esvert_lds_size)
1872 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1873 if (gsprim_lds_size)
1874 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
1875
1876 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1877 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
1878 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1879
1880 if (esvert_lds_size || gsprim_lds_size) {
1881 /* Now that we have a rough proportionality between esverts
1882 * and gsprims based on the primitive type, scale both of them
1883 * down simultaneously based on required LDS space.
1884 *
1885 * We could be smarter about this if we knew how much vertex
1886 * reuse to expect.
1887 */
1888 unsigned lds_total = max_esverts * esvert_lds_size +
1889 max_gsprims * gsprim_lds_size;
1890 if (lds_total > target_lds_size) {
1891 max_esverts = max_esverts * target_lds_size / lds_total;
1892 max_gsprims = max_gsprims * target_lds_size / lds_total;
1893
1894 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1895 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1896 min_verts_per_prim, uses_adjacency);
1897 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1898 }
1899 }
1900
1901 /* Round up towards full wave sizes for better ALU utilization. */
1902 if (!max_vert_out_per_gs_instance) {
1903 unsigned orig_max_esverts;
1904 unsigned orig_max_gsprims;
1905 unsigned wavesize;
1906
1907 if (gs_type == MESA_SHADER_GEOMETRY) {
1908 wavesize = gs_info->wave_size;
1909 } else {
1910 wavesize = nir[MESA_SHADER_TESS_CTRL]
1911 ? infos[MESA_SHADER_TESS_EVAL].wave_size
1912 : infos[MESA_SHADER_VERTEX].wave_size;
1913 }
1914
1915 do {
1916 orig_max_esverts = max_esverts;
1917 orig_max_gsprims = max_gsprims;
1918
1919 max_esverts = align(max_esverts, wavesize);
1920 max_esverts = MIN2(max_esverts, max_esverts_base);
1921 if (esvert_lds_size)
1922 max_esverts = MIN2(max_esverts,
1923 (max_lds_size - max_gsprims * gsprim_lds_size) /
1924 esvert_lds_size);
1925 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1926
1927 max_gsprims = align(max_gsprims, wavesize);
1928 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
1929 if (gsprim_lds_size)
1930 max_gsprims = MIN2(max_gsprims,
1931 (max_lds_size - max_esverts * esvert_lds_size) /
1932 gsprim_lds_size);
1933 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1934 min_verts_per_prim, uses_adjacency);
1935 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1936 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
1937 }
1938
1939 /* Hardware restriction: minimum value of max_esverts */
1940 max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
1941
1942 unsigned max_out_vertices =
1943 max_vert_out_per_gs_instance ? gs_info->gs.vertices_out :
1944 gs_type == MESA_SHADER_GEOMETRY ?
1945 max_gsprims * gs_num_invocations * gs_info->gs.vertices_out :
1946 max_esverts;
1947 assert(max_out_vertices <= 256);
1948
1949 unsigned prim_amp_factor = 1;
1950 if (gs_type == MESA_SHADER_GEOMETRY) {
1951 /* Number of output primitives per GS input primitive after
1952 * GS instancing. */
1953 prim_amp_factor = gs_info->gs.vertices_out;
1954 }
1955
1956 /* The GE only checks against the maximum number of ES verts after
1957 * allocating a full GS primitive. So we need to ensure that whenever
1958 * this check passes, there is enough space for a full primitive without
1959 * vertex reuse.
1960 */
1961 ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
1962 ngg->max_gsprims = max_gsprims;
1963 ngg->max_out_verts = max_out_vertices;
1964 ngg->prim_amp_factor = prim_amp_factor;
1965 ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
1966 ngg->ngg_emit_size = max_gsprims * gsprim_lds_size;
1967 ngg->esgs_ring_size = 4 * max_esverts * esvert_lds_size;
1968
1969 if (gs_type == MESA_SHADER_GEOMETRY) {
1970 ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
1971 } else {
1972 ngg->vgt_esgs_ring_itemsize = 1;
1973 }
1974
1975 pipeline->graphics.esgs_ring_size = ngg->esgs_ring_size;
1976
1977 assert(ngg->hw_max_esverts >= 24); /* HW limitation */
1978 }
1979
1980 static void
1981 calculate_gs_ring_sizes(struct radv_pipeline *pipeline,
1982 const struct gfx9_gs_info *gs)
1983 {
1984 struct radv_device *device = pipeline->device;
1985 unsigned num_se = device->physical_device->rad_info.max_se;
1986 unsigned wave_size = 64;
1987 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1988 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
1989 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
1990 */
1991 unsigned gs_vertex_reuse =
1992 (device->physical_device->rad_info.chip_class >= GFX8 ? 32 : 16) * num_se;
1993 unsigned alignment = 256 * num_se;
1994 /* The maximum size is 63.999 MB per SE. */
1995 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1996 struct radv_shader_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
1997
1998 /* Calculate the minimum size. */
1999 unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse *
2000 wave_size, alignment);
2001 /* These are recommended sizes, not minimum sizes. */
2002 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2003 gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in;
2004 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2005 gs_info->gs.max_gsvs_emit_size;
2006
2007 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2008 esgs_ring_size = align(esgs_ring_size, alignment);
2009 gsvs_ring_size = align(gsvs_ring_size, alignment);
2010
2011 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
2012 pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2013
2014 pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2015 }
2016
2017 static void si_multiwave_lds_size_workaround(struct radv_device *device,
2018 unsigned *lds_size)
2019 {
2020 /* If tessellation is all offchip and on-chip GS isn't used, this
2021 * workaround is not needed.
2022 */
2023 return;
2024
2025 /* SPI barrier management bug:
2026 * Make sure we have at least 4k of LDS in use to avoid the bug.
2027 * It applies to workgroup sizes of more than one wavefront.
2028 */
2029 if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
2030 device->physical_device->rad_info.family == CHIP_KABINI)
2031 *lds_size = MAX2(*lds_size, 8);
2032 }
2033
2034 struct radv_shader_variant *
2035 radv_get_shader(struct radv_pipeline *pipeline,
2036 gl_shader_stage stage)
2037 {
2038 if (stage == MESA_SHADER_VERTEX) {
2039 if (pipeline->shaders[MESA_SHADER_VERTEX])
2040 return pipeline->shaders[MESA_SHADER_VERTEX];
2041 if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
2042 return pipeline->shaders[MESA_SHADER_TESS_CTRL];
2043 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
2044 return pipeline->shaders[MESA_SHADER_GEOMETRY];
2045 } else if (stage == MESA_SHADER_TESS_EVAL) {
2046 if (!radv_pipeline_has_tess(pipeline))
2047 return NULL;
2048 if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
2049 return pipeline->shaders[MESA_SHADER_TESS_EVAL];
2050 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
2051 return pipeline->shaders[MESA_SHADER_GEOMETRY];
2052 }
2053 return pipeline->shaders[stage];
2054 }
2055
2056 static struct radv_tessellation_state
2057 calculate_tess_state(struct radv_pipeline *pipeline,
2058 const VkGraphicsPipelineCreateInfo *pCreateInfo)
2059 {
2060 unsigned num_tcs_input_cp;
2061 unsigned num_tcs_output_cp;
2062 unsigned lds_size;
2063 unsigned num_patches;
2064 struct radv_tessellation_state tess = {0};
2065
2066 num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
2067 num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
2068 num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2069
2070 lds_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.lds_size;
2071
2072 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
2073 assert(lds_size <= 65536);
2074 lds_size = align(lds_size, 512) / 512;
2075 } else {
2076 assert(lds_size <= 32768);
2077 lds_size = align(lds_size, 256) / 256;
2078 }
2079 si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
2080
2081 tess.lds_size = lds_size;
2082
2083 tess.ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
2084 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
2085 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
2086 tess.num_patches = num_patches;
2087
2088 struct radv_shader_variant *tes = radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL);
2089 unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
2090
2091 switch (tes->info.tes.primitive_mode) {
2092 case GL_TRIANGLES:
2093 type = V_028B6C_TESS_TRIANGLE;
2094 break;
2095 case GL_QUADS:
2096 type = V_028B6C_TESS_QUAD;
2097 break;
2098 case GL_ISOLINES:
2099 type = V_028B6C_TESS_ISOLINE;
2100 break;
2101 }
2102
2103 switch (tes->info.tes.spacing) {
2104 case TESS_SPACING_EQUAL:
2105 partitioning = V_028B6C_PART_INTEGER;
2106 break;
2107 case TESS_SPACING_FRACTIONAL_ODD:
2108 partitioning = V_028B6C_PART_FRAC_ODD;
2109 break;
2110 case TESS_SPACING_FRACTIONAL_EVEN:
2111 partitioning = V_028B6C_PART_FRAC_EVEN;
2112 break;
2113 default:
2114 break;
2115 }
2116
2117 bool ccw = tes->info.tes.ccw;
2118 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
2119 vk_find_struct_const(pCreateInfo->pTessellationState,
2120 PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
2121
2122 if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT)
2123 ccw = !ccw;
2124
2125 if (tes->info.tes.point_mode)
2126 topology = V_028B6C_OUTPUT_POINT;
2127 else if (tes->info.tes.primitive_mode == GL_ISOLINES)
2128 topology = V_028B6C_OUTPUT_LINE;
2129 else if (ccw)
2130 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
2131 else
2132 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
2133
2134 if (pipeline->device->physical_device->rad_info.has_distributed_tess) {
2135 if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
2136 pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
2137 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
2138 else
2139 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
2140 } else
2141 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
2142
2143 tess.tf_param = S_028B6C_TYPE(type) |
2144 S_028B6C_PARTITIONING(partitioning) |
2145 S_028B6C_TOPOLOGY(topology) |
2146 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
2147
2148 return tess;
2149 }
2150
2151 static const struct radv_prim_vertex_count prim_size_table[] = {
2152 [V_008958_DI_PT_NONE] = {0, 0},
2153 [V_008958_DI_PT_POINTLIST] = {1, 1},
2154 [V_008958_DI_PT_LINELIST] = {2, 2},
2155 [V_008958_DI_PT_LINESTRIP] = {2, 1},
2156 [V_008958_DI_PT_TRILIST] = {3, 3},
2157 [V_008958_DI_PT_TRIFAN] = {3, 1},
2158 [V_008958_DI_PT_TRISTRIP] = {3, 1},
2159 [V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
2160 [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
2161 [V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
2162 [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
2163 [V_008958_DI_PT_RECTLIST] = {3, 3},
2164 [V_008958_DI_PT_LINELOOP] = {2, 1},
2165 [V_008958_DI_PT_POLYGON] = {3, 1},
2166 [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
2167 };
2168
2169 static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline)
2170 {
2171 if (radv_pipeline_has_gs(pipeline))
2172 if (radv_pipeline_has_ngg(pipeline))
2173 return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
2174 else
2175 return &pipeline->gs_copy_shader->info.vs.outinfo;
2176 else if (radv_pipeline_has_tess(pipeline))
2177 return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
2178 else
2179 return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
2180 }
2181
2182 static void
2183 radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders)
2184 {
2185 nir_shader* ordered_shaders[MESA_SHADER_STAGES];
2186 int shader_count = 0;
2187
2188 if(shaders[MESA_SHADER_FRAGMENT]) {
2189 ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT];
2190 }
2191 if(shaders[MESA_SHADER_GEOMETRY]) {
2192 ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY];
2193 }
2194 if(shaders[MESA_SHADER_TESS_EVAL]) {
2195 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL];
2196 }
2197 if(shaders[MESA_SHADER_TESS_CTRL]) {
2198 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL];
2199 }
2200 if(shaders[MESA_SHADER_VERTEX]) {
2201 ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX];
2202 }
2203
2204 if (shader_count > 1) {
2205 unsigned first = ordered_shaders[shader_count - 1]->info.stage;
2206 unsigned last = ordered_shaders[0]->info.stage;
2207
2208 if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT &&
2209 ordered_shaders[1]->info.has_transform_feedback_varyings)
2210 nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]);
2211
2212 for (int i = 0; i < shader_count; ++i) {
2213 nir_variable_mode mask = 0;
2214
2215 if (ordered_shaders[i]->info.stage != first)
2216 mask = mask | nir_var_shader_in;
2217
2218 if (ordered_shaders[i]->info.stage != last)
2219 mask = mask | nir_var_shader_out;
2220
2221 nir_lower_io_to_scalar_early(ordered_shaders[i], mask);
2222 radv_optimize_nir(ordered_shaders[i], false, false);
2223 }
2224 }
2225
2226 for (int i = 1; i < shader_count; ++i) {
2227 nir_lower_io_arrays_to_elements(ordered_shaders[i],
2228 ordered_shaders[i - 1]);
2229
2230 if (nir_link_opt_varyings(ordered_shaders[i],
2231 ordered_shaders[i - 1]))
2232 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2233
2234 nir_remove_dead_variables(ordered_shaders[i],
2235 nir_var_shader_out);
2236 nir_remove_dead_variables(ordered_shaders[i - 1],
2237 nir_var_shader_in);
2238
2239 bool progress = nir_remove_unused_varyings(ordered_shaders[i],
2240 ordered_shaders[i - 1]);
2241
2242 nir_compact_varyings(ordered_shaders[i],
2243 ordered_shaders[i - 1], true);
2244
2245 if (progress) {
2246 if (nir_lower_global_vars_to_local(ordered_shaders[i])) {
2247 ac_lower_indirect_derefs(ordered_shaders[i],
2248 pipeline->device->physical_device->rad_info.chip_class);
2249 }
2250 radv_optimize_nir(ordered_shaders[i], false, false);
2251
2252 if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) {
2253 ac_lower_indirect_derefs(ordered_shaders[i - 1],
2254 pipeline->device->physical_device->rad_info.chip_class);
2255 }
2256 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2257 }
2258 }
2259 }
2260
2261 static uint32_t
2262 radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *input_state,
2263 uint32_t attrib_binding)
2264 {
2265 for (uint32_t i = 0; i < input_state->vertexBindingDescriptionCount; i++) {
2266 const VkVertexInputBindingDescription *input_binding =
2267 &input_state->pVertexBindingDescriptions[i];
2268
2269 if (input_binding->binding == attrib_binding)
2270 return input_binding->stride;
2271 }
2272
2273 return 0;
2274 }
2275
2276 static struct radv_pipeline_key
2277 radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline,
2278 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2279 const struct radv_blend_state *blend,
2280 bool has_view_index)
2281 {
2282 const VkPipelineVertexInputStateCreateInfo *input_state =
2283 pCreateInfo->pVertexInputState;
2284 const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state =
2285 vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
2286
2287 struct radv_pipeline_key key;
2288 memset(&key, 0, sizeof(key));
2289
2290 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
2291 key.optimisations_disabled = 1;
2292
2293 key.has_multiview_view_index = has_view_index;
2294
2295 uint32_t binding_input_rate = 0;
2296 uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
2297 for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) {
2298 if (input_state->pVertexBindingDescriptions[i].inputRate) {
2299 unsigned binding = input_state->pVertexBindingDescriptions[i].binding;
2300 binding_input_rate |= 1u << binding;
2301 instance_rate_divisors[binding] = 1;
2302 }
2303 }
2304 if (divisor_state) {
2305 for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) {
2306 instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] =
2307 divisor_state->pVertexBindingDivisors[i].divisor;
2308 }
2309 }
2310
2311 for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
2312 const VkVertexInputAttributeDescription *desc =
2313 &input_state->pVertexAttributeDescriptions[i];
2314 const struct vk_format_description *format_desc;
2315 unsigned location = desc->location;
2316 unsigned binding = desc->binding;
2317 unsigned num_format, data_format;
2318 int first_non_void;
2319
2320 if (binding_input_rate & (1u << binding)) {
2321 key.instance_rate_inputs |= 1u << location;
2322 key.instance_rate_divisors[location] = instance_rate_divisors[binding];
2323 }
2324
2325 format_desc = vk_format_description(desc->format);
2326 first_non_void = vk_format_get_first_non_void_channel(desc->format);
2327
2328 num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
2329 data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
2330
2331 key.vertex_attribute_formats[location] = data_format | (num_format << 4);
2332 key.vertex_attribute_bindings[location] = desc->binding;
2333 key.vertex_attribute_offsets[location] = desc->offset;
2334 key.vertex_attribute_strides[location] = radv_get_attrib_stride(input_state, desc->binding);
2335
2336 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8 &&
2337 pipeline->device->physical_device->rad_info.family != CHIP_STONEY) {
2338 VkFormat format = input_state->pVertexAttributeDescriptions[i].format;
