glsl: allow any l-value of an input variable as interpolant in interpolateAt*
[mesa.git] / src / compiler / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 #include "main/shaderobj.h"
30 #include "builtin_functions.h"
31
32 static ir_rvalue *
33 convert_component(ir_rvalue *src, const glsl_type *desired_type);
34
35 static unsigned
36 process_parameters(exec_list *instructions, exec_list *actual_parameters,
37 exec_list *parameters,
38 struct _mesa_glsl_parse_state *state)
39 {
40 void *mem_ctx = state;
41 unsigned count = 0;
42
43 foreach_list_typed(ast_node, ast, link, parameters) {
44 /* We need to process the parameters first in order to know if we can
45 * raise or not a unitialized warning. Calling set_is_lhs silence the
46 * warning for now. Raising the warning or not will be checked at
47 * verify_parameter_modes.
48 */
49 ast->set_is_lhs(true);
50 ir_rvalue *result = ast->hir(instructions, state);
51
52 ir_constant *const constant =
53 result->constant_expression_value(mem_ctx);
54
55 if (constant != NULL)
56 result = constant;
57
58 actual_parameters->push_tail(result);
59 count++;
60 }
61
62 return count;
63 }
64
65
66 /**
67 * Generate a source prototype for a function signature
68 *
69 * \param return_type Return type of the function. May be \c NULL.
70 * \param name Name of the function.
71 * \param parameters List of \c ir_instruction nodes representing the
72 * parameter list for the function. This may be either a
73 * formal (\c ir_variable) or actual (\c ir_rvalue)
74 * parameter list. Only the type is used.
75 *
76 * \return
77 * A ralloced string representing the prototype of the function.
78 */
79 char *
80 prototype_string(const glsl_type *return_type, const char *name,
81 exec_list *parameters)
82 {
83 char *str = NULL;
84
85 if (return_type != NULL)
86 str = ralloc_asprintf(NULL, "%s ", return_type->name);
87
88 ralloc_asprintf_append(&str, "%s(", name);
89
90 const char *comma = "";
91 foreach_in_list(const ir_variable, param, parameters) {
92 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
93 comma = ", ";
94 }
95
96 ralloc_strcat(&str, ")");
97 return str;
98 }
99
100 static bool
101 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
102 const ir_variable *formal, const ir_variable *actual)
103 {
104 /**
105 * From the ARB_shader_image_load_store specification:
106 *
107 * "The values of image variables qualified with coherent,
108 * volatile, restrict, readonly, or writeonly may not be passed
109 * to functions whose formal parameters lack such
110 * qualifiers. [...] It is legal to have additional qualifiers
111 * on a formal parameter, but not to have fewer."
112 */
113 if (actual->data.memory_coherent && !formal->data.memory_coherent) {
114 _mesa_glsl_error(loc, state,
115 "function call parameter `%s' drops "
116 "`coherent' qualifier", formal->name);
117 return false;
118 }
119
120 if (actual->data.memory_volatile && !formal->data.memory_volatile) {
121 _mesa_glsl_error(loc, state,
122 "function call parameter `%s' drops "
123 "`volatile' qualifier", formal->name);
124 return false;
125 }
126
127 if (actual->data.memory_restrict && !formal->data.memory_restrict) {
128 _mesa_glsl_error(loc, state,
129 "function call parameter `%s' drops "
130 "`restrict' qualifier", formal->name);
131 return false;
132 }
133
134 if (actual->data.memory_read_only && !formal->data.memory_read_only) {
135 _mesa_glsl_error(loc, state,
136 "function call parameter `%s' drops "
137 "`readonly' qualifier", formal->name);
138 return false;
139 }
140
141 if (actual->data.memory_write_only && !formal->data.memory_write_only) {
142 _mesa_glsl_error(loc, state,
143 "function call parameter `%s' drops "
144 "`writeonly' qualifier", formal->name);
145 return false;
146 }
147
148 return true;
149 }
150
151 static bool
152 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
153 ir_variable *var)
154 {
155 if (!var ||
156 (!var->is_in_shader_storage_block() &&
157 var->data.mode != ir_var_shader_shared)) {
158 _mesa_glsl_error(loc, state, "First argument to atomic function "
159 "must be a buffer or shared variable");
160 return false;
161 }
162 return true;
163 }
164
165 static bool
166 is_atomic_function(const char *func_name)
167 {
168 return !strcmp(func_name, "atomicAdd") ||
169 !strcmp(func_name, "atomicMin") ||
170 !strcmp(func_name, "atomicMax") ||
171 !strcmp(func_name, "atomicAnd") ||
172 !strcmp(func_name, "atomicOr") ||
173 !strcmp(func_name, "atomicXor") ||
174 !strcmp(func_name, "atomicExchange") ||
175 !strcmp(func_name, "atomicCompSwap");
176 }
177
178 /**
179 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
180 * that 'const_in' formal parameters (an extension in our IR) correspond to
181 * ir_constant actual parameters.
182 */
183 static bool
184 verify_parameter_modes(_mesa_glsl_parse_state *state,
185 ir_function_signature *sig,
186 exec_list &actual_ir_parameters,
187 exec_list &actual_ast_parameters)
188 {
189 exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
190 exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
191
192 foreach_in_list(const ir_variable, formal, &sig->parameters) {
193 /* The lists must be the same length. */
194 assert(!actual_ir_node->is_tail_sentinel());
195 assert(!actual_ast_node->is_tail_sentinel());
196
197 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
198 const ast_expression *const actual_ast =
199 exec_node_data(ast_expression, actual_ast_node, link);
200
201 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
202 * FIXME: 0:0(0).
203 */
204 YYLTYPE loc = actual_ast->get_location();
205
206 /* Verify that 'const_in' parameters are ir_constants. */
207 if (formal->data.mode == ir_var_const_in &&
208 actual->ir_type != ir_type_constant) {
209 _mesa_glsl_error(&loc, state,
210 "parameter `in %s' must be a constant expression",
211 formal->name);
212 return false;
213 }
214
215 /* Verify that shader_in parameters are shader inputs */
216 if (formal->data.must_be_shader_input) {
217 const ir_rvalue *val = actual;
218
219 /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
220 if (val->ir_type == ir_type_swizzle) {
221 if (!state->is_version(440, 0)) {
222 _mesa_glsl_error(&loc, state,
223 "parameter `%s` must not be swizzled",
224 formal->name);
225 return false;
226 }
227 val = ((ir_swizzle *)val)->val;
228 }
229
230 for (;;) {
231 if (val->ir_type == ir_type_dereference_array) {
232 val = ((ir_dereference_array *)val)->array;
233 } else if (val->ir_type == ir_type_dereference_record &&
234 !state->es_shader) {
235 val = ((ir_dereference_record *)val)->record;
236 } else
237 break;
238 }
239
240 ir_variable *var = NULL;
241 if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
242 var = deref_var->variable_referenced();
243
244 if (!var || var->data.mode != ir_var_shader_in) {
245 _mesa_glsl_error(&loc, state,
246 "parameter `%s` must be a shader input",
247 formal->name);
248 return false;
249 }
250
251 var->data.must_be_shader_input = 1;
252 }
253
254 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
255 if (formal->data.mode == ir_var_function_out
256 || formal->data.mode == ir_var_function_inout) {
257 const char *mode = NULL;
258 switch (formal->data.mode) {
259 case ir_var_function_out: mode = "out"; break;
260 case ir_var_function_inout: mode = "inout"; break;
261 default: assert(false); break;
262 }
263
264 /* This AST-based check catches errors like f(i++). The IR-based
265 * is_lvalue() is insufficient because the actual parameter at the
266 * IR-level is just a temporary value, which is an l-value.
267 */
268 if (actual_ast->non_lvalue_description != NULL) {
269 _mesa_glsl_error(&loc, state,
270 "function parameter '%s %s' references a %s",
271 mode, formal->name,
272 actual_ast->non_lvalue_description);
273 return false;
274 }
275
276 ir_variable *var = actual->variable_referenced();
277
278 if (var && formal->data.mode == ir_var_function_inout) {
279 if ((var->data.mode == ir_var_auto ||
280 var->data.mode == ir_var_shader_out) &&
281 !var->data.assigned &&
282 !is_gl_identifier(var->name)) {
283 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
284 var->name);
285 }
286 }
287
288 if (var)
289 var->data.assigned = true;
290
291 if (var && var->data.read_only) {
292 _mesa_glsl_error(&loc, state,
293 "function parameter '%s %s' references the "
294 "read-only variable '%s'",
295 mode, formal->name,
296 actual->variable_referenced()->name);
297 return false;
298 } else if (!actual->is_lvalue(state)) {
299 _mesa_glsl_error(&loc, state,
300 "function parameter '%s %s' is not an lvalue",
301 mode, formal->name);
302 return false;
303 }
304 } else {
305 assert(formal->data.mode == ir_var_function_in ||
306 formal->data.mode == ir_var_const_in);
307 ir_variable *var = actual->variable_referenced();
308 if (var) {
309 if ((var->data.mode == ir_var_auto ||
310 var->data.mode == ir_var_shader_out) &&
311 !var->data.assigned &&
312 !is_gl_identifier(var->name)) {
313 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
314 var->name);
315 }
316 }
317 }
318
319 if (formal->type->is_image() &&
320 actual->variable_referenced()) {
321 if (!verify_image_parameter(&loc, state, formal,
322 actual->variable_referenced()))
323 return false;
324 }
325
326 actual_ir_node = actual_ir_node->next;
327 actual_ast_node = actual_ast_node->next;
328 }
329
330 /* The first parameter of atomic functions must be a buffer variable */
331 const char *func_name = sig->function_name();
332 bool is_atomic = is_atomic_function(func_name);
333 if (is_atomic) {
334 const ir_rvalue *const actual =
335 (ir_rvalue *) actual_ir_parameters.get_head_raw();
336
337 const ast_expression *const actual_ast =
338 exec_node_data(ast_expression,
339 actual_ast_parameters.get_head_raw(), link);
340 YYLTYPE loc = actual_ast->get_location();
341
342 if (!verify_first_atomic_parameter(&loc, state,
343 actual->variable_referenced())) {
344 return false;
345 }
346 }
347
348 return true;
349 }
350
351 static void
352 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
353 exec_list *before_instructions, exec_list *after_instructions,
354 bool parameter_is_inout)
355 {
356 ir_expression *const expr = actual->as_expression();
357
358 /* If the types match exactly and the parameter is not a vector-extract,
359 * nothing needs to be done to fix the parameter.
