glsl: Add support for the framebuffer fetch layout(noncoherent) qualifier.
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_FLOAT16:
1112 case GLSL_TYPE_UINT:
1113 case GLSL_TYPE_INT:
1114 case GLSL_TYPE_BOOL:
1115 case GLSL_TYPE_DOUBLE:
1116 case GLSL_TYPE_UINT64:
1117 case GLSL_TYPE_INT64:
1118 case GLSL_TYPE_UINT16:
1119 case GLSL_TYPE_INT16:
1120 return new(mem_ctx) ir_expression(operation, op0, op1);
1121
1122 case GLSL_TYPE_ARRAY: {
1123 for (unsigned int i = 0; i < op0->type->length; i++) {
1124 ir_rvalue *e0, *e1, *result;
1125
1126 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1127 new(mem_ctx) ir_constant(i));
1128 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1129 new(mem_ctx) ir_constant(i));
1130 result = do_comparison(mem_ctx, operation, e0, e1);
1131
1132 if (cmp) {
1133 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1134 } else {
1135 cmp = result;
1136 }
1137 }
1138
1139 mark_whole_array_access(op0);
1140 mark_whole_array_access(op1);
1141 break;
1142 }
1143
1144 case GLSL_TYPE_STRUCT: {
1145 for (unsigned int i = 0; i < op0->type->length; i++) {
1146 ir_rvalue *e0, *e1, *result;
1147 const char *field_name = op0->type->fields.structure[i].name;
1148
1149 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1150 field_name);
1151 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1152 field_name);
1153 result = do_comparison(mem_ctx, operation, e0, e1);
1154
1155 if (cmp) {
1156 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1157 } else {
1158 cmp = result;
1159 }
1160 }
1161 break;
1162 }
1163
1164 case GLSL_TYPE_ERROR:
1165 case GLSL_TYPE_VOID:
1166 case GLSL_TYPE_SAMPLER:
1167 case GLSL_TYPE_IMAGE:
1168 case GLSL_TYPE_INTERFACE:
1169 case GLSL_TYPE_ATOMIC_UINT:
1170 case GLSL_TYPE_SUBROUTINE:
1171 case GLSL_TYPE_FUNCTION:
1172 /* I assume a comparison of a struct containing a sampler just
1173 * ignores the sampler present in the type.
1174 */
1175 break;
1176 }
1177
1178 if (cmp == NULL)
1179 cmp = new(mem_ctx) ir_constant(true);
1180
1181 return cmp;
1182 }
1183
1184 /* For logical operations, we want to ensure that the operands are
1185 * scalar booleans. If it isn't, emit an error and return a constant
1186 * boolean to avoid triggering cascading error messages.
1187 */
1188 static ir_rvalue *
1189 get_scalar_boolean_operand(exec_list *instructions,
1190 struct _mesa_glsl_parse_state *state,
1191 ast_expression *parent_expr,
1192 int operand,
1193 const char *operand_name,
1194 bool *error_emitted)
1195 {
1196 ast_expression *expr = parent_expr->subexpressions[operand];
1197 void *ctx = state;
1198 ir_rvalue *val = expr->hir(instructions, state);
1199
1200 if (val->type->is_boolean() && val->type->is_scalar())
1201 return val;
1202
1203 if (!*error_emitted) {
1204 YYLTYPE loc = expr->get_location();
1205 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1206 operand_name,
1207 parent_expr->operator_string(parent_expr->oper));
1208 *error_emitted = true;
1209 }
1210
1211 return new(ctx) ir_constant(true);
1212 }
1213
1214 /**
1215 * If name refers to a builtin array whose maximum allowed size is less than
1216 * size, report an error and return true. Otherwise return false.
1217 */
1218 void
1219 check_builtin_array_max_size(const char *name, unsigned size,
1220 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1221 {
1222 if ((strcmp("gl_TexCoord", name) == 0)
1223 && (size > state->Const.MaxTextureCoords)) {
1224 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1225 *
1226 * "The size [of gl_TexCoord] can be at most
1227 * gl_MaxTextureCoords."
1228 */
1229 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1230 "be larger than gl_MaxTextureCoords (%u)",
1231 state->Const.MaxTextureCoords);
1232 } else if (strcmp("gl_ClipDistance", name) == 0) {
1233 state->clip_dist_size = size;
1234 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1235 /* From section 7.1 (Vertex Shader Special Variables) of the
1236 * GLSL 1.30 spec:
1237 *
1238 * "The gl_ClipDistance array is predeclared as unsized and
1239 * must be sized by the shader either redeclaring it with a
1240 * size or indexing it only with integral constant
1241 * expressions. ... The size can be at most
1242 * gl_MaxClipDistances."
1243 */
1244 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1245 "be larger than gl_MaxClipDistances (%u)",
1246 state->Const.MaxClipPlanes);
1247 }
1248 } else if (strcmp("gl_CullDistance", name) == 0) {
1249 state->cull_dist_size = size;
1250 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1251 /* From the ARB_cull_distance spec:
1252 *
1253 * "The gl_CullDistance array is predeclared as unsized and
1254 * must be sized by the shader either redeclaring it with
1255 * a size or indexing it only with integral constant
1256 * expressions. The size determines the number and set of
1257 * enabled cull distances and can be at most
1258 * gl_MaxCullDistances."
1259 */
1260 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1261 "be larger than gl_MaxCullDistances (%u)",
1262 state->Const.MaxClipPlanes);
1263 }
1264 }
1265 }
1266
1267 /**
1268 * Create the constant 1, of a which is appropriate for incrementing and
1269 * decrementing values of the given GLSL type. For example, if type is vec4,
1270 * this creates a constant value of 1.0 having type float.
1271 *
1272 * If the given type is invalid for increment and decrement operators, return
1273 * a floating point 1--the error will be detected later.
1274 */
1275 static ir_rvalue *
1276 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1277 {
1278 switch (type->base_type) {
1279 case GLSL_TYPE_UINT:
1280 return new(ctx) ir_constant((unsigned) 1);
1281 case GLSL_TYPE_INT:
1282 return new(ctx) ir_constant(1);
1283 case GLSL_TYPE_UINT64:
1284 return new(ctx) ir_constant((uint64_t) 1);
1285 case GLSL_TYPE_INT64:
1286 return new(ctx) ir_constant((int64_t) 1);
1287 default:
1288 case GLSL_TYPE_FLOAT:
1289 return new(ctx) ir_constant(1.0f);
1290 }
1291 }
1292
1293 ir_rvalue *
1294 ast_expression::hir(exec_list *instructions,
1295 struct _mesa_glsl_parse_state *state)
1296 {
1297 return do_hir(instructions, state, true);
1298 }
1299
1300 void
1301 ast_expression::hir_no_rvalue(exec_list *instructions,
1302 struct _mesa_glsl_parse_state *state)
1303 {
1304 do_hir(instructions, state, false);
1305 }
1306
1307 void
1308 ast_expression::set_is_lhs(bool new_value)
1309 {
1310 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1311 * if we lack an identifier we can just skip it.
1312 */
1313 if (this->primary_expression.identifier == NULL)
1314 return;
1315
1316 this->is_lhs = new_value;
1317
1318 /* We need to go through the subexpressions tree to cover cases like
1319 * ast_field_selection
1320 */
1321 if (this->subexpressions[0] != NULL)
1322 this->subexpressions[0]->set_is_lhs(new_value);
1323 }
1324
1325 ir_rvalue *
1326 ast_expression::do_hir(exec_list *instructions,
1327 struct _mesa_glsl_parse_state *state,
1328 bool needs_rvalue)
1329 {
1330 void *ctx = state;
1331 static const int operations[AST_NUM_OPERATORS] = {
1332 -1, /* ast_assign doesn't convert to ir_expression. */
1333 -1, /* ast_plus doesn't convert to ir_expression. */
1334 ir_unop_neg,
1335 ir_binop_add,
1336 ir_binop_sub,
1337 ir_binop_mul,
1338 ir_binop_div,
1339 ir_binop_mod,
1340 ir_binop_lshift,
1341 ir_binop_rshift,
1342 ir_binop_less,
1343 ir_binop_less, /* This is correct. See the ast_greater case below. */
1344 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1345 ir_binop_gequal,
1346 ir_binop_all_equal,
1347 ir_binop_any_nequal,
1348 ir_binop_bit_and,
1349 ir_binop_bit_xor,
1350 ir_binop_bit_or,
1351 ir_unop_bit_not,
1352 ir_binop_logic_and,
1353 ir_binop_logic_xor,
1354 ir_binop_logic_or,
1355 ir_unop_logic_not,
1356
1357 /* Note: The following block of expression types actually convert
1358 * to multiple IR instructions.
1359 */
1360 ir_binop_mul, /* ast_mul_assign */
1361 ir_binop_div, /* ast_div_assign */
1362 ir_binop_mod, /* ast_mod_assign */
1363 ir_binop_add, /* ast_add_assign */
1364 ir_binop_sub, /* ast_sub_assign */
1365 ir_binop_lshift, /* ast_ls_assign */
1366 ir_binop_rshift, /* ast_rs_assign */
1367 ir_binop_bit_and, /* ast_and_assign */
1368 ir_binop_bit_xor, /* ast_xor_assign */
1369 ir_binop_bit_or, /* ast_or_assign */
1370
1371 -1, /* ast_conditional doesn't convert to ir_expression. */
1372 ir_binop_add, /* ast_pre_inc. */
1373 ir_binop_sub, /* ast_pre_dec. */
1374 ir_binop_add, /* ast_post_inc. */
1375 ir_binop_sub, /* ast_post_dec. */
1376 -1, /* ast_field_selection doesn't conv to ir_expression. */
1377 -1, /* ast_array_index doesn't convert to ir_expression. */
1378 -1, /* ast_function_call doesn't conv to ir_expression. */
1379 -1, /* ast_identifier doesn't convert to ir_expression. */
1380 -1, /* ast_int_constant doesn't convert to ir_expression. */
1381 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1382 -1, /* ast_float_constant doesn't conv to ir_expression. */
1383 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1384 -1, /* ast_sequence doesn't convert to ir_expression. */
1385 -1, /* ast_aggregate shouldn't ever even get here. */
1386 };
1387 ir_rvalue *result = NULL;
1388 ir_rvalue *op[3];
1389 const struct glsl_type *type, *orig_type;
1390 bool error_emitted = false;
1391 YYLTYPE loc;
1392
1393 loc = this->get_location();
1394
1395 switch (this->oper) {
1396 case ast_aggregate:
1397 assert(!"ast_aggregate: Should never get here.");
1398 break;
1399
1400 case ast_assign: {
1401 this->subexpressions[0]->set_is_lhs(true);
1402 op[0] = this->subexpressions[0]->hir(instructions, state);
1403 op[1] = this->subexpressions[1]->hir(instructions, state);
1404
1405 error_emitted =
1406 do_assignment(instructions, state,
1407 this->subexpressions[0]->non_lvalue_description,
1408 op[0], op[1], &result, needs_rvalue, false,
1409 this->subexpressions[0]->get_location());
1410 break;
1411 }
1412
1413 case ast_plus:
1414 op[0] = this->subexpressions[0]->hir(instructions, state);
1415
1416 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1417
1418 error_emitted = type->is_error();
1419
1420 result = op[0];
1421 break;
1422
1423 case ast_neg:
1424 op[0] = this->subexpressions[0]->hir(instructions, state);
1425
1426 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1427
1428 error_emitted = type->is_error();
1429
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], NULL);
1432 break;
1433
1434 case ast_add:
1435 case ast_sub:
1436 case ast_mul:
1437 case ast_div:
1438 op[0] = this->subexpressions[0]->hir(instructions, state);
1439 op[1] = this->subexpressions[1]->hir(instructions, state);
1440
1441 type = arithmetic_result_type(op[0], op[1],
1442 (this->oper == ast_mul),
1443 state, & loc);
1444 error_emitted = type->is_error();
1445
1446 result = new(ctx) ir_expression(operations[this->oper], type,
1447 op[0], op[1]);
1448 break;
1449
1450 case ast_mod:
1451 op[0] = this->subexpressions[0]->hir(instructions, state);
1452 op[1] = this->subexpressions[1]->hir(instructions, state);
1453
1454 type = modulus_result_type(op[0], op[1], state, &loc);
1455
1456 assert(operations[this->oper] == ir_binop_mod);
1457
1458 result = new(ctx) ir_expression(operations[this->oper], type,
1459 op[0], op[1]);
1460 error_emitted = type->is_error();
1461 break;
1462
1463 case ast_lshift:
1464 case ast_rshift:
1465 if (!state->check_bitwise_operations_allowed(&loc)) {
1466 error_emitted = true;
1467 }
1468
1469 op[0] = this->subexpressions[0]->hir(instructions, state);
1470 op[1] = this->subexpressions[1]->hir(instructions, state);
1471 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1472 &loc);
1473 result = new(ctx) ir_expression(operations[this->oper], type,
1474 op[0], op[1]);
1475 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1476 break;
1477
1478 case ast_less:
1479 case ast_greater:
1480 case ast_lequal:
1481 case ast_gequal:
1482 op[0] = this->subexpressions[0]->hir(instructions, state);
1483 op[1] = this->subexpressions[1]->hir(instructions, state);
1484
1485 type = relational_result_type(op[0], op[1], state, & loc);
1486
1487 /* The relational operators must either generate an error or result
1488 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1489 */
1490 assert(type->is_error()
1491 || (type->is_boolean() && type->is_scalar()));
1492
1493 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1494 * the arguments and use < or >=.
1495 */
1496 if (this->oper == ast_greater || this->oper == ast_lequal) {
1497 ir_rvalue *const tmp = op[0];
1498 op[0] = op[1];
1499 op[1] = tmp;
1500 }
1501
1502 result = new(ctx) ir_expression(operations[this->oper], type,
1503 op[0], op[1]);
1504 error_emitted = type->is_error();
1505 break;
1506
1507 case ast_nequal:
1508 case ast_equal:
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = this->subexpressions[1]->hir(instructions, state);
1511
1512 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1513 *
1514 * "The equality operators equal (==), and not equal (!=)
1515 * operate on all types. They result in a scalar Boolean. If
1516 * the operand types do not match, then there must be a
1517 * conversion from Section 4.1.10 "Implicit Conversions"
1518 * applied to one operand that can make them match, in which
1519 * case this conversion is done."
1520 */
1521
1522 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1523 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1524 "no operation `%1$s' exists that takes a left-hand "
1525 "operand of type 'void' or a right operand of type "
1526 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1527 error_emitted = true;
1528 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1529 && !apply_implicit_conversion(op[1]->type, op[0], state))
1530 || (op[0]->type != op[1]->type)) {
1531 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1532 "type", (this->oper == ast_equal) ? "==" : "!=");
1533 error_emitted = true;
1534 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1535 !state->check_version(120, 300, &loc,
1536 "array comparisons forbidden")) {
1537 error_emitted = true;
1538 } else if ((op[0]->type->contains_subroutine() ||
1539 op[1]->type->contains_subroutine())) {
1540 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1541 error_emitted = true;
1542 } else if ((op[0]->type->contains_opaque() ||
1543 op[1]->type->contains_opaque())) {
1544 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1545 error_emitted = true;
1546 }
1547
1548 if (error_emitted) {
1549 result = new(ctx) ir_constant(false);
1550 } else {
1551 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1552 assert(result->type == glsl_type::bool_type);
1553 }
1554 break;
1555
1556 case ast_bit_and:
1557 case ast_bit_xor:
1558 case ast_bit_or:
1559 op[0] = this->subexpressions[0]->hir(instructions, state);
1560 op[1] = this->subexpressions[1]->hir(instructions, state);
1561 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1562 result = new(ctx) ir_expression(operations[this->oper], type,
1563 op[0], op[1]);
1564 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1565 break;
1566
1567 case ast_bit_not:
1568 op[0] = this->subexpressions[0]->hir(instructions, state);
1569
1570 if (!state->check_bitwise_operations_allowed(&loc)) {
1571 error_emitted = true;
1572 }
1573
1574 if (!op[0]->type->is_integer_32_64()) {
1575 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1576 error_emitted = true;
1577 }
1578
1579 type = error_emitted ? glsl_type::error_type : op[0]->type;
1580 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1581 break;
1582
1583 case ast_logic_and: {
1584 exec_list rhs_instructions;
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "LHS", &error_emitted);
1587 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1588 "RHS", &error_emitted);
1589
1590 if (rhs_instructions.is_empty()) {
1591 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1592 } else {
1593 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1594 "and_tmp",
1595 ir_var_temporary);
1596 instructions->push_tail(tmp);
1597
1598 ir_if *const stmt = new(ctx) ir_if(op[0]);
1599 instructions->push_tail(stmt);
1600
1601 stmt->then_instructions.append_list(&rhs_instructions);
1602 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const then_assign =
1604 new(ctx) ir_assignment(then_deref, op[1]);
1605 stmt->then_instructions.push_tail(then_assign);
1606
1607 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1608 ir_assignment *const else_assign =
1609 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1610 stmt->else_instructions.push_tail(else_assign);
1611
1612 result = new(ctx) ir_dereference_variable(tmp);
1613 }
1614 break;
1615 }
1616
1617 case ast_logic_or: {
1618 exec_list rhs_instructions;
1619 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1620 "LHS", &error_emitted);
1621 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1622 "RHS", &error_emitted);
1623
1624 if (rhs_instructions.is_empty()) {
1625 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1626 } else {
1627 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1628 "or_tmp",
1629 ir_var_temporary);
1630 instructions->push_tail(tmp);
1631
1632 ir_if *const stmt = new(ctx) ir_if(op[0]);
1633 instructions->push_tail(stmt);
1634
1635 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1636 ir_assignment *const then_assign =
1637 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1638 stmt->then_instructions.push_tail(then_assign);
1639
1640 stmt->else_instructions.append_list(&rhs_instructions);
1641 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1642 ir_assignment *const else_assign =
1643 new(ctx) ir_assignment(else_deref, op[1]);
1644 stmt->else_instructions.push_tail(else_assign);
1645
1646 result = new(ctx) ir_dereference_variable(tmp);
1647 }
1648 break;
1649 }
1650
1651 case ast_logic_xor:
1652 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1653 *
1654 * "The logical binary operators and (&&), or ( | | ), and
1655 * exclusive or (^^). They operate only on two Boolean
1656 * expressions and result in a Boolean expression."
1657 */
1658 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1659 &error_emitted);
1660 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1661 &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], op[1]);
1665 break;
1666
1667 case ast_logic_not:
1668 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1669 "operand", &error_emitted);
1670
1671 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1672 op[0], NULL);
1673 break;
1674
1675 case ast_mul_assign:
1676 case ast_div_assign:
1677 case ast_add_assign:
1678 case ast_sub_assign: {
1679 this->subexpressions[0]->set_is_lhs(true);
1680 op[0] = this->subexpressions[0]->hir(instructions, state);
1681 op[1] = this->subexpressions[1]->hir(instructions, state);
1682
1683 orig_type = op[0]->type;
1684 type = arithmetic_result_type(op[0], op[1],
1685 (this->oper == ast_mul_assign),
1686 state, & loc);
1687
1688 if (type != orig_type) {
1689 _mesa_glsl_error(& loc, state,
1690 "could not implicitly convert "
1691 "%s to %s", type->name, orig_type->name);
1692 type = glsl_type::error_type;
1693 }
1694
1695 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1696 op[0], op[1]);
1697
1698 error_emitted =
1699 do_assignment(instructions, state,
1700 this->subexpressions[0]->non_lvalue_description,
1701 op[0]->clone(ctx, NULL), temp_rhs,
1702 &result, needs_rvalue, false,
1703 this->subexpressions[0]->get_location());
1704
1705 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1706 * explicitly test for this because none of the binary expression
1707 * operators allow array operands either.
1708 */
1709
1710 break;
1711 }
1712
1713 case ast_mod_assign: {
1714 this->subexpressions[0]->set_is_lhs(true);
1715 op[0] = this->subexpressions[0]->hir(instructions, state);
1716 op[1] = this->subexpressions[1]->hir(instructions, state);
1717
1718 orig_type = op[0]->type;
1719 type = modulus_result_type(op[0], op[1], state, &loc);
1720
1721 if (type != orig_type) {
1722 _mesa_glsl_error(& loc, state,
1723 "could not implicitly convert "
1724 "%s to %s", type->name, orig_type->name);
1725 type = glsl_type::error_type;
1726 }
1727
1728 assert(operations[this->oper] == ir_binop_mod);
1729
1730 ir_rvalue *temp_rhs;
1731 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1732 op[0], op[1]);
1733
1734 error_emitted =
1735 do_assignment(instructions, state,
1736 this->subexpressions[0]->non_lvalue_description,
1737 op[0]->clone(ctx, NULL), temp_rhs,
1738 &result, needs_rvalue, false,
1739 this->subexpressions[0]->get_location());
1740 break;
1741 }
1742
1743 case ast_ls_assign:
1744 case ast_rs_assign: {
1745 this->subexpressions[0]->set_is_lhs(true);
1746 op[0] = this->subexpressions[0]->hir(instructions, state);
1747 op[1] = this->subexpressions[1]->hir(instructions, state);
1748 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1749 &loc);
1750 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1751 type, op[0], op[1]);
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_and_assign:
1762 case ast_xor_assign:
1763 case ast_or_assign: {
1764 this->subexpressions[0]->set_is_lhs(true);
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = this->subexpressions[1]->hir(instructions, state);
1767
1768 orig_type = op[0]->type;
1769 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1770
1771 if (type != orig_type) {
1772 _mesa_glsl_error(& loc, state,
1773 "could not implicitly convert "
1774 "%s to %s", type->name, orig_type->name);
1775 type = glsl_type::error_type;
1776 }
1777
1778 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1779 type, op[0], op[1]);
1780 error_emitted =
1781 do_assignment(instructions, state,
1782 this->subexpressions[0]->non_lvalue_description,
1783 op[0]->clone(ctx, NULL), temp_rhs,
1784 &result, needs_rvalue, false,
1785 this->subexpressions[0]->get_location());
1786 break;
1787 }
1788
1789 case ast_conditional: {
1790 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1791 *
1792 * "The ternary selection operator (?:). It operates on three
1793 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1794 * first expression, which must result in a scalar Boolean."
