glsl: disable varying packing for varying used by interpolateAt*
[mesa.git] / src / compiler / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 #include "main/shaderobj.h"
30 #include "builtin_functions.h"
31
32 static ir_rvalue *
33 convert_component(ir_rvalue *src, const glsl_type *desired_type);
34
35 static unsigned
36 process_parameters(exec_list *instructions, exec_list *actual_parameters,
37 exec_list *parameters,
38 struct _mesa_glsl_parse_state *state)
39 {
40 unsigned count = 0;
41
42 foreach_list_typed(ast_node, ast, link, parameters) {
43 /* We need to process the parameters first in order to know if we can
44 * raise or not a unitialized warning. Calling set_is_lhs silence the
45 * warning for now. Raising the warning or not will be checked at
46 * verify_parameter_modes.
47 */
48 ast->set_is_lhs(true);
49 ir_rvalue *result = ast->hir(instructions, state);
50
51 ir_constant *const constant = result->constant_expression_value();
52 if (constant != NULL)
53 result = constant;
54
55 actual_parameters->push_tail(result);
56 count++;
57 }
58
59 return count;
60 }
61
62
63 /**
64 * Generate a source prototype for a function signature
65 *
66 * \param return_type Return type of the function. May be \c NULL.
67 * \param name Name of the function.
68 * \param parameters List of \c ir_instruction nodes representing the
69 * parameter list for the function. This may be either a
70 * formal (\c ir_variable) or actual (\c ir_rvalue)
71 * parameter list. Only the type is used.
72 *
73 * \return
74 * A ralloced string representing the prototype of the function.
75 */
76 char *
77 prototype_string(const glsl_type *return_type, const char *name,
78 exec_list *parameters)
79 {
80 char *str = NULL;
81
82 if (return_type != NULL)
83 str = ralloc_asprintf(NULL, "%s ", return_type->name);
84
85 ralloc_asprintf_append(&str, "%s(", name);
86
87 const char *comma = "";
88 foreach_in_list(const ir_variable, param, parameters) {
89 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
90 comma = ", ";
91 }
92
93 ralloc_strcat(&str, ")");
94 return str;
95 }
96
97 static bool
98 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
99 const ir_variable *formal, const ir_variable *actual)
100 {
101 /**
102 * From the ARB_shader_image_load_store specification:
103 *
104 * "The values of image variables qualified with coherent,
105 * volatile, restrict, readonly, or writeonly may not be passed
106 * to functions whose formal parameters lack such
107 * qualifiers. [...] It is legal to have additional qualifiers
108 * on a formal parameter, but not to have fewer."
109 */
110 if (actual->data.image_coherent && !formal->data.image_coherent) {
111 _mesa_glsl_error(loc, state,
112 "function call parameter `%s' drops "
113 "`coherent' qualifier", formal->name);
114 return false;
115 }
116
117 if (actual->data.image_volatile && !formal->data.image_volatile) {
118 _mesa_glsl_error(loc, state,
119 "function call parameter `%s' drops "
120 "`volatile' qualifier", formal->name);
121 return false;
122 }
123
124 if (actual->data.image_restrict && !formal->data.image_restrict) {
125 _mesa_glsl_error(loc, state,
126 "function call parameter `%s' drops "
127 "`restrict' qualifier", formal->name);
128 return false;
129 }
130
131 if (actual->data.image_read_only && !formal->data.image_read_only) {
132 _mesa_glsl_error(loc, state,
133 "function call parameter `%s' drops "
134 "`readonly' qualifier", formal->name);
135 return false;
136 }
137
138 if (actual->data.image_write_only && !formal->data.image_write_only) {
139 _mesa_glsl_error(loc, state,
140 "function call parameter `%s' drops "
141 "`writeonly' qualifier", formal->name);
142 return false;
143 }
144
145 return true;
146 }
147
148 static bool
149 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
150 ir_variable *var)
151 {
152 if (!var ||
153 (!var->is_in_shader_storage_block() &&
154 var->data.mode != ir_var_shader_shared)) {
155 _mesa_glsl_error(loc, state, "First argument to atomic function "
156 "must be a buffer or shared variable");
157 return false;
158 }
159 return true;
160 }
161
162 static bool
163 is_atomic_function(const char *func_name)
164 {
165 return !strcmp(func_name, "atomicAdd") ||
166 !strcmp(func_name, "atomicMin") ||
167 !strcmp(func_name, "atomicMax") ||
168 !strcmp(func_name, "atomicAnd") ||
169 !strcmp(func_name, "atomicOr") ||
170 !strcmp(func_name, "atomicXor") ||
171 !strcmp(func_name, "atomicExchange") ||
172 !strcmp(func_name, "atomicCompSwap");
173 }
174
175 /**
176 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
177 * that 'const_in' formal parameters (an extension in our IR) correspond to
178 * ir_constant actual parameters.
179 */
180 static bool
181 verify_parameter_modes(_mesa_glsl_parse_state *state,
182 ir_function_signature *sig,
183 exec_list &actual_ir_parameters,
184 exec_list &actual_ast_parameters)
185 {
186 exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
187 exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
188
189 foreach_in_list(const ir_variable, formal, &sig->parameters) {
190 /* The lists must be the same length. */
191 assert(!actual_ir_node->is_tail_sentinel());
192 assert(!actual_ast_node->is_tail_sentinel());
193
194 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
195 const ast_expression *const actual_ast =
196 exec_node_data(ast_expression, actual_ast_node, link);
197
198 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
199 * FIXME: 0:0(0).
200 */
201 YYLTYPE loc = actual_ast->get_location();
202
203 /* Verify that 'const_in' parameters are ir_constants. */
204 if (formal->data.mode == ir_var_const_in &&
205 actual->ir_type != ir_type_constant) {
206 _mesa_glsl_error(&loc, state,
207 "parameter `in %s' must be a constant expression",
208 formal->name);
209 return false;
210 }
211
212 /* Verify that shader_in parameters are shader inputs */
213 if (formal->data.must_be_shader_input) {
214 const ir_rvalue *val = actual;
215
216 /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
217 if (val->ir_type == ir_type_swizzle) {
218 if (!state->is_version(440, 0)) {
219 _mesa_glsl_error(&loc, state,
220 "parameter `%s` must not be swizzled",
221 formal->name);
222 return false;
223 }
224 val = ((ir_swizzle *)val)->val;
225 }
226
227 while (val->ir_type == ir_type_dereference_array) {
228 val = ((ir_dereference_array *)val)->array;
229 }
230
231 if (!val->as_dereference_variable() ||
232 val->variable_referenced()->data.mode != ir_var_shader_in) {
233 _mesa_glsl_error(&loc, state,
234 "parameter `%s` must be a shader input",
235 formal->name);
236 return false;
237 }
238
239 val->variable_referenced()->data.must_be_shader_input = 1;
240 }
241
242 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
243 if (formal->data.mode == ir_var_function_out
244 || formal->data.mode == ir_var_function_inout) {
245 const char *mode = NULL;
246 switch (formal->data.mode) {
247 case ir_var_function_out: mode = "out"; break;
248 case ir_var_function_inout: mode = "inout"; break;
249 default: assert(false); break;
250 }
251
252 /* This AST-based check catches errors like f(i++). The IR-based
253 * is_lvalue() is insufficient because the actual parameter at the
254 * IR-level is just a temporary value, which is an l-value.
255 */
256 if (actual_ast->non_lvalue_description != NULL) {
257 _mesa_glsl_error(&loc, state,
258 "function parameter '%s %s' references a %s",
259 mode, formal->name,
260 actual_ast->non_lvalue_description);
261 return false;
262 }
263
264 ir_variable *var = actual->variable_referenced();
265
266 if (var && formal->data.mode == ir_var_function_inout) {
267 if ((var->data.mode == ir_var_auto ||
268 var->data.mode == ir_var_shader_out) &&
269 !var->data.assigned &&
270 !is_gl_identifier(var->name)) {
271 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
272 var->name);
273 }
274 }
275
276 if (var)
277 var->data.assigned = true;
278
279 if (var && var->data.read_only) {
280 _mesa_glsl_error(&loc, state,
281 "function parameter '%s %s' references the "
282 "read-only variable '%s'",
283 mode, formal->name,
284 actual->variable_referenced()->name);
285 return false;
286 } else if (!actual->is_lvalue()) {
287 _mesa_glsl_error(&loc, state,
288 "function parameter '%s %s' is not an lvalue",
289 mode, formal->name);
290 return false;
291 }
292 } else {
293 assert(formal->data.mode == ir_var_function_in ||
294 formal->data.mode == ir_var_const_in);
295 ir_variable *var = actual->variable_referenced();
296 if (var) {
297 if ((var->data.mode == ir_var_auto ||
298 var->data.mode == ir_var_shader_out) &&
299 !var->data.assigned &&
300 !is_gl_identifier(var->name)) {
301 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
302 var->name);
303 }
304 }
305 }
306
307 if (formal->type->is_image() &&
308 actual->variable_referenced()) {
309 if (!verify_image_parameter(&loc, state, formal,
310 actual->variable_referenced()))
311 return false;
312 }
313
314 actual_ir_node = actual_ir_node->next;
315 actual_ast_node = actual_ast_node->next;
316 }
317
318 /* The first parameter of atomic functions must be a buffer variable */
319 const char *func_name = sig->function_name();
320 bool is_atomic = is_atomic_function(func_name);
321 if (is_atomic) {
322 const ir_rvalue *const actual =
323 (ir_rvalue *) actual_ir_parameters.get_head_raw();
324
325 const ast_expression *const actual_ast =
326 exec_node_data(ast_expression,
327 actual_ast_parameters.get_head_raw(), link);
328 YYLTYPE loc = actual_ast->get_location();
329
330 if (!verify_first_atomic_parameter(&loc, state,
331 actual->variable_referenced())) {
332 return false;
333 }
334 }
335
336 return true;
337 }
338
339 static void
340 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
341 exec_list *before_instructions, exec_list *after_instructions,
342 bool parameter_is_inout)
343 {
344 ir_expression *const expr = actual->as_expression();
345
346 /* If the types match exactly and the parameter is not a vector-extract,
347 * nothing needs to be done to fix the parameter.
