radv: enable VK_EXT_shader_stencil_export
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39 #include <llvm-c/Support.h>
40
41 #include "sid.h"
42 #include "gfx9d.h"
43 #include "ac_binary.h"
44 #include "ac_llvm_util.h"
45 #include "ac_nir_to_llvm.h"
46 #include "vk_format.h"
47 #include "util/debug.h"
48 #include "ac_exp_param.h"
49
50 #include "util/string_buffer.h"
51
52 static const struct nir_shader_compiler_options nir_options = {
53 .vertex_id_zero_based = true,
54 .lower_scmp = true,
55 .lower_flrp32 = true,
56 .lower_flrp64 = true,
57 .lower_device_index_to_zero = true,
58 .lower_fsat = true,
59 .lower_fdiv = true,
60 .lower_sub = true,
61 .lower_pack_snorm_2x16 = true,
62 .lower_pack_snorm_4x8 = true,
63 .lower_pack_unorm_2x16 = true,
64 .lower_pack_unorm_4x8 = true,
65 .lower_unpack_snorm_2x16 = true,
66 .lower_unpack_snorm_4x8 = true,
67 .lower_unpack_unorm_2x16 = true,
68 .lower_unpack_unorm_4x8 = true,
69 .lower_extract_byte = true,
70 .lower_extract_word = true,
71 .lower_ffma = true,
72 .lower_fpow = true,
73 .vs_inputs_dual_locations = true,
74 .max_unroll_iterations = 32
75 };
76
77 VkResult radv_CreateShaderModule(
78 VkDevice _device,
79 const VkShaderModuleCreateInfo* pCreateInfo,
80 const VkAllocationCallbacks* pAllocator,
81 VkShaderModule* pShaderModule)
82 {
83 RADV_FROM_HANDLE(radv_device, device, _device);
84 struct radv_shader_module *module;
85
86 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
87 assert(pCreateInfo->flags == 0);
88
89 module = vk_alloc2(&device->alloc, pAllocator,
90 sizeof(*module) + pCreateInfo->codeSize, 8,
91 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
92 if (module == NULL)
93 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
94
95 module->nir = NULL;
96 module->size = pCreateInfo->codeSize;
97 memcpy(module->data, pCreateInfo->pCode, module->size);
98
99 _mesa_sha1_compute(module->data, module->size, module->sha1);
100
101 *pShaderModule = radv_shader_module_to_handle(module);
102
103 return VK_SUCCESS;
104 }
105
106 void radv_DestroyShaderModule(
107 VkDevice _device,
108 VkShaderModule _module,
109 const VkAllocationCallbacks* pAllocator)
110 {
111 RADV_FROM_HANDLE(radv_device, device, _device);
112 RADV_FROM_HANDLE(radv_shader_module, module, _module);
113
114 if (!module)
115 return;
116
117 vk_free2(&device->alloc, pAllocator, module);
118 }
119
120 void
121 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
122 {
123 bool progress;
124
125 do {
126 progress = false;
127
128 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
129 NIR_PASS_V(shader, nir_lower_pack);
130 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
131 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
132
133 NIR_PASS(progress, shader, nir_copy_prop);
134 NIR_PASS(progress, shader, nir_opt_remove_phis);
135 NIR_PASS(progress, shader, nir_opt_dce);
136 if (nir_opt_trivial_continues(shader)) {
137 progress = true;
138 NIR_PASS(progress, shader, nir_copy_prop);
139 NIR_PASS(progress, shader, nir_opt_remove_phis);
140 NIR_PASS(progress, shader, nir_opt_dce);
141 }
142 NIR_PASS(progress, shader, nir_opt_if);
143 NIR_PASS(progress, shader, nir_opt_dead_cf);
144 NIR_PASS(progress, shader, nir_opt_cse);
145 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
146 NIR_PASS(progress, shader, nir_opt_algebraic);
147 NIR_PASS(progress, shader, nir_opt_constant_folding);
148 NIR_PASS(progress, shader, nir_opt_undef);
149 NIR_PASS(progress, shader, nir_opt_conditional_discard);
150 if (shader->options->max_unroll_iterations) {
151 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
152 }
153 } while (progress && !optimize_conservatively);
154
155 NIR_PASS(progress, shader, nir_opt_shrink_load);
156 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
157 }
158
159 nir_shader *
160 radv_shader_compile_to_nir(struct radv_device *device,
161 struct radv_shader_module *module,
