nir: nir_shader_compiler_options: drop native_integers
[mesa.git] / src / broadcom / compiler / nir_to_vir.c
1 /*
2 * Copyright © 2016 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <inttypes.h>
25 #include "util/u_format.h"
26 #include "util/u_math.h"
27 #include "util/u_memory.h"
28 #include "util/ralloc.h"
29 #include "util/hash_table.h"
30 #include "compiler/nir/nir.h"
31 #include "compiler/nir/nir_builder.h"
32 #include "common/v3d_device_info.h"
33 #include "v3d_compiler.h"
34
35 #define GENERAL_TMU_LOOKUP_PER_QUAD (0 << 7)
36 #define GENERAL_TMU_LOOKUP_PER_PIXEL (1 << 7)
37 #define GENERAL_TMU_READ_OP_PREFETCH (0 << 3)
38 #define GENERAL_TMU_READ_OP_CACHE_CLEAR (1 << 3)
39 #define GENERAL_TMU_READ_OP_CACHE_FLUSH (3 << 3)
40 #define GENERAL_TMU_READ_OP_CACHE_CLEAN (3 << 3)
41 #define GENERAL_TMU_READ_OP_CACHE_L1T_CLEAR (4 << 3)
42 #define GENERAL_TMU_READ_OP_CACHE_L1T_FLUSH_AGGREGATION (5 << 3)
43 #define GENERAL_TMU_READ_OP_ATOMIC_INC (8 << 3)
44 #define GENERAL_TMU_READ_OP_ATOMIC_DEC (9 << 3)
45 #define GENERAL_TMU_READ_OP_ATOMIC_NOT (10 << 3)
46 #define GENERAL_TMU_READ_OP_READ (15 << 3)
47 #define GENERAL_TMU_LOOKUP_TYPE_8BIT_I (0 << 0)
48 #define GENERAL_TMU_LOOKUP_TYPE_16BIT_I (1 << 0)
49 #define GENERAL_TMU_LOOKUP_TYPE_VEC2 (2 << 0)
50 #define GENERAL_TMU_LOOKUP_TYPE_VEC3 (3 << 0)
51 #define GENERAL_TMU_LOOKUP_TYPE_VEC4 (4 << 0)
52 #define GENERAL_TMU_LOOKUP_TYPE_8BIT_UI (5 << 0)
53 #define GENERAL_TMU_LOOKUP_TYPE_16BIT_UI (6 << 0)
54 #define GENERAL_TMU_LOOKUP_TYPE_32BIT_UI (7 << 0)
55
56 #define GENERAL_TMU_WRITE_OP_ATOMIC_ADD_WRAP (0 << 3)
57 #define GENERAL_TMU_WRITE_OP_ATOMIC_SUB_WRAP (1 << 3)
58 #define GENERAL_TMU_WRITE_OP_ATOMIC_XCHG (2 << 3)
59 #define GENERAL_TMU_WRITE_OP_ATOMIC_CMPXCHG (3 << 3)
60 #define GENERAL_TMU_WRITE_OP_ATOMIC_UMIN (4 << 3)
61 #define GENERAL_TMU_WRITE_OP_ATOMIC_UMAX (5 << 3)
62 #define GENERAL_TMU_WRITE_OP_ATOMIC_SMIN (6 << 3)
63 #define GENERAL_TMU_WRITE_OP_ATOMIC_SMAX (7 << 3)
64 #define GENERAL_TMU_WRITE_OP_ATOMIC_AND (8 << 3)
65 #define GENERAL_TMU_WRITE_OP_ATOMIC_OR (9 << 3)
66 #define GENERAL_TMU_WRITE_OP_ATOMIC_XOR (10 << 3)
67 #define GENERAL_TMU_WRITE_OP_WRITE (15 << 3)
68
69 #define V3D_TSY_SET_QUORUM 0
70 #define V3D_TSY_INC_WAITERS 1
71 #define V3D_TSY_DEC_WAITERS 2
72 #define V3D_TSY_INC_QUORUM 3
73 #define V3D_TSY_DEC_QUORUM 4
74 #define V3D_TSY_FREE_ALL 5
75 #define V3D_TSY_RELEASE 6
76 #define V3D_TSY_ACQUIRE 7
77 #define V3D_TSY_WAIT 8
78 #define V3D_TSY_WAIT_INC 9
79 #define V3D_TSY_WAIT_CHECK 10
80 #define V3D_TSY_WAIT_INC_CHECK 11
81 #define V3D_TSY_WAIT_CV 12
82 #define V3D_TSY_INC_SEMAPHORE 13
83 #define V3D_TSY_DEC_SEMAPHORE 14
84 #define V3D_TSY_SET_QUORUM_FREE_ALL 15
85
86 static void
87 ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
88
89 static void
90 resize_qreg_array(struct v3d_compile *c,
91 struct qreg **regs,
92 uint32_t *size,
93 uint32_t decl_size)
94 {
95 if (*size >= decl_size)
96 return;
97
98 uint32_t old_size = *size;
99 *size = MAX2(*size * 2, decl_size);
100 *regs = reralloc(c, *regs, struct qreg, *size);
101 if (!*regs) {
102 fprintf(stderr, "Malloc failure\n");
103 abort();
104 }
105
106 for (uint32_t i = old_size; i < *size; i++)
107 (*regs)[i] = c->undef;
108 }
109
110 void
111 vir_emit_thrsw(struct v3d_compile *c)
112 {
113 if (c->threads == 1)
114 return;
115
116 /* Always thread switch after each texture operation for now.
117 *
118 * We could do better by batching a bunch of texture fetches up and
119 * then doing one thread switch and collecting all their results
120 * afterward.
121 */
122 c->last_thrsw = vir_NOP(c);
123 c->last_thrsw->qpu.sig.thrsw = true;
124 c->last_thrsw_at_top_level = !c->in_control_flow;
125 }
126
127 static uint32_t
128 v3d_general_tmu_op(nir_intrinsic_instr *instr)
129 {
130 switch (instr->intrinsic) {
131 case nir_intrinsic_load_ssbo:
132 case nir_intrinsic_load_ubo:
133 case nir_intrinsic_load_uniform:
134 case nir_intrinsic_load_shared:
135 case nir_intrinsic_load_scratch:
136 return GENERAL_TMU_READ_OP_READ;
137 case nir_intrinsic_store_ssbo:
138 case nir_intrinsic_store_shared:
139 case nir_intrinsic_store_scratch:
140 return GENERAL_TMU_WRITE_OP_WRITE;
141 case nir_intrinsic_ssbo_atomic_add:
142 case nir_intrinsic_shared_atomic_add:
143 return GENERAL_TMU_WRITE_OP_ATOMIC_ADD_WRAP;
144 case nir_intrinsic_ssbo_atomic_imin:
145 case nir_intrinsic_shared_atomic_imin:
146 return GENERAL_TMU_WRITE_OP_ATOMIC_SMIN;
147 case nir_intrinsic_ssbo_atomic_umin:
148 case nir_intrinsic_shared_atomic_umin:
149 return GENERAL_TMU_WRITE_OP_ATOMIC_UMIN;
150 case nir_intrinsic_ssbo_atomic_imax:
151 case nir_intrinsic_shared_atomic_imax:
152 return GENERAL_TMU_WRITE_OP_ATOMIC_SMAX;
153 case nir_intrinsic_ssbo_atomic_umax:
154 case nir_intrinsic_shared_atomic_umax:
155 return GENERAL_TMU_WRITE_OP_ATOMIC_UMAX;
156 case nir_intrinsic_ssbo_atomic_and:
157 case nir_intrinsic_shared_atomic_and:
158 return GENERAL_TMU_WRITE_OP_ATOMIC_AND;
159 case nir_intrinsic_ssbo_atomic_or:
160 case nir_intrinsic_shared_atomic_or:
161 return GENERAL_TMU_WRITE_OP_ATOMIC_OR;
162 case nir_intrinsic_ssbo_atomic_xor:
163 case nir_intrinsic_shared_atomic_xor:
164 return GENERAL_TMU_WRITE_OP_ATOMIC_XOR;
165 case nir_intrinsic_ssbo_atomic_exchange:
166 case nir_intrinsic_shared_atomic_exchange:
167 return GENERAL_TMU_WRITE_OP_ATOMIC_XCHG;
168 case nir_intrinsic_ssbo_atomic_comp_swap:
169 case nir_intrinsic_shared_atomic_comp_swap:
170 return GENERAL_TMU_WRITE_OP_ATOMIC_CMPXCHG;
171 default:
172 unreachable("unknown intrinsic op");
173 }
174 }
175
176 /**
177 * Implements indirect uniform loads and SSBO accesses through the TMU general
178 * memory access interface.
179 */
180 static void
181 ntq_emit_tmu_general(struct v3d_compile *c, nir_intrinsic_instr *instr,
182 bool is_shared_or_scratch)
183 {
184 /* XXX perf: We should turn add/sub of 1 to inc/dec. Perhaps NIR
185 * wants to have support for inc/dec?
186 */
187
188 uint32_t tmu_op = v3d_general_tmu_op(instr);
189 bool is_store = (instr->intrinsic == nir_intrinsic_store_ssbo ||
190 instr->intrinsic == nir_intrinsic_store_scratch ||
191 instr->intrinsic == nir_intrinsic_store_shared);
192 bool has_index = !is_shared_or_scratch;
193
194 int offset_src;
195 int tmu_writes = 1; /* address */
196 if (instr->intrinsic == nir_intrinsic_load_uniform) {
197 offset_src = 0;
198 } else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
199 instr->intrinsic == nir_intrinsic_load_ubo ||
200 instr->intrinsic == nir_intrinsic_load_scratch ||
201 instr->intrinsic == nir_intrinsic_load_shared) {
202 offset_src = 0 + has_index;
203 } else if (is_store) {
204 offset_src = 1 + has_index;
205 for (int i = 0; i < instr->num_components; i++) {
206 vir_MOV_dest(c,
207 vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD),
208 ntq_get_src(c, instr->src[0], i));
209 tmu_writes++;
210 }
211 } else {
212 offset_src = 0 + has_index;
213 vir_MOV_dest(c,
214 vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD),
215 ntq_get_src(c, instr->src[1 + has_index], 0));
216 tmu_writes++;
217 if (tmu_op == GENERAL_TMU_WRITE_OP_ATOMIC_CMPXCHG) {
218 vir_MOV_dest(c,
219 vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD),
220 ntq_get_src(c, instr->src[2 + has_index],
221 0));
222 tmu_writes++;
223 }
224 }
225
226 bool dynamic_src = !nir_src_is_const(instr->src[offset_src]);
227 uint32_t const_offset = 0;
228 if (!dynamic_src)
229 const_offset = nir_src_as_uint(instr->src[offset_src]);
230
231 /* Make sure we won't exceed the 16-entry TMU fifo if each thread is
232 * storing at the same time.
233 */
234 while (tmu_writes > 16 / c->threads)
235 c->threads /= 2;
236
237 struct qreg offset;
238 if (instr->intrinsic == nir_intrinsic_load_uniform) {
239 const_offset += nir_intrinsic_base(instr);
240 offset = vir_uniform(c, QUNIFORM_UBO_ADDR,
241 v3d_unit_data_create(0, const_offset));
242 const_offset = 0;
243 } else if (instr->intrinsic == nir_intrinsic_load_ubo) {
244 uint32_t index = nir_src_as_uint(instr->src[0]) + 1;
245 /* Note that QUNIFORM_UBO_ADDR takes a UBO index shifted up by
246 * 1 (0 is gallium's constant buffer 0).
247 */
248 offset = vir_uniform(c, QUNIFORM_UBO_ADDR,
249 v3d_unit_data_create(index, const_offset));
250 const_offset = 0;
251 } else if (is_shared_or_scratch) {
252 /* Shared and scratch variables have no buffer index, and all
253 * start from a common base that we set up at the start of
254 * dispatch.