348 */
349 if (formal_type == actual->type
350 && (expr == NULL || expr->operation != ir_binop_vector_extract))
351 return;
352
353 /* To convert an out parameter, we need to create a temporary variable to
354 * hold the value before conversion, and then perform the conversion after
355 * the function call returns.
356 *
357 * This has the effect of transforming code like this:
358 *
359 * void f(out int x);
360 * float value;
361 * f(value);
362 *
363 * Into IR that's equivalent to this:
364 *
365 * void f(out int x);
366 * float value;
367 * int out_parameter_conversion;
368 * f(out_parameter_conversion);
369 * value = float(out_parameter_conversion);
370 *
371 * If the parameter is an ir_expression of ir_binop_vector_extract,
372 * additional conversion is needed in the post-call re-write.
373 */
374 ir_variable *tmp =
375 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
376
377 before_instructions->push_tail(tmp);
378
379 /* If the parameter is an inout parameter, copy the value of the actual
380 * parameter to the new temporary. Note that no type conversion is allowed
381 * here because inout parameters must match types exactly.
382 */
383 if (parameter_is_inout) {
384 /* Inout parameters should never require conversion, since that would
385 * require an implicit conversion to exist both to and from the formal
386 * parameter type, and there are no bidirectional implicit conversions.
387 */
388 assert (actual->type == formal_type);
389
390 ir_dereference_variable *const deref_tmp_1 =
391 new(mem_ctx) ir_dereference_variable(tmp);
392 ir_assignment *const assignment =
393 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
394 before_instructions->push_tail(assignment);
395 }
396
397 /* Replace the parameter in the call with a dereference of the new
398 * temporary.
399 */
400 ir_dereference_variable *const deref_tmp_2 =
401 new(mem_ctx) ir_dereference_variable(tmp);
402 actual->replace_with(deref_tmp_2);
403
404
405 /* Copy the temporary variable to the actual parameter with optional
406 * type conversion applied.
407 */
408 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
409 if (actual->type != formal_type)
410 rhs = convert_component(rhs, actual->type);
411
412 ir_rvalue *lhs = actual;
413 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
414 lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
415 NULL),
416 expr->operands[1]->clone(mem_ctx,
417 NULL));
418 }
419
420 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
421 after_instructions->push_tail(assignment_2);
422 }
423
424 /**
425 * Generate a function call.
426 *
427 * For non-void functions, this returns a dereference of the temporary
428 * variable which stores the return value for the call. For void functions,
429 * this returns NULL.
430 */
431 static ir_rvalue *
432 generate_call(exec_list *instructions, ir_function_signature *sig,
433 exec_list *actual_parameters,
434 ir_variable *sub_var,
435 ir_rvalue *array_idx,
436 struct _mesa_glsl_parse_state *state,
437 bool inline_immediately)
438 {
439 void *ctx = state;
440 exec_list post_call_conversions;
441
442 /* Perform implicit conversion of arguments. For out parameters, we need
443 * to place them in a temporary variable and do the conversion after the
444 * call takes place. Since we haven't emitted the call yet, we'll place
445 * the post-call conversions in a temporary exec_list, and emit them later.
446 */
447 foreach_two_lists(formal_node, &sig->parameters,
448 actual_node, actual_parameters) {
449 ir_rvalue *actual = (ir_rvalue *) actual_node;
450 ir_variable *formal = (ir_variable *) formal_node;
451
452 if (formal->type->is_numeric() || formal->type->is_boolean()) {
453 switch (formal->data.mode) {
454 case ir_var_const_in:
455 case ir_var_function_in: {
456 ir_rvalue *converted
457 = convert_component(actual, formal->type);
458 actual->replace_with(converted);
459 break;
460 }
461 case ir_var_function_out:
462 case ir_var_function_inout:
463 fix_parameter(ctx, actual, formal->type,
464 instructions, &post_call_conversions,
465 formal->data.mode == ir_var_function_inout);
466 break;
467 default:
468 assert (!"Illegal formal parameter mode");
469 break;
470 }
471 }
472 }
473
474 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
475 *
476 * "Initializers for const declarations must be formed from literal
477 * values, other const variables (not including function call
478 * paramaters), or expressions of these.
479 *
480 * Constructors may be used in such expressions, but function calls may
481 * not."
482 *
483 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
484 *
485 * "A constant expression is one of
486 *
487 * ...
488 *
489 * - a built-in function call whose arguments are all constant
490 * expressions, with the exception of the texture lookup
491 * functions, the noise functions, and ftransform. The built-in
492 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
493 * inside an initializer with an argument that is a constant
494 * expression."
495 *
496 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
497 *
498 * "A constant expression is one of
499 *
500 * ...
501 *
502 * - a built-in function call whose arguments are all constant
503 * expressions, with the exception of the texture lookup
504 * functions."
505 *
506 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
507 *
508 * "A constant expression is one of
509 *
510 * ...
511 *
512 * - a built-in function call whose arguments are all constant
513 * expressions, with the exception of the texture lookup
514 * functions. The built-in functions dFdx, dFdy, and fwidth must
515 * return 0 when evaluated inside an initializer with an argument
516 * that is a constant expression."
517 *
518 * If the function call is a constant expression, don't generate any
519 * instructions; just generate an ir_constant.
520 */
521 if (state->is_version(120, 100)) {
522 ir_constant *value = sig->constant_expression_value(actual_parameters,
523 NULL);
524 if (value != NULL) {
525 return value;
526 }
527 }
528
529 ir_dereference_variable *deref = NULL;
530 if (!sig->return_type->is_void()) {
531 /* Create a new temporary to hold the return value. */
532 char *const name = ir_variable::temporaries_allocate_names
533 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
534 : NULL;
535
536 ir_variable *var;
537
538 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
539 instructions->push_tail(var);
540
541 ralloc_free(name);
542
543 deref = new(ctx) ir_dereference_variable(var);
544 }
545
546 ir_call *call = new(ctx) ir_call(sig, deref,
547 actual_parameters, sub_var, array_idx);
548 instructions->push_tail(call);
549 if (inline_immediately) {
550 call->generate_inline(call);
551 call->remove();
552 }
553
554 /* Also emit any necessary out-parameter conversions. */
555 instructions->append_list(&post_call_conversions);
556
557 return deref ? deref->clone(ctx, NULL) : NULL;
558 }
559
560 /**
561 * Given a function name and parameter list, find the matching signature.
562 */
563 static ir_function_signature *
564 match_function_by_name(const char *name,
565 exec_list *actual_parameters,
566 struct _mesa_glsl_parse_state *state)
567 {
568 ir_function *f = state->symbols->get_function(name);
569 ir_function_signature *local_sig = NULL;
570 ir_function_signature *sig = NULL;
571
572 /* Is the function hidden by a record type constructor? */
573 if (state->symbols->get_type(name))
574 return sig; /* no match */
575
576 /* Is the function hidden by a variable (impossible in 1.10)? */
577 if (!state->symbols->separate_function_namespace
578 && state->symbols->get_variable(name))
579 return sig; /* no match */
580
581 if (f != NULL) {
582 /* In desktop GL, the presence of a user-defined signature hides any
583 * built-in signatures, so we must ignore them. In contrast, in ES2
584 * user-defined signatures add new overloads, so we must consider them.
