radv: remove unused 'predicated' parameter from some functions
[mesa.git] / src / amd / vulkan / si_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 /* command buffer handling for SI */
29
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "gfx9d.h"
35 #include "radv_util.h"
36 #include "main/macros.h"
37
38 static void
39 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
40 struct radeon_cmdbuf *cs,
41 unsigned raster_config,
42 unsigned raster_config_1)
43 {
44 unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
45 unsigned raster_config_se[4];
46 unsigned se;
47
48 ac_get_harvested_configs(&physical_device->rad_info,
49 raster_config,
50 &raster_config_1,
51 raster_config_se);
52
53 for (se = 0; se < num_se; se++) {
54 /* GRBM_GFX_INDEX has a different offset on SI and CI+ */
55 if (physical_device->rad_info.chip_class < CIK)
56 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
57 S_00802C_SE_INDEX(se) |
58 S_00802C_SH_BROADCAST_WRITES(1) |
59 S_00802C_INSTANCE_BROADCAST_WRITES(1));
60 else
61 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
62 S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
63 S_030800_INSTANCE_BROADCAST_WRITES(1));
64 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
65 }
66
67 /* GRBM_GFX_INDEX has a different offset on SI and CI+ */
68 if (physical_device->rad_info.chip_class < CIK)
69 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
70 S_00802C_SE_BROADCAST_WRITES(1) |
71 S_00802C_SH_BROADCAST_WRITES(1) |
72 S_00802C_INSTANCE_BROADCAST_WRITES(1));
73 else
74 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
75 S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
76 S_030800_INSTANCE_BROADCAST_WRITES(1));
77
78 if (physical_device->rad_info.chip_class >= CIK)
79 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
80 }
81
82 static void
83 si_emit_compute(struct radv_physical_device *physical_device,
84 struct radeon_cmdbuf *cs)
85 {
86 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
87 radeon_emit(cs, 0);
88 radeon_emit(cs, 0);
89 radeon_emit(cs, 0);
90
91 radeon_set_sh_reg_seq(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
92 S_00B854_WAVES_PER_SH(0x3));
93 radeon_emit(cs, 0);
94 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
95 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
96 radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
97
98 if (physical_device->rad_info.chip_class >= CIK) {
99 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
100 radeon_set_sh_reg_seq(cs,
101 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
102 radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
103 S_00B864_SH1_CU_EN(0xffff));
104 radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
105 S_00B868_SH1_CU_EN(0xffff));
106 }
107
108 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
109 * and is now per pipe, so it should be handled in the
110 * kernel if we want to use something other than the default value,
111 * which is now 0x22f.
112 */
113 if (physical_device->rad_info.chip_class <= SI) {
114 /* XXX: This should be:
115 * (number of compute units) * 4 * (waves per simd) - 1 */
116
117 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
118 0x190 /* Default value */);
119 }
120 }
121
122 void
123 si_init_compute(struct radv_cmd_buffer *cmd_buffer)
124 {
125 struct radv_physical_device *physical_device = cmd_buffer->device->physical_device;
126 si_emit_compute(physical_device, cmd_buffer->cs);
127 }
128
129 /* 12.4 fixed-point */
130 static unsigned radv_pack_float_12p4(float x)
131 {
132 return x <= 0 ? 0 :
133 x >= 4096 ? 0xffff : x * 16;
134 }
135
136 static void
137 si_set_raster_config(struct radv_physical_device *physical_device,
138 struct radeon_cmdbuf *cs)
139 {
140 unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
141 unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
142 unsigned raster_config, raster_config_1;
143
144 ac_get_raster_config(&physical_device->rad_info,
145 &raster_config,
146 &raster_config_1);
147
148 /* Always use the default config when all backends are enabled
149 * (or when we failed to determine the enabled backends).
150 */
151 if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
152 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
153 raster_config);
154 if (physical_device->rad_info.chip_class >= CIK)
155 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
156 raster_config_1);
157 } else {
158 si_write_harvested_raster_configs(physical_device, cs,
159 raster_config,
160 raster_config_1);
161 }
162 }
163
164 static void
165 si_emit_config(struct radv_physical_device *physical_device,
166 struct radeon_cmdbuf *cs)
167 {
168 int i;
169
170 /* Only SI can disable CLEAR_STATE for now. */
171 assert(physical_device->has_clear_state ||
172 physical_device->rad_info.chip_class == SI);
173
174 radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
175 radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
176 radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
177
178 if (physical_device->has_clear_state) {
179 radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
180 radeon_emit(cs, 0);
181 }
182
183 if (physical_device->rad_info.chip_class <= VI)
184 si_set_raster_config(physical_device, cs);
185
186 radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
187 if (!physical_device->has_clear_state)
188 radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
189
190 /* FIXME calculate these values somehow ??? */
191 if (physical_device->rad_info.chip_class <= VI) {
192 radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
193 radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
194 }
195
196 if (!physical_device->has_clear_state) {
197 radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
198 radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
199 radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
200 }
201
202 radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
203 if (!physical_device->has_clear_state)
204 radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
205 if (physical_device->rad_info.chip_class < CIK)
206 radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
207 S_008A14_CLIP_VTX_REORDER_ENA(1));
208
209 radeon_set_context_reg(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 0x76543210);
210 radeon_set_context_reg(cs, R_028BD8_PA_SC_CENTROID_PRIORITY_1, 0xfedcba98);
211
212 if (!physical_device->has_clear_state)
213 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
214
215 /* CLEAR_STATE doesn't clear these correctly on certain generations.