1795 */
1796 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1797 "condition", &error_emitted);
1798
1799 /* The :? operator is implemented by generating an anonymous temporary
1800 * followed by an if-statement. The last instruction in each branch of
1801 * the if-statement assigns a value to the anonymous temporary. This
1802 * temporary is the r-value of the expression.
1803 */
1804 exec_list then_instructions;
1805 exec_list else_instructions;
1806
1807 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1808 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1809
1810 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1811 *
1812 * "The second and third expressions can be any type, as
1813 * long their types match, or there is a conversion in
1814 * Section 4.1.10 "Implicit Conversions" that can be applied
1815 * to one of the expressions to make their types match. This
1816 * resulting matching type is the type of the entire
1817 * expression."
1818 */
1819 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1820 && !apply_implicit_conversion(op[2]->type, op[1], state))
1821 || (op[1]->type != op[2]->type)) {
1822 YYLTYPE loc = this->subexpressions[1]->get_location();
1823
1824 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1825 "operator must have matching types");
1826 error_emitted = true;
1827 type = glsl_type::error_type;
1828 } else {
1829 type = op[1]->type;
1830 }
1831
1832 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1833 *
1834 * "The second and third expressions must be the same type, but can
1835 * be of any type other than an array."
1836 */
1837 if (type->is_array() &&
1838 !state->check_version(120, 300, &loc,
1839 "second and third operands of ?: operator "
1840 "cannot be arrays")) {
1841 error_emitted = true;
1842 }
1843
1844 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1845 *
1846 * "Except for array indexing, structure member selection, and
1847 * parentheses, opaque variables are not allowed to be operands in
1848 * expressions; such use results in a compile-time error."
1849 */
1850 if (type->contains_opaque()) {
1851 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1852 "of the ?: operator");
1853 error_emitted = true;
1854 }
1855
1856 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1857
1858 if (then_instructions.is_empty()
1859 && else_instructions.is_empty()
1860 && cond_val != NULL) {
1861 result = cond_val->value.b[0] ? op[1] : op[2];
1862 } else {
1863 /* The copy to conditional_tmp reads the whole array. */
1864 if (type->is_array()) {
1865 mark_whole_array_access(op[1]);
1866 mark_whole_array_access(op[2]);
1867 }
1868
1869 ir_variable *const tmp =
1870 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1871 instructions->push_tail(tmp);
1872
1873 ir_if *const stmt = new(ctx) ir_if(op[0]);
1874 instructions->push_tail(stmt);
1875
1876 then_instructions.move_nodes_to(& stmt->then_instructions);
1877 ir_dereference *const then_deref =
1878 new(ctx) ir_dereference_variable(tmp);
1879 ir_assignment *const then_assign =
1880 new(ctx) ir_assignment(then_deref, op[1]);
1881 stmt->then_instructions.push_tail(then_assign);
1882
1883 else_instructions.move_nodes_to(& stmt->else_instructions);
1884 ir_dereference *const else_deref =
1885 new(ctx) ir_dereference_variable(tmp);
1886 ir_assignment *const else_assign =
1887 new(ctx) ir_assignment(else_deref, op[2]);
1888 stmt->else_instructions.push_tail(else_assign);
1889
1890 result = new(ctx) ir_dereference_variable(tmp);
1891 }
1892 break;
1893 }
1894
1895 case ast_pre_inc:
1896 case ast_pre_dec: {
1897 this->non_lvalue_description = (this->oper == ast_pre_inc)
1898 ? "pre-increment operation" : "pre-decrement operation";
1899
1900 op[0] = this->subexpressions[0]->hir(instructions, state);
1901 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1902
1903 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1904
1905 ir_rvalue *temp_rhs;
1906 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1907 op[0], op[1]);
1908
1909 error_emitted =
1910 do_assignment(instructions, state,
1911 this->subexpressions[0]->non_lvalue_description,
1912 op[0]->clone(ctx, NULL), temp_rhs,
1913 &result, needs_rvalue, false,
1914 this->subexpressions[0]->get_location());
1915 break;
1916 }
1917
1918 case ast_post_inc:
1919 case ast_post_dec: {
1920 this->non_lvalue_description = (this->oper == ast_post_inc)
1921 ? "post-increment operation" : "post-decrement operation";
1922 op[0] = this->subexpressions[0]->hir(instructions, state);
1923 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1924
1925 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1926
1927 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1928
1929 ir_rvalue *temp_rhs;
1930 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1931 op[0], op[1]);
1932
1933 /* Get a temporary of a copy of the lvalue before it's modified.
1934 * This may get thrown away later.
1935 */
1936 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1937
1938 ir_rvalue *junk_rvalue;
1939 error_emitted =
1940 do_assignment(instructions, state,
1941 this->subexpressions[0]->non_lvalue_description,
1942 op[0]->clone(ctx, NULL), temp_rhs,
1943 &junk_rvalue, false, false,
1944 this->subexpressions[0]->get_location());
1945
1946 break;
1947 }
1948
1949 case ast_field_selection:
1950 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1951 break;
1952
1953 case ast_array_index: {
1954 YYLTYPE index_loc = subexpressions[1]->get_location();
1955
1956 /* Getting if an array is being used uninitialized is beyond what we get
1957 * from ir_value.data.assigned. Setting is_lhs as true would force to
1958 * not raise a uninitialized warning when using an array
1959 */
1960 subexpressions[0]->set_is_lhs(true);
1961 op[0] = subexpressions[0]->hir(instructions, state);
1962 op[1] = subexpressions[1]->hir(instructions, state);
1963
1964 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1965 loc, index_loc);
1966
1967 if (result->type->is_error())
1968 error_emitted = true;
1969
1970 break;
1971 }
1972
1973 case ast_unsized_array_dim:
1974 assert(!"ast_unsized_array_dim: Should never get here.");
1975 break;
1976
1977 case ast_function_call:
1978 /* Should *NEVER* get here. ast_function_call should always be handled
1979 * by ast_function_expression::hir.
1980 */
1981 assert(0);
1982 break;
1983
1984 case ast_identifier: {
1985 /* ast_identifier can appear several places in a full abstract syntax
1986 * tree. This particular use must be at location specified in the grammar
1987 * as 'variable_identifier'.
1988 */
1989 ir_variable *var =
1990 state->symbols->get_variable(this->primary_expression.identifier);
1991
1992 if (var == NULL) {
1993 /* the identifier might be a subroutine name */
1994 char *sub_name;
1995 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1996 var = state->symbols->get_variable(sub_name);
1997 ralloc_free(sub_name);
1998 }
1999
2000 if (var != NULL) {
2001 var->data.used = true;
2002 result = new(ctx) ir_dereference_variable(var);
2003
2004 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2005 && !this->is_lhs
2006 && result->variable_referenced()->data.assigned != true
2007 && !is_gl_identifier(var->name)) {
2008 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2009 this->primary_expression.identifier);
2010 }
2011
2012 /* From the EXT_shader_framebuffer_fetch spec:
2013 *
2014 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2015 * enabled in addition, it's an error to use gl_LastFragData if it
2016 * hasn't been explicitly redeclared with layout(noncoherent)."
2017 */
2018 if (var->data.fb_fetch_output && var->data.memory_coherent &&
2019 !state->EXT_shader_framebuffer_fetch_enable) {
2020 _mesa_glsl_error(&loc, state,
2021 "invalid use of framebuffer fetch output not "
2022 "qualified with layout(noncoherent)");
2023 }
2024
2025 } else {
2026 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2027 this->primary_expression.identifier);
2028
2029 result = ir_rvalue::error_value(ctx);
2030 error_emitted = true;
2031 }
2032 break;
2033 }
2034
2035 case ast_int_constant:
2036 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2037 break;
2038
2039 case ast_uint_constant:
2040 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2041 break;
2042
2043 case ast_float_constant:
2044 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2045 break;
2046
2047 case ast_bool_constant:
2048 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2049 break;
2050
2051 case ast_double_constant:
2052 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2053 break;
2054
2055 case ast_uint64_constant:
2056 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2057 break;
2058
2059 case ast_int64_constant:
2060 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2061 break;
2062
2063 case ast_sequence: {
2064 /* It should not be possible to generate a sequence in the AST without
2065 * any expressions in it.
2066 */
2067 assert(!this->expressions.is_empty());
2068
2069 /* The r-value of a sequence is the last expression in the sequence. If
2070 * the other expressions in the sequence do not have side-effects (and
2071 * therefore add instructions to the instruction list), they get dropped
2072 * on the floor.
2073 */
2074 exec_node *previous_tail = NULL;
2075 YYLTYPE previous_operand_loc = loc;
2076
2077 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2078 /* If one of the operands of comma operator does not generate any
2079 * code, we want to emit a warning. At each pass through the loop
2080 * previous_tail will point to the last instruction in the stream
2081 * *before* processing the previous operand. Naturally,
2082 * instructions->get_tail_raw() will point to the last instruction in
2083 * the stream *after* processing the previous operand. If the two
2084 * pointers match, then the previous operand had no effect.
2085 *
2086 * The warning behavior here differs slightly from GCC. GCC will
2087 * only emit a warning if none of the left-hand operands have an
2088 * effect. However, it will emit a warning for each. I believe that
2089 * there are some cases in C (especially with GCC extensions) where
2090 * it is useful to have an intermediate step in a sequence have no
2091 * effect, but I don't think these cases exist in GLSL. Either way,
2092 * it would be a giant hassle to replicate that behavior.
2093 */
2094 if (previous_tail == instructions->get_tail_raw()) {
2095 _mesa_glsl_warning(&previous_operand_loc, state,
2096 "left-hand operand of comma expression has "
2097 "no effect");
2098 }
2099
2100 /* The tail is directly accessed instead of using the get_tail()
2101 * method for performance reasons. get_tail() has extra code to
2102 * return NULL when the list is empty. We don't care about that
2103 * here, so using get_tail_raw() is fine.
2104 */
2105 previous_tail = instructions->get_tail_raw();
2106 previous_operand_loc = ast->get_location();
2107
2108 result = ast->hir(instructions, state);
2109 }
2110
2111 /* Any errors should have already been emitted in the loop above.
2112 */
2113 error_emitted = true;
2114 break;
2115 }
2116 }
2117 type = NULL; /* use result->type, not type. */
2118 assert(result != NULL || !needs_rvalue);
2119
2120 if (result && result->type->is_error() && !error_emitted)
2121 _mesa_glsl_error(& loc, state, "type mismatch");
2122
2123 return result;
2124 }
2125
2126 bool
2127 ast_expression::has_sequence_subexpression() const
2128 {
2129 switch (this->oper) {
2130 case ast_plus:
2131 case ast_neg:
2132 case ast_bit_not:
2133 case ast_logic_not:
2134 case ast_pre_inc:
2135 case ast_pre_dec:
2136 case ast_post_inc:
2137 case ast_post_dec:
2138 return this->subexpressions[0]->has_sequence_subexpression();
2139
2140 case ast_assign:
2141 case ast_add:
2142 case ast_sub:
2143 case ast_mul:
2144 case ast_div:
2145 case ast_mod:
2146 case ast_lshift:
2147 case ast_rshift:
2148 case ast_less:
2149 case ast_greater:
2150 case ast_lequal:
2151 case ast_gequal:
2152 case ast_nequal:
2153 case ast_equal:
2154 case ast_bit_and:
2155 case ast_bit_xor:
2156 case ast_bit_or:
2157 case ast_logic_and:
2158 case ast_logic_or:
2159 case ast_logic_xor:
2160 case ast_array_index:
2161 case ast_mul_assign:
2162 case ast_div_assign:
2163 case ast_add_assign:
2164 case ast_sub_assign:
2165 case ast_mod_assign:
2166 case ast_ls_assign:
2167 case ast_rs_assign:
2168 case ast_and_assign:
2169 case ast_xor_assign:
2170 case ast_or_assign:
2171 return this->subexpressions[0]->has_sequence_subexpression() ||
2172 this->subexpressions[1]->has_sequence_subexpression();
2173
2174 case ast_conditional:
2175 return this->subexpressions[0]->has_sequence_subexpression() ||
2176 this->subexpressions[1]->has_sequence_subexpression() ||
2177 this->subexpressions[2]->has_sequence_subexpression();
2178
2179 case ast_sequence:
2180 return true;
2181
2182 case ast_field_selection:
2183 case ast_identifier:
2184 case ast_int_constant:
2185 case ast_uint_constant:
2186 case ast_float_constant:
2187 case ast_bool_constant:
2188 case ast_double_constant:
2189 case ast_int64_constant:
2190 case ast_uint64_constant:
2191 return false;
2192
2193 case ast_aggregate:
2194 return false;
2195
2196 case ast_function_call:
2197 unreachable("should be handled by ast_function_expression::hir");
2198
2199 case ast_unsized_array_dim:
2200 unreachable("ast_unsized_array_dim: Should never get here.");
2201 }
2202
2203 return false;
2204 }
2205
2206 ir_rvalue *
2207 ast_expression_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 /* It is possible to have expression statements that don't have an
2211 * expression. This is the solitary semicolon:
2212 *
2213 * for (i = 0; i < 5; i++)
2214 * ;
2215 *
2216 * In this case the expression will be NULL. Test for NULL and don't do
2217 * anything in that case.
2218 */
2219 if (expression != NULL)
2220 expression->hir_no_rvalue(instructions, state);
2221
2222 /* Statements do not have r-values.
2223 */
2224 return NULL;
2225 }
2226
2227
2228 ir_rvalue *
2229 ast_compound_statement::hir(exec_list *instructions,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 if (new_scope)
2233 state->symbols->push_scope();
2234
2235 foreach_list_typed (ast_node, ast, link, &this->statements)
2236 ast->hir(instructions, state);
2237
2238 if (new_scope)
2239 state->symbols->pop_scope();
2240
2241 /* Compound statements do not have r-values.
2242 */
2243 return NULL;
2244 }
2245
2246 /**
2247 * Evaluate the given exec_node (which should be an ast_node representing
2248 * a single array dimension) and return its integer value.
2249 */
2250 static unsigned
2251 process_array_size(exec_node *node,
2252 struct _mesa_glsl_parse_state *state)
2253 {
2254 void *mem_ctx = state;
2255
2256 exec_list dummy_instructions;
2257
2258 ast_node *array_size = exec_node_data(ast_node, node, link);
2259
2260 /**
2261 * Dimensions other than the outermost dimension can by unsized if they
2262 * are immediately sized by a constructor or initializer.
2263 */
2264 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2265 return 0;
2266
2267 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2268 YYLTYPE loc = array_size->get_location();
2269
2270 if (ir == NULL) {
2271 _mesa_glsl_error(& loc, state,
2272 "array size could not be resolved");
2273 return 0;
2274 }
2275
2276 if (!ir->type->is_integer()) {
2277 _mesa_glsl_error(& loc, state,
2278 "array size must be integer type");
2279 return 0;
2280 }
2281
2282 if (!ir->type->is_scalar()) {
2283 _mesa_glsl_error(& loc, state,
2284 "array size must be scalar type");
2285 return 0;
2286 }
2287
2288 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2289 if (size == NULL ||
2290 (state->is_version(120, 300) &&
2291 array_size->has_sequence_subexpression())) {
2292 _mesa_glsl_error(& loc, state, "array size must be a "
2293 "constant valued expression");
2294 return 0;
2295 }
2296
2297 if (size->value.i[0] <= 0) {
2298 _mesa_glsl_error(& loc, state, "array size must be > 0");
2299 return 0;
2300 }
2301
2302 assert(size->type == ir->type);
2303
2304 /* If the array size is const (and we've verified that
2305 * it is) then no instructions should have been emitted
2306 * when we converted it to HIR. If they were emitted,
2307 * then either the array size isn't const after all, or
2308 * we are emitting unnecessary instructions.
2309 */
2310 assert(dummy_instructions.is_empty());
2311
2312 return size->value.u[0];
2313 }
2314
2315 static const glsl_type *
2316 process_array_type(YYLTYPE *loc, const glsl_type *base,
2317 ast_array_specifier *array_specifier,
2318 struct _mesa_glsl_parse_state *state)
2319 {
2320 const glsl_type *array_type = base;
2321
2322 if (array_specifier != NULL) {
2323 if (base->is_array()) {
2324
2325 /* From page 19 (page 25) of the GLSL 1.20 spec:
2326 *
2327 * "Only one-dimensional arrays may be declared."
2328 */
2329 if (!state->check_arrays_of_arrays_allowed(loc)) {
2330 return glsl_type::error_type;
2331 }
2332 }
2333
2334 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2335 !node->is_head_sentinel(); node = node->prev) {
2336 unsigned array_size = process_array_size(node, state);
2337 array_type = glsl_type::get_array_instance(array_type, array_size);
2338 }
2339 }
2340
2341 return array_type;
2342 }
2343
2344 static bool
2345 precision_qualifier_allowed(const glsl_type *type)
2346 {
2347 /* Precision qualifiers apply to floating point, integer and opaque
2348 * types.
2349 *
2350 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2351 * "Any floating point or any integer declaration can have the type
2352 * preceded by one of these precision qualifiers [...] Literal
2353 * constants do not have precision qualifiers. Neither do Boolean
2354 * variables.
2355 *
2356 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2357 * spec also says:
2358 *
2359 * "Precision qualifiers are added for code portability with OpenGL
2360 * ES, not for functionality. They have the same syntax as in OpenGL
2361 * ES."
2362 *
2363 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2364 *
2365 * "uniform lowp sampler2D sampler;
2366 * highp vec2 coord;
2367 * ...
2368 * lowp vec4 col = texture2D (sampler, coord);
2369 * // texture2D returns lowp"
2370 *
2371 * From this, we infer that GLSL 1.30 (and later) should allow precision
2372 * qualifiers on sampler types just like float and integer types.
2373 */
2374 const glsl_type *const t = type->without_array();
2375
2376 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2377 !t->is_record();
2378 }
2379
2380 const glsl_type *
2381 ast_type_specifier::glsl_type(const char **name,
2382 struct _mesa_glsl_parse_state *state) const
2383 {
2384 const struct glsl_type *type;
2385
2386 if (this->type != NULL)
2387 type = this->type;
2388 else if (structure)
2389 type = structure->type;
2390 else
2391 type = state->symbols->get_type(this->type_name);
2392 *name = this->type_name;
2393
2394 YYLTYPE loc = this->get_location();
2395 type = process_array_type(&loc, type, this->array_specifier, state);
2396
2397 return type;
2398 }
2399
2400 /**
2401 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2402 *
2403 * "The precision statement
2404 *
2405 * precision precision-qualifier type;
2406 *
2407 * can be used to establish a default precision qualifier. The type field can
2408 * be either int or float or any of the sampler types, (...) If type is float,
2409 * the directive applies to non-precision-qualified floating point type
2410 * (scalar, vector, and matrix) declarations. If type is int, the directive
2411 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2412 * and unsigned) declarations."
2413 *
2414 * We use the symbol table to keep the values of the default precisions for
2415 * each 'type' in each scope and we use the 'type' string from the precision
2416 * statement as key in the symbol table. When we want to retrieve the default
2417 * precision associated with a given glsl_type we need to know the type string
2418 * associated with it. This is what this function returns.