585 */
586 bool allow_builtins = state->es_shader || !f->has_user_signature();
587
588 /* Look for a match in the local shader. If exact, we're done. */
589 bool is_exact = false;
590 sig = local_sig = f->matching_signature(state, actual_parameters,
591 allow_builtins, &is_exact);
592 if (is_exact)
593 return sig;
594
595 if (!allow_builtins)
596 return sig;
597 }
598
599 /* Local shader has no exact candidates; check the built-ins. */
600 _mesa_glsl_initialize_builtin_functions();
601 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
602 return sig;
603 }
604
605 static ir_function_signature *
606 match_subroutine_by_name(const char *name,
607 exec_list *actual_parameters,
608 struct _mesa_glsl_parse_state *state,
609 ir_variable **var_r)
610 {
611 void *ctx = state;
612 ir_function_signature *sig = NULL;
613 ir_function *f, *found = NULL;
614 const char *new_name;
615 ir_variable *var;
616 bool is_exact = false;
617
618 new_name =
619 ralloc_asprintf(ctx, "%s_%s",
620 _mesa_shader_stage_to_subroutine_prefix(state->stage),
621 name);
622 var = state->symbols->get_variable(new_name);
623 if (!var)
624 return NULL;
625
626 for (int i = 0; i < state->num_subroutine_types; i++) {
627 f = state->subroutine_types[i];
628 if (strcmp(f->name, var->type->without_array()->name))
629 continue;
630 found = f;
631 break;
632 }
633
634 if (!found)
635 return NULL;
636 *var_r = var;
637 sig = found->matching_signature(state, actual_parameters,
638 false, &is_exact);
639 return sig;
640 }
641
642 static ir_rvalue *
643 generate_array_index(void *mem_ctx, exec_list *instructions,
644 struct _mesa_glsl_parse_state *state, YYLTYPE loc,
645 const ast_expression *array, ast_expression *idx,
646 const char **function_name, exec_list *actual_parameters)
647 {
648 if (array->oper == ast_array_index) {
649 /* This handles arrays of arrays */
650 ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
651 state, loc,
652 array->subexpressions[0],
653 array->subexpressions[1],
654 function_name,
655 actual_parameters);
656 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
657
658 YYLTYPE index_loc = idx->get_location();
659 return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
660 outer_array_idx, loc,
661 index_loc);
662 } else {
663 ir_variable *sub_var = NULL;
664 *function_name = array->primary_expression.identifier;
665
666 match_subroutine_by_name(*function_name, actual_parameters,
667 state, &sub_var);
668
669 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
670 return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
671 }
672 }
673
674 static void
675 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
676 ir_function *f)
677 {
678 if (f == NULL)
679 return;
680
681 foreach_in_list(ir_function_signature, sig, &f->signatures) {
682 if (sig->is_builtin() && !sig->is_builtin_available(state))
683 continue;
684
685 char *str = prototype_string(sig->return_type, f->name,
686 &sig->parameters);
687 _mesa_glsl_error(loc, state, " %s", str);
688 ralloc_free(str);
689 }
690 }
691
692 /**
693 * Raise a "no matching function" error, listing all possible overloads the
694 * compiler considered so developers can figure out what went wrong.
695 */
696 static void
697 no_matching_function_error(const char *name,
698 YYLTYPE *loc,
699 exec_list *actual_parameters,
700 _mesa_glsl_parse_state *state)
701 {
702 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
703
704 if (state->symbols->get_function(name) == NULL
705 && (!state->uses_builtin_functions
706 || sh->symbols->get_function(name) == NULL)) {
707 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
708 } else {
709 char *str = prototype_string(NULL, name, actual_parameters);
710 _mesa_glsl_error(loc, state,
711 "no matching function for call to `%s';"
712 " candidates are:",
713 str);
714 ralloc_free(str);
715
716 print_function_prototypes(state, loc,
717 state->symbols->get_function(name));
718
719 if (state->uses_builtin_functions) {
720 print_function_prototypes(state, loc,
721 sh->symbols->get_function(name));
722 }
723 }
724 }
725
726 /**
727 * Perform automatic type conversion of constructor parameters
728 *
729 * This implements the rules in the "Conversion and Scalar Constructors"
730 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
731 */
732 static ir_rvalue *
733 convert_component(ir_rvalue *src, const glsl_type *desired_type)
734 {
735 void *ctx = ralloc_parent(src);
736 const unsigned a = desired_type->base_type;
737 const unsigned b = src->type->base_type;
738 ir_expression *result = NULL;
739
740 if (src->type->is_error())
741 return src;
742
743 assert(a <= GLSL_TYPE_BOOL);
744 assert(b <= GLSL_TYPE_BOOL);
745
746 if (a == b)
747 return src;
748
749 switch (a) {
750 case GLSL_TYPE_UINT:
751 switch (b) {
752 case GLSL_TYPE_INT:
753 result = new(ctx) ir_expression(ir_unop_i2u, src);
754 break;
755 case GLSL_TYPE_FLOAT:
756 result = new(ctx) ir_expression(ir_unop_f2u, src);
757 break;
758 case GLSL_TYPE_BOOL:
759 result = new(ctx) ir_expression(ir_unop_i2u,
760 new(ctx) ir_expression(ir_unop_b2i,
761 src));
762 break;
763 case GLSL_TYPE_DOUBLE:
764 result = new(ctx) ir_expression(ir_unop_d2u, src);
765 break;
766 case GLSL_TYPE_UINT64:
767 result = new(ctx) ir_expression(ir_unop_u642u, src);
768 break;
769 case GLSL_TYPE_INT64:
770 result = new(ctx) ir_expression(ir_unop_i642u, src);
771 break;
772 }
773 break;
774 case GLSL_TYPE_INT:
775 switch (b) {
776 case GLSL_TYPE_UINT:
777 result = new(ctx) ir_expression(ir_unop_u2i, src);
778 break;
779 case GLSL_TYPE_FLOAT:
780 result = new(ctx) ir_expression(ir_unop_f2i, src);
781 break;
782 case GLSL_TYPE_BOOL:
783 result = new(ctx) ir_expression(ir_unop_b2i, src);
784 break;
785 case GLSL_TYPE_DOUBLE:
786 result = new(ctx) ir_expression(ir_unop_d2i, src);
787 break;
788 case GLSL_TYPE_UINT64:
789 result = new(ctx) ir_expression(ir_unop_u642i, src);
790 break;
791 case GLSL_TYPE_INT64:
792 result = new(ctx) ir_expression(ir_unop_i642i, src);
793 break;
794 }
795 break;
796 case GLSL_TYPE_FLOAT:
797 switch (b) {
798 case GLSL_TYPE_UINT:
799 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
800 break;
801 case GLSL_TYPE_INT:
802 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
803 break;
804 case GLSL_TYPE_BOOL:
805 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
806 break;
807 case GLSL_TYPE_DOUBLE:
808 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
809 break;
810 case GLSL_TYPE_UINT64:
811 result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
812 break;
813 case GLSL_TYPE_INT64:
814 result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
815 break;
816 }
817 break;
818 case GLSL_TYPE_BOOL:
819 switch (b) {
820 case GLSL_TYPE_UINT:
821 result = new(ctx) ir_expression(ir_unop_i2b,
822 new(ctx) ir_expression(ir_unop_u2i,
823 src));
824 break;
825 case GLSL_TYPE_INT:
826 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
827 break;
828 case GLSL_TYPE_FLOAT:
829 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
830 break;
831 case GLSL_TYPE_DOUBLE:
832 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
833 break;
834 case GLSL_TYPE_UINT64:
835 result = new(ctx) ir_expression(ir_unop_i642b,
836 new(ctx) ir_expression(ir_unop_u642i64,
837 src));
838 break;
839 case GLSL_TYPE_INT64:
840 result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
841 break;
842 }
843 break;
844 case GLSL_TYPE_DOUBLE:
845 switch (b) {
846 case GLSL_TYPE_INT:
847 result = new(ctx) ir_expression(ir_unop_i2d, src);
848 break;
849 case GLSL_TYPE_UINT:
850 result = new(ctx) ir_expression(ir_unop_u2d, src);
851 break;
852 case GLSL_TYPE_BOOL:
853 result = new(ctx) ir_expression(ir_unop_f2d,
854 new(ctx) ir_expression(ir_unop_b2f,
855 src));
856 break;
857 case GLSL_TYPE_FLOAT:
858 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
859 break;
860 case GLSL_TYPE_UINT64:
861 result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
862 break;
863 case GLSL_TYPE_INT64:
864 result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
865 break;
866 }
867 break;
868 case GLSL_TYPE_UINT64:
869 switch (b) {
870 case GLSL_TYPE_INT:
871 result = new(ctx) ir_expression(ir_unop_i2u64, src);
872 break;
873 case GLSL_TYPE_UINT:
874 result = new(ctx) ir_expression(ir_unop_u2u64, src);
875 break;
876 case GLSL_TYPE_BOOL:
877 result = new(ctx) ir_expression(ir_unop_i642u64,
878 new(ctx) ir_expression(ir_unop_b2i64,
879 src));
880 break;
881 case GLSL_TYPE_FLOAT:
882 result = new(ctx) ir_expression(ir_unop_f2u64, src);
883 break;
884 case GLSL_TYPE_DOUBLE:
885 result = new(ctx) ir_expression(ir_unop_d2u64, src);
886 break;
887 case GLSL_TYPE_INT64:
888 result = new(ctx) ir_expression(ir_unop_i642u64, src);
889 break;
890 }
891 break;
892 case GLSL_TYPE_INT64:
893 switch (b) {
894 case GLSL_TYPE_INT:
895 result = new(ctx) ir_expression(ir_unop_i2i64, src);
896 break;
897 case GLSL_TYPE_UINT:
898 result = new(ctx) ir_expression(ir_unop_u2i64, src);
899 break;
900 case GLSL_TYPE_BOOL:
901 result = new(ctx) ir_expression(ir_unop_b2i64, src);
902 break;
903 case GLSL_TYPE_FLOAT:
904 result = new(ctx) ir_expression(ir_unop_f2i64, src);
905 break;
906 case GLSL_TYPE_DOUBLE:
907 result = new(ctx) ir_expression(ir_unop_d2i64, src);
908 break;
909 case GLSL_TYPE_UINT64:
910 result = new(ctx) ir_expression(ir_unop_u642i64, src);
911 break;
912 }
913 break;
914 }
915
916 assert(result != NULL);
917 assert(result->type == desired_type);
918
919 /* Try constant folding; it may fold in the conversion we just added. */
920 ir_constant *const constant = result->constant_expression_value();
921 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
922 }
923
924
925 /**
926 * Perform automatic type and constant conversion of constructor parameters
927 *
928 * This implements the rules in the "Implicit Conversions" rules, not the
929 * "Conversion and Scalar Constructors".