360 */
361 if (formal_type == actual->type
362 && (expr == NULL || expr->operation != ir_binop_vector_extract))
363 return;
364
365 /* To convert an out parameter, we need to create a temporary variable to
366 * hold the value before conversion, and then perform the conversion after
367 * the function call returns.
368 *
369 * This has the effect of transforming code like this:
370 *
371 * void f(out int x);
372 * float value;
373 * f(value);
374 *
375 * Into IR that's equivalent to this:
376 *
377 * void f(out int x);
378 * float value;
379 * int out_parameter_conversion;
380 * f(out_parameter_conversion);
381 * value = float(out_parameter_conversion);
382 *
383 * If the parameter is an ir_expression of ir_binop_vector_extract,
384 * additional conversion is needed in the post-call re-write.
385 */
386 ir_variable *tmp =
387 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
388
389 before_instructions->push_tail(tmp);
390
391 /* If the parameter is an inout parameter, copy the value of the actual
392 * parameter to the new temporary. Note that no type conversion is allowed
393 * here because inout parameters must match types exactly.
394 */
395 if (parameter_is_inout) {
396 /* Inout parameters should never require conversion, since that would
397 * require an implicit conversion to exist both to and from the formal
398 * parameter type, and there are no bidirectional implicit conversions.
399 */
400 assert (actual->type == formal_type);
401
402 ir_dereference_variable *const deref_tmp_1 =
403 new(mem_ctx) ir_dereference_variable(tmp);
404 ir_assignment *const assignment =
405 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
406 before_instructions->push_tail(assignment);
407 }
408
409 /* Replace the parameter in the call with a dereference of the new
410 * temporary.
411 */
412 ir_dereference_variable *const deref_tmp_2 =
413 new(mem_ctx) ir_dereference_variable(tmp);
414 actual->replace_with(deref_tmp_2);
415
416
417 /* Copy the temporary variable to the actual parameter with optional
418 * type conversion applied.
419 */
420 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
421 if (actual->type != formal_type)
422 rhs = convert_component(rhs, actual->type);
423
424 ir_rvalue *lhs = actual;
425 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
426 lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
427 NULL),
428 expr->operands[1]->clone(mem_ctx,
429 NULL));
430 }
431
432 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
433 after_instructions->push_tail(assignment_2);
434 }
435
436 /**
437 * Generate a function call.
438 *
439 * For non-void functions, this returns a dereference of the temporary
440 * variable which stores the return value for the call. For void functions,
441 * this returns NULL.
442 */
443 static ir_rvalue *
444 generate_call(exec_list *instructions, ir_function_signature *sig,
445 exec_list *actual_parameters,
446 ir_variable *sub_var,
447 ir_rvalue *array_idx,
448 struct _mesa_glsl_parse_state *state)
449 {
450 void *ctx = state;
451 exec_list post_call_conversions;
452
453 /* Perform implicit conversion of arguments. For out parameters, we need
454 * to place them in a temporary variable and do the conversion after the
455 * call takes place. Since we haven't emitted the call yet, we'll place
456 * the post-call conversions in a temporary exec_list, and emit them later.
457 */
458 foreach_two_lists(formal_node, &sig->parameters,
459 actual_node, actual_parameters) {
460 ir_rvalue *actual = (ir_rvalue *) actual_node;
461 ir_variable *formal = (ir_variable *) formal_node;
462
463 if (formal->type->is_numeric() || formal->type->is_boolean()) {
464 switch (formal->data.mode) {
465 case ir_var_const_in:
466 case ir_var_function_in: {
467 ir_rvalue *converted
468 = convert_component(actual, formal->type);
469 actual->replace_with(converted);
470 break;
471 }
472 case ir_var_function_out:
473 case ir_var_function_inout:
474 fix_parameter(ctx, actual, formal->type,
475 instructions, &post_call_conversions,
476 formal->data.mode == ir_var_function_inout);
477 break;
478 default:
479 assert (!"Illegal formal parameter mode");
480 break;
481 }
482 }
483 }
484
485 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
486 *
487 * "Initializers for const declarations must be formed from literal
488 * values, other const variables (not including function call
489 * paramaters), or expressions of these.
490 *
491 * Constructors may be used in such expressions, but function calls may
492 * not."
493 *
494 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
495 *
496 * "A constant expression is one of
497 *
498 * ...
499 *
500 * - a built-in function call whose arguments are all constant
501 * expressions, with the exception of the texture lookup
502 * functions, the noise functions, and ftransform. The built-in
503 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
504 * inside an initializer with an argument that is a constant
505 * expression."
506 *
507 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
508 *
509 * "A constant expression is one of
510 *
511 * ...
512 *
513 * - a built-in function call whose arguments are all constant
514 * expressions, with the exception of the texture lookup
515 * functions."
516 *
517 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
518 *
519 * "A constant expression is one of
520 *
521 * ...
522 *
523 * - a built-in function call whose arguments are all constant
524 * expressions, with the exception of the texture lookup
525 * functions. The built-in functions dFdx, dFdy, and fwidth must
526 * return 0 when evaluated inside an initializer with an argument
527 * that is a constant expression."
528 *
529 * If the function call is a constant expression, don't generate any
530 * instructions; just generate an ir_constant.
531 */
532 if (state->is_version(120, 100)) {
533 ir_constant *value = sig->constant_expression_value(ctx,
534 actual_parameters,
535 NULL);
536 if (value != NULL) {
537 return value;
538 }
539 }
540
541 ir_dereference_variable *deref = NULL;
542 if (!sig->return_type->is_void()) {
543 /* Create a new temporary to hold the return value. */
544 char *const name = ir_variable::temporaries_allocate_names
545 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
546 : NULL;
547
548 ir_variable *var;
549
550 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
551 instructions->push_tail(var);
552
553 ralloc_free(name);
554
555 deref = new(ctx) ir_dereference_variable(var);
556 }
557
558 ir_call *call = new(ctx) ir_call(sig, deref,
559 actual_parameters, sub_var, array_idx);
560 instructions->push_tail(call);
561 if (sig->is_builtin()) {
562 /* inline immediately */
563 call->generate_inline(call);
564 call->remove();
565 }
566
567 /* Also emit any necessary out-parameter conversions. */
568 instructions->append_list(&post_call_conversions);
569
570 return deref ? deref->clone(ctx, NULL) : NULL;
571 }
572
573 /**
574 * Given a function name and parameter list, find the matching signature.
575 */
576 static ir_function_signature *
577 match_function_by_name(const char *name,
578 exec_list *actual_parameters,
579 struct _mesa_glsl_parse_state *state)
580 {
581 ir_function *f = state->symbols->get_function(name);
582 ir_function_signature *local_sig = NULL;
583 ir_function_signature *sig = NULL;
584
585 /* Is the function hidden by a record type constructor? */
586 if (state->symbols->get_type(name))
587 return sig; /* no match */
588
589 /* Is the function hidden by a variable (impossible in 1.10)? */
590 if (!state->symbols->separate_function_namespace
591 && state->symbols->get_variable(name))
592 return sig; /* no match */
593
594 if (f != NULL) {
595 /* In desktop GL, the presence of a user-defined signature hides any
596 * built-in signatures, so we must ignore them. In contrast, in ES2
597 * user-defined signatures add new overloads, so we must consider them.