2419 */
2420 static const char *
2421 get_type_name_for_precision_qualifier(const glsl_type *type)
2422 {
2423 switch (type->base_type) {
2424 case GLSL_TYPE_FLOAT:
2425 return "float";
2426 case GLSL_TYPE_UINT:
2427 case GLSL_TYPE_INT:
2428 return "int";
2429 case GLSL_TYPE_ATOMIC_UINT:
2430 return "atomic_uint";
2431 case GLSL_TYPE_IMAGE:
2432 /* fallthrough */
2433 case GLSL_TYPE_SAMPLER: {
2434 const unsigned type_idx =
2435 type->sampler_array + 2 * type->sampler_shadow;
2436 const unsigned offset = type->is_sampler() ? 0 : 4;
2437 assert(type_idx < 4);
2438 switch (type->sampled_type) {
2439 case GLSL_TYPE_FLOAT:
2440 switch (type->sampler_dimensionality) {
2441 case GLSL_SAMPLER_DIM_1D: {
2442 assert(type->is_sampler());
2443 static const char *const names[4] = {
2444 "sampler1D", "sampler1DArray",
2445 "sampler1DShadow", "sampler1DArrayShadow"
2446 };
2447 return names[type_idx];
2448 }
2449 case GLSL_SAMPLER_DIM_2D: {
2450 static const char *const names[8] = {
2451 "sampler2D", "sampler2DArray",
2452 "sampler2DShadow", "sampler2DArrayShadow",
2453 "image2D", "image2DArray", NULL, NULL
2454 };
2455 return names[offset + type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_3D: {
2458 static const char *const names[8] = {
2459 "sampler3D", NULL, NULL, NULL,
2460 "image3D", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_CUBE: {
2465 static const char *const names[8] = {
2466 "samplerCube", "samplerCubeArray",
2467 "samplerCubeShadow", "samplerCubeArrayShadow",
2468 "imageCube", NULL, NULL, NULL
2469 };
2470 return names[offset + type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_MS: {
2473 assert(type->is_sampler());
2474 static const char *const names[4] = {
2475 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2476 };
2477 return names[type_idx];
2478 }
2479 case GLSL_SAMPLER_DIM_RECT: {
2480 assert(type->is_sampler());
2481 static const char *const names[4] = {
2482 "samplerRect", NULL, "samplerRectShadow", NULL
2483 };
2484 return names[type_idx];
2485 }
2486 case GLSL_SAMPLER_DIM_BUF: {
2487 static const char *const names[8] = {
2488 "samplerBuffer", NULL, NULL, NULL,
2489 "imageBuffer", NULL, NULL, NULL
2490 };
2491 return names[offset + type_idx];
2492 }
2493 case GLSL_SAMPLER_DIM_EXTERNAL: {
2494 assert(type->is_sampler());
2495 static const char *const names[4] = {
2496 "samplerExternalOES", NULL, NULL, NULL
2497 };
2498 return names[type_idx];
2499 }
2500 default:
2501 unreachable("Unsupported sampler/image dimensionality");
2502 } /* sampler/image float dimensionality */
2503 break;
2504 case GLSL_TYPE_INT:
2505 switch (type->sampler_dimensionality) {
2506 case GLSL_SAMPLER_DIM_1D: {
2507 assert(type->is_sampler());
2508 static const char *const names[4] = {
2509 "isampler1D", "isampler1DArray", NULL, NULL
2510 };
2511 return names[type_idx];
2512 }
2513 case GLSL_SAMPLER_DIM_2D: {
2514 static const char *const names[8] = {
2515 "isampler2D", "isampler2DArray", NULL, NULL,
2516 "iimage2D", "iimage2DArray", NULL, NULL
2517 };
2518 return names[offset + type_idx];
2519 }
2520 case GLSL_SAMPLER_DIM_3D: {
2521 static const char *const names[8] = {
2522 "isampler3D", NULL, NULL, NULL,
2523 "iimage3D", NULL, NULL, NULL
2524 };
2525 return names[offset + type_idx];
2526 }
2527 case GLSL_SAMPLER_DIM_CUBE: {
2528 static const char *const names[8] = {
2529 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2530 "iimageCube", NULL, NULL, NULL
2531 };
2532 return names[offset + type_idx];
2533 }
2534 case GLSL_SAMPLER_DIM_MS: {
2535 assert(type->is_sampler());
2536 static const char *const names[4] = {
2537 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2538 };
2539 return names[type_idx];
2540 }
2541 case GLSL_SAMPLER_DIM_RECT: {
2542 assert(type->is_sampler());
2543 static const char *const names[4] = {
2544 "isamplerRect", NULL, "isamplerRectShadow", NULL
2545 };
2546 return names[type_idx];
2547 }
2548 case GLSL_SAMPLER_DIM_BUF: {
2549 static const char *const names[8] = {
2550 "isamplerBuffer", NULL, NULL, NULL,
2551 "iimageBuffer", NULL, NULL, NULL
2552 };
2553 return names[offset + type_idx];
2554 }
2555 default:
2556 unreachable("Unsupported isampler/iimage dimensionality");
2557 } /* sampler/image int dimensionality */
2558 break;
2559 case GLSL_TYPE_UINT:
2560 switch (type->sampler_dimensionality) {
2561 case GLSL_SAMPLER_DIM_1D: {
2562 assert(type->is_sampler());
2563 static const char *const names[4] = {
2564 "usampler1D", "usampler1DArray", NULL, NULL
2565 };
2566 return names[type_idx];
2567 }
2568 case GLSL_SAMPLER_DIM_2D: {
2569 static const char *const names[8] = {
2570 "usampler2D", "usampler2DArray", NULL, NULL,
2571 "uimage2D", "uimage2DArray", NULL, NULL
2572 };
2573 return names[offset + type_idx];
2574 }
2575 case GLSL_SAMPLER_DIM_3D: {
2576 static const char *const names[8] = {
2577 "usampler3D", NULL, NULL, NULL,
2578 "uimage3D", NULL, NULL, NULL
2579 };
2580 return names[offset + type_idx];
2581 }
2582 case GLSL_SAMPLER_DIM_CUBE: {
2583 static const char *const names[8] = {
2584 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2585 "uimageCube", NULL, NULL, NULL
2586 };
2587 return names[offset + type_idx];
2588 }
2589 case GLSL_SAMPLER_DIM_MS: {
2590 assert(type->is_sampler());
2591 static const char *const names[4] = {
2592 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2593 };
2594 return names[type_idx];
2595 }
2596 case GLSL_SAMPLER_DIM_RECT: {
2597 assert(type->is_sampler());
2598 static const char *const names[4] = {
2599 "usamplerRect", NULL, "usamplerRectShadow", NULL
2600 };
2601 return names[type_idx];
2602 }
2603 case GLSL_SAMPLER_DIM_BUF: {
2604 static const char *const names[8] = {
2605 "usamplerBuffer", NULL, NULL, NULL,
2606 "uimageBuffer", NULL, NULL, NULL
2607 };
2608 return names[offset + type_idx];
2609 }
2610 default:
2611 unreachable("Unsupported usampler/uimage dimensionality");
2612 } /* sampler/image uint dimensionality */
2613 break;
2614 default:
2615 unreachable("Unsupported sampler/image type");
2616 } /* sampler/image type */
2617 break;
2618 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2619 break;
2620 default:
2621 unreachable("Unsupported type");
2622 } /* base type */
2623 }
2624
2625 static unsigned
2626 select_gles_precision(unsigned qual_precision,
2627 const glsl_type *type,
2628 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2629 {
2630 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2631 * In GLES we take the precision from the type qualifier if present,
2632 * otherwise, if the type of the variable allows precision qualifiers at
2633 * all, we look for the default precision qualifier for that type in the
2634 * current scope.
2635 */
2636 assert(state->es_shader);
2637
2638 unsigned precision = GLSL_PRECISION_NONE;
2639 if (qual_precision) {
2640 precision = qual_precision;
2641 } else if (precision_qualifier_allowed(type)) {
2642 const char *type_name =
2643 get_type_name_for_precision_qualifier(type->without_array());
2644 assert(type_name != NULL);
2645
2646 precision =
2647 state->symbols->get_default_precision_qualifier(type_name);
2648 if (precision == ast_precision_none) {
2649 _mesa_glsl_error(loc, state,
2650 "No precision specified in this scope for type `%s'",
2651 type->name);
2652 }
2653 }
2654
2655
2656 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2657 *
2658 * "The default precision of all atomic types is highp. It is an error to
2659 * declare an atomic type with a different precision or to specify the
2660 * default precision for an atomic type to be lowp or mediump."
2661 */
2662 if (type->is_atomic_uint() && precision != ast_precision_high) {
2663 _mesa_glsl_error(loc, state,
2664 "atomic_uint can only have highp precision qualifier");
2665 }
2666
2667 return precision;
2668 }
2669
2670 const glsl_type *
2671 ast_fully_specified_type::glsl_type(const char **name,
2672 struct _mesa_glsl_parse_state *state) const
2673 {
2674 return this->specifier->glsl_type(name, state);
2675 }
2676
2677 /**
2678 * Determine whether a toplevel variable declaration declares a varying. This
2679 * function operates by examining the variable's mode and the shader target,
2680 * so it correctly identifies linkage variables regardless of whether they are
2681 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2682 *
2683 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2684 * this function will produce undefined results.
2685 */
2686 static bool
2687 is_varying_var(ir_variable *var, gl_shader_stage target)
2688 {
2689 switch (target) {
2690 case MESA_SHADER_VERTEX:
2691 return var->data.mode == ir_var_shader_out;
2692 case MESA_SHADER_FRAGMENT:
2693 return var->data.mode == ir_var_shader_in;
2694 default:
2695 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2696 }
2697 }
2698
2699 static bool
2700 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2701 {
2702 if (is_varying_var(var, state->stage))
2703 return true;
2704
2705 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2706 * "Only variables output from a vertex shader can be candidates
2707 * for invariance".
2708 */
2709 if (!state->is_version(130, 0))
2710 return false;
2711
2712 /*
2713 * Later specs remove this language - so allowed invariant
2714 * on fragment shader outputs as well.
2715 */
2716 if (state->stage == MESA_SHADER_FRAGMENT &&
2717 var->data.mode == ir_var_shader_out)
2718 return true;
2719 return false;
2720 }
2721
2722 /**
2723 * Matrix layout qualifiers are only allowed on certain types
2724 */
2725 static void
2726 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2727 YYLTYPE *loc,
2728 const glsl_type *type,
2729 ir_variable *var)
2730 {
2731 if (var && !var->is_in_buffer_block()) {
2732 /* Layout qualifiers may only apply to interface blocks and fields in
2733 * them.
2734 */
2735 _mesa_glsl_error(loc, state,
2736 "uniform block layout qualifiers row_major and "
2737 "column_major may not be applied to variables "
2738 "outside of uniform blocks");
2739 } else if (!type->without_array()->is_matrix()) {
2740 /* The OpenGL ES 3.0 conformance tests did not originally allow
2741 * matrix layout qualifiers on non-matrices. However, the OpenGL
2742 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2743 * amended to specifically allow these layouts on all types. Emit
2744 * a warning so that people know their code may not be portable.
2745 */
2746 _mesa_glsl_warning(loc, state,
2747 "uniform block layout qualifiers row_major and "
2748 "column_major applied to non-matrix types may "
2749 "be rejected by older compilers");
2750 }
2751 }
2752
2753 static bool
2754 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2755 struct _mesa_glsl_parse_state *state,
2756 unsigned xfb_buffer) {
2757 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2758 _mesa_glsl_error(loc, state,
2759 "invalid xfb_buffer specified %d is larger than "
2760 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2761 xfb_buffer,
2762 state->Const.MaxTransformFeedbackBuffers - 1);
2763 return false;
2764 }
2765
2766 return true;
2767 }
2768
2769 /* From the ARB_enhanced_layouts spec:
2770 *
2771 * "Variables and block members qualified with *xfb_offset* can be
2772 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2773 * The offset must be a multiple of the size of the first component of
2774 * the first qualified variable or block member, or a compile-time error
2775 * results. Further, if applied to an aggregate containing a double,
2776 * the offset must also be a multiple of 8, and the space taken in the
2777 * buffer will be a multiple of 8.
2778 */
2779 static bool
2780 validate_xfb_offset_qualifier(YYLTYPE *loc,
2781 struct _mesa_glsl_parse_state *state,
2782 int xfb_offset, const glsl_type *type,
2783 unsigned component_size) {
2784 const glsl_type *t_without_array = type->without_array();
2785
2786 if (xfb_offset != -1 && type->is_unsized_array()) {
2787 _mesa_glsl_error(loc, state,
2788 "xfb_offset can't be used with unsized arrays.");
2789 return false;
2790 }
2791
2792 /* Make sure nested structs don't contain unsized arrays, and validate
2793 * any xfb_offsets on interface members.
2794 */
2795 if (t_without_array->is_record() || t_without_array->is_interface())
2796 for (unsigned int i = 0; i < t_without_array->length; i++) {
2797 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2798
2799 /* When the interface block doesn't have an xfb_offset qualifier then
2800 * we apply the component size rules at the member level.
2801 */
2802 if (xfb_offset == -1)
2803 component_size = member_t->contains_double() ? 8 : 4;
2804
2805 int xfb_offset = t_without_array->fields.structure[i].offset;
2806 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2807 component_size);
2808 }
2809
2810 /* Nested structs or interface block without offset may not have had an
2811 * offset applied yet so return.
2812 */
2813 if (xfb_offset == -1) {
2814 return true;
2815 }
2816
2817 if (xfb_offset % component_size) {
2818 _mesa_glsl_error(loc, state,
2819 "invalid qualifier xfb_offset=%d must be a multiple "
2820 "of the first component size of the first qualified "
2821 "variable or block member. Or double if an aggregate "
2822 "that contains a double (%d).",
2823 xfb_offset, component_size);
2824 return false;
2825 }
2826
2827 return true;
2828 }
2829
2830 static bool
2831 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2832 unsigned stream)
2833 {
2834 if (stream >= state->ctx->Const.MaxVertexStreams) {
2835 _mesa_glsl_error(loc, state,
2836 "invalid stream specified %d is larger than "
2837 "MAX_VERTEX_STREAMS - 1 (%d).",
2838 stream, state->ctx->Const.MaxVertexStreams - 1);
2839 return false;
2840 }
2841
2842 return true;
2843 }
2844
2845 static void
2846 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2847 YYLTYPE *loc,
2848 ir_variable *var,
2849 const glsl_type *type,
2850 const ast_type_qualifier *qual)
2851 {
2852 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2853 _mesa_glsl_error(loc, state,
2854 "the \"binding\" qualifier only applies to uniforms and "
2855 "shader storage buffer objects");
2856 return;
2857 }
2858
2859 unsigned qual_binding;
2860 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2861 &qual_binding)) {
2862 return;
2863 }
2864
2865 const struct gl_context *const ctx = state->ctx;
2866 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2867 unsigned max_index = qual_binding + elements - 1;
2868 const glsl_type *base_type = type->without_array();
2869
2870 if (base_type->is_interface()) {
2871 /* UBOs. From page 60 of the GLSL 4.20 specification:
2872 * "If the binding point for any uniform block instance is less than zero,
2873 * or greater than or equal to the implementation-dependent maximum
2874 * number of uniform buffer bindings, a compilation error will occur.
2875 * When the binding identifier is used with a uniform block instanced as
2876 * an array of size N, all elements of the array from binding through
2877 * binding + N – 1 must be within this range."
2878 *
2879 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2880 */
2881 if (qual->flags.q.uniform &&
2882 max_index >= ctx->Const.MaxUniformBufferBindings) {
2883 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2884 "the maximum number of UBO binding points (%d)",
2885 qual_binding, elements,
2886 ctx->Const.MaxUniformBufferBindings);
2887 return;
2888 }
2889
2890 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2891 * "If the binding point for any uniform or shader storage block instance
2892 * is less than zero, or greater than or equal to the
2893 * implementation-dependent maximum number of uniform buffer bindings, a
2894 * compile-time error will occur. When the binding identifier is used
2895 * with a uniform or shader storage block instanced as an array of size
2896 * N, all elements of the array from binding through binding + N – 1 must
2897 * be within this range."
2898 */
2899 if (qual->flags.q.buffer &&
2900 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2901 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2902 "the maximum number of SSBO binding points (%d)",
2903 qual_binding, elements,
2904 ctx->Const.MaxShaderStorageBufferBindings);
2905 return;
2906 }
2907 } else if (base_type->is_sampler()) {
2908 /* Samplers. From page 63 of the GLSL 4.20 specification:
2909 * "If the binding is less than zero, or greater than or equal to the
2910 * implementation-dependent maximum supported number of units, a
2911 * compilation error will occur. When the binding identifier is used
2912 * with an array of size N, all elements of the array from binding
2913 * through binding + N - 1 must be within this range."
2914 */
2915 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2916
2917 if (max_index >= limit) {
2918 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2919 "exceeds the maximum number of texture image units "
2920 "(%u)", qual_binding, elements, limit);
2921
2922 return;
2923 }
2924 } else if (base_type->contains_atomic()) {
2925 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2926 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2927 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2928 "maximum number of atomic counter buffer bindings "
2929 "(%u)", qual_binding,
2930 ctx->Const.MaxAtomicBufferBindings);
2931
2932 return;
2933 }
2934 } else if ((state->is_version(420, 310) ||
2935 state->ARB_shading_language_420pack_enable) &&
2936 base_type->is_image()) {
2937 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2938 if (max_index >= ctx->Const.MaxImageUnits) {
2939 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2940 "maximum number of image units (%d)", max_index,
2941 ctx->Const.MaxImageUnits);
2942 return;
2943 }
2944
2945 } else {
2946 _mesa_glsl_error(loc, state,
2947 "the \"binding\" qualifier only applies to uniform "
2948 "blocks, storage blocks, opaque variables, or arrays "
2949 "thereof");
2950 return;
2951 }
2952
2953 var->data.explicit_binding = true;
2954 var->data.binding = qual_binding;
2955
2956 return;
2957 }
2958
2959 static void
2960 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2961 YYLTYPE *loc,
2962 const glsl_interp_mode interpolation,
2963 const struct glsl_type *var_type,
2964 ir_variable_mode mode)
2965 {
2966 if (state->stage != MESA_SHADER_FRAGMENT ||
2967 interpolation == INTERP_MODE_FLAT ||
2968 mode != ir_var_shader_in)
2969 return;
2970
2971 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2972 * so must integer vertex outputs.
2973 *
2974 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2975 * "Fragment shader inputs that are signed or unsigned integers or
2976 * integer vectors must be qualified with the interpolation qualifier
2977 * flat."
2978 *
2979 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2980 * "Fragment shader inputs that are, or contain, signed or unsigned
2981 * integers or integer vectors must be qualified with the
2982 * interpolation qualifier flat."
2983 *
2984 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2985 * "Vertex shader outputs that are, or contain, signed or unsigned
2986 * integers or integer vectors must be qualified with the
2987 * interpolation qualifier flat."
2988 *
2989 * Note that prior to GLSL 1.50, this requirement applied to vertex
2990 * outputs rather than fragment inputs. That creates problems in the
2991 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2992 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2993 * apply the restriction to both vertex outputs and fragment inputs.
2994 *
2995 * Note also that the desktop GLSL specs are missing the text "or
2996 * contain"; this is presumably an oversight, since there is no
2997 * reasonable way to interpolate a fragment shader input that contains
2998 * an integer. See Khronos bug #15671.
2999 */
3000 if (state->is_version(130, 300)
3001 && var_type->contains_integer()) {
3002 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3003 "an integer, then it must be qualified with 'flat'");
3004 }
3005
3006 /* Double fragment inputs must be qualified with 'flat'.
3007 *
3008 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3009 * "This extension does not support interpolation of double-precision
3010 * values; doubles used as fragment shader inputs must be qualified as
3011 * "flat"."
3012 *
3013 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3014 * "Fragment shader inputs that are signed or unsigned integers, integer
3015 * vectors, or any double-precision floating-point type must be
3016 * qualified with the interpolation qualifier flat."
3017 *
3018 * Note that the GLSL specs are missing the text "or contain"; this is
3019 * presumably an oversight. See Khronos bug #15671.
3020 *
3021 * The 'double' type does not exist in GLSL ES so far.
3022 */
3023 if (state->has_double()
3024 && var_type->contains_double()) {
3025 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3026 "a double, then it must be qualified with 'flat'");
3027 }
3028
3029 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3030 *
3031 * From section 4.3.4 of the ARB_bindless_texture spec:
3032 *
3033 * "(modify last paragraph, p. 35, allowing samplers and images as
3034 * fragment shader inputs) ... Fragment inputs can only be signed and
3035 * unsigned integers and integer vectors, floating point scalars,
3036 * floating-point vectors, matrices, sampler and image types, or arrays
3037 * or structures of these. Fragment shader inputs that are signed or
3038 * unsigned integers, integer vectors, or any double-precision floating-
3039 * point type, or any sampler or image type must be qualified with the
3040 * interpolation qualifier "flat"."
3041 */
3042 if (state->has_bindless()
3043 && (var_type->contains_sampler() || var_type->contains_image())) {
3044 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3045 "a bindless sampler (or image), then it must be "
3046 "qualified with 'flat'");
3047 }
3048 }
3049
3050 static void
3051 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3052 YYLTYPE *loc,
3053 const glsl_interp_mode interpolation,
3054 const struct ast_type_qualifier *qual,
3055 const struct glsl_type *var_type,
3056 ir_variable_mode mode)
3057 {
3058 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3059 * not to vertex shader inputs nor fragment shader outputs.
3060 *
3061 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3062 * "Outputs from a vertex shader (out) and inputs to a fragment
3063 * shader (in) can be further qualified with one or more of these
3064 * interpolation qualifiers"
3065 * ...
3066 * "These interpolation qualifiers may only precede the qualifiers in,
3067 * centroid in, out, or centroid out in a declaration. They do not apply
3068 * to the deprecated storage qualifiers varying or centroid
3069 * varying. They also do not apply to inputs into a vertex shader or
3070 * outputs from a fragment shader."
3071 *
3072 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3073 * "Outputs from a shader (out) and inputs to a shader (in) can be
3074 * further qualified with one of these interpolation qualifiers."
3075 * ...
3076 * "These interpolation qualifiers may only precede the qualifiers
3077 * in, centroid in, out, or centroid out in a declaration. They do
3078 * not apply to inputs into a vertex shader or outputs from a
3079 * fragment shader."
3080 */
3081 if (state->is_version(130, 300)
3082 && interpolation != INTERP_MODE_NONE) {
3083 const char *i = interpolation_string(interpolation);
3084 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3085 _mesa_glsl_error(loc, state,
3086 "interpolation qualifier `%s' can only be applied to "
3087 "shader inputs or outputs.", i);
3088
3089 switch (state->stage) {
3090 case MESA_SHADER_VERTEX:
3091 if (mode == ir_var_shader_in) {
3092 _mesa_glsl_error(loc, state,
3093 "interpolation qualifier '%s' cannot be applied to "
3094 "vertex shader inputs", i);
3095 }
3096 break;
3097 case MESA_SHADER_FRAGMENT:
3098 if (mode == ir_var_shader_out) {
3099 _mesa_glsl_error(loc, state,
3100 "interpolation qualifier '%s' cannot be applied to "
3101 "fragment shader outputs", i);
3102 }
3103 break;
3104 default:
3105 break;
3106 }
3107 }
3108
3109 /* Interpolation qualifiers cannot be applied to 'centroid' and
3110 * 'centroid varying'.
3111 *
3112 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3113 * "interpolation qualifiers may only precede the qualifiers in,
3114 * centroid in, out, or centroid out in a declaration. They do not apply
3115 * to the deprecated storage qualifiers varying or centroid varying."
