glsl: Don't crash on function names with invalid identifiers.
[mesa.git] / src / compiler / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 #include "main/shaderobj.h"
30
31 static ir_rvalue *
32 convert_component(ir_rvalue *src, const glsl_type *desired_type);
33
34 static unsigned
35 process_parameters(exec_list *instructions, exec_list *actual_parameters,
36 exec_list *parameters,
37 struct _mesa_glsl_parse_state *state)
38 {
39 unsigned count = 0;
40
41 foreach_list_typed(ast_node, ast, link, parameters) {
42 /* We need to process the parameters first in order to know if we can
43 * raise or not a unitialized warning. Calling set_is_lhs silence the
44 * warning for now. Raising the warning or not will be checked at
45 * verify_parameter_modes.
46 */
47 ast->set_is_lhs(true);
48 ir_rvalue *result = ast->hir(instructions, state);
49
50 ir_constant *const constant = result->constant_expression_value();
51 if (constant != NULL)
52 result = constant;
53
54 actual_parameters->push_tail(result);
55 count++;
56 }
57
58 return count;
59 }
60
61
62 /**
63 * Generate a source prototype for a function signature
64 *
65 * \param return_type Return type of the function. May be \c NULL.
66 * \param name Name of the function.
67 * \param parameters List of \c ir_instruction nodes representing the
68 * parameter list for the function. This may be either a
69 * formal (\c ir_variable) or actual (\c ir_rvalue)
70 * parameter list. Only the type is used.
71 *
72 * \return
73 * A ralloced string representing the prototype of the function.
74 */
75 char *
76 prototype_string(const glsl_type *return_type, const char *name,
77 exec_list *parameters)
78 {
79 char *str = NULL;
80
81 if (return_type != NULL)
82 str = ralloc_asprintf(NULL, "%s ", return_type->name);
83
84 ralloc_asprintf_append(&str, "%s(", name);
85
86 const char *comma = "";
87 foreach_in_list(const ir_variable, param, parameters) {
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 static bool
97 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
98 const ir_variable *formal, const ir_variable *actual)
99 {
100 /**
101 * From the ARB_shader_image_load_store specification:
102 *
103 * "The values of image variables qualified with coherent,
104 * volatile, restrict, readonly, or writeonly may not be passed
105 * to functions whose formal parameters lack such
106 * qualifiers. [...] It is legal to have additional qualifiers
107 * on a formal parameter, but not to have fewer."
108 */
109 if (actual->data.image_coherent && !formal->data.image_coherent) {
110 _mesa_glsl_error(loc, state,
111 "function call parameter `%s' drops "
112 "`coherent' qualifier", formal->name);
113 return false;
114 }
115
116 if (actual->data.image_volatile && !formal->data.image_volatile) {
117 _mesa_glsl_error(loc, state,
118 "function call parameter `%s' drops "
119 "`volatile' qualifier", formal->name);
120 return false;
121 }
122
123 if (actual->data.image_restrict && !formal->data.image_restrict) {
124 _mesa_glsl_error(loc, state,
125 "function call parameter `%s' drops "
126 "`restrict' qualifier", formal->name);
127 return false;
128 }
129
130 if (actual->data.image_read_only && !formal->data.image_read_only) {
131 _mesa_glsl_error(loc, state,
132 "function call parameter `%s' drops "
133 "`readonly' qualifier", formal->name);
134 return false;
135 }
136
137 if (actual->data.image_write_only && !formal->data.image_write_only) {
138 _mesa_glsl_error(loc, state,
139 "function call parameter `%s' drops "
140 "`writeonly' qualifier", formal->name);
141 return false;
142 }
143
144 return true;
145 }
146
147 static bool
148 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
149 ir_variable *var)
150 {
151 if (!var ||
152 (!var->is_in_shader_storage_block() &&
153 var->data.mode != ir_var_shader_shared)) {
154 _mesa_glsl_error(loc, state, "First argument to atomic function "
155 "must be a buffer or shared variable");
156 return false;
157 }
158 return true;
159 }
160
161 static bool
162 is_atomic_function(const char *func_name)
163 {
164 return !strcmp(func_name, "atomicAdd") ||
165 !strcmp(func_name, "atomicMin") ||
166 !strcmp(func_name, "atomicMax") ||
167 !strcmp(func_name, "atomicAnd") ||
168 !strcmp(func_name, "atomicOr") ||
169 !strcmp(func_name, "atomicXor") ||
170 !strcmp(func_name, "atomicExchange") ||
171 !strcmp(func_name, "atomicCompSwap");
172 }
173
174 /**
175 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
176 * that 'const_in' formal parameters (an extension in our IR) correspond to
177 * ir_constant actual parameters.
178 */
179 static bool
180 verify_parameter_modes(_mesa_glsl_parse_state *state,
181 ir_function_signature *sig,
182 exec_list &actual_ir_parameters,
183 exec_list &actual_ast_parameters)
184 {
185 exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
186 exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
187
188 foreach_in_list(const ir_variable, formal, &sig->parameters) {
189 /* The lists must be the same length. */
190 assert(!actual_ir_node->is_tail_sentinel());
191 assert(!actual_ast_node->is_tail_sentinel());
192
193 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
194 const ast_expression *const actual_ast =
195 exec_node_data(ast_expression, actual_ast_node, link);
196
197 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
198 * FIXME: 0:0(0).
199 */
200 YYLTYPE loc = actual_ast->get_location();
201
202 /* Verify that 'const_in' parameters are ir_constants. */
203 if (formal->data.mode == ir_var_const_in &&
204 actual->ir_type != ir_type_constant) {
205 _mesa_glsl_error(&loc, state,
206 "parameter `in %s' must be a constant expression",
207 formal->name);
208 return false;
209 }
210
211 /* Verify that shader_in parameters are shader inputs */
212 if (formal->data.must_be_shader_input) {
213 const ir_rvalue *val = actual;
214
215 /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
216 if (val->ir_type == ir_type_swizzle) {
217 if (!state->is_version(440, 0)) {
218 _mesa_glsl_error(&loc, state,
219 "parameter `%s` must not be swizzled",
220 formal->name);
221 return false;
222 }
223 val = ((ir_swizzle *)val)->val;
224 }
225
226 while (val->ir_type == ir_type_dereference_array) {
227 val = ((ir_dereference_array *)val)->array;
228 }
229
230 if (!val->as_dereference_variable() ||
231 val->variable_referenced()->data.mode != ir_var_shader_in) {
232 _mesa_glsl_error(&loc, state,
233 "parameter `%s` must be a shader input",
234 formal->name);
235 return false;
236 }
237 }
238
239 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
240 if (formal->data.mode == ir_var_function_out
241 || formal->data.mode == ir_var_function_inout) {
242 const char *mode = NULL;
243 switch (formal->data.mode) {
244 case ir_var_function_out: mode = "out"; break;
245 case ir_var_function_inout: mode = "inout"; break;
246 default: assert(false); break;
247 }
248
249 /* This AST-based check catches errors like f(i++). The IR-based
250 * is_lvalue() is insufficient because the actual parameter at the
251 * IR-level is just a temporary value, which is an l-value.
252 */
253 if (actual_ast->non_lvalue_description != NULL) {
254 _mesa_glsl_error(&loc, state,
255 "function parameter '%s %s' references a %s",
256 mode, formal->name,
257 actual_ast->non_lvalue_description);
258 return false;
259 }
260
261 ir_variable *var = actual->variable_referenced();
262
263 if (var && formal->data.mode == ir_var_function_inout) {
264 if ((var->data.mode == ir_var_auto ||
265 var->data.mode == ir_var_shader_out) &&
266 !var->data.assigned &&
267 !is_gl_identifier(var->name)) {
268 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
269 var->name);
270 }
271 }
272
273 if (var)
274 var->data.assigned = true;
275
276 if (var && var->data.read_only) {
277 _mesa_glsl_error(&loc, state,
278 "function parameter '%s %s' references the "
279 "read-only variable '%s'",
280 mode, formal->name,
281 actual->variable_referenced()->name);
282 return false;
283 } else if (!actual->is_lvalue()) {
284 _mesa_glsl_error(&loc, state,
285 "function parameter '%s %s' is not an lvalue",
286 mode, formal->name);
287 return false;
288 }
289 } else {
290 assert(formal->data.mode == ir_var_function_in ||
291 formal->data.mode == ir_var_const_in);
292 ir_variable *var = actual->variable_referenced();
293 if (var) {
294 if ((var->data.mode == ir_var_auto ||
295 var->data.mode == ir_var_shader_out) &&
296 !var->data.assigned &&
297 !is_gl_identifier(var->name)) {
298 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
299 var->name);
300 }
301 }
302 }
303
304 if (formal->type->is_image() &&
305 actual->variable_referenced()) {
306 if (!verify_image_parameter(&loc, state, formal,
307 actual->variable_referenced()))
308 return false;
309 }
310
311 actual_ir_node = actual_ir_node->next;
312 actual_ast_node = actual_ast_node->next;
313 }
314
315 /* The first parameter of atomic functions must be a buffer variable */
316 const char *func_name = sig->function_name();
317 bool is_atomic = is_atomic_function(func_name);
318 if (is_atomic) {
319 const ir_rvalue *const actual =
320 (ir_rvalue *) actual_ir_parameters.get_head_raw();
321
322 const ast_expression *const actual_ast =
323 exec_node_data(ast_expression,
324 actual_ast_parameters.get_head_raw(), link);
325 YYLTYPE loc = actual_ast->get_location();
326
327 if (!verify_first_atomic_parameter(&loc, state,
328 actual->variable_referenced())) {
329 return false;
330 }
331 }
332
333 return true;
334 }
335
336 static void
337 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
338 exec_list *before_instructions, exec_list *after_instructions,
339 bool parameter_is_inout)
340 {
341 ir_expression *const expr = actual->as_expression();
342
343 /* If the types match exactly and the parameter is not a vector-extract,
344 * nothing needs to be done to fix the parameter.