598 */
599 bool allow_builtins = state->es_shader || !f->has_user_signature();
600
601 /* Look for a match in the local shader. If exact, we're done. */
602 bool is_exact = false;
603 sig = local_sig = f->matching_signature(state, actual_parameters,
604 allow_builtins, &is_exact);
605 if (is_exact)
606 return sig;
607
608 if (!allow_builtins)
609 return sig;
610 }
611
612 /* Local shader has no exact candidates; check the built-ins. */
613 _mesa_glsl_initialize_builtin_functions();
614 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
615 return sig;
616 }
617
618 static ir_function_signature *
619 match_subroutine_by_name(const char *name,
620 exec_list *actual_parameters,
621 struct _mesa_glsl_parse_state *state,
622 ir_variable **var_r)
623 {
624 void *ctx = state;
625 ir_function_signature *sig = NULL;
626 ir_function *f, *found = NULL;
627 const char *new_name;
628 ir_variable *var;
629 bool is_exact = false;
630
631 new_name =
632 ralloc_asprintf(ctx, "%s_%s",
633 _mesa_shader_stage_to_subroutine_prefix(state->stage),
634 name);
635 var = state->symbols->get_variable(new_name);
636 if (!var)
637 return NULL;
638
639 for (int i = 0; i < state->num_subroutine_types; i++) {
640 f = state->subroutine_types[i];
641 if (strcmp(f->name, var->type->without_array()->name))
642 continue;
643 found = f;
644 break;
645 }
646
647 if (!found)
648 return NULL;
649 *var_r = var;
650 sig = found->matching_signature(state, actual_parameters,
651 false, &is_exact);
652 return sig;
653 }
654
655 static ir_rvalue *
656 generate_array_index(void *mem_ctx, exec_list *instructions,
657 struct _mesa_glsl_parse_state *state, YYLTYPE loc,
658 const ast_expression *array, ast_expression *idx,
659 const char **function_name, exec_list *actual_parameters)
660 {
661 if (array->oper == ast_array_index) {
662 /* This handles arrays of arrays */
663 ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
664 state, loc,
665 array->subexpressions[0],
666 array->subexpressions[1],
667 function_name,
668 actual_parameters);
669 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
670
671 YYLTYPE index_loc = idx->get_location();
672 return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
673 outer_array_idx, loc,
674 index_loc);
675 } else {
676 ir_variable *sub_var = NULL;
677 *function_name = array->primary_expression.identifier;
678
679 match_subroutine_by_name(*function_name, actual_parameters,
680 state, &sub_var);
681
682 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
683 return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
684 }
685 }
686
687 static void
688 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
689 ir_function *f)
690 {
691 if (f == NULL)
692 return;
693
694 foreach_in_list(ir_function_signature, sig, &f->signatures) {
695 if (sig->is_builtin() && !sig->is_builtin_available(state))
696 continue;
697
698 char *str = prototype_string(sig->return_type, f->name,
699 &sig->parameters);
700 _mesa_glsl_error(loc, state, " %s", str);
701 ralloc_free(str);
702 }
703 }
704
705 /**
706 * Raise a "no matching function" error, listing all possible overloads the
707 * compiler considered so developers can figure out what went wrong.
708 */
709 static void
710 no_matching_function_error(const char *name,
711 YYLTYPE *loc,
712 exec_list *actual_parameters,
713 _mesa_glsl_parse_state *state)
714 {
715 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
716
717 if (state->symbols->get_function(name) == NULL
718 && (!state->uses_builtin_functions
719 || sh->symbols->get_function(name) == NULL)) {
720 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
721 } else {
722 char *str = prototype_string(NULL, name, actual_parameters);
723 _mesa_glsl_error(loc, state,
724 "no matching function for call to `%s';"
725 " candidates are:",
726 str);
727 ralloc_free(str);
728
729 print_function_prototypes(state, loc,
730 state->symbols->get_function(name));
731
732 if (state->uses_builtin_functions) {
733 print_function_prototypes(state, loc,
734 sh->symbols->get_function(name));
735 }
736 }
737 }
738
739 /**
740 * Perform automatic type conversion of constructor parameters
741 *
742 * This implements the rules in the "Conversion and Scalar Constructors"
743 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
744 */
745 static ir_rvalue *
746 convert_component(ir_rvalue *src, const glsl_type *desired_type)
747 {
748 void *ctx = ralloc_parent(src);
749 const unsigned a = desired_type->base_type;
750 const unsigned b = src->type->base_type;
751 ir_expression *result = NULL;
752
753 if (src->type->is_error())
754 return src;
755
756 assert(a <= GLSL_TYPE_IMAGE);
757 assert(b <= GLSL_TYPE_IMAGE);
758
759 if (a == b)
760 return src;
761
762 switch (a) {
763 case GLSL_TYPE_UINT:
764 switch (b) {
765 case GLSL_TYPE_INT:
766 result = new(ctx) ir_expression(ir_unop_i2u, src);
767 break;
768 case GLSL_TYPE_FLOAT:
769 result = new(ctx) ir_expression(ir_unop_f2u, src);
770 break;
771 case GLSL_TYPE_BOOL:
772 result = new(ctx) ir_expression(ir_unop_i2u,
773 new(ctx) ir_expression(ir_unop_b2i,
774 src));
775 break;
776 case GLSL_TYPE_DOUBLE:
777 result = new(ctx) ir_expression(ir_unop_d2u, src);
778 break;
779 case GLSL_TYPE_UINT64:
780 result = new(ctx) ir_expression(ir_unop_u642u, src);
781 break;
782 case GLSL_TYPE_INT64:
783 result = new(ctx) ir_expression(ir_unop_i642u, src);
784 break;
785 case GLSL_TYPE_SAMPLER:
786 result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
787 break;
788 case GLSL_TYPE_IMAGE:
789 result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
790 break;
791 }
792 break;
793 case GLSL_TYPE_INT:
794 switch (b) {
795 case GLSL_TYPE_UINT:
796 result = new(ctx) ir_expression(ir_unop_u2i, src);
797 break;
798 case GLSL_TYPE_FLOAT:
799 result = new(ctx) ir_expression(ir_unop_f2i, src);
800 break;
801 case GLSL_TYPE_BOOL:
802 result = new(ctx) ir_expression(ir_unop_b2i, src);
803 break;
804 case GLSL_TYPE_DOUBLE:
805 result = new(ctx) ir_expression(ir_unop_d2i, src);
806 break;
807 case GLSL_TYPE_UINT64:
808 result = new(ctx) ir_expression(ir_unop_u642i, src);
809 break;
810 case GLSL_TYPE_INT64:
811 result = new(ctx) ir_expression(ir_unop_i642i, src);
812 break;
813 }
814 break;
815 case GLSL_TYPE_FLOAT:
816 switch (b) {
817 case GLSL_TYPE_UINT:
818 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
819 break;
820 case GLSL_TYPE_INT:
821 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
822 break;
823 case GLSL_TYPE_BOOL:
824 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
825 break;
826 case GLSL_TYPE_DOUBLE:
827 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
828 break;
829 case GLSL_TYPE_UINT64:
830 result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
831 break;
832 case GLSL_TYPE_INT64:
833 result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
834 break;
835 }
836 break;
837 case GLSL_TYPE_BOOL:
838 switch (b) {
839 case GLSL_TYPE_UINT:
840 result = new(ctx) ir_expression(ir_unop_i2b,
841 new(ctx) ir_expression(ir_unop_u2i,
842 src));
843 break;
844 case GLSL_TYPE_INT:
845 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
846 break;
847 case GLSL_TYPE_FLOAT:
848 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
849 break;
850 case GLSL_TYPE_DOUBLE:
851 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
852 break;
853 case GLSL_TYPE_UINT64:
854 result = new(ctx) ir_expression(ir_unop_i642b,
855 new(ctx) ir_expression(ir_unop_u642i64,
856 src));
857 break;
858 case GLSL_TYPE_INT64:
859 result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
860 break;
861 }
862 break;
863 case GLSL_TYPE_DOUBLE:
864 switch (b) {
865 case GLSL_TYPE_INT:
866 result = new(ctx) ir_expression(ir_unop_i2d, src);
867 break;
868 case GLSL_TYPE_UINT:
869 result = new(ctx) ir_expression(ir_unop_u2d, src);
870 break;
871 case GLSL_TYPE_BOOL:
872 result = new(ctx) ir_expression(ir_unop_f2d,
873 new(ctx) ir_expression(ir_unop_b2f,
874 src));
875 break;
876 case GLSL_TYPE_FLOAT:
877 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
878 break;
879 case GLSL_TYPE_UINT64:
880 result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
881 break;
882 case GLSL_TYPE_INT64:
883 result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
884 break;
885 }
886 break;
887 case GLSL_TYPE_UINT64:
888 switch (b) {
889 case GLSL_TYPE_INT:
890 result = new(ctx) ir_expression(ir_unop_i2u64, src);
891 break;
892 case GLSL_TYPE_UINT:
893 result = new(ctx) ir_expression(ir_unop_u2u64, src);
894 break;
895 case GLSL_TYPE_BOOL:
896 result = new(ctx) ir_expression(ir_unop_i642u64,
897 new(ctx) ir_expression(ir_unop_b2i64,
898 src));
899 break;
900 case GLSL_TYPE_FLOAT:
901 result = new(ctx) ir_expression(ir_unop_f2u64, src);
902 break;
903 case GLSL_TYPE_DOUBLE:
904 result = new(ctx) ir_expression(ir_unop_d2u64, src);
905 break;
906 case GLSL_TYPE_INT64:
907 result = new(ctx) ir_expression(ir_unop_i642u64, src);
908 break;
909 }
910 break;
911 case GLSL_TYPE_INT64:
912 switch (b) {
913 case GLSL_TYPE_INT:
914 result = new(ctx) ir_expression(ir_unop_i2i64, src);
915 break;
916 case GLSL_TYPE_UINT:
917 result = new(ctx) ir_expression(ir_unop_u2i64, src);
918 break;
919 case GLSL_TYPE_BOOL:
920 result = new(ctx) ir_expression(ir_unop_b2i64, src);
921 break;
922 case GLSL_TYPE_FLOAT:
923 result = new(ctx) ir_expression(ir_unop_f2i64, src);
924 break;
925 case GLSL_TYPE_DOUBLE:
926 result = new(ctx) ir_expression(ir_unop_d2i64, src);
927 break;
928 case GLSL_TYPE_UINT64:
929 result = new(ctx) ir_expression(ir_unop_u642i64, src);
930 break;
931 }
932 break;
933 case GLSL_TYPE_SAMPLER:
934 switch (b) {
935 case GLSL_TYPE_UINT:
936 result = new(ctx)
937 ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
938 break;
939 }
940 break;
941 case GLSL_TYPE_IMAGE:
942 switch (b) {
943 case GLSL_TYPE_UINT:
944 result = new(ctx)
945 ir_expression(ir_unop_pack_image_2x32, desired_type, src);
946 break;
947 }
948 break;
949 }
950
951 assert(result != NULL);
952 assert(result->type == desired_type);
953
954 /* Try constant folding; it may fold in the conversion we just added. */
955 ir_constant *const constant = result->constant_expression_value(ctx);
956 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
957 }
958
959
960 /**
961 * Perform automatic type and constant conversion of constructor parameters
962 *
963 * This implements the rules in the "Implicit Conversions" rules, not the
964 * "Conversion and Scalar Constructors".