216 * I don't know why. Deduced by trial and error.
217 */
218 if (physical_device->rad_info.chip_class <= CIK) {
219 radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
220 radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
221 S_028204_WINDOW_OFFSET_DISABLE(1));
222 radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
223 S_028240_WINDOW_OFFSET_DISABLE(1));
224 radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
225 S_028244_BR_X(16384) | S_028244_BR_Y(16384));
226 radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
227 radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
228 S_028034_BR_X(16384) | S_028034_BR_Y(16384));
229 }
230
231 if (!physical_device->has_clear_state) {
232 for (i = 0; i < 16; i++) {
233 radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
234 radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
235 }
236 }
237
238 if (!physical_device->has_clear_state) {
239 radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
240 radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
241 /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on SI */
242 radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
243 radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
244 radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
245 radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
246 radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
247 }
248
249 radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
250 S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
251 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
252
253 if (physical_device->rad_info.chip_class >= GFX9) {
254 radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
255 radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
256 radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
257 } else {
258 /* These registers, when written, also overwrite the
259 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
260 * them. It would be an issue if there was another UMD
261 * changing them.
262 */
263 radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
264 radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
265 radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
266 }
267
268 if (physical_device->rad_info.chip_class >= CIK) {
269 if (physical_device->rad_info.chip_class >= GFX9) {
270 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
271 S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
272 } else {
273 radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
274 S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
275 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
276 S_00B41C_WAVE_LIMIT(0x3F));
277 radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
278 S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
279 /* If this is 0, Bonaire can hang even if GS isn't being used.
280 * Other chips are unaffected. These are suboptimal values,
281 * but we don't use on-chip GS.
282 */
283 radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
284 S_028A44_ES_VERTS_PER_SUBGRP(64) |
285 S_028A44_GS_PRIMS_PER_SUBGRP(4));
286 }
287 radeon_set_sh_reg(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
288 S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F));
289
290 if (physical_device->rad_info.num_good_compute_units /
291 (physical_device->rad_info.max_se * physical_device->rad_info.max_sh_per_se) <= 4) {
292 /* Too few available compute units per SH. Disallowing
293 * VS to run on CU0 could hurt us more than late VS
294 * allocation would help.
295 *
296 * LATE_ALLOC_VS = 2 is the highest safe number.
297 */
298 radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
299 S_00B118_CU_EN(0xffff) | S_00B118_WAVE_LIMIT(0x3F) );
300 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(2));
301 } else {
302 /* Set LATE_ALLOC_VS == 31. It should be less than
303 * the number of scratch waves. Limitations:
304 * - VS can't execute on CU0.
305 * - If HS writes outputs to LDS, LS can't execute on CU0.
306 */
307 radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
308 S_00B118_CU_EN(0xfffe) | S_00B118_WAVE_LIMIT(0x3F));
309 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(31));
310 }
311
312 radeon_set_sh_reg(cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
313 S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
314 }
315
316 if (physical_device->rad_info.chip_class >= VI) {
317 uint32_t vgt_tess_distribution;
318 radeon_set_context_reg(cs, R_028424_CB_DCC_CONTROL,
319 S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(1) |
320 S_028424_OVERWRITE_COMBINER_WATERMARK(4));
321
322 vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
323 S_028B50_ACCUM_TRI(11) |
324 S_028B50_ACCUM_QUAD(11) |
325 S_028B50_DONUT_SPLIT(16);
326
327 if (physical_device->rad_info.family == CHIP_FIJI ||
328 physical_device->rad_info.family >= CHIP_POLARIS10)
329 vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
330
331 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
332 vgt_tess_distribution);
333 } else if (!physical_device->has_clear_state) {
334 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
335 radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
336 }
337
338 if (physical_device->rad_info.chip_class >= GFX9) {
339 unsigned num_se = physical_device->rad_info.max_se;
340 unsigned pc_lines = 0;
341
342 switch (physical_device->rad_info.family) {
343 case CHIP_VEGA10:
344 case CHIP_VEGA12:
345 pc_lines = 4096;
346 break;
347 case CHIP_RAVEN:
348 pc_lines = 1024;
349 break;
350 default:
351 assert(0);
352 }
353
354 radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
355 S_028C48_MAX_ALLOC_COUNT(MIN2(128, pc_lines / (4 * num_se))) |
356 S_028C48_MAX_PRIM_PER_BATCH(1023));
357 radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
358 S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
359 radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
360 }
361
362 unsigned tmp = (unsigned)(1.0 * 8.0);
363 radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
364 radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
365 radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
366 radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
367 S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2)));
368
369 if (!physical_device->has_clear_state) {
370 radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
371 S_028004_ZPASS_INCREMENT_DISABLE(1));
372 }
373
374 /* Enable the Polaris small primitive filter control.
375 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
376 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
377 * and AMDVLK doesn't have a workaround as well.