162 const char *entrypoint_name,
163 gl_shader_stage stage,
164 const VkSpecializationInfo *spec_info,
165 const VkPipelineCreateFlags flags)
166 {
167 nir_shader *nir;
168 nir_function *entry_point;
169 if (module->nir) {
170 /* Some things such as our meta clear/blit code will give us a NIR
171 * shader directly. In that case, we just ignore the SPIR-V entirely
172 * and just use the NIR shader */
173 nir = module->nir;
174 nir->options = &nir_options;
175 nir_validate_shader(nir);
176
177 assert(exec_list_length(&nir->functions) == 1);
178 struct exec_node *node = exec_list_get_head(&nir->functions);
179 entry_point = exec_node_data(nir_function, node, node);
180 } else {
181 uint32_t *spirv = (uint32_t *) module->data;
182 assert(module->size % 4 == 0);
183
184 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
185 radv_print_spirv(spirv, module->size, stderr);
186
187 uint32_t num_spec_entries = 0;
188 struct nir_spirv_specialization *spec_entries = NULL;
189 if (spec_info && spec_info->mapEntryCount > 0) {
190 num_spec_entries = spec_info->mapEntryCount;
191 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
192 for (uint32_t i = 0; i < num_spec_entries; i++) {
193 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
194 const void *data = spec_info->pData + entry.offset;
195 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
196
197 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
198 if (spec_info->dataSize == 8)
199 spec_entries[i].data64 = *(const uint64_t *)data;
200 else
201 spec_entries[i].data32 = *(const uint32_t *)data;
202 }
203 }
204 const struct spirv_to_nir_options spirv_options = {
205 .caps = {
206 .device_group = true,
207 .draw_parameters = true,
208 .float64 = true,
209 .image_read_without_format = true,
210 .image_write_without_format = true,
211 .tessellation = true,
212 .int64 = true,
213 .multiview = true,
214 .subgroup_ballot = true,
215 .subgroup_basic = true,
216 .subgroup_quad = true,
217 .subgroup_shuffle = true,
218 .subgroup_vote = true,
219 .variable_pointers = true,
220 .gcn_shader = true,
221 .trinary_minmax = true,
222 .shader_viewport_index_layer = true,
223 .descriptor_array_dynamic_indexing = true,
224 .runtime_descriptor_array = true,
225 .stencil_export = true,
226 },
227 };
228 entry_point = spirv_to_nir(spirv, module->size / 4,
229 spec_entries, num_spec_entries,
230 stage, entrypoint_name,
231 &spirv_options, &nir_options);
232 nir = entry_point->shader;
233 assert(nir->info.stage == stage);
234 nir_validate_shader(nir);
235
236 free(spec_entries);
237
238 /* We have to lower away local constant initializers right before we
239 * inline functions. That way they get properly initialized at the top
240 * of the function and not at the top of its caller.
241 */
242 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
243 NIR_PASS_V(nir, nir_lower_returns);
244 NIR_PASS_V(nir, nir_inline_functions);
245 NIR_PASS_V(nir, nir_copy_prop);
246
247 /* Pick off the single entrypoint that we want */
248 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
249 if (func != entry_point)
250 exec_node_remove(&func->node);
251 }
252 assert(exec_list_length(&nir->functions) == 1);
253 entry_point->name = ralloc_strdup(entry_point, "main");
254
255 /* Make sure we lower constant initializers on output variables so that
256 * nir_remove_dead_variables below sees the corresponding stores
257 */
258 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
259
260 NIR_PASS_V(nir, nir_remove_dead_variables,
261 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
262
263 /* Now that we've deleted all but the main function, we can go ahead and
264 * lower the rest of the constant initializers.
265 */
266 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
267
268 /* Split member structs. We do this before lower_io_to_temporaries so that
269 * it doesn't lower system values to temporaries by accident.
