radv: use correct alloc function when loading from disk
[mesa.git] / src / amd / vulkan / radv_pipeline_cache.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/mesa-sha1.h"
25 #include "util/debug.h"
26 #include "util/disk_cache.h"
27 #include "util/u_atomic.h"
28 #include "radv_debug.h"
29 #include "radv_private.h"
30 #include "radv_shader.h"
31
32 #include "ac_nir_to_llvm.h"
33
34 struct cache_entry_variant_info {
35 struct ac_shader_variant_info variant_info;
36 struct ac_shader_config config;
37 uint32_t rsrc1, rsrc2;
38 };
39
40 struct cache_entry {
41 union {
42 unsigned char sha1[20];
43 uint32_t sha1_dw[5];
44 };
45 uint32_t code_sizes[MESA_SHADER_STAGES];
46 struct radv_shader_variant *variants[MESA_SHADER_STAGES];
47 char code[0];
48 };
49
50 void
51 radv_pipeline_cache_init(struct radv_pipeline_cache *cache,
52 struct radv_device *device)
53 {
54 cache->device = device;
55 pthread_mutex_init(&cache->mutex, NULL);
56
57 cache->modified = false;
58 cache->kernel_count = 0;
59 cache->total_size = 0;
60 cache->table_size = 1024;
61 const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
62 cache->hash_table = malloc(byte_size);
63
64 /* We don't consider allocation failure fatal, we just start with a 0-sized
65 * cache. Disable caching when we want to keep shader debug info, since
66 * we don't get the debug info on cached shaders. */
67 if (cache->hash_table == NULL ||
68 (device->instance->debug_flags & RADV_DEBUG_NO_CACHE) ||
69 device->keep_shader_info)
70 cache->table_size = 0;
71 else
72 memset(cache->hash_table, 0, byte_size);
73 }
74
75 void
76 radv_pipeline_cache_finish(struct radv_pipeline_cache *cache)
77 {
78 for (unsigned i = 0; i < cache->table_size; ++i)
79 if (cache->hash_table[i]) {
80 for(int j = 0; j < MESA_SHADER_STAGES; ++j) {
81 if (cache->hash_table[i]->variants[j])
82 radv_shader_variant_destroy(cache->device,
83 cache->hash_table[i]->variants[j]);
84 }
85 vk_free(&cache->alloc, cache->hash_table[i]);
86 }
87 pthread_mutex_destroy(&cache->mutex);
88 free(cache->hash_table);
89 }
90
91 static uint32_t
92 entry_size(struct cache_entry *entry)
93 {
94 size_t ret = sizeof(*entry);
95 for (int i = 0; i < MESA_SHADER_STAGES; ++i)
96 if (entry->code_sizes[i])
97 ret += sizeof(struct cache_entry_variant_info) + entry->code_sizes[i];
98 return ret;
99 }
100
101 void
102 radv_hash_shaders(unsigned char *hash,
103 const VkPipelineShaderStageCreateInfo **stages,
104 const struct radv_pipeline_layout *layout,
105 const struct radv_pipeline_key *key,
106 uint32_t flags)
107 {
108 struct mesa_sha1 ctx;
109
110 _mesa_sha1_init(&ctx);
111 if (key)
112 _mesa_sha1_update(&ctx, key, sizeof(*key));
113 if (layout)
114 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
115
116 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
117 if (stages[i]) {
118 RADV_FROM_HANDLE(radv_shader_module, module, stages[i]->module);
119 const VkSpecializationInfo *spec_info = stages[i]->pSpecializationInfo;
120
121 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
122 _mesa_sha1_update(&ctx, stages[i]->pName, strlen(stages[i]->pName));
123 if (spec_info) {