3116 *
3117 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3118 */
3119 if (state->is_version(130, 0)
3120 && interpolation != INTERP_MODE_NONE
3121 && qual->flags.q.varying) {
3122
3123 const char *i = interpolation_string(interpolation);
3124 const char *s;
3125 if (qual->flags.q.centroid)
3126 s = "centroid varying";
3127 else
3128 s = "varying";
3129
3130 _mesa_glsl_error(loc, state,
3131 "qualifier '%s' cannot be applied to the "
3132 "deprecated storage qualifier '%s'", i, s);
3133 }
3134
3135 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3136 var_type, mode);
3137 }
3138
3139 static glsl_interp_mode
3140 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3141 const struct glsl_type *var_type,
3142 ir_variable_mode mode,
3143 struct _mesa_glsl_parse_state *state,
3144 YYLTYPE *loc)
3145 {
3146 glsl_interp_mode interpolation;
3147 if (qual->flags.q.flat)
3148 interpolation = INTERP_MODE_FLAT;
3149 else if (qual->flags.q.noperspective)
3150 interpolation = INTERP_MODE_NOPERSPECTIVE;
3151 else if (qual->flags.q.smooth)
3152 interpolation = INTERP_MODE_SMOOTH;
3153 else
3154 interpolation = INTERP_MODE_NONE;
3155
3156 validate_interpolation_qualifier(state, loc,
3157 interpolation,
3158 qual, var_type, mode);
3159
3160 return interpolation;
3161 }
3162
3163
3164 static void
3165 apply_explicit_location(const struct ast_type_qualifier *qual,
3166 ir_variable *var,
3167 struct _mesa_glsl_parse_state *state,
3168 YYLTYPE *loc)
3169 {
3170 bool fail = false;
3171
3172 unsigned qual_location;
3173 if (!process_qualifier_constant(state, loc, "location", qual->location,
3174 &qual_location)) {
3175 return;
3176 }
3177
3178 /* Checks for GL_ARB_explicit_uniform_location. */
3179 if (qual->flags.q.uniform) {
3180 if (!state->check_explicit_uniform_location_allowed(loc, var))
3181 return;
3182
3183 const struct gl_context *const ctx = state->ctx;
3184 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3185
3186 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3187 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3188 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3189 ctx->Const.MaxUserAssignableUniformLocations);
3190 return;
3191 }
3192
3193 var->data.explicit_location = true;
3194 var->data.location = qual_location;
3195 return;
3196 }
3197
3198 /* Between GL_ARB_explicit_attrib_location an
3199 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3200 * stage can be assigned explicit locations. The checking here associates
3201 * the correct extension with the correct stage's input / output:
3202 *
3203 * input output
3204 * ----- ------
3205 * vertex explicit_loc sso
3206 * tess control sso sso
3207 * tess eval sso sso
3208 * geometry sso sso
3209 * fragment sso explicit_loc
3210 */
3211 switch (state->stage) {
3212 case MESA_SHADER_VERTEX:
3213 if (var->data.mode == ir_var_shader_in) {
3214 if (!state->check_explicit_attrib_location_allowed(loc, var))
3215 return;
3216
3217 break;
3218 }
3219
3220 if (var->data.mode == ir_var_shader_out) {
3221 if (!state->check_separate_shader_objects_allowed(loc, var))
3222 return;
3223
3224 break;
3225 }
3226
3227 fail = true;
3228 break;
3229
3230 case MESA_SHADER_TESS_CTRL:
3231 case MESA_SHADER_TESS_EVAL:
3232 case MESA_SHADER_GEOMETRY:
3233 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3234 if (!state->check_separate_shader_objects_allowed(loc, var))
3235 return;
3236
3237 break;
3238 }
3239
3240 fail = true;
3241 break;
3242
3243 case MESA_SHADER_FRAGMENT:
3244 if (var->data.mode == ir_var_shader_in) {
3245 if (!state->check_separate_shader_objects_allowed(loc, var))
3246 return;
3247
3248 break;
3249 }
3250
3251 if (var->data.mode == ir_var_shader_out) {
3252 if (!state->check_explicit_attrib_location_allowed(loc, var))
3253 return;
3254
3255 break;
3256 }
3257
3258 fail = true;
3259 break;
3260
3261 case MESA_SHADER_COMPUTE:
3262 _mesa_glsl_error(loc, state,
3263 "compute shader variables cannot be given "
3264 "explicit locations");
3265 return;
3266 default:
3267 fail = true;
3268 break;
3269 };
3270
3271 if (fail) {
3272 _mesa_glsl_error(loc, state,
3273 "%s cannot be given an explicit location in %s shader",
3274 mode_string(var),
3275 _mesa_shader_stage_to_string(state->stage));
3276 } else {
3277 var->data.explicit_location = true;
3278
3279 switch (state->stage) {
3280 case MESA_SHADER_VERTEX:
3281 var->data.location = (var->data.mode == ir_var_shader_in)
3282 ? (qual_location + VERT_ATTRIB_GENERIC0)
3283 : (qual_location + VARYING_SLOT_VAR0);
3284 break;
3285
3286 case MESA_SHADER_TESS_CTRL:
3287 case MESA_SHADER_TESS_EVAL:
3288 case MESA_SHADER_GEOMETRY:
3289 if (var->data.patch)
3290 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3291 else
3292 var->data.location = qual_location + VARYING_SLOT_VAR0;
3293 break;
3294
3295 case MESA_SHADER_FRAGMENT:
3296 var->data.location = (var->data.mode == ir_var_shader_out)
3297 ? (qual_location + FRAG_RESULT_DATA0)
3298 : (qual_location + VARYING_SLOT_VAR0);
3299 break;
3300 default:
3301 assert(!"Unexpected shader type");
3302 break;
3303 }
3304
3305 /* Check if index was set for the uniform instead of the function */
3306 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3307 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3308 "used with subroutine functions");
3309 return;
3310 }
3311
3312 unsigned qual_index;
3313 if (qual->flags.q.explicit_index &&
3314 process_qualifier_constant(state, loc, "index", qual->index,
3315 &qual_index)) {
3316 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3317 * Layout Qualifiers):
3318 *
3319 * "It is also a compile-time error if a fragment shader
3320 * sets a layout index to less than 0 or greater than 1."
3321 *
3322 * Older specifications don't mandate a behavior; we take
3323 * this as a clarification and always generate the error.
3324 */
3325 if (qual_index > 1) {
3326 _mesa_glsl_error(loc, state,
3327 "explicit index may only be 0 or 1");
3328 } else {
3329 var->data.explicit_index = true;
3330 var->data.index = qual_index;
3331 }
3332 }
3333 }
3334 }
3335
3336 static bool
3337 validate_storage_for_sampler_image_types(ir_variable *var,
3338 struct _mesa_glsl_parse_state *state,
3339 YYLTYPE *loc)
3340 {
3341 /* From section 4.1.7 of the GLSL 4.40 spec:
3342 *
3343 * "[Opaque types] can only be declared as function
3344 * parameters or uniform-qualified variables."
3345 *
3346 * From section 4.1.7 of the ARB_bindless_texture spec:
3347 *
3348 * "Samplers may be declared as shader inputs and outputs, as uniform
3349 * variables, as temporary variables, and as function parameters."
3350 *
3351 * From section 4.1.X of the ARB_bindless_texture spec:
3352 *
3353 * "Images may be declared as shader inputs and outputs, as uniform
3354 * variables, as temporary variables, and as function parameters."
3355 */
3356 if (state->has_bindless()) {
3357 if (var->data.mode != ir_var_auto &&
3358 var->data.mode != ir_var_uniform &&
3359 var->data.mode != ir_var_shader_in &&
3360 var->data.mode != ir_var_shader_out &&
3361 var->data.mode != ir_var_function_in &&
3362 var->data.mode != ir_var_function_out &&
3363 var->data.mode != ir_var_function_inout) {
3364 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3365 "only be declared as shader inputs and outputs, as "
3366 "uniform variables, as temporary variables and as "
3367 "function parameters");
3368 return false;
3369 }
3370 } else {
3371 if (var->data.mode != ir_var_uniform &&
3372 var->data.mode != ir_var_function_in) {
3373 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3374 "declared as function parameters or "
3375 "uniform-qualified global variables");
3376 return false;
3377 }
3378 }
3379 return true;
3380 }
3381
3382 static bool
3383 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3384 YYLTYPE *loc,
3385 const struct ast_type_qualifier *qual,
3386 const glsl_type *type)
3387 {
3388 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3389 *
3390 * "Memory qualifiers are only supported in the declarations of image
3391 * variables, buffer variables, and shader storage blocks; it is an error
3392 * to use such qualifiers in any other declarations.
3393 */
3394 if (!type->is_image() && !qual->flags.q.buffer) {
3395 if (qual->flags.q.read_only ||
3396 qual->flags.q.write_only ||
3397 qual->flags.q.coherent ||
3398 qual->flags.q._volatile ||
3399 qual->flags.q.restrict_flag) {
3400 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3401 "in the declarations of image variables, buffer "
3402 "variables, and shader storage blocks");
3403 return false;
3404 }
3405 }
3406 return true;
3407 }
3408
3409 static bool
3410 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3411 YYLTYPE *loc,
3412 const struct ast_type_qualifier *qual,
3413 const glsl_type *type)
3414 {
3415 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3416 *
3417 * "Format layout qualifiers can be used on image variable declarations
3418 * (those declared with a basic type having “image ” in its keyword)."
3419 */
3420 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3421 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3422 "applied to images");
3423 return false;
3424 }
3425 return true;
3426 }
3427
3428 static void
3429 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3430 ir_variable *var,
3431 struct _mesa_glsl_parse_state *state,
3432 YYLTYPE *loc)
3433 {
3434 const glsl_type *base_type = var->type->without_array();
3435
3436 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3437 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3438 return;
3439
3440 if (!base_type->is_image())
3441 return;
3442
3443 if (!validate_storage_for_sampler_image_types(var, state, loc))
3444 return;
3445
3446 var->data.memory_read_only |= qual->flags.q.read_only;
3447 var->data.memory_write_only |= qual->flags.q.write_only;
3448 var->data.memory_coherent |= qual->flags.q.coherent;
3449 var->data.memory_volatile |= qual->flags.q._volatile;
3450 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3451
3452 if (qual->flags.q.explicit_image_format) {
3453 if (var->data.mode == ir_var_function_in) {
3454 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3455 "image function parameters");
3456 }
3457
3458 if (qual->image_base_type != base_type->sampled_type) {
3459 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3460 "data type of the image");
3461 }
3462
3463 var->data.image_format = qual->image_format;
3464 } else {
3465 if (var->data.mode == ir_var_uniform) {
3466 if (state->es_shader) {
3467 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3468 "format layout qualifier");
3469 } else if (!qual->flags.q.write_only) {
3470 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3471 "`writeonly' must have a format layout qualifier");
3472 }
3473 }
3474 var->data.image_format = GL_NONE;
3475 }
3476
3477 /* From page 70 of the GLSL ES 3.1 specification:
3478 *
3479 * "Except for image variables qualified with the format qualifiers r32f,
3480 * r32i, and r32ui, image variables must specify either memory qualifier
3481 * readonly or the memory qualifier writeonly."
3482 */
3483 if (state->es_shader &&
3484 var->data.image_format != GL_R32F &&
3485 var->data.image_format != GL_R32I &&
3486 var->data.image_format != GL_R32UI &&
3487 !var->data.memory_read_only &&
3488 !var->data.memory_write_only) {
3489 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3490 "r32i or r32ui must be qualified `readonly' or "
3491 "`writeonly'");
3492 }
3493 }
3494
3495 static inline const char*
3496 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3497 {
3498 if (origin_upper_left && pixel_center_integer)
3499 return "origin_upper_left, pixel_center_integer";
3500 else if (origin_upper_left)
3501 return "origin_upper_left";
3502 else if (pixel_center_integer)
3503 return "pixel_center_integer";
3504 else
3505 return " ";
3506 }
3507
3508 static inline bool
3509 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3510 const struct ast_type_qualifier *qual)
3511 {
3512 /* If gl_FragCoord was previously declared, and the qualifiers were
3513 * different in any way, return true.
3514 */
3515 if (state->fs_redeclares_gl_fragcoord) {
3516 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3517 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3518 }
3519
3520 return false;
3521 }
3522
3523 static inline void
3524 validate_array_dimensions(const glsl_type *t,
3525 struct _mesa_glsl_parse_state *state,
3526 YYLTYPE *loc) {
3527 if (t->is_array()) {
3528 t = t->fields.array;
3529 while (t->is_array()) {
3530 if (t->is_unsized_array()) {
3531 _mesa_glsl_error(loc, state,
3532 "only the outermost array dimension can "
3533 "be unsized",
3534 t->name);
3535 break;
3536 }
3537 t = t->fields.array;
3538 }
3539 }
3540 }
3541
3542 static void
3543 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3544 ir_variable *var,
3545 struct _mesa_glsl_parse_state *state,
3546 YYLTYPE *loc)
3547 {
3548 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3549 qual->flags.q.bindless_image ||
3550 qual->flags.q.bound_sampler ||
3551 qual->flags.q.bound_image;
3552
3553 /* The ARB_bindless_texture spec says:
3554 *
3555 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3556 * spec"
3557 *
3558 * "If these layout qualifiers are applied to other types of default block
3559 * uniforms, or variables with non-uniform storage, a compile-time error
3560 * will be generated."
3561 */
3562 if (has_local_qualifiers && !qual->flags.q.uniform) {
3563 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3564 "can only be applied to default block uniforms or "
3565 "variables with uniform storage");
3566 return;
3567 }
3568
3569 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3570 * but it makes sense to only allow bindless_sampler/bound_sampler for
3571 * sampler types, and respectively bindless_image/bound_image for image
3572 * types.
3573 */
3574 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3575 !var->type->contains_sampler()) {
3576 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3577 "be applied to sampler types");
3578 return;
3579 }
3580
3581 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3582 !var->type->contains_image()) {
3583 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3584 "applied to image types");
3585 return;
3586 }
3587
3588 /* The bindless_sampler/bindless_image (and respectively
3589 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3590 * local scope.
3591 */
3592 if (var->type->contains_sampler() || var->type->contains_image()) {
3593 var->data.bindless = qual->flags.q.bindless_sampler ||
3594 qual->flags.q.bindless_image ||
3595 state->bindless_sampler_specified ||
3596 state->bindless_image_specified;
3597
3598 var->data.bound = qual->flags.q.bound_sampler ||
3599 qual->flags.q.bound_image ||
3600 state->bound_sampler_specified ||
3601 state->bound_image_specified;
3602 }
3603 }
3604
3605 static void
3606 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3607 ir_variable *var,
3608 struct _mesa_glsl_parse_state *state,
3609 YYLTYPE *loc)
3610 {
3611 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3612
3613 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3614 *
3615 * "Within any shader, the first redeclarations of gl_FragCoord
3616 * must appear before any use of gl_FragCoord."
3617 *
3618 * Generate a compiler error if above condition is not met by the
3619 * fragment shader.
3620 */
3621 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3622 if (earlier != NULL &&
3623 earlier->data.used &&
3624 !state->fs_redeclares_gl_fragcoord) {
3625 _mesa_glsl_error(loc, state,
3626 "gl_FragCoord used before its first redeclaration "
3627 "in fragment shader");
3628 }
3629
3630 /* Make sure all gl_FragCoord redeclarations specify the same layout
3631 * qualifiers.
3632 */
3633 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3634 const char *const qual_string =
3635 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3636 qual->flags.q.pixel_center_integer);
3637
3638 const char *const state_string =
3639 get_layout_qualifier_string(state->fs_origin_upper_left,
3640 state->fs_pixel_center_integer);
3641
3642 _mesa_glsl_error(loc, state,
3643 "gl_FragCoord redeclared with different layout "
3644 "qualifiers (%s) and (%s) ",
3645 state_string,
3646 qual_string);
3647 }
3648 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3649 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3650 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3651 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3652 state->fs_redeclares_gl_fragcoord =
3653 state->fs_origin_upper_left ||
3654 state->fs_pixel_center_integer ||
3655 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3656 }
3657
3658 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3659 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3660 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3661 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3662 const char *const qual_string = (qual->flags.q.origin_upper_left)
3663 ? "origin_upper_left" : "pixel_center_integer";
3664
3665 _mesa_glsl_error(loc, state,
3666 "layout qualifier `%s' can only be applied to "
3667 "fragment shader input `gl_FragCoord'",
3668 qual_string);
3669 }
3670
3671 if (qual->flags.q.explicit_location) {
3672 apply_explicit_location(qual, var, state, loc);
3673
3674 if (qual->flags.q.explicit_component) {
3675 unsigned qual_component;
3676 if (process_qualifier_constant(state, loc, "component",
3677 qual->component, &qual_component)) {
3678 const glsl_type *type = var->type->without_array();
3679 unsigned components = type->component_slots();
3680
3681 if (type->is_matrix() || type->is_record()) {
3682 _mesa_glsl_error(loc, state, "component layout qualifier "
3683 "cannot be applied to a matrix, a structure, "
3684 "a block, or an array containing any of "
3685 "these.");
3686 } else if (qual_component != 0 &&
3687 (qual_component + components - 1) > 3) {
3688 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3689 (qual_component + components - 1));
3690 } else if (qual_component == 1 && type->is_64bit()) {
3691 /* We don't bother checking for 3 as it should be caught by the
3692 * overflow check above.
3693 */
3694 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3695 "component 1 or 3");
3696 } else {
3697 var->data.explicit_component = true;
3698 var->data.location_frac = qual_component;
3699 }
3700 }
3701 }
3702 } else if (qual->flags.q.explicit_index) {
3703 if (!qual->subroutine_list)
3704 _mesa_glsl_error(loc, state,
3705 "explicit index requires explicit location");
3706 } else if (qual->flags.q.explicit_component) {
3707 _mesa_glsl_error(loc, state,
3708 "explicit component requires explicit location");
3709 }
3710
3711 if (qual->flags.q.explicit_binding) {
3712 apply_explicit_binding(state, loc, var, var->type, qual);
3713 }
3714
3715 if (state->stage == MESA_SHADER_GEOMETRY &&
3716 qual->flags.q.out && qual->flags.q.stream) {
3717 unsigned qual_stream;
3718 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3719 &qual_stream) &&
3720 validate_stream_qualifier(loc, state, qual_stream)) {
3721 var->data.stream = qual_stream;
3722 }
3723 }
3724
3725 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3726 unsigned qual_xfb_buffer;
3727 if (process_qualifier_constant(state, loc, "xfb_buffer",
3728 qual->xfb_buffer, &qual_xfb_buffer) &&
3729 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3730 var->data.xfb_buffer = qual_xfb_buffer;
3731 if (qual->flags.q.explicit_xfb_buffer)
3732 var->data.explicit_xfb_buffer = true;
3733 }
3734 }
3735
3736 if (qual->flags.q.explicit_xfb_offset) {
3737 unsigned qual_xfb_offset;
3738 unsigned component_size = var->type->contains_double() ? 8 : 4;
3739
3740 if (process_qualifier_constant(state, loc, "xfb_offset",
3741 qual->offset, &qual_xfb_offset) &&
3742 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3743 var->type, component_size)) {
3744 var->data.offset = qual_xfb_offset;
3745 var->data.explicit_xfb_offset = true;
3746 }
3747 }
3748
3749 if (qual->flags.q.explicit_xfb_stride) {
3750 unsigned qual_xfb_stride;
3751 if (process_qualifier_constant(state, loc, "xfb_stride",
3752 qual->xfb_stride, &qual_xfb_stride)) {
3753 var->data.xfb_stride = qual_xfb_stride;
3754 var->data.explicit_xfb_stride = true;
3755 }
3756 }
3757
3758 if (var->type->contains_atomic()) {
3759 if (var->data.mode == ir_var_uniform) {
3760 if (var->data.explicit_binding) {
3761 unsigned *offset =
3762 &state->atomic_counter_offsets[var->data.binding];
3763
3764 if (*offset % ATOMIC_COUNTER_SIZE)
3765 _mesa_glsl_error(loc, state,
3766 "misaligned atomic counter offset");
3767
3768 var->data.offset = *offset;
3769 *offset += var->type->atomic_size();
3770
3771 } else {
3772 _mesa_glsl_error(loc, state,
3773 "atomic counters require explicit binding point");
3774 }
3775 } else if (var->data.mode != ir_var_function_in) {
3776 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3777 "function parameters or uniform-qualified "
3778 "global variables");
3779 }
3780 }
3781
3782 if (var->type->contains_sampler() &&
3783 !validate_storage_for_sampler_image_types(var, state, loc))
3784 return;
3785
3786 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3787 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3788 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3789 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3790 * These extensions and all following extensions that add the 'layout'
3791 * keyword have been modified to require the use of 'in' or 'out'.
3792 *
3793 * The following extension do not allow the deprecated keywords:
3794 *
3795 * GL_AMD_conservative_depth
3796 * GL_ARB_conservative_depth
3797 * GL_ARB_gpu_shader5
3798 * GL_ARB_separate_shader_objects
3799 * GL_ARB_tessellation_shader
3800 * GL_ARB_transform_feedback3
3801 * GL_ARB_uniform_buffer_object
3802 *
3803 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3804 * allow layout with the deprecated keywords.
3805 */
3806 const bool relaxed_layout_qualifier_checking =
3807 state->ARB_fragment_coord_conventions_enable;
3808
3809 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3810 || qual->flags.q.varying;
3811 if (qual->has_layout() && uses_deprecated_qualifier) {
3812 if (relaxed_layout_qualifier_checking) {
3813 _mesa_glsl_warning(loc, state,
3814 "`layout' qualifier may not be used with "
3815 "`attribute' or `varying'");
3816 } else {
3817 _mesa_glsl_error(loc, state,
3818 "`layout' qualifier may not be used with "
3819 "`attribute' or `varying'");
3820 }
3821 }
3822
3823 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3824 * AMD_conservative_depth.