345 */
346 if (formal_type == actual->type
347 && (expr == NULL || expr->operation != ir_binop_vector_extract))
348 return;
349
350 /* To convert an out parameter, we need to create a temporary variable to
351 * hold the value before conversion, and then perform the conversion after
352 * the function call returns.
353 *
354 * This has the effect of transforming code like this:
355 *
356 * void f(out int x);
357 * float value;
358 * f(value);
359 *
360 * Into IR that's equivalent to this:
361 *
362 * void f(out int x);
363 * float value;
364 * int out_parameter_conversion;
365 * f(out_parameter_conversion);
366 * value = float(out_parameter_conversion);
367 *
368 * If the parameter is an ir_expression of ir_binop_vector_extract,
369 * additional conversion is needed in the post-call re-write.
370 */
371 ir_variable *tmp =
372 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
373
374 before_instructions->push_tail(tmp);
375
376 /* If the parameter is an inout parameter, copy the value of the actual
377 * parameter to the new temporary. Note that no type conversion is allowed
378 * here because inout parameters must match types exactly.
379 */
380 if (parameter_is_inout) {
381 /* Inout parameters should never require conversion, since that would
382 * require an implicit conversion to exist both to and from the formal
383 * parameter type, and there are no bidirectional implicit conversions.
384 */
385 assert (actual->type == formal_type);
386
387 ir_dereference_variable *const deref_tmp_1 =
388 new(mem_ctx) ir_dereference_variable(tmp);
389 ir_assignment *const assignment =
390 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
391 before_instructions->push_tail(assignment);
392 }
393
394 /* Replace the parameter in the call with a dereference of the new
395 * temporary.
396 */
397 ir_dereference_variable *const deref_tmp_2 =
398 new(mem_ctx) ir_dereference_variable(tmp);
399 actual->replace_with(deref_tmp_2);
400
401
402 /* Copy the temporary variable to the actual parameter with optional
403 * type conversion applied.
404 */
405 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
406 if (actual->type != formal_type)
407 rhs = convert_component(rhs, actual->type);
408
409 ir_rvalue *lhs = actual;
410 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
411 lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
412 NULL),
413 expr->operands[1]->clone(mem_ctx,
414 NULL));
415 }
416
417 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
418 after_instructions->push_tail(assignment_2);
419 }
420
421 /**
422 * Generate a function call.
423 *
424 * For non-void functions, this returns a dereference of the temporary
425 * variable which stores the return value for the call. For void functions,
426 * this returns NULL.
427 */
428 static ir_rvalue *
429 generate_call(exec_list *instructions, ir_function_signature *sig,
430 exec_list *actual_parameters,
431 ir_variable *sub_var,
432 ir_rvalue *array_idx,
433 struct _mesa_glsl_parse_state *state,
434 bool inline_immediately)
435 {
436 void *ctx = state;
437 exec_list post_call_conversions;
438
439 /* Perform implicit conversion of arguments. For out parameters, we need
440 * to place them in a temporary variable and do the conversion after the
441 * call takes place. Since we haven't emitted the call yet, we'll place
442 * the post-call conversions in a temporary exec_list, and emit them later.
443 */
444 foreach_two_lists(formal_node, &sig->parameters,
445 actual_node, actual_parameters) {
446 ir_rvalue *actual = (ir_rvalue *) actual_node;
447 ir_variable *formal = (ir_variable *) formal_node;
448
449 if (formal->type->is_numeric() || formal->type->is_boolean()) {
450 switch (formal->data.mode) {
451 case ir_var_const_in:
452 case ir_var_function_in: {
453 ir_rvalue *converted
454 = convert_component(actual, formal->type);
455 actual->replace_with(converted);
456 break;
457 }
458 case ir_var_function_out:
459 case ir_var_function_inout:
460 fix_parameter(ctx, actual, formal->type,
461 instructions, &post_call_conversions,
462 formal->data.mode == ir_var_function_inout);
463 break;
464 default:
465 assert (!"Illegal formal parameter mode");
466 break;
467 }
468 }
469 }
470
471 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
472 *
473 * "Initializers for const declarations must be formed from literal
474 * values, other const variables (not including function call
475 * paramaters), or expressions of these.
476 *
477 * Constructors may be used in such expressions, but function calls may
478 * not."
479 *
480 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
481 *
482 * "A constant expression is one of
483 *
484 * ...
485 *
486 * - a built-in function call whose arguments are all constant
487 * expressions, with the exception of the texture lookup
488 * functions, the noise functions, and ftransform. The built-in
489 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
490 * inside an initializer with an argument that is a constant
491 * expression."
492 *
493 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
494 *
495 * "A constant expression is one of
496 *
497 * ...
498 *
499 * - a built-in function call whose arguments are all constant
500 * expressions, with the exception of the texture lookup
501 * functions."
502 *
503 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
504 *
505 * "A constant expression is one of
506 *
507 * ...
508 *
509 * - a built-in function call whose arguments are all constant
510 * expressions, with the exception of the texture lookup
511 * functions. The built-in functions dFdx, dFdy, and fwidth must
512 * return 0 when evaluated inside an initializer with an argument
513 * that is a constant expression."
514 *
515 * If the function call is a constant expression, don't generate any
516 * instructions; just generate an ir_constant.
517 */
518 if (state->is_version(120, 100)) {
519 ir_constant *value = sig->constant_expression_value(actual_parameters,
520 NULL);
521 if (value != NULL) {
522 return value;
523 }
524 }
525
526 ir_dereference_variable *deref = NULL;
527 if (!sig->return_type->is_void()) {
528 /* Create a new temporary to hold the return value. */
529 char *const name = ir_variable::temporaries_allocate_names
530 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
531 : NULL;
532
533 ir_variable *var;
534
535 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
536 instructions->push_tail(var);
537
538 ralloc_free(name);
539
540 deref = new(ctx) ir_dereference_variable(var);
541 }
542
543 ir_call *call = new(ctx) ir_call(sig, deref,
544 actual_parameters, sub_var, array_idx);
545 instructions->push_tail(call);
546 if (inline_immediately) {
547 call->generate_inline(call);
548 call->remove();
549 }
550
551 /* Also emit any necessary out-parameter conversions. */
552 instructions->append_list(&post_call_conversions);
553
554 return deref ? deref->clone(ctx, NULL) : NULL;
555 }
556
557 /**
558 * Given a function name and parameter list, find the matching signature.
559 */
560 static ir_function_signature *
561 match_function_by_name(const char *name,
562 exec_list *actual_parameters,
563 struct _mesa_glsl_parse_state *state)
564 {
565 ir_function *f = state->symbols->get_function(name);
566 ir_function_signature *local_sig = NULL;
567 ir_function_signature *sig = NULL;
568
569 /* Is the function hidden by a record type constructor? */
570 if (state->symbols->get_type(name))
571 return sig; /* no match */
572
573 /* Is the function hidden by a variable (impossible in 1.10)? */
574 if (!state->symbols->separate_function_namespace
575 && state->symbols->get_variable(name))
576 return sig; /* no match */
577
578 if (f != NULL) {
579 /* In desktop GL, the presence of a user-defined signature hides any
580 * built-in signatures, so we must ignore them. In contrast, in ES2
581 * user-defined signatures add new overloads, so we must consider them.