965 *
966 * After attempting the implicit conversion, an attempt to convert into a
967 * constant valued expression is also done.
968 *
969 * The \c from \c ir_rvalue is converted "in place".
970 *
971 * \param from Operand that is being converted
972 * \param to Base type the operand will be converted to
973 * \param state GLSL compiler state
974 *
975 * \return
976 * If the attempt to convert into a constant expression succeeds, \c true is
977 * returned. Otherwise \c false is returned.
978 */
979 static bool
980 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
981 struct _mesa_glsl_parse_state *state)
982 {
983 void *mem_ctx = state;
984 ir_rvalue *result = from;
985
986 if (to != from->type->base_type) {
987 const glsl_type *desired_type =
988 glsl_type::get_instance(to,
989 from->type->vector_elements,
990 from->type->matrix_columns);
991
992 if (from->type->can_implicitly_convert_to(desired_type, state)) {
993 /* Even though convert_component() implements the constructor
994 * conversion rules (not the implicit conversion rules), its safe
995 * to use it here because we already checked that the implicit
996 * conversion is legal.
997 */
998 result = convert_component(from, desired_type);
999 }
1000 }
1001
1002 ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1003
1004 if (constant != NULL)
1005 result = constant;
1006
1007 if (from != result) {
1008 from->replace_with(result);
1009 from = result;
1010 }
1011
1012 return constant != NULL;
1013 }
1014
1015
1016 /**
1017 * Dereference a specific component from a scalar, vector, or matrix
1018 */
1019 static ir_rvalue *
1020 dereference_component(ir_rvalue *src, unsigned component)
1021 {
1022 void *ctx = ralloc_parent(src);
1023 assert(component < src->type->components());
1024
1025 /* If the source is a constant, just create a new constant instead of a
1026 * dereference of the existing constant.
1027 */
1028 ir_constant *constant = src->as_constant();
1029 if (constant)
1030 return new(ctx) ir_constant(constant, component);
1031
1032 if (src->type->is_scalar()) {
1033 return src;
1034 } else if (src->type->is_vector()) {
1035 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1036 } else {
1037 assert(src->type->is_matrix());
1038
1039 /* Dereference a row of the matrix, then call this function again to get
1040 * a specific element from that row.
1041 */
1042 const int c = component / src->type->column_type()->vector_elements;
1043 const int r = component % src->type->column_type()->vector_elements;
1044 ir_constant *const col_index = new(ctx) ir_constant(c);
1045 ir_dereference *const col = new(ctx) ir_dereference_array(src,
1046 col_index);
1047
1048 col->type = src->type->column_type();
1049
1050 return dereference_component(col, r);
1051 }
1052
1053 assert(!"Should not get here.");
1054 return NULL;
1055 }
1056
1057
1058 static ir_rvalue *
1059 process_vec_mat_constructor(exec_list *instructions,
1060 const glsl_type *constructor_type,
1061 YYLTYPE *loc, exec_list *parameters,
1062 struct _mesa_glsl_parse_state *state)
1063 {
1064 void *ctx = state;
1065
1066 /* The ARB_shading_language_420pack spec says:
1067 *
1068 * "If an initializer is a list of initializers enclosed in curly braces,
1069 * the variable being declared must be a vector, a matrix, an array, or a
1070 * structure.
1071 *
1072 * int i = { 1 }; // illegal, i is not an aggregate"
1073 */
1074 if (constructor_type->vector_elements <= 1) {
1075 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1076 "matrices, arrays, and structs");
1077 return ir_rvalue::error_value(ctx);
1078 }
1079
1080 exec_list actual_parameters;
1081 const unsigned parameter_count =
1082 process_parameters(instructions, &actual_parameters, parameters, state);
1083
1084 if (parameter_count == 0
1085 || (constructor_type->is_vector() &&
1086 constructor_type->vector_elements != parameter_count)
1087 || (constructor_type->is_matrix() &&
1088 constructor_type->matrix_columns != parameter_count)) {
1089 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1090 constructor_type->is_vector() ? "vector" : "matrix",
1091 constructor_type->vector_elements);
1092 return ir_rvalue::error_value(ctx);
1093 }
1094
1095 bool all_parameters_are_constant = true;
1096
1097 /* Type cast each parameter and, if possible, fold constants. */
1098 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1099 /* Apply implicit conversions (not the scalar constructor rules, see the
1100 * spec quote above!) and attempt to convert the parameter to a constant
1101 * valued expression. After doing so, track whether or not all the
1102 * parameters to the constructor are trivially constant valued
1103 * expressions.
1104 */
1105 all_parameters_are_constant &=
1106 implicitly_convert_component(ir, constructor_type->base_type, state);
1107
1108 if (constructor_type->is_matrix()) {
1109 if (ir->type != constructor_type->column_type()) {
1110 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1111 "expected: %s, found %s",
1112 constructor_type->column_type()->name,
1113 ir->type->name);
1114 return ir_rvalue::error_value(ctx);
1115 }
1116 } else if (ir->type != constructor_type->get_scalar_type()) {
1117 _mesa_glsl_error(loc, state, "type error in vector constructor: "
1118 "expected: %s, found %s",
1119 constructor_type->get_scalar_type()->name,
1120 ir->type->name);
1121 return ir_rvalue::error_value(ctx);
1122 }
1123 }
1124
1125 if (all_parameters_are_constant)
1126 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1127
1128 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1129 ir_var_temporary);
1130 instructions->push_tail(var);
1131
1132 int i = 0;
1133
1134 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1135 ir_instruction *assignment = NULL;
1136
1137 if (var->type->is_matrix()) {
1138 ir_rvalue *lhs =
1139 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1140 assignment = new(ctx) ir_assignment(lhs, rhs);
1141 } else {
1142 /* use writemask rather than index for vector */
1143 assert(var->type->is_vector());
1144 assert(i < 4);
1145 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1146 assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1147 (unsigned)(1 << i));
1148 }
1149
1150 instructions->push_tail(assignment);
1151
1152 i++;
1153 }
1154
1155 return new(ctx) ir_dereference_variable(var);
1156 }
1157
1158
1159 static ir_rvalue *
1160 process_array_constructor(exec_list *instructions,
1161 const glsl_type *constructor_type,
1162 YYLTYPE *loc, exec_list *parameters,
1163 struct _mesa_glsl_parse_state *state)
1164 {
1165 void *ctx = state;
1166 /* Array constructors come in two forms: sized and unsized. Sized array
1167 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1168 * variables. In this case the number of parameters must exactly match the
1169 * specified size of the array.
1170 *
1171 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1172 * are vec4 variables. In this case the size of the array being constructed
1173 * is determined by the number of parameters.
1174 *
1175 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1176 *
1177 * "There must be exactly the same number of arguments as the size of
1178 * the array being constructed. If no size is present in the
1179 * constructor, then the array is explicitly sized to the number of
1180 * arguments provided. The arguments are assigned in order, starting at
1181 * element 0, to the elements of the constructed array. Each argument
1182 * must be the same type as the element type of the array, or be a type
1183 * that can be converted to the element type of the array according to
1184 * Section 4.1.10 "Implicit Conversions.""
1185 */
1186 exec_list actual_parameters;
1187 const unsigned parameter_count =
1188 process_parameters(instructions, &actual_parameters, parameters, state);
1189 bool is_unsized_array = constructor_type->is_unsized_array();
1190
1191 if ((parameter_count == 0) ||
1192 (!is_unsized_array && (constructor_type->length != parameter_count))) {
1193 const unsigned min_param = is_unsized_array
1194 ? 1 : constructor_type->length;
1195
1196 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1197 "parameter%s",
1198 is_unsized_array ? "at least" : "exactly",
1199 min_param, (min_param <= 1) ? "" : "s");
1200 return ir_rvalue::error_value(ctx);
1201 }
1202
1203 if (is_unsized_array) {
1204 constructor_type =
1205 glsl_type::get_array_instance(constructor_type->fields.array,
1206 parameter_count);
1207 assert(constructor_type != NULL);
1208 assert(constructor_type->length == parameter_count);
1209 }
1210
1211 bool all_parameters_are_constant = true;
1212 const glsl_type *element_type = constructor_type->fields.array;
1213
1214 /* Type cast each parameter and, if possible, fold constants. */
1215 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1216 /* Apply implicit conversions (not the scalar constructor rules, see the
1217 * spec quote above!) and attempt to convert the parameter to a constant
1218 * valued expression. After doing so, track whether or not all the
1219 * parameters to the constructor are trivially constant valued
1220 * expressions.
1221 */
1222 all_parameters_are_constant &=
1223 implicitly_convert_component(ir, element_type->base_type, state);
1224
1225 if (constructor_type->fields.array->is_unsized_array()) {
1226 /* As the inner parameters of the constructor are created without
1227 * knowledge of each other we need to check to make sure unsized
1228 * parameters of unsized constructors all end up with the same size.