3825 */
3826 if (qual->flags.q.depth_type
3827 && !state->is_version(420, 0)
3828 && !state->AMD_conservative_depth_enable
3829 && !state->ARB_conservative_depth_enable) {
3830 _mesa_glsl_error(loc, state,
3831 "extension GL_AMD_conservative_depth or "
3832 "GL_ARB_conservative_depth must be enabled "
3833 "to use depth layout qualifiers");
3834 } else if (qual->flags.q.depth_type
3835 && strcmp(var->name, "gl_FragDepth") != 0) {
3836 _mesa_glsl_error(loc, state,
3837 "depth layout qualifiers can be applied only to "
3838 "gl_FragDepth");
3839 }
3840
3841 switch (qual->depth_type) {
3842 case ast_depth_any:
3843 var->data.depth_layout = ir_depth_layout_any;
3844 break;
3845 case ast_depth_greater:
3846 var->data.depth_layout = ir_depth_layout_greater;
3847 break;
3848 case ast_depth_less:
3849 var->data.depth_layout = ir_depth_layout_less;
3850 break;
3851 case ast_depth_unchanged:
3852 var->data.depth_layout = ir_depth_layout_unchanged;
3853 break;
3854 default:
3855 var->data.depth_layout = ir_depth_layout_none;
3856 break;
3857 }
3858
3859 if (qual->flags.q.std140 ||
3860 qual->flags.q.std430 ||
3861 qual->flags.q.packed ||
3862 qual->flags.q.shared) {
3863 _mesa_glsl_error(loc, state,
3864 "uniform and shader storage block layout qualifiers "
3865 "std140, std430, packed, and shared can only be "
3866 "applied to uniform or shader storage blocks, not "
3867 "members");
3868 }
3869
3870 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3871 validate_matrix_layout_for_type(state, loc, var->type, var);
3872 }
3873
3874 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3875 * Inputs):
3876 *
3877 * "Fragment shaders also allow the following layout qualifier on in only
3878 * (not with variable declarations)
3879 * layout-qualifier-id
3880 * early_fragment_tests
3881 * [...]"
3882 */
3883 if (qual->flags.q.early_fragment_tests) {
3884 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3885 "valid in fragment shader input layout declaration.");
3886 }
3887
3888 if (qual->flags.q.inner_coverage) {
3889 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3890 "valid in fragment shader input layout declaration.");
3891 }
3892
3893 if (qual->flags.q.post_depth_coverage) {
3894 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3895 "valid in fragment shader input layout declaration.");
3896 }
3897
3898 if (state->has_bindless())
3899 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3900 }
3901
3902 static void
3903 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3904 ir_variable *var,
3905 struct _mesa_glsl_parse_state *state,
3906 YYLTYPE *loc,
3907 bool is_parameter)
3908 {
3909 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3910
3911 if (qual->flags.q.invariant) {
3912 if (var->data.used) {
3913 _mesa_glsl_error(loc, state,
3914 "variable `%s' may not be redeclared "
3915 "`invariant' after being used",
3916 var->name);
3917 } else {
3918 var->data.invariant = 1;
3919 }
3920 }
3921
3922 if (qual->flags.q.precise) {
3923 if (var->data.used) {
3924 _mesa_glsl_error(loc, state,
3925 "variable `%s' may not be redeclared "
3926 "`precise' after being used",
3927 var->name);
3928 } else {
3929 var->data.precise = 1;
3930 }
3931 }
3932
3933 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3934 _mesa_glsl_error(loc, state,
3935 "`subroutine' may only be applied to uniforms, "
3936 "subroutine type declarations, or function definitions");
3937 }
3938
3939 if (qual->flags.q.constant || qual->flags.q.attribute
3940 || qual->flags.q.uniform
3941 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3942 var->data.read_only = 1;
3943
3944 if (qual->flags.q.centroid)
3945 var->data.centroid = 1;
3946
3947 if (qual->flags.q.sample)
3948 var->data.sample = 1;
3949
3950 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3951 if (state->es_shader) {
3952 var->data.precision =
3953 select_gles_precision(qual->precision, var->type, state, loc);
3954 }
3955
3956 if (qual->flags.q.patch)
3957 var->data.patch = 1;
3958
3959 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3960 var->type = glsl_type::error_type;
3961 _mesa_glsl_error(loc, state,
3962 "`attribute' variables may not be declared in the "
3963 "%s shader",
3964 _mesa_shader_stage_to_string(state->stage));
3965 }
3966
3967 /* Disallow layout qualifiers which may only appear on layout declarations. */
3968 if (qual->flags.q.prim_type) {
3969 _mesa_glsl_error(loc, state,
3970 "Primitive type may only be specified on GS input or output "
3971 "layout declaration, not on variables.");
3972 }
3973
3974 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3975 *
3976 * "However, the const qualifier cannot be used with out or inout."
3977 *
3978 * The same section of the GLSL 4.40 spec further clarifies this saying:
3979 *
3980 * "The const qualifier cannot be used with out or inout, or a
3981 * compile-time error results."
3982 */
3983 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3984 _mesa_glsl_error(loc, state,
3985 "`const' may not be applied to `out' or `inout' "
3986 "function parameters");
3987 }
3988
3989 /* If there is no qualifier that changes the mode of the variable, leave
3990 * the setting alone.
3991 */
3992 assert(var->data.mode != ir_var_temporary);
3993 if (qual->flags.q.in && qual->flags.q.out)
3994 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3995 else if (qual->flags.q.in)
3996 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3997 else if (qual->flags.q.attribute
3998 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3999 var->data.mode = ir_var_shader_in;
4000 else if (qual->flags.q.out)
4001 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4002 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4003 var->data.mode = ir_var_shader_out;
4004 else if (qual->flags.q.uniform)
4005 var->data.mode = ir_var_uniform;
4006 else if (qual->flags.q.buffer)
4007 var->data.mode = ir_var_shader_storage;
4008 else if (qual->flags.q.shared_storage)
4009 var->data.mode = ir_var_shader_shared;
4010
4011 if (!is_parameter && state->has_framebuffer_fetch() &&
4012 state->stage == MESA_SHADER_FRAGMENT) {
4013 if (state->is_version(130, 300))
4014 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4015 else
4016 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4017 }
4018
4019 if (var->data.fb_fetch_output) {
4020 var->data.memory_coherent = !qual->flags.q.non_coherent;
4021
4022 /* From the EXT_shader_framebuffer_fetch spec:
4023 *
4024 * "It is an error to declare an inout fragment output not qualified
4025 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4026 * extension hasn't been enabled."
4027 */
4028 if (var->data.memory_coherent &&
4029 !state->EXT_shader_framebuffer_fetch_enable)
4030 _mesa_glsl_error(loc, state,
4031 "invalid declaration of framebuffer fetch output not "
4032 "qualified with layout(noncoherent)");
4033
4034 } else {
4035 /* From the EXT_shader_framebuffer_fetch spec:
4036 *
4037 * "Fragment outputs declared inout may specify the following layout
4038 * qualifier: [...] noncoherent"
4039 */
4040 if (qual->flags.q.non_coherent)
4041 _mesa_glsl_error(loc, state,
4042 "invalid layout(noncoherent) qualifier not part of "
4043 "framebuffer fetch output declaration");
4044 }
4045
4046 if (!is_parameter && is_varying_var(var, state->stage)) {
4047 /* User-defined ins/outs are not permitted in compute shaders. */
4048 if (state->stage == MESA_SHADER_COMPUTE) {
4049 _mesa_glsl_error(loc, state,
4050 "user-defined input and output variables are not "
4051 "permitted in compute shaders");
4052 }
4053
4054 /* This variable is being used to link data between shader stages (in
4055 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4056 * that is allowed for such purposes.
4057 *
4058 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4059 *
4060 * "The varying qualifier can be used only with the data types
4061 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4062 * these."
4063 *
4064 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4065 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4066 *
4067 * "Fragment inputs can only be signed and unsigned integers and
4068 * integer vectors, float, floating-point vectors, matrices, or
4069 * arrays of these. Structures cannot be input.
4070 *
4071 * Similar text exists in the section on vertex shader outputs.
4072 *
4073 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4074 * 3.00 spec allows structs as well. Varying structs are also allowed
4075 * in GLSL 1.50.
4076 *
4077 * From section 4.3.4 of the ARB_bindless_texture spec:
4078 *
4079 * "(modify third paragraph of the section to allow sampler and image
4080 * types) ... Vertex shader inputs can only be float,
4081 * single-precision floating-point scalars, single-precision
4082 * floating-point vectors, matrices, signed and unsigned integers
4083 * and integer vectors, sampler and image types."
4084 *
4085 * From section 4.3.6 of the ARB_bindless_texture spec:
4086 *
4087 * "Output variables can only be floating-point scalars,
4088 * floating-point vectors, matrices, signed or unsigned integers or
4089 * integer vectors, sampler or image types, or arrays or structures
4090 * of any these."
4091 */
4092 switch (var->type->without_array()->base_type) {
4093 case GLSL_TYPE_FLOAT:
4094 /* Ok in all GLSL versions */
4095 break;
4096 case GLSL_TYPE_UINT:
4097 case GLSL_TYPE_INT:
4098 if (state->is_version(130, 300))
4099 break;
4100 _mesa_glsl_error(loc, state,
4101 "varying variables must be of base type float in %s",
4102 state->get_version_string());
4103 break;
4104 case GLSL_TYPE_STRUCT:
4105 if (state->is_version(150, 300))
4106 break;
4107 _mesa_glsl_error(loc, state,
4108 "varying variables may not be of type struct");
4109 break;
4110 case GLSL_TYPE_DOUBLE:
4111 case GLSL_TYPE_UINT64:
4112 case GLSL_TYPE_INT64:
4113 break;
4114 case GLSL_TYPE_SAMPLER:
4115 case GLSL_TYPE_IMAGE:
4116 if (state->has_bindless())
4117 break;
4118 /* fallthrough */
4119 default:
4120 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4121 break;
4122 }
4123 }
4124
4125 if (state->all_invariant && var->data.mode == ir_var_shader_out)
4126 var->data.invariant = true;
4127
4128 var->data.interpolation =
4129 interpret_interpolation_qualifier(qual, var->type,
4130 (ir_variable_mode) var->data.mode,
4131 state, loc);
4132
4133 /* Does the declaration use the deprecated 'attribute' or 'varying'
4134 * keywords?
4135 */
4136 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4137 || qual->flags.q.varying;
4138
4139
4140 /* Validate auxiliary storage qualifiers */
4141
4142 /* From section 4.3.4 of the GLSL 1.30 spec:
4143 * "It is an error to use centroid in in a vertex shader."
4144 *
4145 * From section 4.3.4 of the GLSL ES 3.00 spec:
4146 * "It is an error to use centroid in or interpolation qualifiers in
4147 * a vertex shader input."
4148 */
4149
4150 /* Section 4.3.6 of the GLSL 1.30 specification states:
4151 * "It is an error to use centroid out in a fragment shader."
4152 *
4153 * The GL_ARB_shading_language_420pack extension specification states:
4154 * "It is an error to use auxiliary storage qualifiers or interpolation
4155 * qualifiers on an output in a fragment shader."
4156 */
4157 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4158 _mesa_glsl_error(loc, state,
4159 "sample qualifier may only be used on `in` or `out` "
4160 "variables between shader stages");
4161 }
4162 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4163 _mesa_glsl_error(loc, state,
4164 "centroid qualifier may only be used with `in', "
4165 "`out' or `varying' variables between shader stages");
4166 }
4167
4168 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4169 _mesa_glsl_error(loc, state,
4170 "the shared storage qualifiers can only be used with "
4171 "compute shaders");
4172 }
4173
4174 apply_image_qualifier_to_variable(qual, var, state, loc);
4175 }
4176
4177 /**
4178 * Get the variable that is being redeclared by this declaration or if it
4179 * does not exist, the current declared variable.
4180 *
4181 * Semantic checks to verify the validity of the redeclaration are also
4182 * performed. If semantic checks fail, compilation error will be emitted via
4183 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4184 *
4185 * \returns
4186 * A pointer to an existing variable in the current scope if the declaration
4187 * is a redeclaration, current variable otherwise. \c is_declared boolean
4188 * will return \c true if the declaration is a redeclaration, \c false
4189 * otherwise.
4190 */
4191 static ir_variable *
4192 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4193 struct _mesa_glsl_parse_state *state,
4194 bool allow_all_redeclarations,
4195 bool *is_redeclaration)
4196 {
4197 ir_variable *var = *var_ptr;
4198
4199 /* Check if this declaration is actually a re-declaration, either to
4200 * resize an array or add qualifiers to an existing variable.
4201 *
4202 * This is allowed for variables in the current scope, or when at
4203 * global scope (for built-ins in the implicit outer scope).
4204 */
4205 ir_variable *earlier = state->symbols->get_variable(var->name);
4206 if (earlier == NULL ||
4207 (state->current_function != NULL &&
4208 !state->symbols->name_declared_this_scope(var->name))) {
4209 *is_redeclaration = false;
4210 return var;
4211 }
4212
4213 *is_redeclaration = true;
4214
4215 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4216 *
4217 * "It is legal to declare an array without a size and then
4218 * later re-declare the same name as an array of the same
4219 * type and specify a size."
4220 */
4221 if (earlier->type->is_unsized_array() && var->type->is_array()
4222 && (var->type->fields.array == earlier->type->fields.array)) {
4223 /* FINISHME: This doesn't match the qualifiers on the two
4224 * FINISHME: declarations. It's not 100% clear whether this is
4225 * FINISHME: required or not.
4226 */
4227
4228 const int size = var->type->array_size();
4229 check_builtin_array_max_size(var->name, size, loc, state);
4230 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4231 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4232 "previous access",
4233 earlier->data.max_array_access);
4234 }
4235
4236 earlier->type = var->type;
4237 delete var;
4238 var = NULL;
4239 *var_ptr = NULL;
4240 } else if ((state->ARB_fragment_coord_conventions_enable ||
4241 state->is_version(150, 0))
4242 && strcmp(var->name, "gl_FragCoord") == 0
4243 && earlier->type == var->type
4244 && var->data.mode == ir_var_shader_in) {
4245 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4246 * qualifiers.
4247 */
4248 earlier->data.origin_upper_left = var->data.origin_upper_left;
4249 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4250
4251 /* According to section 4.3.7 of the GLSL 1.30 spec,
4252 * the following built-in varaibles can be redeclared with an
4253 * interpolation qualifier:
4254 * * gl_FrontColor
4255 * * gl_BackColor
4256 * * gl_FrontSecondaryColor
4257 * * gl_BackSecondaryColor
4258 * * gl_Color
4259 * * gl_SecondaryColor
4260 */
4261 } else if (state->is_version(130, 0)
4262 && (strcmp(var->name, "gl_FrontColor") == 0
4263 || strcmp(var->name, "gl_BackColor") == 0
4264 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4265 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4266 || strcmp(var->name, "gl_Color") == 0
4267 || strcmp(var->name, "gl_SecondaryColor") == 0)
4268 && earlier->type == var->type
4269 && earlier->data.mode == var->data.mode) {
4270 earlier->data.interpolation = var->data.interpolation;
4271
4272 /* Layout qualifiers for gl_FragDepth. */
4273 } else if ((state->is_version(420, 0) ||
4274 state->AMD_conservative_depth_enable ||
4275 state->ARB_conservative_depth_enable)
4276 && strcmp(var->name, "gl_FragDepth") == 0
4277 && earlier->type == var->type
4278 && earlier->data.mode == var->data.mode) {
4279
4280 /** From the AMD_conservative_depth spec:
4281 * Within any shader, the first redeclarations of gl_FragDepth
4282 * must appear before any use of gl_FragDepth.
4283 */
4284 if (earlier->data.used) {
4285 _mesa_glsl_error(&loc, state,
4286 "the first redeclaration of gl_FragDepth "
4287 "must appear before any use of gl_FragDepth");
4288 }
4289
4290 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4291 if (earlier->data.depth_layout != ir_depth_layout_none
4292 && earlier->data.depth_layout != var->data.depth_layout) {
4293 _mesa_glsl_error(&loc, state,
4294 "gl_FragDepth: depth layout is declared here "
4295 "as '%s, but it was previously declared as "
4296 "'%s'",
4297 depth_layout_string(var->data.depth_layout),
4298 depth_layout_string(earlier->data.depth_layout));
4299 }
4300
4301 earlier->data.depth_layout = var->data.depth_layout;
4302
4303 } else if (state->has_framebuffer_fetch() &&
4304 strcmp(var->name, "gl_LastFragData") == 0 &&
4305 var->type == earlier->type &&
4306 var->data.mode == ir_var_auto) {
4307 /* According to the EXT_shader_framebuffer_fetch spec:
4308 *
4309 * "By default, gl_LastFragData is declared with the mediump precision
4310 * qualifier. This can be changed by redeclaring the corresponding
4311 * variables with the desired precision qualifier."
4312 *
4313 * "Fragment shaders may specify the following layout qualifier only for
4314 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4315 */
4316 earlier->data.precision = var->data.precision;
4317 earlier->data.memory_coherent = var->data.memory_coherent;
4318
4319 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4320 state->allow_builtin_variable_redeclaration) {
4321 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4322 * valid, but some applications do it.
4323 */
4324 if (earlier->data.mode != var->data.mode &&
4325 !(earlier->data.mode == ir_var_system_value &&
4326 var->data.mode == ir_var_shader_in)) {
4327 _mesa_glsl_error(&loc, state,
4328 "redeclaration of `%s' with incorrect qualifiers",
4329 var->name);
4330 } else if (earlier->type != var->type) {
4331 _mesa_glsl_error(&loc, state,
4332 "redeclaration of `%s' has incorrect type",
4333 var->name);
4334 }
4335 } else if (allow_all_redeclarations) {
4336 if (earlier->data.mode != var->data.mode) {
4337 _mesa_glsl_error(&loc, state,
4338 "redeclaration of `%s' with incorrect qualifiers",
4339 var->name);
4340 } else if (earlier->type != var->type) {
4341 _mesa_glsl_error(&loc, state,
4342 "redeclaration of `%s' has incorrect type",
4343 var->name);
4344 }
4345 } else {
4346 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4347 }
4348
4349 return earlier;
4350 }
4351
4352 /**
4353 * Generate the IR for an initializer in a variable declaration
4354 */
4355 static ir_rvalue *
4356 process_initializer(ir_variable *var, ast_declaration *decl,
4357 ast_fully_specified_type *type,
4358 exec_list *initializer_instructions,
4359 struct _mesa_glsl_parse_state *state)
4360 {
4361 void *mem_ctx = state;
4362 ir_rvalue *result = NULL;
4363
4364 YYLTYPE initializer_loc = decl->initializer->get_location();
4365
4366 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4367 *
4368 * "All uniform variables are read-only and are initialized either
4369 * directly by an application via API commands, or indirectly by
4370 * OpenGL."
4371 */
4372 if (var->data.mode == ir_var_uniform) {
4373 state->check_version(120, 0, &initializer_loc,
4374 "cannot initialize uniform %s",
4375 var->name);
4376 }
4377
4378 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4379 *
4380 * "Buffer variables cannot have initializers."
4381 */
4382 if (var->data.mode == ir_var_shader_storage) {
4383 _mesa_glsl_error(&initializer_loc, state,
4384 "cannot initialize buffer variable %s",
4385 var->name);
4386 }
4387
4388 /* From section 4.1.7 of the GLSL 4.40 spec:
4389 *
4390 * "Opaque variables [...] are initialized only through the
4391 * OpenGL API; they cannot be declared with an initializer in a
4392 * shader."
4393 *
4394 * From section 4.1.7 of the ARB_bindless_texture spec:
4395 *
4396 * "Samplers may be declared as shader inputs and outputs, as uniform
4397 * variables, as temporary variables, and as function parameters."
4398 *
4399 * From section 4.1.X of the ARB_bindless_texture spec:
4400 *
4401 * "Images may be declared as shader inputs and outputs, as uniform
4402 * variables, as temporary variables, and as function parameters."
4403 */
4404 if (var->type->contains_atomic() ||
4405 (!state->has_bindless() && var->type->contains_opaque())) {
4406 _mesa_glsl_error(&initializer_loc, state,
4407 "cannot initialize %s variable %s",
4408 var->name, state->has_bindless() ? "atomic" : "opaque");
4409 }
4410
4411 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4412 _mesa_glsl_error(&initializer_loc, state,
4413 "cannot initialize %s shader input / %s %s",
4414 _mesa_shader_stage_to_string(state->stage),
4415 (state->stage == MESA_SHADER_VERTEX)
4416 ? "attribute" : "varying",
4417 var->name);
4418 }
4419
4420 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4421 _mesa_glsl_error(&initializer_loc, state,
4422 "cannot initialize %s shader output %s",
4423 _mesa_shader_stage_to_string(state->stage),
4424 var->name);
4425 }
4426
4427 /* If the initializer is an ast_aggregate_initializer, recursively store
4428 * type information from the LHS into it, so that its hir() function can do
4429 * type checking.
4430 */
4431 if (decl->initializer->oper == ast_aggregate)
4432 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4433
4434 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4435 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4436
4437 /* Calculate the constant value if this is a const or uniform
4438 * declaration.
4439 *
4440 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4441 *
4442 * "Declarations of globals without a storage qualifier, or with
4443 * just the const qualifier, may include initializers, in which case
4444 * they will be initialized before the first line of main() is
4445 * executed. Such initializers must be a constant expression."
4446 *
4447 * The same section of the GLSL ES 3.00.4 spec has similar language.