582 */
583 bool allow_builtins = state->es_shader || !f->has_user_signature();
584
585 /* Look for a match in the local shader. If exact, we're done. */
586 bool is_exact = false;
587 sig = local_sig = f->matching_signature(state, actual_parameters,
588 allow_builtins, &is_exact);
589 if (is_exact)
590 return sig;
591
592 if (!allow_builtins)
593 return sig;
594 }
595
596 /* Local shader has no exact candidates; check the built-ins. */
597 _mesa_glsl_initialize_builtin_functions();
598 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
599 return sig;
600 }
601
602 static ir_function_signature *
603 match_subroutine_by_name(const char *name,
604 exec_list *actual_parameters,
605 struct _mesa_glsl_parse_state *state,
606 ir_variable **var_r)
607 {
608 void *ctx = state;
609 ir_function_signature *sig = NULL;
610 ir_function *f, *found = NULL;
611 const char *new_name;
612 ir_variable *var;
613 bool is_exact = false;
614
615 new_name =
616 ralloc_asprintf(ctx, "%s_%s",
617 _mesa_shader_stage_to_subroutine_prefix(state->stage),
618 name);
619 var = state->symbols->get_variable(new_name);
620 if (!var)
621 return NULL;
622
623 for (int i = 0; i < state->num_subroutine_types; i++) {
624 f = state->subroutine_types[i];
625 if (strcmp(f->name, var->type->without_array()->name))
626 continue;
627 found = f;
628 break;
629 }
630
631 if (!found)
632 return NULL;
633 *var_r = var;
634 sig = found->matching_signature(state, actual_parameters,
635 false, &is_exact);
636 return sig;
637 }
638
639 static ir_rvalue *
640 generate_array_index(void *mem_ctx, exec_list *instructions,
641 struct _mesa_glsl_parse_state *state, YYLTYPE loc,
642 const ast_expression *array, ast_expression *idx,
643 const char **function_name, exec_list *actual_parameters)
644 {
645 if (array->oper == ast_array_index) {
646 /* This handles arrays of arrays */
647 ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
648 state, loc,
649 array->subexpressions[0],
650 array->subexpressions[1],
651 function_name,
652 actual_parameters);
653 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
654
655 YYLTYPE index_loc = idx->get_location();
656 return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
657 outer_array_idx, loc,
658 index_loc);
659 } else {
660 ir_variable *sub_var = NULL;
661 *function_name = array->primary_expression.identifier;
662
663 match_subroutine_by_name(*function_name, actual_parameters,
664 state, &sub_var);
665
666 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
667 return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
668 }
669 }
670
671 static void
672 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
673 ir_function *f)
674 {
675 if (f == NULL)
676 return;
677
678 foreach_in_list(ir_function_signature, sig, &f->signatures) {
679 if (sig->is_builtin() && !sig->is_builtin_available(state))
680 continue;
681
682 char *str = prototype_string(sig->return_type, f->name,
683 &sig->parameters);
684 _mesa_glsl_error(loc, state, " %s", str);
685 ralloc_free(str);
686 }
687 }
688
689 /**
690 * Raise a "no matching function" error, listing all possible overloads the
691 * compiler considered so developers can figure out what went wrong.
692 */
693 static void
694 no_matching_function_error(const char *name,
695 YYLTYPE *loc,
696 exec_list *actual_parameters,
697 _mesa_glsl_parse_state *state)
698 {
699 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
700
701 if (state->symbols->get_function(name) == NULL
702 && (!state->uses_builtin_functions
703 || sh->symbols->get_function(name) == NULL)) {
704 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
705 } else {
706 char *str = prototype_string(NULL, name, actual_parameters);
707 _mesa_glsl_error(loc, state,
708 "no matching function for call to `%s';"
709 " candidates are:",
710 str);
711 ralloc_free(str);
712
713 print_function_prototypes(state, loc,
714 state->symbols->get_function(name));
715
716 if (state->uses_builtin_functions) {
717 print_function_prototypes(state, loc,
718 sh->symbols->get_function(name));
719 }
720 }
721 }
722
723 /**
724 * Perform automatic type conversion of constructor parameters
725 *
726 * This implements the rules in the "Conversion and Scalar Constructors"
727 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
728 */
729 static ir_rvalue *
730 convert_component(ir_rvalue *src, const glsl_type *desired_type)
731 {
732 void *ctx = ralloc_parent(src);
733 const unsigned a = desired_type->base_type;
734 const unsigned b = src->type->base_type;
735 ir_expression *result = NULL;
736
737 if (src->type->is_error())
738 return src;
739
740 assert(a <= GLSL_TYPE_BOOL);
741 assert(b <= GLSL_TYPE_BOOL);
742
743 if (a == b)
744 return src;
745
746 switch (a) {
747 case GLSL_TYPE_UINT:
748 switch (b) {
749 case GLSL_TYPE_INT:
750 result = new(ctx) ir_expression(ir_unop_i2u, src);
751 break;
752 case GLSL_TYPE_FLOAT:
753 result = new(ctx) ir_expression(ir_unop_f2u, src);
754 break;
755 case GLSL_TYPE_BOOL:
756 result = new(ctx) ir_expression(ir_unop_i2u,
757 new(ctx) ir_expression(ir_unop_b2i,
758 src));
759 break;
760 case GLSL_TYPE_DOUBLE:
761 result = new(ctx) ir_expression(ir_unop_d2u, src);
762 break;
763 }
764 break;
765 case GLSL_TYPE_INT:
766 switch (b) {
767 case GLSL_TYPE_UINT:
768 result = new(ctx) ir_expression(ir_unop_u2i, src);
769 break;
770 case GLSL_TYPE_FLOAT:
771 result = new(ctx) ir_expression(ir_unop_f2i, src);
772 break;
773 case GLSL_TYPE_BOOL:
774 result = new(ctx) ir_expression(ir_unop_b2i, src);
775 break;
776 case GLSL_TYPE_DOUBLE:
777 result = new(ctx) ir_expression(ir_unop_d2i, src);
778 break;
779 }
780 break;
781 case GLSL_TYPE_FLOAT:
782 switch (b) {
783 case GLSL_TYPE_UINT:
784 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
785 break;
786 case GLSL_TYPE_INT:
787 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
788 break;
789 case GLSL_TYPE_BOOL:
790 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
791 break;
792 case GLSL_TYPE_DOUBLE:
793 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
794 break;
795 }
796 break;
797 case GLSL_TYPE_BOOL:
798 switch (b) {
799 case GLSL_TYPE_UINT:
800 result = new(ctx) ir_expression(ir_unop_i2b,
801 new(ctx) ir_expression(ir_unop_u2i,
802 src));
803 break;
804 case GLSL_TYPE_INT:
805 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
806 break;
807 case GLSL_TYPE_FLOAT:
808 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
809 break;
810 case GLSL_TYPE_DOUBLE:
811 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
812 break;
813 }
814 break;
815 case GLSL_TYPE_DOUBLE:
816 switch (b) {
817 case GLSL_TYPE_INT:
818 result = new(ctx) ir_expression(ir_unop_i2d, src);
819 break;
820 case GLSL_TYPE_UINT:
821 result = new(ctx) ir_expression(ir_unop_u2d, src);
822 break;
823 case GLSL_TYPE_BOOL:
824 result = new(ctx) ir_expression(ir_unop_f2d,
825 new(ctx) ir_expression(ir_unop_b2f,
826 src));
827 break;
828 case GLSL_TYPE_FLOAT:
829 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
830 break;
831 }
832 }
833
834 assert(result != NULL);
835 assert(result->type == desired_type);
836
837 /* Try constant folding; it may fold in the conversion we just added. */
838 ir_constant *const constant = result->constant_expression_value();
839 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
840 }
841
842
843 /**
844 * Perform automatic type and constant conversion of constructor parameters
845 *
846 * This implements the rules in the "Implicit Conversions" rules, not the
847 * "Conversion and Scalar Constructors".
848 *
849 * After attempting the implicit conversion, an attempt to convert into a
850 * constant valued expression is also done.
851 *
852 * The \c from \c ir_rvalue is converted "in place".
853 *
854 * \param from Operand that is being converted
855 * \param to Base type the operand will be converted to
856 * \param state GLSL compiler state
857 *
858 * \return
859 * If the attempt to convert into a constant expression succeeds, \c true is
860 * returned. Otherwise \c false is returned.
861 */
862 static bool
863 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
864 struct _mesa_glsl_parse_state *state)
865 {
866 ir_rvalue *result = from;
867
868 if (to != from->type->base_type) {
869 const glsl_type *desired_type =
870 glsl_type::get_instance(to,
871 from->type->vector_elements,
872 from->type->matrix_columns);
873
874 if (from->type->can_implicitly_convert_to(desired_type, state)) {
875 /* Even though convert_component() implements the constructor
876 * conversion rules (not the implicit conversion rules), its safe
877 * to use it here because we already checked that the implicit
878 * conversion is legal.