255 */
256 if (instr->intrinsic == nir_intrinsic_load_scratch ||
257 instr->intrinsic == nir_intrinsic_store_scratch) {
258 offset = c->spill_base;
259 } else {
260 offset = c->cs_shared_offset;
261 const_offset += nir_intrinsic_base(instr);
262 }
263 } else {
264 offset = vir_uniform(c, QUNIFORM_SSBO_OFFSET,
265 nir_src_as_uint(instr->src[is_store ?
266 1 : 0]));
267 }
268
269 /* The spec says that for atomics, the TYPE field is ignored, but that
270 * doesn't seem to be the case for CMPXCHG. Just use the number of
271 * tmud writes we did to decide the type (or choose "32bit" for atomic
272 * reads, which has been fine).
273 */
274 int num_components;
275 if (tmu_op == GENERAL_TMU_WRITE_OP_ATOMIC_CMPXCHG)
276 num_components = 2;
277 else
278 num_components = instr->num_components;
279
280 uint32_t config = (0xffffff00 |
281 tmu_op |
282 GENERAL_TMU_LOOKUP_PER_PIXEL);
283 if (num_components == 1) {
284 config |= GENERAL_TMU_LOOKUP_TYPE_32BIT_UI;
285 } else {
286 config |= GENERAL_TMU_LOOKUP_TYPE_VEC2 + num_components - 2;
287 }
288
289 if (vir_in_nonuniform_control_flow(c)) {
290 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
291 V3D_QPU_PF_PUSHZ);
292 }
293
294 struct qreg tmua;
295 if (config == ~0)
296 tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA);
297 else
298 tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUAU);
299
300 struct qinst *tmu;
301 if (dynamic_src) {
302 if (const_offset != 0) {
303 offset = vir_ADD(c, offset,
304 vir_uniform_ui(c, const_offset));
305 }
306 tmu = vir_ADD_dest(c, tmua, offset,
307 ntq_get_src(c, instr->src[offset_src], 0));
308 } else {
309 if (const_offset != 0) {
310 tmu = vir_ADD_dest(c, tmua, offset,
311 vir_uniform_ui(c, const_offset));
312 } else {
313 tmu = vir_MOV_dest(c, tmua, offset);
314 }
315 }
316
317 if (config != ~0) {
318 tmu->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT,
319 config);
320 }
321
322 if (vir_in_nonuniform_control_flow(c))
323 vir_set_cond(tmu, V3D_QPU_COND_IFA);
324
325 vir_emit_thrsw(c);
326
327 /* Read the result, or wait for the TMU op to complete. */
328 for (int i = 0; i < nir_intrinsic_dest_components(instr); i++)
329 ntq_store_dest(c, &instr->dest, i, vir_MOV(c, vir_LDTMU(c)));
330
331 if (nir_intrinsic_dest_components(instr) == 0)
332 vir_TMUWT(c);
333 }
334
335 static struct qreg *
336 ntq_init_ssa_def(struct v3d_compile *c, nir_ssa_def *def)
337 {
338 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
339 def->num_components);
340 _mesa_hash_table_insert(c->def_ht, def, qregs);
341 return qregs;
342 }
343
344 /**
345 * This function is responsible for getting VIR results into the associated
346 * storage for a NIR instruction.
347 *
348 * If it's a NIR SSA def, then we just set the associated hash table entry to
349 * the new result.
350 *
351 * If it's a NIR reg, then we need to update the existing qreg assigned to the
352 * NIR destination with the incoming value. To do that without introducing
353 * new MOVs, we require that the incoming qreg either be a uniform, or be
354 * SSA-defined by the previous VIR instruction in the block and rewritable by
355 * this function. That lets us sneak ahead and insert the SF flag beforehand
356 * (knowing that the previous instruction doesn't depend on flags) and rewrite
357 * its destination to be the NIR reg's destination
358 */
359 void
360 ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
361 struct qreg result)
362 {
363 struct qinst *last_inst = NULL;
364 if (!list_empty(&c->cur_block->instructions))
365 last_inst = (struct qinst *)c->cur_block->instructions.prev;
366
367 assert((result.file == QFILE_TEMP &&
368 last_inst && last_inst == c->defs[result.index]));
369
370 if (dest->is_ssa) {
371 assert(chan < dest->ssa.num_components);
372
373 struct qreg *qregs;
374 struct hash_entry *entry =
375 _mesa_hash_table_search(c->def_ht, &dest->ssa);
376
377 if (entry)
378 qregs = entry->data;
379 else
380 qregs = ntq_init_ssa_def(c, &dest->ssa);
381
382 qregs[chan] = result;
383 } else {
384 nir_register *reg = dest->reg.reg;
385 assert(dest->reg.base_offset == 0);
386 assert(reg->num_array_elems == 0);
387 struct hash_entry *entry =
388 _mesa_hash_table_search(c->def_ht, reg);
389 struct qreg *qregs = entry->data;
390
391 /* Insert a MOV if the source wasn't an SSA def in the
392 * previous instruction.
393 */
394 if ((vir_in_nonuniform_control_flow(c) &&
395 c->defs[last_inst->dst.index]->qpu.sig.ldunif)) {
396 result = vir_MOV(c, result);
397 last_inst = c->defs[result.index];
398 }
399
400 /* We know they're both temps, so just rewrite index. */
401 c->defs[last_inst->dst.index] = NULL;
402 last_inst->dst.index = qregs[chan].index;
403
404 /* If we're in control flow, then make this update of the reg
405 * conditional on the execution mask.
406 */
407 if (vir_in_nonuniform_control_flow(c)) {
408 last_inst->dst.index = qregs[chan].index;
409
410 /* Set the flags to the current exec mask.
411 */
412 c->cursor = vir_before_inst(last_inst);
413 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
414 V3D_QPU_PF_PUSHZ);
415 c->cursor = vir_after_inst(last_inst);
416
417 vir_set_cond(last_inst, V3D_QPU_COND_IFA);
418 }
419 }
420 }
421
422 struct qreg
423 ntq_get_src(struct v3d_compile *c, nir_src src, int i)
424 {
425 struct hash_entry *entry;
426 if (src.is_ssa) {
427 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
428 assert(i < src.ssa->num_components);
429 } else {
430 nir_register *reg = src.reg.reg;
431 entry = _mesa_hash_table_search(c->def_ht, reg);
432 assert(reg->num_array_elems == 0);
433 assert(src.reg.base_offset == 0);
434 assert(i < reg->num_components);
435 }
436
437 struct qreg *qregs = entry->data;
438 return qregs[i];
439 }
440
441 static struct qreg
442 ntq_get_alu_src(struct v3d_compile *c, nir_alu_instr *instr,
443 unsigned src)
444 {
445 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
446 unsigned chan = ffs(instr->dest.write_mask) - 1;
447 struct qreg r = ntq_get_src(c, instr->src[src].src,
448 instr->src[src].swizzle[chan]);
449
450 assert(!instr->src[src].abs);
451 assert(!instr->src[src].negate);
452
453 return r;
454 };
455
456 static struct qreg
457 ntq_minify(struct v3d_compile *c, struct qreg size, struct qreg level)
458 {
459 return vir_MAX(c, vir_SHR(c, size, level), vir_uniform_ui(c, 1));
460 }
461
462 static void
463 ntq_emit_txs(struct v3d_compile *c, nir_tex_instr *instr)
464 {
465 unsigned unit = instr->texture_index;
466 int lod_index = nir_tex_instr_src_index(instr, nir_tex_src_lod);
467 int dest_size = nir_tex_instr_dest_size(instr);
468
469 struct qreg lod = c->undef;
470 if (lod_index != -1)
471 lod = ntq_get_src(c, instr->src[lod_index].src, 0);
472
473 for (int i = 0; i < dest_size; i++) {
474 assert(i < 3);
475 enum quniform_contents contents;
476
477 if (instr->is_array && i == dest_size - 1)
478 contents = QUNIFORM_TEXTURE_ARRAY_SIZE;
479 else
480 contents = QUNIFORM_TEXTURE_WIDTH + i;
481
482 struct qreg size = vir_uniform(c, contents, unit);
483
484 switch (instr->sampler_dim) {
485 case GLSL_SAMPLER_DIM_1D:
486 case GLSL_SAMPLER_DIM_2D:
487 case GLSL_SAMPLER_DIM_MS:
488 case GLSL_SAMPLER_DIM_3D:
489 case GLSL_SAMPLER_DIM_CUBE:
490 /* Don't minify the array size. */
491 if (!(instr->is_array && i == dest_size - 1)) {
492 size = ntq_minify(c, size, lod);
493 }
494 break;
495
496 case GLSL_SAMPLER_DIM_RECT:
497 /* There's no LOD field for rects */
498 break;
499
500 default:
501 unreachable("Bad sampler type");
502 }
503
504 ntq_store_dest(c, &instr->dest, i, size);
505 }
506 }
507
508 static void
509 ntq_emit_tex(struct v3d_compile *c, nir_tex_instr *instr)
510 {
511 unsigned unit = instr->texture_index;
512
513 /* Since each texture sampling op requires uploading uniforms to
514 * reference the texture, there's no HW support for texture size and
515 * you just upload uniforms containing the size.
516 */
517 switch (instr->op) {
518 case nir_texop_query_levels:
519 ntq_store_dest(c, &instr->dest, 0,
520 vir_uniform(c, QUNIFORM_TEXTURE_LEVELS, unit));
521 return;
522 case nir_texop_txs:
523 ntq_emit_txs(c, instr);
524 return;
525 default:
526 break;
527 }
528
529 if (c->devinfo->ver >= 40)
530 v3d40_vir_emit_tex(c, instr);
531 else
532 v3d33_vir_emit_tex(c, instr);
533 }
534
535 static struct qreg
536 ntq_fsincos(struct v3d_compile *c, struct qreg src, bool is_cos)
537 {
538 struct qreg input = vir_FMUL(c, src, vir_uniform_f(c, 1.0f / M_PI));
539 if (is_cos)
540 input = vir_FADD(c, input, vir_uniform_f(c, 0.5));
541
542 struct qreg periods = vir_FROUND(c, input);
543 struct qreg sin_output = vir_SIN(c, vir_FSUB(c, input, periods));
544 return vir_XOR(c, sin_output, vir_SHL(c,
545 vir_FTOIN(c, periods),
546 vir_uniform_ui(c, -1)));
547 }
548
549 static struct qreg
550 ntq_fsign(struct v3d_compile *c, struct qreg src)
551 {
552 struct qreg t = vir_get_temp(c);
553
554 vir_MOV_dest(c, t, vir_uniform_f(c, 0.0));
555 vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHZ);
556 vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_f(c, 1.0));
557 vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHN);
558 vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_f(c, -1.0));
559 return vir_MOV(c, t);
560 }
561
562 static void
563 emit_fragcoord_input(struct v3d_compile *c, int attr)
564 {
565 c->inputs[attr * 4 + 0] = vir_FXCD(c);
566 c->inputs[attr * 4 + 1] = vir_FYCD(c);
567 c->inputs[attr * 4 + 2] = c->payload_z;
568 c->inputs[attr * 4 + 3] = vir_RECIP(c, c->payload_w);
569 }
570
571 static struct qreg
572 emit_fragment_varying(struct v3d_compile *c, nir_variable *var,
573 uint8_t swizzle, int array_index)
574 {
575 struct qreg r3 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R3);
576 struct qreg r5 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R5);
577
578 struct qreg vary;
579 if (c->devinfo->ver >= 41) {
580 struct qinst *ldvary = vir_add_inst(V3D_QPU_A_NOP, c->undef,
581 c->undef, c->undef);
582 ldvary->qpu.sig.ldvary = true;
583 vary = vir_emit_def(c, ldvary);
584 } else {
585 vir_NOP(c)->qpu.sig.ldvary = true;
586 vary = r3;
587 }
588
589 /* For gl_PointCoord input or distance along a line, we'll be called
590 * with no nir_variable, and we don't count toward VPM size so we
591 * don't track an input slot.