2339 uint64_t adjust;
2340 switch(format) {
2341 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2342 case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
2343 adjust = RADV_ALPHA_ADJUST_SNORM;
2344 break;
2345 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2346 case VK_FORMAT_A2B10G10R10_SSCALED_PACK32:
2347 adjust = RADV_ALPHA_ADJUST_SSCALED;
2348 break;
2349 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2350 case VK_FORMAT_A2B10G10R10_SINT_PACK32:
2351 adjust = RADV_ALPHA_ADJUST_SINT;
2352 break;
2353 default:
2354 adjust = 0;
2355 break;
2356 }
2357 key.vertex_alpha_adjust |= adjust << (2 * location);
2358 }
2359
2360 switch (desc->format) {
2361 case VK_FORMAT_B8G8R8A8_UNORM:
2362 case VK_FORMAT_B8G8R8A8_SNORM:
2363 case VK_FORMAT_B8G8R8A8_USCALED:
2364 case VK_FORMAT_B8G8R8A8_SSCALED:
2365 case VK_FORMAT_B8G8R8A8_UINT:
2366 case VK_FORMAT_B8G8R8A8_SINT:
2367 case VK_FORMAT_B8G8R8A8_SRGB:
2368 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
2369 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2370 case VK_FORMAT_A2R10G10B10_USCALED_PACK32:
2371 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2372 case VK_FORMAT_A2R10G10B10_UINT_PACK32:
2373 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2374 key.vertex_post_shuffle |= 1 << location;
2375 break;
2376 default:
2377 break;
2378 }
2379 }
2380
2381 const VkPipelineTessellationStateCreateInfo *tess =
2382 radv_pipeline_get_tessellation_state(pCreateInfo);
2383 if (tess)
2384 key.tess_input_vertices = tess->patchControlPoints;
2385
2386 const VkPipelineMultisampleStateCreateInfo *vkms =
2387 radv_pipeline_get_multisample_state(pCreateInfo);
2388 if (vkms && vkms->rasterizationSamples > 1) {
2389 uint32_t num_samples = vkms->rasterizationSamples;
2390 uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
2391 key.num_samples = num_samples;
2392 key.log2_ps_iter_samples = util_logbase2(ps_iter_samples);
2393 }
2394
2395 key.col_format = blend->spi_shader_col_format;
2396 if (pipeline->device->physical_device->rad_info.chip_class < GFX8)
2397 radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10);
2398
2399 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10)
2400 key.topology = pCreateInfo->pInputAssemblyState->topology;
2401
2402 return key;
2403 }
2404
2405 static bool
2406 radv_nir_stage_uses_xfb(const nir_shader *nir)
2407 {
2408 nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL);
2409 bool uses_xfb = !!xfb;
2410
2411 ralloc_free(xfb);
2412 return uses_xfb;
2413 }
2414
2415 static void
2416 radv_fill_shader_keys(struct radv_device *device,
2417 struct radv_shader_variant_key *keys,
2418 const struct radv_pipeline_key *key,
2419 nir_shader **nir)
2420 {
2421 keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs;
2422 keys[MESA_SHADER_VERTEX].vs.alpha_adjust = key->vertex_alpha_adjust;
2423 keys[MESA_SHADER_VERTEX].vs.post_shuffle = key->vertex_post_shuffle;
2424 for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) {
2425 keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i];
2426 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_formats[i] = key->vertex_attribute_formats[i];
2427 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_bindings[i] = key->vertex_attribute_bindings[i];
2428 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_offsets[i] = key->vertex_attribute_offsets[i];
2429 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_strides[i] = key->vertex_attribute_strides[i];
2430 }
2431 keys[MESA_SHADER_VERTEX].vs.outprim = si_conv_prim_to_gs_out(key->topology);
2432
2433 if (nir[MESA_SHADER_TESS_CTRL]) {
2434 keys[MESA_SHADER_VERTEX].vs_common_out.as_ls = true;
2435 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = 0;
2436 keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices;
2437 keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode;
2438
2439 keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
2440 }
2441
2442 if (nir[MESA_SHADER_GEOMETRY]) {
2443 if (nir[MESA_SHADER_TESS_CTRL])
2444 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_es = true;
2445 else
2446 keys[MESA_SHADER_VERTEX].vs_common_out.as_es = true;
2447 }
2448
2449 if (device->physical_device->use_ngg) {
2450 if (nir[MESA_SHADER_TESS_CTRL]) {
2451 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = true;
2452 } else {
2453 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = true;
2454 }
2455
2456 if (nir[MESA_SHADER_TESS_CTRL] &&
2457 nir[MESA_SHADER_GEOMETRY] &&
2458 nir[MESA_SHADER_GEOMETRY]->info.gs.invocations *
2459 nir[MESA_SHADER_GEOMETRY]->info.gs.vertices_out > 256) {
2460 /* Fallback to the legacy path if tessellation is
2461 * enabled with extreme geometry because
2462 * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
2463 * might hang.
2464 */
2465 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2466 }
2467
2468 gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX;
2469
2470 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2471 if (nir[i])
2472 last_xfb_stage = i;
2473 }
2474
2475 bool uses_xfb = nir[last_xfb_stage] &&
2476 radv_nir_stage_uses_xfb(nir[last_xfb_stage]);
2477
2478 if (!device->physical_device->use_ngg_streamout && uses_xfb) {
2479 if (nir[MESA_SHADER_TESS_CTRL])
2480 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2481 else
2482 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
2483 }
2484
2485 /* Determine if the pipeline is eligible for the NGG passthrough
2486 * mode. It can't be enabled for geometry shaders, for NGG
2487 * streamout or for vertex shaders that export the primitive ID
2488 * (this is checked later because we don't have the info here.)
2489 */
2490 if (!nir[MESA_SHADER_GEOMETRY] && !uses_xfb) {
2491 if (nir[MESA_SHADER_TESS_CTRL] &&
2492 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg) {
2493 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg_passthrough = true;
2494 } else if (nir[MESA_SHADER_VERTEX] &&
2495 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) {
2496 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = true;
2497 }
2498 }
2499 }
2500
2501 for(int i = 0; i < MESA_SHADER_STAGES; ++i)
2502 keys[i].has_multiview_view_index = key->has_multiview_view_index;
2503
2504 keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format;
2505 keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8;
2506 keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10;
2507 keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples;
2508 keys[MESA_SHADER_FRAGMENT].fs.num_samples = key->num_samples;
2509
2510 if (nir[MESA_SHADER_COMPUTE]) {
2511 keys[MESA_SHADER_COMPUTE].cs.subgroup_size = key->compute_subgroup_size;
2512 }
2513 }
2514
2515 static uint8_t
2516 radv_get_wave_size(struct radv_device *device,
2517 const VkPipelineShaderStageCreateInfo *pStage,
2518 gl_shader_stage stage,
2519 const struct radv_shader_variant_key *key)
2520 {
2521 if (stage == MESA_SHADER_GEOMETRY && !key->vs_common_out.as_ngg)
2522 return 64;
2523 else if (stage == MESA_SHADER_COMPUTE) {
2524 if (key->cs.subgroup_size) {
2525 /* Return the required subgroup size if specified. */
2526 return key->cs.subgroup_size;
2527 }
2528 return device->physical_device->cs_wave_size;
2529 }
2530 else if (stage == MESA_SHADER_FRAGMENT)
2531 return device->physical_device->ps_wave_size;
2532 else
2533 return device->physical_device->ge_wave_size;
2534 }
2535
2536 static void
2537 radv_fill_shader_info(struct radv_pipeline *pipeline,
2538 const VkPipelineShaderStageCreateInfo **pStages,
2539 struct radv_shader_variant_key *keys,
2540 struct radv_shader_info *infos,
2541 nir_shader **nir)
2542 {
2543 unsigned active_stages = 0;
2544 unsigned filled_stages = 0;
2545
2546 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2547 if (nir[i])
2548 active_stages |= (1 << i);
2549 }
2550
2551 if (nir[MESA_SHADER_FRAGMENT]) {
2552 radv_nir_shader_info_init(&infos[MESA_SHADER_FRAGMENT]);
2553 radv_nir_shader_info_pass(nir[MESA_SHADER_FRAGMENT],
2554 pipeline->layout,
2555 &keys[MESA_SHADER_FRAGMENT],
2556 &infos[MESA_SHADER_FRAGMENT]);
2557
2558 /* TODO: These are no longer used as keys we should refactor this */
2559 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id =
2560 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2561 keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id =
2562 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2563 keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists =
2564 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2565 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id =
2566 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2567 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id =
2568 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2569 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists =
2570 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2571
2572 /* NGG passthrough mode can't be enabled for vertex shaders
2573 * that export the primitive ID.
2574 *
2575 * TODO: I should really refactor the keys logic.
2576 */
2577 if (nir[MESA_SHADER_VERTEX] &&
2578 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id) {
2579 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = false;
2580 }
2581
2582 filled_stages |= (1 << MESA_SHADER_FRAGMENT);
2583 }
2584
2585 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2586 nir[MESA_SHADER_TESS_CTRL]) {
2587 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
2588 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
2589 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
2590
2591 radv_nir_shader_info_init(&infos[MESA_SHADER_TESS_CTRL]);
2592
2593 for (int i = 0; i < 2; i++) {
2594 radv_nir_shader_info_pass(combined_nir[i],
2595 pipeline->layout, &key,
2596 &infos[MESA_SHADER_TESS_CTRL]);
2597 }
2598
2599 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2600 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2601 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2602 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2603
2604 filled_stages |= (1 << MESA_SHADER_VERTEX);
2605 filled_stages |= (1 << MESA_SHADER_TESS_CTRL);
2606 }
2607
2608 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2609 nir[MESA_SHADER_GEOMETRY]) {
2610 gl_shader_stage pre_stage = nir[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2611 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2612
2613 radv_nir_shader_info_init(&infos[MESA_SHADER_GEOMETRY]);
2614
2615 for (int i = 0; i < 2; i++) {
2616 radv_nir_shader_info_pass(combined_nir[i],
2617 pipeline->layout,
2618 &keys[pre_stage],
2619 &infos[MESA_SHADER_GEOMETRY]);
2620 }
2621
2622 filled_stages |= (1 << pre_stage);
2623 filled_stages |= (1 << MESA_SHADER_GEOMETRY);
2624 }
2625
2626 active_stages ^= filled_stages;
2627 while (active_stages) {
2628 int i = u_bit_scan(&active_stages);
2629
2630 if (i == MESA_SHADER_TESS_CTRL) {
2631 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs =
2632 util_last_bit64(infos[MESA_SHADER_VERTEX].vs.ls_outputs_written);
2633 }
2634
2635 if (i == MESA_SHADER_TESS_EVAL) {
2636 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2637 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2638 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2639 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2640 }
2641
2642 radv_nir_shader_info_init(&infos[i]);
2643 radv_nir_shader_info_pass(nir[i], pipeline->layout,
2644 &keys[i], &infos[i]);
2645 }
2646
2647 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2648 if (nir[i])
2649 infos[i].wave_size =
2650 radv_get_wave_size(pipeline->device, pStages[i],
2651 i, &keys[i]);
2652 }
2653 }
2654
2655 static void
2656 merge_tess_info(struct shader_info *tes_info,
2657 const struct shader_info *tcs_info)
2658 {
2659 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
2660 *
2661 * "PointMode. Controls generation of points rather than triangles
2662 * or lines. This functionality defaults to disabled, and is
2663 * enabled if either shader stage includes the execution mode.
2664 *
2665 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
2666 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
2667 * and OutputVertices, it says:
2668 *
2669 * "One mode must be set in at least one of the tessellation
2670 * shader stages."
2671 *
2672 * So, the fields can be set in either the TCS or TES, but they must
2673 * agree if set in both. Our backend looks at TES, so bitwise-or in
2674 * the values from the TCS.
2675 */
2676 assert(tcs_info->tess.tcs_vertices_out == 0 ||
2677 tes_info->tess.tcs_vertices_out == 0 ||
2678 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
2679 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
2680
2681 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2682 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2683 tcs_info->tess.spacing == tes_info->tess.spacing);
2684 tes_info->tess.spacing |= tcs_info->tess.spacing;
2685
2686 assert(tcs_info->tess.primitive_mode == 0 ||
2687 tes_info->tess.primitive_mode == 0 ||
2688 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
2689 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
2690 tes_info->tess.ccw |= tcs_info->tess.ccw;
2691 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
2692 }
2693
2694 static
2695 void radv_init_feedback(const VkPipelineCreationFeedbackCreateInfoEXT *ext)
2696 {
2697 if (!ext)
2698 return;
2699
2700 if (ext->pPipelineCreationFeedback) {
2701 ext->pPipelineCreationFeedback->flags = 0;
2702 ext->pPipelineCreationFeedback->duration = 0;
2703 }
2704
2705 for (unsigned i = 0; i < ext->pipelineStageCreationFeedbackCount; ++i) {
2706 ext->pPipelineStageCreationFeedbacks[i].flags = 0;
2707 ext->pPipelineStageCreationFeedbacks[i].duration = 0;
2708 }
2709 }
2710
2711 static
2712 void radv_start_feedback(VkPipelineCreationFeedbackEXT *feedback)
2713 {
2714 if (!feedback)
2715 return;
2716
2717 feedback->duration -= radv_get_current_time();
2718 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
2719 }
2720
2721 static
2722 void radv_stop_feedback(VkPipelineCreationFeedbackEXT *feedback, bool cache_hit)
2723 {
2724 if (!feedback)
2725 return;
2726
2727 feedback->duration += radv_get_current_time();
2728 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT |
2729 (cache_hit ? VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT : 0);
2730 }
2731
2732 void radv_create_shaders(struct radv_pipeline *pipeline,
2733 struct radv_device *device,
2734 struct radv_pipeline_cache *cache,
2735 const struct radv_pipeline_key *key,
2736 const VkPipelineShaderStageCreateInfo **pStages,
2737 const VkPipelineCreateFlags flags,
2738 VkPipelineCreationFeedbackEXT *pipeline_feedback,
2739 VkPipelineCreationFeedbackEXT **stage_feedbacks)
2740 {
2741 struct radv_shader_module fs_m = {0};
2742 struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
2743 nir_shader *nir[MESA_SHADER_STAGES] = {0};
2744 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2745 struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{{0}}}}};
2746 struct radv_shader_info infos[MESA_SHADER_STAGES] = {0};
2747 unsigned char hash[20], gs_copy_hash[20];
2748 bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info;
2749
2750 radv_start_feedback(pipeline_feedback);
2751
2752 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2753 if (pStages[i]) {
2754 modules[i] = radv_shader_module_from_handle(pStages[i]->module);
2755 if (modules[i]->nir)
2756 _mesa_sha1_compute(modules[i]->nir->info.name,
2757 strlen(modules[i]->nir->info.name),
2758 modules[i]->sha1);
2759
2760 pipeline->active_stages |= mesa_to_vk_shader_stage(i);
2761 }
2762 }
2763
2764 radv_hash_shaders(hash, pStages, pipeline->layout, key, get_hash_flags(device));
2765 memcpy(gs_copy_hash, hash, 20);
2766 gs_copy_hash[0] ^= 1;
2767
2768 bool found_in_application_cache = true;
2769 if (modules[MESA_SHADER_GEOMETRY] && !keep_executable_info) {
2770 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2771 radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants,
2772 &found_in_application_cache);
2773 pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY];
2774 }
2775
2776 if (!keep_executable_info &&
2777 radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders,
2778 &found_in_application_cache) &&
2779 (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) {
2780 radv_stop_feedback(pipeline_feedback, found_in_application_cache);
2781 return;
2782 }
2783
2784 if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) {
2785 nir_builder fs_b;
2786 nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
2787 fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs");
2788 fs_m.nir = fs_b.shader;
2789 modules[MESA_SHADER_FRAGMENT] = &fs_m;
2790 }
2791
2792 bool use_aco = device->physical_device->use_aco;
2793
2794 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2795 const VkPipelineShaderStageCreateInfo *stage = pStages[i];
2796
2797 if (!modules[i])
2798 continue;
2799
2800 radv_start_feedback(stage_feedbacks[i]);
2801
2802 nir[i] = radv_shader_compile_to_nir(device, modules[i],
2803 stage ? stage->pName : "main", i,
2804 stage ? stage->pSpecializationInfo : NULL,
2805 flags, pipeline->layout, use_aco);
2806
2807 /* We don't want to alter meta shaders IR directly so clone it
2808 * first.