378 */
379 if (physical_device->rad_info.family >= CHIP_POLARIS10) {
380 unsigned small_prim_filter_cntl =
381 S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
382 /* Workaround for a hw line bug. */
383 S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
384
385 radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
386 small_prim_filter_cntl);
387 }
388
389 si_emit_compute(physical_device, cs);
390 }
391
392 void si_init_config(struct radv_cmd_buffer *cmd_buffer)
393 {
394 struct radv_physical_device *physical_device = cmd_buffer->device->physical_device;
395
396 si_emit_config(physical_device, cmd_buffer->cs);
397 }
398
399 void
400 cik_create_gfx_config(struct radv_device *device)
401 {
402 struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
403 if (!cs)
404 return;
405
406 si_emit_config(device->physical_device, cs);
407
408 while (cs->cdw & 7) {
409 if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
410 radeon_emit(cs, 0x80000000);
411 else
412 radeon_emit(cs, 0xffff1000);
413 }
414
415 device->gfx_init = device->ws->buffer_create(device->ws,
416 cs->cdw * 4, 4096,
417 RADEON_DOMAIN_GTT,
418 RADEON_FLAG_CPU_ACCESS|
419 RADEON_FLAG_NO_INTERPROCESS_SHARING |
420 RADEON_FLAG_READ_ONLY);
421 if (!device->gfx_init)
422 goto fail;
423
424 void *map = device->ws->buffer_map(device->gfx_init);
425 if (!map) {
426 device->ws->buffer_destroy(device->gfx_init);
427 device->gfx_init = NULL;
428 goto fail;
429 }
430 memcpy(map, cs->buf, cs->cdw * 4);
431
432 device->ws->buffer_unmap(device->gfx_init);
433 device->gfx_init_size_dw = cs->cdw;
434 fail:
435 device->ws->cs_destroy(cs);
436 }
437
438 static void
439 get_viewport_xform(const VkViewport *viewport,
440 float scale[3], float translate[3])
441 {
442 float x = viewport->x;
443 float y = viewport->y;
444 float half_width = 0.5f * viewport->width;
445 float half_height = 0.5f * viewport->height;
446 double n = viewport->minDepth;
447 double f = viewport->maxDepth;
448
449 scale[0] = half_width;
450 translate[0] = half_width + x;
451 scale[1] = half_height;
452 translate[1] = half_height + y;
453
454 scale[2] = (f - n);
455 translate[2] = n;
456 }
457
458 void
459 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
460 int count, const VkViewport *viewports)
461 {
462 int i;
463
464 assert(count);
465 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
466 first_vp * 4 * 6, count * 6);
467
468 for (i = 0; i < count; i++) {
469 float scale[3], translate[3];
470
471
472 get_viewport_xform(&viewports[i], scale, translate);
473 radeon_emit(cs, fui(scale[0]));
474 radeon_emit(cs, fui(translate[0]));
475 radeon_emit(cs, fui(scale[1]));
476 radeon_emit(cs, fui(translate[1]));
477 radeon_emit(cs, fui(scale[2]));
478 radeon_emit(cs, fui(translate[2]));
479 }
480
481 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
482 first_vp * 4 * 2, count * 2);
483 for (i = 0; i < count; i++) {
484 float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
485 float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
486 radeon_emit(cs, fui(zmin));
487 radeon_emit(cs, fui(zmax));
488 }
489 }
490
491 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
492 {
493 float scale[3], translate[3];
494 VkRect2D rect;
495
496 get_viewport_xform(viewport, scale, translate);
497
498 rect.offset.x = translate[0] - fabs(scale[0]);
499 rect.offset.y = translate[1] - fabs(scale[1]);
500 rect.extent.width = ceilf(translate[0] + fabs(scale[0])) - rect.offset.x;
501 rect.extent.height = ceilf(translate[1] + fabs(scale[1])) - rect.offset.y;
502
503 return rect;
504 }
505
506 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
507 VkRect2D ret;
508 ret.offset.x = MAX2(a->offset.x, b->offset.x);
509 ret.offset.y = MAX2(a->offset.y, b->offset.y);
510 ret.extent.width = MIN2(a->offset.x + a->extent.width,
511 b->offset.x + b->extent.width) - ret.offset.x;
512 ret.extent.height = MIN2(a->offset.y + a->extent.height,
513 b->offset.y + b->extent.height) - ret.offset.y;
514 return ret;
515 }
516
517 void
518 si_write_scissors(struct radeon_cmdbuf *cs, int first,
519 int count, const VkRect2D *scissors,
520 const VkViewport *viewports, bool can_use_guardband)
521 {
522 int i;
523 float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
524 const float max_range = 32767.0f;
525 if (!count)
526 return;
527
528 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
529 for (i = 0; i < count; i++) {
530 VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
531 VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
532
533 get_viewport_xform(viewports + i, scale, translate);
534 scale[0] = abs(scale[0]);
535 scale[1] = abs(scale[1]);
536
537 if (scale[0] < 0.5)
538 scale[0] = 0.5;
539 if (scale[1] < 0.5)
540 scale[1] = 0.5;
541
542 guardband_x = MIN2(guardband_x, (max_range - abs(translate[0])) / scale[0]);
543 guardband_y = MIN2(guardband_y, (max_range - abs(translate[1])) / scale[1]);
544
545 radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
546 S_028250_TL_Y(scissor.offset.y) |
547 S_028250_WINDOW_OFFSET_DISABLE(1));
548 radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
549 S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
550 }
551 if (!can_use_guardband) {
552 guardband_x = 1.0;
553 guardband_y = 1.0;
554 }
555
556 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
557 radeon_emit(cs, fui(guardband_y));
558 radeon_emit(cs, fui(1.0));
559 radeon_emit(cs, fui(guardband_x));
560 radeon_emit(cs, fui(1.0));
561 }
562
563 static inline unsigned
564 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
565 {
566 if (num == 0)
567 return 0;
568
569 if (info->incr == 0)
570 return 0;
571
572 if (num < info->min)
573 return 0;
574
575 return 1 + ((num - info->min) / info->incr);
576 }
577
578 uint32_t
579 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
580 bool instanced_draw, bool indirect_draw,
581 uint32_t draw_vertex_count)
582 {
583 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
584 enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
585 struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
586 const unsigned max_primgroup_in_wave = 2;
587 /* SWITCH_ON_EOP(0) is always preferable. */
588 bool wd_switch_on_eop = false;
589 bool ia_switch_on_eop = false;
590 bool ia_switch_on_eoi = false;
591 bool partial_vs_wave = false;
592 bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
593 bool multi_instances_smaller_than_primgroup;
594
595 multi_instances_smaller_than_primgroup = indirect_draw;
596 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
597 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
598 if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
599 multi_instances_smaller_than_primgroup = true;
600 }
601
602 ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
603 partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
604
605 if (chip_class >= CIK) {
606 wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.wd_switch_on_eop;
607
608 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
609 * We don't know that for indirect drawing, so treat it as
610 * always problematic. */
611 if (family == CHIP_HAWAII &&
612 (instanced_draw || indirect_draw))
613 wd_switch_on_eop = true;
614
615 /* Performance recommendation for 4 SE Gfx7-8 parts if
616 * instances are smaller than a primgroup.