879 */
880 result = convert_component(from, desired_type);
881 }
882 }
883
884 ir_rvalue *const constant = result->constant_expression_value();
885
886 if (constant != NULL)
887 result = constant;
888
889 if (from != result) {
890 from->replace_with(result);
891 from = result;
892 }
893
894 return constant != NULL;
895 }
896
897
898 /**
899 * Dereference a specific component from a scalar, vector, or matrix
900 */
901 static ir_rvalue *
902 dereference_component(ir_rvalue *src, unsigned component)
903 {
904 void *ctx = ralloc_parent(src);
905 assert(component < src->type->components());
906
907 /* If the source is a constant, just create a new constant instead of a
908 * dereference of the existing constant.
909 */
910 ir_constant *constant = src->as_constant();
911 if (constant)
912 return new(ctx) ir_constant(constant, component);
913
914 if (src->type->is_scalar()) {
915 return src;
916 } else if (src->type->is_vector()) {
917 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
918 } else {
919 assert(src->type->is_matrix());
920
921 /* Dereference a row of the matrix, then call this function again to get
922 * a specific element from that row.
923 */
924 const int c = component / src->type->column_type()->vector_elements;
925 const int r = component % src->type->column_type()->vector_elements;
926 ir_constant *const col_index = new(ctx) ir_constant(c);
927 ir_dereference *const col = new(ctx) ir_dereference_array(src,
928 col_index);
929
930 col->type = src->type->column_type();
931
932 return dereference_component(col, r);
933 }
934
935 assert(!"Should not get here.");
936 return NULL;
937 }
938
939
940 static ir_rvalue *
941 process_vec_mat_constructor(exec_list *instructions,
942 const glsl_type *constructor_type,
943 YYLTYPE *loc, exec_list *parameters,
944 struct _mesa_glsl_parse_state *state)
945 {
946 void *ctx = state;
947
948 /* The ARB_shading_language_420pack spec says:
949 *
950 * "If an initializer is a list of initializers enclosed in curly braces,
951 * the variable being declared must be a vector, a matrix, an array, or a
952 * structure.
953 *
954 * int i = { 1 }; // illegal, i is not an aggregate"
955 */
956 if (constructor_type->vector_elements <= 1) {
957 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
958 "matrices, arrays, and structs");
959 return ir_rvalue::error_value(ctx);
960 }
961
962 exec_list actual_parameters;
963 const unsigned parameter_count =
964 process_parameters(instructions, &actual_parameters, parameters, state);
965
966 if (parameter_count == 0
967 || (constructor_type->is_vector() &&
968 constructor_type->vector_elements != parameter_count)
969 || (constructor_type->is_matrix() &&
970 constructor_type->matrix_columns != parameter_count)) {
971 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
972 constructor_type->is_vector() ? "vector" : "matrix",
973 constructor_type->vector_elements);
974 return ir_rvalue::error_value(ctx);
975 }
976
977 bool all_parameters_are_constant = true;
978
979 /* Type cast each parameter and, if possible, fold constants. */
980 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
981 /* Apply implicit conversions (not the scalar constructor rules, see the
982 * spec quote above!) and attempt to convert the parameter to a constant
983 * valued expression. After doing so, track whether or not all the
984 * parameters to the constructor are trivially constant valued
985 * expressions.
986 */
987 all_parameters_are_constant &=
988 implicitly_convert_component(ir, constructor_type->base_type, state);
989
990 if (constructor_type->is_matrix()) {
991 if (ir->type != constructor_type->column_type()) {
992 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
993 "expected: %s, found %s",
994 constructor_type->column_type()->name,
995 ir->type->name);
996 return ir_rvalue::error_value(ctx);
997 }
998 } else if (ir->type != constructor_type->get_scalar_type()) {
999 _mesa_glsl_error(loc, state, "type error in vector constructor: "
1000 "expected: %s, found %s",
1001 constructor_type->get_scalar_type()->name,
1002 ir->type->name);
1003 return ir_rvalue::error_value(ctx);
1004 }
1005 }
1006
1007 if (all_parameters_are_constant)
1008 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1009
1010 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1011 ir_var_temporary);
1012 instructions->push_tail(var);
1013
1014 int i = 0;
1015
1016 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1017 ir_instruction *assignment = NULL;
1018
1019 if (var->type->is_matrix()) {
1020 ir_rvalue *lhs =
1021 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1022 assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1023 } else {
1024 /* use writemask rather than index for vector */
1025 assert(var->type->is_vector());
1026 assert(i < 4);
1027 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1028 assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1029 (unsigned)(1 << i));
1030 }
1031
1032 instructions->push_tail(assignment);
1033
1034 i++;
1035 }
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 static ir_rvalue *
1042 process_array_constructor(exec_list *instructions,
1043 const glsl_type *constructor_type,
1044 YYLTYPE *loc, exec_list *parameters,
1045 struct _mesa_glsl_parse_state *state)
1046 {
1047 void *ctx = state;
1048 /* Array constructors come in two forms: sized and unsized. Sized array
1049 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1050 * variables. In this case the number of parameters must exactly match the
1051 * specified size of the array.
1052 *
1053 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1054 * are vec4 variables. In this case the size of the array being constructed
1055 * is determined by the number of parameters.
1056 *
1057 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1058 *
1059 * "There must be exactly the same number of arguments as the size of
1060 * the array being constructed. If no size is present in the
1061 * constructor, then the array is explicitly sized to the number of
1062 * arguments provided. The arguments are assigned in order, starting at
1063 * element 0, to the elements of the constructed array. Each argument
1064 * must be the same type as the element type of the array, or be a type
1065 * that can be converted to the element type of the array according to
1066 * Section 4.1.10 "Implicit Conversions.""
1067 */
1068 exec_list actual_parameters;
1069 const unsigned parameter_count =
1070 process_parameters(instructions, &actual_parameters, parameters, state);
1071 bool is_unsized_array = constructor_type->is_unsized_array();
1072
1073 if ((parameter_count == 0) ||
1074 (!is_unsized_array && (constructor_type->length != parameter_count))) {
1075 const unsigned min_param = is_unsized_array
1076 ? 1 : constructor_type->length;
1077
1078 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1079 "parameter%s",
1080 is_unsized_array ? "at least" : "exactly",
1081 min_param, (min_param <= 1) ? "" : "s");
1082 return ir_rvalue::error_value(ctx);
1083 }
1084
1085 if (is_unsized_array) {
1086 constructor_type =
1087 glsl_type::get_array_instance(constructor_type->fields.array,
1088 parameter_count);
1089 assert(constructor_type != NULL);
1090 assert(constructor_type->length == parameter_count);
1091 }
1092
1093 bool all_parameters_are_constant = true;
1094 const glsl_type *element_type = constructor_type->fields.array;
1095
1096 /* Type cast each parameter and, if possible, fold constants. */
1097 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1098 /* Apply implicit conversions (not the scalar constructor rules, see the
1099 * spec quote above!) and attempt to convert the parameter to a constant
1100 * valued expression. After doing so, track whether or not all the
1101 * parameters to the constructor are trivially constant valued
1102 * expressions.
1103 */
1104 all_parameters_are_constant &=
1105 implicitly_convert_component(ir, element_type->base_type, state);
1106
1107 if (constructor_type->fields.array->is_unsized_array()) {
1108 /* As the inner parameters of the constructor are created without
1109 * knowledge of each other we need to check to make sure unsized
1110 * parameters of unsized constructors all end up with the same size.
1111 *
1112 * e.g we make sure to fail for a constructor like this:
1113 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1114 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1115 * vec4[](vec4(0.0), vec4(1.0)));
1116 */
1117 if (element_type->is_unsized_array()) {
1118 /* This is the first parameter so just get the type */
1119 element_type = ir->type;
1120 } else if (element_type != ir->type) {
1121 _mesa_glsl_error(loc, state, "type error in array constructor: "
1122 "expected: %s, found %s",
1123 element_type->name,
1124 ir->type->name);
1125 return ir_rvalue::error_value(ctx);
1126 }
1127 } else if (ir->type != constructor_type->fields.array) {
1128 _mesa_glsl_error(loc, state, "type error in array constructor: "
1129 "expected: %s, found %s",
1130 constructor_type->fields.array->name,
1131 ir->type->name);
1132 return ir_rvalue::error_value(ctx);
1133 } else {
1134 element_type = ir->type;
1135 }
1136 }
1137
1138 if (constructor_type->fields.array->is_unsized_array()) {
1139 constructor_type =
1140 glsl_type::get_array_instance(element_type,
1141 parameter_count);
1142 assert(constructor_type != NULL);
1143 assert(constructor_type->length == parameter_count);
1144 }
1145
1146 if (all_parameters_are_constant)
1147 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1148
1149 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1150 ir_var_temporary);
1151 instructions->push_tail(var);
1152
1153 int i = 0;
1154 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1155 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1156 new(ctx) ir_constant(i));
1157
1158 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1159 instructions->push_tail(assignment);
1160
1161 i++;
1162 }
1163
1164 return new(ctx) ir_dereference_variable(var);
1165 }
1166
1167
1168 /**
1169 * Determine if a list consists of a single scalar r-value
1170 */
1171 bool
1172 single_scalar_parameter(exec_list *parameters)
1173 {
1174 const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1175 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1176
1177 return (p->type->is_scalar() && p->next->is_tail_sentinel());
1178 }
1179
1180
1181 /**
1182 * Generate inline code for a vector constructor
1183 *
1184 * The generated constructor code will consist of a temporary variable
1185 * declaration of the same type as the constructor. A sequence of assignments
1186 * from constructor parameters to the temporary will follow.