2809 */
2810 if (nir[i]->info.name) {
2811 nir[i] = nir_shader_clone(NULL, nir[i]);
2812 }
2813
2814 radv_stop_feedback(stage_feedbacks[i], false);
2815 }
2816
2817 if (nir[MESA_SHADER_TESS_CTRL]) {
2818 nir_lower_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL);
2819 merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info);
2820 }
2821
2822 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
2823 radv_link_shaders(pipeline, nir);
2824
2825 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2826 if (nir[i]) {
2827 NIR_PASS_V(nir[i], nir_lower_non_uniform_access,
2828 nir_lower_non_uniform_ubo_access |
2829 nir_lower_non_uniform_ssbo_access |
2830 nir_lower_non_uniform_texture_access |
2831 nir_lower_non_uniform_image_access);
2832
2833 if (!use_aco)
2834 NIR_PASS_V(nir[i], nir_lower_bool_to_int32);
2835 }
2836 }
2837
2838 if (nir[MESA_SHADER_FRAGMENT])
2839 radv_lower_fs_io(nir[MESA_SHADER_FRAGMENT]);
2840
2841 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2842 if (radv_can_dump_shader(device, modules[i], false))
2843 nir_print_shader(nir[i], stderr);
2844 }
2845
2846 radv_fill_shader_keys(device, keys, key, nir);
2847
2848 radv_fill_shader_info(pipeline, pStages, keys, infos, nir);
2849
2850 if ((nir[MESA_SHADER_VERTEX] &&
2851 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) ||
2852 (nir[MESA_SHADER_TESS_EVAL] &&
2853 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) {
2854 struct gfx10_ngg_info *ngg_info;
2855
2856 if (nir[MESA_SHADER_GEOMETRY])
2857 ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info;
2858 else if (nir[MESA_SHADER_TESS_CTRL])
2859 ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info;
2860 else
2861 ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info;
2862
2863 gfx10_get_ngg_info(key, pipeline, nir, infos, ngg_info);
2864 } else if (nir[MESA_SHADER_GEOMETRY]) {
2865 struct gfx9_gs_info *gs_info =
2866 &infos[MESA_SHADER_GEOMETRY].gs_ring_info;
2867
2868 gfx9_get_gs_info(key, pipeline, nir, infos, gs_info);
2869 }
2870
2871 if(modules[MESA_SHADER_GEOMETRY]) {
2872 struct radv_shader_binary *gs_copy_binary = NULL;
2873 if (!pipeline->gs_copy_shader &&
2874 !radv_pipeline_has_ngg(pipeline)) {
2875 struct radv_shader_info info = {};
2876 struct radv_shader_variant_key key = {};
2877
2878 key.has_multiview_view_index =
2879 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index;
2880
2881 radv_nir_shader_info_pass(nir[MESA_SHADER_GEOMETRY],
2882 pipeline->layout, &key,
2883 &info);
2884 info.wave_size = 64; /* Wave32 not supported. */
2885
2886 pipeline->gs_copy_shader = radv_create_gs_copy_shader(
2887 device, nir[MESA_SHADER_GEOMETRY], &info,
2888 &gs_copy_binary, keep_executable_info,
2889 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index,
2890 use_aco);
2891 }
2892
2893 if (!keep_executable_info && pipeline->gs_copy_shader) {
2894 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2895 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2896
2897 binaries[MESA_SHADER_GEOMETRY] = gs_copy_binary;
2898 variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader;
2899
2900 radv_pipeline_cache_insert_shaders(device, cache,
2901 gs_copy_hash,
2902 variants,
2903 binaries);
2904 }
2905 free(gs_copy_binary);
2906 }
2907
2908 if (nir[MESA_SHADER_FRAGMENT]) {
2909 if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) {
2910 radv_start_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT]);
2911
2912 pipeline->shaders[MESA_SHADER_FRAGMENT] =
2913 radv_shader_variant_compile(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1,
2914 pipeline->layout, keys + MESA_SHADER_FRAGMENT,
2915 infos + MESA_SHADER_FRAGMENT,
2916 keep_executable_info, use_aco,
2917 &binaries[MESA_SHADER_FRAGMENT]);
2918
2919 radv_stop_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT], false);
2920 }
2921 }
2922
2923 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) {
2924 if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) {
2925 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
2926 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
2927 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
2928
2929 radv_start_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL]);
2930
2931 pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_compile(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2,
2932 pipeline->layout,
2933 &key, &infos[MESA_SHADER_TESS_CTRL], keep_executable_info,
2934 use_aco, &binaries[MESA_SHADER_TESS_CTRL]);
2935
2936 radv_stop_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL], false);
2937 }
2938 modules[MESA_SHADER_VERTEX] = NULL;
2939 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2940 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
2941 }
2942
2943 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) {
2944 gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2945 if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) {
2946 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2947
2948 radv_start_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY]);
2949
2950 pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_compile(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2,
2951 pipeline->layout,
2952 &keys[pre_stage], &infos[MESA_SHADER_GEOMETRY], keep_executable_info,
2953 use_aco, &binaries[MESA_SHADER_GEOMETRY]);
2954
2955 radv_stop_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY], false);
2956 }
2957 modules[pre_stage] = NULL;
2958 }
2959
2960 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2961 if(modules[i] && !pipeline->shaders[i]) {
2962 if (i == MESA_SHADER_TESS_CTRL) {
2963 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.ls_outputs_written);
2964 }
2965 if (i == MESA_SHADER_TESS_EVAL) {
2966 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2967 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
2968 }
2969
2970 radv_start_feedback(stage_feedbacks[i]);
2971
2972 pipeline->shaders[i] = radv_shader_variant_compile(device, modules[i], &nir[i], 1,
2973 pipeline->layout,
2974 keys + i, infos + i,keep_executable_info,
2975 use_aco, &binaries[i]);
2976
2977 radv_stop_feedback(stage_feedbacks[i], false);
2978 }
2979 }
2980
2981 if (!keep_executable_info) {
2982 radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders,
2983 binaries);
2984 }
2985
2986 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2987 free(binaries[i]);
2988 if (nir[i]) {
2989 ralloc_free(nir[i]);
2990
2991 if (radv_can_dump_shader_stats(device, modules[i]))
2992 radv_shader_dump_stats(device,
2993 pipeline->shaders[i],
2994 i, stderr);
2995 }
2996 }
2997
2998 if (fs_m.nir)
2999 ralloc_free(fs_m.nir);
3000
3001 radv_stop_feedback(pipeline_feedback, false);
3002 }
3003
3004 static uint32_t
3005 radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline,
3006 gl_shader_stage stage, enum chip_class chip_class)
3007 {
3008 bool has_gs = radv_pipeline_has_gs(pipeline);
3009 bool has_tess = radv_pipeline_has_tess(pipeline);
3010 bool has_ngg = radv_pipeline_has_ngg(pipeline);
3011
3012 switch (stage) {
3013 case MESA_SHADER_FRAGMENT:
3014 return R_00B030_SPI_SHADER_USER_DATA_PS_0;
3015 case MESA_SHADER_VERTEX:
3016 if (has_tess) {
3017 if (chip_class >= GFX10) {
3018 return R_00B430_SPI_SHADER_USER_DATA_HS_0;
3019 } else if (chip_class == GFX9) {
3020 return R_00B430_SPI_SHADER_USER_DATA_LS_0;
3021 } else {
3022 return R_00B530_SPI_SHADER_USER_DATA_LS_0;
3023 }
3024
3025 }
3026
3027 if (has_gs) {
3028 if (chip_class >= GFX10) {
3029 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3030 } else {
3031 return R_00B330_SPI_SHADER_USER_DATA_ES_0;
3032 }
3033 }
3034
3035 if (has_ngg)
3036 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3037
3038 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3039 case MESA_SHADER_GEOMETRY:
3040 return chip_class == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
3041 R_00B230_SPI_SHADER_USER_DATA_GS_0;
3042 case MESA_SHADER_COMPUTE:
3043 return R_00B900_COMPUTE_USER_DATA_0;
3044 case MESA_SHADER_TESS_CTRL:
3045 return chip_class == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
3046 R_00B430_SPI_SHADER_USER_DATA_HS_0;
3047 case MESA_SHADER_TESS_EVAL:
3048 if (has_gs) {
3049 return chip_class >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 :
3050 R_00B330_SPI_SHADER_USER_DATA_ES_0;
3051 } else if (has_ngg) {
3052 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3053 } else {
3054 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3055 }
3056 default:
3057 unreachable("unknown shader");
3058 }
3059 }
3060
3061 struct radv_bin_size_entry {
3062 unsigned bpp;
3063 VkExtent2D extent;
3064 };
3065
3066 static VkExtent2D
3067 radv_gfx9_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3068 {
3069 static const struct radv_bin_size_entry color_size_table[][3][9] = {
3070 {
3071 /* One RB / SE */
3072 {
3073 /* One shader engine */
3074 { 0, {128, 128}},
3075 { 1, { 64, 128}},
3076 { 2, { 32, 128}},
3077 { 3, { 16, 128}},
3078 { 17, { 0, 0}},
3079 { UINT_MAX, { 0, 0}},
3080 },
3081 {
3082 /* Two shader engines */
3083 { 0, {128, 128}},
3084 { 2, { 64, 128}},
3085 { 3, { 32, 128}},
3086 { 5, { 16, 128}},
3087 { 17, { 0, 0}},
3088 { UINT_MAX, { 0, 0}},
3089 },
3090 {
3091 /* Four shader engines */
3092 { 0, {128, 128}},
3093 { 3, { 64, 128}},
3094 { 5, { 16, 128}},
3095 { 17, { 0, 0}},
3096 { UINT_MAX, { 0, 0}},
3097 },
3098 },
3099 {
3100 /* Two RB / SE */
3101 {
3102 /* One shader engine */
3103 { 0, {128, 128}},
3104 { 2, { 64, 128}},
3105 { 3, { 32, 128}},
3106 { 5, { 16, 128}},
3107 { 33, { 0, 0}},
3108 { UINT_MAX, { 0, 0}},
3109 },
3110 {
3111 /* Two shader engines */
3112 { 0, {128, 128}},
3113 { 3, { 64, 128}},
3114 { 5, { 32, 128}},
3115 { 9, { 16, 128}},
3116 { 33, { 0, 0}},
3117 { UINT_MAX, { 0, 0}},
3118 },
3119 {
3120 /* Four shader engines */
3121 { 0, {256, 256}},
3122 { 2, {128, 256}},
3123 { 3, {128, 128}},
3124 { 5, { 64, 128}},
3125 { 9, { 16, 128}},
3126 { 33, { 0, 0}},
3127 { UINT_MAX, { 0, 0}},
3128 },
3129 },
3130 {
3131 /* Four RB / SE */
3132 {
3133 /* One shader engine */
3134 { 0, {128, 256}},
3135 { 2, {128, 128}},
3136 { 3, { 64, 128}},
3137 { 5, { 32, 128}},
3138 { 9, { 16, 128}},
3139 { 33, { 0, 0}},
3140 { UINT_MAX, { 0, 0}},
3141 },
3142 {
3143 /* Two shader engines */
3144 { 0, {256, 256}},
3145 { 2, {128, 256}},
3146 { 3, {128, 128}},
3147 { 5, { 64, 128}},
3148 { 9, { 32, 128}},
3149 { 17, { 16, 128}},
3150 { 33, { 0, 0}},
3151 { UINT_MAX, { 0, 0}},
3152 },
3153 {
3154 /* Four shader engines */
3155 { 0, {256, 512}},
3156 { 2, {256, 256}},
3157 { 3, {128, 256}},
3158 { 5, {128, 128}},
3159 { 9, { 64, 128}},
3160 { 17, { 16, 128}},
3161 { 33, { 0, 0}},
3162 { UINT_MAX, { 0, 0}},
3163 },
3164 },
3165 };
3166 static const struct radv_bin_size_entry ds_size_table[][3][9] = {
3167 {
3168 // One RB / SE
3169 {
3170 // One shader engine
3171 { 0, {128, 256}},
3172 { 2, {128, 128}},
3173 { 4, { 64, 128}},
3174 { 7, { 32, 128}},
3175 { 13, { 16, 128}},
3176 { 49, { 0, 0}},
3177 { UINT_MAX, { 0, 0}},
3178 },
3179 {
3180 // Two shader engines
3181 { 0, {256, 256}},
3182 { 2, {128, 256}},
3183 { 4, {128, 128}},
3184 { 7, { 64, 128}},
3185 { 13, { 32, 128}},
3186 { 25, { 16, 128}},
3187 { 49, { 0, 0}},
3188 { UINT_MAX, { 0, 0}},
3189 },
3190 {
3191 // Four shader engines
3192 { 0, {256, 512}},
3193 { 2, {256, 256}},
3194 { 4, {128, 256}},
3195 { 7, {128, 128}},
3196 { 13, { 64, 128}},
3197 { 25, { 16, 128}},
3198 { 49, { 0, 0}},
3199 { UINT_MAX, { 0, 0}},
3200 },
3201 },
3202 {
3203 // Two RB / SE
3204 {
3205 // One shader engine
3206 { 0, {256, 256}},
3207 { 2, {128, 256}},
3208 { 4, {128, 128}},
3209 { 7, { 64, 128}},
3210 { 13, { 32, 128}},
3211 { 25, { 16, 128}},
3212 { 97, { 0, 0}},
3213 { UINT_MAX, { 0, 0}},
3214 },
3215 {
3216 // Two shader engines
3217 { 0, {256, 512}},
3218 { 2, {256, 256}},
3219 { 4, {128, 256}},
3220 { 7, {128, 128}},
3221 { 13, { 64, 128}},
3222 { 25, { 32, 128}},
3223 { 49, { 16, 128}},
3224 { 97, { 0, 0}},
3225 { UINT_MAX, { 0, 0}},
3226 },
3227 {
3228 // Four shader engines
3229 { 0, {512, 512}},
3230 { 2, {256, 512}},
3231 { 4, {256, 256}},
3232 { 7, {128, 256}},
3233 { 13, {128, 128}},
3234 { 25, { 64, 128}},
3235 { 49, { 16, 128}},
3236 { 97, { 0, 0}},
3237 { UINT_MAX, { 0, 0}},
3238 },
3239 },
3240 {
3241 // Four RB / SE
3242 {
3243 // One shader engine
3244 { 0, {256, 512}},
3245 { 2, {256, 256}},
3246 { 4, {128, 256}},
3247 { 7, {128, 128}},
3248 { 13, { 64, 128}},
3249 { 25, { 32, 128}},
3250 { 49, { 16, 128}},
3251 { UINT_MAX, { 0, 0}},
3252 },
3253 {
3254 // Two shader engines
3255 { 0, {512, 512}},
3256 { 2, {256, 512}},
3257 { 4, {256, 256}},
3258 { 7, {128, 256}},
3259 { 13, {128, 128}},
3260 { 25, { 64, 128}},
3261 { 49, { 32, 128}},
3262 { 97, { 16, 128}},
3263 { UINT_MAX, { 0, 0}},
3264 },
3265 {
3266 // Four shader engines
3267 { 0, {512, 512}},
3268 { 4, {256, 512}},
3269 { 7, {256, 256}},
3270 { 13, {128, 256}},
3271 { 25, {128, 128}},
3272 { 49, { 64, 128}},
3273 { 97, { 16, 128}},
3274 { UINT_MAX, { 0, 0}},
3275 },
3276 },
3277 };
3278
3279 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3280 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3281 VkExtent2D extent = {512, 512};
3282
3283 unsigned log_num_rb_per_se =
3284 util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends /
3285 pipeline->device->physical_device->rad_info.max_se);
3286 unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se);
3287
3288 unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3289 unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa);
3290 unsigned effective_samples = total_samples;
3291 unsigned color_bytes_per_pixel = 0;
3292
3293 const VkPipelineColorBlendStateCreateInfo *vkblend =
3294 radv_pipeline_get_color_blend_state(pCreateInfo);
3295 if (vkblend) {
3296 for (unsigned i = 0; i < subpass->color_count; i++) {
3297 if (!vkblend->pAttachments[i].colorWriteMask)
3298 continue;
3299
3300 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3301 continue;
3302
3303 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3304 color_bytes_per_pixel += vk_format_get_blocksize(format);
3305 }
3306
3307 /* MSAA images typically don't use all samples all the time. */
3308 if (effective_samples >= 2 && ps_iter_samples <= 1)
3309 effective_samples = 2;
3310 color_bytes_per_pixel *= effective_samples;
3311 }
3312
3313 const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
3314 while(color_entry[1].bpp <= color_bytes_per_pixel)
3315 ++color_entry;
3316
3317 extent = color_entry->extent;
3318
3319 if (subpass->depth_stencil_attachment) {
3320 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3321
3322 /* Coefficients taken from AMDVLK */
3323 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3324 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3325 unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
3326
3327 const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
3328 while(ds_entry[1].bpp <= ds_bytes_per_pixel)
3329 ++ds_entry;
3330
3331 if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
3332 extent = ds_entry->extent;
3333 }
3334
3335 return extent;
3336 }
3337
3338 static VkExtent2D
3339 radv_gfx10_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3340 {
3341 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3342 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3343 VkExtent2D extent = {512, 512};
3344
3345 const unsigned db_tag_size = 64;
3346 const unsigned db_tag_count = 312;
3347 const unsigned color_tag_size = 1024;
3348 const unsigned color_tag_count = 31;
3349 const unsigned fmask_tag_size = 256;
3350 const unsigned fmask_tag_count = 44;
3351
3352 const unsigned rb_count = pipeline->device->physical_device->rad_info.num_render_backends;
3353 const unsigned pipe_count = MAX2(rb_count, pipeline->device->physical_device->rad_info.num_sdp_interfaces);
3354
3355 const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
3356 const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
3357 const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
3358
3359 const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3360 const unsigned samples_log = util_logbase2_ceil(total_samples);
3361
3362 unsigned color_bytes_per_pixel = 0;
3363 unsigned fmask_bytes_per_pixel = 0;
3364
3365 const VkPipelineColorBlendStateCreateInfo *vkblend =
3366 radv_pipeline_get_color_blend_state(pCreateInfo);
3367 if (vkblend) {
3368 for (unsigned i = 0; i < subpass->color_count; i++) {
3369 if (!vkblend->pAttachments[i].colorWriteMask)
3370 continue;
3371
3372 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3373 continue;
3374
3375 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3376 color_bytes_per_pixel += vk_format_get_blocksize(format);
3377
3378 if (total_samples > 1) {
3379 assert(samples_log <= 3);
3380 const unsigned fmask_array[] = {0, 1, 1, 4};
3381 fmask_bytes_per_pixel += fmask_array[samples_log];
3382 }
3383 }
3384
3385 color_bytes_per_pixel *= total_samples;