617 * Assume indirect draws always use small instances.
618 * This is needed for good VS wave utilization.
619 */
620 if (chip_class <= VI &&
621 info->max_se == 4 &&
622 multi_instances_smaller_than_primgroup)
623 wd_switch_on_eop = true;
624
625 /* Required on CIK and later. */
626 if (info->max_se > 2 && !wd_switch_on_eop)
627 ia_switch_on_eoi = true;
628
629 /* Required by Hawaii and, for some special cases, by VI. */
630 if (ia_switch_on_eoi &&
631 (family == CHIP_HAWAII ||
632 (chip_class == VI &&
633 /* max primgroup in wave is always 2 - leave this for documentation */
634 (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
635 partial_vs_wave = true;
636
637 /* Instancing bug on Bonaire. */
638 if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
639 (instanced_draw || indirect_draw))
640 partial_vs_wave = true;
641
642 /* If the WD switch is false, the IA switch must be false too. */
643 assert(wd_switch_on_eop || !ia_switch_on_eop);
644 }
645 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
646 if (chip_class <= VI && ia_switch_on_eoi)
647 partial_es_wave = true;
648
649 if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
650 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
651 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
652 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
653 */
654 if (family == CHIP_HAWAII && ia_switch_on_eoi) {
655 bool set_vgt_flush = indirect_draw;
656 if (!set_vgt_flush && instanced_draw) {
657 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
658 if (num_prims <= 1)
659 set_vgt_flush = true;
660 }
661 if (set_vgt_flush)
662 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
663 }
664 }
665
666 return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
667 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
668 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
669 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
670 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
671 S_028AA8_WD_SWITCH_ON_EOP(chip_class >= CIK ? wd_switch_on_eop : 0);
672
673 }
674
675 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
676 enum chip_class chip_class,
677 bool is_mec,
678 unsigned event, unsigned event_flags,
679 unsigned data_sel,
680 uint64_t va,
681 uint32_t old_fence,
682 uint32_t new_fence)
683 {
684 unsigned op = EVENT_TYPE(event) |
685 EVENT_INDEX(5) |
686 event_flags;
687 unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
688 unsigned sel = EOP_DATA_SEL(data_sel);
689
690 /* Wait for write confirmation before writing data, but don't send
691 * an interrupt. */
692 if (data_sel != EOP_DATA_SEL_DISCARD)
693 sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
694
695 if (chip_class >= GFX9 || is_gfx8_mec) {
696 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
697 radeon_emit(cs, op);
698 radeon_emit(cs, sel);
699 radeon_emit(cs, va); /* address lo */
700 radeon_emit(cs, va >> 32); /* address hi */
701 radeon_emit(cs, new_fence); /* immediate data lo */
702 radeon_emit(cs, 0); /* immediate data hi */
703 if (!is_gfx8_mec)
704 radeon_emit(cs, 0); /* unused */
705 } else {
706 if (chip_class == CIK ||
707 chip_class == VI) {
708 /* Two EOP events are required to make all engines go idle
709 * (and optional cache flushes executed) before the timestamp
710 * is written.