592 */
593 if (!var) {
594 return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
595 }
596
597 int i = c->num_inputs++;
598 c->input_slots[i] =
599 v3d_slot_from_slot_and_component(var->data.location +
600 array_index, swizzle);
601
602 switch (var->data.interpolation) {
603 case INTERP_MODE_NONE:
604 /* If a gl_FrontColor or gl_BackColor input has no interp
605 * qualifier, then if we're using glShadeModel(GL_FLAT) it
606 * needs to be flat shaded.
607 */
608 switch (var->data.location + array_index) {
609 case VARYING_SLOT_COL0:
610 case VARYING_SLOT_COL1:
611 case VARYING_SLOT_BFC0:
612 case VARYING_SLOT_BFC1:
613 if (c->fs_key->shade_model_flat) {
614 BITSET_SET(c->flat_shade_flags, i);
615 vir_MOV_dest(c, c->undef, vary);
616 return vir_MOV(c, r5);
617 } else {
618 return vir_FADD(c, vir_FMUL(c, vary,
619 c->payload_w), r5);
620 }
621 default:
622 break;
623 }
624 /* FALLTHROUGH */
625 case INTERP_MODE_SMOOTH:
626 if (var->data.centroid) {
627 BITSET_SET(c->centroid_flags, i);
628 return vir_FADD(c, vir_FMUL(c, vary,
629 c->payload_w_centroid), r5);
630 } else {
631 return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
632 }
633 case INTERP_MODE_NOPERSPECTIVE:
634 BITSET_SET(c->noperspective_flags, i);
635 return vir_FADD(c, vir_MOV(c, vary), r5);
636 case INTERP_MODE_FLAT:
637 BITSET_SET(c->flat_shade_flags, i);
638 vir_MOV_dest(c, c->undef, vary);
639 return vir_MOV(c, r5);
640 default:
641 unreachable("Bad interp mode");
642 }
643 }
644
645 static void
646 emit_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
647 int array_index)
648 {
649 for (int i = 0; i < glsl_get_vector_elements(var->type); i++) {
650 int chan = var->data.location_frac + i;
651 c->inputs[attr * 4 + chan] =
652 emit_fragment_varying(c, var, chan, array_index);
653 }
654 }
655
656 static void
657 add_output(struct v3d_compile *c,
658 uint32_t decl_offset,
659 uint8_t slot,
660 uint8_t swizzle)
661 {
662 uint32_t old_array_size = c->outputs_array_size;
663 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
664 decl_offset + 1);
665
666 if (old_array_size != c->outputs_array_size) {
667 c->output_slots = reralloc(c,
668 c->output_slots,
669 struct v3d_varying_slot,
670 c->outputs_array_size);
671 }
672
673 c->output_slots[decl_offset] =
674 v3d_slot_from_slot_and_component(slot, swizzle);
675 }
676
677 /**
678 * If compare_instr is a valid comparison instruction, emits the
679 * compare_instr's comparison and returns the sel_instr's return value based
680 * on the compare_instr's result.
681 */
682 static bool
683 ntq_emit_comparison(struct v3d_compile *c,
684 nir_alu_instr *compare_instr,
685 enum v3d_qpu_cond *out_cond)
686 {
687 struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
688 struct qreg src1;
689 if (nir_op_infos[compare_instr->op].num_inputs > 1)
690 src1 = ntq_get_alu_src(c, compare_instr, 1);
691 bool cond_invert = false;
692 struct qreg nop = vir_nop_reg();
693
694 switch (compare_instr->op) {
695 case nir_op_feq32:
696 case nir_op_seq:
697 vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
698 break;
699 case nir_op_ieq32:
700 vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
701 break;
702
703 case nir_op_fne32:
704 case nir_op_sne:
705 vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
706 cond_invert = true;
707 break;
708 case nir_op_ine32:
709 vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
710 cond_invert = true;
711 break;
712
713 case nir_op_fge32:
714 case nir_op_sge:
715 vir_set_pf(vir_FCMP_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
716 break;
717 case nir_op_ige32:
718 vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
719 cond_invert = true;
720 break;
721 case nir_op_uge32:
722 vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
723 cond_invert = true;
724 break;
725
726 case nir_op_slt:
727 case nir_op_flt32:
728 vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHN);
729 break;
730 case nir_op_ilt32:
731 vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
732 break;
733 case nir_op_ult32:
734 vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
735 break;
736
737 case nir_op_i2b32:
738 vir_set_pf(vir_MOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
739 cond_invert = true;
740 break;
741
742 case nir_op_f2b32:
743 vir_set_pf(vir_FMOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
744 cond_invert = true;
745 break;
746
747 default:
748 return false;
749 }
750
751 *out_cond = cond_invert ? V3D_QPU_COND_IFNA : V3D_QPU_COND_IFA;
752
753 return true;
754 }
755
756 /* Finds an ALU instruction that generates our src value that could
757 * (potentially) be greedily emitted in the consuming instruction.
758 */
759 static struct nir_alu_instr *
760 ntq_get_alu_parent(nir_src src)
761 {
762 if (!src.is_ssa || src.ssa->parent_instr->type != nir_instr_type_alu)
763 return NULL;
764 nir_alu_instr *instr = nir_instr_as_alu(src.ssa->parent_instr);
765 if (!instr)
766 return NULL;
767
768 /* If the ALU instr's srcs are non-SSA, then we would have to avoid
769 * moving emission of the ALU instr down past another write of the
770 * src.
771 */
772 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
773 if (!instr->src[i].src.is_ssa)
774 return NULL;
775 }
776
777 return instr;
778 }
779
780 /* Turns a NIR bool into a condition code to predicate on. */
781 static enum v3d_qpu_cond
782 ntq_emit_bool_to_cond(struct v3d_compile *c, nir_src src)
783 {
784 nir_alu_instr *compare = ntq_get_alu_parent(src);
785 if (!compare)
786 goto out;
787
788 enum v3d_qpu_cond cond;
789 if (ntq_emit_comparison(c, compare, &cond))
790 return cond;
791
792 out:
793 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), ntq_get_src(c, src, 0)),
794 V3D_QPU_PF_PUSHZ);
795 return V3D_QPU_COND_IFNA;
796 }
797
798 static void
799 ntq_emit_alu(struct v3d_compile *c, nir_alu_instr *instr)
800 {
801 /* This should always be lowered to ALU operations for V3D. */
802 assert(!instr->dest.saturate);
803
804 /* Vectors are special in that they have non-scalarized writemasks,
805 * and just take the first swizzle channel for each argument in order
806 * into each writemask channel.
807 */
808 if (instr->op == nir_op_vec2 ||
809 instr->op == nir_op_vec3 ||
810 instr->op == nir_op_vec4) {
811 struct qreg srcs[4];
812 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
813 srcs[i] = ntq_get_src(c, instr->src[i].src,
814 instr->src[i].swizzle[0]);
815 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
816 ntq_store_dest(c, &instr->dest.dest, i,
817 vir_MOV(c, srcs[i]));
818 return;
819 }
820
821 /* General case: We can just grab the one used channel per src. */
822 struct qreg src[nir_op_infos[instr->op].num_inputs];
823 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
824 src[i] = ntq_get_alu_src(c, instr, i);
825 }
826
827 struct qreg result;
828
829 switch (instr->op) {
830 case nir_op_fmov:
831 case nir_op_imov:
832 result = vir_MOV(c, src[0]);
833 break;
834
835 case nir_op_fneg:
836 result = vir_XOR(c, src[0], vir_uniform_ui(c, 1 << 31));
837 break;
838 case nir_op_ineg:
839 result = vir_NEG(c, src[0]);
840 break;
841
842 case nir_op_fmul:
843 result = vir_FMUL(c, src[0], src[1]);
844 break;
845 case nir_op_fadd:
846 result = vir_FADD(c, src[0], src[1]);
847 break;
848 case nir_op_fsub:
849 result = vir_FSUB(c, src[0], src[1]);
850 break;
851 case nir_op_fmin:
852 result = vir_FMIN(c, src[0], src[1]);
853 break;
854 case nir_op_fmax:
855 result = vir_FMAX(c, src[0], src[1]);
856 break;
857
858 case nir_op_f2i32: {
859 nir_alu_instr *src0_alu = ntq_get_alu_parent(instr->src[0].src);
860 if (src0_alu && src0_alu->op == nir_op_fround_even) {
861 result = vir_FTOIN(c, ntq_get_alu_src(c, src0_alu, 0));
862 } else {
863 result = vir_FTOIZ(c, src[0]);
864 }
865 break;
866 }
867
868 case nir_op_f2u32:
869 result = vir_FTOUZ(c, src[0]);
870 break;
871 case nir_op_i2f32:
872 result = vir_ITOF(c, src[0]);
873 break;
874 case nir_op_u2f32:
875 result = vir_UTOF(c, src[0]);
876 break;
877 case nir_op_b2f32:
878 result = vir_AND(c, src[0], vir_uniform_f(c, 1.0));
879 break;
880 case nir_op_b2i32:
881 result = vir_AND(c, src[0], vir_uniform_ui(c, 1));
882 break;
883
884 case nir_op_iadd:
885 result = vir_ADD(c, src[0], src[1]);
886 break;
887 case nir_op_ushr:
888 result = vir_SHR(c, src[0], src[1]);
889 break;
890 case nir_op_isub:
891 result = vir_SUB(c, src[0], src[1]);
892 break;
893 case nir_op_ishr:
894 result = vir_ASR(c, src[0], src[1]);
895 break;
896 case nir_op_ishl:
897 result = vir_SHL(c, src[0], src[1]);
898 break;
899 case nir_op_imin:
900 result = vir_MIN(c, src[0], src[1]);
901 break;
902 case nir_op_umin:
903 result = vir_UMIN(c, src[0], src[1]);
904 break;
905 case nir_op_imax:
906 result = vir_MAX(c, src[0], src[1]);
907 break;
908 case nir_op_umax:
909 result = vir_UMAX(c, src[0], src[1]);
910 break;
911 case nir_op_iand:
912 result = vir_AND(c, src[0], src[1]);
913 break;
914 case nir_op_ior:
915 result = vir_OR(c, src[0], src[1]);
916 break;
917 case nir_op_ixor:
918 result = vir_XOR(c, src[0], src[1]);
919 break;
920 case nir_op_inot:
921 result = vir_NOT(c, src[0]);
922 break;
923
924 case nir_op_ufind_msb:
925 result = vir_SUB(c, vir_uniform_ui(c, 31), vir_CLZ(c, src[0]));
926 break;
927
928 case nir_op_imul:
929 result = vir_UMUL(c, src[0], src[1]);
930 break;
931
932 case nir_op_seq:
933 case nir_op_sne:
934 case nir_op_sge:
935 case nir_op_slt: {
936 enum v3d_qpu_cond cond;
937 MAYBE_UNUSED bool ok = ntq_emit_comparison(c, instr, &cond);
938 assert(ok);
939 result = vir_MOV(c, vir_SEL(c, cond,
940 vir_uniform_f(c, 1.0),
941 vir_uniform_f(c, 0.0)));
942 break;
943 }
944
945 case nir_op_i2b32:
946 case nir_op_f2b32:
947 case nir_op_feq32:
948 case nir_op_fne32:
949 case nir_op_fge32:
950 case nir_op_flt32:
951 case nir_op_ieq32:
952 case nir_op_ine32:
953 case nir_op_ige32:
954 case nir_op_uge32:
955 case nir_op_ilt32:
956 case nir_op_ult32: {
957 enum v3d_qpu_cond cond;
958 MAYBE_UNUSED bool ok = ntq_emit_comparison(c, instr, &cond);
959 assert(ok);
960 result = vir_MOV(c, vir_SEL(c, cond,
961 vir_uniform_ui(c, ~0),
962 vir_uniform_ui(c, 0)));
963 break;
964 }
965
966 case nir_op_b32csel:
967 result = vir_MOV(c,
968 vir_SEL(c,
969 ntq_emit_bool_to_cond(c, instr->src[0].src),
970 src[1], src[2]));
971 break;
972
973 case nir_op_fcsel:
974 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), src[0]),
975 V3D_QPU_PF_PUSHZ);
976 result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
977 src[1], src[2]));
978 break;
979
980 case nir_op_frcp:
981 result = vir_RECIP(c, src[0]);
982 break;
983 case nir_op_frsq:
984 result = vir_RSQRT(c, src[0]);
985 break;
986 case nir_op_fexp2:
987 result = vir_EXP(c, src[0]);
988 break;
989 case nir_op_flog2:
990 result = vir_LOG(c, src[0]);
991 break;
992
993 case nir_op_fceil:
994 result = vir_FCEIL(c, src[0]);
995 break;
996 case nir_op_ffloor:
997 result = vir_FFLOOR(c, src[0]);
998 break;
999 case nir_op_fround_even:
1000 result = vir_FROUND(c, src[0]);
1001 break;
1002 case nir_op_ftrunc:
1003 result = vir_FTRUNC(c, src[0]);
1004 break;
1005
1006 case nir_op_fsin:
1007 result = ntq_fsincos(c, src[0], false);
1008 break;
1009 case nir_op_fcos:
1010 result = ntq_fsincos(c, src[0], true);
1011 break;
1012
1013 case nir_op_fsign:
1014 result = ntq_fsign(c, src[0]);
1015 break;
1016
1017 case nir_op_fabs: {
1018 result = vir_FMOV(c, src[0]);
1019 vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_ABS);
1020 break;
1021 }
1022
1023 case nir_op_iabs:
1024 result = vir_MAX(c, src[0], vir_NEG(c, src[0]));
1025 break;
1026
1027 case nir_op_fddx:
1028 case nir_op_fddx_coarse:
1029 case nir_op_fddx_fine:
1030 result = vir_FDX(c, src[0]);
1031 break;
1032
1033 case nir_op_fddy:
1034 case nir_op_fddy_coarse:
1035 case nir_op_fddy_fine:
1036 result = vir_FDY(c, src[0]);
1037 break;
1038
1039 case nir_op_uadd_carry:
1040 vir_set_pf(vir_ADD_dest(c, vir_nop_reg(), src[0], src[1]),
1041 V3D_QPU_PF_PUSHC);
1042 result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
1043 vir_uniform_ui(c, ~0),
1044 vir_uniform_ui(c, 0)));
1045 break;
1046
1047 case nir_op_pack_half_2x16_split:
1048 result = vir_VFPACK(c, src[0], src[1]);
1049 break;
1050
1051 case nir_op_unpack_half_2x16_split_x:
1052 result = vir_FMOV(c, src[0]);
1053 vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_L);
1054 break;
1055
1056 case nir_op_unpack_half_2x16_split_y:
1057 result = vir_FMOV(c, src[0]);
1058 vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_H);
1059 break;
1060
1061 default:
1062 fprintf(stderr, "unknown NIR ALU inst: ");
1063 nir_print_instr(&instr->instr, stderr);
1064 fprintf(stderr, "\n");
1065 abort();
1066 }
1067
1068 /* We have a scalar result, so the instruction should only have a
1069 * single channel written to.