1229 *
1230 * e.g we make sure to fail for a constructor like this:
1231 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1232 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1233 * vec4[](vec4(0.0), vec4(1.0)));
1234 */
1235 if (element_type->is_unsized_array()) {
1236 /* This is the first parameter so just get the type */
1237 element_type = ir->type;
1238 } else if (element_type != ir->type) {
1239 _mesa_glsl_error(loc, state, "type error in array constructor: "
1240 "expected: %s, found %s",
1241 element_type->name,
1242 ir->type->name);
1243 return ir_rvalue::error_value(ctx);
1244 }
1245 } else if (ir->type != constructor_type->fields.array) {
1246 _mesa_glsl_error(loc, state, "type error in array constructor: "
1247 "expected: %s, found %s",
1248 constructor_type->fields.array->name,
1249 ir->type->name);
1250 return ir_rvalue::error_value(ctx);
1251 } else {
1252 element_type = ir->type;
1253 }
1254 }
1255
1256 if (constructor_type->fields.array->is_unsized_array()) {
1257 constructor_type =
1258 glsl_type::get_array_instance(element_type,
1259 parameter_count);
1260 assert(constructor_type != NULL);
1261 assert(constructor_type->length == parameter_count);
1262 }
1263
1264 if (all_parameters_are_constant)
1265 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1266
1267 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1268 ir_var_temporary);
1269 instructions->push_tail(var);
1270
1271 int i = 0;
1272 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1273 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1274 new(ctx) ir_constant(i));
1275
1276 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1277 instructions->push_tail(assignment);
1278
1279 i++;
1280 }
1281
1282 return new(ctx) ir_dereference_variable(var);
1283 }
1284
1285
1286 /**
1287 * Determine if a list consists of a single scalar r-value
1288 */
1289 static bool
1290 single_scalar_parameter(exec_list *parameters)
1291 {
1292 const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1293 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1294
1295 return (p->type->is_scalar() && p->next->is_tail_sentinel());
1296 }
1297
1298
1299 /**
1300 * Generate inline code for a vector constructor
1301 *
1302 * The generated constructor code will consist of a temporary variable
1303 * declaration of the same type as the constructor. A sequence of assignments
1304 * from constructor parameters to the temporary will follow.
1305 *
1306 * \return
1307 * An \c ir_dereference_variable of the temprorary generated in the constructor
1308 * body.
1309 */
1310 static ir_rvalue *
1311 emit_inline_vector_constructor(const glsl_type *type,
1312 exec_list *instructions,
1313 exec_list *parameters,
1314 void *ctx)
1315 {
1316 assert(!parameters->is_empty());
1317
1318 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1319 instructions->push_tail(var);
1320
1321 /* There are three kinds of vector constructors.
1322 *
1323 * - Construct a vector from a single scalar by replicating that scalar to
1324 * all components of the vector.
1325 *
1326 * - Construct a vector from at least a matrix. This case should already
1327 * have been taken care of in ast_function_expression::hir by breaking
1328 * down the matrix into a series of column vectors.
1329 *
1330 * - Construct a vector from an arbirary combination of vectors and
1331 * scalars. The components of the constructor parameters are assigned
1332 * to the vector in order until the vector is full.
1333 */
1334 const unsigned lhs_components = type->components();
1335 if (single_scalar_parameter(parameters)) {
1336 ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1337 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1338 lhs_components);
1339 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1340 const unsigned mask = (1U << lhs_components) - 1;
1341
1342 assert(rhs->type == lhs->type);
1343
1344 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1345 instructions->push_tail(inst);
1346 } else {
1347 unsigned base_component = 0;
1348 unsigned base_lhs_component = 0;
1349 ir_constant_data data;
1350 unsigned constant_mask = 0, constant_components = 0;
1351
1352 memset(&data, 0, sizeof(data));
1353
1354 foreach_in_list(ir_rvalue, param, parameters) {
1355 unsigned rhs_components = param->type->components();
1356
1357 /* Do not try to assign more components to the vector than it has! */
1358 if ((rhs_components + base_lhs_component) > lhs_components) {
1359 rhs_components = lhs_components - base_lhs_component;
1360 }
1361
1362 const ir_constant *const c = param->as_constant();
1363 if (c != NULL) {
1364 for (unsigned i = 0; i < rhs_components; i++) {
1365 switch (c->type->base_type) {
1366 case GLSL_TYPE_UINT:
1367 data.u[i + base_component] = c->get_uint_component(i);
1368 break;
1369 case GLSL_TYPE_INT:
1370 data.i[i + base_component] = c->get_int_component(i);
1371 break;
1372 case GLSL_TYPE_FLOAT:
1373 data.f[i + base_component] = c->get_float_component(i);
1374 break;
1375 case GLSL_TYPE_DOUBLE:
1376 data.d[i + base_component] = c->get_double_component(i);
1377 break;
1378 case GLSL_TYPE_BOOL:
1379 data.b[i + base_component] = c->get_bool_component(i);
1380 break;
1381 case GLSL_TYPE_UINT64:
1382 data.u64[i + base_component] = c->get_uint64_component(i);
1383 break;
1384 case GLSL_TYPE_INT64:
1385 data.i64[i + base_component] = c->get_int64_component(i);
1386 break;
1387 default:
1388 assert(!"Should not get here.");
1389 break;
1390 }
1391 }
1392
1393 /* Mask of fields to be written in the assignment. */
1394 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1395 constant_components += rhs_components;
1396
1397 base_component += rhs_components;
1398 }
1399 /* Advance the component index by the number of components
1400 * that were just assigned.
1401 */
1402 base_lhs_component += rhs_components;
1403 }
1404
1405 if (constant_mask != 0) {
1406 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1407 const glsl_type *rhs_type =
1408 glsl_type::get_instance(var->type->base_type,
1409 constant_components,
1410 1);
1411 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1412
1413 ir_instruction *inst =
1414 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1415 instructions->push_tail(inst);
1416 }
1417
1418 base_component = 0;
1419 foreach_in_list(ir_rvalue, param, parameters) {
1420 unsigned rhs_components = param->type->components();
1421
1422 /* Do not try to assign more components to the vector than it has! */
1423 if ((rhs_components + base_component) > lhs_components) {
1424 rhs_components = lhs_components - base_component;
1425 }
1426
1427 /* If we do not have any components left to copy, break out of the
1428 * loop. This can happen when initializing a vec4 with a mat3 as the
1429 * mat3 would have been broken into a series of column vectors.
1430 */
1431 if (rhs_components == 0) {
1432 break;
1433 }
1434
1435 const ir_constant *const c = param->as_constant();
1436 if (c == NULL) {
1437 /* Mask of fields to be written in the assignment. */
1438 const unsigned write_mask = ((1U << rhs_components) - 1)
1439 << base_component;
1440
1441 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1442
1443 /* Generate a swizzle so that LHS and RHS sizes match. */
1444 ir_rvalue *rhs =
1445 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1446
1447 ir_instruction *inst =
1448 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1449 instructions->push_tail(inst);
1450 }
1451
1452 /* Advance the component index by the number of components that were
1453 * just assigned.
1454 */
1455 base_component += rhs_components;
1456 }
1457 }
1458 return new(ctx) ir_dereference_variable(var);
1459 }
1460
1461
1462 /**
1463 * Generate assignment of a portion of a vector to a portion of a matrix column
1464 *
1465 * \param src_base First component of the source to be used in assignment
1466 * \param column Column of destination to be assiged
1467 * \param row_base First component of the destination column to be assigned
1468 * \param count Number of components to be assigned
1469 *
1470 * \note
1471 * \c src_base + \c count must be less than or equal to the number of
1472 * components in the source vector.
1473 */
1474 static ir_instruction *
1475 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1476 ir_rvalue *src, unsigned src_base, unsigned count,
1477 void *mem_ctx)
1478 {
1479 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1480 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1481 col_idx);
1482
1483 assert(column_ref->type->components() >= (row_base + count));
1484 assert(src->type->components() >= (src_base + count));
1485
1486 /* Generate a swizzle that extracts the number of components from the source
1487 * that are to be assigned to the column of the matrix.
1488 */
1489 if (count < src->type->vector_elements) {
1490 src = new(mem_ctx) ir_swizzle(src,
1491 src_base + 0, src_base + 1,
1492 src_base + 2, src_base + 3,
1493 count);
1494 }
1495
1496 /* Mask of fields to be written in the assignment. */
1497 const unsigned write_mask = ((1U << count) - 1) << row_base;
1498
1499 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1500 }
1501
1502
1503 /**
1504 * Generate inline code for a matrix constructor
1505 *
1506 * The generated constructor code will consist of a temporary variable
1507 * declaration of the same type as the constructor. A sequence of assignments
1508 * from constructor parameters to the temporary will follow.
1509 *
1510 * \return
1511 * An \c ir_dereference_variable of the temprorary generated in the constructor
1512 * body.
1513 */
1514 static ir_rvalue *
1515 emit_inline_matrix_constructor(const glsl_type *type,
1516 exec_list *instructions,
1517 exec_list *parameters,
1518 void *ctx)
1519 {
1520 assert(!parameters->is_empty());
1521
1522 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1523 instructions->push_tail(var);
1524
1525 /* There are three kinds of matrix constructors.
1526 *
1527 * - Construct a matrix from a single scalar by replicating that scalar to
1528 * along the diagonal of the matrix and setting all other components to
1529 * zero.
1530 *
1531 * - Construct a matrix from an arbirary combination of vectors and
1532 * scalars. The components of the constructor parameters are assigned
1533 * to the matrix in column-major order until the matrix is full.
1534 *
1535 * - Construct a matrix from a single matrix. The source matrix is copied
1536 * to the upper left portion of the constructed matrix, and the remaining
1537 * elements take values from the identity matrix.
1538 */
1539 ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1540 if (single_scalar_parameter(parameters)) {
1541 /* Assign the scalar to the X component of a vec4, and fill the remaining
1542 * components with zero.