3386 }
3387 color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
3388
3389 const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
3390 extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
3391 extent.height = 1ull << (color_pixel_count_log / 2);
3392
3393 if (fmask_bytes_per_pixel) {
3394 const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
3395
3396 const VkExtent2D fmask_extent = (VkExtent2D){
3397 .width = 1ull << ((fmask_pixel_count_log + 1) / 2),
3398 .height = 1ull << (color_pixel_count_log / 2)
3399 };
3400
3401 if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
3402 extent = fmask_extent;
3403 }
3404
3405 if (subpass->depth_stencil_attachment) {
3406 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3407
3408 /* Coefficients taken from AMDVLK */
3409 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3410 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3411 unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
3412
3413 const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
3414
3415 const VkExtent2D db_extent = (VkExtent2D){
3416 .width = 1ull << ((db_pixel_count_log + 1) / 2),
3417 .height = 1ull << (color_pixel_count_log / 2)
3418 };
3419
3420 if (db_extent.width * db_extent.height < extent.width * extent.height)
3421 extent = db_extent;
3422 }
3423
3424 extent.width = MAX2(extent.width, 128);
3425 extent.height = MAX2(extent.width, 64);
3426
3427 return extent;
3428 }
3429
3430 static void
3431 radv_pipeline_generate_disabled_binning_state(struct radeon_cmdbuf *ctx_cs,
3432 struct radv_pipeline *pipeline,
3433 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3434 {
3435 uint32_t pa_sc_binner_cntl_0 =
3436 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) |
3437 S_028C44_DISABLE_START_OF_PRIM(1);
3438 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3439
3440 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3441 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3442 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3443 const VkPipelineColorBlendStateCreateInfo *vkblend =
3444 radv_pipeline_get_color_blend_state(pCreateInfo);
3445 unsigned min_bytes_per_pixel = 0;
3446
3447 if (vkblend) {
3448 for (unsigned i = 0; i < subpass->color_count; i++) {
3449 if (!vkblend->pAttachments[i].colorWriteMask)
3450 continue;
3451
3452 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3453 continue;
3454
3455 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3456 unsigned bytes = vk_format_get_blocksize(format);
3457 if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
3458 min_bytes_per_pixel = bytes;
3459 }
3460 }
3461
3462 pa_sc_binner_cntl_0 =
3463 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) |
3464 S_028C44_BIN_SIZE_X(0) |
3465 S_028C44_BIN_SIZE_Y(0) |
3466 S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */
3467 S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
3468 S_028C44_DISABLE_START_OF_PRIM(1);
3469 }
3470
3471 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3472 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3473 }
3474
3475 struct radv_binning_settings
3476 radv_get_binning_settings(const struct radv_physical_device *pdev)
3477 {
3478 struct radv_binning_settings settings;
3479 if (pdev->rad_info.has_dedicated_vram) {
3480 settings.context_states_per_bin = 1;
3481 settings.persistent_states_per_bin = 1;
3482 settings.fpovs_per_batch = 63;
3483 } else {
3484 /* The context states are affected by the scissor bug. */
3485 settings.context_states_per_bin = 6;
3486 /* 32 causes hangs for RAVEN. */
3487 settings.persistent_states_per_bin = 16;
3488 settings.fpovs_per_batch = 63;
3489 }
3490
3491 if (pdev->rad_info.has_gfx9_scissor_bug)
3492 settings.context_states_per_bin = 1;
3493
3494 return settings;
3495 }
3496
3497 static void
3498 radv_pipeline_generate_binning_state(struct radeon_cmdbuf *ctx_cs,
3499 struct radv_pipeline *pipeline,
3500 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3501 const struct radv_blend_state *blend)
3502 {
3503 if (pipeline->device->physical_device->rad_info.chip_class < GFX9)
3504 return;
3505
3506 VkExtent2D bin_size;
3507 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3508 bin_size = radv_gfx10_compute_bin_size(pipeline, pCreateInfo);
3509 } else if (pipeline->device->physical_device->rad_info.chip_class == GFX9) {
3510 bin_size = radv_gfx9_compute_bin_size(pipeline, pCreateInfo);
3511 } else
3512 unreachable("Unhandled generation for binning bin size calculation");
3513
3514 if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) {
3515 struct radv_binning_settings settings =
3516 radv_get_binning_settings(pipeline->device->physical_device);
3517
3518 bool disable_start_of_prim = true;
3519 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3520
3521 const struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3522
3523 if (pipeline->device->dfsm_allowed && ps &&
3524 !ps->info.ps.can_discard &&
3525 !ps->info.ps.writes_memory &&
3526 blend->cb_target_enabled_4bit) {
3527 db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_AUTO);
3528 disable_start_of_prim = (blend->blend_enable_4bit & blend->cb_target_enabled_4bit) != 0;
3529 }
3530
3531 const uint32_t pa_sc_binner_cntl_0 =
3532 S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) |
3533 S_028C44_BIN_SIZE_X(bin_size.width == 16) |
3534 S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
3535 S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
3536 S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
3537 S_028C44_CONTEXT_STATES_PER_BIN(settings.context_states_per_bin - 1) |
3538 S_028C44_PERSISTENT_STATES_PER_BIN(settings.persistent_states_per_bin - 1) |
3539 S_028C44_DISABLE_START_OF_PRIM(disable_start_of_prim) |
3540 S_028C44_FPOVS_PER_BATCH(settings.fpovs_per_batch) |
3541 S_028C44_OPTIMAL_BIN_SELECTION(1);
3542
3543 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3544 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3545 } else
3546 radv_pipeline_generate_disabled_binning_state(ctx_cs, pipeline, pCreateInfo);
3547 }
3548
3549
3550 static void
3551 radv_pipeline_generate_depth_stencil_state(struct radeon_cmdbuf *ctx_cs,
3552 struct radv_pipeline *pipeline,
3553 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3554 const struct radv_graphics_pipeline_create_info *extra)
3555 {
3556 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
3557 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3558 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3559 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3560 struct radv_render_pass_attachment *attachment = NULL;
3561 uint32_t db_depth_control = 0, db_stencil_control = 0;
3562 uint32_t db_render_control = 0, db_render_override2 = 0;
3563 uint32_t db_render_override = 0;
3564
3565 if (subpass->depth_stencil_attachment)
3566 attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3567
3568 bool has_depth_attachment = attachment && vk_format_is_depth(attachment->format);
3569 bool has_stencil_attachment = attachment && vk_format_is_stencil(attachment->format);
3570
3571 if (vkds && has_depth_attachment) {
3572 db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
3573 S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
3574 S_028800_ZFUNC(vkds->depthCompareOp) |
3575 S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
3576
3577 /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */
3578 db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2);
3579 }
3580
3581 if (has_stencil_attachment && vkds && vkds->stencilTestEnable) {
3582 db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
3583 db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
3584 db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
3585 db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
3586 db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
3587
3588 db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
3589 db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
3590 db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
3591 db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
3592 }
3593
3594 if (attachment && extra) {
3595 db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
3596 db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
3597
3598 db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
3599 db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
3600 db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
3601 db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
3602 db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
3603 }
3604
3605 db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
3606 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE);
3607
3608 if (!pCreateInfo->pRasterizationState->depthClampEnable &&
3609 ps->info.ps.writes_z) {
3610 /* From VK_EXT_depth_range_unrestricted spec:
3611 *
3612 * "The behavior described in Primitive Clipping still applies.
3613 * If depth clamping is disabled the depth values are still
3614 * clipped to 0 ≤ zc ≤ wc before the viewport transform. If
3615 * depth clamping is enabled the above equation is ignored and
3616 * the depth values are instead clamped to the VkViewport
3617 * minDepth and maxDepth values, which in the case of this
3618 * extension can be outside of the 0.0 to 1.0 range."
3619 */
3620 db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1);
3621 }
3622
3623 radeon_set_context_reg(ctx_cs, R_028800_DB_DEPTH_CONTROL, db_depth_control);
3624 radeon_set_context_reg(ctx_cs, R_02842C_DB_STENCIL_CONTROL, db_stencil_control);
3625
3626 radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, db_render_control);
3627 radeon_set_context_reg(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override);
3628 radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2);
3629 }
3630
3631 static void
3632 radv_pipeline_generate_blend_state(struct radeon_cmdbuf *ctx_cs,
3633 struct radv_pipeline *pipeline,
3634 const struct radv_blend_state *blend)
3635 {
3636 radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8);
3637 radeon_emit_array(ctx_cs, blend->cb_blend_control,
3638 8);
3639 radeon_set_context_reg(ctx_cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control);
3640 radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask);
3641
3642 if (pipeline->device->physical_device->rad_info.has_rbplus) {
3643
3644 radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8);
3645 radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8);
3646 }
3647
3648 radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
3649
3650 radeon_set_context_reg(ctx_cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask);
3651 radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
3652
3653 pipeline->graphics.col_format = blend->spi_shader_col_format;
3654 pipeline->graphics.cb_target_mask = blend->cb_target_mask;
3655 }
3656
3657 static const VkConservativeRasterizationModeEXT
3658 radv_get_conservative_raster_mode(const VkPipelineRasterizationStateCreateInfo *pCreateInfo)
3659 {
3660 const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster =
3661 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT);
3662
3663 if (!conservative_raster)
3664 return VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT;
3665 return conservative_raster->conservativeRasterizationMode;
3666 }
3667
3668 static void
3669 radv_pipeline_generate_raster_state(struct radeon_cmdbuf *ctx_cs,
3670 struct radv_pipeline *pipeline,
3671 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3672 {
3673 const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
3674 const VkConservativeRasterizationModeEXT mode =
3675 radv_get_conservative_raster_mode(vkraster);
3676 uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
3677 bool depth_clip_disable = vkraster->depthClampEnable;
3678
3679 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state =
3680 vk_find_struct_const(vkraster->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
3681 if (depth_clip_state) {
3682 depth_clip_disable = !depth_clip_state->depthClipEnable;
3683 }
3684
3685 radeon_set_context_reg(ctx_cs, R_028810_PA_CL_CLIP_CNTL,
3686 S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
3687 S_028810_ZCLIP_NEAR_DISABLE(depth_clip_disable ? 1 : 0) |
3688 S_028810_ZCLIP_FAR_DISABLE(depth_clip_disable ? 1 : 0) |
3689 S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
3690 S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
3691
3692 radeon_set_context_reg(ctx_cs, R_0286D4_SPI_INTERP_CONTROL_0,
3693 S_0286D4_FLAT_SHADE_ENA(1) |
3694 S_0286D4_PNT_SPRITE_ENA(1) |
3695 S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
3696 S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
3697 S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
3698 S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
3699 S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
3700
3701 radeon_set_context_reg(ctx_cs, R_028BE4_PA_SU_VTX_CNTL,
3702 S_028BE4_PIX_CENTER(1) | // TODO verify
3703 S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
3704 S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
3705
3706 radeon_set_context_reg(ctx_cs, R_028814_PA_SU_SC_MODE_CNTL,
3707 S_028814_FACE(vkraster->frontFace) |
3708 S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
3709 S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
3710 S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
3711 S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3712 S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3713 S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3714 S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3715 S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0));
3716
3717 /* Conservative rasterization. */
3718 if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
3719 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3720
3721 ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
3722 ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) |
3723 S_028804_OVERRASTERIZATION_AMOUNT(4);
3724
3725 pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) |
3726 S_028C4C_POSTZ_AA_MASK_ENABLE(1) |
3727 S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
3728
3729 if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) {
3730 pa_sc_conservative_rast |=
3731 S_028C4C_OVER_RAST_ENABLE(1) |
3732 S_028C4C_OVER_RAST_SAMPLE_SELECT(0) |
3733 S_028C4C_UNDER_RAST_ENABLE(0) |
3734 S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
3735 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
3736 } else {
3737 assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT);
3738 pa_sc_conservative_rast |=
3739 S_028C4C_OVER_RAST_ENABLE(0) |
3740 S_028C4C_OVER_RAST_SAMPLE_SELECT(1) |
3741 S_028C4C_UNDER_RAST_ENABLE(1) |
3742 S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) |
3743 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0);
3744 }
3745 }
3746
3747 radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3748 pa_sc_conservative_rast);
3749 }
3750
3751
3752 static void
3753 radv_pipeline_generate_multisample_state(struct radeon_cmdbuf *ctx_cs,
3754 struct radv_pipeline *pipeline)
3755 {
3756 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3757
3758 radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
3759 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]);
3760 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]);
3761
3762 radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa);
3763 radeon_set_context_reg(ctx_cs, R_028A48_PA_SC_MODE_CNTL_0, ms->pa_sc_mode_cntl_0);
3764 radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1);
3765 radeon_set_context_reg(ctx_cs, R_028BDC_PA_SC_LINE_CNTL, ms->pa_sc_line_cntl);
3766 radeon_set_context_reg(ctx_cs, R_028BE0_PA_SC_AA_CONFIG, ms->pa_sc_aa_config);
3767
3768 /* The exclusion bits can be set to improve rasterization efficiency
3769 * if no sample lies on the pixel boundary (-8 sample offset). It's
3770 * currently always TRUE because the driver doesn't support 16 samples.
3771 */
3772 bool exclusion = pipeline->device->physical_device->rad_info.chip_class >= GFX7;
3773 radeon_set_context_reg(ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL,
3774 S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) |
3775 S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion));
3776
3777 /* GFX9: Flush DFSM when the AA mode changes. */
3778 if (pipeline->device->dfsm_allowed) {
3779 radeon_emit(ctx_cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3780 radeon_emit(ctx_cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
3781 }
3782 }
3783
3784 static void
3785 radv_pipeline_generate_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs,
3786 struct radv_pipeline *pipeline)
3787 {
3788 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3789 const struct radv_shader_variant *vs =
3790 pipeline->shaders[MESA_SHADER_TESS_EVAL] ?