1070 */
1071 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1072 ntq_store_dest(c, &instr->dest.dest,
1073 ffs(instr->dest.write_mask) - 1, result);
1074 }
1075
1076 /* Each TLB read/write setup (a render target or depth buffer) takes an 8-bit
1077 * specifier. They come from a register that's preloaded with 0xffffffff
1078 * (0xff gets you normal vec4 f16 RT0 writes), and when one is neaded the low
1079 * 8 bits are shifted off the bottom and 0xff shifted in from the top.
1080 */
1081 #define TLB_TYPE_F16_COLOR (3 << 6)
1082 #define TLB_TYPE_I32_COLOR (1 << 6)
1083 #define TLB_TYPE_F32_COLOR (0 << 6)
1084 #define TLB_RENDER_TARGET_SHIFT 3 /* Reversed! 7 = RT 0, 0 = RT 7. */
1085 #define TLB_SAMPLE_MODE_PER_SAMPLE (0 << 2)
1086 #define TLB_SAMPLE_MODE_PER_PIXEL (1 << 2)
1087 #define TLB_F16_SWAP_HI_LO (1 << 1)
1088 #define TLB_VEC_SIZE_4_F16 (1 << 0)
1089 #define TLB_VEC_SIZE_2_F16 (0 << 0)
1090 #define TLB_VEC_SIZE_MINUS_1_SHIFT 0
1091
1092 /* Triggers Z/Stencil testing, used when the shader state's "FS modifies Z"
1093 * flag is set.
1094 */
1095 #define TLB_TYPE_DEPTH ((2 << 6) | (0 << 4))
1096 #define TLB_DEPTH_TYPE_INVARIANT (0 << 2) /* Unmodified sideband input used */
1097 #define TLB_DEPTH_TYPE_PER_PIXEL (1 << 2) /* QPU result used */
1098 #define TLB_V42_DEPTH_TYPE_INVARIANT (0 << 3) /* Unmodified sideband input used */
1099 #define TLB_V42_DEPTH_TYPE_PER_PIXEL (1 << 3) /* QPU result used */
1100
1101 /* Stencil is a single 32-bit write. */
1102 #define TLB_TYPE_STENCIL_ALPHA ((2 << 6) | (1 << 4))
1103
1104 static void
1105 emit_frag_end(struct v3d_compile *c)
1106 {
1107 /* XXX
1108 if (c->output_sample_mask_index != -1) {
1109 vir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1110 }
1111 */
1112
1113 bool has_any_tlb_color_write = false;
1114 for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++) {
1115 if (c->fs_key->cbufs & (1 << rt) && c->output_color_var[rt])
1116 has_any_tlb_color_write = true;
1117 }
1118
1119 if (c->fs_key->sample_alpha_to_coverage && c->output_color_var[0]) {
1120 struct nir_variable *var = c->output_color_var[0];
1121 struct qreg *color = &c->outputs[var->data.driver_location * 4];
1122
1123 vir_SETMSF_dest(c, vir_nop_reg(),
1124 vir_AND(c,
1125 vir_MSF(c),
1126 vir_FTOC(c, color[3])));
1127 }
1128
1129 struct qreg tlb_reg = vir_magic_reg(V3D_QPU_WADDR_TLB);
1130 struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
1131 if (c->output_position_index != -1) {
1132 struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
1133 c->outputs[c->output_position_index]);
1134 uint8_t tlb_specifier = TLB_TYPE_DEPTH;
1135
1136 if (c->devinfo->ver >= 42) {
1137 tlb_specifier |= (TLB_V42_DEPTH_TYPE_PER_PIXEL |
1138 TLB_SAMPLE_MODE_PER_PIXEL);
1139 } else
1140 tlb_specifier |= TLB_DEPTH_TYPE_PER_PIXEL;
1141
1142 inst->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT,
1143 tlb_specifier |
1144 0xffffff00);
1145 c->writes_z = true;
1146 } else if (c->s->info.fs.uses_discard ||
1147 !c->s->info.fs.early_fragment_tests ||
1148 c->fs_key->sample_alpha_to_coverage ||
1149 !has_any_tlb_color_write) {
1150 /* Emit passthrough Z if it needed to be delayed until shader
1151 * end due to potential discards.
1152 *
1153 * Since (single-threaded) fragment shaders always need a TLB
1154 * write, emit passthrouh Z if we didn't have any color
1155 * buffers and flag us as potentially discarding, so that we
1156 * can use Z as the TLB write.
1157 */
1158 c->s->info.fs.uses_discard = true;
1159
1160 struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
1161 vir_nop_reg());
1162 uint8_t tlb_specifier = TLB_TYPE_DEPTH;
1163
1164 if (c->devinfo->ver >= 42) {
1165 /* The spec says the PER_PIXEL flag is ignored for
1166 * invariant writes, but the simulator demands it.
1167 */
1168 tlb_specifier |= (TLB_V42_DEPTH_TYPE_INVARIANT |
1169 TLB_SAMPLE_MODE_PER_PIXEL);
1170 } else {
1171 tlb_specifier |= TLB_DEPTH_TYPE_INVARIANT;
1172 }
1173
1174 inst->uniform = vir_get_uniform_index(c,
1175 QUNIFORM_CONSTANT,
1176 tlb_specifier |
1177 0xffffff00);
1178 c->writes_z = true;
1179 }
1180
1181 /* XXX: Performance improvement: Merge Z write and color writes TLB
1182 * uniform setup
1183 */
1184
1185 for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++) {
1186 if (!(c->fs_key->cbufs & (1 << rt)) || !c->output_color_var[rt])
1187 continue;
1188
1189 nir_variable *var = c->output_color_var[rt];
1190 struct qreg *color = &c->outputs[var->data.driver_location * 4];
1191 int num_components = glsl_get_vector_elements(var->type);
1192 uint32_t conf = 0xffffff00;
1193 struct qinst *inst;
1194
1195 conf |= TLB_SAMPLE_MODE_PER_PIXEL;
1196 conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
1197
1198 if (c->fs_key->swap_color_rb & (1 << rt))
1199 num_components = MAX2(num_components, 3);
1200
1201 assert(num_components != 0);
1202 switch (glsl_get_base_type(var->type)) {
1203 case GLSL_TYPE_UINT:
1204 case GLSL_TYPE_INT:
1205 /* The F32 vs I32 distinction was dropped in 4.2. */
1206 if (c->devinfo->ver < 42)
1207 conf |= TLB_TYPE_I32_COLOR;
1208 else
1209 conf |= TLB_TYPE_F32_COLOR;
1210 conf |= ((num_components - 1) <<
1211 TLB_VEC_SIZE_MINUS_1_SHIFT);
1212
1213 inst = vir_MOV_dest(c, tlbu_reg, color[0]);
1214 inst->uniform = vir_get_uniform_index(c,
1215 QUNIFORM_CONSTANT,
1216 conf);
1217
1218 for (int i = 1; i < num_components; i++) {
1219 inst = vir_MOV_dest(c, tlb_reg, color[i]);
1220 }
1221 break;
1222
1223 default: {
1224 struct qreg r = color[0];
1225 struct qreg g = color[1];
1226 struct qreg b = color[2];
1227 struct qreg a = color[3];
1228
1229 if (c->fs_key->f32_color_rb & (1 << rt)) {
1230 conf |= TLB_TYPE_F32_COLOR;
1231 conf |= ((num_components - 1) <<
1232 TLB_VEC_SIZE_MINUS_1_SHIFT);
1233 } else {
1234 conf |= TLB_TYPE_F16_COLOR;
1235 conf |= TLB_F16_SWAP_HI_LO;
1236 if (num_components >= 3)
1237 conf |= TLB_VEC_SIZE_4_F16;
1238 else
1239 conf |= TLB_VEC_SIZE_2_F16;
1240 }
1241
1242 if (c->fs_key->swap_color_rb & (1 << rt)) {
1243 r = color[2];
1244 b = color[0];
1245 }
1246
1247 if (c->fs_key->sample_alpha_to_one)
1248 a = vir_uniform_f(c, 1.0);
1249
1250 if (c->fs_key->f32_color_rb & (1 << rt)) {
1251 inst = vir_MOV_dest(c, tlbu_reg, r);
1252 inst->uniform = vir_get_uniform_index(c,
1253 QUNIFORM_CONSTANT,
1254 conf);
1255
1256 if (num_components >= 2)
1257 vir_MOV_dest(c, tlb_reg, g);
1258 if (num_components >= 3)
1259 vir_MOV_dest(c, tlb_reg, b);
1260 if (num_components >= 4)
1261 vir_MOV_dest(c, tlb_reg, a);
1262 } else {
1263 inst = vir_VFPACK_dest(c, tlb_reg, r, g);
1264 if (conf != ~0) {
1265 inst->dst = tlbu_reg;
1266 inst->uniform = vir_get_uniform_index(c,
1267 QUNIFORM_CONSTANT,
1268 conf);
1269 }
1270
1271 if (num_components >= 3)
1272 inst = vir_VFPACK_dest(c, tlb_reg, b, a);
1273 }
1274 break;
1275 }
1276 }
1277 }
1278 }
1279
1280 static void
1281 vir_VPM_WRITE(struct v3d_compile *c, struct qreg val, uint32_t vpm_index)
1282 {
1283 if (c->devinfo->ver >= 40) {
1284 vir_STVPMV(c, vir_uniform_ui(c, vpm_index), val);
1285 } else {
1286 /* XXX: v3d33_vir_vpm_write_setup(c); */
1287 vir_MOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM), val);
1288 }
1289 }
1290
1291 static void
1292 emit_vert_end(struct v3d_compile *c)
1293 {
1294 /* GFXH-1684: VPM writes need to be complete by the end of the shader.