1543 */
1544 glsl_base_type param_base_type = first_param->type->base_type;
1545 assert(first_param->type->is_float() || first_param->type->is_double());
1546 ir_variable *rhs_var =
1547 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1548 "mat_ctor_vec",
1549 ir_var_temporary);
1550 instructions->push_tail(rhs_var);
1551
1552 ir_constant_data zero;
1553 for (unsigned i = 0; i < 4; i++)
1554 if (first_param->type->is_float())
1555 zero.f[i] = 0.0;
1556 else
1557 zero.d[i] = 0.0;
1558
1559 ir_instruction *inst =
1560 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1561 new(ctx) ir_constant(rhs_var->type, &zero));
1562 instructions->push_tail(inst);
1563
1564 ir_dereference *const rhs_ref =
1565 new(ctx) ir_dereference_variable(rhs_var);
1566
1567 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1568 instructions->push_tail(inst);
1569
1570 /* Assign the temporary vector to each column of the destination matrix
1571 * with a swizzle that puts the X component on the diagonal of the
1572 * matrix. In some cases this may mean that the X component does not
1573 * get assigned into the column at all (i.e., when the matrix has more
1574 * columns than rows).
1575 */
1576 static const unsigned rhs_swiz[4][4] = {
1577 { 0, 1, 1, 1 },
1578 { 1, 0, 1, 1 },
1579 { 1, 1, 0, 1 },
1580 { 1, 1, 1, 0 }
1581 };
1582
1583 const unsigned cols_to_init = MIN2(type->matrix_columns,
1584 type->vector_elements);
1585 for (unsigned i = 0; i < cols_to_init; i++) {
1586 ir_constant *const col_idx = new(ctx) ir_constant(i);
1587 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1588 col_idx);
1589
1590 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1591 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1592 type->vector_elements);
1593
1594 inst = new(ctx) ir_assignment(col_ref, rhs);
1595 instructions->push_tail(inst);
1596 }
1597
1598 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1599 ir_constant *const col_idx = new(ctx) ir_constant(i);
1600 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1601 col_idx);
1602
1603 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1604 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1605 type->vector_elements);
1606
1607 inst = new(ctx) ir_assignment(col_ref, rhs);
1608 instructions->push_tail(inst);
1609 }
1610 } else if (first_param->type->is_matrix()) {
1611 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1612 *
1613 * "If a matrix is constructed from a matrix, then each component
1614 * (column i, row j) in the result that has a corresponding
1615 * component (column i, row j) in the argument will be initialized
1616 * from there. All other components will be initialized to the
1617 * identity matrix. If a matrix argument is given to a matrix
1618 * constructor, it is an error to have any other arguments."
1619 */
1620 assert(first_param->next->is_tail_sentinel());
1621 ir_rvalue *const src_matrix = first_param;
1622
1623 /* If the source matrix is smaller, pre-initialize the relavent parts of
1624 * the destination matrix to the identity matrix.
1625 */
1626 if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1627 (src_matrix->type->vector_elements < var->type->vector_elements)) {
1628
1629 /* If the source matrix has fewer rows, every column of the
1630 * destination must be initialized. Otherwise only the columns in
1631 * the destination that do not exist in the source must be
1632 * initialized.
1633 */
1634 unsigned col =
1635 (src_matrix->type->vector_elements < var->type->vector_elements)
1636 ? 0 : src_matrix->type->matrix_columns;
1637
1638 const glsl_type *const col_type = var->type->column_type();
1639 for (/* empty */; col < var->type->matrix_columns; col++) {
1640 ir_constant_data ident;
1641
1642 if (!col_type->is_double()) {
1643 ident.f[0] = 0.0f;
1644 ident.f[1] = 0.0f;
1645 ident.f[2] = 0.0f;
1646 ident.f[3] = 0.0f;
1647 ident.f[col] = 1.0f;
1648 } else {
1649 ident.d[0] = 0.0;
1650 ident.d[1] = 0.0;
1651 ident.d[2] = 0.0;
1652 ident.d[3] = 0.0;
1653 ident.d[col] = 1.0;
1654 }
1655
1656 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1657
1658 ir_rvalue *const lhs =
1659 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1660
1661 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1662 instructions->push_tail(inst);
1663 }
1664 }
1665
1666 /* Assign columns from the source matrix to the destination matrix.
1667 *
1668 * Since the parameter will be used in the RHS of multiple assignments,
1669 * generate a temporary and copy the paramter there.
1670 */
1671 ir_variable *const rhs_var =
1672 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1673 ir_var_temporary);
1674 instructions->push_tail(rhs_var);
1675
1676 ir_dereference *const rhs_var_ref =
1677 new(ctx) ir_dereference_variable(rhs_var);
1678 ir_instruction *const inst =
1679 new(ctx) ir_assignment(rhs_var_ref, first_param);
1680 instructions->push_tail(inst);
1681
1682 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1683 var->type->vector_elements);
1684 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1685 var->type->matrix_columns);
1686
1687 unsigned swiz[4] = { 0, 0, 0, 0 };
1688 for (unsigned i = 1; i < last_row; i++)
1689 swiz[i] = i;
1690
1691 const unsigned write_mask = (1U << last_row) - 1;
1692
1693 for (unsigned i = 0; i < last_col; i++) {
1694 ir_dereference *const lhs =
1695 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1696 ir_rvalue *const rhs_col =
1697 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1698
1699 /* If one matrix has columns that are smaller than the columns of the
1700 * other matrix, wrap the column access of the larger with a swizzle
1701 * so that the LHS and RHS of the assignment have the same size (and
1702 * therefore have the same type).
1703 *
1704 * It would be perfectly valid to unconditionally generate the
1705 * swizzles, this this will typically result in a more compact IR
1706 * tree.
1707 */
1708 ir_rvalue *rhs;
1709 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1710 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1711 } else {
1712 rhs = rhs_col;
1713 }
1714
1715 ir_instruction *inst =
1716 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1717 instructions->push_tail(inst);
1718 }
1719 } else {
1720 const unsigned cols = type->matrix_columns;
1721 const unsigned rows = type->vector_elements;
1722 unsigned remaining_slots = rows * cols;
1723 unsigned col_idx = 0;
1724 unsigned row_idx = 0;
1725
1726 foreach_in_list(ir_rvalue, rhs, parameters) {
1727 unsigned rhs_components = rhs->type->components();
1728 unsigned rhs_base = 0;
1729
1730 if (remaining_slots == 0)
1731 break;
1732
1733 /* Since the parameter might be used in the RHS of two assignments,
1734 * generate a temporary and copy the paramter there.
1735 */
1736 ir_variable *rhs_var =
1737 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1738 instructions->push_tail(rhs_var);
1739
1740 ir_dereference *rhs_var_ref =
1741 new(ctx) ir_dereference_variable(rhs_var);
1742 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1743 instructions->push_tail(inst);
1744
1745 do {
1746 /* Assign the current parameter to as many components of the matrix
1747 * as it will fill.
1748 *
1749 * NOTE: A single vector parameter can span two matrix columns. A
1750 * single vec4, for example, can completely fill a mat2.
1751 */
1752 unsigned count = MIN2(rows - row_idx,
1753 rhs_components - rhs_base);
1754
1755 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1756 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1757 row_idx,
1758 rhs_var_ref,
1759 rhs_base,
1760 count, ctx);
1761 instructions->push_tail(inst);
1762 rhs_base += count;
1763 row_idx += count;
1764 remaining_slots -= count;
1765
1766 /* Sometimes, there is still data left in the parameters and
1767 * components left to be set in the destination but in other
1768 * column.
1769 */
1770 if (row_idx >= rows) {
1771 row_idx = 0;
1772 col_idx++;
1773 }
1774 } while(remaining_slots > 0 && rhs_base < rhs_components);
1775 }
1776 }
1777
1778 return new(ctx) ir_dereference_variable(var);
1779 }
1780
1781
1782 static ir_rvalue *
1783 emit_inline_record_constructor(const glsl_type *type,
1784 exec_list *instructions,
1785 exec_list *parameters,
1786 void *mem_ctx)
1787 {
1788 ir_variable *const var =
1789 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1790 ir_dereference_variable *const d =
1791 new(mem_ctx) ir_dereference_variable(var);
1792
1793 instructions->push_tail(var);
1794
1795 exec_node *node = parameters->get_head_raw();
1796 for (unsigned i = 0; i < type->length; i++) {
1797 assert(!node->is_tail_sentinel());
1798
1799 ir_dereference *const lhs =
1800 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1801 type->fields.structure[i].name);
1802
1803 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1804 assert(rhs != NULL);
1805
1806 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1807
1808 instructions->push_tail(assign);
1809 node = node->next;
1810 }
1811
1812 return d;
1813 }
1814
1815
1816 static ir_rvalue *
1817 process_record_constructor(exec_list *instructions,
1818 const glsl_type *constructor_type,
1819 YYLTYPE *loc, exec_list *parameters,
1820 struct _mesa_glsl_parse_state *state)
1821 {
1822 void *ctx = state;
1823 /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1824 *
1825 * "The arguments to the constructor will be used to set the structure's
1826 * fields, in order, using one argument per field. Each argument must
1827 * be the same type as the field it sets, or be a type that can be
1828 * converted to the field's type according to Section 4.1.10 “Implicit
1829 * Conversions.”"
1830 *
1831 * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1832 *
1833 * "In all cases, the innermost initializer (i.e., not a list of
1834 * initializers enclosed in curly braces) applied to an object must
1835 * have the same type as the object being initialized or be a type that
1836 * can be converted to the object's type according to section 4.1.10
1837 * "Implicit Conversions". In the latter case, an implicit conversion
1838 * will be done on the initializer before the assignment is done."