270 */
271 NIR_PASS_V(nir, nir_split_var_copies);
272 NIR_PASS_V(nir, nir_split_per_member_structs);
273
274 NIR_PASS_V(nir, nir_lower_system_values);
275 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
276 }
277
278 /* Vulkan uses the separate-shader linking model */
279 nir->info.separate_shader = true;
280
281 nir_shader_gather_info(nir, entry_point->impl);
282
283 static const nir_lower_tex_options tex_options = {
284 .lower_txp = ~0,
285 };
286
287 nir_lower_tex(nir, &tex_options);
288
289 nir_lower_vars_to_ssa(nir);
290
291 if (nir->info.stage == MESA_SHADER_VERTEX ||
292 nir->info.stage == MESA_SHADER_GEOMETRY) {
293 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
294 nir_shader_get_entrypoint(nir), true, true);
295 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
296 nir->info.stage == MESA_SHADER_FRAGMENT) {
297 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
298 nir_shader_get_entrypoint(nir), true, false);
299 }
300
301 nir_split_var_copies(nir);
302 nir_lower_var_copies(nir);
303
304 nir_lower_global_vars_to_local(nir);
305 nir_remove_dead_variables(nir, nir_var_local);
306 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
307 .subgroup_size = 64,
308 .ballot_bit_size = 64,
309 .lower_to_scalar = 1,
310 .lower_subgroup_masks = 1,
311 .lower_shuffle = 1,
312 .lower_shuffle_to_32bit = 1,
313 .lower_vote_eq_to_ballot = 1,
314 });
315
316 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
317 radv_optimize_nir(nir, false);
318
319 /* Indirect lowering must be called after the radv_optimize_nir() loop
320 * has been called at least once. Otherwise indirect lowering can
321 * bloat the instruction count of the loop and cause it to be
322 * considered too large for unrolling.
323 */
324 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
325 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT);
326
327 return nir;
328 }
329
330 void *
331 radv_alloc_shader_memory(struct radv_device *device,
332 struct radv_shader_variant *shader)
333 {
334 mtx_lock(&device->shader_slab_mutex);
335 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
336 uint64_t offset = 0;
337 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
338 if (s->bo_offset - offset >= shader->code_size) {
339 shader->bo = slab->bo;
340 shader->bo_offset = offset;
341 list_addtail(&shader->slab_list, &s->slab_list);
342 mtx_unlock(&device->shader_slab_mutex);
343 return slab->ptr + offset;
344 }
345 offset = align_u64(s->bo_offset + s->code_size, 256);
346 }
347 if (slab->size - offset >= shader->code_size) {
348 shader->bo = slab->bo;
349 shader->bo_offset = offset;
350 list_addtail(&shader->slab_list, &slab->shaders);
351 mtx_unlock(&device->shader_slab_mutex);
352 return slab->ptr + offset;
353 }
354 }
355
356 mtx_unlock(&device->shader_slab_mutex);
357 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
358
359 slab->size = 256 * 1024;
360 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
361 RADEON_DOMAIN_VRAM,
362 RADEON_FLAG_NO_INTERPROCESS_SHARING |
363 device->physical_device->cpdma_prefetch_writes_memory ?
364 0 : RADEON_FLAG_READ_ONLY);
365 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
366 list_inithead(&slab->shaders);
367
368 mtx_lock(&device->shader_slab_mutex);
369 list_add(&slab->slabs, &device->shader_slabs);
370
371 shader->bo = slab->bo;
372 shader->bo_offset = 0;
373 list_add(&shader->slab_list, &slab->shaders);
374 mtx_unlock(&device->shader_slab_mutex);
375 return slab->ptr;
376 }
377
378 void
379 radv_destroy_shader_slabs(struct radv_device *device)
380 {
381 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
382 device->ws->buffer_destroy(slab->bo);
383 free(slab);
384 }
385 mtx_destroy(&device->shader_slab_mutex);
386 }
387
388 static void
389 radv_fill_shader_variant(struct radv_device *device,
390 struct radv_shader_variant *variant,
391 struct ac_shader_binary *binary,
392 gl_shader_stage stage)
393 {
394 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
395 struct radv_shader_info *info = &variant->info.info;
396 unsigned vgpr_comp_cnt = 0;
397
398 variant->code_size = binary->code_size;
399 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
400 S_00B12C_SCRATCH_EN(scratch_enabled);
401
402 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
403 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
404 S_00B848_DX10_CLAMP(1) |
405 S_00B848_FLOAT_MODE(variant->config.float_mode);
406
407 switch (stage) {
408 case MESA_SHADER_TESS_EVAL:
409 vgpr_comp_cnt = 3;
410 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
411 break;
412 case MESA_SHADER_TESS_CTRL:
413 if (device->physical_device->rad_info.chip_class >= GFX9) {
414 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
415 } else {
416 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
417 }
418 break;
419 case MESA_SHADER_VERTEX:
420 case MESA_SHADER_GEOMETRY:
421 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
422 break;
423 case MESA_SHADER_FRAGMENT:
424 break;
425 case MESA_SHADER_COMPUTE:
426 variant->rsrc2 |=
427 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
428 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
429 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
430 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
431 info->cs.uses_thread_id[1] ? 1 : 0) |
432 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
433 S_00B84C_LDS_SIZE(variant->config.lds_size);
434 break;
435 default:
436 unreachable("unsupported shader type");
437 break;
438 }
439
440 if (device->physical_device->rad_info.chip_class >= GFX9 &&
441 stage == MESA_SHADER_GEOMETRY) {
442 unsigned es_type = variant->info.gs.es_type;
443 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
444
445 if (es_type == MESA_SHADER_VERTEX) {
446 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
447 } else if (es_type == MESA_SHADER_TESS_EVAL) {
448 es_vgpr_comp_cnt = 3;
449 } else {
450 unreachable("invalid shader ES type");
451 }
452
453 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
454 * VGPR[0:4] are always loaded.