4448 */
4449 if (type->qualifier.flags.q.constant
4450 || type->qualifier.flags.q.uniform
4451 || (state->es_shader && state->current_function == NULL)) {
4452 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4453 lhs, rhs, true);
4454 if (new_rhs != NULL) {
4455 rhs = new_rhs;
4456
4457 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4458 * says:
4459 *
4460 * "A constant expression is one of
4461 *
4462 * ...
4463 *
4464 * - an expression formed by an operator on operands that are
4465 * all constant expressions, including getting an element of
4466 * a constant array, or a field of a constant structure, or
4467 * components of a constant vector. However, the sequence
4468 * operator ( , ) and the assignment operators ( =, +=, ...)
4469 * are not included in the operators that can create a
4470 * constant expression."
4471 *
4472 * Section 12.43 (Sequence operator and constant expressions) says:
4473 *
4474 * "Should the following construct be allowed?
4475 *
4476 * float a[2,3];
4477 *
4478 * The expression within the brackets uses the sequence operator
4479 * (',') and returns the integer 3 so the construct is declaring
4480 * a single-dimensional array of size 3. In some languages, the
4481 * construct declares a two-dimensional array. It would be
4482 * preferable to make this construct illegal to avoid confusion.
4483 *
4484 * One possibility is to change the definition of the sequence
4485 * operator so that it does not return a constant-expression and
4486 * hence cannot be used to declare an array size.
4487 *
4488 * RESOLUTION: The result of a sequence operator is not a
4489 * constant-expression."
4490 *
4491 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4492 * contains language almost identical to the section 4.3.3 in the
4493 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4494 * versions.
4495 */
4496 ir_constant *constant_value =
4497 rhs->constant_expression_value(mem_ctx);
4498
4499 if (!constant_value ||
4500 (state->is_version(430, 300) &&
4501 decl->initializer->has_sequence_subexpression())) {
4502 const char *const variable_mode =
4503 (type->qualifier.flags.q.constant)
4504 ? "const"
4505 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4506
4507 /* If ARB_shading_language_420pack is enabled, initializers of
4508 * const-qualified local variables do not have to be constant
4509 * expressions. Const-qualified global variables must still be
4510 * initialized with constant expressions.
4511 */
4512 if (!state->has_420pack()
4513 || state->current_function == NULL) {
4514 _mesa_glsl_error(& initializer_loc, state,
4515 "initializer of %s variable `%s' must be a "
4516 "constant expression",
4517 variable_mode,
4518 decl->identifier);
4519 if (var->type->is_numeric()) {
4520 /* Reduce cascading errors. */
4521 var->constant_value = type->qualifier.flags.q.constant
4522 ? ir_constant::zero(state, var->type) : NULL;
4523 }
4524 }
4525 } else {
4526 rhs = constant_value;
4527 var->constant_value = type->qualifier.flags.q.constant
4528 ? constant_value : NULL;
4529 }
4530 } else {
4531 if (var->type->is_numeric()) {
4532 /* Reduce cascading errors. */
4533 rhs = var->constant_value = type->qualifier.flags.q.constant
4534 ? ir_constant::zero(state, var->type) : NULL;
4535 }
4536 }
4537 }
4538
4539 if (rhs && !rhs->type->is_error()) {
4540 bool temp = var->data.read_only;
4541 if (type->qualifier.flags.q.constant)
4542 var->data.read_only = false;
4543
4544 /* Never emit code to initialize a uniform.
4545 */
4546 const glsl_type *initializer_type;
4547 if (!type->qualifier.flags.q.uniform) {
4548 do_assignment(initializer_instructions, state,
4549 NULL,
4550 lhs, rhs,
4551 &result, true,
4552 true,
4553 type->get_location());
4554 initializer_type = result->type;
4555 } else
4556 initializer_type = rhs->type;
4557
4558 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4559 var->data.has_initializer = true;
4560
4561 /* If the declared variable is an unsized array, it must inherrit
4562 * its full type from the initializer. A declaration such as
4563 *
4564 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4565 *
4566 * becomes
4567 *
4568 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4569 *
4570 * The assignment generated in the if-statement (below) will also
4571 * automatically handle this case for non-uniforms.
4572 *
4573 * If the declared variable is not an array, the types must
4574 * already match exactly. As a result, the type assignment
4575 * here can be done unconditionally. For non-uniforms the call
4576 * to do_assignment can change the type of the initializer (via
4577 * the implicit conversion rules). For uniforms the initializer
4578 * must be a constant expression, and the type of that expression
4579 * was validated above.
4580 */
4581 var->type = initializer_type;
4582
4583 var->data.read_only = temp;
4584 }
4585
4586 return result;
4587 }
4588
4589 static void
4590 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4591 YYLTYPE loc, ir_variable *var,
4592 unsigned num_vertices,
4593 unsigned *size,
4594 const char *var_category)
4595 {
4596 if (var->type->is_unsized_array()) {
4597 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4598 *
4599 * All geometry shader input unsized array declarations will be
4600 * sized by an earlier input layout qualifier, when present, as per
4601 * the following table.
4602 *
4603 * Followed by a table mapping each allowed input layout qualifier to
4604 * the corresponding input length.
4605 *
4606 * Similarly for tessellation control shader outputs.
4607 */
4608 if (num_vertices != 0)
4609 var->type = glsl_type::get_array_instance(var->type->fields.array,
4610 num_vertices);
4611 } else {
4612 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4613 * includes the following examples of compile-time errors:
4614 *
4615 * // code sequence within one shader...
4616 * in vec4 Color1[]; // size unknown
4617 * ...Color1.length()...// illegal, length() unknown
4618 * in vec4 Color2[2]; // size is 2
4619 * ...Color1.length()...// illegal, Color1 still has no size
4620 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4621 * layout(lines) in; // legal, input size is 2, matching
4622 * in vec4 Color4[3]; // illegal, contradicts layout
4623 * ...
4624 *
4625 * To detect the case illustrated by Color3, we verify that the size of
4626 * an explicitly-sized array matches the size of any previously declared
4627 * explicitly-sized array. To detect the case illustrated by Color4, we
4628 * verify that the size of an explicitly-sized array is consistent with
4629 * any previously declared input layout.
4630 */
4631 if (num_vertices != 0 && var->type->length != num_vertices) {
4632 _mesa_glsl_error(&loc, state,
4633 "%s size contradicts previously declared layout "
4634 "(size is %u, but layout requires a size of %u)",
4635 var_category, var->type->length, num_vertices);
4636 } else if (*size != 0 && var->type->length != *size) {
4637 _mesa_glsl_error(&loc, state,
4638 "%s sizes are inconsistent (size is %u, but a "
4639 "previous declaration has size %u)",
4640 var_category, var->type->length, *size);
4641 } else {
4642 *size = var->type->length;
4643 }
4644 }
4645 }
4646
4647 static void
4648 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4649 YYLTYPE loc, ir_variable *var)
4650 {
4651 unsigned num_vertices = 0;
4652
4653 if (state->tcs_output_vertices_specified) {
4654 if (!state->out_qualifier->vertices->
4655 process_qualifier_constant(state, "vertices",
4656 &num_vertices, false)) {
4657 return;
4658 }
4659
4660 if (num_vertices > state->Const.MaxPatchVertices) {
4661 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4662 "GL_MAX_PATCH_VERTICES", num_vertices);
4663 return;
4664 }
4665 }
4666
4667 if (!var->type->is_array() && !var->data.patch) {
4668 _mesa_glsl_error(&loc, state,
4669 "tessellation control shader outputs must be arrays");
4670
4671 /* To avoid cascading failures, short circuit the checks below. */
4672 return;
4673 }
4674
4675 if (var->data.patch)
4676 return;
4677
4678 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4679 &state->tcs_output_size,
4680 "tessellation control shader output");
4681 }
4682
4683 /**
4684 * Do additional processing necessary for tessellation control/evaluation shader
4685 * input declarations. This covers both interface block arrays and bare input
4686 * variables.
4687 */
4688 static void
4689 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4690 YYLTYPE loc, ir_variable *var)
4691 {
4692 if (!var->type->is_array() && !var->data.patch) {
4693 _mesa_glsl_error(&loc, state,
4694 "per-vertex tessellation shader inputs must be arrays");
4695 /* Avoid cascading failures. */
4696 return;
4697 }
4698
4699 if (var->data.patch)
4700 return;
4701
4702 /* The ARB_tessellation_shader spec says:
4703 *
4704 * "Declaring an array size is optional. If no size is specified, it
4705 * will be taken from the implementation-dependent maximum patch size
4706 * (gl_MaxPatchVertices). If a size is specified, it must match the
4707 * maximum patch size; otherwise, a compile or link error will occur."
4708 *
4709 * This text appears twice, once for TCS inputs, and again for TES inputs.
4710 */
4711 if (var->type->is_unsized_array()) {
4712 var->type = glsl_type::get_array_instance(var->type->fields.array,
4713 state->Const.MaxPatchVertices);
4714 } else if (var->type->length != state->Const.MaxPatchVertices) {
4715 _mesa_glsl_error(&loc, state,
4716 "per-vertex tessellation shader input arrays must be "
4717 "sized to gl_MaxPatchVertices (%d).",
4718 state->Const.MaxPatchVertices);
4719 }
4720 }
4721
4722
4723 /**
4724 * Do additional processing necessary for geometry shader input declarations
4725 * (this covers both interface blocks arrays and bare input variables).
4726 */
4727 static void
4728 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4729 YYLTYPE loc, ir_variable *var)
4730 {
4731 unsigned num_vertices = 0;
4732
4733 if (state->gs_input_prim_type_specified) {
4734 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4735 }
4736
4737 /* Geometry shader input variables must be arrays. Caller should have
4738 * reported an error for this.
4739 */
4740 if (!var->type->is_array()) {
4741 assert(state->error);
4742
4743 /* To avoid cascading failures, short circuit the checks below. */
4744 return;
4745 }
4746
4747 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4748 &state->gs_input_size,
4749 "geometry shader input");
4750 }
4751
4752 static void
4753 validate_identifier(const char *identifier, YYLTYPE loc,
4754 struct _mesa_glsl_parse_state *state)
4755 {
4756 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4757 *
4758 * "Identifiers starting with "gl_" are reserved for use by
4759 * OpenGL, and may not be declared in a shader as either a
4760 * variable or a function."
4761 */
4762 if (is_gl_identifier(identifier)) {
4763 _mesa_glsl_error(&loc, state,
4764 "identifier `%s' uses reserved `gl_' prefix",
4765 identifier);
4766 } else if (strstr(identifier, "__")) {
4767 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4768 * spec:
4769 *
4770 * "In addition, all identifiers containing two
4771 * consecutive underscores (__) are reserved as
4772 * possible future keywords."
4773 *
4774 * The intention is that names containing __ are reserved for internal
4775 * use by the implementation, and names prefixed with GL_ are reserved
4776 * for use by Khronos. Names simply containing __ are dangerous to use,
4777 * but should be allowed.
4778 *
4779 * A future version of the GLSL specification will clarify this.
4780 */
4781 _mesa_glsl_warning(&loc, state,
4782 "identifier `%s' uses reserved `__' string",
4783 identifier);
4784 }
4785 }
4786
4787 ir_rvalue *
4788 ast_declarator_list::hir(exec_list *instructions,
4789 struct _mesa_glsl_parse_state *state)
4790 {
4791 void *ctx = state;
4792 const struct glsl_type *decl_type;
4793 const char *type_name = NULL;
4794 ir_rvalue *result = NULL;
4795 YYLTYPE loc = this->get_location();
4796
4797 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4798 *
4799 * "To ensure that a particular output variable is invariant, it is
4800 * necessary to use the invariant qualifier. It can either be used to
4801 * qualify a previously declared variable as being invariant
4802 *
4803 * invariant gl_Position; // make existing gl_Position be invariant"
4804 *
4805 * In these cases the parser will set the 'invariant' flag in the declarator
4806 * list, and the type will be NULL.
4807 */
4808 if (this->invariant) {
4809 assert(this->type == NULL);
4810
4811 if (state->current_function != NULL) {
4812 _mesa_glsl_error(& loc, state,
4813 "all uses of `invariant' keyword must be at global "
4814 "scope");
4815 }
4816
4817 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4818 assert(decl->array_specifier == NULL);
4819 assert(decl->initializer == NULL);
4820
4821 ir_variable *const earlier =
4822 state->symbols->get_variable(decl->identifier);
4823 if (earlier == NULL) {
4824 _mesa_glsl_error(& loc, state,
4825 "undeclared variable `%s' cannot be marked "
4826 "invariant", decl->identifier);
4827 } else if (!is_allowed_invariant(earlier, state)) {
4828 _mesa_glsl_error(&loc, state,
4829 "`%s' cannot be marked invariant; interfaces between "
4830 "shader stages only.", decl->identifier);
4831 } else if (earlier->data.used) {
4832 _mesa_glsl_error(& loc, state,
4833 "variable `%s' may not be redeclared "
4834 "`invariant' after being used",
4835 earlier->name);
4836 } else {
4837 earlier->data.invariant = true;
4838 }
4839 }
4840
4841 /* Invariant redeclarations do not have r-values.
4842 */
4843 return NULL;
4844 }
4845
4846 if (this->precise) {
4847 assert(this->type == NULL);
4848
4849 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4850 assert(decl->array_specifier == NULL);
4851 assert(decl->initializer == NULL);
4852
4853 ir_variable *const earlier =
4854 state->symbols->get_variable(decl->identifier);
4855 if (earlier == NULL) {
4856 _mesa_glsl_error(& loc, state,
4857 "undeclared variable `%s' cannot be marked "
4858 "precise", decl->identifier);
4859 } else if (state->current_function != NULL &&
4860 !state->symbols->name_declared_this_scope(decl->identifier)) {
4861 /* Note: we have to check if we're in a function, since
4862 * builtins are treated as having come from another scope.
4863 */
4864 _mesa_glsl_error(& loc, state,
4865 "variable `%s' from an outer scope may not be "
4866 "redeclared `precise' in this scope",
4867 earlier->name);
4868 } else if (earlier->data.used) {
4869 _mesa_glsl_error(& loc, state,
4870 "variable `%s' may not be redeclared "
4871 "`precise' after being used",
4872 earlier->name);
4873 } else {
4874 earlier->data.precise = true;
4875 }
4876 }
4877
4878 /* Precise redeclarations do not have r-values either. */
4879 return NULL;
4880 }
4881
4882 assert(this->type != NULL);
4883 assert(!this->invariant);
4884 assert(!this->precise);
4885
4886 /* The type specifier may contain a structure definition. Process that
4887 * before any of the variable declarations.
4888 */
4889 (void) this->type->specifier->hir(instructions, state);
4890
4891 decl_type = this->type->glsl_type(& type_name, state);
4892
4893 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4894 * "Buffer variables may only be declared inside interface blocks
4895 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4896 * shader storage blocks. It is a compile-time error to declare buffer
4897 * variables at global scope (outside a block)."
4898 */
4899 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4900 _mesa_glsl_error(&loc, state,
4901 "buffer variables cannot be declared outside "
4902 "interface blocks");
4903 }
4904
4905 /* An offset-qualified atomic counter declaration sets the default
4906 * offset for the next declaration within the same atomic counter
4907 * buffer.
4908 */
4909 if (decl_type && decl_type->contains_atomic()) {
4910 if (type->qualifier.flags.q.explicit_binding &&
4911 type->qualifier.flags.q.explicit_offset) {
4912 unsigned qual_binding;
4913 unsigned qual_offset;
4914 if (process_qualifier_constant(state, &loc, "binding",
4915 type->qualifier.binding,
4916 &qual_binding)
4917 && process_qualifier_constant(state, &loc, "offset",
4918 type->qualifier.offset,
4919 &qual_offset)) {
4920 state->atomic_counter_offsets[qual_binding] = qual_offset;
4921 }
4922 }
4923
4924 ast_type_qualifier allowed_atomic_qual_mask;
4925 allowed_atomic_qual_mask.flags.i = 0;
4926 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4927 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4928 allowed_atomic_qual_mask.flags.q.uniform = 1;
4929
4930 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4931 "invalid layout qualifier for",
4932 "atomic_uint");
4933 }
4934
4935 if (this->declarations.is_empty()) {
4936 /* If there is no structure involved in the program text, there are two
4937 * possible scenarios:
4938 *
4939 * - The program text contained something like 'vec4;'. This is an
4940 * empty declaration. It is valid but weird. Emit a warning.
4941 *
4942 * - The program text contained something like 'S;' and 'S' is not the
4943 * name of a known structure type. This is both invalid and weird.
4944 * Emit an error.
4945 *
4946 * - The program text contained something like 'mediump float;'
4947 * when the programmer probably meant 'precision mediump
4948 * float;' Emit a warning with a description of what they
4949 * probably meant to do.
4950 *
4951 * Note that if decl_type is NULL and there is a structure involved,
4952 * there must have been some sort of error with the structure. In this
4953 * case we assume that an error was already generated on this line of
4954 * code for the structure. There is no need to generate an additional,
4955 * confusing error.
4956 */
4957 assert(this->type->specifier->structure == NULL || decl_type != NULL
4958 || state->error);
4959
4960 if (decl_type == NULL) {
4961 _mesa_glsl_error(&loc, state,
4962 "invalid type `%s' in empty declaration",
4963 type_name);
4964 } else {
4965 if (decl_type->is_array()) {
4966 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4967 * spec:
4968 *
4969 * "... any declaration that leaves the size undefined is
4970 * disallowed as this would add complexity and there are no
4971 * use-cases."
4972 */
4973 if (state->es_shader && decl_type->is_unsized_array()) {
4974 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4975 "or implicitly defined");
4976 }
4977
4978 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4979 *
4980 * "The combinations of types and qualifiers that cause
4981 * compile-time or link-time errors are the same whether or not
4982 * the declaration is empty."
4983 */
4984 validate_array_dimensions(decl_type, state, &loc);
4985 }
4986
4987 if (decl_type->is_atomic_uint()) {
4988 /* Empty atomic counter declarations are allowed and useful
4989 * to set the default offset qualifier.
4990 */
4991 return NULL;
4992 } else if (this->type->qualifier.precision != ast_precision_none) {
4993 if (this->type->specifier->structure != NULL) {
4994 _mesa_glsl_error(&loc, state,
4995 "precision qualifiers can't be applied "
4996 "to structures");
4997 } else {
4998 static const char *const precision_names[] = {
4999 "highp",
5000 "highp",
5001 "mediump",
5002 "lowp"
5003 };
5004
5005 _mesa_glsl_warning(&loc, state,
5006 "empty declaration with precision "
5007 "qualifier, to set the default precision, "
5008 "use `precision %s %s;'",
5009 precision_names[this->type->
5010 qualifier.precision],
5011 type_name);
5012 }
5013 } else if (this->type->specifier->structure == NULL) {
5014 _mesa_glsl_warning(&loc, state, "empty declaration");
5015 }
5016 }
5017 }
5018
5019 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5020 const struct glsl_type *var_type;
5021 ir_variable *var;
5022 const char *identifier = decl->identifier;
5023 /* FINISHME: Emit a warning if a variable declaration shadows a
5024 * FINISHME: declaration at a higher scope.
5025 */
5026
5027 if ((decl_type == NULL) || decl_type->is_void()) {
5028 if (type_name != NULL) {
5029 _mesa_glsl_error(& loc, state,
5030 "invalid type `%s' in declaration of `%s'",
5031 type_name, decl->identifier);
5032 } else {
5033 _mesa_glsl_error(& loc, state,
5034 "invalid type in declaration of `%s'",
5035 decl->identifier);
5036 }
5037 continue;
5038 }
5039
5040 if (this->type->qualifier.is_subroutine_decl()) {
5041 const glsl_type *t;
5042 const char *name;
5043
5044 t = state->symbols->get_type(this->type->specifier->type_name);
5045 if (!t)
5046 _mesa_glsl_error(& loc, state,
5047 "invalid type in declaration of `%s'",
5048 decl->identifier);
5049 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5050
5051 identifier = name;
5052
5053 }
5054 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5055 state);
5056
5057 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5058
5059 /* The 'varying in' and 'varying out' qualifiers can only be used with
5060 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5061 * yet.
5062 */
5063 if (this->type->qualifier.flags.q.varying) {
5064 if (this->type->qualifier.flags.q.in) {
5065 _mesa_glsl_error(& loc, state,
5066 "`varying in' qualifier in declaration of "
5067 "`%s' only valid for geometry shaders using "
5068 "ARB_geometry_shader4 or EXT_geometry_shader4",
5069 decl->identifier);
5070 } else if (this->type->qualifier.flags.q.out) {
5071 _mesa_glsl_error(& loc, state,
5072 "`varying out' qualifier in declaration of "
5073 "`%s' only valid for geometry shaders using "
5074 "ARB_geometry_shader4 or EXT_geometry_shader4",
5075 decl->identifier);
5076 }
5077 }
5078
5079 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5080 *
5081 * "Global variables can only use the qualifiers const,
5082 * attribute, uniform, or varying. Only one may be
5083 * specified.
5084 *
5085 * Local variables can only use the qualifier const."
5086 *
5087 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5088 * any extension that adds the 'layout' keyword.