124 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
125 spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
126 _mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
127 }
128 }
129 }
130 _mesa_sha1_update(&ctx, &flags, 4);
131 _mesa_sha1_final(&ctx, hash);
132 }
133
134
135 static struct cache_entry *
136 radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache *cache,
137 const unsigned char *sha1)
138 {
139 const uint32_t mask = cache->table_size - 1;
140 const uint32_t start = (*(uint32_t *) sha1);
141
142 if (cache->table_size == 0)
143 return NULL;
144
145 for (uint32_t i = 0; i < cache->table_size; i++) {
146 const uint32_t index = (start + i) & mask;
147 struct cache_entry *entry = cache->hash_table[index];
148
149 if (!entry)
150 return NULL;
151
152 if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
153 return entry;
154 }
155 }
156
157 unreachable("hash table should never be full");
158 }
159
160 static struct cache_entry *
161 radv_pipeline_cache_search(struct radv_pipeline_cache *cache,
162 const unsigned char *sha1)
163 {
164 struct cache_entry *entry;
165
166 pthread_mutex_lock(&cache->mutex);
167
168 entry = radv_pipeline_cache_search_unlocked(cache, sha1);
169
170 pthread_mutex_unlock(&cache->mutex);
171
172 return entry;
173 }
174
175 static void
176 radv_pipeline_cache_set_entry(struct radv_pipeline_cache *cache,
177 struct cache_entry *entry)
178 {
179 const uint32_t mask = cache->table_size - 1;
180 const uint32_t start = entry->sha1_dw[0];
181
182 /* We'll always be able to insert when we get here. */
183 assert(cache->kernel_count < cache->table_size / 2);
184
185 for (uint32_t i = 0; i < cache->table_size; i++) {
186 const uint32_t index = (start + i) & mask;
187 if (!cache->hash_table[index]) {
188 cache->hash_table[index] = entry;
189 break;
190 }
191 }
192
193 cache->total_size += entry_size(entry);
194 cache->kernel_count++;
195 }
196
197
198 static VkResult
199 radv_pipeline_cache_grow(struct radv_pipeline_cache *cache)
200 {
201 const uint32_t table_size = cache->table_size * 2;
202 const uint32_t old_table_size = cache->table_size;
203 const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
204 struct cache_entry **table;
205 struct cache_entry **old_table = cache->hash_table;
206
207 table = malloc(byte_size);
208 if (table == NULL)
209 return VK_ERROR_OUT_OF_HOST_MEMORY;
210
211 cache->hash_table = table;
212 cache->table_size = table_size;
213 cache->kernel_count = 0;
214 cache->total_size = 0;
215
216 memset(cache->hash_table, 0, byte_size);
217 for (uint32_t i = 0; i < old_table_size; i++) {
218 struct cache_entry *entry = old_table[i];
219 if (!entry)
220 continue;
221
222 radv_pipeline_cache_set_entry(cache, entry);
223 }
224
225 free(old_table);
226
227 return VK_SUCCESS;
228 }
229
230 static void
231 radv_pipeline_cache_add_entry(struct radv_pipeline_cache *cache,
232 struct cache_entry *entry)
233 {
234 if (cache->kernel_count == cache->table_size / 2)
235 radv_pipeline_cache_grow(cache);
236
237 /* Failing to grow that hash table isn't fatal, but may mean we don't
238 * have enough space to add this new kernel. Only add it if there's room.