455 */
456 if (info->uses_invocation_id) {
457 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
458 } else if (info->uses_prim_id) {
459 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
460 } else if (variant->info.gs.vertices_in >= 3) {
461 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
462 } else {
463 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
464 }
465
466 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
467 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
468 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
469 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
470 stage == MESA_SHADER_TESS_CTRL) {
471 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
472 } else {
473 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
474 }
475
476 void *ptr = radv_alloc_shader_memory(device, variant);
477 memcpy(ptr, binary->code, binary->code_size);
478 }
479
480 static void radv_init_llvm_target()
481 {
482 LLVMInitializeAMDGPUTargetInfo();
483 LLVMInitializeAMDGPUTarget();
484 LLVMInitializeAMDGPUTargetMC();
485 LLVMInitializeAMDGPUAsmPrinter();
486
487 /* For inline assembly. */
488 LLVMInitializeAMDGPUAsmParser();
489
490 /* Workaround for bug in llvm 4.0 that causes image intrinsics
491 * to disappear.
492 * https://reviews.llvm.org/D26348
493 *
494 * Workaround for bug in llvm that causes the GPU to hang in presence
495 * of nested loops because there is an exec mask issue. The proper
496 * solution is to fix LLVM but this might require a bunch of work.
497 * https://bugs.llvm.org/show_bug.cgi?id=37744
498 *
499 * "mesa" is the prefix for error messages.
500 */
501 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
502 "-amdgpu-skip-threshold=1" };
503 LLVMParseCommandLineOptions(3, argv, NULL);
504 }
505
506 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
507
508 static LLVMTargetRef radv_get_llvm_target(const char *triple)
509 {
510 LLVMTargetRef target = NULL;
511 char *err_message = NULL;
512
513 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
514
515 if (LLVMGetTargetFromTriple(triple, &target, &err_message)) {
516 fprintf(stderr, "Cannot find target for triple %s ", triple);
517 if (err_message) {
518 fprintf(stderr, "%s\n", err_message);
519 }
520 LLVMDisposeMessage(err_message);
521 return NULL;
522 }
523 return target;
524 }
525
526 static LLVMTargetMachineRef radv_create_target_machine(enum radeon_family family,
527 enum ac_target_machine_options tm_options,
528 const char **out_triple)
529 {
530 assert(family >= CHIP_TAHITI);
531 char features[256];
532 const char *triple = (tm_options & AC_TM_SUPPORTS_SPILL) ? "amdgcn-mesa-mesa3d" : "amdgcn--";
533 LLVMTargetRef target = radv_get_llvm_target(triple);
534
535 snprintf(features, sizeof(features),
536 "+DumpCode,+vgpr-spilling,-fp32-denormals,+fp64-denormals%s%s%s%s",
537 tm_options & AC_TM_SISCHED ? ",+si-scheduler" : "",
538 tm_options & AC_TM_FORCE_ENABLE_XNACK ? ",+xnack" : "",
539 tm_options & AC_TM_FORCE_DISABLE_XNACK ? ",-xnack" : "",
540 tm_options & AC_TM_PROMOTE_ALLOCA_TO_SCRATCH ? ",-promote-alloca" : "");
541
542 LLVMTargetMachineRef tm = LLVMCreateTargetMachine(
543 target,
544 triple,
545 ac_get_llvm_processor_name(family),
546 features,
547 LLVMCodeGenLevelDefault,
548 LLVMRelocDefault,
549 LLVMCodeModelDefault);
550
551 if (out_triple)
552 *out_triple = triple;
553 return tm;
554 }
555
556 static struct radv_shader_variant *
557 shader_variant_create(struct radv_device *device,
558 struct radv_shader_module *module,
559 struct nir_shader * const *shaders,
560 int shader_count,
561 gl_shader_stage stage,
562 struct radv_nir_compiler_options *options,
563 bool gs_copy_shader,
564 void **code_out,
565 unsigned *code_size_out)
566 {
567 enum radeon_family chip_family = device->physical_device->rad_info.family;
568 enum ac_target_machine_options tm_options = 0;
569 struct radv_shader_variant *variant;
570 struct ac_shader_binary binary;
571 LLVMTargetMachineRef tm;
572
573 variant = calloc(1, sizeof(struct radv_shader_variant));
574 if (!variant)
575 return NULL;
576
577 options->family = chip_family;
578 options->chip_class = device->physical_device->rad_info.chip_class;
579 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
580 options->dump_preoptir = options->dump_shader &&
581 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
582 options->record_llvm_ir = device->keep_shader_info;
583 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