3791 pipeline->shaders[MESA_SHADER_TESS_EVAL] :
3792 pipeline->shaders[MESA_SHADER_VERTEX];
3793 unsigned vgt_primitiveid_en = 0;
3794 uint32_t vgt_gs_mode = 0;
3795
3796 if (radv_pipeline_has_ngg(pipeline))
3797 return;
3798
3799 if (radv_pipeline_has_gs(pipeline)) {
3800 const struct radv_shader_variant *gs =
3801 pipeline->shaders[MESA_SHADER_GEOMETRY];
3802
3803 vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out,
3804 pipeline->device->physical_device->rad_info.chip_class);
3805 } else if (outinfo->export_prim_id || vs->info.uses_prim_id) {
3806 vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
3807 vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
3808 }
3809
3810 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
3811 radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
3812 }
3813
3814 static void
3815 radv_pipeline_generate_hw_vs(struct radeon_cmdbuf *ctx_cs,
3816 struct radeon_cmdbuf *cs,
3817 struct radv_pipeline *pipeline,
3818 struct radv_shader_variant *shader)
3819 {
3820 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3821
3822 radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
3823 radeon_emit(cs, va >> 8);
3824 radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
3825 radeon_emit(cs, shader->config.rsrc1);
3826 radeon_emit(cs, shader->config.rsrc2);
3827
3828 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3829 unsigned clip_dist_mask, cull_dist_mask, total_mask;
3830 clip_dist_mask = outinfo->clip_dist_mask;
3831 cull_dist_mask = outinfo->cull_dist_mask;
3832 total_mask = clip_dist_mask | cull_dist_mask;
3833 bool misc_vec_ena = outinfo->writes_pointsize ||
3834 outinfo->writes_layer ||
3835 outinfo->writes_viewport_index;
3836 unsigned spi_vs_out_config, nparams;
3837
3838 /* VS is required to export at least one param. */
3839 nparams = MAX2(outinfo->param_exports, 1);
3840 spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
3841
3842 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3843 spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
3844 }
3845
3846 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
3847
3848 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
3849 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
3850 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
3851 V_02870C_SPI_SHADER_4COMP :
3852 V_02870C_SPI_SHADER_NONE) |
3853 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
3854 V_02870C_SPI_SHADER_4COMP :
3855 V_02870C_SPI_SHADER_NONE) |
3856 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
3857 V_02870C_SPI_SHADER_4COMP :
3858 V_02870C_SPI_SHADER_NONE));
3859
3860 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
3861 S_028818_VTX_W0_FMT(1) |
3862 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
3863 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
3864 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
3865
3866 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
3867 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
3868 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
3869 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
3870 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
3871 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
3872 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
3873 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
3874 cull_dist_mask << 8 |
3875 clip_dist_mask);
3876
3877 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
3878 radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF,
3879 outinfo->writes_viewport_index);
3880 }
3881
3882 static void
3883 radv_pipeline_generate_hw_es(struct radeon_cmdbuf *cs,
3884 struct radv_pipeline *pipeline,
3885 struct radv_shader_variant *shader)
3886 {
3887 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3888
3889 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
3890 radeon_emit(cs, va >> 8);
3891 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
3892 radeon_emit(cs, shader->config.rsrc1);
3893 radeon_emit(cs, shader->config.rsrc2);
3894 }
3895
3896 static void
3897 radv_pipeline_generate_hw_ls(struct radeon_cmdbuf *cs,
3898 struct radv_pipeline *pipeline,
3899 struct radv_shader_variant *shader,
3900 const struct radv_tessellation_state *tess)
3901 {
3902 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3903 uint32_t rsrc2 = shader->config.rsrc2;
3904
3905 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
3906 radeon_emit(cs, va >> 8);
3907 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
3908
3909 rsrc2 |= S_00B52C_LDS_SIZE(tess->lds_size);
3910 if (pipeline->device->physical_device->rad_info.chip_class == GFX7 &&
3911 pipeline->device->physical_device->rad_info.family != CHIP_HAWAII)
3912 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2);
3913
3914 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
3915 radeon_emit(cs, shader->config.rsrc1);
3916 radeon_emit(cs, rsrc2);
3917 }
3918
3919 static void
3920 radv_pipeline_generate_hw_ngg(struct radeon_cmdbuf *ctx_cs,
3921 struct radeon_cmdbuf *cs,
3922 struct radv_pipeline *pipeline,
3923 struct radv_shader_variant *shader)
3924 {
3925 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3926 gl_shader_stage es_type =
3927 radv_pipeline_has_tess(pipeline) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
3928 struct radv_shader_variant *es =
3929 es_type == MESA_SHADER_TESS_EVAL ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX];
3930 const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
3931
3932 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
3933 radeon_emit(cs, va >> 8);
3934 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
3935 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
3936 radeon_emit(cs, shader->config.rsrc1);
3937 radeon_emit(cs, shader->config.rsrc2);
3938
3939 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3940 unsigned clip_dist_mask, cull_dist_mask, total_mask;
3941 clip_dist_mask = outinfo->clip_dist_mask;
3942 cull_dist_mask = outinfo->cull_dist_mask;
3943 total_mask = clip_dist_mask | cull_dist_mask;
3944 bool misc_vec_ena = outinfo->writes_pointsize ||
3945 outinfo->writes_layer ||
3946 outinfo->writes_viewport_index;
3947 bool es_enable_prim_id = outinfo->export_prim_id ||
3948 (es && es->info.uses_prim_id);
3949 bool break_wave_at_eoi = false;
3950 unsigned ge_cntl;
3951 unsigned nparams;
3952
3953 if (es_type == MESA_SHADER_TESS_EVAL) {
3954 struct radv_shader_variant *gs =
3955 pipeline->shaders[MESA_SHADER_GEOMETRY];
3956
3957 if (es_enable_prim_id || (gs && gs->info.uses_prim_id))
3958 break_wave_at_eoi = true;
3959 }
3960
3961 nparams = MAX2(outinfo->param_exports, 1);
3962 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
3963 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
3964 S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0));
3965
3966 radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT,
3967 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP));
3968 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
3969 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
3970 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
3971 V_02870C_SPI_SHADER_4COMP :
3972 V_02870C_SPI_SHADER_NONE) |
3973 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
3974 V_02870C_SPI_SHADER_4COMP :
3975 V_02870C_SPI_SHADER_NONE) |
3976 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
3977 V_02870C_SPI_SHADER_4COMP :
3978 V_02870C_SPI_SHADER_NONE));
3979
3980 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
3981 S_028818_VTX_W0_FMT(1) |
3982 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
3983 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
3984 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
3985 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
3986 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
3987 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
3988 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
3989 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
3990 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
3991 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
3992 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
3993 cull_dist_mask << 8 |
3994 clip_dist_mask);
3995
3996 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
3997 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
3998 S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
3999
4000 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
4001 ngg_state->vgt_esgs_ring_itemsize);
4002
4003 /* NGG specific registers. */
4004 struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
4005 uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1;
4006
4007 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
4008 S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
4009 S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
4010 S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
4011 radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
4012 S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
4013 radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
4014 S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) |
4015 S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
4016 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4017 S_028B90_CNT(gs_num_invocations) |
4018 S_028B90_ENABLE(gs_num_invocations > 1) |
4019 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
4020
4021 /* User edge flags are set by the pos exports. If user edge flags are
4022 * not used, we must use hw-generated edge flags and pass them via
4023 * the prim export to prevent drawing lines on internal edges of
4024 * decomposed primitives (such as quads) with polygon mode = lines.
4025 *
4026 * TODO: We should combine hw-generated edge flags with user edge
4027 * flags in the shader.
4028 */
4029 radeon_set_context_reg(ctx_cs, R_028838_PA_CL_NGG_CNTL,
4030 S_028838_INDEX_BUF_EDGE_FLAG_ENA(!radv_pipeline_has_tess(pipeline) &&
4031 !radv_pipeline_has_gs(pipeline)));
4032
4033 ge_cntl = S_03096C_PRIM_GRP_SIZE(ngg_state->max_gsprims) |
4034 S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */
4035 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
4036
4037 /* Bug workaround for a possible hang with non-tessellation cases.
4038 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
4039 *
4040 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
4041 */
4042 if ((pipeline->device->physical_device->rad_info.family == CHIP_NAVI10 ||
4043 pipeline->device->physical_device->rad_info.family == CHIP_NAVI12 ||
4044 pipeline->device->physical_device->rad_info.family == CHIP_NAVI14) &&
4045 !radv_pipeline_has_tess(pipeline) &&
4046 ngg_state->hw_max_esverts != 256) {
4047 ge_cntl &= C_03096C_VERT_GRP_SIZE;
4048
4049 if (ngg_state->hw_max_esverts > 5) {
4050 ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
4051 }
4052 }
4053
4054 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
4055 }
4056
4057 static void
4058 radv_pipeline_generate_hw_hs(struct radeon_cmdbuf *cs,
4059 struct radv_pipeline *pipeline,
4060 struct radv_shader_variant *shader,
4061 const struct radv_tessellation_state *tess)
4062 {
4063 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
4064
4065 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4066 unsigned hs_rsrc2 = shader->config.rsrc2;
4067
4068 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4069 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(tess->lds_size);
4070 } else {
4071 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(tess->lds_size);
4072 }
4073
4074 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4075 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
4076 radeon_emit(cs, va >> 8);
4077 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
4078 } else {
4079 radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2);
4080 radeon_emit(cs, va >> 8);
4081 radeon_emit(cs, S_00B414_MEM_BASE(va >> 40));
4082 }
4083
4084 radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2);
4085 radeon_emit(cs, shader->config.rsrc1);
4086 radeon_emit(cs, hs_rsrc2);
4087 } else {
4088 radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
4089 radeon_emit(cs, va >> 8);
4090 radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
4091 radeon_emit(cs, shader->config.rsrc1);
4092 radeon_emit(cs, shader->config.rsrc2);
4093 }
4094 }
4095
4096 static void
4097 radv_pipeline_generate_vertex_shader(struct radeon_cmdbuf *ctx_cs,
4098 struct radeon_cmdbuf *cs,
4099 struct radv_pipeline *pipeline,
4100 const struct radv_tessellation_state *tess)
4101 {
4102 struct radv_shader_variant *vs;
4103
4104 /* Skip shaders merged into HS/GS */
4105 vs = pipeline->shaders[MESA_SHADER_VERTEX];
4106 if (!vs)
4107 return;
4108
4109 if (vs->info.vs.as_ls)
4110 radv_pipeline_generate_hw_ls(cs, pipeline, vs, tess);
4111 else if (vs->info.vs.as_es)
4112 radv_pipeline_generate_hw_es(cs, pipeline, vs);
4113 else if (vs->info.is_ngg)
4114 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, vs);
4115 else
4116 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, vs);
4117 }
4118
4119 static void
4120 radv_pipeline_generate_tess_shaders(struct radeon_cmdbuf *ctx_cs,
4121 struct radeon_cmdbuf *cs,
4122 struct radv_pipeline *pipeline,
4123 const struct radv_tessellation_state *tess)
4124 {
4125 if (!radv_pipeline_has_tess(pipeline))
4126 return;
4127
4128 struct radv_shader_variant *tes, *tcs;
4129
4130 tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL];
4131 tes = pipeline->shaders[MESA_SHADER_TESS_EVAL];
4132
4133 if (tes) {
4134 if (tes->info.is_ngg) {
4135 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, tes);
4136 } else if (tes->info.tes.as_es)
4137 radv_pipeline_generate_hw_es(cs, pipeline, tes);
4138 else
4139 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, tes);
4140 }
4141
4142 radv_pipeline_generate_hw_hs(cs, pipeline, tcs, tess);
4143
4144 radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM,
4145 tess->tf_param);
4146
4147 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7)
4148 radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2,
4149 tess->ls_hs_config);
4150 else
4151 radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG,
4152 tess->ls_hs_config);
4153
4154 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 &&
4155 !radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
4156 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
4157 S_028A44_ES_VERTS_PER_SUBGRP(250) |
4158 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
4159 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
4160 }
4161 }
4162
4163 static void
4164 radv_pipeline_generate_hw_gs(struct radeon_cmdbuf *ctx_cs,
4165 struct radeon_cmdbuf *cs,
4166 struct radv_pipeline *pipeline,
4167 struct radv_shader_variant *gs)
4168 {
4169 const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info;
4170 unsigned gs_max_out_vertices;
4171 uint8_t *num_components;
4172 uint8_t max_stream;
4173 unsigned offset;
4174 uint64_t va;
4175
4176 gs_max_out_vertices = gs->info.gs.vertices_out;
4177 max_stream = gs->info.gs.max_stream;
4178 num_components = gs->info.gs.num_stream_output_components;
4179
4180 offset = num_components[0] * gs_max_out_vertices;
4181
4182 radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
4183 radeon_emit(ctx_cs, offset);
4184 if (max_stream >= 1)
4185 offset += num_components[1] * gs_max_out_vertices;
4186 radeon_emit(ctx_cs, offset);
4187 if (max_stream >= 2)
4188 offset += num_components[2] * gs_max_out_vertices;
4189 radeon_emit(ctx_cs, offset);
4190 if (max_stream >= 3)
4191 offset += num_components[3] * gs_max_out_vertices;
4192 radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
4193
4194 radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
4195 radeon_emit(ctx_cs, num_components[0]);
4196 radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
4197 radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
4198 radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
4199
4200 uint32_t gs_num_invocations = gs->info.gs.invocations;
4201 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4202 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
4203 S_028B90_ENABLE(gs_num_invocations > 0));
4204
4205 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
4206 gs_state->vgt_esgs_ring_itemsize);
4207
4208 va = radv_buffer_get_va(gs->bo) + gs->bo_offset;
4209
4210 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4211 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4212 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
4213 radeon_emit(cs, va >> 8);
4214 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
4215 } else {
4216 radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2);
4217 radeon_emit(cs, va >> 8);
4218 radeon_emit(cs, S_00B214_MEM_BASE(va >> 40));
4219 }
4220
4221 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
4222 radeon_emit(cs, gs->config.rsrc1);
4223 radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
4224
4225 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
4226 radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup);
4227 } else {
4228 radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
4229 radeon_emit(cs, va >> 8);
4230 radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
4231 radeon_emit(cs, gs->config.rsrc1);
4232 radeon_emit(cs, gs->config.rsrc2);
4233 }
4234
4235 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, pipeline->gs_copy_shader);
4236 }
4237
4238 static void
4239 radv_pipeline_generate_geometry_shader(struct radeon_cmdbuf *ctx_cs,
4240 struct radeon_cmdbuf *cs,
4241 struct radv_pipeline *pipeline)
4242 {
4243 struct radv_shader_variant *gs;
4244
4245 gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
4246 if (!gs)
4247 return;
4248
4249 if (gs->info.is_ngg)
4250 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, gs);
4251 else
4252 radv_pipeline_generate_hw_gs(ctx_cs, cs, pipeline, gs);
4253
4254 radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT,
4255 gs->info.gs.vertices_out);
4256 }
4257
4258 static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade,
4259 bool explicit, bool float16)
4260 {
4261 uint32_t ps_input_cntl;
4262 if (offset <= AC_EXP_PARAM_OFFSET_31) {
4263 ps_input_cntl = S_028644_OFFSET(offset);
4264 if (flat_shade || explicit)
4265 ps_input_cntl |= S_028644_FLAT_SHADE(1);
4266 if (explicit) {
4267 /* Force parameter cache to be read in passthrough
4268 * mode.