1295 */
1296 if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
1297 vir_VPMWT(c);
1298 }
1299
1300 void
1301 v3d_optimize_nir(struct nir_shader *s)
1302 {
1303 bool progress;
1304
1305 do {
1306 progress = false;
1307
1308 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1309 NIR_PASS(progress, s, nir_lower_alu_to_scalar);
1310 NIR_PASS(progress, s, nir_lower_phis_to_scalar);
1311 NIR_PASS(progress, s, nir_copy_prop);
1312 NIR_PASS(progress, s, nir_opt_remove_phis);
1313 NIR_PASS(progress, s, nir_opt_dce);
1314 NIR_PASS(progress, s, nir_opt_dead_cf);
1315 NIR_PASS(progress, s, nir_opt_cse);
1316 NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
1317 NIR_PASS(progress, s, nir_opt_algebraic);
1318 NIR_PASS(progress, s, nir_opt_constant_folding);
1319 NIR_PASS(progress, s, nir_opt_undef);
1320 } while (progress);
1321
1322 NIR_PASS(progress, s, nir_opt_move_load_ubo);
1323 }
1324
1325 static int
1326 driver_location_compare(const void *in_a, const void *in_b)
1327 {
1328 const nir_variable *const *a = in_a;
1329 const nir_variable *const *b = in_b;
1330
1331 return (*a)->data.driver_location - (*b)->data.driver_location;
1332 }
1333
1334 static struct qreg
1335 ntq_emit_vpm_read(struct v3d_compile *c,
1336 uint32_t *num_components_queued,
1337 uint32_t *remaining,
1338 uint32_t vpm_index)
1339 {
1340 struct qreg vpm = vir_reg(QFILE_VPM, vpm_index);
1341
1342 if (c->devinfo->ver >= 40 ) {
1343 return vir_LDVPMV_IN(c,
1344 vir_uniform_ui(c,
1345 (*num_components_queued)++));
1346 }
1347
1348 if (*num_components_queued != 0) {
1349 (*num_components_queued)--;
1350 return vir_MOV(c, vpm);
1351 }
1352
1353 uint32_t num_components = MIN2(*remaining, 32);
1354
1355 v3d33_vir_vpm_read_setup(c, num_components);
1356
1357 *num_components_queued = num_components - 1;
1358 *remaining -= num_components;
1359
1360 return vir_MOV(c, vpm);
1361 }
1362
1363 static void
1364 ntq_setup_vpm_inputs(struct v3d_compile *c)
1365 {
1366 /* Figure out how many components of each vertex attribute the shader
1367 * uses. Each variable should have been split to individual
1368 * components and unused ones DCEed. The vertex fetcher will load
1369 * from the start of the attribute to the number of components we
1370 * declare we need in c->vattr_sizes[].
1371 */
1372 nir_foreach_variable(var, &c->s->inputs) {
1373 /* No VS attribute array support. */
1374 assert(MAX2(glsl_get_length(var->type), 1) == 1);
1375
1376 unsigned loc = var->data.driver_location;
1377 int start_component = var->data.location_frac;
1378 int num_components = glsl_get_components(var->type);
1379
1380 c->vattr_sizes[loc] = MAX2(c->vattr_sizes[loc],
1381 start_component + num_components);
1382 }
1383
1384 unsigned num_components = 0;
1385 uint32_t vpm_components_queued = 0;
1386 bool uses_iid = c->s->info.system_values_read &
1387 (1ull << SYSTEM_VALUE_INSTANCE_ID);
1388 bool uses_vid = c->s->info.system_values_read &
1389 (1ull << SYSTEM_VALUE_VERTEX_ID);
1390 num_components += uses_iid;
1391 num_components += uses_vid;
1392
1393 for (int i = 0; i < ARRAY_SIZE(c->vattr_sizes); i++)
1394 num_components += c->vattr_sizes[i];
1395
1396 if (uses_iid) {
1397 c->iid = ntq_emit_vpm_read(c, &vpm_components_queued,
1398 &num_components, ~0);
1399 }
1400
1401 if (uses_vid) {
1402 c->vid = ntq_emit_vpm_read(c, &vpm_components_queued,
1403 &num_components, ~0);
1404 }
1405
1406 /* The actual loads will happen directly in nir_intrinsic_load_input
1407 * on newer versions.
1408 */
1409 if (c->devinfo->ver >= 40)
1410 return;
1411
1412 for (int loc = 0; loc < ARRAY_SIZE(c->vattr_sizes); loc++) {
1413 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1414 (loc + 1) * 4);
1415
1416 for (int i = 0; i < c->vattr_sizes[loc]; i++) {
1417 c->inputs[loc * 4 + i] =
1418 ntq_emit_vpm_read(c,
1419 &vpm_components_queued,
1420 &num_components,
1421 loc * 4 + i);
1422
1423 }
1424 }
1425
1426 if (c->devinfo->ver >= 40) {
1427 assert(vpm_components_queued == num_components);
1428 } else {
1429 assert(vpm_components_queued == 0);
1430 assert(num_components == 0);
1431 }
1432 }
1433
1434 static void
1435 ntq_setup_fs_inputs(struct v3d_compile *c)
1436 {
1437 unsigned num_entries = 0;
1438 unsigned num_components = 0;
1439 nir_foreach_variable(var, &c->s->inputs) {
1440 num_entries++;
1441 num_components += glsl_get_components(var->type);
1442 }
1443
1444 nir_variable *vars[num_entries];
1445
1446 unsigned i = 0;
1447 nir_foreach_variable(var, &c->s->inputs)
1448 vars[i++] = var;
1449
1450 /* Sort the variables so that we emit the input setup in
1451 * driver_location order. This is required for VPM reads, whose data
1452 * is fetched into the VPM in driver_location (TGSI register index)
1453 * order.
1454 */
1455 qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1456
1457 for (unsigned i = 0; i < num_entries; i++) {
1458 nir_variable *var = vars[i];
1459 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1460 unsigned loc = var->data.driver_location;
1461
1462 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1463 (loc + array_len) * 4);
1464
1465 if (var->data.location == VARYING_SLOT_POS) {
1466 emit_fragcoord_input(c, loc);
1467 } else if (var->data.location == VARYING_SLOT_PNTC ||
1468 (var->data.location >= VARYING_SLOT_VAR0 &&
1469 (c->fs_key->point_sprite_mask &
1470 (1 << (var->data.location -
1471 VARYING_SLOT_VAR0))))) {
1472 c->inputs[loc * 4 + 0] = c->point_x;
1473 c->inputs[loc * 4 + 1] = c->point_y;
1474 } else {
1475 for (int j = 0; j < array_len; j++)
1476 emit_fragment_input(c, loc + j, var, j);
1477 }
1478 }
1479 }
1480
1481 static void
1482 ntq_setup_outputs(struct v3d_compile *c)
1483 {
1484 if (c->s->info.stage != MESA_SHADER_FRAGMENT)
1485 return;
1486
1487 nir_foreach_variable(var, &c->s->outputs) {
1488 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1489 unsigned loc = var->data.driver_location * 4;
1490
1491 assert(array_len == 1);
1492 (void)array_len;
1493
1494 for (int i = 0; i < 4 - var->data.location_frac; i++) {
1495 add_output(c, loc + var->data.location_frac + i,
1496 var->data.location,
1497 var->data.location_frac + i);
1498 }
1499
1500 switch (var->data.location) {
1501 case FRAG_RESULT_COLOR:
1502 c->output_color_var[0] = var;
1503 c->output_color_var[1] = var;
1504 c->output_color_var[2] = var;
1505 c->output_color_var[3] = var;
1506 break;
1507 case FRAG_RESULT_DATA0:
1508 case FRAG_RESULT_DATA1:
1509 case FRAG_RESULT_DATA2:
1510 case FRAG_RESULT_DATA3:
1511 c->output_color_var[var->data.location -
1512 FRAG_RESULT_DATA0] = var;
1513 break;
1514 case FRAG_RESULT_DEPTH:
1515 c->output_position_index = loc;
1516 break;
1517 case FRAG_RESULT_SAMPLE_MASK:
1518 c->output_sample_mask_index = loc;
1519 break;
1520 }
1521 }
1522 }
1523
1524 /**
1525 * Sets up the mapping from nir_register to struct qreg *.
1526 *
1527 * Each nir_register gets a struct qreg per 32-bit component being stored.
1528 */
1529 static void
1530 ntq_setup_registers(struct v3d_compile *c, struct exec_list *list)
1531 {
1532 foreach_list_typed(nir_register, nir_reg, node, list) {
1533 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1534 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1535 array_len *
1536 nir_reg->num_components);
1537
1538 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1539
1540 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1541 qregs[i] = vir_get_temp(c);
1542 }
1543 }
1544
1545 static void
1546 ntq_emit_load_const(struct v3d_compile *c, nir_load_const_instr *instr)
1547 {
1548 /* XXX perf: Experiment with using immediate loads to avoid having
1549 * these end up in the uniform stream. Watch out for breaking the
1550 * small immediates optimization in the process!
1551 */
1552 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1553 for (int i = 0; i < instr->def.num_components; i++)
1554 qregs[i] = vir_uniform_ui(c, instr->value[i].u32);
1555
1556 _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1557 }
1558
1559 static void
1560 ntq_emit_ssa_undef(struct v3d_compile *c, nir_ssa_undef_instr *instr)
1561 {
1562 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1563
1564 /* VIR needs there to be *some* value, so pick 0 (same as for
1565 * ntq_setup_registers().
1566 */
1567 for (int i = 0; i < instr->def.num_components; i++)
1568 qregs[i] = vir_uniform_ui(c, 0);
1569 }
1570
1571 static void
1572 ntq_emit_image_size(struct v3d_compile *c, nir_intrinsic_instr *instr)
1573 {
1574 assert(instr->intrinsic == nir_intrinsic_image_deref_size);
1575 nir_variable *var = nir_intrinsic_get_var(instr, 0);
1576 unsigned image_index = var->data.driver_location;
1577 const struct glsl_type *sampler_type = glsl_without_array(var->type);
1578 bool is_array = glsl_sampler_type_is_array(sampler_type);
1579
1580 ntq_store_dest(c, &instr->dest, 0,
1581 vir_uniform(c, QUNIFORM_IMAGE_WIDTH, image_index));
1582 if (instr->num_components > 1) {
1583 ntq_store_dest(c, &instr->dest, 1,
1584 vir_uniform(c, QUNIFORM_IMAGE_HEIGHT,
1585 image_index));
1586 }
1587 if (instr->num_components > 2) {
1588 ntq_store_dest(c, &instr->dest, 2,
1589 vir_uniform(c,
1590 is_array ?