5089 */
5090 if (!state->is_version(130, 300)
5091 && !state->has_explicit_attrib_location()
5092 && !state->has_separate_shader_objects()
5093 && !state->ARB_fragment_coord_conventions_enable) {
5094 if (this->type->qualifier.flags.q.out) {
5095 _mesa_glsl_error(& loc, state,
5096 "`out' qualifier in declaration of `%s' "
5097 "only valid for function parameters in %s",
5098 decl->identifier, state->get_version_string());
5099 }
5100 if (this->type->qualifier.flags.q.in) {
5101 _mesa_glsl_error(& loc, state,
5102 "`in' qualifier in declaration of `%s' "
5103 "only valid for function parameters in %s",
5104 decl->identifier, state->get_version_string());
5105 }
5106 /* FINISHME: Test for other invalid qualifiers. */
5107 }
5108
5109 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5110 & loc, false);
5111 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5112 &loc);
5113
5114 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5115 && (var->type->is_numeric() || var->type->is_boolean())
5116 && state->zero_init) {
5117 const ir_constant_data data = { { 0 } };
5118 var->data.has_initializer = true;
5119 var->constant_initializer = new(var) ir_constant(var->type, &data);
5120 }
5121
5122 if (this->type->qualifier.flags.q.invariant) {
5123 if (!is_allowed_invariant(var, state)) {
5124 _mesa_glsl_error(&loc, state,
5125 "`%s' cannot be marked invariant; interfaces between "
5126 "shader stages only", var->name);
5127 }
5128 }
5129
5130 if (state->current_function != NULL) {
5131 const char *mode = NULL;
5132 const char *extra = "";
5133
5134 /* There is no need to check for 'inout' here because the parser will
5135 * only allow that in function parameter lists.
5136 */
5137 if (this->type->qualifier.flags.q.attribute) {
5138 mode = "attribute";
5139 } else if (this->type->qualifier.is_subroutine_decl()) {
5140 mode = "subroutine uniform";
5141 } else if (this->type->qualifier.flags.q.uniform) {
5142 mode = "uniform";
5143 } else if (this->type->qualifier.flags.q.varying) {
5144 mode = "varying";
5145 } else if (this->type->qualifier.flags.q.in) {
5146 mode = "in";
5147 extra = " or in function parameter list";
5148 } else if (this->type->qualifier.flags.q.out) {
5149 mode = "out";
5150 extra = " or in function parameter list";
5151 }
5152
5153 if (mode) {
5154 _mesa_glsl_error(& loc, state,
5155 "%s variable `%s' must be declared at "
5156 "global scope%s",
5157 mode, var->name, extra);
5158 }
5159 } else if (var->data.mode == ir_var_shader_in) {
5160 var->data.read_only = true;
5161
5162 if (state->stage == MESA_SHADER_VERTEX) {
5163 bool error_emitted = false;
5164
5165 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5166 *
5167 * "Vertex shader inputs can only be float, floating-point
5168 * vectors, matrices, signed and unsigned integers and integer
5169 * vectors. Vertex shader inputs can also form arrays of these
5170 * types, but not structures."
5171 *
5172 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5173 *
5174 * "Vertex shader inputs can only be float, floating-point
5175 * vectors, matrices, signed and unsigned integers and integer
5176 * vectors. They cannot be arrays or structures."
5177 *
5178 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5179 *
5180 * "The attribute qualifier can be used only with float,
5181 * floating-point vectors, and matrices. Attribute variables
5182 * cannot be declared as arrays or structures."
5183 *
5184 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5185 *
5186 * "Vertex shader inputs can only be float, floating-point
5187 * vectors, matrices, signed and unsigned integers and integer
5188 * vectors. Vertex shader inputs cannot be arrays or
5189 * structures."
5190 *
5191 * From section 4.3.4 of the ARB_bindless_texture spec:
5192 *
5193 * "(modify third paragraph of the section to allow sampler and
5194 * image types) ... Vertex shader inputs can only be float,
5195 * single-precision floating-point scalars, single-precision
5196 * floating-point vectors, matrices, signed and unsigned
5197 * integers and integer vectors, sampler and image types."
5198 */
5199 const glsl_type *check_type = var->type->without_array();
5200
5201 switch (check_type->base_type) {
5202 case GLSL_TYPE_FLOAT:
5203 break;
5204 case GLSL_TYPE_UINT64:
5205 case GLSL_TYPE_INT64:
5206 break;
5207 case GLSL_TYPE_UINT:
5208 case GLSL_TYPE_INT:
5209 if (state->is_version(120, 300))
5210 break;
5211 case GLSL_TYPE_DOUBLE:
5212 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5213 break;
5214 case GLSL_TYPE_SAMPLER:
5215 if (check_type->is_sampler() && state->has_bindless())
5216 break;
5217 case GLSL_TYPE_IMAGE:
5218 if (check_type->is_image() && state->has_bindless())
5219 break;
5220 /* FALLTHROUGH */
5221 default:
5222 _mesa_glsl_error(& loc, state,
5223 "vertex shader input / attribute cannot have "
5224 "type %s`%s'",
5225 var->type->is_array() ? "array of " : "",
5226 check_type->name);
5227 error_emitted = true;
5228 }
5229
5230 if (!error_emitted && var->type->is_array() &&
5231 !state->check_version(150, 0, &loc,
5232 "vertex shader input / attribute "
5233 "cannot have array type")) {
5234 error_emitted = true;
5235 }
5236 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5237 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5238 *
5239 * Geometry shader input variables get the per-vertex values
5240 * written out by vertex shader output variables of the same
5241 * names. Since a geometry shader operates on a set of
5242 * vertices, each input varying variable (or input block, see
5243 * interface blocks below) needs to be declared as an array.
5244 */
5245 if (!var->type->is_array()) {
5246 _mesa_glsl_error(&loc, state,
5247 "geometry shader inputs must be arrays");
5248 }
5249
5250 handle_geometry_shader_input_decl(state, loc, var);
5251 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5252 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5253 *
5254 * It is a compile-time error to declare a fragment shader
5255 * input with, or that contains, any of the following types:
5256 *
5257 * * A boolean type
5258 * * An opaque type
5259 * * An array of arrays
5260 * * An array of structures
5261 * * A structure containing an array
5262 * * A structure containing a structure
5263 */
5264 if (state->es_shader) {
5265 const glsl_type *check_type = var->type->without_array();
5266 if (check_type->is_boolean() ||
5267 check_type->contains_opaque()) {
5268 _mesa_glsl_error(&loc, state,
5269 "fragment shader input cannot have type %s",
5270 check_type->name);
5271 }
5272 if (var->type->is_array() &&
5273 var->type->fields.array->is_array()) {
5274 _mesa_glsl_error(&loc, state,
5275 "%s shader output "
5276 "cannot have an array of arrays",
5277 _mesa_shader_stage_to_string(state->stage));
5278 }
5279 if (var->type->is_array() &&
5280 var->type->fields.array->is_record()) {
5281 _mesa_glsl_error(&loc, state,
5282 "fragment shader input "
5283 "cannot have an array of structs");
5284 }
5285 if (var->type->is_record()) {
5286 for (unsigned i = 0; i < var->type->length; i++) {
5287 if (var->type->fields.structure[i].type->is_array() ||
5288 var->type->fields.structure[i].type->is_record())
5289 _mesa_glsl_error(&loc, state,
5290 "fragment shader input cannot have "
5291 "a struct that contains an "
5292 "array or struct");
5293 }
5294 }
5295 }
5296 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5297 state->stage == MESA_SHADER_TESS_EVAL) {
5298 handle_tess_shader_input_decl(state, loc, var);
5299 }
5300 } else if (var->data.mode == ir_var_shader_out) {
5301 const glsl_type *check_type = var->type->without_array();
5302
5303 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5304 *
5305 * It is a compile-time error to declare a fragment shader output
5306 * that contains any of the following:
5307 *
5308 * * A Boolean type (bool, bvec2 ...)
5309 * * A double-precision scalar or vector (double, dvec2 ...)
5310 * * An opaque type
5311 * * Any matrix type
5312 * * A structure
5313 */
5314 if (state->stage == MESA_SHADER_FRAGMENT) {
5315 if (check_type->is_record() || check_type->is_matrix())
5316 _mesa_glsl_error(&loc, state,
5317 "fragment shader output "
5318 "cannot have struct or matrix type");
5319 switch (check_type->base_type) {
5320 case GLSL_TYPE_UINT:
5321 case GLSL_TYPE_INT:
5322 case GLSL_TYPE_FLOAT:
5323 break;
5324 default:
5325 _mesa_glsl_error(&loc, state,
5326 "fragment shader output cannot have "
5327 "type %s", check_type->name);
5328 }
5329 }
5330
5331 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5332 *
5333 * It is a compile-time error to declare a vertex shader output
5334 * with, or that contains, any of the following types:
5335 *
5336 * * A boolean type
5337 * * An opaque type
5338 * * An array of arrays
5339 * * An array of structures
5340 * * A structure containing an array
5341 * * A structure containing a structure
5342 *
5343 * It is a compile-time error to declare a fragment shader output
5344 * with, or that contains, any of the following types:
5345 *
5346 * * A boolean type
5347 * * An opaque type
5348 * * A matrix
5349 * * A structure
5350 * * An array of array
5351 *
5352 * ES 3.20 updates this to apply to tessellation and geometry shaders
5353 * as well. Because there are per-vertex arrays in the new stages,
5354 * it strikes the "array of..." rules and replaces them with these:
5355 *
5356 * * For per-vertex-arrayed variables (applies to tessellation
5357 * control, tessellation evaluation and geometry shaders):
5358 *
5359 * * Per-vertex-arrayed arrays of arrays
5360 * * Per-vertex-arrayed arrays of structures
5361 *
5362 * * For non-per-vertex-arrayed variables:
5363 *
5364 * * An array of arrays
5365 * * An array of structures
5366 *
5367 * which basically says to unwrap the per-vertex aspect and apply
5368 * the old rules.
5369 */
5370 if (state->es_shader) {
5371 if (var->type->is_array() &&
5372 var->type->fields.array->is_array()) {
5373 _mesa_glsl_error(&loc, state,
5374 "%s shader output "
5375 "cannot have an array of arrays",
5376 _mesa_shader_stage_to_string(state->stage));
5377 }
5378 if (state->stage <= MESA_SHADER_GEOMETRY) {
5379 const glsl_type *type = var->type;
5380
5381 if (state->stage == MESA_SHADER_TESS_CTRL &&
5382 !var->data.patch && var->type->is_array()) {
5383 type = var->type->fields.array;
5384 }
5385
5386 if (type->is_array() && type->fields.array->is_record()) {
5387 _mesa_glsl_error(&loc, state,
5388 "%s shader output cannot have "
5389 "an array of structs",
5390 _mesa_shader_stage_to_string(state->stage));
5391 }
5392 if (type->is_record()) {
5393 for (unsigned i = 0; i < type->length; i++) {
5394 if (type->fields.structure[i].type->is_array() ||
5395 type->fields.structure[i].type->is_record())
5396 _mesa_glsl_error(&loc, state,
5397 "%s shader output cannot have a "
5398 "struct that contains an "
5399 "array or struct",
5400 _mesa_shader_stage_to_string(state->stage));
5401 }
5402 }
5403 }
5404 }
5405
5406 if (state->stage == MESA_SHADER_TESS_CTRL) {
5407 handle_tess_ctrl_shader_output_decl(state, loc, var);
5408 }
5409 } else if (var->type->contains_subroutine()) {
5410 /* declare subroutine uniforms as hidden */
5411 var->data.how_declared = ir_var_hidden;
5412 }
5413
5414 /* From section 4.3.4 of the GLSL 4.00 spec:
5415 * "Input variables may not be declared using the patch in qualifier
5416 * in tessellation control or geometry shaders."
5417 *
5418 * From section 4.3.6 of the GLSL 4.00 spec:
5419 * "It is an error to use patch out in a vertex, tessellation
5420 * evaluation, or geometry shader."
5421 *
5422 * This doesn't explicitly forbid using them in a fragment shader, but
5423 * that's probably just an oversight.
5424 */
5425 if (state->stage != MESA_SHADER_TESS_EVAL
5426 && this->type->qualifier.flags.q.patch
5427 && this->type->qualifier.flags.q.in) {
5428
5429 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5430 "tessellation evaluation shader");
5431 }
5432
5433 if (state->stage != MESA_SHADER_TESS_CTRL
5434 && this->type->qualifier.flags.q.patch
5435 && this->type->qualifier.flags.q.out) {
5436
5437 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5438 "tessellation control shader");
5439 }
5440
5441 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5442 */
5443 if (this->type->qualifier.precision != ast_precision_none) {
5444 state->check_precision_qualifiers_allowed(&loc);
5445 }
5446
5447 if (this->type->qualifier.precision != ast_precision_none &&
5448 !precision_qualifier_allowed(var->type)) {
5449 _mesa_glsl_error(&loc, state,
5450 "precision qualifiers apply only to floating point"
5451 ", integer and opaque types");
5452 }
5453
5454 /* From section 4.1.7 of the GLSL 4.40 spec:
5455 *
5456 * "[Opaque types] can only be declared as function
5457 * parameters or uniform-qualified variables."
5458 *
5459 * From section 4.1.7 of the ARB_bindless_texture spec:
5460 *
5461 * "Samplers may be declared as shader inputs and outputs, as uniform
5462 * variables, as temporary variables, and as function parameters."
5463 *
5464 * From section 4.1.X of the ARB_bindless_texture spec:
5465 *
5466 * "Images may be declared as shader inputs and outputs, as uniform
5467 * variables, as temporary variables, and as function parameters."
5468 */
5469 if (!this->type->qualifier.flags.q.uniform &&
5470 (var_type->contains_atomic() ||
5471 (!state->has_bindless() && var_type->contains_opaque()))) {
5472 _mesa_glsl_error(&loc, state,
5473 "%s variables must be declared uniform",
5474 state->has_bindless() ? "atomic" : "opaque");
5475 }
5476
5477 /* Process the initializer and add its instructions to a temporary
5478 * list. This list will be added to the instruction stream (below) after
5479 * the declaration is added. This is done because in some cases (such as
5480 * redeclarations) the declaration may not actually be added to the
5481 * instruction stream.
5482 */
5483 exec_list initializer_instructions;
5484
5485 /* Examine var name here since var may get deleted in the next call */
5486 bool var_is_gl_id = is_gl_identifier(var->name);
5487
5488 bool is_redeclaration;
5489 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5490 false /* allow_all_redeclarations */,
5491 &is_redeclaration);
5492 if (is_redeclaration) {
5493 if (var_is_gl_id &&
5494 var->data.how_declared == ir_var_declared_in_block) {
5495 _mesa_glsl_error(&loc, state,
5496 "`%s' has already been redeclared using "
5497 "gl_PerVertex", var->name);
5498 }
5499 var->data.how_declared = ir_var_declared_normally;
5500 }
5501
5502 if (decl->initializer != NULL) {
5503 result = process_initializer(var,
5504 decl, this->type,
5505 &initializer_instructions, state);
5506 } else {
5507 validate_array_dimensions(var_type, state, &loc);
5508 }
5509
5510 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5511 *
5512 * "It is an error to write to a const variable outside of
5513 * its declaration, so they must be initialized when
5514 * declared."
5515 */
5516 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5517 _mesa_glsl_error(& loc, state,
5518 "const declaration of `%s' must be initialized",
5519 decl->identifier);
5520 }
5521
5522 if (state->es_shader) {
5523 const glsl_type *const t = var->type;
5524
5525 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5526 *
5527 * The GL_OES_tessellation_shader spec says about inputs:
5528 *
5529 * "Declaring an array size is optional. If no size is specified,
5530 * it will be taken from the implementation-dependent maximum
5531 * patch size (gl_MaxPatchVertices)."
5532 *
5533 * and about TCS outputs:
5534 *
5535 * "If no size is specified, it will be taken from output patch
5536 * size declared in the shader."
5537 *
5538 * The GL_OES_geometry_shader spec says:
5539 *
5540 * "All geometry shader input unsized array declarations will be
5541 * sized by an earlier input primitive layout qualifier, when
5542 * present, as per the following table."
5543 */
5544 const bool implicitly_sized =
5545 (var->data.mode == ir_var_shader_in &&
5546 state->stage >= MESA_SHADER_TESS_CTRL &&
5547 state->stage <= MESA_SHADER_GEOMETRY) ||
5548 (var->data.mode == ir_var_shader_out &&
5549 state->stage == MESA_SHADER_TESS_CTRL);
5550
5551 if (t->is_unsized_array() && !implicitly_sized)
5552 /* Section 10.17 of the GLSL ES 1.00 specification states that
5553 * unsized array declarations have been removed from the language.
5554 * Arrays that are sized using an initializer are still explicitly
5555 * sized. However, GLSL ES 1.00 does not allow array
5556 * initializers. That is only allowed in GLSL ES 3.00.
5557 *
5558 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5559 *
5560 * "An array type can also be formed without specifying a size
5561 * if the definition includes an initializer:
5562 *
5563 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5564 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5565 *
5566 * float a[5];
5567 * float b[] = a;"
5568 */
5569 _mesa_glsl_error(& loc, state,
5570 "unsized array declarations are not allowed in "
5571 "GLSL ES");
5572 }
5573
5574 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5575 *
5576 * "It is a compile-time error to declare an unsized array of
5577 * atomic_uint"
5578 */
5579 if (var->type->is_unsized_array() &&
5580 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5581 _mesa_glsl_error(& loc, state,
5582 "Unsized array of atomic_uint is not allowed");
5583 }
5584
5585 /* If the declaration is not a redeclaration, there are a few additional
5586 * semantic checks that must be applied. In addition, variable that was
5587 * created for the declaration should be added to the IR stream.
5588 */
5589 if (!is_redeclaration) {
5590 validate_identifier(decl->identifier, loc, state);
5591
5592 /* Add the variable to the symbol table. Note that the initializer's
5593 * IR was already processed earlier (though it hasn't been emitted
5594 * yet), without the variable in scope.
5595 *
5596 * This differs from most C-like languages, but it follows the GLSL
5597 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5598 * spec:
5599 *
5600 * "Within a declaration, the scope of a name starts immediately
5601 * after the initializer if present or immediately after the name
5602 * being declared if not."
5603 */
5604 if (!state->symbols->add_variable(var)) {
5605 YYLTYPE loc = this->get_location();
5606 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5607 "current scope", decl->identifier);
5608 continue;
5609 }
5610
5611 /* Push the variable declaration to the top. It means that all the
5612 * variable declarations will appear in a funny last-to-first order,
5613 * but otherwise we run into trouble if a function is prototyped, a
5614 * global var is decled, then the function is defined with usage of
5615 * the global var. See glslparsertest's CorrectModule.frag.
5616 */
5617 instructions->push_head(var);
5618 }
5619
5620 instructions->append_list(&initializer_instructions);
5621 }
5622
5623
5624 /* Generally, variable declarations do not have r-values. However,
5625 * one is used for the declaration in
5626 *
5627 * while (bool b = some_condition()) {
5628 * ...
5629 * }
5630 *
5631 * so we return the rvalue from the last seen declaration here.
5632 */
5633 return result;
5634 }
5635
5636
5637 ir_rvalue *
5638 ast_parameter_declarator::hir(exec_list *instructions,
5639 struct _mesa_glsl_parse_state *state)
5640 {
5641 void *ctx = state;
5642 const struct glsl_type *type;
5643 const char *name = NULL;
5644 YYLTYPE loc = this->get_location();
5645
5646 type = this->type->glsl_type(& name, state);
5647
5648 if (type == NULL) {
5649 if (name != NULL) {
5650 _mesa_glsl_error(& loc, state,
5651 "invalid type `%s' in declaration of `%s'",
5652 name, this->identifier);
5653 } else {
5654 _mesa_glsl_error(& loc, state,
5655 "invalid type in declaration of `%s'",
5656 this->identifier);
5657 }
5658
5659 type = glsl_type::error_type;
5660 }
5661
5662 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5663 *
5664 * "Functions that accept no input arguments need not use void in the
5665 * argument list because prototypes (or definitions) are required and
5666 * therefore there is no ambiguity when an empty argument list "( )" is
5667 * declared. The idiom "(void)" as a parameter list is provided for
5668 * convenience."
5669 *
5670 * Placing this check here prevents a void parameter being set up
5671 * for a function, which avoids tripping up checks for main taking
5672 * parameters and lookups of an unnamed symbol.
5673 */
5674 if (type->is_void()) {
5675 if (this->identifier != NULL)
5676 _mesa_glsl_error(& loc, state,
5677 "named parameter cannot have type `void'");
5678
5679 is_void = true;
5680 return NULL;
5681 }
5682
5683 if (formal_parameter && (this->identifier == NULL)) {
5684 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5685 return NULL;
5686 }
5687
5688 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5689 * call already handled the "vec4[..] foo" case.
5690 */
5691 type = process_array_type(&loc, type, this->array_specifier, state);
5692
5693 if (!type->is_error() && type->is_unsized_array()) {
5694 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5695 "a declared size");
5696 type = glsl_type::error_type;
5697 }
5698
5699 is_void = false;
5700 ir_variable *var = new(ctx)
5701 ir_variable(type, this->identifier, ir_var_function_in);
5702
5703 /* Apply any specified qualifiers to the parameter declaration. Note that
5704 * for function parameters the default mode is 'in'.
5705 */
5706 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5707 true);
5708
5709 /* From section 4.1.7 of the GLSL 4.40 spec:
5710 *
5711 * "Opaque variables cannot be treated as l-values; hence cannot
5712 * be used as out or inout function parameters, nor can they be
5713 * assigned into."
5714 *
5715 * From section 4.1.7 of the ARB_bindless_texture spec:
5716 *
5717 * "Samplers can be used as l-values, so can be assigned into and used
5718 * as "out" and "inout" function parameters."
5719 *
5720 * From section 4.1.X of the ARB_bindless_texture spec:
5721 *
5722 * "Images can be used as l-values, so can be assigned into and used as
5723 * "out" and "inout" function parameters."
5724 */
5725 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5726 && (type->contains_atomic() ||
5727 (!state->has_bindless() && type->contains_opaque()))) {
5728 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5729 "contain %s variables",
5730 state->has_bindless() ? "atomic" : "opaque");
5731 type = glsl_type::error_type;
5732 }
5733
5734 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5735 *
5736 * "When calling a function, expressions that do not evaluate to
5737 * l-values cannot be passed to parameters declared as out or inout."