4269 */
4270 ps_input_cntl |= S_028644_OFFSET(1 << 5);
4271 }
4272 if (float16) {
4273 ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4274 S_028644_ATTR0_VALID(1);
4275 }
4276 } else {
4277 /* The input is a DEFAULT_VAL constant. */
4278 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
4279 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
4280 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
4281 ps_input_cntl = S_028644_OFFSET(0x20) |
4282 S_028644_DEFAULT_VAL(offset);
4283 }
4284 return ps_input_cntl;
4285 }
4286
4287 static void
4288 radv_pipeline_generate_ps_inputs(struct radeon_cmdbuf *ctx_cs,
4289 struct radv_pipeline *pipeline)
4290 {
4291 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4292 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
4293 uint32_t ps_input_cntl[32];
4294
4295 unsigned ps_offset = 0;
4296
4297 if (ps->info.ps.prim_id_input) {
4298 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID];
4299 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4300 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4301 ++ps_offset;
4302 }
4303 }
4304
4305 if (ps->info.ps.layer_input ||
4306 ps->info.needs_multiview_view_index) {
4307 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER];
4308 if (vs_offset != AC_EXP_PARAM_UNDEFINED)
4309 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4310 else
4311 ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false);
4312 ++ps_offset;
4313 }
4314
4315 if (ps->info.ps.has_pcoord) {
4316 unsigned val;
4317 val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
4318 ps_input_cntl[ps_offset] = val;
4319 ps_offset++;
4320 }
4321
4322 if (ps->info.ps.num_input_clips_culls) {
4323 unsigned vs_offset;
4324
4325 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0];
4326 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4327 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4328 ++ps_offset;
4329 }
4330
4331 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1];
4332 if (vs_offset != AC_EXP_PARAM_UNDEFINED &&
4333 ps->info.ps.num_input_clips_culls > 4) {
4334 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4335 ++ps_offset;
4336 }
4337 }
4338
4339 for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.ps.input_mask; ++i) {
4340 unsigned vs_offset;
4341 bool flat_shade;
4342 bool explicit;
4343 bool float16;
4344 if (!(ps->info.ps.input_mask & (1u << i)))
4345 continue;
4346
4347 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
4348 if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
4349 ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
4350 ++ps_offset;
4351 continue;
4352 }
4353
4354 flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << ps_offset));
4355 explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << ps_offset));
4356 float16 = !!(ps->info.ps.float16_shaded_mask & (1u << ps_offset));
4357
4358 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16);
4359 ++ps_offset;
4360 }
4361
4362 if (ps_offset) {
4363 radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
4364 for (unsigned i = 0; i < ps_offset; i++) {
4365 radeon_emit(ctx_cs, ps_input_cntl[i]);
4366 }
4367 }
4368 }
4369
4370 static uint32_t
4371 radv_compute_db_shader_control(const struct radv_device *device,
4372 const struct radv_pipeline *pipeline,
4373 const struct radv_shader_variant *ps)
4374 {
4375 unsigned z_order;
4376 if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)
4377 z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
4378 else
4379 z_order = V_02880C_LATE_Z;
4380
4381 bool disable_rbplus = device->physical_device->rad_info.has_rbplus &&
4382 !device->physical_device->rad_info.rbplus_allowed;
4383
4384 /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled
4385 * but this appears to break Project Cars (DXVK). See
4386 * https://bugs.freedesktop.org/show_bug.cgi?id=109401
4387 */
4388 bool mask_export_enable = ps->info.ps.writes_sample_mask;
4389
4390 return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) |
4391 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) |
4392 S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) |
4393 S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
4394 S_02880C_Z_ORDER(z_order) |
4395 S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) |
4396 S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) |
4397 S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) |
4398 S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) |
4399 S_02880C_DUAL_QUAD_DISABLE(disable_rbplus);
4400 }
4401
4402 static void
4403 radv_pipeline_generate_fragment_shader(struct radeon_cmdbuf *ctx_cs,
4404 struct radeon_cmdbuf *cs,
4405 struct radv_pipeline *pipeline)
4406 {
4407 struct radv_shader_variant *ps;
4408 uint64_t va;
4409 assert (pipeline->shaders[MESA_SHADER_FRAGMENT]);
4410
4411 ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4412 va = radv_buffer_get_va(ps->bo) + ps->bo_offset;
4413
4414 radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
4415 radeon_emit(cs, va >> 8);
4416 radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
4417 radeon_emit(cs, ps->config.rsrc1);
4418 radeon_emit(cs, ps->config.rsrc2);
4419
4420 radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL,
4421 radv_compute_db_shader_control(pipeline->device,
4422 pipeline, ps));
4423
4424 radeon_set_context_reg(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA,
4425 ps->config.spi_ps_input_ena);
4426
4427 radeon_set_context_reg(ctx_cs, R_0286D0_SPI_PS_INPUT_ADDR,
4428 ps->config.spi_ps_input_addr);
4429
4430 radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
4431 S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
4432 S_0286D8_PS_W32_EN(ps->info.wave_size == 32));
4433
4434 radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl);
4435
4436 radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
4437 ac_get_spi_shader_z_format(ps->info.ps.writes_z,
4438 ps->info.ps.writes_stencil,
4439 ps->info.ps.writes_sample_mask));
4440
4441 if (pipeline->device->dfsm_allowed) {
4442 /* optimise this? */
4443 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
4444 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
4445 }
4446 }
4447
4448 static void
4449 radv_pipeline_generate_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs,
4450 struct radv_pipeline *pipeline)
4451 {
4452 if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
4453 pipeline->device->physical_device->rad_info.chip_class >= GFX10)
4454 return;
4455
4456 unsigned vtx_reuse_depth = 30;
4457 if (radv_pipeline_has_tess(pipeline) &&
4458 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
4459 vtx_reuse_depth = 14;
4460 }
4461 radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
4462 S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
4463 }
4464
4465 static uint32_t
4466 radv_compute_vgt_shader_stages_en(const struct radv_pipeline *pipeline)
4467 {
4468 uint32_t stages = 0;
4469 if (radv_pipeline_has_tess(pipeline)) {
4470 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
4471 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
4472
4473 if (radv_pipeline_has_gs(pipeline))
4474 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
4475 S_028B54_GS_EN(1);
4476 else if (radv_pipeline_has_ngg(pipeline))
4477 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
4478 else
4479 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
4480 } else if (radv_pipeline_has_gs(pipeline)) {
4481 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
4482 S_028B54_GS_EN(1);
4483 } else if (radv_pipeline_has_ngg(pipeline)) {
4484 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
4485 }
4486
4487 if (radv_pipeline_has_ngg(pipeline)) {
4488 stages |= S_028B54_PRIMGEN_EN(1);
4489 if (pipeline->streamout_shader)
4490 stages |= S_028B54_NGG_WAVE_ID_EN(1);
4491 if (radv_pipeline_has_ngg_passthrough(pipeline))
4492 stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1);
4493 } else if (radv_pipeline_has_gs(pipeline)) {
4494 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
4495 }
4496
4497 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
4498 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
4499
4500 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4501 uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
4502
4503 if (radv_pipeline_has_tess(pipeline))
4504 hs_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
4505
4506 if (pipeline->shaders[MESA_SHADER_GEOMETRY]) {
4507 vs_size = gs_size = pipeline->shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
4508 if (pipeline->gs_copy_shader)
4509 vs_size = pipeline->gs_copy_shader->info.wave_size;
4510 } else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
4511 vs_size = pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
4512 else if (pipeline->shaders[MESA_SHADER_VERTEX])
4513 vs_size = pipeline->shaders[MESA_SHADER_VERTEX]->info.wave_size;
4514
4515 if (radv_pipeline_has_ngg(pipeline))
4516 gs_size = vs_size;
4517
4518 /* legacy GS only supports Wave64 */
4519 stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) |
4520 S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) |
4521 S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0);
4522 }
4523
4524 return stages;
4525 }
4526
4527 static uint32_t
4528 radv_compute_cliprect_rule(const VkGraphicsPipelineCreateInfo *pCreateInfo)
4529 {
4530 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
4531 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
4532
4533 if (!discard_rectangle_info)
4534 return 0xffff;
4535
4536 unsigned mask = 0;
4537
4538 for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
4539 /* Interpret i as a bitmask, and then set the bit in the mask if
4540 * that combination of rectangles in which the pixel is contained
4541 * should pass the cliprect test. */
4542 unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1);
4543
4544 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT &&
4545 !relevant_subset)
4546 continue;
4547
4548 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT &&
4549 relevant_subset)
4550 continue;
4551
4552 mask |= 1u << i;
4553 }
4554
4555 return mask;
4556 }
4557
4558 static void
4559 gfx10_pipeline_generate_ge_cntl(struct radeon_cmdbuf *ctx_cs,
4560 struct radv_pipeline *pipeline,
4561 const struct radv_tessellation_state *tess)
4562 {
4563 bool break_wave_at_eoi = false;
4564 unsigned primgroup_size;
4565 unsigned vertgroup_size = 256; /* 256 = disable vertex grouping */
4566
4567 if (radv_pipeline_has_tess(pipeline)) {
4568 primgroup_size = tess->num_patches; /* must be a multiple of NUM_PATCHES */
4569 } else if (radv_pipeline_has_gs(pipeline)) {
4570 const struct gfx9_gs_info *gs_state =
4571 &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
4572 unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl;
4573 primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
4574 } else {
4575 primgroup_size = 128; /* recommended without a GS and tess */
4576 }
4577
4578 if (radv_pipeline_has_tess(pipeline)) {
4579 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4580 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4581 break_wave_at_eoi = true;
4582 }
4583
4584 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL,
4585 S_03096C_PRIM_GRP_SIZE(primgroup_size) |
4586 S_03096C_VERT_GRP_SIZE(vertgroup_size) |
4587 S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ |
4588 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi));
4589 }
4590
4591 static void
4592 radv_pipeline_generate_pm4(struct radv_pipeline *pipeline,
4593 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4594 const struct radv_graphics_pipeline_create_info *extra,
4595 const struct radv_blend_state *blend,
4596 const struct radv_tessellation_state *tess,
4597 unsigned prim, unsigned gs_out)
4598 {
4599 struct radeon_cmdbuf *ctx_cs = &pipeline->ctx_cs;
4600 struct radeon_cmdbuf *cs = &pipeline->cs;
4601
4602 cs->max_dw = 64;
4603 ctx_cs->max_dw = 256;
4604 cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
4605 ctx_cs->buf = cs->buf + cs->max_dw;
4606
4607 radv_pipeline_generate_depth_stencil_state(ctx_cs, pipeline, pCreateInfo, extra);
4608 radv_pipeline_generate_blend_state(ctx_cs, pipeline, blend);
4609 radv_pipeline_generate_raster_state(ctx_cs, pipeline, pCreateInfo);
4610 radv_pipeline_generate_multisample_state(ctx_cs, pipeline);
4611 radv_pipeline_generate_vgt_gs_mode(ctx_cs, pipeline);
4612 radv_pipeline_generate_vertex_shader(ctx_cs, cs, pipeline, tess);
4613 radv_pipeline_generate_tess_shaders(ctx_cs, cs, pipeline, tess);
4614 radv_pipeline_generate_geometry_shader(ctx_cs, cs, pipeline);
4615 radv_pipeline_generate_fragment_shader(ctx_cs, cs, pipeline);
4616 radv_pipeline_generate_ps_inputs(ctx_cs, pipeline);
4617 radv_pipeline_generate_vgt_vertex_reuse(ctx_cs, pipeline);
4618 radv_pipeline_generate_binning_state(ctx_cs, pipeline, pCreateInfo, blend);
4619
4620 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_ngg(pipeline))
4621 gfx10_pipeline_generate_ge_cntl(ctx_cs, pipeline, tess);
4622
4623 radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, radv_compute_vgt_shader_stages_en(pipeline));
4624
4625 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
4626 radeon_set_uconfig_reg_idx(pipeline->device->physical_device,
4627 cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
4628 } else {
4629 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
4630 }
4631 radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out);
4632
4633 radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, radv_compute_cliprect_rule(pCreateInfo));
4634
4635 pipeline->ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
4636
4637 assert(ctx_cs->cdw <= ctx_cs->max_dw);
4638 assert(cs->cdw <= cs->max_dw);
4639 }
4640
4641 static struct radv_ia_multi_vgt_param_helpers
4642 radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline,
4643 const struct radv_tessellation_state *tess,
4644 uint32_t prim)
4645 {
4646 struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
4647 const struct radv_device *device = pipeline->device;
4648
4649 if (radv_pipeline_has_tess(pipeline))
4650 ia_multi_vgt_param.primgroup_size = tess->num_patches;
4651 else if (radv_pipeline_has_gs(pipeline))
4652 ia_multi_vgt_param.primgroup_size = 64;
4653 else
4654 ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */
4655
4656 /* GS requirement. */
4657 ia_multi_vgt_param.partial_es_wave = false;
4658 if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= GFX8)
4659 if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3)
4660 ia_multi_vgt_param.partial_es_wave = true;
4661
4662 ia_multi_vgt_param.wd_switch_on_eop = false;
4663 if (device->physical_device->rad_info.chip_class >= GFX7) {
4664 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
4665 * 4 shader engines. Set 1 to pass the assertion below.
4666 * The other cases are hardware requirements. */
4667 if (device->physical_device->rad_info.max_se < 4 ||
4668 prim == V_008958_DI_PT_POLYGON ||
4669 prim == V_008958_DI_PT_LINELOOP ||
4670 prim == V_008958_DI_PT_TRIFAN ||
4671 prim == V_008958_DI_PT_TRISTRIP_ADJ ||
4672 (pipeline->graphics.prim_restart_enable &&
4673 (device->physical_device->rad_info.family < CHIP_POLARIS10 ||
4674 (prim != V_008958_DI_PT_POINTLIST &&
4675 prim != V_008958_DI_PT_LINESTRIP))))
4676 ia_multi_vgt_param.wd_switch_on_eop = true;
4677 }
4678
4679 ia_multi_vgt_param.ia_switch_on_eoi = false;
4680 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
4681 ia_multi_vgt_param.ia_switch_on_eoi = true;
4682 if (radv_pipeline_has_gs(pipeline) &&
4683 pipeline->shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
4684 ia_multi_vgt_param.ia_switch_on_eoi = true;
4685 if (radv_pipeline_has_tess(pipeline)) {
4686 /* SWITCH_ON_EOI must be set if PrimID is used. */
4687 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4688 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4689 ia_multi_vgt_param.ia_switch_on_eoi = true;
4690 }
4691
4692 ia_multi_vgt_param.partial_vs_wave = false;
4693 if (radv_pipeline_has_tess(pipeline)) {
4694 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
4695 if ((device->physical_device->rad_info.family == CHIP_TAHITI ||
4696 device->physical_device->rad_info.family == CHIP_PITCAIRN ||
4697 device->physical_device->rad_info.family == CHIP_BONAIRE) &&
4698 radv_pipeline_has_gs(pipeline))
4699 ia_multi_vgt_param.partial_vs_wave = true;
4700 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
4701 if (device->physical_device->rad_info.has_distributed_tess) {
4702 if (radv_pipeline_has_gs(pipeline)) {
4703 if (device->physical_device->rad_info.chip_class <= GFX8)
4704 ia_multi_vgt_param.partial_es_wave = true;
4705 } else {
4706 ia_multi_vgt_param.partial_vs_wave = true;
4707 }
4708 }
4709 }
4710
4711 /* Workaround for a VGT hang when strip primitive types are used with
4712 * primitive restart.
4713 */
4714 if (pipeline->graphics.prim_restart_enable &&
4715 (prim == V_008958_DI_PT_LINESTRIP ||
4716 prim == V_008958_DI_PT_TRISTRIP ||
4717 prim == V_008958_DI_PT_LINESTRIP_ADJ ||
4718 prim == V_008958_DI_PT_TRISTRIP_ADJ)) {
4719 ia_multi_vgt_param.partial_vs_wave = true;
4720 }
4721
4722 if (radv_pipeline_has_gs(pipeline)) {
4723 /* On these chips there is the possibility of a hang if the
4724 * pipeline uses a GS and partial_vs_wave is not set.
4725 *
4726 * This mostly does not hit 4-SE chips, as those typically set
4727 * ia_switch_on_eoi and then partial_vs_wave is set for pipelines
4728 * with GS due to another workaround.