1187 *
1188 * \return
1189 * An \c ir_dereference_variable of the temprorary generated in the constructor
1190 * body.
1191 */
1192 ir_rvalue *
1193 emit_inline_vector_constructor(const glsl_type *type,
1194 exec_list *instructions,
1195 exec_list *parameters,
1196 void *ctx)
1197 {
1198 assert(!parameters->is_empty());
1199
1200 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1201 instructions->push_tail(var);
1202
1203 /* There are three kinds of vector constructors.
1204 *
1205 * - Construct a vector from a single scalar by replicating that scalar to
1206 * all components of the vector.
1207 *
1208 * - Construct a vector from at least a matrix. This case should already
1209 * have been taken care of in ast_function_expression::hir by breaking
1210 * down the matrix into a series of column vectors.
1211 *
1212 * - Construct a vector from an arbirary combination of vectors and
1213 * scalars. The components of the constructor parameters are assigned
1214 * to the vector in order until the vector is full.
1215 */
1216 const unsigned lhs_components = type->components();
1217 if (single_scalar_parameter(parameters)) {
1218 ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1219 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1220 lhs_components);
1221 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1222 const unsigned mask = (1U << lhs_components) - 1;
1223
1224 assert(rhs->type == lhs->type);
1225
1226 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1227 instructions->push_tail(inst);
1228 } else {
1229 unsigned base_component = 0;
1230 unsigned base_lhs_component = 0;
1231 ir_constant_data data;
1232 unsigned constant_mask = 0, constant_components = 0;
1233
1234 memset(&data, 0, sizeof(data));
1235
1236 foreach_in_list(ir_rvalue, param, parameters) {
1237 unsigned rhs_components = param->type->components();
1238
1239 /* Do not try to assign more components to the vector than it has! */
1240 if ((rhs_components + base_lhs_component) > lhs_components) {
1241 rhs_components = lhs_components - base_lhs_component;
1242 }
1243
1244 const ir_constant *const c = param->as_constant();
1245 if (c != NULL) {
1246 for (unsigned i = 0; i < rhs_components; i++) {
1247 switch (c->type->base_type) {
1248 case GLSL_TYPE_UINT:
1249 data.u[i + base_component] = c->get_uint_component(i);
1250 break;
1251 case GLSL_TYPE_INT:
1252 data.i[i + base_component] = c->get_int_component(i);
1253 break;
1254 case GLSL_TYPE_FLOAT:
1255 data.f[i + base_component] = c->get_float_component(i);
1256 break;
1257 case GLSL_TYPE_DOUBLE:
1258 data.d[i + base_component] = c->get_double_component(i);
1259 break;
1260 case GLSL_TYPE_BOOL:
1261 data.b[i + base_component] = c->get_bool_component(i);
1262 break;
1263 default:
1264 assert(!"Should not get here.");
1265 break;
1266 }
1267 }
1268
1269 /* Mask of fields to be written in the assignment. */
1270 constant_mask |=
1271 ((1U << rhs_components) - 1) << base_lhs_component;
1272 constant_components += rhs_components;
1273
1274 base_component += rhs_components;
1275 }
1276 /* Advance the component index by the number of components
1277 * that were just assigned.
1278 */
1279 base_lhs_component += rhs_components;
1280 }
1281
1282 if (constant_mask != 0) {
1283 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1284 const glsl_type *rhs_type =
1285 glsl_type::get_instance(var->type->base_type,
1286 constant_components,
1287 1);
1288 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1289
1290 ir_instruction *inst =
1291 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1292 instructions->push_tail(inst);
1293 }
1294
1295 base_component = 0;
1296 foreach_in_list(ir_rvalue, param, parameters) {
1297 unsigned rhs_components = param->type->components();
1298
1299 /* Do not try to assign more components to the vector than it has! */
1300 if ((rhs_components + base_component) > lhs_components) {
1301 rhs_components = lhs_components - base_component;
1302 }
1303
1304 /* If we do not have any components left to copy, break out of the
1305 * loop. This can happen when initializing a vec4 with a mat3 as the
1306 * mat3 would have been broken into a series of column vectors.
1307 */
1308 if (rhs_components == 0) {
1309 break;
1310 }
1311
1312 const ir_constant *const c = param->as_constant();
1313 if (c == NULL) {
1314 /* Mask of fields to be written in the assignment. */
1315 const unsigned write_mask = ((1U << rhs_components) - 1)
1316 << base_component;
1317
1318 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1319
1320 /* Generate a swizzle so that LHS and RHS sizes match. */
1321 ir_rvalue *rhs =
1322 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1323
1324 ir_instruction *inst =
1325 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1326 instructions->push_tail(inst);
1327 }
1328
1329 /* Advance the component index by the number of components that were
1330 * just assigned.
1331 */
1332 base_component += rhs_components;
1333 }
1334 }
1335 return new(ctx) ir_dereference_variable(var);
1336 }
1337
1338
1339 /**
1340 * Generate assignment of a portion of a vector to a portion of a matrix column
1341 *
1342 * \param src_base First component of the source to be used in assignment
1343 * \param column Column of destination to be assiged
1344 * \param row_base First component of the destination column to be assigned
1345 * \param count Number of components to be assigned
1346 *
1347 * \note
1348 * \c src_base + \c count must be less than or equal to the number of
1349 * components in the source vector.
1350 */
1351 ir_instruction *
1352 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1353 ir_rvalue *src, unsigned src_base, unsigned count,
1354 void *mem_ctx)
1355 {
1356 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1357 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1358 col_idx);
1359
1360 assert(column_ref->type->components() >= (row_base + count));
1361 assert(src->type->components() >= (src_base + count));
1362
1363 /* Generate a swizzle that extracts the number of components from the source
1364 * that are to be assigned to the column of the matrix.
1365 */
1366 if (count < src->type->vector_elements) {
1367 src = new(mem_ctx) ir_swizzle(src,
1368 src_base + 0, src_base + 1,
1369 src_base + 2, src_base + 3,
1370 count);
1371 }
1372
1373 /* Mask of fields to be written in the assignment. */
1374 const unsigned write_mask = ((1U << count) - 1) << row_base;
1375
1376 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1377 }
1378
1379
1380 /**
1381 * Generate inline code for a matrix constructor
1382 *
1383 * The generated constructor code will consist of a temporary variable
1384 * declaration of the same type as the constructor. A sequence of assignments
1385 * from constructor parameters to the temporary will follow.
1386 *
1387 * \return
1388 * An \c ir_dereference_variable of the temprorary generated in the constructor
1389 * body.
1390 */
1391 ir_rvalue *
1392 emit_inline_matrix_constructor(const glsl_type *type,
1393 exec_list *instructions,
1394 exec_list *parameters,
1395 void *ctx)
1396 {
1397 assert(!parameters->is_empty());
1398
1399 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1400 instructions->push_tail(var);
1401
1402 /* There are three kinds of matrix constructors.
1403 *
1404 * - Construct a matrix from a single scalar by replicating that scalar to
1405 * along the diagonal of the matrix and setting all other components to
1406 * zero.
1407 *
1408 * - Construct a matrix from an arbirary combination of vectors and
1409 * scalars. The components of the constructor parameters are assigned
1410 * to the matrix in column-major order until the matrix is full.
1411 *
1412 * - Construct a matrix from a single matrix. The source matrix is copied
1413 * to the upper left portion of the constructed matrix, and the remaining
1414 * elements take values from the identity matrix.
1415 */
1416 ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1417 if (single_scalar_parameter(parameters)) {
1418 /* Assign the scalar to the X component of a vec4, and fill the remaining
1419 * components with zero.