711 */
712 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
713 radeon_emit(cs, op);
714 radeon_emit(cs, va);
715 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
716 radeon_emit(cs, old_fence); /* immediate data */
717 radeon_emit(cs, 0); /* unused */
718 }
719
720 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
721 radeon_emit(cs, op);
722 radeon_emit(cs, va);
723 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
724 radeon_emit(cs, new_fence); /* immediate data */
725 radeon_emit(cs, 0); /* unused */
726 }
727 }
728
729 void
730 si_emit_wait_fence(struct radeon_cmdbuf *cs,
731 uint64_t va, uint32_t ref,
732 uint32_t mask)
733 {
734 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
735 radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
736 radeon_emit(cs, va);
737 radeon_emit(cs, va >> 32);
738 radeon_emit(cs, ref); /* reference value */
739 radeon_emit(cs, mask); /* mask */
740 radeon_emit(cs, 4); /* poll interval */
741 }
742
743 static void
744 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
745 bool is_mec,
746 bool is_gfx9,
747 unsigned cp_coher_cntl)
748 {
749 if (is_mec || is_gfx9) {
750 uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
751 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
752 PKT3_SHADER_TYPE_S(is_mec));
753 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
754 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
755 radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
756 radeon_emit(cs, 0); /* CP_COHER_BASE */
757 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
758 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
759 } else {
760 /* ACQUIRE_MEM is only required on a compute ring. */
761 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
762 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
763 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
764 radeon_emit(cs, 0); /* CP_COHER_BASE */
765 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
766 }
767 }
768
769 void
770 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
771 enum chip_class chip_class,
772 uint32_t *flush_cnt,
773 uint64_t flush_va,
774 bool is_mec,
775 enum radv_cmd_flush_bits flush_bits)
776 {
777 unsigned cp_coher_cntl = 0;
778 uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
779 RADV_CMD_FLAG_FLUSH_AND_INV_DB);
780
781 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
782 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
783 if (flush_bits & RADV_CMD_FLAG_INV_SMEM_L1)
784 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
785
786 if (chip_class <= VI) {
787 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
788 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
789 S_0085F0_CB0_DEST_BASE_ENA(1) |
790 S_0085F0_CB1_DEST_BASE_ENA(1) |
791 S_0085F0_CB2_DEST_BASE_ENA(1) |
792 S_0085F0_CB3_DEST_BASE_ENA(1) |
793 S_0085F0_CB4_DEST_BASE_ENA(1) |
794 S_0085F0_CB5_DEST_BASE_ENA(1) |
795 S_0085F0_CB6_DEST_BASE_ENA(1) |
796 S_0085F0_CB7_DEST_BASE_ENA(1);
797
798 /* Necessary for DCC */
799 if (chip_class >= VI) {
800 si_cs_emit_write_event_eop(cs,
801 chip_class,
802 is_mec,
803 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
804 0,
805 EOP_DATA_SEL_DISCARD,
806 0, 0, 0);
807 }
808 }
809 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
810 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
811 S_0085F0_DB_DEST_BASE_ENA(1);
812 }
813 }
814
815 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
816 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
817 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
818 }
819
820 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
821 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
822 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
823 }
824
825 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
826 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
827 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
828 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
829 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
830 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
831 }
832
833 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
834 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
835 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
836 }
837
838 if (chip_class >= GFX9 && flush_cb_db) {
839 unsigned cb_db_event, tc_flags;
840
841 /* Set the CB/DB flush event. */
842 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
843
844 /* These are the only allowed combinations. If you need to
845 * do multiple operations at once, do them separately.
846 * All operations that invalidate L2 also seem to invalidate
847 * metadata. Volatile (VOL) and WC flushes are not listed here.
848 *
849 * TC | TC_WB = writeback & invalidate L2 & L1
850 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
851 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
852 * TC | TC_NC = invalidate L2 for MTYPE == NC
853 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
854 * TCL1 = invalidate L1
855 */
856 tc_flags = EVENT_TC_ACTION_ENA |
857 EVENT_TC_MD_ACTION_ENA;
858
859 /* Ideally flush TC together with CB/DB. */
860 if (flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) {
861 /* Writeback and invalidate everything in L2 & L1. */
862 tc_flags = EVENT_TC_ACTION_ENA |
863 EVENT_TC_WB_ACTION_ENA;
864
865
866 /* Clear the flags. */
867 flush_bits &= ~(RADV_CMD_FLAG_INV_GLOBAL_L2 |
868 RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2 |
869 RADV_CMD_FLAG_INV_VMEM_L1);
870 }
871 assert(flush_cnt);
872 uint32_t old_fence = (*flush_cnt)++;
873
874 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
875 EOP_DATA_SEL_VALUE_32BIT,
876 flush_va, old_fence, *flush_cnt);
877 si_emit_wait_fence(cs, flush_va, *flush_cnt, 0xffffffff);
878 }
879
880 /* VGT state sync */
881 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
882 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
883 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
884 }
885
886 /* Make sure ME is idle (it executes most packets) before continuing.
887 * This prevents read-after-write hazards between PFP and ME.
888 */
889 if ((cp_coher_cntl ||
890 (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
891 RADV_CMD_FLAG_INV_VMEM_L1 |
892 RADV_CMD_FLAG_INV_GLOBAL_L2 |
893 RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) &&
894 !is_mec) {
895 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
896 radeon_emit(cs, 0);
897 }
898
899 if ((flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) ||
900 (chip_class <= CIK && (flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) {
901 si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9,
902 cp_coher_cntl |
903 S_0085F0_TC_ACTION_ENA(1) |
904 S_0085F0_TCL1_ACTION_ENA(1) |
905 S_0301F0_TC_WB_ACTION_ENA(chip_class >= VI));
906 cp_coher_cntl = 0;
907 } else {
908 if(flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2) {
909 /* WB = write-back
910 * NC = apply to non-coherent MTYPEs
911 * (i.e. MTYPE <= 1, which is what we use everywhere)
912 *
913 * WB doesn't work without NC.
914 */
915 si_emit_acquire_mem(cs, is_mec,
916 chip_class >= GFX9,
917 cp_coher_cntl |
918 S_0301F0_TC_WB_ACTION_ENA(1) |
919 S_0301F0_TC_NC_ACTION_ENA(1));
920 cp_coher_cntl = 0;
921 }
922 if (flush_bits & RADV_CMD_FLAG_INV_VMEM_L1) {
923 si_emit_acquire_mem(cs, is_mec,
924 chip_class >= GFX9,
925 cp_coher_cntl |
926 S_0085F0_TCL1_ACTION_ENA(1));
927 cp_coher_cntl = 0;
928 }
929 }
930
931 /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
932 * Therefore, it should be last. Done in PFP.