4729 *
4730 * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
4731 */
4732 if (device->physical_device->rad_info.family == CHIP_TONGA ||
4733 device->physical_device->rad_info.family == CHIP_FIJI ||
4734 device->physical_device->rad_info.family == CHIP_POLARIS10 ||
4735 device->physical_device->rad_info.family == CHIP_POLARIS11 ||
4736 device->physical_device->rad_info.family == CHIP_POLARIS12 ||
4737 device->physical_device->rad_info.family == CHIP_VEGAM) {
4738 ia_multi_vgt_param.partial_vs_wave = true;
4739 }
4740 }
4741
4742 ia_multi_vgt_param.base =
4743 S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) |
4744 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
4745 S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == GFX8 ? 2 : 0) |
4746 S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) |
4747 S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9);
4748
4749 return ia_multi_vgt_param;
4750 }
4751
4752
4753 static void
4754 radv_compute_vertex_input_state(struct radv_pipeline *pipeline,
4755 const VkGraphicsPipelineCreateInfo *pCreateInfo)
4756 {
4757 const VkPipelineVertexInputStateCreateInfo *vi_info =
4758 pCreateInfo->pVertexInputState;
4759 struct radv_vertex_elements_info *velems = &pipeline->vertex_elements;
4760
4761 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
4762 const VkVertexInputAttributeDescription *desc =
4763 &vi_info->pVertexAttributeDescriptions[i];
4764 unsigned loc = desc->location;
4765 const struct vk_format_description *format_desc;
4766
4767 format_desc = vk_format_description(desc->format);
4768
4769 velems->format_size[loc] = format_desc->block.bits / 8;
4770 }
4771
4772 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
4773 const VkVertexInputBindingDescription *desc =
4774 &vi_info->pVertexBindingDescriptions[i];
4775
4776 pipeline->binding_stride[desc->binding] = desc->stride;
4777 pipeline->num_vertex_bindings =
4778 MAX2(pipeline->num_vertex_bindings, desc->binding + 1);
4779 }
4780 }
4781
4782 static struct radv_shader_variant *
4783 radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline)
4784 {
4785 int i;
4786
4787 for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4788 struct radv_shader_variant *shader =
4789 radv_get_shader(pipeline, i);
4790
4791 if (shader && shader->info.so.num_outputs > 0)
4792 return shader;
4793 }
4794
4795 return NULL;
4796 }
4797
4798 static VkResult
4799 radv_secure_compile(struct radv_pipeline *pipeline,
4800 struct radv_device *device,
4801 const struct radv_pipeline_key *key,
4802 const VkPipelineShaderStageCreateInfo **pStages,
4803 const VkPipelineCreateFlags flags,
4804 unsigned num_stages)
4805 {
4806 uint8_t allowed_pipeline_hashes[2][20];
4807 radv_hash_shaders(allowed_pipeline_hashes[0], pStages,
4808 pipeline->layout, key, get_hash_flags(device));
4809
4810 /* Generate the GC copy hash */
4811 memcpy(allowed_pipeline_hashes[1], allowed_pipeline_hashes[0], 20);
4812 allowed_pipeline_hashes[1][0] ^= 1;
4813
4814 uint8_t allowed_hashes[2][20];
4815 for (unsigned i = 0; i < 2; ++i) {
4816 disk_cache_compute_key(device->physical_device->disk_cache,
4817 allowed_pipeline_hashes[i], 20,
4818 allowed_hashes[i]);
4819 }
4820
4821 /* Do an early exit if all cache entries are already there. */
4822 bool may_need_copy_shader = pStages[MESA_SHADER_GEOMETRY];
4823 void *main_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[0], NULL);
4824 void *copy_entry = NULL;
4825 if (may_need_copy_shader)
4826 copy_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[1], NULL);
4827
4828 bool has_all_cache_entries = main_entry && (!may_need_copy_shader || copy_entry);
4829 free(main_entry);
4830 free(copy_entry);
4831
4832 if(has_all_cache_entries)
4833 return VK_SUCCESS;
4834
4835 unsigned process = 0;
4836 uint8_t sc_threads = device->instance->num_sc_threads;
4837 while (true) {
4838 mtx_lock(&device->sc_state->secure_compile_mutex);
4839 if (device->sc_state->secure_compile_thread_counter < sc_threads) {
4840 device->sc_state->secure_compile_thread_counter++;
4841 for (unsigned i = 0; i < sc_threads; i++) {
4842 if (!device->sc_state->secure_compile_processes[i].in_use) {
4843 device->sc_state->secure_compile_processes[i].in_use = true;
4844 process = i;
4845 break;
4846 }
4847 }
4848 mtx_unlock(&device->sc_state->secure_compile_mutex);
4849 break;
4850 }
4851 mtx_unlock(&device->sc_state->secure_compile_mutex);
4852 }
4853
4854 int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input;
4855 int fd_secure_output = device->sc_state->secure_compile_processes[process].fd_secure_output;
4856
4857 /* Fork a copy of the slim untainted secure compile process */
4858 enum radv_secure_compile_type sc_type = RADV_SC_TYPE_FORK_DEVICE;
4859 write(fd_secure_input, &sc_type, sizeof(sc_type));
4860
4861 if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true) ||
4862 sc_type != RADV_SC_TYPE_INIT_SUCCESS)
4863 return VK_ERROR_DEVICE_LOST;
4864
4865 fd_secure_input = device->sc_state->secure_compile_processes[process].fd_server;
4866 fd_secure_output = device->sc_state->secure_compile_processes[process].fd_client;
4867
4868 /* Write pipeline / shader module out to secure process via pipe */
4869 sc_type = RADV_SC_TYPE_COMPILE_PIPELINE;
4870 write(fd_secure_input, &sc_type, sizeof(sc_type));
4871
4872 /* Write pipeline layout out to secure process */
4873 struct radv_pipeline_layout *layout = pipeline->layout;
4874 write(fd_secure_input, layout, sizeof(struct radv_pipeline_layout));
4875 write(fd_secure_input, &layout->num_sets, sizeof(uint32_t));
4876 for (uint32_t set = 0; set < layout->num_sets; set++) {
4877 write(fd_secure_input, &layout->set[set].layout->layout_size, sizeof(uint32_t));
4878 write(fd_secure_input, layout->set[set].layout, layout->set[set].layout->layout_size);
4879 }
4880
4881 /* Write pipeline key out to secure process */
4882 write(fd_secure_input, key, sizeof(struct radv_pipeline_key));
4883
4884 /* Write pipeline create flags out to secure process */
4885 write(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags));
4886
4887 /* Write stage and shader information out to secure process */
4888 write(fd_secure_input, &num_stages, sizeof(uint32_t));
4889 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
4890 if (!pStages[i])
4891 continue;
4892
4893 /* Write stage out to secure process */
4894 gl_shader_stage stage = ffs(pStages[i]->stage) - 1;
4895 write(fd_secure_input, &stage, sizeof(gl_shader_stage));
4896
4897 /* Write entry point name out to secure process */
4898 size_t name_size = strlen(pStages[i]->pName) + 1;
4899 write(fd_secure_input, &name_size, sizeof(size_t));
4900 write(fd_secure_input, pStages[i]->pName, name_size);
4901
4902 /* Write shader module out to secure process */
4903 struct radv_shader_module *module = radv_shader_module_from_handle(pStages[i]->module);
4904 assert(!module->nir);
4905 size_t module_size = sizeof(struct radv_shader_module) + module->size;
4906 write(fd_secure_input, &module_size, sizeof(size_t));
4907 write(fd_secure_input, module, module_size);
4908
4909 /* Write specialization info out to secure process */
4910 const VkSpecializationInfo *specInfo = pStages[i]->pSpecializationInfo;
4911 bool has_spec_info = specInfo ? true : false;
4912 write(fd_secure_input, &has_spec_info, sizeof(bool));
4913 if (specInfo) {
4914 write(fd_secure_input, &specInfo->dataSize, sizeof(size_t));
4915 write(fd_secure_input, specInfo->pData, specInfo->dataSize);
4916
4917 write(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t));
4918 for (uint32_t j = 0; j < specInfo->mapEntryCount; j++)
4919 write(fd_secure_input, &specInfo->pMapEntries[j], sizeof(VkSpecializationMapEntry));
4920 }
4921 }
4922
4923 /* Read the data returned from the secure process */
4924 while (sc_type != RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED) {
4925 if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true))
4926 return VK_ERROR_DEVICE_LOST;
4927
4928 if (sc_type == RADV_SC_TYPE_WRITE_DISK_CACHE) {
4929 assert(device->physical_device->disk_cache);
4930
4931 uint8_t disk_sha1[20];
4932 if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
4933 return VK_ERROR_DEVICE_LOST;
4934
4935 if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
4936 memcmp(disk_sha1, allowed_hashes[1], 20))
4937 return VK_ERROR_DEVICE_LOST;
4938
4939 uint32_t entry_size;
4940 if (!radv_sc_read(fd_secure_output, &entry_size, sizeof(uint32_t), true))
4941 return VK_ERROR_DEVICE_LOST;
4942
4943 struct cache_entry *entry = malloc(entry_size);
4944 if (!radv_sc_read(fd_secure_output, entry, entry_size, true))
4945 return VK_ERROR_DEVICE_LOST;
4946
4947 disk_cache_put(device->physical_device->disk_cache,
4948 disk_sha1, entry, entry_size,
4949 NULL);
4950
4951 free(entry);
4952 } else if (sc_type == RADV_SC_TYPE_READ_DISK_CACHE) {
4953 uint8_t disk_sha1[20];
4954 if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
4955 return VK_ERROR_DEVICE_LOST;
4956
4957 if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
4958 memcmp(disk_sha1, allowed_hashes[1], 20))
4959 return VK_ERROR_DEVICE_LOST;
4960
4961 size_t size;
4962 struct cache_entry *entry = (struct cache_entry *)
4963 disk_cache_get(device->physical_device->disk_cache,
4964 disk_sha1, &size);
4965
4966 uint8_t found = entry ? 1 : 0;
4967 write(fd_secure_input, &found, sizeof(uint8_t));
4968
4969 if (found) {
4970 write(fd_secure_input, &size, sizeof(size_t));
4971 write(fd_secure_input, entry, size);
4972 }
4973
4974 free(entry);
4975 }
4976 }
4977
4978 sc_type = RADV_SC_TYPE_DESTROY_DEVICE;
4979 write(fd_secure_input, &sc_type, sizeof(sc_type));
4980
4981 mtx_lock(&device->sc_state->secure_compile_mutex);
4982 device->sc_state->secure_compile_thread_counter--;
4983 device->sc_state->secure_compile_processes[process].in_use = false;
4984 mtx_unlock(&device->sc_state->secure_compile_mutex);
4985
4986 return VK_SUCCESS;
4987 }
4988
4989 static VkResult
4990 radv_pipeline_init(struct radv_pipeline *pipeline,
4991 struct radv_device *device,
4992 struct radv_pipeline_cache *cache,
4993 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4994 const struct radv_graphics_pipeline_create_info *extra)
4995 {
4996 VkResult result;
4997 bool has_view_index = false;
4998
4999 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
5000 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
5001 if (subpass->view_mask)
5002 has_view_index = true;
5003
5004 pipeline->device = device;
5005 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
5006 assert(pipeline->layout);
5007
5008 struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
5009
5010 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
5011 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
5012 radv_init_feedback(creation_feedback);
5013
5014 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
5015
5016 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
5017 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
5018 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
5019 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
5020 pStages[stage] = &pCreateInfo->pStages[i];
5021 if(creation_feedback)
5022 stage_feedbacks[stage] = &creation_feedback->pPipelineStageCreationFeedbacks[i];
5023 }
5024
5025 struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index);
5026 if (radv_device_use_secure_compile(device->instance)) {
5027 return radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, pCreateInfo->stageCount);
5028 } else {
5029 radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks);
5030 }
5031
5032 pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
5033 radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo);
5034 uint32_t gs_out;
5035 uint32_t prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
5036
5037 pipeline->graphics.topology = pCreateInfo->pInputAssemblyState->topology;
5038 pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
5039
5040 if (radv_pipeline_has_gs(pipeline)) {
5041 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
5042 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5043 } else if (radv_pipeline_has_tess(pipeline)) {
5044 if (pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode)
5045 gs_out = V_028A6C_OUTPRIM_TYPE_POINTLIST;
5046 else
5047 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.primitive_mode);
5048 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5049 } else {
5050 gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
5051 }
5052 if (extra && extra->use_rectlist) {
5053 prim = V_008958_DI_PT_RECTLIST;
5054 gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5055 pipeline->graphics.can_use_guardband = true;
5056 if (radv_pipeline_has_ngg(pipeline))
5057 gs_out = V_028A6C_VGT_OUT_RECT_V0;
5058 }
5059 pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
5060 /* prim vertex count will need TESS changes */
5061 pipeline->graphics.prim_vertex_count = prim_size_table[prim];
5062
5063 radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
5064
5065 /* Ensure that some export memory is always allocated, for two reasons:
5066 *
5067 * 1) Correctness: The hardware ignores the EXEC mask if no export
5068 * memory is allocated, so KILL and alpha test do not work correctly
5069 * without this.
5070 * 2) Performance: Every shader needs at least a NULL export, even when
5071 * it writes no color/depth output. The NULL export instruction
5072 * stalls without this setting.
5073 *
5074 * Don't add this to CB_SHADER_MASK.
5075 *
5076 * GFX10 supports pixel shaders without exports by setting both the
5077 * color and Z formats to SPI_SHADER_ZERO. The hw will skip export
5078 * instructions if any are present.