1420 */
1421 glsl_base_type param_base_type = first_param->type->base_type;
1422 assert(param_base_type == GLSL_TYPE_FLOAT ||
1423 param_base_type == GLSL_TYPE_DOUBLE);
1424 ir_variable *rhs_var =
1425 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1426 "mat_ctor_vec",
1427 ir_var_temporary);
1428 instructions->push_tail(rhs_var);
1429
1430 ir_constant_data zero;
1431 for (unsigned i = 0; i < 4; i++)
1432 if (param_base_type == GLSL_TYPE_FLOAT)
1433 zero.f[i] = 0.0;
1434 else
1435 zero.d[i] = 0.0;
1436
1437 ir_instruction *inst =
1438 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1439 new(ctx) ir_constant(rhs_var->type, &zero),
1440 NULL);
1441 instructions->push_tail(inst);
1442
1443 ir_dereference *const rhs_ref =
1444 new(ctx) ir_dereference_variable(rhs_var);
1445
1446 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1447 instructions->push_tail(inst);
1448
1449 /* Assign the temporary vector to each column of the destination matrix
1450 * with a swizzle that puts the X component on the diagonal of the
1451 * matrix. In some cases this may mean that the X component does not
1452 * get assigned into the column at all (i.e., when the matrix has more
1453 * columns than rows).
1454 */
1455 static const unsigned rhs_swiz[4][4] = {
1456 { 0, 1, 1, 1 },
1457 { 1, 0, 1, 1 },
1458 { 1, 1, 0, 1 },
1459 { 1, 1, 1, 0 }
1460 };
1461
1462 const unsigned cols_to_init = MIN2(type->matrix_columns,
1463 type->vector_elements);
1464 for (unsigned i = 0; i < cols_to_init; i++) {
1465 ir_constant *const col_idx = new(ctx) ir_constant(i);
1466 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1467 col_idx);
1468
1469 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1470 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1471 type->vector_elements);
1472
1473 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1474 instructions->push_tail(inst);
1475 }
1476
1477 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1478 ir_constant *const col_idx = new(ctx) ir_constant(i);
1479 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1480 col_idx);
1481
1482 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1483 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1484 type->vector_elements);
1485
1486 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1487 instructions->push_tail(inst);
1488 }
1489 } else if (first_param->type->is_matrix()) {
1490 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1491 *
1492 * "If a matrix is constructed from a matrix, then each component
1493 * (column i, row j) in the result that has a corresponding
1494 * component (column i, row j) in the argument will be initialized
1495 * from there. All other components will be initialized to the
1496 * identity matrix. If a matrix argument is given to a matrix
1497 * constructor, it is an error to have any other arguments."
1498 */
1499 assert(first_param->next->is_tail_sentinel());
1500 ir_rvalue *const src_matrix = first_param;
1501
1502 /* If the source matrix is smaller, pre-initialize the relavent parts of
1503 * the destination matrix to the identity matrix.
1504 */
1505 if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1506 (src_matrix->type->vector_elements < var->type->vector_elements)) {
1507
1508 /* If the source matrix has fewer rows, every column of the
1509 * destination must be initialized. Otherwise only the columns in
1510 * the destination that do not exist in the source must be
1511 * initialized.
1512 */
1513 unsigned col =
1514 (src_matrix->type->vector_elements < var->type->vector_elements)
1515 ? 0 : src_matrix->type->matrix_columns;
1516
1517 const glsl_type *const col_type = var->type->column_type();
1518 for (/* empty */; col < var->type->matrix_columns; col++) {
1519 ir_constant_data ident;
1520
1521 if (!col_type->is_double()) {
1522 ident.f[0] = 0.0f;
1523 ident.f[1] = 0.0f;
1524 ident.f[2] = 0.0f;
1525 ident.f[3] = 0.0f;
1526 ident.f[col] = 1.0f;
1527 } else {
1528 ident.d[0] = 0.0;
1529 ident.d[1] = 0.0;
1530 ident.d[2] = 0.0;
1531 ident.d[3] = 0.0;
1532 ident.d[col] = 1.0;
1533 }
1534
1535 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1536
1537 ir_rvalue *const lhs =
1538 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1539
1540 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1541 instructions->push_tail(inst);
1542 }
1543 }
1544
1545 /* Assign columns from the source matrix to the destination matrix.
1546 *
1547 * Since the parameter will be used in the RHS of multiple assignments,
1548 * generate a temporary and copy the paramter there.
1549 */
1550 ir_variable *const rhs_var =
1551 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1552 ir_var_temporary);
1553 instructions->push_tail(rhs_var);
1554
1555 ir_dereference *const rhs_var_ref =
1556 new(ctx) ir_dereference_variable(rhs_var);
1557 ir_instruction *const inst =
1558 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1559 instructions->push_tail(inst);
1560
1561 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1562 var->type->vector_elements);
1563 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1564 var->type->matrix_columns);
1565
1566 unsigned swiz[4] = { 0, 0, 0, 0 };
1567 for (unsigned i = 1; i < last_row; i++)
1568 swiz[i] = i;
1569
1570 const unsigned write_mask = (1U << last_row) - 1;
1571
1572 for (unsigned i = 0; i < last_col; i++) {
1573 ir_dereference *const lhs =
1574 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1575 ir_rvalue *const rhs_col =
1576 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1577
1578 /* If one matrix has columns that are smaller than the columns of the
1579 * other matrix, wrap the column access of the larger with a swizzle
1580 * so that the LHS and RHS of the assignment have the same size (and
1581 * therefore have the same type).
1582 *
1583 * It would be perfectly valid to unconditionally generate the
1584 * swizzles, this this will typically result in a more compact IR
1585 * tree.
1586 */
1587 ir_rvalue *rhs;
1588 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1589 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1590 } else {
1591 rhs = rhs_col;
1592 }
1593
1594 ir_instruction *inst =
1595 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1596 instructions->push_tail(inst);
1597 }
1598 } else {
1599 const unsigned cols = type->matrix_columns;
1600 const unsigned rows = type->vector_elements;
1601 unsigned remaining_slots = rows * cols;
1602 unsigned col_idx = 0;
1603 unsigned row_idx = 0;
1604
1605 foreach_in_list(ir_rvalue, rhs, parameters) {
1606 unsigned rhs_components = rhs->type->components();
1607 unsigned rhs_base = 0;
1608
1609 if (remaining_slots == 0)
1610 break;
1611
1612 /* Since the parameter might be used in the RHS of two assignments,
1613 * generate a temporary and copy the paramter there.
1614 */
1615 ir_variable *rhs_var =
1616 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1617 instructions->push_tail(rhs_var);
1618
1619 ir_dereference *rhs_var_ref =
1620 new(ctx) ir_dereference_variable(rhs_var);
1621 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1622 instructions->push_tail(inst);
1623
1624 do {
1625 /* Assign the current parameter to as many components of the matrix
1626 * as it will fill.
1627 *
1628 * NOTE: A single vector parameter can span two matrix columns. A
1629 * single vec4, for example, can completely fill a mat2.
1630 */
1631 unsigned count = MIN2(rows - row_idx,
1632 rhs_components - rhs_base);
1633
1634 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1635 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1636 row_idx,
1637 rhs_var_ref,
1638 rhs_base,
1639 count, ctx);
1640 instructions->push_tail(inst);
1641 rhs_base += count;
1642 row_idx += count;
1643 remaining_slots -= count;
1644
1645 /* Sometimes, there is still data left in the parameters and
1646 * components left to be set in the destination but in other
1647 * column.
1648 */
1649 if (row_idx >= rows) {
1650 row_idx = 0;
1651 col_idx++;
1652 }
1653 } while(remaining_slots > 0 && rhs_base < rhs_components);
1654 }
1655 }
1656
1657 return new(ctx) ir_dereference_variable(var);
1658 }
1659
1660
1661 ir_rvalue *
1662 emit_inline_record_constructor(const glsl_type *type,
1663 exec_list *instructions,
1664 exec_list *parameters,
1665 void *mem_ctx)
1666 {
1667 ir_variable *const var =
1668 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1669 ir_dereference_variable *const d =
1670 new(mem_ctx) ir_dereference_variable(var);
1671
1672 instructions->push_tail(var);
1673
1674 exec_node *node = parameters->get_head_raw();
1675 for (unsigned i = 0; i < type->length; i++) {
1676 assert(!node->is_tail_sentinel());
1677
1678 ir_dereference *const lhs =
1679 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1680 type->fields.structure[i].name);
1681
1682 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1683 assert(rhs != NULL);
1684
1685 ir_instruction *const assign =
1686 new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1687
1688 instructions->push_tail(assign);
1689 node = node->next;
1690 }
1691
1692 return d;
1693 }
1694
1695
1696 static ir_rvalue *
1697 process_record_constructor(exec_list *instructions,
1698 const glsl_type *constructor_type,
1699 YYLTYPE *loc, exec_list *parameters,
1700 struct _mesa_glsl_parse_state *state)
1701 {
1702 void *ctx = state;
1703 /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1704 *
1705 * "The arguments to the constructor will be used to set the structure's
1706 * fields, in order, using one argument per field. Each argument must
1707 * be the same type as the field it sets, or be a type that can be
1708 * converted to the field's type according to Section 4.1.10 “Implicit
1709 * Conversions.”"