930 *
931 * After attempting the implicit conversion, an attempt to convert into a
932 * constant valued expression is also done.
933 *
934 * The \c from \c ir_rvalue is converted "in place".
935 *
936 * \param from Operand that is being converted
937 * \param to Base type the operand will be converted to
938 * \param state GLSL compiler state
939 *
940 * \return
941 * If the attempt to convert into a constant expression succeeds, \c true is
942 * returned. Otherwise \c false is returned.
943 */
944 static bool
945 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
946 struct _mesa_glsl_parse_state *state)
947 {
948 ir_rvalue *result = from;
949
950 if (to != from->type->base_type) {
951 const glsl_type *desired_type =
952 glsl_type::get_instance(to,
953 from->type->vector_elements,
954 from->type->matrix_columns);
955
956 if (from->type->can_implicitly_convert_to(desired_type, state)) {
957 /* Even though convert_component() implements the constructor
958 * conversion rules (not the implicit conversion rules), its safe
959 * to use it here because we already checked that the implicit
960 * conversion is legal.
961 */
962 result = convert_component(from, desired_type);
963 }
964 }
965
966 ir_rvalue *const constant = result->constant_expression_value();
967
968 if (constant != NULL)
969 result = constant;
970
971 if (from != result) {
972 from->replace_with(result);
973 from = result;
974 }
975
976 return constant != NULL;
977 }
978
979
980 /**
981 * Dereference a specific component from a scalar, vector, or matrix
982 */
983 static ir_rvalue *
984 dereference_component(ir_rvalue *src, unsigned component)
985 {
986 void *ctx = ralloc_parent(src);
987 assert(component < src->type->components());
988
989 /* If the source is a constant, just create a new constant instead of a
990 * dereference of the existing constant.
991 */
992 ir_constant *constant = src->as_constant();
993 if (constant)
994 return new(ctx) ir_constant(constant, component);
995
996 if (src->type->is_scalar()) {
997 return src;
998 } else if (src->type->is_vector()) {
999 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1000 } else {
1001 assert(src->type->is_matrix());
1002
1003 /* Dereference a row of the matrix, then call this function again to get
1004 * a specific element from that row.
1005 */
1006 const int c = component / src->type->column_type()->vector_elements;
1007 const int r = component % src->type->column_type()->vector_elements;
1008 ir_constant *const col_index = new(ctx) ir_constant(c);
1009 ir_dereference *const col = new(ctx) ir_dereference_array(src,
1010 col_index);
1011
1012 col->type = src->type->column_type();
1013
1014 return dereference_component(col, r);
1015 }
1016
1017 assert(!"Should not get here.");
1018 return NULL;
1019 }
1020
1021
1022 static ir_rvalue *
1023 process_vec_mat_constructor(exec_list *instructions,
1024 const glsl_type *constructor_type,
1025 YYLTYPE *loc, exec_list *parameters,
1026 struct _mesa_glsl_parse_state *state)
1027 {
1028 void *ctx = state;
1029
1030 /* The ARB_shading_language_420pack spec says:
1031 *
1032 * "If an initializer is a list of initializers enclosed in curly braces,
1033 * the variable being declared must be a vector, a matrix, an array, or a
1034 * structure.
1035 *
1036 * int i = { 1 }; // illegal, i is not an aggregate"
1037 */
1038 if (constructor_type->vector_elements <= 1) {
1039 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1040 "matrices, arrays, and structs");
1041 return ir_rvalue::error_value(ctx);
1042 }
1043
1044 exec_list actual_parameters;
1045 const unsigned parameter_count =
1046 process_parameters(instructions, &actual_parameters, parameters, state);
1047
1048 if (parameter_count == 0
1049 || (constructor_type->is_vector() &&
1050 constructor_type->vector_elements != parameter_count)
1051 || (constructor_type->is_matrix() &&
1052 constructor_type->matrix_columns != parameter_count)) {
1053 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1054 constructor_type->is_vector() ? "vector" : "matrix",
1055 constructor_type->vector_elements);
1056 return ir_rvalue::error_value(ctx);
1057 }
1058
1059 bool all_parameters_are_constant = true;
1060
1061 /* Type cast each parameter and, if possible, fold constants. */
1062 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1063 /* Apply implicit conversions (not the scalar constructor rules, see the
1064 * spec quote above!) and attempt to convert the parameter to a constant
1065 * valued expression. After doing so, track whether or not all the
1066 * parameters to the constructor are trivially constant valued
1067 * expressions.
1068 */
1069 all_parameters_are_constant &=
1070 implicitly_convert_component(ir, constructor_type->base_type, state);
1071
1072 if (constructor_type->is_matrix()) {
1073 if (ir->type != constructor_type->column_type()) {
1074 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1075 "expected: %s, found %s",
1076 constructor_type->column_type()->name,
1077 ir->type->name);
1078 return ir_rvalue::error_value(ctx);
1079 }
1080 } else if (ir->type != constructor_type->get_scalar_type()) {
1081 _mesa_glsl_error(loc, state, "type error in vector constructor: "
1082 "expected: %s, found %s",
1083 constructor_type->get_scalar_type()->name,
1084 ir->type->name);
1085 return ir_rvalue::error_value(ctx);
1086 }
1087 }
1088
1089 if (all_parameters_are_constant)
1090 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1091
1092 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1093 ir_var_temporary);
1094 instructions->push_tail(var);
1095
1096 int i = 0;
1097
1098 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1099 ir_instruction *assignment = NULL;
1100
1101 if (var->type->is_matrix()) {
1102 ir_rvalue *lhs =
1103 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1104 assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1105 } else {
1106 /* use writemask rather than index for vector */
1107 assert(var->type->is_vector());
1108 assert(i < 4);
1109 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1110 assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1111 (unsigned)(1 << i));
1112 }
1113
1114 instructions->push_tail(assignment);
1115
1116 i++;
1117 }
1118
1119 return new(ctx) ir_dereference_variable(var);
1120 }
1121
1122
1123 static ir_rvalue *
1124 process_array_constructor(exec_list *instructions,
1125 const glsl_type *constructor_type,
1126 YYLTYPE *loc, exec_list *parameters,
1127 struct _mesa_glsl_parse_state *state)
1128 {
1129 void *ctx = state;
1130 /* Array constructors come in two forms: sized and unsized. Sized array
1131 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1132 * variables. In this case the number of parameters must exactly match the
1133 * specified size of the array.
1134 *
1135 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1136 * are vec4 variables. In this case the size of the array being constructed
1137 * is determined by the number of parameters.
1138 *
1139 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1140 *
1141 * "There must be exactly the same number of arguments as the size of
1142 * the array being constructed. If no size is present in the
1143 * constructor, then the array is explicitly sized to the number of
1144 * arguments provided. The arguments are assigned in order, starting at
1145 * element 0, to the elements of the constructed array. Each argument
1146 * must be the same type as the element type of the array, or be a type
1147 * that can be converted to the element type of the array according to
1148 * Section 4.1.10 "Implicit Conversions.""
1149 */
1150 exec_list actual_parameters;
1151 const unsigned parameter_count =
1152 process_parameters(instructions, &actual_parameters, parameters, state);
1153 bool is_unsized_array = constructor_type->is_unsized_array();
1154
1155 if ((parameter_count == 0) ||
1156 (!is_unsized_array && (constructor_type->length != parameter_count))) {
1157 const unsigned min_param = is_unsized_array
1158 ? 1 : constructor_type->length;
1159
1160 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1161 "parameter%s",
1162 is_unsized_array ? "at least" : "exactly",
1163 min_param, (min_param <= 1) ? "" : "s");
1164 return ir_rvalue::error_value(ctx);
1165 }
1166
1167 if (is_unsized_array) {
1168 constructor_type =
1169 glsl_type::get_array_instance(constructor_type->fields.array,
1170 parameter_count);
1171 assert(constructor_type != NULL);
1172 assert(constructor_type->length == parameter_count);
1173 }
1174
1175 bool all_parameters_are_constant = true;
1176 const glsl_type *element_type = constructor_type->fields.array;
1177
1178 /* Type cast each parameter and, if possible, fold constants. */
1179 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1180 /* Apply implicit conversions (not the scalar constructor rules, see the
1181 * spec quote above!) and attempt to convert the parameter to a constant
1182 * valued expression. After doing so, track whether or not all the
1183 * parameters to the constructor are trivially constant valued
1184 * expressions.