5079 */
5080 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
5081 if ((pipeline->device->physical_device->rad_info.chip_class <= GFX9 ||
5082 ps->info.ps.can_discard) &&
5083 !blend.spi_shader_col_format) {
5084 if (!ps->info.ps.writes_z &&
5085 !ps->info.ps.writes_stencil &&
5086 !ps->info.ps.writes_sample_mask)
5087 blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
5088 }
5089
5090 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5091 if (pipeline->shaders[i]) {
5092 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets;
5093 }
5094 }
5095
5096 if (radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
5097 struct radv_shader_variant *gs =
5098 pipeline->shaders[MESA_SHADER_GEOMETRY];
5099
5100 calculate_gs_ring_sizes(pipeline, &gs->info.gs_ring_info);
5101 }
5102
5103 struct radv_tessellation_state tess = {0};
5104 if (radv_pipeline_has_tess(pipeline)) {
5105 if (prim == V_008958_DI_PT_PATCH) {
5106 pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints;
5107 pipeline->graphics.prim_vertex_count.incr = 1;
5108 }
5109 tess = calculate_tess_state(pipeline, pCreateInfo);
5110 }
5111
5112 pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline, &tess, prim);
5113
5114 radv_compute_vertex_input_state(pipeline, pCreateInfo);
5115
5116 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
5117 pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class);
5118
5119 struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX,
5120 AC_UD_VS_BASE_VERTEX_START_INSTANCE);
5121 if (loc->sgpr_idx != -1) {
5122 pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX];
5123 pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4;
5124 if (radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_draw_id)
5125 pipeline->graphics.vtx_emit_num = 3;
5126 else
5127 pipeline->graphics.vtx_emit_num = 2;
5128 }
5129
5130 /* Find the last vertex shader stage that eventually uses streamout. */
5131 pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
5132
5133 result = radv_pipeline_scratch_init(device, pipeline);
5134 radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend, &tess, prim, gs_out);
5135
5136 return result;
5137 }
5138
5139 VkResult
5140 radv_graphics_pipeline_create(
5141 VkDevice _device,
5142 VkPipelineCache _cache,
5143 const VkGraphicsPipelineCreateInfo *pCreateInfo,
5144 const struct radv_graphics_pipeline_create_info *extra,
5145 const VkAllocationCallbacks *pAllocator,
5146 VkPipeline *pPipeline)
5147 {
5148 RADV_FROM_HANDLE(radv_device, device, _device);
5149 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
5150 struct radv_pipeline *pipeline;
5151 VkResult result;
5152
5153 pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
5154 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5155 if (pipeline == NULL)
5156 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5157
5158 result = radv_pipeline_init(pipeline, device, cache,
5159 pCreateInfo, extra);
5160 if (result != VK_SUCCESS) {
5161 radv_pipeline_destroy(device, pipeline, pAllocator);
5162 return result;
5163 }
5164
5165 *pPipeline = radv_pipeline_to_handle(pipeline);
5166
5167 return VK_SUCCESS;
5168 }
5169
5170 VkResult radv_CreateGraphicsPipelines(
5171 VkDevice _device,
5172 VkPipelineCache pipelineCache,
5173 uint32_t count,
5174 const VkGraphicsPipelineCreateInfo* pCreateInfos,
5175 const VkAllocationCallbacks* pAllocator,
5176 VkPipeline* pPipelines)
5177 {
5178 VkResult result = VK_SUCCESS;
5179 unsigned i = 0;
5180
5181 for (; i < count; i++) {
5182 VkResult r;
5183 r = radv_graphics_pipeline_create(_device,
5184 pipelineCache,
5185 &pCreateInfos[i],
5186 NULL, pAllocator, &pPipelines[i]);
5187 if (r != VK_SUCCESS) {
5188 result = r;
5189 pPipelines[i] = VK_NULL_HANDLE;
5190 }
5191 }
5192
5193 return result;
5194 }
5195
5196
5197 static void
5198 radv_compute_generate_pm4(struct radv_pipeline *pipeline)
5199 {
5200 struct radv_shader_variant *compute_shader;
5201 struct radv_device *device = pipeline->device;
5202 unsigned threads_per_threadgroup;
5203 unsigned threadgroups_per_cu = 1;
5204 unsigned waves_per_threadgroup;
5205 unsigned max_waves_per_sh = 0;
5206 uint64_t va;
5207
5208 pipeline->cs.max_dw = device->physical_device->rad_info.chip_class >= GFX10 ? 22 : 20;
5209 pipeline->cs.buf = malloc(pipeline->cs.max_dw * 4);
5210
5211 compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
5212 va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset;
5213
5214 radeon_set_sh_reg_seq(&pipeline->cs, R_00B830_COMPUTE_PGM_LO, 2);
5215 radeon_emit(&pipeline->cs, va >> 8);
5216 radeon_emit(&pipeline->cs, S_00B834_DATA(va >> 40));
5217
5218 radeon_set_sh_reg_seq(&pipeline->cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
5219 radeon_emit(&pipeline->cs, compute_shader->config.rsrc1);
5220 radeon_emit(&pipeline->cs, compute_shader->config.rsrc2);
5221 if (device->physical_device->rad_info.chip_class >= GFX10) {
5222 radeon_set_sh_reg(&pipeline->cs, R_00B8A0_COMPUTE_PGM_RSRC3, compute_shader->config.rsrc3);
5223 }
5224
5225 /* Calculate best compute resource limits. */
5226 threads_per_threadgroup = compute_shader->info.cs.block_size[0] *
5227 compute_shader->info.cs.block_size[1] *
5228 compute_shader->info.cs.block_size[2];
5229 waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup,
5230 compute_shader->info.wave_size);
5231
5232 if (device->physical_device->rad_info.chip_class >= GFX10 &&
5233 waves_per_threadgroup == 1)
5234 threadgroups_per_cu = 2;
5235
5236 radeon_set_sh_reg(&pipeline->cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
5237 ac_get_compute_resource_limits(&device->physical_device->rad_info,
5238 waves_per_threadgroup,
5239 max_waves_per_sh,
5240 threadgroups_per_cu));
5241
5242 radeon_set_sh_reg_seq(&pipeline->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
5243 radeon_emit(&pipeline->cs,
5244 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0]));
5245 radeon_emit(&pipeline->cs,
5246 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1]));
5247 radeon_emit(&pipeline->cs,
5248 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
5249
5250 assert(pipeline->cs.cdw <= pipeline->cs.max_dw);
5251 }
5252
5253 static struct radv_pipeline_key
5254 radv_generate_compute_pipeline_key(struct radv_pipeline *pipeline,
5255 const VkComputePipelineCreateInfo *pCreateInfo)
5256 {
5257 const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage;
5258 struct radv_pipeline_key key;
5259 memset(&key, 0, sizeof(key));
5260
5261 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
5262 key.optimisations_disabled = 1;
5263
5264 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *subgroup_size =
5265 vk_find_struct_const(stage->pNext,
5266 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
5267
5268 if (subgroup_size) {
5269 assert(subgroup_size->requiredSubgroupSize == 32 ||
5270 subgroup_size->requiredSubgroupSize == 64);
5271 key.compute_subgroup_size = subgroup_size->requiredSubgroupSize;
5272 }
5273
5274 return key;
5275 }
5276
5277 static VkResult radv_compute_pipeline_create(
5278 VkDevice _device,
5279 VkPipelineCache _cache,
5280 const VkComputePipelineCreateInfo* pCreateInfo,
5281 const VkAllocationCallbacks* pAllocator,
5282 VkPipeline* pPipeline)
5283 {
5284 RADV_FROM_HANDLE(radv_device, device, _device);
5285 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
5286 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
5287 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
5288 struct radv_pipeline *pipeline;
5289 VkResult result;
5290
5291 pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
5292 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5293 if (pipeline == NULL)
5294 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5295
5296 pipeline->device = device;
5297 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
5298 assert(pipeline->layout);
5299
5300 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
5301 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
5302 radv_init_feedback(creation_feedback);
5303
5304 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
5305 if (creation_feedback)
5306 stage_feedbacks[MESA_SHADER_COMPUTE] = &creation_feedback->pPipelineStageCreationFeedbacks[0];
5307
5308 pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage;
5309
5310 struct radv_pipeline_key key =
5311 radv_generate_compute_pipeline_key(pipeline, pCreateInfo);
5312
5313 if (radv_device_use_secure_compile(device->instance)) {
5314 result = radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, 1);
5315 *pPipeline = radv_pipeline_to_handle(pipeline);
5316
5317 return result;
5318 } else {
5319 radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks);
5320 }
5321
5322 pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class);
5323 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets;
5324 result = radv_pipeline_scratch_init(device, pipeline);
5325 if (result != VK_SUCCESS) {
5326 radv_pipeline_destroy(device, pipeline, pAllocator);
5327 return result;
5328 }
5329
5330 radv_compute_generate_pm4(pipeline);
5331
5332 *pPipeline = radv_pipeline_to_handle(pipeline);
5333
5334 return VK_SUCCESS;
5335 }
5336
5337 VkResult radv_CreateComputePipelines(
5338 VkDevice _device,
5339 VkPipelineCache pipelineCache,
5340 uint32_t count,
5341 const VkComputePipelineCreateInfo* pCreateInfos,
5342 const VkAllocationCallbacks* pAllocator,
5343 VkPipeline* pPipelines)
5344 {
5345 VkResult result = VK_SUCCESS;
5346
5347 unsigned i = 0;
5348 for (; i < count; i++) {
5349 VkResult r;
5350 r = radv_compute_pipeline_create(_device, pipelineCache,
5351 &pCreateInfos[i],
5352 pAllocator, &pPipelines[i]);
5353 if (r != VK_SUCCESS) {
5354 result = r;
5355 pPipelines[i] = VK_NULL_HANDLE;
5356 }
5357 }
5358
5359 return result;
5360 }
5361
5362
5363 static uint32_t radv_get_executable_count(const struct radv_pipeline *pipeline)
5364 {
5365 uint32_t ret = 0;
5366 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5367 if (!pipeline->shaders[i])
5368 continue;
5369
5370 if (i == MESA_SHADER_GEOMETRY &&
5371 !radv_pipeline_has_ngg(pipeline)) {
5372 ret += 2u;
5373 } else {
5374 ret += 1u;
5375 }
5376
5377 }
5378 return ret;
5379 }
5380
5381 static struct radv_shader_variant *
5382 radv_get_shader_from_executable_index(const struct radv_pipeline *pipeline, int index, gl_shader_stage *stage)
5383 {
5384 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5385 if (!pipeline->shaders[i])
5386 continue;
5387 if (!index) {
5388 *stage = i;
5389 return pipeline->shaders[i];
5390 }
5391
5392 --index;
5393
5394 if (i == MESA_SHADER_GEOMETRY &&
5395 !radv_pipeline_has_ngg(pipeline)) {
5396 if (!index) {
5397 *stage = i;
5398 return pipeline->gs_copy_shader;
5399 }
5400 --index;
5401 }
5402 }
5403
5404 *stage = -1;
5405 return NULL;
5406 }
5407
5408 /* Basically strlcpy (which does not exist on linux) specialized for
5409 * descriptions. */
5410 static void desc_copy(char *desc, const char *src) {
5411 int len = strlen(src);
5412 assert(len < VK_MAX_DESCRIPTION_SIZE);
5413 memcpy(desc, src, len);
5414 memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
5415 }
5416
5417 VkResult radv_GetPipelineExecutablePropertiesKHR(
5418 VkDevice _device,
5419 const VkPipelineInfoKHR* pPipelineInfo,
5420 uint32_t* pExecutableCount,
5421 VkPipelineExecutablePropertiesKHR* pProperties)
5422 {
5423 RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
5424 const uint32_t total_count = radv_get_executable_count(pipeline);
5425
5426 if (!pProperties) {
5427 *pExecutableCount = total_count;
5428 return VK_SUCCESS;
5429 }
5430
5431 const uint32_t count = MIN2(total_count, *pExecutableCount);
5432 for (unsigned i = 0, executable_idx = 0;
5433 i < MESA_SHADER_STAGES && executable_idx < count; ++i) {
5434 if (!pipeline->shaders[i])
5435 continue;
5436 pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i);
5437 const char *name = NULL;
5438 const char *description = NULL;
5439 switch(i) {
5440 case MESA_SHADER_VERTEX:
5441 name = "Vertex Shader";
5442 description = "Vulkan Vertex Shader";
5443 break;
5444 case MESA_SHADER_TESS_CTRL:
5445 if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
5446 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5447 name = "Vertex + Tessellation Control Shaders";
5448 description = "Combined Vulkan Vertex and Tessellation Control Shaders";
5449 } else {
5450 name = "Tessellation Control Shader";
5451 description = "Vulkan Tessellation Control Shader";
5452 }
5453 break;
5454 case MESA_SHADER_TESS_EVAL:
5455 name = "Tessellation Evaluation Shader";
5456 description = "Vulkan Tessellation Evaluation Shader";
5457 break;
5458 case MESA_SHADER_GEOMETRY:
5459 if (radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
5460 pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
5461 name = "Tessellation Evaluation + Geometry Shaders";
5462 description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
5463 } else if (!radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_VERTEX]) {
5464 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5465 name = "Vertex + Geometry Shader";
5466 description = "Combined Vulkan Vertex and Geometry Shaders";
5467 } else {
5468 name = "Geometry Shader";
5469 description = "Vulkan Geometry Shader";
5470 }
5471 break;
5472 case MESA_SHADER_FRAGMENT:
5473 name = "Fragment Shader";
5474 description = "Vulkan Fragment Shader";
5475 break;
5476 case MESA_SHADER_COMPUTE:
5477 name = "Compute Shader";
5478 description = "Vulkan Compute Shader";
5479 break;
5480 }
5481
5482 pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size;
5483 desc_copy(pProperties[executable_idx].name, name);
5484 desc_copy(pProperties[executable_idx].description, description);
5485
5486 ++executable_idx;
5487 if (i == MESA_SHADER_GEOMETRY &&
5488 !radv_pipeline_has_ngg(pipeline)) {
5489 assert(pipeline->gs_copy_shader);
5490 if (executable_idx >= count)
5491 break;
5492
5493 pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT;
5494 pProperties[executable_idx].subgroupSize = 64;
5495 desc_copy(pProperties[executable_idx].name, "GS Copy Shader");
5496 desc_copy(pProperties[executable_idx].description,
5497 "Extra shader stage that loads the GS output ringbuffer into the rasterizer");
5498
5499 ++executable_idx;
5500 }
5501 }
5502
5503 VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
5504 *pExecutableCount = count;
5505 return result;
5506 }
5507
5508 VkResult radv_GetPipelineExecutableStatisticsKHR(
5509 VkDevice _device,
5510 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5511 uint32_t* pStatisticCount,
5512 VkPipelineExecutableStatisticKHR* pStatistics)
5513 {
5514 RADV_FROM_HANDLE(radv_device, device, _device);
5515 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5516 gl_shader_stage stage;
5517 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5518
5519 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
5520 unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
5521 unsigned max_waves = radv_get_max_waves(device, shader, stage);
5522
5523 VkPipelineExecutableStatisticKHR *s = pStatistics;
5524 VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
5525 VkResult result = VK_SUCCESS;
5526
5527 if (s < end) {
5528 desc_copy(s->name, "SGPRs");
5529 desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
5530 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5531 s->value.u64 = shader->config.num_sgprs;
5532 }
5533 ++s;
5534
5535 if (s < end) {
5536 desc_copy(s->name, "VGPRs");
5537 desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
5538 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5539 s->value.u64 = shader->config.num_vgprs;
5540 }
5541 ++s;
5542
5543 if (s < end) {
5544 desc_copy(s->name, "Spilled SGPRs");
5545 desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
5546 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5547 s->value.u64 = shader->config.spilled_sgprs;
5548 }
5549 ++s;
5550
5551 if (s < end) {
5552 desc_copy(s->name, "Spilled VGPRs");
5553 desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
5554 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5555 s->value.u64 = shader->config.spilled_vgprs;
5556 }
5557 ++s;
5558
5559 if (s < end) {
5560 desc_copy(s->name, "PrivMem VGPRs");
5561 desc_copy(s->description, "Number of VGPRs stored in private memory per subgroup");
5562 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5563 s->value.u64 = shader->info.private_mem_vgprs;
5564 }
5565 ++s;
5566
5567 if (s < end) {
5568 desc_copy(s->name, "Code size");
5569 desc_copy(s->description, "Code size in bytes");
5570 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5571 s->value.u64 = shader->exec_size;
5572 }
5573 ++s;
5574
5575 if (s < end) {
5576 desc_copy(s->name, "LDS size");
5577 desc_copy(s->description, "LDS size in bytes per workgroup");
5578 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5579 s->value.u64 = shader->config.lds_size * lds_increment;
5580 }
5581 ++s;
5582
5583 if (s < end) {
5584 desc_copy(s->name, "Scratch size");
5585 desc_copy(s->description, "Private memory in bytes per subgroup");
5586 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5587 s->value.u64 = shader->config.scratch_bytes_per_wave;
5588 }
5589 ++s;
5590
5591 if (s < end) {
5592 desc_copy(s->name, "Subgroups per SIMD");
5593 desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
5594 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5595 s->value.u64 = max_waves;
5596 }
5597 ++s;
5598
5599 if (!pStatistics)
5600 *pStatisticCount = s - pStatistics;
5601 else if (s > end) {
5602 *pStatisticCount = end - pStatistics;
5603 result = VK_INCOMPLETE;
5604 } else {
5605 *pStatisticCount = s - pStatistics;
5606 }
5607
5608 return result;
5609 }
5610
5611 static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src)
5612 {
5613 size_t total_size = strlen(src) + 1;
5614
5615 if (!data) {
5616 *data_size = total_size;
5617 return VK_SUCCESS;
5618 }
5619
5620 size_t size = MIN2(total_size, *data_size);
5621
5622 memcpy(data, src, size);
5623 if (size)
5624 *((char*)data + size - 1) = 0;
5625 return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
5626 }
5627
5628 VkResult radv_GetPipelineExecutableInternalRepresentationsKHR(
5629 VkDevice device,
5630 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5631 uint32_t* pInternalRepresentationCount,
5632 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
5633 {
5634 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5635 gl_shader_stage stage;
5636 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5637
5638 VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
5639 VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
5640 VkResult result = VK_SUCCESS;
5641 /* optimized NIR */
5642 if (p < end) {
5643 p->isText = true;
5644 desc_copy(p->name, "NIR Shader(s)");
5645 desc_copy(p->description, "The optimized NIR shader(s)");
5646 if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
5647 result = VK_INCOMPLETE;
5648 }
5649 ++p;
5650
5651 /* backend IR */
5652 if (p < end) {
5653 p->isText = true;
5654 if (shader->aco_used) {
5655 desc_copy(p->name, "ACO IR");
5656 desc_copy(p->description, "The ACO IR after some optimizations");
5657 } else {
5658 desc_copy(p->name, "LLVM IR");
5659 desc_copy(p->description, "The LLVM IR after some optimizations");
5660 }
5661 if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS)
5662 result = VK_INCOMPLETE;
5663 }
5664 ++p;
5665
5666 /* Disassembler */
5667 if (p < end) {
5668 p->isText = true;
5669 desc_copy(p->name, "Assembly");
5670 desc_copy(p->description, "Final Assembly");
5671 if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
5672 result = VK_INCOMPLETE;
5673 }
5674 ++p;
5675
5676 if (!pInternalRepresentations)
5677 *pInternalRepresentationCount = p - pInternalRepresentations;
5678 else if(p > end) {
5679 result = VK_INCOMPLETE;
5680 *pInternalRepresentationCount = end - pInternalRepresentations;
5681 } else {
5682 *pInternalRepresentationCount = p - pInternalRepresentations;
5683 }
5684
5685 return result;
5686 }