1710 *
1711 * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1712 *
1713 * "In all cases, the innermost initializer (i.e., not a list of
1714 * initializers enclosed in curly braces) applied to an object must
1715 * have the same type as the object being initialized or be a type that
1716 * can be converted to the object's type according to section 4.1.10
1717 * "Implicit Conversions". In the latter case, an implicit conversion
1718 * will be done on the initializer before the assignment is done."
1719 */
1720 exec_list actual_parameters;
1721
1722 const unsigned parameter_count =
1723 process_parameters(instructions, &actual_parameters, parameters,
1724 state);
1725
1726 if (parameter_count != constructor_type->length) {
1727 _mesa_glsl_error(loc, state,
1728 "%s parameters in constructor for `%s'",
1729 parameter_count > constructor_type->length
1730 ? "too many": "insufficient",
1731 constructor_type->name);
1732 return ir_rvalue::error_value(ctx);
1733 }
1734
1735 bool all_parameters_are_constant = true;
1736
1737 int i = 0;
1738 /* Type cast each parameter and, if possible, fold constants. */
1739 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1740
1741 const glsl_struct_field *struct_field =
1742 &constructor_type->fields.structure[i];
1743
1744 /* Apply implicit conversions (not the scalar constructor rules, see the
1745 * spec quote above!) and attempt to convert the parameter to a constant
1746 * valued expression. After doing so, track whether or not all the
1747 * parameters to the constructor are trivially constant valued
1748 * expressions.
1749 */
1750 all_parameters_are_constant &=
1751 implicitly_convert_component(ir, struct_field->type->base_type,
1752 state);
1753
1754 if (ir->type != struct_field->type) {
1755 _mesa_glsl_error(loc, state,
1756 "parameter type mismatch in constructor for `%s.%s' "
1757 "(%s vs %s)",
1758 constructor_type->name,
1759 struct_field->name,
1760 ir->type->name,
1761 struct_field->type->name);
1762 return ir_rvalue::error_value(ctx);
1763 }
1764
1765 i++;
1766 }
1767
1768 if (all_parameters_are_constant) {
1769 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1770 } else {
1771 return emit_inline_record_constructor(constructor_type, instructions,
1772 &actual_parameters, state);
1773 }
1774 }
1775
1776 ir_rvalue *
1777 ast_function_expression::handle_method(exec_list *instructions,
1778 struct _mesa_glsl_parse_state *state)
1779 {
1780 const ast_expression *field = subexpressions[0];
1781 ir_rvalue *op;
1782 ir_rvalue *result;
1783 void *ctx = state;
1784 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1785 YYLTYPE loc = get_location();
1786 state->check_version(120, 300, &loc, "methods not supported");
1787
1788 const char *method;
1789 method = field->primary_expression.identifier;
1790
1791 /* This would prevent to raise "uninitialized variable" warnings when
1792 * calling array.length.
1793 */
1794 field->subexpressions[0]->set_is_lhs(true);
1795 op = field->subexpressions[0]->hir(instructions, state);
1796 if (strcmp(method, "length") == 0) {
1797 if (!this->expressions.is_empty()) {
1798 _mesa_glsl_error(&loc, state, "length method takes no arguments");
1799 goto fail;
1800 }
1801
1802 if (op->type->is_array()) {
1803 if (op->type->is_unsized_array()) {
1804 if (!state->has_shader_storage_buffer_objects()) {
1805 _mesa_glsl_error(&loc, state,
1806 "length called on unsized array"
1807 " only available with"
1808 " ARB_shader_storage_buffer_object");
1809 }
1810 /* Calculate length of an unsized array in run-time */
1811 result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
1812 op);
1813 } else {
1814 result = new(ctx) ir_constant(op->type->array_size());
1815 }
1816 } else if (op->type->is_vector()) {
1817 if (state->has_420pack()) {
1818 /* .length() returns int. */
1819 result = new(ctx) ir_constant((int) op->type->vector_elements);
1820 } else {
1821 _mesa_glsl_error(&loc, state, "length method on matrix only"
1822 " available with ARB_shading_language_420pack");
1823 goto fail;
1824 }
1825 } else if (op->type->is_matrix()) {
1826 if (state->has_420pack()) {
1827 /* .length() returns int. */
1828 result = new(ctx) ir_constant((int) op->type->matrix_columns);
1829 } else {
1830 _mesa_glsl_error(&loc, state, "length method on matrix only"
1831 " available with ARB_shading_language_420pack");
1832 goto fail;
1833 }
1834 } else {
1835 _mesa_glsl_error(&loc, state, "length called on scalar.");
1836 goto fail;
1837 }
1838 } else {
1839 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
1840 goto fail;
1841 }
1842 return result;
1843 fail:
1844 return ir_rvalue::error_value(ctx);
1845 }
1846
1847 ir_rvalue *
1848 ast_function_expression::hir(exec_list *instructions,
1849 struct _mesa_glsl_parse_state *state)
1850 {
1851 void *ctx = state;
1852 /* There are three sorts of function calls.
1853 *
1854 * 1. constructors - The first subexpression is an ast_type_specifier.
1855 * 2. methods - Only the .length() method of array types.
1856 * 3. functions - Calls to regular old functions.
1857 *
1858 */
1859 if (is_constructor()) {
1860 const ast_type_specifier *type =
1861 (ast_type_specifier *) subexpressions[0];
1862 YYLTYPE loc = type->get_location();
1863 const char *name;
1864
1865 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1866
1867 /* constructor_type can be NULL if a variable with the same name as the
1868 * structure has come into scope.
1869 */
1870 if (constructor_type == NULL) {
1871 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1872 "may be shadowed by a variable with the same name)",
1873 type->type_name);
1874 return ir_rvalue::error_value(ctx);
1875 }
1876
1877
1878 /* Constructors for opaque types are illegal.
1879 */
1880 if (constructor_type->contains_opaque()) {
1881 _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
1882 constructor_type->name);
1883 return ir_rvalue::error_value(ctx);
1884 }
1885
1886 if (constructor_type->is_subroutine()) {
1887 _mesa_glsl_error(& loc, state,
1888 "subroutine name cannot be a constructor `%s'",
1889 constructor_type->name);
1890 return ir_rvalue::error_value(ctx);
1891 }
1892
1893 if (constructor_type->is_array()) {
1894 if (!state->check_version(120, 300, &loc,
1895 "array constructors forbidden")) {
1896 return ir_rvalue::error_value(ctx);
1897 }
1898
1899 return process_array_constructor(instructions, constructor_type,
1900 & loc, &this->expressions, state);
1901 }
1902
1903
1904 /* There are two kinds of constructor calls. Constructors for arrays and
1905 * structures must have the exact number of arguments with matching types
1906 * in the correct order. These constructors follow essentially the same
1907 * type matching rules as functions.
1908 *
1909 * Constructors for built-in language types, such as mat4 and vec2, are
1910 * free form. The only requirements are that the parameters must provide
1911 * enough values of the correct scalar type and that no arguments are
1912 * given past the last used argument.
1913 *
1914 * When using the C-style initializer syntax from GLSL 4.20, constructors
1915 * must have the exact number of arguments with matching types in the
1916 * correct order.
1917 */
1918 if (constructor_type->is_record()) {
1919 return process_record_constructor(instructions, constructor_type,
1920 &loc, &this->expressions,
1921 state);
1922 }
1923
1924 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1925 return ir_rvalue::error_value(ctx);
1926
1927 /* Total number of components of the type being constructed. */
1928 const unsigned type_components = constructor_type->components();
1929
1930 /* Number of components from parameters that have actually been
1931 * consumed. This is used to perform several kinds of error checking.
1932 */
1933 unsigned components_used = 0;
1934
1935 unsigned matrix_parameters = 0;
1936 unsigned nonmatrix_parameters = 0;
1937 exec_list actual_parameters;
1938
1939 foreach_list_typed(ast_node, ast, link, &this->expressions) {
1940 ir_rvalue *result = ast->hir(instructions, state);
1941
1942 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1943 *
1944 * "It is an error to provide extra arguments beyond this
1945 * last used argument."
1946 */
1947 if (components_used >= type_components) {
1948 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1949 "constructor",
1950 constructor_type->name);
1951 return ir_rvalue::error_value(ctx);
1952 }
1953
1954 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1955 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1956 "non-numeric data type",
1957 constructor_type->name);
1958 return ir_rvalue::error_value(ctx);
1959 }
1960
1961 /* Count the number of matrix and nonmatrix parameters. This
1962 * is used below to enforce some of the constructor rules.