239 */
240 if (cache->kernel_count < cache->table_size / 2)
241 radv_pipeline_cache_set_entry(cache, entry);
242 }
243
244 bool
245 radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
246 struct radv_pipeline_cache *cache,
247 const unsigned char *sha1,
248 struct radv_shader_variant **variants)
249 {
250 struct cache_entry *entry;
251
252 if (!cache)
253 cache = device->mem_cache;
254
255 pthread_mutex_lock(&cache->mutex);
256
257 entry = radv_pipeline_cache_search_unlocked(cache, sha1);
258
259 if (!entry) {
260 /* Again, don't cache when we want debug info, since this isn't
261 * present in the cache. */
262 if (!device->physical_device->disk_cache ||
263 (device->instance->debug_flags & RADV_DEBUG_NO_CACHE) ||
264 device->keep_shader_info) {
265 pthread_mutex_unlock(&cache->mutex);
266 return false;
267 }
268
269 uint8_t disk_sha1[20];
270 disk_cache_compute_key(device->physical_device->disk_cache,
271 sha1, 20, disk_sha1);
272 entry = (struct cache_entry *)
273 disk_cache_get(device->physical_device->disk_cache,
274 disk_sha1, NULL);
275 if (!entry) {
276 pthread_mutex_unlock(&cache->mutex);
277 return false;
278 } else {
279 size_t size = entry_size(entry);
280 struct cache_entry *new_entry = vk_alloc(&cache->alloc, size, 8,
281 VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
282 if (!new_entry) {
283 free(entry);
284 pthread_mutex_unlock(&cache->mutex);
285 return false;
286 }
287
288 memcpy(new_entry, entry, entry_size(entry));
289 free(entry);
290 entry = new_entry;
291
292 radv_pipeline_cache_add_entry(cache, new_entry);
293 }
294 }
295
296 char *p = entry->code;
297 for(int i = 0; i < MESA_SHADER_STAGES; ++i) {
298 if (!entry->variants[i] && entry->code_sizes[i]) {
299 struct radv_shader_variant *variant;
300 struct cache_entry_variant_info info;
301
302 variant = calloc(1, sizeof(struct radv_shader_variant));
303 if (!variant) {
304 pthread_mutex_unlock(&cache->mutex);
305 return false;
306 }
307
308 memcpy(&info, p, sizeof(struct cache_entry_variant_info));
309 p += sizeof(struct cache_entry_variant_info);
310
311 variant->config = info.config;
312 variant->info = info.variant_info;
313 variant->rsrc1 = info.rsrc1;
314 variant->rsrc2 = info.rsrc2;
315 variant->code_size = entry->code_sizes[i];
316 variant->ref_count = 1;
317
318 void *ptr = radv_alloc_shader_memory(device, variant);
319 memcpy(ptr, p, entry->code_sizes[i]);
320 p += entry->code_sizes[i];
321
322 entry->variants[i] = variant;
323 } else if (entry->code_sizes[i]) {
324 p += sizeof(struct cache_entry_variant_info) + entry->code_sizes[i];
325 }
326
327 }
328
329 for (int i = 0; i < MESA_SHADER_STAGES; ++i)
330 if (entry->variants[i])
331 p_atomic_inc(&entry->variants[i]->ref_count);
332
333 memcpy(variants, entry->variants, sizeof(entry->variants));
334 pthread_mutex_unlock(&cache->mutex);
335 return true;
336 }
337
338 void
339 radv_pipeline_cache_insert_shaders(struct radv_device *device,
340 struct radv_pipeline_cache *cache,
341 const unsigned char *sha1,
342 struct radv_shader_variant **variants,
343 const void *const *codes,
344 const unsigned *code_sizes)
345 {
346 if (!cache)
347 cache = device->mem_cache;
348
349 pthread_mutex_lock(&cache->mutex);
350 struct cache_entry *entry = radv_pipeline_cache_search_unlocked(cache, sha1);
351 if (entry) {
352 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
353 if (entry->variants[i]) {
354 radv_shader_variant_destroy(cache->device, variants[i]);
355 variants[i] = entry->variants[i];
356 } else {
357 entry->variants[i] = variants[i];
358 }
359 if (variants[i])
360 p_atomic_inc(&variants[i]->ref_count);
361 }
362 pthread_mutex_unlock(&cache->mutex);
363 return;
364 }
365 size_t size = sizeof(*entry);
366 for (int i = 0; i < MESA_SHADER_STAGES; ++i)
367 if (variants[i])
368 size += sizeof(struct cache_entry_variant_info) + code_sizes[i];
369
370
371 entry = vk_alloc(&cache->alloc, size, 8,
372 VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
373 if (!entry) {
374 pthread_mutex_unlock(&cache->mutex);
375 return;
376 }
377
378 memset(entry, 0, sizeof(*entry));
379 memcpy(entry->sha1, sha1, 20);
380
381 char* p = entry->code;
382 struct cache_entry_variant_info info;
383
384 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
385 if (!variants[i])
386 continue;
387
388 entry->code_sizes[i] = code_sizes[i];
389
390 info.config = variants[i]->config;
391 info.variant_info = variants[i]->info;
392 info.rsrc1 = variants[i]->rsrc1;
393 info.rsrc2 = variants[i]->rsrc2;
394 memcpy(p, &info, sizeof(struct cache_entry_variant_info));
395 p += sizeof(struct cache_entry_variant_info);
396
397 memcpy(p, codes[i], code_sizes[i]);
398 p += code_sizes[i];
399 }
400
401 /* Always add cache items to disk. This will allow collection of
402 * compiled shaders by third parties such as steam, even if the app
403 * implements its own pipeline cache.