1839 */
1840 exec_list actual_parameters;
1841
1842 const unsigned parameter_count =
1843 process_parameters(instructions, &actual_parameters, parameters,
1844 state);
1845
1846 if (parameter_count != constructor_type->length) {
1847 _mesa_glsl_error(loc, state,
1848 "%s parameters in constructor for `%s'",
1849 parameter_count > constructor_type->length
1850 ? "too many": "insufficient",
1851 constructor_type->name);
1852 return ir_rvalue::error_value(ctx);
1853 }
1854
1855 bool all_parameters_are_constant = true;
1856
1857 int i = 0;
1858 /* Type cast each parameter and, if possible, fold constants. */
1859 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1860
1861 const glsl_struct_field *struct_field =
1862 &constructor_type->fields.structure[i];
1863
1864 /* Apply implicit conversions (not the scalar constructor rules, see the
1865 * spec quote above!) and attempt to convert the parameter to a constant
1866 * valued expression. After doing so, track whether or not all the
1867 * parameters to the constructor are trivially constant valued
1868 * expressions.
1869 */
1870 all_parameters_are_constant &=
1871 implicitly_convert_component(ir, struct_field->type->base_type,
1872 state);
1873
1874 if (ir->type != struct_field->type) {
1875 _mesa_glsl_error(loc, state,
1876 "parameter type mismatch in constructor for `%s.%s' "
1877 "(%s vs %s)",
1878 constructor_type->name,
1879 struct_field->name,
1880 ir->type->name,
1881 struct_field->type->name);
1882 return ir_rvalue::error_value(ctx);
1883 }
1884
1885 i++;
1886 }
1887
1888 if (all_parameters_are_constant) {
1889 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1890 } else {
1891 return emit_inline_record_constructor(constructor_type, instructions,
1892 &actual_parameters, state);
1893 }
1894 }
1895
1896 ir_rvalue *
1897 ast_function_expression::handle_method(exec_list *instructions,
1898 struct _mesa_glsl_parse_state *state)
1899 {
1900 const ast_expression *field = subexpressions[0];
1901 ir_rvalue *op;
1902 ir_rvalue *result;
1903 void *ctx = state;
1904 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1905 YYLTYPE loc = get_location();
1906 state->check_version(120, 300, &loc, "methods not supported");
1907
1908 const char *method;
1909 method = field->primary_expression.identifier;
1910
1911 /* This would prevent to raise "uninitialized variable" warnings when
1912 * calling array.length.
1913 */
1914 field->subexpressions[0]->set_is_lhs(true);
1915 op = field->subexpressions[0]->hir(instructions, state);
1916 if (strcmp(method, "length") == 0) {
1917 if (!this->expressions.is_empty()) {
1918 _mesa_glsl_error(&loc, state, "length method takes no arguments");
1919 goto fail;
1920 }
1921
1922 if (op->type->is_array()) {
1923 if (op->type->is_unsized_array()) {
1924 if (!state->has_shader_storage_buffer_objects()) {
1925 _mesa_glsl_error(&loc, state,
1926 "length called on unsized array"
1927 " only available with"
1928 " ARB_shader_storage_buffer_object");
1929 }
1930 /* Calculate length of an unsized array in run-time */
1931 result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
1932 op);
1933 } else {
1934 result = new(ctx) ir_constant(op->type->array_size());
1935 }
1936 } else if (op->type->is_vector()) {
1937 if (state->has_420pack()) {
1938 /* .length() returns int. */
1939 result = new(ctx) ir_constant((int) op->type->vector_elements);
1940 } else {
1941 _mesa_glsl_error(&loc, state, "length method on matrix only"
1942 " available with ARB_shading_language_420pack");
1943 goto fail;
1944 }
1945 } else if (op->type->is_matrix()) {
1946 if (state->has_420pack()) {
1947 /* .length() returns int. */
1948 result = new(ctx) ir_constant((int) op->type->matrix_columns);
1949 } else {
1950 _mesa_glsl_error(&loc, state, "length method on matrix only"
1951 " available with ARB_shading_language_420pack");
1952 goto fail;
1953 }
1954 } else {
1955 _mesa_glsl_error(&loc, state, "length called on scalar.");
1956 goto fail;
1957 }
1958 } else {
1959 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
1960 goto fail;
1961 }
1962 return result;
1963 fail:
1964 return ir_rvalue::error_value(ctx);
1965 }
1966
1967 static inline bool is_valid_constructor(const glsl_type *type,
1968 struct _mesa_glsl_parse_state *state)
1969 {
1970 return type->is_numeric() || type->is_boolean() ||
1971 (state->has_bindless() && (type->is_sampler() || type->is_image()));
1972 }
1973
1974 ir_rvalue *
1975 ast_function_expression::hir(exec_list *instructions,
1976 struct _mesa_glsl_parse_state *state)
1977 {
1978 void *ctx = state;
1979 /* There are three sorts of function calls.
1980 *
1981 * 1. constructors - The first subexpression is an ast_type_specifier.
1982 * 2. methods - Only the .length() method of array types.
1983 * 3. functions - Calls to regular old functions.
1984 *
1985 */
1986 if (is_constructor()) {
1987 const ast_type_specifier *type =
1988 (ast_type_specifier *) subexpressions[0];
1989 YYLTYPE loc = type->get_location();
1990 const char *name;
1991
1992 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1993
1994 /* constructor_type can be NULL if a variable with the same name as the
1995 * structure has come into scope.
1996 */
1997 if (constructor_type == NULL) {
1998 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1999 "may be shadowed by a variable with the same name)",
2000 type->type_name);
2001 return ir_rvalue::error_value(ctx);
2002 }
2003
2004
2005 /* Constructors for opaque types are illegal.
2006 *
2007 * From section 4.1.7 of the ARB_bindless_texture spec:
2008 *
2009 * "Samplers are represented using 64-bit integer handles, and may be "
2010 * converted to and from 64-bit integers using constructors."
2011 *
2012 * From section 4.1.X of the ARB_bindless_texture spec:
2013 *
2014 * "Images are represented using 64-bit integer handles, and may be
2015 * converted to and from 64-bit integers using constructors."
2016 */
2017 if (constructor_type->contains_atomic() ||
2018 (!state->has_bindless() && constructor_type->contains_opaque())) {
2019 _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2020 state->has_bindless() ? "atomic" : "opaque",
2021 constructor_type->name);
2022 return ir_rvalue::error_value(ctx);
2023 }
2024
2025 if (constructor_type->is_subroutine()) {
2026 _mesa_glsl_error(& loc, state,
2027 "subroutine name cannot be a constructor `%s'",
2028 constructor_type->name);
2029 return ir_rvalue::error_value(ctx);
2030 }
2031
2032 if (constructor_type->is_array()) {
2033 if (!state->check_version(120, 300, &loc,
2034 "array constructors forbidden")) {
2035 return ir_rvalue::error_value(ctx);
2036 }
2037
2038 return process_array_constructor(instructions, constructor_type,
2039 & loc, &this->expressions, state);
2040 }
2041
2042
2043 /* There are two kinds of constructor calls. Constructors for arrays and
2044 * structures must have the exact number of arguments with matching types
2045 * in the correct order. These constructors follow essentially the same
2046 * type matching rules as functions.
2047 *
2048 * Constructors for built-in language types, such as mat4 and vec2, are
2049 * free form. The only requirements are that the parameters must provide
2050 * enough values of the correct scalar type and that no arguments are
2051 * given past the last used argument.
2052 *
2053 * When using the C-style initializer syntax from GLSL 4.20, constructors
2054 * must have the exact number of arguments with matching types in the
2055 * correct order.
2056 */
2057 if (constructor_type->is_record()) {
2058 return process_record_constructor(instructions, constructor_type,
2059 &loc, &this->expressions,
2060 state);
2061 }
2062
2063 if (!is_valid_constructor(constructor_type, state))
2064 return ir_rvalue::error_value(ctx);
2065
2066 /* Total number of components of the type being constructed. */
2067 const unsigned type_components = constructor_type->components();
2068
2069 /* Number of components from parameters that have actually been
2070 * consumed. This is used to perform several kinds of error checking.
2071 */
2072 unsigned components_used = 0;
2073
2074 unsigned matrix_parameters = 0;
2075 unsigned nonmatrix_parameters = 0;
2076 exec_list actual_parameters;
2077
2078 foreach_list_typed(ast_node, ast, link, &this->expressions) {
2079 ir_rvalue *result = ast->hir(instructions, state);
2080
2081 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2082 *
2083 * "It is an error to provide extra arguments beyond this
2084 * last used argument."
2085 */
2086 if (components_used >= type_components) {
2087 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2088 "constructor",
2089 constructor_type->name);
2090 return ir_rvalue::error_value(ctx);
2091 }
2092
2093 if (!is_valid_constructor(result->type, state)) {
2094 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2095 "non-numeric data type",
2096 constructor_type->name);
2097 return ir_rvalue::error_value(ctx);
2098 }
2099
2100 /* Count the number of matrix and nonmatrix parameters. This
2101 * is used below to enforce some of the constructor rules.
2102 */
2103 if (result->type->is_matrix())
2104 matrix_parameters++;
2105 else
2106 nonmatrix_parameters++;
2107
2108 actual_parameters.push_tail(result);
2109 components_used += result->type->components();
2110 }
2111
2112 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2113 *
2114 * "It is an error to construct matrices from other matrices. This
2115 * is reserved for future use."