584 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
585 options->address32_hi = device->physical_device->rad_info.address32_hi;
586
587 if (options->supports_spill)
588 tm_options |= AC_TM_SUPPORTS_SPILL;
589 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
590 tm_options |= AC_TM_SISCHED;
591 tm = radv_create_target_machine(chip_family, tm_options, NULL);
592
593 if (gs_copy_shader) {
594 assert(shader_count == 1);
595 radv_compile_gs_copy_shader(tm, *shaders, &binary,
596 &variant->config, &variant->info,
597 options);
598 } else {
599 radv_compile_nir_shader(tm, &binary, &variant->config,
600 &variant->info, shaders, shader_count,
601 options);
602 }
603
604 LLVMDisposeTargetMachine(tm);
605
606 radv_fill_shader_variant(device, variant, &binary, stage);
607
608 if (code_out) {
609 *code_out = binary.code;
610 *code_size_out = binary.code_size;
611 } else
612 free(binary.code);
613 free(binary.config);
614 free(binary.rodata);
615 free(binary.global_symbol_offsets);
616 free(binary.relocs);
617 variant->ref_count = 1;
618
619 if (device->keep_shader_info) {
620 variant->disasm_string = binary.disasm_string;
621 variant->llvm_ir_string = binary.llvm_ir_string;
622 if (!gs_copy_shader && !module->nir) {
623 variant->nir = *shaders;
624 variant->spirv = (uint32_t *)module->data;
625 variant->spirv_size = module->size;
626 }
627 } else {
628 free(binary.disasm_string);
629 }
630
631 return variant;
632 }
633
634 struct radv_shader_variant *
635 radv_shader_variant_create(struct radv_device *device,
636 struct radv_shader_module *module,
637 struct nir_shader *const *shaders,
638 int shader_count,
639 struct radv_pipeline_layout *layout,
640 const struct radv_shader_variant_key *key,
641 void **code_out,
642 unsigned *code_size_out)
643 {
644 struct radv_nir_compiler_options options = {0};
645
646 options.layout = layout;
647 if (key)
648 options.key = *key;
649
650 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
651 options.supports_spill = true;
652
653 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
654 &options, false, code_out, code_size_out);
655 }
656
657 struct radv_shader_variant *
658 radv_create_gs_copy_shader(struct radv_device *device,
659 struct nir_shader *shader,
660 void **code_out,
661 unsigned *code_size_out,
662 bool multiview)
663 {
664 struct radv_nir_compiler_options options = {0};
665
666 options.key.has_multiview_view_index = multiview;
667
668 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
669 &options, true, code_out, code_size_out);
670 }
671
672 void
673 radv_shader_variant_destroy(struct radv_device *device,
674 struct radv_shader_variant *variant)
675 {
676 if (!p_atomic_dec_zero(&variant->ref_count))
677 return;
678
679 mtx_lock(&device->shader_slab_mutex);
680 list_del(&variant->slab_list);
681 mtx_unlock(&device->shader_slab_mutex);
682
683 ralloc_free(variant->nir);
684 free(variant->disasm_string);
685 free(variant->llvm_ir_string);
686 free(variant);
687 }
688
689 const char *
690 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
691 {
692 switch (stage) {
693 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
694 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
695 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
696 case MESA_SHADER_COMPUTE: return "Compute Shader";
697 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
698 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
699 default:
700 return "Unknown shader";
701 };
702 }
703
704 static void
705 generate_shader_stats(struct radv_device *device,
706 struct radv_shader_variant *variant,
707 gl_shader_stage stage,
708 struct _mesa_string_buffer *buf)
709 {
710 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
711 struct ac_shader_config *conf;
712 unsigned max_simd_waves;
713 unsigned lds_per_wave = 0;
714
715 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
716
717 conf = &variant->config;
718
719 if (stage == MESA_SHADER_FRAGMENT) {
720 lds_per_wave = conf->lds_size * lds_increment +
721 align(variant->info.fs.num_interp * 48,
722 lds_increment);
723 }
724
725 if (conf->num_sgprs)
726 max_simd_waves =
727 MIN2(max_simd_waves,
728 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
729
730 if (conf->num_vgprs)
731 max_simd_waves =
732 MIN2(max_simd_waves,
733 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
734
735 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
736 * that PS can use.