1963 */
1964 if (result->type->is_matrix())
1965 matrix_parameters++;
1966 else
1967 nonmatrix_parameters++;
1968
1969 actual_parameters.push_tail(result);
1970 components_used += result->type->components();
1971 }
1972
1973 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1974 *
1975 * "It is an error to construct matrices from other matrices. This
1976 * is reserved for future use."
1977 */
1978 if (matrix_parameters > 0
1979 && constructor_type->is_matrix()
1980 && !state->check_version(120, 100, &loc,
1981 "cannot construct `%s' from a matrix",
1982 constructor_type->name)) {
1983 return ir_rvalue::error_value(ctx);
1984 }
1985
1986 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1987 *
1988 * "If a matrix argument is given to a matrix constructor, it is
1989 * an error to have any other arguments."
1990 */
1991 if ((matrix_parameters > 0)
1992 && ((matrix_parameters + nonmatrix_parameters) > 1)
1993 && constructor_type->is_matrix()) {
1994 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1995 "matrix must be only parameter",
1996 constructor_type->name);
1997 return ir_rvalue::error_value(ctx);
1998 }
1999
2000 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2001 *
2002 * "In these cases, there must be enough components provided in the
2003 * arguments to provide an initializer for every component in the
2004 * constructed value."
2005 */
2006 if (components_used < type_components && components_used != 1
2007 && matrix_parameters == 0) {
2008 _mesa_glsl_error(& loc, state, "too few components to construct "
2009 "`%s'",
2010 constructor_type->name);
2011 return ir_rvalue::error_value(ctx);
2012 }
2013
2014 /* Matrices can never be consumed as is by any constructor but matrix
2015 * constructors. If the constructor type is not matrix, always break the
2016 * matrix up into a series of column vectors.
2017 */
2018 if (!constructor_type->is_matrix()) {
2019 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2020 if (!matrix->type->is_matrix())
2021 continue;
2022
2023 /* Create a temporary containing the matrix. */
2024 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2025 ir_var_temporary);
2026 instructions->push_tail(var);
2027 instructions->push_tail(
2028 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2029 matrix, NULL));
2030 var->constant_value = matrix->constant_expression_value();
2031
2032 /* Replace the matrix with dereferences of its columns. */
2033 for (int i = 0; i < matrix->type->matrix_columns; i++) {
2034 matrix->insert_before(
2035 new (ctx) ir_dereference_array(var,
2036 new(ctx) ir_constant(i)));
2037 }
2038 matrix->remove();
2039 }
2040 }
2041
2042 bool all_parameters_are_constant = true;
2043
2044 /* Type cast each parameter and, if possible, fold constants.*/
2045 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2046 const glsl_type *desired_type =
2047 glsl_type::get_instance(constructor_type->base_type,
2048 ir->type->vector_elements,
2049 ir->type->matrix_columns);
2050 ir_rvalue *result = convert_component(ir, desired_type);
2051
2052 /* Attempt to convert the parameter to a constant valued expression.
2053 * After doing so, track whether or not all the parameters to the
2054 * constructor are trivially constant valued expressions.
2055 */
2056 ir_rvalue *const constant = result->constant_expression_value();
2057
2058 if (constant != NULL)
2059 result = constant;
2060 else
2061 all_parameters_are_constant = false;
2062
2063 if (result != ir) {
2064 ir->replace_with(result);
2065 }
2066 }
2067
2068 /* If all of the parameters are trivially constant, create a
2069 * constant representing the complete collection of parameters.
2070 */
2071 if (all_parameters_are_constant) {
2072 return new(ctx) ir_constant(constructor_type, &actual_parameters);
2073 } else if (constructor_type->is_scalar()) {
2074 return dereference_component((ir_rvalue *)
2075 actual_parameters.get_head_raw(),
2076 0);
2077 } else if (constructor_type->is_vector()) {
2078 return emit_inline_vector_constructor(constructor_type,
2079 instructions,
2080 &actual_parameters,
2081 ctx);
2082 } else {
2083 assert(constructor_type->is_matrix());
2084 return emit_inline_matrix_constructor(constructor_type,
2085 instructions,
2086 &actual_parameters,
2087 ctx);
2088 }
2089 } else if (subexpressions[0]->oper == ast_field_selection) {
2090 return handle_method(instructions, state);
2091 } else {
2092 const ast_expression *id = subexpressions[0];
2093 const char *func_name = NULL;
2094 YYLTYPE loc = get_location();
2095 exec_list actual_parameters;
2096 ir_variable *sub_var = NULL;
2097 ir_rvalue *array_idx = NULL;
2098
2099 process_parameters(instructions, &actual_parameters, &this->expressions,
2100 state);
2101
2102 if (id->oper == ast_array_index) {
2103 array_idx = generate_array_index(ctx, instructions, state, loc,
2104 id->subexpressions[0],
2105 id->subexpressions[1], &func_name,
2106 &actual_parameters);
2107 } else if (id->oper == ast_identifier) {
2108 func_name = id->primary_expression.identifier;
2109 } else {
2110 _mesa_glsl_error(&loc, state, "function name is not an identifier");
2111 }
2112
2113 /* an error was emitted earlier */
2114 if (!func_name)
2115 return ir_rvalue::error_value(ctx);
2116
2117 ir_function_signature *sig =
2118 match_function_by_name(func_name, &actual_parameters, state);
2119
2120 ir_rvalue *value = NULL;
2121 if (sig == NULL) {
2122 sig = match_subroutine_by_name(func_name, &actual_parameters,
2123 state, &sub_var);
2124 }
2125
2126 if (sig == NULL) {
2127 no_matching_function_error(func_name, &loc,
2128 &actual_parameters, state);
2129 value = ir_rvalue::error_value(ctx);
2130 } else if (!verify_parameter_modes(state, sig,
2131 actual_parameters,
2132 this->expressions)) {
2133 /* an error has already been emitted */
2134 value = ir_rvalue::error_value(ctx);
2135 } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2136 /* ftransform refers to global variables, and we don't have any code
2137 * for remapping the variable references in the built-in shader.
2138 */
2139 ir_variable *mvp =
2140 state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2141 ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2142 value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2143 new(ctx) ir_dereference_variable(mvp),
2144 new(ctx) ir_dereference_variable(vtx));
2145 } else {
2146 if (state->stage == MESA_SHADER_TESS_CTRL &&
2147 sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
2148 if (state->current_function == NULL ||
2149 strcmp(state->current_function->function_name(), "main") != 0) {
2150 _mesa_glsl_error(&loc, state,
2151 "barrier() may only be used in main()");
2152 }
2153
2154 if (state->found_return) {
2155 _mesa_glsl_error(&loc, state,
2156 "barrier() may not be used after return");
2157 }
2158
2159 if (instructions != &state->current_function->body) {
2160 _mesa_glsl_error(&loc, state,
2161 "barrier() may not be used in control flow");
2162 }
2163 }
2164
2165 value = generate_call(instructions, sig, &actual_parameters, sub_var,
2166 array_idx, state, sig->is_builtin());
2167 if (!value) {
2168 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2169 "void_var",
2170 ir_var_temporary);
2171 instructions->push_tail(tmp);
2172 value = new(ctx) ir_dereference_variable(tmp);
2173 }
2174 }
2175
2176 return value;
2177 }
2178
2179 unreachable("not reached");
2180 }
2181
2182 bool
2183 ast_function_expression::has_sequence_subexpression() const
2184 {
2185 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2186 if (ast->has_sequence_subexpression())
2187 return true;
2188 }
2189
2190 return false;
2191 }
2192
2193 ir_rvalue *
2194 ast_aggregate_initializer::hir(exec_list *instructions,
2195 struct _mesa_glsl_parse_state *state)
2196 {
2197 void *ctx = state;
2198 YYLTYPE loc = this->get_location();
2199
2200 if (!this->constructor_type) {
2201 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2202 return ir_rvalue::error_value(ctx);
2203 }
2204 const glsl_type *const constructor_type = this->constructor_type;
2205
2206 if (!state->has_420pack()) {
2207 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2208 "GL_ARB_shading_language_420pack extension");
2209 return ir_rvalue::error_value(ctx);
2210 }
2211
2212 if (constructor_type->is_array()) {
2213 return process_array_constructor(instructions, constructor_type, &loc,
2214 &this->expressions, state);
2215 }
2216
2217 if (constructor_type->is_record()) {
2218 return process_record_constructor(instructions, constructor_type, &loc,
2219 &this->expressions, state);
2220 }
2221
2222 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2223 &this->expressions, state);
2224 }