933 */
934 if (cp_coher_cntl)
935 si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9, cp_coher_cntl);
936
937 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
938 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
939 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
940 EVENT_INDEX(0));
941 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
942 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
943 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
944 EVENT_INDEX(0));
945 }
946 }
947
948 void
949 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
950 {
951 bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
952
953 if (is_compute)
954 cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
955 RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
956 RADV_CMD_FLAG_FLUSH_AND_INV_DB |
957 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
958 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
959 RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
960 RADV_CMD_FLAG_VGT_FLUSH);
961
962 if (!cmd_buffer->state.flush_bits)
963 return;
964
965 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
966 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
967
968 uint32_t *ptr = NULL;
969 uint64_t va = 0;
970 if (chip_class == GFX9) {
971 va = radv_buffer_get_va(cmd_buffer->gfx9_fence_bo) + cmd_buffer->gfx9_fence_offset;
972 ptr = &cmd_buffer->gfx9_fence_idx;
973 }
974 si_cs_emit_cache_flush(cmd_buffer->cs,
975 cmd_buffer->device->physical_device->rad_info.chip_class,
976 ptr, va,
977 radv_cmd_buffer_uses_mec(cmd_buffer),
978 cmd_buffer->state.flush_bits);
979
980
981 if (unlikely(cmd_buffer->device->trace_bo))
982 radv_cmd_buffer_trace_emit(cmd_buffer);
983
984 cmd_buffer->state.flush_bits = 0;
985 }
986
987 /* sets the CP predication state using a boolean stored at va */
988 void
989 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
990 {
991 uint32_t op = 0;
992
993 if (va)
994 op = PRED_OP(PREDICATION_OP_BOOL64) | PREDICATION_DRAW_VISIBLE;
995 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
996 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
997 radeon_emit(cmd_buffer->cs, op);
998 radeon_emit(cmd_buffer->cs, va);
999 radeon_emit(cmd_buffer->cs, va >> 32);
1000 } else {
1001 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
1002 radeon_emit(cmd_buffer->cs, va);
1003 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
1004 }
1005 }
1006
1007 /* Set this if you want the 3D engine to wait until CP DMA is done.
1008 * It should be set on the last CP DMA packet. */
1009 #define CP_DMA_SYNC (1 << 0)
1010
1011 /* Set this if the source data was used as a destination in a previous CP DMA
1012 * packet. It's for preventing a read-after-write (RAW) hazard between two
1013 * CP DMA packets. */
1014 #define CP_DMA_RAW_WAIT (1 << 1)
1015 #define CP_DMA_USE_L2 (1 << 2)
1016 #define CP_DMA_CLEAR (1 << 3)
1017
1018 /* Alignment for optimal performance. */
1019 #define SI_CPDMA_ALIGNMENT 32
1020
1021 /* The max number of bytes that can be copied per packet. */
1022 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1023 {
1024 unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1025 S_414_BYTE_COUNT_GFX9(~0u) :
1026 S_414_BYTE_COUNT_GFX6(~0u);
1027
1028 /* make it aligned for optimal performance */
1029 return max & ~(SI_CPDMA_ALIGNMENT - 1);
1030 }
1031
1032 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1033 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1034 * clear value.
1035 */
1036 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1037 uint64_t dst_va, uint64_t src_va,
1038 unsigned size, unsigned flags)
1039 {
1040 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1041 uint32_t header = 0, command = 0;
1042
1043 assert(size);
1044 assert(size <= cp_dma_max_byte_count(cmd_buffer));
1045
1046 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1047 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1048 command |= S_414_BYTE_COUNT_GFX9(size);
1049 else
1050 command |= S_414_BYTE_COUNT_GFX6(size);
1051
1052 /* Sync flags. */
1053 if (flags & CP_DMA_SYNC)
1054 header |= S_411_CP_SYNC(1);
1055 else {
1056 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1057 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1058 else
1059 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1060 }
1061
1062 if (flags & CP_DMA_RAW_WAIT)
1063 command |= S_414_RAW_WAIT(1);
1064
1065 /* Src and dst flags. */
1066 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1067 !(flags & CP_DMA_CLEAR) &&
1068 src_va == dst_va)
1069 header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
1070 else if (flags & CP_DMA_USE_L2)
1071 header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
1072
1073 if (flags & CP_DMA_CLEAR)
1074 header |= S_411_SRC_SEL(V_411_DATA);
1075 else if (flags & CP_DMA_USE_L2)
1076 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1077
1078 if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
1079 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1080 radeon_emit(cs, header);
1081 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1082 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
1083 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1084 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
1085 radeon_emit(cs, command);
1086 } else {
1087 assert(!(flags & CP_DMA_USE_L2));
1088 header |= S_411_SRC_ADDR_HI(src_va >> 32);
1089 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1090 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1091 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
1092 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1093 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
1094 radeon_emit(cs, command);
1095 }
1096
1097 /* CP DMA is executed in ME, but index buffers are read by PFP.
1098 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1099 * indices. If we wanted to execute CP DMA in PFP, this packet
1100 * should precede it.