404 */
405 if (device->physical_device->disk_cache) {
406 uint8_t disk_sha1[20];
407 disk_cache_compute_key(device->physical_device->disk_cache, sha1, 20,
408 disk_sha1);
409 disk_cache_put(device->physical_device->disk_cache,
410 disk_sha1, entry, entry_size(entry), NULL);
411 }
412
413 /* We delay setting the variant so we have reproducible disk cache
414 * items.
415 */
416 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
417 if (!variants[i])
418 continue;
419
420 entry->variants[i] = variants[i];
421 p_atomic_inc(&variants[i]->ref_count);
422 }
423
424 radv_pipeline_cache_add_entry(cache, entry);
425
426 cache->modified = true;
427 pthread_mutex_unlock(&cache->mutex);
428 return;
429 }
430
431 struct cache_header {
432 uint32_t header_size;
433 uint32_t header_version;
434 uint32_t vendor_id;
435 uint32_t device_id;
436 uint8_t uuid[VK_UUID_SIZE];
437 };
438
439 void
440 radv_pipeline_cache_load(struct radv_pipeline_cache *cache,
441 const void *data, size_t size)
442 {
443 struct radv_device *device = cache->device;
444 struct cache_header header;
445
446 if (size < sizeof(header))
447 return;
448 memcpy(&header, data, sizeof(header));
449 if (header.header_size < sizeof(header))
450 return;
451 if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
452 return;
453 if (header.vendor_id != ATI_VENDOR_ID)
454 return;
455 if (header.device_id != device->physical_device->rad_info.pci_id)
456 return;
457 if (memcmp(header.uuid, device->physical_device->cache_uuid, VK_UUID_SIZE) != 0)
458 return;
459
460 char *end = (void *) data + size;
461 char *p = (void *) data + header.header_size;
462
463 while (end - p >= sizeof(struct cache_entry)) {
464 struct cache_entry *entry = (struct cache_entry*)p;
465 struct cache_entry *dest_entry;
466 size_t size = entry_size(entry);
467 if(end - p < size)
468 break;
469
470 dest_entry = vk_alloc(&cache->alloc, size,
471 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
472 if (dest_entry) {
473 memcpy(dest_entry, entry, size);
474 for (int i = 0; i < MESA_SHADER_STAGES; ++i)
475 dest_entry->variants[i] = NULL;
476 radv_pipeline_cache_add_entry(cache, dest_entry);
477 }
478 p += size;
479 }
480 }
481
482 VkResult radv_CreatePipelineCache(
483 VkDevice _device,
484 const VkPipelineCacheCreateInfo* pCreateInfo,
485 const VkAllocationCallbacks* pAllocator,
486 VkPipelineCache* pPipelineCache)
487 {
488 RADV_FROM_HANDLE(radv_device, device, _device);
489 struct radv_pipeline_cache *cache;
490
491 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
492 assert(pCreateInfo->flags == 0);
493
494 cache = vk_alloc2(&device->alloc, pAllocator,
495 sizeof(*cache), 8,
496 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
497 if (cache == NULL)
498 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
499
500 if (pAllocator)
501 cache->alloc = *pAllocator;
502 else
503 cache->alloc = device->alloc;
504
505 radv_pipeline_cache_init(cache, device);
506
507 if (pCreateInfo->initialDataSize > 0) {