1185 */
1186 all_parameters_are_constant &=
1187 implicitly_convert_component(ir, element_type->base_type, state);
1188
1189 if (constructor_type->fields.array->is_unsized_array()) {
1190 /* As the inner parameters of the constructor are created without
1191 * knowledge of each other we need to check to make sure unsized
1192 * parameters of unsized constructors all end up with the same size.
1193 *
1194 * e.g we make sure to fail for a constructor like this:
1195 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1196 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1197 * vec4[](vec4(0.0), vec4(1.0)));
1198 */
1199 if (element_type->is_unsized_array()) {
1200 /* This is the first parameter so just get the type */
1201 element_type = ir->type;
1202 } else if (element_type != ir->type) {
1203 _mesa_glsl_error(loc, state, "type error in array constructor: "
1204 "expected: %s, found %s",
1205 element_type->name,
1206 ir->type->name);
1207 return ir_rvalue::error_value(ctx);
1208 }
1209 } else if (ir->type != constructor_type->fields.array) {
1210 _mesa_glsl_error(loc, state, "type error in array constructor: "
1211 "expected: %s, found %s",
1212 constructor_type->fields.array->name,
1213 ir->type->name);
1214 return ir_rvalue::error_value(ctx);
1215 } else {
1216 element_type = ir->type;
1217 }
1218 }
1219
1220 if (constructor_type->fields.array->is_unsized_array()) {
1221 constructor_type =
1222 glsl_type::get_array_instance(element_type,
1223 parameter_count);
1224 assert(constructor_type != NULL);
1225 assert(constructor_type->length == parameter_count);
1226 }
1227
1228 if (all_parameters_are_constant)
1229 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1230
1231 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1232 ir_var_temporary);
1233 instructions->push_tail(var);
1234
1235 int i = 0;
1236 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1237 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1238 new(ctx) ir_constant(i));
1239
1240 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1241 instructions->push_tail(assignment);
1242
1243 i++;
1244 }
1245
1246 return new(ctx) ir_dereference_variable(var);
1247 }
1248
1249
1250 /**
1251 * Determine if a list consists of a single scalar r-value
1252 */
1253 bool
1254 single_scalar_parameter(exec_list *parameters)
1255 {
1256 const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1257 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1258
1259 return (p->type->is_scalar() && p->next->is_tail_sentinel());
1260 }
1261
1262
1263 /**
1264 * Generate inline code for a vector constructor
1265 *
1266 * The generated constructor code will consist of a temporary variable
1267 * declaration of the same type as the constructor. A sequence of assignments
1268 * from constructor parameters to the temporary will follow.
1269 *
1270 * \return
1271 * An \c ir_dereference_variable of the temprorary generated in the constructor
1272 * body.
1273 */
1274 ir_rvalue *
1275 emit_inline_vector_constructor(const glsl_type *type,
1276 exec_list *instructions,
1277 exec_list *parameters,
1278 void *ctx)
1279 {
1280 assert(!parameters->is_empty());
1281
1282 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1283 instructions->push_tail(var);
1284
1285 /* There are three kinds of vector constructors.
1286 *
1287 * - Construct a vector from a single scalar by replicating that scalar to
1288 * all components of the vector.
1289 *
1290 * - Construct a vector from at least a matrix. This case should already
1291 * have been taken care of in ast_function_expression::hir by breaking
1292 * down the matrix into a series of column vectors.
1293 *
1294 * - Construct a vector from an arbirary combination of vectors and
1295 * scalars. The components of the constructor parameters are assigned
1296 * to the vector in order until the vector is full.
1297 */
1298 const unsigned lhs_components = type->components();
1299 if (single_scalar_parameter(parameters)) {
1300 ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1301 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1302 lhs_components);
1303 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1304 const unsigned mask = (1U << lhs_components) - 1;
1305
1306 assert(rhs->type == lhs->type);
1307
1308 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1309 instructions->push_tail(inst);
1310 } else {
1311 unsigned base_component = 0;
1312 unsigned base_lhs_component = 0;
1313 ir_constant_data data;
1314 unsigned constant_mask = 0, constant_components = 0;
1315
1316 memset(&data, 0, sizeof(data));
1317
1318 foreach_in_list(ir_rvalue, param, parameters) {
1319 unsigned rhs_components = param->type->components();
1320
1321 /* Do not try to assign more components to the vector than it has! */
1322 if ((rhs_components + base_lhs_component) > lhs_components) {
1323 rhs_components = lhs_components - base_lhs_component;
1324 }
1325
1326 const ir_constant *const c = param->as_constant();
1327 if (c != NULL) {
1328 for (unsigned i = 0; i < rhs_components; i++) {
1329 switch (c->type->base_type) {
1330 case GLSL_TYPE_UINT:
1331 data.u[i + base_component] = c->get_uint_component(i);
1332 break;
1333 case GLSL_TYPE_INT:
1334 data.i[i + base_component] = c->get_int_component(i);
1335 break;
1336 case GLSL_TYPE_FLOAT:
1337 data.f[i + base_component] = c->get_float_component(i);
1338 break;
1339 case GLSL_TYPE_DOUBLE:
1340 data.d[i + base_component] = c->get_double_component(i);
1341 break;
1342 case GLSL_TYPE_BOOL:
1343 data.b[i + base_component] = c->get_bool_component(i);
1344 break;
1345 case GLSL_TYPE_UINT64:
1346 data.u64[i + base_component] = c->get_uint64_component(i);
1347 break;
1348 case GLSL_TYPE_INT64:
1349 data.i64[i + base_component] = c->get_int64_component(i);
1350 break;
1351 default:
1352 assert(!"Should not get here.");
1353 break;
1354 }
1355 }
1356
1357 /* Mask of fields to be written in the assignment. */
1358 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1359 constant_components += rhs_components;
1360
1361 base_component += rhs_components;
1362 }
1363 /* Advance the component index by the number of components
1364 * that were just assigned.
1365 */
1366 base_lhs_component += rhs_components;
1367 }
1368
1369 if (constant_mask != 0) {
1370 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1371 const glsl_type *rhs_type =
1372 glsl_type::get_instance(var->type->base_type,
1373 constant_components,
1374 1);
1375 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1376
1377 ir_instruction *inst =
1378 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1379 instructions->push_tail(inst);
1380 }
1381
1382 base_component = 0;
1383 foreach_in_list(ir_rvalue, param, parameters) {
1384 unsigned rhs_components = param->type->components();
1385
1386 /* Do not try to assign more components to the vector than it has! */
1387 if ((rhs_components + base_component) > lhs_components) {
1388 rhs_components = lhs_components - base_component;
1389 }
1390
1391 /* If we do not have any components left to copy, break out of the
1392 * loop. This can happen when initializing a vec4 with a mat3 as the
1393 * mat3 would have been broken into a series of column vectors.
1394 */
1395 if (rhs_components == 0) {
1396 break;
1397 }
1398
1399 const ir_constant *const c = param->as_constant();
1400 if (c == NULL) {
1401 /* Mask of fields to be written in the assignment. */
1402 const unsigned write_mask = ((1U << rhs_components) - 1)
1403 << base_component;
1404
1405 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1406
1407 /* Generate a swizzle so that LHS and RHS sizes match. */
1408 ir_rvalue *rhs =
1409 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1410
1411 ir_instruction *inst =
1412 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1413 instructions->push_tail(inst);
1414 }
1415
1416 /* Advance the component index by the number of components that were
1417 * just assigned.
1418 */
1419 base_component += rhs_components;
1420 }
1421 }
1422 return new(ctx) ir_dereference_variable(var);
1423 }
1424
1425
1426 /**
1427 * Generate assignment of a portion of a vector to a portion of a matrix column
1428 *
1429 * \param src_base First component of the source to be used in assignment
1430 * \param column Column of destination to be assiged
1431 * \param row_base First component of the destination column to be assigned
1432 * \param count Number of components to be assigned
1433 *
1434 * \note
1435 * \c src_base + \c count must be less than or equal to the number of
1436 * components in the source vector.
1437 */
1438 ir_instruction *
1439 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1440 ir_rvalue *src, unsigned src_base, unsigned count,
1441 void *mem_ctx)
1442 {
1443 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1444 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1445 col_idx);
1446
1447 assert(column_ref->type->components() >= (row_base + count));
1448 assert(src->type->components() >= (src_base + count));
1449
1450 /* Generate a swizzle that extracts the number of components from the source
1451 * that are to be assigned to the column of the matrix.
1452 */
1453 if (count < src->type->vector_elements) {
1454 src = new(mem_ctx) ir_swizzle(src,
1455 src_base + 0, src_base + 1,
1456 src_base + 2, src_base + 3,
1457 count);
1458 }
1459
1460 /* Mask of fields to be written in the assignment. */
1461 const unsigned write_mask = ((1U << count) - 1) << row_base;
1462
1463 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1464 }
1465
1466
1467 /**
1468 * Generate inline code for a matrix constructor
1469 *
1470 * The generated constructor code will consist of a temporary variable
1471 * declaration of the same type as the constructor. A sequence of assignments
1472 * from constructor parameters to the temporary will follow.