1101 */
1102 if ((flags & CP_DMA_SYNC) && cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1103 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1104 radeon_emit(cs, 0);
1105 }
1106
1107 if (unlikely(cmd_buffer->device->trace_bo))
1108 radv_cmd_buffer_trace_emit(cmd_buffer);
1109 }
1110
1111 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1112 unsigned size)
1113 {
1114 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1115 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1116
1117 si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1118 aligned_size, CP_DMA_USE_L2);
1119 }
1120
1121 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1122 uint64_t remaining_size, unsigned *flags)
1123 {
1124
1125 /* Flush the caches for the first copy only.
1126 * Also wait for the previous CP DMA operations.
1127 */
1128 if (cmd_buffer->state.flush_bits) {
1129 si_emit_cache_flush(cmd_buffer);
1130 *flags |= CP_DMA_RAW_WAIT;
1131 }
1132
1133 /* Do the synchronization after the last dma, so that all data
1134 * is written to memory.
1135 */
1136 if (byte_count == remaining_size)
1137 *flags |= CP_DMA_SYNC;
1138 }
1139
1140 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1141 {
1142 uint64_t va;
1143 uint32_t offset;
1144 unsigned dma_flags = 0;
1145 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1146 void *ptr;
1147
1148 assert(size < SI_CPDMA_ALIGNMENT);
1149
1150 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
1151
1152 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1153 va += offset;
1154
1155 si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1156
1157 si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1158 dma_flags);
1159 }
1160
1161 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1162 uint64_t src_va, uint64_t dest_va,
1163 uint64_t size)
1164 {
1165 uint64_t main_src_va, main_dest_va;
1166 uint64_t skipped_size = 0, realign_size = 0;
1167
1168
1169 if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1170 cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1171 /* If the size is not aligned, we must add a dummy copy at the end
1172 * just to align the internal counter. Otherwise, the DMA engine
1173 * would slow down by an order of magnitude for following copies.
1174 */
1175 if (size % SI_CPDMA_ALIGNMENT)
1176 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1177
1178 /* If the copy begins unaligned, we must start copying from the next
1179 * aligned block and the skipped part should be copied after everything
1180 * else has been copied. Only the src alignment matters, not dst.
1181 */
1182 if (src_va % SI_CPDMA_ALIGNMENT) {
1183 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1184 /* The main part will be skipped if the size is too small. */
1185 skipped_size = MIN2(skipped_size, size);
1186 size -= skipped_size;
1187 }
1188 }
1189 main_src_va = src_va + skipped_size;
1190 main_dest_va = dest_va + skipped_size;
1191
1192 while (size) {
1193 unsigned dma_flags = 0;
1194 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1195
1196 si_cp_dma_prepare(cmd_buffer, byte_count,
1197 size + skipped_size + realign_size,
1198 &dma_flags);
1199
1200 si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1201 byte_count, dma_flags);
1202
1203 size -= byte_count;
1204 main_src_va += byte_count;
1205 main_dest_va += byte_count;
1206 }
1207
1208 if (skipped_size) {
1209 unsigned dma_flags = 0;
1210
1211 si_cp_dma_prepare(cmd_buffer, skipped_size,
1212 size + skipped_size + realign_size,
1213 &dma_flags);
1214
1215 si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1216 skipped_size, dma_flags);
1217 }
1218 if (realign_size)
1219 si_cp_dma_realign_engine(cmd_buffer, realign_size);
1220 }
1221
1222 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1223 uint64_t size, unsigned value)
1224 {
1225
1226 if (!size)
1227 return;
1228
1229 assert(va % 4 == 0 && size % 4 == 0);
1230
1231 while (size) {
1232 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1233 unsigned dma_flags = CP_DMA_CLEAR;
1234
1235 si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1236
1237 /* Emit the clear packet. */
1238 si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1239 dma_flags);
1240
1241 size -= byte_count;
1242 va += byte_count;
1243 }
1244 }
1245
1246 /* For MSAA sample positions. */
1247 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
1248 (((s0x) & 0xf) | (((unsigned)(s0y) & 0xf) << 4) | \
1249 (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
1250 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1251 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1252
1253
1254 /* 2xMSAA
1255 * There are two locations (4, 4), (-4, -4). */
1256 const uint32_t eg_sample_locs_2x[4] = {
1257 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1258 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1259 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1260 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1261 };
1262 const unsigned eg_max_dist_2x = 4;
1263 /* 4xMSAA
1264 * There are 4 locations: (-2, 6), (6, -2), (-6, 2), (2, 6). */
1265 const uint32_t eg_sample_locs_4x[4] = {
1266 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1267 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1268 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1269 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1270 };
1271 const unsigned eg_max_dist_4x = 6;
1272
1273 /* Cayman 8xMSAA */
1274 static const uint32_t cm_sample_locs_8x[] = {
1275 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1276 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1277 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1278 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1279 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1280 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1281 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1282 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1283 };