737 */
738 if (lds_per_wave)
739 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
740
741 if (stage == MESA_SHADER_FRAGMENT) {
742 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
743 "SPI_PS_INPUT_ADDR = 0x%04x\n"
744 "SPI_PS_INPUT_ENA = 0x%04x\n",
745 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
746 }
747
748 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
749 "SGPRS: %d\n"
750 "VGPRS: %d\n"
751 "Spilled SGPRs: %d\n"
752 "Spilled VGPRs: %d\n"
753 "PrivMem VGPRS: %d\n"
754 "Code Size: %d bytes\n"
755 "LDS: %d blocks\n"
756 "Scratch: %d bytes per wave\n"
757 "Max Waves: %d\n"
758 "********************\n\n\n",
759 conf->num_sgprs, conf->num_vgprs,
760 conf->spilled_sgprs, conf->spilled_vgprs,
761 variant->info.private_mem_vgprs, variant->code_size,
762 conf->lds_size, conf->scratch_bytes_per_wave,
763 max_simd_waves);
764 }
765
766 void
767 radv_shader_dump_stats(struct radv_device *device,
768 struct radv_shader_variant *variant,
769 gl_shader_stage stage,
770 FILE *file)
771 {
772 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
773
774 generate_shader_stats(device, variant, stage, buf);
775
776 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
777 fprintf(file, "%s", buf->buf);
778
779 _mesa_string_buffer_destroy(buf);
780 }
781
782 VkResult
783 radv_GetShaderInfoAMD(VkDevice _device,
784 VkPipeline _pipeline,
785 VkShaderStageFlagBits shaderStage,
786 VkShaderInfoTypeAMD infoType,
787 size_t* pInfoSize,
788 void* pInfo)
789 {
790 RADV_FROM_HANDLE(radv_device, device, _device);
791 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
792 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
793 struct radv_shader_variant *variant = pipeline->shaders[stage];
794 struct _mesa_string_buffer *buf;
795 VkResult result = VK_SUCCESS;
796
797 /* Spec doesn't indicate what to do if the stage is invalid, so just
798 * return no info for this. */
799 if (!variant)
800 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
801
802 switch (infoType) {
803 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
804 if (!pInfo) {
805 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
806 } else {
807 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
808 struct ac_shader_config *conf = &variant->config;
809
810 VkShaderStatisticsInfoAMD statistics = {};
811 statistics.shaderStageMask = shaderStage;
812 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
813 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
814 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
815
816 if (stage == MESA_SHADER_COMPUTE) {
817 unsigned *local_size = variant->nir->info.cs.local_size;
818 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
819
820 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
821 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
822
823 statistics.computeWorkGroupSize[0] = local_size[0];
824 statistics.computeWorkGroupSize[1] = local_size[1];
825 statistics.computeWorkGroupSize[2] = local_size[2];
826 } else {
827 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
828 }
829
830 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
831 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
832 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
833 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
834 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
835
836 size_t size = *pInfoSize;
837 *pInfoSize = sizeof(statistics);
838
839 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
840
841 if (size < *pInfoSize)
842 result = VK_INCOMPLETE;
843 }
844
845 break;
846 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
847 buf = _mesa_string_buffer_create(NULL, 1024);
848
849 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
850 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
851 generate_shader_stats(device, variant, stage, buf);
852
853 /* Need to include the null terminator. */
854 size_t length = buf->length + 1;
855
856 if (!pInfo) {
857 *pInfoSize = length;
858 } else {
859 size_t size = *pInfoSize;
860 *pInfoSize = length;
861
862 memcpy(pInfo, buf->buf, MIN2(size, length));
863
864 if (size < length)
865 result = VK_INCOMPLETE;
866 }
867
868 _mesa_string_buffer_destroy(buf);
869 break;
870 default:
871 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
872 result = VK_ERROR_FEATURE_NOT_PRESENT;
873 break;
874 }
875
876 return result;
877 }