1473 *
1474 * \return
1475 * An \c ir_dereference_variable of the temprorary generated in the constructor
1476 * body.
1477 */
1478 ir_rvalue *
1479 emit_inline_matrix_constructor(const glsl_type *type,
1480 exec_list *instructions,
1481 exec_list *parameters,
1482 void *ctx)
1483 {
1484 assert(!parameters->is_empty());
1485
1486 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1487 instructions->push_tail(var);
1488
1489 /* There are three kinds of matrix constructors.
1490 *
1491 * - Construct a matrix from a single scalar by replicating that scalar to
1492 * along the diagonal of the matrix and setting all other components to
1493 * zero.
1494 *
1495 * - Construct a matrix from an arbirary combination of vectors and
1496 * scalars. The components of the constructor parameters are assigned
1497 * to the matrix in column-major order until the matrix is full.
1498 *
1499 * - Construct a matrix from a single matrix. The source matrix is copied
1500 * to the upper left portion of the constructed matrix, and the remaining
1501 * elements take values from the identity matrix.
1502 */
1503 ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1504 if (single_scalar_parameter(parameters)) {
1505 /* Assign the scalar to the X component of a vec4, and fill the remaining
1506 * components with zero.
1507 */
1508 glsl_base_type param_base_type = first_param->type->base_type;
1509 assert(first_param->type->is_float() || first_param->type->is_double());
1510 ir_variable *rhs_var =
1511 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1512 "mat_ctor_vec",
1513 ir_var_temporary);
1514 instructions->push_tail(rhs_var);
1515
1516 ir_constant_data zero;
1517 for (unsigned i = 0; i < 4; i++)
1518 if (first_param->type->is_float())
1519 zero.f[i] = 0.0;
1520 else
1521 zero.d[i] = 0.0;
1522
1523 ir_instruction *inst =
1524 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1525 new(ctx) ir_constant(rhs_var->type, &zero),
1526 NULL);
1527 instructions->push_tail(inst);
1528
1529 ir_dereference *const rhs_ref =
1530 new(ctx) ir_dereference_variable(rhs_var);
1531
1532 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1533 instructions->push_tail(inst);
1534
1535 /* Assign the temporary vector to each column of the destination matrix
1536 * with a swizzle that puts the X component on the diagonal of the
1537 * matrix. In some cases this may mean that the X component does not
1538 * get assigned into the column at all (i.e., when the matrix has more
1539 * columns than rows).
1540 */
1541 static const unsigned rhs_swiz[4][4] = {
1542 { 0, 1, 1, 1 },
1543 { 1, 0, 1, 1 },
1544 { 1, 1, 0, 1 },
1545 { 1, 1, 1, 0 }
1546 };
1547
1548 const unsigned cols_to_init = MIN2(type->matrix_columns,
1549 type->vector_elements);
1550 for (unsigned i = 0; i < cols_to_init; i++) {
1551 ir_constant *const col_idx = new(ctx) ir_constant(i);
1552 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1553 col_idx);
1554
1555 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1556 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1557 type->vector_elements);
1558
1559 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1560 instructions->push_tail(inst);
1561 }
1562
1563 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1564 ir_constant *const col_idx = new(ctx) ir_constant(i);
1565 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1566 col_idx);
1567
1568 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1569 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1570 type->vector_elements);
1571
1572 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1573 instructions->push_tail(inst);
1574 }
1575 } else if (first_param->type->is_matrix()) {
1576 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1577 *
1578 * "If a matrix is constructed from a matrix, then each component
1579 * (column i, row j) in the result that has a corresponding
1580 * component (column i, row j) in the argument will be initialized
1581 * from there. All other components will be initialized to the
1582 * identity matrix. If a matrix argument is given to a matrix
1583 * constructor, it is an error to have any other arguments."
1584 */
1585 assert(first_param->next->is_tail_sentinel());
1586 ir_rvalue *const src_matrix = first_param;
1587
1588 /* If the source matrix is smaller, pre-initialize the relavent parts of
1589 * the destination matrix to the identity matrix.
1590 */
1591 if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1592 (src_matrix->type->vector_elements < var->type->vector_elements)) {
1593
1594 /* If the source matrix has fewer rows, every column of the
1595 * destination must be initialized. Otherwise only the columns in
1596 * the destination that do not exist in the source must be
1597 * initialized.
1598 */
1599 unsigned col =
1600 (src_matrix->type->vector_elements < var->type->vector_elements)
1601 ? 0 : src_matrix->type->matrix_columns;
1602
1603 const glsl_type *const col_type = var->type->column_type();
1604 for (/* empty */; col < var->type->matrix_columns; col++) {
1605 ir_constant_data ident;
1606
1607 if (!col_type->is_double()) {
1608 ident.f[0] = 0.0f;
1609 ident.f[1] = 0.0f;
1610 ident.f[2] = 0.0f;
1611 ident.f[3] = 0.0f;
1612 ident.f[col] = 1.0f;
1613 } else {
1614 ident.d[0] = 0.0;
1615 ident.d[1] = 0.0;
1616 ident.d[2] = 0.0;
1617 ident.d[3] = 0.0;
1618 ident.d[col] = 1.0;
1619 }
1620
1621 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1622
1623 ir_rvalue *const lhs =
1624 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1625
1626 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1627 instructions->push_tail(inst);
1628 }
1629 }
1630
1631 /* Assign columns from the source matrix to the destination matrix.
1632 *
1633 * Since the parameter will be used in the RHS of multiple assignments,
1634 * generate a temporary and copy the paramter there.
1635 */
1636 ir_variable *const rhs_var =
1637 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1638 ir_var_temporary);
1639 instructions->push_tail(rhs_var);
1640
1641 ir_dereference *const rhs_var_ref =
1642 new(ctx) ir_dereference_variable(rhs_var);
1643 ir_instruction *const inst =
1644 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1645 instructions->push_tail(inst);
1646
1647 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1648 var->type->vector_elements);
1649 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1650 var->type->matrix_columns);
1651
1652 unsigned swiz[4] = { 0, 0, 0, 0 };
1653 for (unsigned i = 1; i < last_row; i++)
1654 swiz[i] = i;
1655
1656 const unsigned write_mask = (1U << last_row) - 1;
1657
1658 for (unsigned i = 0; i < last_col; i++) {
1659 ir_dereference *const lhs =
1660 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1661 ir_rvalue *const rhs_col =
1662 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1663
1664 /* If one matrix has columns that are smaller than the columns of the
1665 * other matrix, wrap the column access of the larger with a swizzle
1666 * so that the LHS and RHS of the assignment have the same size (and
1667 * therefore have the same type).
1668 *
1669 * It would be perfectly valid to unconditionally generate the
1670 * swizzles, this this will typically result in a more compact IR
1671 * tree.
1672 */
1673 ir_rvalue *rhs;
1674 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1675 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1676 } else {
1677 rhs = rhs_col;
1678 }
1679
1680 ir_instruction *inst =
1681 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1682 instructions->push_tail(inst);
1683 }
1684 } else {
1685 const unsigned cols = type->matrix_columns;
1686 const unsigned rows = type->vector_elements;
1687 unsigned remaining_slots = rows * cols;
1688 unsigned col_idx = 0;
1689 unsigned row_idx = 0;
1690
1691 foreach_in_list(ir_rvalue, rhs, parameters) {
1692 unsigned rhs_components = rhs->type->components();
1693 unsigned rhs_base = 0;
1694
1695 if (remaining_slots == 0)
1696 break;
1697
1698 /* Since the parameter might be used in the RHS of two assignments,
1699 * generate a temporary and copy the paramter there.
1700 */
1701 ir_variable *rhs_var =
1702 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1703 instructions->push_tail(rhs_var);
1704
1705 ir_dereference *rhs_var_ref =
1706 new(ctx) ir_dereference_variable(rhs_var);
1707 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1708 instructions->push_tail(inst);
1709
1710 do {
1711 /* Assign the current parameter to as many components of the matrix
1712 * as it will fill.
1713 *
1714 * NOTE: A single vector parameter can span two matrix columns. A
1715 * single vec4, for example, can completely fill a mat2.
1716 */
1717 unsigned count = MIN2(rows - row_idx,
1718 rhs_components - rhs_base);
1719
1720 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1721 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1722 row_idx,
1723 rhs_var_ref,
1724 rhs_base,
1725 count, ctx);
1726 instructions->push_tail(inst);
1727 rhs_base += count;
1728 row_idx += count;
1729 remaining_slots -= count;
1730
1731 /* Sometimes, there is still data left in the parameters and
1732 * components left to be set in the destination but in other
1733 * column.