508 radv_pipeline_cache_load(cache,
509 pCreateInfo->pInitialData,
510 pCreateInfo->initialDataSize);
511 }
512
513 *pPipelineCache = radv_pipeline_cache_to_handle(cache);
514
515 return VK_SUCCESS;
516 }
517
518 void radv_DestroyPipelineCache(
519 VkDevice _device,
520 VkPipelineCache _cache,
521 const VkAllocationCallbacks* pAllocator)
522 {
523 RADV_FROM_HANDLE(radv_device, device, _device);
524 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
525
526 if (!cache)
527 return;
528 radv_pipeline_cache_finish(cache);
529
530 vk_free2(&device->alloc, pAllocator, cache);
531 }
532
533 VkResult radv_GetPipelineCacheData(
534 VkDevice _device,
535 VkPipelineCache _cache,
536 size_t* pDataSize,
537 void* pData)
538 {
539 RADV_FROM_HANDLE(radv_device, device, _device);
540 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
541 struct cache_header *header;
542 VkResult result = VK_SUCCESS;
543
544 pthread_mutex_lock(&cache->mutex);
545
546 const size_t size = sizeof(*header) + cache->total_size;
547 if (pData == NULL) {
548 pthread_mutex_unlock(&cache->mutex);
549 *pDataSize = size;
550 return VK_SUCCESS;
551 }
552 if (*pDataSize < sizeof(*header)) {
553 pthread_mutex_unlock(&cache->mutex);
554 *pDataSize = 0;
555 return VK_INCOMPLETE;
556 }
557 void *p = pData, *end = pData + *pDataSize;
558 header = p;
559 header->header_size = sizeof(*header);
560 header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
561 header->vendor_id = ATI_VENDOR_ID;
562 header->device_id = device->physical_device->rad_info.pci_id;
563 memcpy(header->uuid, device->physical_device->cache_uuid, VK_UUID_SIZE);
564 p += header->header_size;
565
566 struct cache_entry *entry;
567 for (uint32_t i = 0; i < cache->table_size; i++) {
568 if (!cache->hash_table[i])
569 continue;
570 entry = cache->hash_table[i];
571 const uint32_t size = entry_size(entry);
572 if (end < p + size) {
573 result = VK_INCOMPLETE;
574 break;
575 }
576
577 memcpy(p, entry, size);
578 for(int j = 0; j < MESA_SHADER_STAGES; ++j)
579 ((struct cache_entry*)p)->variants[j] = NULL;
580 p += size;
581 }
582 *pDataSize = p - pData;
583
584 pthread_mutex_unlock(&cache->mutex);
585 return result;
586 }
587
588 static void
589 radv_pipeline_cache_merge(struct radv_pipeline_cache *dst,
590 struct radv_pipeline_cache *src)
591 {
592 for (uint32_t i = 0; i < src->table_size; i++) {
593 struct cache_entry *entry = src->hash_table[i];
594 if (!entry || radv_pipeline_cache_search(dst, entry->sha1))
595 continue;
596
597 radv_pipeline_cache_add_entry(dst, entry);
598
599 src->hash_table[i] = NULL;
600 }
601 }
602
603 VkResult radv_MergePipelineCaches(
604 VkDevice _device,
605 VkPipelineCache destCache,
606 uint32_t srcCacheCount,
607 const VkPipelineCache* pSrcCaches)
608 {
609 RADV_FROM_HANDLE(radv_pipeline_cache, dst, destCache);
610
611 for (uint32_t i = 0; i < srcCacheCount; i++) {
612 RADV_FROM_HANDLE(radv_pipeline_cache, src, pSrcCaches[i]);
613
614 radv_pipeline_cache_merge(dst, src);
615 }
616
617 return VK_SUCCESS;
618 }