2116 */
2117 if (matrix_parameters > 0
2118 && constructor_type->is_matrix()
2119 && !state->check_version(120, 100, &loc,
2120 "cannot construct `%s' from a matrix",
2121 constructor_type->name)) {
2122 return ir_rvalue::error_value(ctx);
2123 }
2124
2125 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2126 *
2127 * "If a matrix argument is given to a matrix constructor, it is
2128 * an error to have any other arguments."
2129 */
2130 if ((matrix_parameters > 0)
2131 && ((matrix_parameters + nonmatrix_parameters) > 1)
2132 && constructor_type->is_matrix()) {
2133 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2134 "matrix must be only parameter",
2135 constructor_type->name);
2136 return ir_rvalue::error_value(ctx);
2137 }
2138
2139 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2140 *
2141 * "In these cases, there must be enough components provided in the
2142 * arguments to provide an initializer for every component in the
2143 * constructed value."
2144 */
2145 if (components_used < type_components && components_used != 1
2146 && matrix_parameters == 0) {
2147 _mesa_glsl_error(& loc, state, "too few components to construct "
2148 "`%s'",
2149 constructor_type->name);
2150 return ir_rvalue::error_value(ctx);
2151 }
2152
2153 /* Matrices can never be consumed as is by any constructor but matrix
2154 * constructors. If the constructor type is not matrix, always break the
2155 * matrix up into a series of column vectors.
2156 */
2157 if (!constructor_type->is_matrix()) {
2158 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2159 if (!matrix->type->is_matrix())
2160 continue;
2161
2162 /* Create a temporary containing the matrix. */
2163 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2164 ir_var_temporary);
2165 instructions->push_tail(var);
2166 instructions->push_tail(
2167 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2168 matrix));
2169 var->constant_value = matrix->constant_expression_value(ctx);
2170
2171 /* Replace the matrix with dereferences of its columns. */
2172 for (int i = 0; i < matrix->type->matrix_columns; i++) {
2173 matrix->insert_before(
2174 new (ctx) ir_dereference_array(var,
2175 new(ctx) ir_constant(i)));
2176 }
2177 matrix->remove();
2178 }
2179 }
2180
2181 bool all_parameters_are_constant = true;
2182
2183 /* Type cast each parameter and, if possible, fold constants.*/
2184 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2185 const glsl_type *desired_type;
2186
2187 /* From section 5.4.1 of the ARB_bindless_texture spec:
2188 *
2189 * "In the following four constructors, the low 32 bits of the sampler
2190 * type correspond to the .x component of the uvec2 and the high 32
2191 * bits correspond to the .y component."
2192 *
2193 * uvec2(any sampler type) // Converts a sampler type to a
2194 * // pair of 32-bit unsigned integers
2195 * any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to
2196 * // a sampler type
2197 * uvec2(any image type) // Converts an image type to a
2198 * // pair of 32-bit unsigned integers
2199 * any image type(uvec2) // Converts a pair of 32-bit unsigned integers to
2200 * // an image type
2201 */
2202 if (ir->type->is_sampler() || ir->type->is_image()) {
2203 /* Convert a sampler/image type to a pair of 32-bit unsigned
2204 * integers as defined by ARB_bindless_texture.
2205 */
2206 if (constructor_type != glsl_type::uvec2_type) {
2207 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2208 "be converted to a pair of 32-bit unsigned "
2209 "integers");
2210 }
2211 desired_type = glsl_type::uvec2_type;
2212 } else if (constructor_type->is_sampler() ||
2213 constructor_type->is_image()) {
2214 /* Convert a pair of 32-bit unsigned integers to a sampler or image
2215 * type as defined by ARB_bindless_texture.
2216 */
2217 if (ir->type != glsl_type::uvec2_type) {
2218 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2219 "be converted from a pair of 32-bit unsigned "
2220 "integers");
2221 }
2222 desired_type = constructor_type;
2223 } else {
2224 desired_type =
2225 glsl_type::get_instance(constructor_type->base_type,
2226 ir->type->vector_elements,
2227 ir->type->matrix_columns);
2228 }
2229
2230 ir_rvalue *result = convert_component(ir, desired_type);
2231
2232 /* Attempt to convert the parameter to a constant valued expression.
2233 * After doing so, track whether or not all the parameters to the
2234 * constructor are trivially constant valued expressions.
2235 */
2236 ir_rvalue *const constant = result->constant_expression_value(ctx);
2237
2238 if (constant != NULL)
2239 result = constant;
2240 else
2241 all_parameters_are_constant = false;
2242
2243 if (result != ir) {
2244 ir->replace_with(result);
2245 }
2246 }
2247
2248 /* If all of the parameters are trivially constant, create a
2249 * constant representing the complete collection of parameters.
2250 */
2251 if (all_parameters_are_constant) {
2252 return new(ctx) ir_constant(constructor_type, &actual_parameters);
2253 } else if (constructor_type->is_scalar()) {
2254 return dereference_component((ir_rvalue *)
2255 actual_parameters.get_head_raw(),
2256 0);
2257 } else if (constructor_type->is_vector()) {
2258 return emit_inline_vector_constructor(constructor_type,
2259 instructions,
2260 &actual_parameters,
2261 ctx);
2262 } else {
2263 assert(constructor_type->is_matrix());
2264 return emit_inline_matrix_constructor(constructor_type,
2265 instructions,
2266 &actual_parameters,
2267 ctx);
2268 }
2269 } else if (subexpressions[0]->oper == ast_field_selection) {
2270 return handle_method(instructions, state);
2271 } else {
2272 const ast_expression *id = subexpressions[0];
2273 const char *func_name = NULL;
2274 YYLTYPE loc = get_location();
2275 exec_list actual_parameters;
2276 ir_variable *sub_var = NULL;
2277 ir_rvalue *array_idx = NULL;
2278
2279 process_parameters(instructions, &actual_parameters, &this->expressions,
2280 state);
2281
2282 if (id->oper == ast_array_index) {
2283 array_idx = generate_array_index(ctx, instructions, state, loc,
2284 id->subexpressions[0],
2285 id->subexpressions[1], &func_name,
2286 &actual_parameters);
2287 } else if (id->oper == ast_identifier) {
2288 func_name = id->primary_expression.identifier;
2289 } else {
2290 _mesa_glsl_error(&loc, state, "function name is not an identifier");
2291 }
2292
2293 /* an error was emitted earlier */
2294 if (!func_name)
2295 return ir_rvalue::error_value(ctx);
2296
2297 ir_function_signature *sig =
2298 match_function_by_name(func_name, &actual_parameters, state);
2299
2300 ir_rvalue *value = NULL;
2301 if (sig == NULL) {
2302 sig = match_subroutine_by_name(func_name, &actual_parameters,
2303 state, &sub_var);
2304 }
2305
2306 if (sig == NULL) {
2307 no_matching_function_error(func_name, &loc,
2308 &actual_parameters, state);
2309 value = ir_rvalue::error_value(ctx);
2310 } else if (!verify_parameter_modes(state, sig,
2311 actual_parameters,
2312 this->expressions)) {
2313 /* an error has already been emitted */
2314 value = ir_rvalue::error_value(ctx);
2315 } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2316 /* ftransform refers to global variables, and we don't have any code
2317 * for remapping the variable references in the built-in shader.
2318 */
2319 ir_variable *mvp =
2320 state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2321 ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2322 value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2323 new(ctx) ir_dereference_variable(mvp),
2324 new(ctx) ir_dereference_variable(vtx));
2325 } else {
2326 if (state->stage == MESA_SHADER_TESS_CTRL &&
2327 sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
2328 if (state->current_function == NULL ||
2329 strcmp(state->current_function->function_name(), "main") != 0) {
2330 _mesa_glsl_error(&loc, state,
2331 "barrier() may only be used in main()");
2332 }
2333
2334 if (state->found_return) {
2335 _mesa_glsl_error(&loc, state,
2336 "barrier() may not be used after return");
2337 }
2338
2339 if (instructions != &state->current_function->body) {
2340 _mesa_glsl_error(&loc, state,
2341 "barrier() may not be used in control flow");
2342 }
2343 }
2344
2345 value = generate_call(instructions, sig, &actual_parameters, sub_var,
2346 array_idx, state);
2347 if (!value) {
2348 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2349 "void_var",
2350 ir_var_temporary);
2351 instructions->push_tail(tmp);
2352 value = new(ctx) ir_dereference_variable(tmp);
2353 }
2354 }
2355
2356 return value;
2357 }
2358
2359 unreachable("not reached");
2360 }
2361
2362 bool
2363 ast_function_expression::has_sequence_subexpression() const
2364 {
2365 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2366 if (ast->has_sequence_subexpression())
2367 return true;
2368 }
2369
2370 return false;
2371 }
2372
2373 ir_rvalue *
2374 ast_aggregate_initializer::hir(exec_list *instructions,
2375 struct _mesa_glsl_parse_state *state)
2376 {
2377 void *ctx = state;
2378 YYLTYPE loc = this->get_location();
2379
2380 if (!this->constructor_type) {
2381 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2382 return ir_rvalue::error_value(ctx);
2383 }
2384 const glsl_type *const constructor_type = this->constructor_type;
2385
2386 if (!state->has_420pack()) {
2387 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2388 "GL_ARB_shading_language_420pack extension");
2389 return ir_rvalue::error_value(ctx);
2390 }
2391
2392 if (constructor_type->is_array()) {
2393 return process_array_constructor(instructions, constructor_type, &loc,
2394 &this->expressions, state);
2395 }
2396
2397 if (constructor_type->is_record()) {
2398 return process_record_constructor(instructions, constructor_type, &loc,
2399 &this->expressions, state);
2400 }
2401
2402 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2403 &this->expressions, state);
2404 }