1734 */
1735 if (row_idx >= rows) {
1736 row_idx = 0;
1737 col_idx++;
1738 }
1739 } while(remaining_slots > 0 && rhs_base < rhs_components);
1740 }
1741 }
1742
1743 return new(ctx) ir_dereference_variable(var);
1744 }
1745
1746
1747 ir_rvalue *
1748 emit_inline_record_constructor(const glsl_type *type,
1749 exec_list *instructions,
1750 exec_list *parameters,
1751 void *mem_ctx)
1752 {
1753 ir_variable *const var =
1754 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1755 ir_dereference_variable *const d =
1756 new(mem_ctx) ir_dereference_variable(var);
1757
1758 instructions->push_tail(var);
1759
1760 exec_node *node = parameters->get_head_raw();
1761 for (unsigned i = 0; i < type->length; i++) {
1762 assert(!node->is_tail_sentinel());
1763
1764 ir_dereference *const lhs =
1765 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1766 type->fields.structure[i].name);
1767
1768 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1769 assert(rhs != NULL);
1770
1771 ir_instruction *const assign =
1772 new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1773
1774 instructions->push_tail(assign);
1775 node = node->next;
1776 }
1777
1778 return d;
1779 }
1780
1781
1782 static ir_rvalue *
1783 process_record_constructor(exec_list *instructions,
1784 const glsl_type *constructor_type,
1785 YYLTYPE *loc, exec_list *parameters,
1786 struct _mesa_glsl_parse_state *state)
1787 {
1788 void *ctx = state;
1789 /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1790 *
1791 * "The arguments to the constructor will be used to set the structure's
1792 * fields, in order, using one argument per field. Each argument must
1793 * be the same type as the field it sets, or be a type that can be
1794 * converted to the field's type according to Section 4.1.10 “Implicit
1795 * Conversions.”"
1796 *
1797 * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1798 *
1799 * "In all cases, the innermost initializer (i.e., not a list of
1800 * initializers enclosed in curly braces) applied to an object must
1801 * have the same type as the object being initialized or be a type that
1802 * can be converted to the object's type according to section 4.1.10
1803 * "Implicit Conversions". In the latter case, an implicit conversion
1804 * will be done on the initializer before the assignment is done."
1805 */
1806 exec_list actual_parameters;
1807
1808 const unsigned parameter_count =
1809 process_parameters(instructions, &actual_parameters, parameters,
1810 state);
1811
1812 if (parameter_count != constructor_type->length) {
1813 _mesa_glsl_error(loc, state,
1814 "%s parameters in constructor for `%s'",
1815 parameter_count > constructor_type->length
1816 ? "too many": "insufficient",
1817 constructor_type->name);
1818 return ir_rvalue::error_value(ctx);
1819 }
1820
1821 bool all_parameters_are_constant = true;
1822
1823 int i = 0;
1824 /* Type cast each parameter and, if possible, fold constants. */
1825 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1826
1827 const glsl_struct_field *struct_field =
1828 &constructor_type->fields.structure[i];
1829
1830 /* Apply implicit conversions (not the scalar constructor rules, see the
1831 * spec quote above!) and attempt to convert the parameter to a constant
1832 * valued expression. After doing so, track whether or not all the
1833 * parameters to the constructor are trivially constant valued
1834 * expressions.
1835 */
1836 all_parameters_are_constant &=
1837 implicitly_convert_component(ir, struct_field->type->base_type,
1838 state);
1839
1840 if (ir->type != struct_field->type) {
1841 _mesa_glsl_error(loc, state,
1842 "parameter type mismatch in constructor for `%s.%s' "
1843 "(%s vs %s)",
1844 constructor_type->name,
1845 struct_field->name,
1846 ir->type->name,
1847 struct_field->type->name);
1848 return ir_rvalue::error_value(ctx);
1849 }
1850
1851 i++;
1852 }
1853
1854 if (all_parameters_are_constant) {
1855 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1856 } else {
1857 return emit_inline_record_constructor(constructor_type, instructions,
1858 &actual_parameters, state);
1859 }
1860 }
1861
1862 ir_rvalue *
1863 ast_function_expression::handle_method(exec_list *instructions,
1864 struct _mesa_glsl_parse_state *state)
1865 {
1866 const ast_expression *field = subexpressions[0];
1867 ir_rvalue *op;
1868 ir_rvalue *result;
1869 void *ctx = state;
1870 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1871 YYLTYPE loc = get_location();
1872 state->check_version(120, 300, &loc, "methods not supported");
1873
1874 const char *method;
1875 method = field->primary_expression.identifier;
1876
1877 /* This would prevent to raise "uninitialized variable" warnings when
1878 * calling array.length.
1879 */
1880 field->subexpressions[0]->set_is_lhs(true);
1881 op = field->subexpressions[0]->hir(instructions, state);
1882 if (strcmp(method, "length") == 0) {
1883 if (!this->expressions.is_empty()) {
1884 _mesa_glsl_error(&loc, state, "length method takes no arguments");
1885 goto fail;
1886 }
1887
1888 if (op->type->is_array()) {
1889 if (op->type->is_unsized_array()) {
1890 if (!state->has_shader_storage_buffer_objects()) {
1891 _mesa_glsl_error(&loc, state,
1892 "length called on unsized array"
1893 " only available with"
1894 " ARB_shader_storage_buffer_object");
1895 }
1896 /* Calculate length of an unsized array in run-time */
1897 result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
1898 op);
1899 } else {
1900 result = new(ctx) ir_constant(op->type->array_size());
1901 }
1902 } else if (op->type->is_vector()) {
1903 if (state->has_420pack()) {
1904 /* .length() returns int. */
1905 result = new(ctx) ir_constant((int) op->type->vector_elements);
1906 } else {
1907 _mesa_glsl_error(&loc, state, "length method on matrix only"
1908 " available with ARB_shading_language_420pack");
1909 goto fail;
1910 }
1911 } else if (op->type->is_matrix()) {
1912 if (state->has_420pack()) {
1913 /* .length() returns int. */
1914 result = new(ctx) ir_constant((int) op->type->matrix_columns);
1915 } else {
1916 _mesa_glsl_error(&loc, state, "length method on matrix only"
1917 " available with ARB_shading_language_420pack");
1918 goto fail;
1919 }
1920 } else {
1921 _mesa_glsl_error(&loc, state, "length called on scalar.");
1922 goto fail;
1923 }
1924 } else {
1925 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
1926 goto fail;
1927 }
1928 return result;
1929 fail:
1930 return ir_rvalue::error_value(ctx);
1931 }
1932
1933 ir_rvalue *
1934 ast_function_expression::hir(exec_list *instructions,
1935 struct _mesa_glsl_parse_state *state)
1936 {
1937 void *ctx = state;
1938 /* There are three sorts of function calls.
1939 *
1940 * 1. constructors - The first subexpression is an ast_type_specifier.
1941 * 2. methods - Only the .length() method of array types.
1942 * 3. functions - Calls to regular old functions.
1943 *
1944 */
1945 if (is_constructor()) {
1946 const ast_type_specifier *type =
1947 (ast_type_specifier *) subexpressions[0];
1948 YYLTYPE loc = type->get_location();
1949 const char *name;
1950
1951 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1952
1953 /* constructor_type can be NULL if a variable with the same name as the
1954 * structure has come into scope.
1955 */
1956 if (constructor_type == NULL) {
1957 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1958 "may be shadowed by a variable with the same name)",
1959 type->type_name);
1960 return ir_rvalue::error_value(ctx);
1961 }
1962
1963
1964 /* Constructors for opaque types are illegal.
1965 */
1966 if (constructor_type->contains_opaque()) {
1967 _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
1968 constructor_type->name);
1969 return ir_rvalue::error_value(ctx);
1970 }
1971
1972 if (constructor_type->is_subroutine()) {
1973 _mesa_glsl_error(& loc, state,
1974 "subroutine name cannot be a constructor `%s'",
1975 constructor_type->name);
1976 return ir_rvalue::error_value(ctx);
1977 }
1978
1979 if (constructor_type->is_array()) {
1980 if (!state->check_version(120, 300, &loc,
1981 "array constructors forbidden")) {
1982 return ir_rvalue::error_value(ctx);
1983 }
1984
1985 return process_array_constructor(instructions, constructor_type,
1986 & loc, &this->expressions, state);
1987 }
1988
1989
1990 /* There are two kinds of constructor calls. Constructors for arrays and
1991 * structures must have the exact number of arguments with matching types
1992 * in the correct order. These constructors follow essentially the same
1993 * type matching rules as functions.
1994 *
1995 * Constructors for built-in language types, such as mat4 and vec2, are
1996 * free form. The only requirements are that the parameters must provide
1997 * enough values of the correct scalar type and that no arguments are
1998 * given past the last used argument.
1999 *
2000 * When using the C-style initializer syntax from GLSL 4.20, constructors
2001 * must have the exact number of arguments with matching types in the
2002 * correct order.
2003 */
2004 if (constructor_type->is_record()) {
2005 return process_record_constructor(instructions, constructor_type,
2006 &loc, &this->expressions,
2007 state);
2008 }
2009
2010 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
2011 return ir_rvalue::error_value(ctx);
2012
2013 /* Total number of components of the type being constructed. */
2014 const unsigned type_components = constructor_type->components();
2015
2016 /* Number of components from parameters that have actually been
2017 * consumed. This is used to perform several kinds of error checking.
2018 */
2019 unsigned components_used = 0;
2020
2021 unsigned matrix_parameters = 0;
2022 unsigned nonmatrix_parameters = 0;
2023 exec_list actual_parameters;
2024
2025 foreach_list_typed(ast_node, ast, link, &this->expressions) {
2026 ir_rvalue *result = ast->hir(instructions, state);
2027
2028 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2029 *
2030 * "It is an error to provide extra arguments beyond this
2031 * last used argument."