1591 QUNIFORM_IMAGE_ARRAY_SIZE :
1592 QUNIFORM_IMAGE_DEPTH,
1593 image_index));
1594 }
1595 }
1596
1597 static void
1598 ntq_emit_intrinsic(struct v3d_compile *c, nir_intrinsic_instr *instr)
1599 {
1600 unsigned offset;
1601
1602 switch (instr->intrinsic) {
1603 case nir_intrinsic_load_uniform:
1604 if (nir_src_is_const(instr->src[0])) {
1605 int offset = (nir_intrinsic_base(instr) +
1606 nir_src_as_uint(instr->src[0]));
1607 assert(offset % 4 == 0);
1608 /* We need dwords */
1609 offset = offset / 4;
1610 for (int i = 0; i < instr->num_components; i++) {
1611 ntq_store_dest(c, &instr->dest, i,
1612 vir_uniform(c, QUNIFORM_UNIFORM,
1613 offset + i));
1614 }
1615 } else {
1616 ntq_emit_tmu_general(c, instr, false);
1617 }
1618 break;
1619
1620 case nir_intrinsic_load_ubo:
1621 ntq_emit_tmu_general(c, instr, false);
1622 break;
1623
1624 case nir_intrinsic_ssbo_atomic_add:
1625 case nir_intrinsic_ssbo_atomic_imin:
1626 case nir_intrinsic_ssbo_atomic_umin:
1627 case nir_intrinsic_ssbo_atomic_imax:
1628 case nir_intrinsic_ssbo_atomic_umax:
1629 case nir_intrinsic_ssbo_atomic_and:
1630 case nir_intrinsic_ssbo_atomic_or:
1631 case nir_intrinsic_ssbo_atomic_xor:
1632 case nir_intrinsic_ssbo_atomic_exchange:
1633 case nir_intrinsic_ssbo_atomic_comp_swap:
1634 case nir_intrinsic_load_ssbo:
1635 case nir_intrinsic_store_ssbo:
1636 ntq_emit_tmu_general(c, instr, false);
1637 break;
1638
1639 case nir_intrinsic_shared_atomic_add:
1640 case nir_intrinsic_shared_atomic_imin:
1641 case nir_intrinsic_shared_atomic_umin:
1642 case nir_intrinsic_shared_atomic_imax:
1643 case nir_intrinsic_shared_atomic_umax:
1644 case nir_intrinsic_shared_atomic_and:
1645 case nir_intrinsic_shared_atomic_or:
1646 case nir_intrinsic_shared_atomic_xor:
1647 case nir_intrinsic_shared_atomic_exchange:
1648 case nir_intrinsic_shared_atomic_comp_swap:
1649 case nir_intrinsic_load_shared:
1650 case nir_intrinsic_store_shared:
1651 case nir_intrinsic_load_scratch:
1652 case nir_intrinsic_store_scratch:
1653 ntq_emit_tmu_general(c, instr, true);
1654 break;
1655
1656 case nir_intrinsic_image_deref_load:
1657 case nir_intrinsic_image_deref_store:
1658 case nir_intrinsic_image_deref_atomic_add:
1659 case nir_intrinsic_image_deref_atomic_min:
1660 case nir_intrinsic_image_deref_atomic_max:
1661 case nir_intrinsic_image_deref_atomic_and:
1662 case nir_intrinsic_image_deref_atomic_or:
1663 case nir_intrinsic_image_deref_atomic_xor:
1664 case nir_intrinsic_image_deref_atomic_exchange:
1665 case nir_intrinsic_image_deref_atomic_comp_swap:
1666 v3d40_vir_emit_image_load_store(c, instr);
1667 break;
1668
1669 case nir_intrinsic_get_buffer_size:
1670 ntq_store_dest(c, &instr->dest, 0,
1671 vir_uniform(c, QUNIFORM_GET_BUFFER_SIZE,
1672 nir_src_as_uint(instr->src[0])));
1673 break;
1674
1675 case nir_intrinsic_load_user_clip_plane:
1676 for (int i = 0; i < instr->num_components; i++) {
1677 ntq_store_dest(c, &instr->dest, i,
1678 vir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1679 nir_intrinsic_ucp_id(instr) *
1680 4 + i));
1681 }
1682 break;
1683
1684 case nir_intrinsic_load_viewport_x_scale:
1685 ntq_store_dest(c, &instr->dest, 0,
1686 vir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE, 0));
1687 break;
1688
1689 case nir_intrinsic_load_viewport_y_scale:
1690 ntq_store_dest(c, &instr->dest, 0,
1691 vir_uniform(c, QUNIFORM_VIEWPORT_Y_SCALE, 0));
1692 break;
1693
1694 case nir_intrinsic_load_viewport_z_scale:
1695 ntq_store_dest(c, &instr->dest, 0,
1696 vir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0));
1697 break;
1698
1699 case nir_intrinsic_load_viewport_z_offset:
1700 ntq_store_dest(c, &instr->dest, 0,
1701 vir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0));
1702 break;
1703
1704 case nir_intrinsic_load_alpha_ref_float:
1705 ntq_store_dest(c, &instr->dest, 0,
1706 vir_uniform(c, QUNIFORM_ALPHA_REF, 0));
1707 break;
1708
1709 case nir_intrinsic_load_sample_mask_in:
1710 ntq_store_dest(c, &instr->dest, 0, vir_MSF(c));
1711 break;
1712
1713 case nir_intrinsic_load_helper_invocation:
1714 vir_set_pf(vir_MSF_dest(c, vir_nop_reg()), V3D_QPU_PF_PUSHZ);
1715 ntq_store_dest(c, &instr->dest, 0,
1716 vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
1717 vir_uniform_ui(c, ~0),
1718 vir_uniform_ui(c, 0))));
1719 break;
1720
1721 case nir_intrinsic_load_front_face:
1722 /* The register contains 0 (front) or 1 (back), and we need to
1723 * turn it into a NIR bool where true means front.
1724 */
1725 ntq_store_dest(c, &instr->dest, 0,
1726 vir_ADD(c,
1727 vir_uniform_ui(c, -1),
1728 vir_REVF(c)));
1729 break;
1730
1731 case nir_intrinsic_load_instance_id:
1732 ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->iid));
1733 break;
1734
1735 case nir_intrinsic_load_vertex_id:
1736 ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->vid));
1737 break;
1738
1739 case nir_intrinsic_load_input:
1740 /* Use ldvpmv (uniform offset) or ldvpmd (non-uniform offset)
1741 * and enable PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR.
1742 */
1743 offset = (nir_intrinsic_base(instr) +
1744 nir_src_as_uint(instr->src[0]));
1745 if (c->s->info.stage != MESA_SHADER_FRAGMENT &&
1746 c->devinfo->ver >= 40) {
1747 /* Emit the LDVPM directly now, rather than at the top
1748 * of the shader like we did for V3D 3.x (which needs
1749 * vpmsetup when not just taking the next offset).
1750 *
1751 * Note that delaying like this may introduce stalls,
1752 * as LDVPMV takes a minimum of 1 instruction but may
1753 * be slower if the VPM unit is busy with another QPU.
1754 */
1755 int index = 0;
1756 if (c->s->info.system_values_read &
1757 (1ull << SYSTEM_VALUE_INSTANCE_ID)) {
1758 index++;
1759 }
1760 if (c->s->info.system_values_read &
1761 (1ull << SYSTEM_VALUE_VERTEX_ID)) {
1762 index++;
1763 }
1764 for (int i = 0; i < offset; i++)
1765 index += c->vattr_sizes[i];
1766 index += nir_intrinsic_component(instr);
1767 for (int i = 0; i < instr->num_components; i++) {
1768 struct qreg vpm_offset =
1769 vir_uniform_ui(c, index++);
1770 ntq_store_dest(c, &instr->dest, i,
1771 vir_LDVPMV_IN(c, vpm_offset));
1772 }
1773 } else {
1774 for (int i = 0; i < instr->num_components; i++) {
1775 int comp = nir_intrinsic_component(instr) + i;
1776 ntq_store_dest(c, &instr->dest, i,
1777 vir_MOV(c, c->inputs[offset * 4 +
1778 comp]));
1779 }
1780 }
1781 break;
1782
1783 case nir_intrinsic_store_output:
1784 /* XXX perf: Use stvpmv with uniform non-constant offsets and
1785 * stvpmd with non-uniform offsets and enable
1786 * PIPE_SHADER_CAP_INDIRECT_OUTPUT_ADDR.
1787 */
1788 if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
1789 offset = ((nir_intrinsic_base(instr) +
1790 nir_src_as_uint(instr->src[1])) * 4 +
1791 nir_intrinsic_component(instr));
1792 for (int i = 0; i < instr->num_components; i++) {
1793 c->outputs[offset + i] =
1794 vir_MOV(c,
1795 ntq_get_src(c,
1796 instr->src[0], i));
1797 }
1798 } else {
1799 assert(instr->num_components == 1);
1800
1801 vir_VPM_WRITE(c,
1802 ntq_get_src(c, instr->src[0], 0),
1803 nir_intrinsic_base(instr));
1804 }
1805 break;
1806
1807 case nir_intrinsic_image_deref_size:
1808 ntq_emit_image_size(c, instr);
1809 break;
1810
1811 case nir_intrinsic_discard:
1812 if (vir_in_nonuniform_control_flow(c)) {
1813 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
1814 V3D_QPU_PF_PUSHZ);
1815 vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
1816 vir_uniform_ui(c, 0)),
1817 V3D_QPU_COND_IFA);
1818 } else {
1819 vir_SETMSF_dest(c, vir_nop_reg(),
1820 vir_uniform_ui(c, 0));
1821 }
1822 break;
1823
1824 case nir_intrinsic_discard_if: {
1825 enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, instr->src[0]);
1826
1827 if (vir_in_nonuniform_control_flow(c)) {
1828 struct qinst *exec_flag = vir_MOV_dest(c, vir_nop_reg(),
1829 c->execute);
1830 if (cond == V3D_QPU_COND_IFA) {
1831 vir_set_uf(exec_flag, V3D_QPU_UF_ANDZ);
1832 } else {
1833 vir_set_uf(exec_flag, V3D_QPU_UF_NORNZ);
1834 cond = V3D_QPU_COND_IFA;
1835 }
1836 }
1837
1838 vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
1839 vir_uniform_ui(c, 0)), cond);
1840
1841 break;
1842 }
1843
1844 case nir_intrinsic_memory_barrier:
1845 case nir_intrinsic_memory_barrier_atomic_counter:
1846 case nir_intrinsic_memory_barrier_buffer:
1847 case nir_intrinsic_memory_barrier_image:
1848 case nir_intrinsic_memory_barrier_shared:
1849 case nir_intrinsic_group_memory_barrier:
1850 /* We don't do any instruction scheduling of these NIR
1851 * instructions between each other, so we just need to make
1852 * sure that the TMU operations before the barrier are flushed
1853 * before the ones after the barrier. That is currently
1854 * handled by having a THRSW in each of them and a LDTMU
1855 * series or a TMUWT after.
1856 */
1857 break;
1858
1859 case nir_intrinsic_barrier:
1860 /* Emit a TSY op to get all invocations in the workgroup
1861 * (actually supergroup) to block until the last invocation
1862 * reaches the TSY op.
1863 */
1864 if (c->devinfo->ver >= 42) {
1865 vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
1866 V3D_QPU_WADDR_SYNCB));
1867 } else {
1868 struct qinst *sync =
1869 vir_BARRIERID_dest(c,
1870 vir_reg(QFILE_MAGIC,
1871 V3D_QPU_WADDR_SYNCU));
1872 sync->uniform =
1873 vir_get_uniform_index(c, QUNIFORM_CONSTANT,
1874 0xffffff00 |
1875 V3D_TSY_WAIT_INC_CHECK);
1876
1877 }
1878
1879 /* The blocking of a TSY op only happens at the next thread
1880 * switch. No texturing may be outstanding at the time of a
1881 * TSY blocking operation.