1284 static const unsigned cm_max_dist_8x = 8;
1285 /* Cayman 16xMSAA */
1286 static const uint32_t cm_sample_locs_16x[] = {
1287 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1288 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1289 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1290 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1291 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1292 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1293 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1294 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1295 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1296 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1297 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1298 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1299 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1300 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1301 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1302 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1303 };
1304 static const unsigned cm_max_dist_16x = 8;
1305
1306 unsigned radv_cayman_get_maxdist(int log_samples)
1307 {
1308 unsigned max_dist[] = {
1309 0,
1310 eg_max_dist_2x,
1311 eg_max_dist_4x,
1312 cm_max_dist_8x,
1313 cm_max_dist_16x
1314 };
1315 return max_dist[log_samples];
1316 }
1317
1318 void radv_cayman_emit_msaa_sample_locs(struct radeon_cmdbuf *cs, int nr_samples)
1319 {
1320 switch (nr_samples) {
1321 default:
1322 case 1:
1323 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 0);
1324 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, 0);
1325 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, 0);
1326 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, 0);
1327 break;
1328 case 2:
1329 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_2x[0]);
1330 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_2x[1]);
1331 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_2x[2]);
1332 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_2x[3]);
1333 break;
1334 case 4:
1335 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_4x[0]);
1336 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_4x[1]);
1337 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_4x[2]);
1338 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_4x[3]);
1339 break;
1340 case 8:
1341 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1342 radeon_emit(cs, cm_sample_locs_8x[0]);
1343 radeon_emit(cs, cm_sample_locs_8x[4]);
1344 radeon_emit(cs, 0);
1345 radeon_emit(cs, 0);
1346 radeon_emit(cs, cm_sample_locs_8x[1]);
1347 radeon_emit(cs, cm_sample_locs_8x[5]);
1348 radeon_emit(cs, 0);
1349 radeon_emit(cs, 0);
1350 radeon_emit(cs, cm_sample_locs_8x[2]);
1351 radeon_emit(cs, cm_sample_locs_8x[6]);
1352 radeon_emit(cs, 0);
1353 radeon_emit(cs, 0);
1354 radeon_emit(cs, cm_sample_locs_8x[3]);
1355 radeon_emit(cs, cm_sample_locs_8x[7]);
1356 break;
1357 case 16:
1358 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 16);
1359 radeon_emit(cs, cm_sample_locs_16x[0]);
1360 radeon_emit(cs, cm_sample_locs_16x[4]);
1361 radeon_emit(cs, cm_sample_locs_16x[8]);
1362 radeon_emit(cs, cm_sample_locs_16x[12]);
1363 radeon_emit(cs, cm_sample_locs_16x[1]);
1364 radeon_emit(cs, cm_sample_locs_16x[5]);
1365 radeon_emit(cs, cm_sample_locs_16x[9]);
1366 radeon_emit(cs, cm_sample_locs_16x[13]);
1367 radeon_emit(cs, cm_sample_locs_16x[2]);
1368 radeon_emit(cs, cm_sample_locs_16x[6]);
1369 radeon_emit(cs, cm_sample_locs_16x[10]);
1370 radeon_emit(cs, cm_sample_locs_16x[14]);
1371 radeon_emit(cs, cm_sample_locs_16x[3]);
1372 radeon_emit(cs, cm_sample_locs_16x[7]);
1373 radeon_emit(cs, cm_sample_locs_16x[11]);
1374 radeon_emit(cs, cm_sample_locs_16x[15]);
1375 break;
1376 }
1377 }
1378
1379 static void radv_cayman_get_sample_position(struct radv_device *device,
1380 unsigned sample_count,
1381 unsigned sample_index, float *out_value)
1382 {
1383 int offset, index;
1384 struct {
1385 int idx:4;
1386 } val;
1387 switch (sample_count) {
1388 case 1:
1389 default:
1390 out_value[0] = out_value[1] = 0.5;
1391 break;
1392 case 2:
1393 offset = 4 * (sample_index * 2);
1394 val.idx = (eg_sample_locs_2x[0] >> offset) & 0xf;
1395 out_value[0] = (float)(val.idx + 8) / 16.0f;
1396 val.idx = (eg_sample_locs_2x[0] >> (offset + 4)) & 0xf;
1397 out_value[1] = (float)(val.idx + 8) / 16.0f;
1398 break;
1399 case 4:
1400 offset = 4 * (sample_index * 2);
1401 val.idx = (eg_sample_locs_4x[0] >> offset) & 0xf;
1402 out_value[0] = (float)(val.idx + 8) / 16.0f;
1403 val.idx = (eg_sample_locs_4x[0] >> (offset + 4)) & 0xf;
1404 out_value[1] = (float)(val.idx + 8) / 16.0f;
1405 break;
1406 case 8:
1407 offset = 4 * (sample_index % 4 * 2);
1408 index = (sample_index / 4) * 4;
1409 val.idx = (cm_sample_locs_8x[index] >> offset) & 0xf;
1410 out_value[0] = (float)(val.idx + 8) / 16.0f;
1411 val.idx = (cm_sample_locs_8x[index] >> (offset + 4)) & 0xf;
1412 out_value[1] = (float)(val.idx + 8) / 16.0f;
1413 break;
1414 case 16:
1415 offset = 4 * (sample_index % 4 * 2);
1416 index = (sample_index / 4) * 4;
1417 val.idx = (cm_sample_locs_16x[index] >> offset) & 0xf;
1418 out_value[0] = (float)(val.idx + 8) / 16.0f;
1419 val.idx = (cm_sample_locs_16x[index] >> (offset + 4)) & 0xf;
1420 out_value[1] = (float)(val.idx + 8) / 16.0f;
1421 break;
1422 }
1423 }
1424
1425 void radv_device_init_msaa(struct radv_device *device)
1426 {
1427 int i;
1428 radv_cayman_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1429
1430 for (i = 0; i < 2; i++)
1431 radv_cayman_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1432 for (i = 0; i < 4; i++)
1433 radv_cayman_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1434 for (i = 0; i < 8; i++)
1435 radv_cayman_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1436 for (i = 0; i < 16; i++)
1437 radv_cayman_get_sample_position(device, 16, i, device->sample_locations_16x[i]);
1438 }