2032 */
2033 if (components_used >= type_components) {
2034 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2035 "constructor",
2036 constructor_type->name);
2037 return ir_rvalue::error_value(ctx);
2038 }
2039
2040 if (!result->type->is_numeric() && !result->type->is_boolean()) {
2041 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2042 "non-numeric data type",
2043 constructor_type->name);
2044 return ir_rvalue::error_value(ctx);
2045 }
2046
2047 /* Count the number of matrix and nonmatrix parameters. This
2048 * is used below to enforce some of the constructor rules.
2049 */
2050 if (result->type->is_matrix())
2051 matrix_parameters++;
2052 else
2053 nonmatrix_parameters++;
2054
2055 actual_parameters.push_tail(result);
2056 components_used += result->type->components();
2057 }
2058
2059 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2060 *
2061 * "It is an error to construct matrices from other matrices. This
2062 * is reserved for future use."
2063 */
2064 if (matrix_parameters > 0
2065 && constructor_type->is_matrix()
2066 && !state->check_version(120, 100, &loc,
2067 "cannot construct `%s' from a matrix",
2068 constructor_type->name)) {
2069 return ir_rvalue::error_value(ctx);
2070 }
2071
2072 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2073 *
2074 * "If a matrix argument is given to a matrix constructor, it is
2075 * an error to have any other arguments."
2076 */
2077 if ((matrix_parameters > 0)
2078 && ((matrix_parameters + nonmatrix_parameters) > 1)
2079 && constructor_type->is_matrix()) {
2080 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2081 "matrix must be only parameter",
2082 constructor_type->name);
2083 return ir_rvalue::error_value(ctx);
2084 }
2085
2086 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2087 *
2088 * "In these cases, there must be enough components provided in the
2089 * arguments to provide an initializer for every component in the
2090 * constructed value."
2091 */
2092 if (components_used < type_components && components_used != 1
2093 && matrix_parameters == 0) {
2094 _mesa_glsl_error(& loc, state, "too few components to construct "
2095 "`%s'",
2096 constructor_type->name);
2097 return ir_rvalue::error_value(ctx);
2098 }
2099
2100 /* Matrices can never be consumed as is by any constructor but matrix
2101 * constructors. If the constructor type is not matrix, always break the
2102 * matrix up into a series of column vectors.
2103 */
2104 if (!constructor_type->is_matrix()) {
2105 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2106 if (!matrix->type->is_matrix())
2107 continue;
2108
2109 /* Create a temporary containing the matrix. */
2110 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2111 ir_var_temporary);
2112 instructions->push_tail(var);
2113 instructions->push_tail(
2114 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2115 matrix, NULL));
2116 var->constant_value = matrix->constant_expression_value();
2117
2118 /* Replace the matrix with dereferences of its columns. */
2119 for (int i = 0; i < matrix->type->matrix_columns; i++) {
2120 matrix->insert_before(
2121 new (ctx) ir_dereference_array(var,
2122 new(ctx) ir_constant(i)));
2123 }
2124 matrix->remove();
2125 }
2126 }
2127
2128 bool all_parameters_are_constant = true;
2129
2130 /* Type cast each parameter and, if possible, fold constants.*/
2131 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2132 const glsl_type *desired_type =
2133 glsl_type::get_instance(constructor_type->base_type,
2134 ir->type->vector_elements,
2135 ir->type->matrix_columns);
2136 ir_rvalue *result = convert_component(ir, desired_type);
2137
2138 /* Attempt to convert the parameter to a constant valued expression.
2139 * After doing so, track whether or not all the parameters to the
2140 * constructor are trivially constant valued expressions.
2141 */
2142 ir_rvalue *const constant = result->constant_expression_value();
2143
2144 if (constant != NULL)
2145 result = constant;
2146 else
2147 all_parameters_are_constant = false;
2148
2149 if (result != ir) {
2150 ir->replace_with(result);
2151 }
2152 }
2153
2154 /* If all of the parameters are trivially constant, create a
2155 * constant representing the complete collection of parameters.
2156 */
2157 if (all_parameters_are_constant) {
2158 return new(ctx) ir_constant(constructor_type, &actual_parameters);
2159 } else if (constructor_type->is_scalar()) {
2160 return dereference_component((ir_rvalue *)
2161 actual_parameters.get_head_raw(),
2162 0);
2163 } else if (constructor_type->is_vector()) {
2164 return emit_inline_vector_constructor(constructor_type,
2165 instructions,
2166 &actual_parameters,
2167 ctx);
2168 } else {
2169 assert(constructor_type->is_matrix());
2170 return emit_inline_matrix_constructor(constructor_type,
2171 instructions,
2172 &actual_parameters,
2173 ctx);
2174 }
2175 } else if (subexpressions[0]->oper == ast_field_selection) {
2176 return handle_method(instructions, state);
2177 } else {
2178 const ast_expression *id = subexpressions[0];
2179 const char *func_name = NULL;
2180 YYLTYPE loc = get_location();
2181 exec_list actual_parameters;
2182 ir_variable *sub_var = NULL;
2183 ir_rvalue *array_idx = NULL;
2184
2185 process_parameters(instructions, &actual_parameters, &this->expressions,
2186 state);
2187
2188 if (id->oper == ast_array_index) {
2189 array_idx = generate_array_index(ctx, instructions, state, loc,
2190 id->subexpressions[0],
2191 id->subexpressions[1], &func_name,
2192 &actual_parameters);
2193 } else if (id->oper == ast_identifier) {
2194 func_name = id->primary_expression.identifier;
2195 } else {
2196 _mesa_glsl_error(&loc, state, "function name is not an identifier");
2197 }
2198
2199 /* an error was emitted earlier */
2200 if (!func_name)
2201 return ir_rvalue::error_value(ctx);
2202
2203 ir_function_signature *sig =
2204 match_function_by_name(func_name, &actual_parameters, state);
2205
2206 ir_rvalue *value = NULL;
2207 if (sig == NULL) {
2208 sig = match_subroutine_by_name(func_name, &actual_parameters,
2209 state, &sub_var);
2210 }
2211
2212 if (sig == NULL) {
2213 no_matching_function_error(func_name, &loc,
2214 &actual_parameters, state);
2215 value = ir_rvalue::error_value(ctx);
2216 } else if (!verify_parameter_modes(state, sig,
2217 actual_parameters,
2218 this->expressions)) {
2219 /* an error has already been emitted */
2220 value = ir_rvalue::error_value(ctx);
2221 } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2222 /* ftransform refers to global variables, and we don't have any code
2223 * for remapping the variable references in the built-in shader.
2224 */
2225 ir_variable *mvp =
2226 state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2227 ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2228 value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2229 new(ctx) ir_dereference_variable(mvp),
2230 new(ctx) ir_dereference_variable(vtx));
2231 } else {
2232 if (state->stage == MESA_SHADER_TESS_CTRL &&
2233 sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
2234 if (state->current_function == NULL ||
2235 strcmp(state->current_function->function_name(), "main") != 0) {
2236 _mesa_glsl_error(&loc, state,
2237 "barrier() may only be used in main()");
2238 }
2239
2240 if (state->found_return) {
2241 _mesa_glsl_error(&loc, state,
2242 "barrier() may not be used after return");
2243 }
2244
2245 if (instructions != &state->current_function->body) {
2246 _mesa_glsl_error(&loc, state,
2247 "barrier() may not be used in control flow");
2248 }
2249 }
2250
2251 value = generate_call(instructions, sig, &actual_parameters, sub_var,
2252 array_idx, state, sig->is_builtin());
2253 if (!value) {
2254 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2255 "void_var",
2256 ir_var_temporary);
2257 instructions->push_tail(tmp);
2258 value = new(ctx) ir_dereference_variable(tmp);
2259 }
2260 }
2261
2262 return value;
2263 }
2264
2265 unreachable("not reached");
2266 }
2267
2268 bool
2269 ast_function_expression::has_sequence_subexpression() const
2270 {
2271 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2272 if (ast->has_sequence_subexpression())
2273 return true;
2274 }
2275
2276 return false;
2277 }
2278
2279 ir_rvalue *
2280 ast_aggregate_initializer::hir(exec_list *instructions,
2281 struct _mesa_glsl_parse_state *state)
2282 {
2283 void *ctx = state;
2284 YYLTYPE loc = this->get_location();
2285
2286 if (!this->constructor_type) {
2287 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2288 return ir_rvalue::error_value(ctx);
2289 }
2290 const glsl_type *const constructor_type = this->constructor_type;
2291
2292 if (!state->has_420pack()) {
2293 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2294 "GL_ARB_shading_language_420pack extension");
2295 return ir_rvalue::error_value(ctx);
2296 }
2297
2298 if (constructor_type->is_array()) {
2299 return process_array_constructor(instructions, constructor_type, &loc,
2300 &this->expressions, state);
2301 }
2302
2303 if (constructor_type->is_record()) {
2304 return process_record_constructor(instructions, constructor_type, &loc,
2305 &this->expressions, state);
2306 }
2307
2308 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2309 &this->expressions, state);
2310 }