1882 */
1883 vir_emit_thrsw(c);
1884 break;
1885
1886 case nir_intrinsic_load_num_work_groups:
1887 for (int i = 0; i < 3; i++) {
1888 ntq_store_dest(c, &instr->dest, i,
1889 vir_uniform(c, QUNIFORM_NUM_WORK_GROUPS,
1890 i));
1891 }
1892 break;
1893
1894 case nir_intrinsic_load_local_invocation_index:
1895 ntq_store_dest(c, &instr->dest, 0,
1896 vir_SHR(c, c->cs_payload[1],
1897 vir_uniform_ui(c, 32 - c->local_invocation_index_bits)));
1898 break;
1899
1900 case nir_intrinsic_load_work_group_id:
1901 ntq_store_dest(c, &instr->dest, 0,
1902 vir_AND(c, c->cs_payload[0],
1903 vir_uniform_ui(c, 0xffff)));
1904 ntq_store_dest(c, &instr->dest, 1,
1905 vir_SHR(c, c->cs_payload[0],
1906 vir_uniform_ui(c, 16)));
1907 ntq_store_dest(c, &instr->dest, 2,
1908 vir_AND(c, c->cs_payload[1],
1909 vir_uniform_ui(c, 0xffff)));
1910 break;
1911
1912 case nir_intrinsic_load_subgroup_id:
1913 ntq_store_dest(c, &instr->dest, 0, vir_EIDX(c));
1914 break;
1915
1916 default:
1917 fprintf(stderr, "Unknown intrinsic: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 break;
1921 }
1922 }
1923
1924 /* Clears (activates) the execute flags for any channels whose jump target
1925 * matches this block.
1926 *
1927 * XXX perf: Could we be using flpush/flpop somehow for our execution channel
1928 * enabling?
1929 *
1930 * XXX perf: For uniform control flow, we should be able to skip c->execute
1931 * handling entirely.
1932 */
1933 static void
1934 ntq_activate_execute_for_block(struct v3d_compile *c)
1935 {
1936 vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
1937 c->execute, vir_uniform_ui(c, c->cur_block->index)),
1938 V3D_QPU_PF_PUSHZ);
1939
1940 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
1941 }
1942
1943 static void
1944 ntq_emit_uniform_if(struct v3d_compile *c, nir_if *if_stmt)
1945 {
1946 nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1947 bool empty_else_block =
1948 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1949 exec_list_is_empty(&nir_else_block->instr_list));
1950
1951 struct qblock *then_block = vir_new_block(c);
1952 struct qblock *after_block = vir_new_block(c);
1953 struct qblock *else_block;
1954 if (empty_else_block)
1955 else_block = after_block;
1956 else
1957 else_block = vir_new_block(c);
1958
1959 /* Set up the flags for the IF condition (taking the THEN branch). */
1960 enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
1961
1962 /* Jump to ELSE. */
1963 vir_BRANCH(c, cond == V3D_QPU_COND_IFA ?
1964 V3D_QPU_BRANCH_COND_ALLNA :
1965 V3D_QPU_BRANCH_COND_ALLA);
1966 vir_link_blocks(c->cur_block, else_block);
1967 vir_link_blocks(c->cur_block, then_block);
1968
1969 /* Process the THEN block. */
1970 vir_set_emit_block(c, then_block);
1971 ntq_emit_cf_list(c, &if_stmt->then_list);
1972
1973 if (!empty_else_block) {
1974 /* At the end of the THEN block, jump to ENDIF */
1975 vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
1976 vir_link_blocks(c->cur_block, after_block);
1977
1978 /* Emit the else block. */
1979 vir_set_emit_block(c, else_block);
1980 ntq_activate_execute_for_block(c);
1981 ntq_emit_cf_list(c, &if_stmt->else_list);
1982 }
1983
1984 vir_link_blocks(c->cur_block, after_block);
1985
1986 vir_set_emit_block(c, after_block);
1987 }
1988
1989 static void
1990 ntq_emit_nonuniform_if(struct v3d_compile *c, nir_if *if_stmt)
1991 {
1992 nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1993 bool empty_else_block =
1994 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1995 exec_list_is_empty(&nir_else_block->instr_list));
1996
1997 struct qblock *then_block = vir_new_block(c);
1998 struct qblock *after_block = vir_new_block(c);
1999 struct qblock *else_block;
2000 if (empty_else_block)
2001 else_block = after_block;
2002 else
2003 else_block = vir_new_block(c);
2004
2005 bool was_uniform_control_flow = false;
2006 if (!vir_in_nonuniform_control_flow(c)) {
2007 c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
2008 was_uniform_control_flow = true;
2009 }
2010
2011 /* Set up the flags for the IF condition (taking the THEN branch). */
2012 enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
2013
2014 /* Update the flags+cond to mean "Taking the ELSE branch (!cond) and
2015 * was previously active (execute Z) for updating the exec flags.
2016 */
2017 if (was_uniform_control_flow) {
2018 cond = v3d_qpu_cond_invert(cond);
2019 } else {
2020 struct qinst *inst = vir_MOV_dest(c, vir_nop_reg(), c->execute);
2021 if (cond == V3D_QPU_COND_IFA) {
2022 vir_set_uf(inst, V3D_QPU_UF_NORNZ);
2023 } else {
2024 vir_set_uf(inst, V3D_QPU_UF_ANDZ);
2025 cond = V3D_QPU_COND_IFA;
2026 }
2027 }
2028
2029 vir_MOV_cond(c, cond,
2030 c->execute,
2031 vir_uniform_ui(c, else_block->index));
2032
2033 /* Jump to ELSE if nothing is active for THEN, otherwise fall
2034 * through.
2035 */
2036 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
2037 vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLNA);
2038 vir_link_blocks(c->cur_block, else_block);
2039 vir_link_blocks(c->cur_block, then_block);
2040
2041 /* Process the THEN block. */
2042 vir_set_emit_block(c, then_block);
2043 ntq_emit_cf_list(c, &if_stmt->then_list);
2044
2045 if (!empty_else_block) {
2046 /* Handle the end of the THEN block. First, all currently
2047 * active channels update their execute flags to point to
2048 * ENDIF
2049 */
2050 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2051 V3D_QPU_PF_PUSHZ);
2052 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
2053 vir_uniform_ui(c, after_block->index));
2054
2055 /* If everything points at ENDIF, then jump there immediately. */
2056 vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
2057 c->execute,
2058 vir_uniform_ui(c, after_block->index)),
2059 V3D_QPU_PF_PUSHZ);
2060 vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLA);
2061 vir_link_blocks(c->cur_block, after_block);
2062 vir_link_blocks(c->cur_block, else_block);
2063
2064 vir_set_emit_block(c, else_block);
2065 ntq_activate_execute_for_block(c);
2066 ntq_emit_cf_list(c, &if_stmt->else_list);
2067 }
2068
2069 vir_link_blocks(c->cur_block, after_block);
2070
2071 vir_set_emit_block(c, after_block);
2072 if (was_uniform_control_flow)
2073 c->execute = c->undef;
2074 else
2075 ntq_activate_execute_for_block(c);
2076 }
2077
2078 static void
2079 ntq_emit_if(struct v3d_compile *c, nir_if *nif)
2080 {
2081 bool was_in_control_flow = c->in_control_flow;
2082 c->in_control_flow = true;
2083 if (!vir_in_nonuniform_control_flow(c) &&
2084 nir_src_is_dynamically_uniform(nif->condition)) {
2085 ntq_emit_uniform_if(c, nif);
2086 } else {
2087 ntq_emit_nonuniform_if(c, nif);
2088 }
2089 c->in_control_flow = was_in_control_flow;
2090 }
2091
2092 static void
2093 ntq_emit_jump(struct v3d_compile *c, nir_jump_instr *jump)
2094 {
2095 switch (jump->type) {
2096 case nir_jump_break:
2097 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2098 V3D_QPU_PF_PUSHZ);
2099 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
2100 vir_uniform_ui(c, c->loop_break_block->index));
2101 break;
2102
2103 case nir_jump_continue:
2104 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2105 V3D_QPU_PF_PUSHZ);
2106 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
2107 vir_uniform_ui(c, c->loop_cont_block->index));
2108 break;
2109
2110 case nir_jump_return:
2111 unreachable("All returns shouold be lowered\n");
2112 }
2113 }
2114
2115 static void
2116 ntq_emit_instr(struct v3d_compile *c, nir_instr *instr)
2117 {
2118 switch (instr->type) {
2119 case nir_instr_type_deref:
2120 /* ignored, will be walked by the intrinsic using it. */
2121 break;
2122
2123 case nir_instr_type_alu:
2124 ntq_emit_alu(c, nir_instr_as_alu(instr));
2125 break;
2126
2127 case nir_instr_type_intrinsic:
2128 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2129 break;
2130
2131 case nir_instr_type_load_const:
2132 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2133 break;
2134
2135 case nir_instr_type_ssa_undef:
2136 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2137 break;
2138
2139 case nir_instr_type_tex:
2140 ntq_emit_tex(c, nir_instr_as_tex(instr));
2141 break;
2142
2143 case nir_instr_type_jump:
2144 ntq_emit_jump(c, nir_instr_as_jump(instr));
2145 break;
2146
2147 default:
2148 fprintf(stderr, "Unknown NIR instr type: ");
2149 nir_print_instr(instr, stderr);
2150 fprintf(stderr, "\n");
2151 abort();
2152 }
2153 }
2154
2155 static void
2156 ntq_emit_block(struct v3d_compile *c, nir_block *block)
2157 {
2158 nir_foreach_instr(instr, block) {
2159 ntq_emit_instr(c, instr);
2160 }
2161 }
2162
2163 static void ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
2164
2165 static void
2166 ntq_emit_loop(struct v3d_compile *c, nir_loop *loop)
2167 {
2168 bool was_in_control_flow = c->in_control_flow;
2169 c->in_control_flow = true;
2170
2171 bool was_uniform_control_flow = false;
2172 if (!vir_in_nonuniform_control_flow(c)) {
2173 c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
2174 was_uniform_control_flow = true;
2175 }
2176
2177 struct qblock *save_loop_cont_block = c->loop_cont_block;
2178 struct qblock *save_loop_break_block = c->loop_break_block;
2179
2180 c->loop_cont_block = vir_new_block(c);
2181 c->loop_break_block = vir_new_block(c);
2182
2183 vir_link_blocks(c->cur_block, c->loop_cont_block);
2184 vir_set_emit_block(c, c->loop_cont_block);
2185 ntq_activate_execute_for_block(c);
2186
2187 ntq_emit_cf_list(c, &loop->body);
2188
2189 /* Re-enable any previous continues now, so our ANYA check below
2190 * works.
2191 *
2192 * XXX: Use the .ORZ flags update, instead.
2193 */
2194 vir_set_pf(vir_XOR_dest(c,
2195 vir_nop_reg(),
2196 c->execute,
2197 vir_uniform_ui(c, c->loop_cont_block->index)),
2198 V3D_QPU_PF_PUSHZ);
2199 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
2200
2201 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
2202
2203 struct qinst *branch = vir_BRANCH(c, V3D_QPU_BRANCH_COND_ANYA);
2204 /* Pixels that were not dispatched or have been discarded should not
2205 * contribute to looping again.
2206 */
2207 branch->qpu.branch.msfign = V3D_QPU_MSFIGN_P;
2208 vir_link_blocks(c->cur_block, c->loop_cont_block);
2209 vir_link_blocks(c->cur_block, c->loop_break_block);
2210
2211 vir_set_emit_block(c, c->loop_break_block);
2212 if (was_uniform_control_flow)
2213 c->execute = c->undef;
2214 else
2215 ntq_activate_execute_for_block(c);
2216
2217 c->loop_break_block = save_loop_break_block;
2218 c->loop_cont_block = save_loop_cont_block;
2219
2220 c->loops++;
2221
2222 c->in_control_flow = was_in_control_flow;
2223 }
2224
2225 static void
2226 ntq_emit_function(struct v3d_compile *c, nir_function_impl *func)
2227 {
2228 fprintf(stderr, "FUNCTIONS not handled.\n");
2229 abort();
2230 }
2231
2232 static void
2233 ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list)
2234 {
2235 foreach_list_typed(nir_cf_node, node, node, list) {
2236 switch (node->type) {
2237 case nir_cf_node_block:
2238 ntq_emit_block(c, nir_cf_node_as_block(node));
2239 break;
2240
2241 case nir_cf_node_if:
2242 ntq_emit_if(c, nir_cf_node_as_if(node));
2243 break;
2244
2245 case nir_cf_node_loop:
2246 ntq_emit_loop(c, nir_cf_node_as_loop(node));
2247 break;
2248
2249 case nir_cf_node_function:
2250 ntq_emit_function(c, nir_cf_node_as_function(node));
2251 break;
2252
2253 default:
2254 fprintf(stderr, "Unknown NIR node type\n");
2255 abort();
2256 }
2257 }
2258 }
2259
2260 static void
2261 ntq_emit_impl(struct v3d_compile *c, nir_function_impl *impl)
2262 {
2263 ntq_setup_registers(c, &impl->registers);
2264 ntq_emit_cf_list(c, &impl->body);
2265 }
2266
2267 static void
2268 nir_to_vir(struct v3d_compile *c)
2269 {
2270 switch (c->s->info.stage) {
2271 case MESA_SHADER_FRAGMENT:
2272 c->payload_w = vir_MOV(c, vir_reg(QFILE_REG, 0));
2273 c->payload_w_centroid = vir_MOV(c, vir_reg(QFILE_REG, 1));
2274 c->payload_z = vir_MOV(c, vir_reg(QFILE_REG, 2));
2275
2276 /* XXX perf: We could set the "disable implicit point/line
2277 * varyings" field in the shader record and not emit these, if
2278 * they're not going to be used.
2279 */
2280 if (c->fs_key->is_points) {
2281 c->point_x = emit_fragment_varying(c, NULL, 0, 0);
2282 c->point_y = emit_fragment_varying(c, NULL, 0, 0);
2283 } else if (c->fs_key->is_lines) {
2284 c->line_x = emit_fragment_varying(c, NULL, 0, 0);
2285 }
2286 break;
2287 case MESA_SHADER_COMPUTE:
2288 /* Set up the TSO for barriers, assuming we do some. */
2289 if (c->devinfo->ver < 42) {
2290 vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
2291 V3D_QPU_WADDR_SYNC));
2292 }
2293
2294 c->cs_payload[0] = vir_MOV(c, vir_reg(QFILE_REG, 0));
2295 c->cs_payload[1] = vir_MOV(c, vir_reg(QFILE_REG, 2));
2296
2297 /* Set up the division between gl_LocalInvocationIndex and
2298 * wg_in_mem in the payload reg.
2299 */
2300 int wg_size = (c->s->info.cs.local_size[0] *
2301 c->s->info.cs.local_size[1] *
2302 c->s->info.cs.local_size[2]);
2303 c->local_invocation_index_bits =
2304 ffs(util_next_power_of_two(MAX2(wg_size, 64))) - 1;
2305 assert(c->local_invocation_index_bits <= 8);
2306
2307 if (c->s->info.cs.shared_size) {
2308 struct qreg wg_in_mem = vir_SHR(c, c->cs_payload[1],
2309 vir_uniform_ui(c, 16));
2310 if (c->s->info.cs.local_size[0] != 1 ||
2311 c->s->info.cs.local_size[1] != 1 ||
2312 c->s->info.cs.local_size[2] != 1) {
2313 int wg_bits = (16 -
2314 c->local_invocation_index_bits);
2315 int wg_mask = (1 << wg_bits) - 1;
2316 wg_in_mem = vir_AND(c, wg_in_mem,
2317 vir_uniform_ui(c, wg_mask));
2318 }
2319 struct qreg shared_per_wg =
2320 vir_uniform_ui(c, c->s->info.cs.shared_size);
2321
2322 c->cs_shared_offset =
2323 vir_ADD(c,
2324 vir_uniform(c, QUNIFORM_SHARED_OFFSET,0),
2325 vir_UMUL(c, wg_in_mem, shared_per_wg));
2326 }
2327 break;
2328 default:
2329 break;
2330 }
2331
2332 if (c->s->scratch_size) {
2333 v3d_setup_spill_base(c);
2334 c->spill_size += V3D_CHANNELS * c->s->scratch_size;
2335 }
2336
2337 if (c->s->info.stage == MESA_SHADER_FRAGMENT)
2338 ntq_setup_fs_inputs(c);
2339 else
2340 ntq_setup_vpm_inputs(c);
2341
2342 ntq_setup_outputs(c);
2343
2344 /* Find the main function and emit the body. */
2345 nir_foreach_function(function, c->s) {
2346 assert(strcmp(function->name, "main") == 0);
2347 assert(function->impl);
2348 ntq_emit_impl(c, function->impl);
2349 }
2350 }
2351
2352 const nir_shader_compiler_options v3d_nir_options = {
2353 .lower_all_io_to_temps = true,
2354 .lower_extract_byte = true,
2355 .lower_extract_word = true,
2356 .lower_bfm = true,
2357 .lower_bitfield_insert_to_shifts = true,
2358 .lower_bitfield_extract_to_shifts = true,
2359 .lower_bitfield_reverse = true,
2360 .lower_bit_count = true,
2361 .lower_cs_local_id_from_index = true,
2362 .lower_ffract = true,
2363 .lower_pack_unorm_2x16 = true,
2364 .lower_pack_snorm_2x16 = true,
2365 .lower_pack_unorm_4x8 = true,
2366 .lower_pack_snorm_4x8 = true,
2367 .lower_unpack_unorm_4x8 = true,
2368 .lower_unpack_snorm_4x8 = true,
2369 .lower_pack_half_2x16 = true,
2370 .lower_unpack_half_2x16 = true,
2371 .lower_fdiv = true,
2372 .lower_find_lsb = true,
2373 .lower_ffma = true,
2374 .lower_flrp32 = true,
2375 .lower_fpow = true,
2376 .lower_fsat = true,
2377 .lower_fsqrt = true,
2378 .lower_ifind_msb = true,
2379 .lower_isign = true,
2380 .lower_ldexp = true,
2381 .lower_mul_high = true,
2382 .lower_wpos_pntc = true,
2383 };
2384
2385 /**
2386 * When demoting a shader down to single-threaded, removes the THRSW
2387 * instructions (one will still be inserted at v3d_vir_to_qpu() for the
2388 * program end).
2389 */
2390 static void
2391 vir_remove_thrsw(struct v3d_compile *c)
2392 {
2393 vir_for_each_block(block, c) {
2394 vir_for_each_inst_safe(inst, block) {
2395 if (inst->qpu.sig.thrsw)
2396 vir_remove_instruction(c, inst);
2397 }
2398 }
2399
2400 c->last_thrsw = NULL;
2401 }
2402
2403 void
2404 vir_emit_last_thrsw(struct v3d_compile *c)
2405 {
2406 /* On V3D before 4.1, we need a TMU op to be outstanding when thread
2407 * switching, so disable threads if we didn't do any TMU ops (each of
2408 * which would have emitted a THRSW).
2409 */
2410 if (!c->last_thrsw_at_top_level && c->devinfo->ver < 41) {
2411 c->threads = 1;
2412 if (c->last_thrsw)
2413 vir_remove_thrsw(c);
2414 return;
2415 }
2416
2417 /* If we're threaded and the last THRSW was in conditional code, then
2418 * we need to emit another one so that we can flag it as the last
2419 * thrsw.
2420 */
2421 if (c->last_thrsw && !c->last_thrsw_at_top_level) {
2422 assert(c->devinfo->ver >= 41);
2423 vir_emit_thrsw(c);
2424 }
2425
2426 /* If we're threaded, then we need to mark the last THRSW instruction
2427 * so we can emit a pair of them at QPU emit time.
2428 *
2429 * For V3D 4.x, we can spawn the non-fragment shaders already in the
2430 * post-last-THRSW state, so we can skip this.
2431 */
2432 if (!c->last_thrsw && c->s->info.stage == MESA_SHADER_FRAGMENT) {
2433 assert(c->devinfo->ver >= 41);
2434 vir_emit_thrsw(c);
2435 }
2436
2437 if (c->last_thrsw)
2438 c->last_thrsw->is_last_thrsw = true;
2439 }
2440
2441 /* There's a flag in the shader for "center W is needed for reasons other than
2442 * non-centroid varyings", so we just walk the program after VIR optimization
2443 * to see if it's used. It should be harmless to set even if we only use
2444 * center W for varyings.
2445 */
2446 static void
2447 vir_check_payload_w(struct v3d_compile *c)
2448 {
2449 if (c->s->info.stage != MESA_SHADER_FRAGMENT)
2450 return;
2451
2452 vir_for_each_inst_inorder(inst, c) {
2453 for (int i = 0; i < vir_get_nsrc(inst); i++) {
2454 if (inst->src[i].file == QFILE_REG &&
2455 inst->src[i].index == 0) {
2456 c->uses_center_w = true;
2457 return;
2458 }
2459 }
2460 }
2461
2462 }
2463
2464 void
2465 v3d_nir_to_vir(struct v3d_compile *c)
2466 {
2467 if (V3D_DEBUG & (V3D_DEBUG_NIR |
2468 v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
2469 fprintf(stderr, "%s prog %d/%d NIR:\n",
2470 vir_get_stage_name(c),
2471 c->program_id, c->variant_id);
2472 nir_print_shader(c->s, stderr);
2473 }
2474
2475 nir_to_vir(c);
2476
2477 /* Emit the last THRSW before STVPM and TLB writes. */
2478 vir_emit_last_thrsw(c);
2479
2480 switch (c->s->info.stage) {
2481 case MESA_SHADER_FRAGMENT:
2482 emit_frag_end(c);
2483 break;
2484 case MESA_SHADER_VERTEX:
2485 emit_vert_end(c);
2486 break;
2487 case MESA_SHADER_COMPUTE:
2488 break;
2489 default:
2490 unreachable("bad stage");
2491 }
2492
2493 if (V3D_DEBUG & (V3D_DEBUG_VIR |
2494 v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
2495 fprintf(stderr, "%s prog %d/%d pre-opt VIR:\n",
2496 vir_get_stage_name(c),
2497 c->program_id, c->variant_id);
2498 vir_dump(c);
2499 fprintf(stderr, "\n");
2500 }
2501
2502 vir_optimize(c);
2503
2504 vir_check_payload_w(c);
2505
2506 /* XXX perf: On VC4, we do a VIR-level instruction scheduling here.
2507 * We used that on that platform to pipeline TMU writes and reduce the
2508 * number of thread switches, as well as try (mostly successfully) to
2509 * reduce maximum register pressure to allow more threads. We should
2510 * do something of that sort for V3D -- either instruction scheduling
2511 * here, or delay the the THRSW and LDTMUs from our texture
2512 * instructions until the results are needed.
2513 */
2514
2515 if (V3D_DEBUG & (V3D_DEBUG_VIR |
2516 v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
2517 fprintf(stderr, "%s prog %d/%d VIR:\n",
2518 vir_get_stage_name(c),
2519 c->program_id, c->variant_id);
2520 vir_dump(c);
2521 fprintf(stderr, "\n");
2522 }
2523
2524 /* Attempt to allocate registers for the temporaries. If we fail,
2525 * reduce thread count and try again.
2526 */
2527 int min_threads = (c->devinfo->ver >= 41) ? 2 : 1;
2528 struct qpu_reg *temp_registers;
2529 while (true) {
2530 bool spilled;
2531 temp_registers = v3d_register_allocate(c, &spilled);
2532 if (spilled)
2533 continue;
2534
2535 if (temp_registers)
2536 break;
2537
2538 if (c->threads == min_threads) {
2539 fprintf(stderr, "Failed to register allocate at %d threads:\n",
2540 c->threads);
2541 vir_dump(c);
2542 c->failed = true;
2543 return;
2544 }
2545
2546 c->threads /= 2;
2547
2548 if (c->threads == 1)
2549 vir_remove_thrsw(c);
2550 }
2551
2552 if (c->spills &&
2553 (V3D_DEBUG & (V3D_DEBUG_VIR |
2554 v3d_debug_flag_for_shader_stage(c->s->info.stage)))) {
2555 fprintf(stderr, "%s prog %d/%d spilled VIR:\n",
2556 vir_get_stage_name(c),
2557 c->program_id, c->variant_id);
2558 vir_dump(c);
2559 fprintf(stderr, "\n");
2560 }
2561
2562 v3d_vir_to_qpu(c, temp_registers);
2563 }