5738 *
5739 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5740 *
5741 * "Other binary or unary expressions, non-dereferenced arrays,
5742 * function names, swizzles with repeated fields, and constants
5743 * cannot be l-values."
5744 *
5745 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5746 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5747 */
5748 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5749 && type->is_array()
5750 && !state->check_version(120, 100, &loc,
5751 "arrays cannot be out or inout parameters")) {
5752 type = glsl_type::error_type;
5753 }
5754
5755 instructions->push_tail(var);
5756
5757 /* Parameter declarations do not have r-values.
5758 */
5759 return NULL;
5760 }
5761
5762
5763 void
5764 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5765 bool formal,
5766 exec_list *ir_parameters,
5767 _mesa_glsl_parse_state *state)
5768 {
5769 ast_parameter_declarator *void_param = NULL;
5770 unsigned count = 0;
5771
5772 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5773 param->formal_parameter = formal;
5774 param->hir(ir_parameters, state);
5775
5776 if (param->is_void)
5777 void_param = param;
5778
5779 count++;
5780 }
5781
5782 if ((void_param != NULL) && (count > 1)) {
5783 YYLTYPE loc = void_param->get_location();
5784
5785 _mesa_glsl_error(& loc, state,
5786 "`void' parameter must be only parameter");
5787 }
5788 }
5789
5790
5791 void
5792 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5793 {
5794 /* IR invariants disallow function declarations or definitions
5795 * nested within other function definitions. But there is no
5796 * requirement about the relative order of function declarations
5797 * and definitions with respect to one another. So simply insert
5798 * the new ir_function block at the end of the toplevel instruction
5799 * list.
5800 */
5801 state->toplevel_ir->push_tail(f);
5802 }
5803
5804
5805 ir_rvalue *
5806 ast_function::hir(exec_list *instructions,
5807 struct _mesa_glsl_parse_state *state)
5808 {
5809 void *ctx = state;
5810 ir_function *f = NULL;
5811 ir_function_signature *sig = NULL;
5812 exec_list hir_parameters;
5813 YYLTYPE loc = this->get_location();
5814
5815 const char *const name = identifier;
5816
5817 /* New functions are always added to the top-level IR instruction stream,
5818 * so this instruction list pointer is ignored. See also emit_function
5819 * (called below).
5820 */
5821 (void) instructions;
5822
5823 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5824 *
5825 * "Function declarations (prototypes) cannot occur inside of functions;
5826 * they must be at global scope, or for the built-in functions, outside
5827 * the global scope."
5828 *
5829 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5830 *
5831 * "User defined functions may only be defined within the global scope."
5832 *
5833 * Note that this language does not appear in GLSL 1.10.
5834 */
5835 if ((state->current_function != NULL) &&
5836 state->is_version(120, 100)) {
5837 YYLTYPE loc = this->get_location();
5838 _mesa_glsl_error(&loc, state,
5839 "declaration of function `%s' not allowed within "
5840 "function body", name);
5841 }
5842
5843 validate_identifier(name, this->get_location(), state);
5844
5845 /* Convert the list of function parameters to HIR now so that they can be
5846 * used below to compare this function's signature with previously seen
5847 * signatures for functions with the same name.
5848 */
5849 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5850 is_definition,
5851 & hir_parameters, state);
5852
5853 const char *return_type_name;
5854 const glsl_type *return_type =
5855 this->return_type->glsl_type(& return_type_name, state);
5856
5857 if (!return_type) {
5858 YYLTYPE loc = this->get_location();
5859 _mesa_glsl_error(&loc, state,
5860 "function `%s' has undeclared return type `%s'",
5861 name, return_type_name);
5862 return_type = glsl_type::error_type;
5863 }
5864
5865 /* ARB_shader_subroutine states:
5866 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5867 * subroutine(...) to a function declaration."
5868 */
5869 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5870 YYLTYPE loc = this->get_location();
5871 _mesa_glsl_error(&loc, state,
5872 "function declaration `%s' cannot have subroutine prepended",
5873 name);
5874 }
5875
5876 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5877 * "No qualifier is allowed on the return type of a function."
5878 */
5879 if (this->return_type->has_qualifiers(state)) {
5880 YYLTYPE loc = this->get_location();
5881 _mesa_glsl_error(& loc, state,
5882 "function `%s' return type has qualifiers", name);
5883 }
5884
5885 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5886 *
5887 * "Arrays are allowed as arguments and as the return type. In both
5888 * cases, the array must be explicitly sized."
5889 */
5890 if (return_type->is_unsized_array()) {
5891 YYLTYPE loc = this->get_location();
5892 _mesa_glsl_error(& loc, state,
5893 "function `%s' return type array must be explicitly "
5894 "sized", name);
5895 }
5896
5897 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5898 *
5899 * "Arrays are allowed as arguments, but not as the return type. [...]
5900 * The return type can also be a structure if the structure does not
5901 * contain an array."
5902 */
5903 if (state->language_version == 100 && return_type->contains_array()) {
5904 YYLTYPE loc = this->get_location();
5905 _mesa_glsl_error(& loc, state,
5906 "function `%s' return type contains an array", name);
5907 }
5908
5909 /* From section 4.1.7 of the GLSL 4.40 spec:
5910 *
5911 * "[Opaque types] can only be declared as function parameters
5912 * or uniform-qualified variables."
5913 *
5914 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5915 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5916 * (Images)", this should be allowed.
5917 */
5918 if (return_type->contains_atomic() ||
5919 (!state->has_bindless() && return_type->contains_opaque())) {
5920 YYLTYPE loc = this->get_location();
5921 _mesa_glsl_error(&loc, state,
5922 "function `%s' return type can't contain an %s type",
5923 name, state->has_bindless() ? "atomic" : "opaque");
5924 }
5925
5926 /**/
5927 if (return_type->is_subroutine()) {
5928 YYLTYPE loc = this->get_location();
5929 _mesa_glsl_error(&loc, state,
5930 "function `%s' return type can't be a subroutine type",
5931 name);
5932 }
5933
5934
5935 /* Create an ir_function if one doesn't already exist. */
5936 f = state->symbols->get_function(name);
5937 if (f == NULL) {
5938 f = new(ctx) ir_function(name);
5939 if (!this->return_type->qualifier.is_subroutine_decl()) {
5940 if (!state->symbols->add_function(f)) {
5941 /* This function name shadows a non-function use of the same name. */
5942 YYLTYPE loc = this->get_location();
5943 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5944 "non-function", name);
5945 return NULL;
5946 }
5947 }
5948 emit_function(state, f);
5949 }
5950
5951 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5952 *
5953 * "A shader cannot redefine or overload built-in functions."
5954 *
5955 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5956 *
5957 * "User code can overload the built-in functions but cannot redefine
5958 * them."
5959 */
5960 if (state->es_shader) {
5961 /* Local shader has no exact candidates; check the built-ins. */
5962 _mesa_glsl_initialize_builtin_functions();
5963 if (state->language_version >= 300 &&
5964 _mesa_glsl_has_builtin_function(state, name)) {
5965 YYLTYPE loc = this->get_location();
5966 _mesa_glsl_error(& loc, state,
5967 "A shader cannot redefine or overload built-in "
5968 "function `%s' in GLSL ES 3.00", name);
5969 return NULL;
5970 }
5971
5972 if (state->language_version == 100) {
5973 ir_function_signature *sig =
5974 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5975 if (sig && sig->is_builtin()) {
5976 _mesa_glsl_error(& loc, state,
5977 "A shader cannot redefine built-in "
5978 "function `%s' in GLSL ES 1.00", name);
5979 }
5980 }
5981 }
5982
5983 /* Verify that this function's signature either doesn't match a previously
5984 * seen signature for a function with the same name, or, if a match is found,
5985 * that the previously seen signature does not have an associated definition.
5986 */
5987 if (state->es_shader || f->has_user_signature()) {
5988 sig = f->exact_matching_signature(state, &hir_parameters);
5989 if (sig != NULL) {
5990 const char *badvar = sig->qualifiers_match(&hir_parameters);
5991 if (badvar != NULL) {
5992 YYLTYPE loc = this->get_location();
5993
5994 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5995 "qualifiers don't match prototype", name, badvar);
5996 }
5997
5998 if (sig->return_type != return_type) {
5999 YYLTYPE loc = this->get_location();
6000
6001 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6002 "match prototype", name);
6003 }
6004
6005 if (sig->is_defined) {
6006 if (is_definition) {
6007 YYLTYPE loc = this->get_location();
6008 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6009 } else {
6010 /* We just encountered a prototype that exactly matches a
6011 * function that's already been defined. This is redundant,
6012 * and we should ignore it.
6013 */
6014 return NULL;
6015 }
6016 } else if (state->language_version == 100 && !is_definition) {
6017 /* From the GLSL 1.00 spec, section 4.2.7:
6018 *
6019 * "A particular variable, structure or function declaration
6020 * may occur at most once within a scope with the exception
6021 * that a single function prototype plus the corresponding
6022 * function definition are allowed."
6023 */
6024 YYLTYPE loc = this->get_location();
6025 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6026 }
6027 }
6028 }
6029
6030 /* Verify the return type of main() */
6031 if (strcmp(name, "main") == 0) {
6032 if (! return_type->is_void()) {
6033 YYLTYPE loc = this->get_location();
6034
6035 _mesa_glsl_error(& loc, state, "main() must return void");
6036 }
6037
6038 if (!hir_parameters.is_empty()) {
6039 YYLTYPE loc = this->get_location();
6040
6041 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6042 }
6043 }
6044
6045 /* Finish storing the information about this new function in its signature.
6046 */
6047 if (sig == NULL) {
6048 sig = new(ctx) ir_function_signature(return_type);
6049 f->add_signature(sig);
6050 }
6051
6052 sig->replace_parameters(&hir_parameters);
6053 signature = sig;
6054
6055 if (this->return_type->qualifier.subroutine_list) {
6056 int idx;
6057
6058 if (this->return_type->qualifier.flags.q.explicit_index) {
6059 unsigned qual_index;
6060 if (process_qualifier_constant(state, &loc, "index",
6061 this->return_type->qualifier.index,
6062 &qual_index)) {
6063 if (!state->has_explicit_uniform_location()) {
6064 _mesa_glsl_error(&loc, state, "subroutine index requires "
6065 "GL_ARB_explicit_uniform_location or "
6066 "GLSL 4.30");
6067 } else if (qual_index >= MAX_SUBROUTINES) {
6068 _mesa_glsl_error(&loc, state,
6069 "invalid subroutine index (%d) index must "
6070 "be a number between 0 and "
6071 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6072 MAX_SUBROUTINES - 1);
6073 } else {
6074 f->subroutine_index = qual_index;
6075 }
6076 }
6077 }
6078
6079 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6080 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6081 f->num_subroutine_types);
6082 idx = 0;
6083 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6084 const struct glsl_type *type;
6085 /* the subroutine type must be already declared */
6086 type = state->symbols->get_type(decl->identifier);
6087 if (!type) {
6088 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6089 }
6090
6091 for (int i = 0; i < state->num_subroutine_types; i++) {
6092 ir_function *fn = state->subroutine_types[i];
6093 ir_function_signature *tsig = NULL;
6094
6095 if (strcmp(fn->name, decl->identifier))
6096 continue;
6097
6098 tsig = fn->matching_signature(state, &sig->parameters,
6099 false);
6100 if (!tsig) {
6101 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6102 } else {
6103 if (tsig->return_type != sig->return_type) {
6104 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6105 }
6106 }
6107 }
6108 f->subroutine_types[idx++] = type;
6109 }
6110 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6111 ir_function *,
6112 state->num_subroutines + 1);
6113 state->subroutines[state->num_subroutines] = f;
6114 state->num_subroutines++;
6115
6116 }
6117
6118 if (this->return_type->qualifier.is_subroutine_decl()) {
6119 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6120 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6121 return NULL;
6122 }
6123 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6124 ir_function *,
6125 state->num_subroutine_types + 1);
6126 state->subroutine_types[state->num_subroutine_types] = f;
6127 state->num_subroutine_types++;
6128
6129 f->is_subroutine = true;
6130 }
6131
6132 /* Function declarations (prototypes) do not have r-values.
6133 */
6134 return NULL;
6135 }
6136
6137
6138 ir_rvalue *
6139 ast_function_definition::hir(exec_list *instructions,
6140 struct _mesa_glsl_parse_state *state)
6141 {
6142 prototype->is_definition = true;
6143 prototype->hir(instructions, state);
6144
6145 ir_function_signature *signature = prototype->signature;
6146 if (signature == NULL)
6147 return NULL;
6148
6149 assert(state->current_function == NULL);
6150 state->current_function = signature;
6151 state->found_return = false;
6152
6153 /* Duplicate parameters declared in the prototype as concrete variables.
6154 * Add these to the symbol table.
6155 */
6156 state->symbols->push_scope();
6157 foreach_in_list(ir_variable, var, &signature->parameters) {
6158 assert(var->as_variable() != NULL);
6159
6160 /* The only way a parameter would "exist" is if two parameters have
6161 * the same name.
6162 */
6163 if (state->symbols->name_declared_this_scope(var->name)) {
6164 YYLTYPE loc = this->get_location();
6165
6166 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6167 } else {
6168 state->symbols->add_variable(var);
6169 }
6170 }
6171
6172 /* Convert the body of the function to HIR. */
6173 this->body->hir(&signature->body, state);
6174 signature->is_defined = true;
6175
6176 state->symbols->pop_scope();
6177
6178 assert(state->current_function == signature);
6179 state->current_function = NULL;
6180
6181 if (!signature->return_type->is_void() && !state->found_return) {
6182 YYLTYPE loc = this->get_location();
6183 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6184 "%s, but no return statement",
6185 signature->function_name(),
6186 signature->return_type->name);
6187 }
6188
6189 /* Function definitions do not have r-values.
6190 */
6191 return NULL;
6192 }
6193
6194
6195 ir_rvalue *
6196 ast_jump_statement::hir(exec_list *instructions,
6197 struct _mesa_glsl_parse_state *state)
6198 {
6199 void *ctx = state;
6200
6201 switch (mode) {
6202 case ast_return: {
6203 ir_return *inst;
6204 assert(state->current_function);
6205
6206 if (opt_return_value) {
6207 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6208
6209 /* The value of the return type can be NULL if the shader says
6210 * 'return foo();' and foo() is a function that returns void.
6211 *
6212 * NOTE: The GLSL spec doesn't say that this is an error. The type
6213 * of the return value is void. If the return type of the function is
6214 * also void, then this should compile without error. Seriously.
6215 */
6216 const glsl_type *const ret_type =
6217 (ret == NULL) ? glsl_type::void_type : ret->type;
6218
6219 /* Implicit conversions are not allowed for return values prior to
6220 * ARB_shading_language_420pack.
6221 */
6222 if (state->current_function->return_type != ret_type) {
6223 YYLTYPE loc = this->get_location();
6224
6225 if (state->has_420pack()) {
6226 if (!apply_implicit_conversion(state->current_function->return_type,
6227 ret, state)) {
6228 _mesa_glsl_error(& loc, state,
6229 "could not implicitly convert return value "
6230 "to %s, in function `%s'",
6231 state->current_function->return_type->name,
6232 state->current_function->function_name());
6233 }
6234 } else {
6235 _mesa_glsl_error(& loc, state,
6236 "`return' with wrong type %s, in function `%s' "
6237 "returning %s",
6238 ret_type->name,
6239 state->current_function->function_name(),
6240 state->current_function->return_type->name);
6241 }
6242 } else if (state->current_function->return_type->base_type ==
6243 GLSL_TYPE_VOID) {
6244 YYLTYPE loc = this->get_location();
6245
6246 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6247 * specs add a clarification:
6248 *
6249 * "A void function can only use return without a return argument, even if
6250 * the return argument has void type. Return statements only accept values:
6251 *
6252 * void func1() { }
6253 * void func2() { return func1(); } // illegal return statement"
6254 */
6255 _mesa_glsl_error(& loc, state,
6256 "void functions can only use `return' without a "
6257 "return argument");
6258 }
6259
6260 inst = new(ctx) ir_return(ret);
6261 } else {
6262 if (state->current_function->return_type->base_type !=
6263 GLSL_TYPE_VOID) {
6264 YYLTYPE loc = this->get_location();
6265
6266 _mesa_glsl_error(& loc, state,
6267 "`return' with no value, in function %s returning "
6268 "non-void",
6269 state->current_function->function_name());
6270 }
6271 inst = new(ctx) ir_return;
6272 }
6273
6274 state->found_return = true;
6275 instructions->push_tail(inst);
6276 break;
6277 }
6278
6279 case ast_discard:
6280 if (state->stage != MESA_SHADER_FRAGMENT) {
6281 YYLTYPE loc = this->get_location();
6282
6283 _mesa_glsl_error(& loc, state,
6284 "`discard' may only appear in a fragment shader");
6285 }
6286 instructions->push_tail(new(ctx) ir_discard);
6287 break;
6288
6289 case ast_break:
6290 case ast_continue:
6291 if (mode == ast_continue &&
6292 state->loop_nesting_ast == NULL) {
6293 YYLTYPE loc = this->get_location();
6294
6295 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6296 } else if (mode == ast_break &&
6297 state->loop_nesting_ast == NULL &&
6298 state->switch_state.switch_nesting_ast == NULL) {
6299 YYLTYPE loc = this->get_location();
6300
6301 _mesa_glsl_error(& loc, state,
6302 "break may only appear in a loop or a switch");
6303 } else {
6304 /* For a loop, inline the for loop expression again, since we don't
6305 * know where near the end of the loop body the normal copy of it is
6306 * going to be placed. Same goes for the condition for a do-while
6307 * loop.
6308 */
6309 if (state->loop_nesting_ast != NULL &&
6310 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6311 if (state->loop_nesting_ast->rest_expression) {
6312 state->loop_nesting_ast->rest_expression->hir(instructions,
6313 state);
6314 }
6315 if (state->loop_nesting_ast->mode ==
6316 ast_iteration_statement::ast_do_while) {
6317 state->loop_nesting_ast->condition_to_hir(instructions, state);
6318 }
6319 }
6320
6321 if (state->switch_state.is_switch_innermost &&
6322 mode == ast_continue) {
6323 /* Set 'continue_inside' to true. */
6324 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6325 ir_dereference_variable *deref_continue_inside_var =
6326 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6327 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6328 true_val));
6329
6330 /* Break out from the switch, continue for the loop will
6331 * be called right after switch. */
6332 ir_loop_jump *const jump =
6333 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6334 instructions->push_tail(jump);
6335
6336 } else if (state->switch_state.is_switch_innermost &&
6337 mode == ast_break) {
6338 /* Force break out of switch by inserting a break. */
6339 ir_loop_jump *const jump =
6340 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6341 instructions->push_tail(jump);
6342 } else {
6343 ir_loop_jump *const jump =
6344 new(ctx) ir_loop_jump((mode == ast_break)
6345 ? ir_loop_jump::jump_break
6346 : ir_loop_jump::jump_continue);
6347 instructions->push_tail(jump);
6348 }
6349 }
6350
6351 break;
6352 }
6353
6354 /* Jump instructions do not have r-values.
6355 */
6356 return NULL;
6357 }
6358
6359
6360 ir_rvalue *
6361 ast_selection_statement::hir(exec_list *instructions,
6362 struct _mesa_glsl_parse_state *state)
6363 {
6364 void *ctx = state;
6365
6366 ir_rvalue *const condition = this->condition->hir(instructions, state);
6367
6368 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6369 *
6370 * "Any expression whose type evaluates to a Boolean can be used as the
6371 * conditional expression bool-expression. Vector types are not accepted
6372 * as the expression to if."
6373 *
6374 * The checks are separated so that higher quality diagnostics can be
6375 * generated for cases where both rules are violated.
6376 */
6377 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6378 YYLTYPE loc = this->condition->get_location();
6379
6380 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6381 "boolean");
6382 }
6383
6384 ir_if *const stmt = new(ctx) ir_if(condition);
6385
6386 if (then_statement != NULL) {
6387 state->symbols->push_scope();
6388 then_statement->hir(& stmt->then_instructions, state);
6389 state->symbols->pop_scope();
6390 }
6391
6392 if (else_statement != NULL) {
6393 state->symbols->push_scope();
6394 else_statement->hir(& stmt->else_instructions, state);
6395 state->symbols->pop_scope();
6396 }
6397
6398 instructions->push_tail(stmt);
6399
6400 /* if-statements do not have r-values.
6401 */
6402 return NULL;
6403 }
6404
6405
6406 struct case_label {
6407 /** Value of the case label. */
6408 unsigned value;
6409
6410 /** Does this label occur after the default? */
6411 bool after_default;
6412
6413 /**
6414 * AST for the case label.
6415 *
6416 * This is only used to generate error messages for duplicate labels.
6417 */
6418 ast_expression *ast;
6419 };
6420
6421 /* Used for detection of duplicate case values, compare
6422 * given contents directly.
6423 */
6424 static bool
6425 compare_case_value(const void *a, const void *b)
6426 {
6427 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6428 }
6429
6430
6431 /* Used for detection of duplicate case values, just
6432 * returns key contents as is.
6433 */
6434 static unsigned
6435 key_contents(const void *key)
6436 {
6437 return ((struct case_label *) key)->value;
6438 }
6439
6440
6441 ir_rvalue *
6442 ast_switch_statement::hir(exec_list *instructions,
6443 struct _mesa_glsl_parse_state *state)
6444 {
6445 void *ctx = state;
6446
6447 ir_rvalue *const test_expression =
6448 this->test_expression->hir(instructions, state);
6449
6450 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6451 *
6452 * "The type of init-expression in a switch statement must be a
6453 * scalar integer."
6454 */
6455 if (!test_expression->type->is_scalar() ||
6456 !test_expression->type->is_integer()) {
6457 YYLTYPE loc = this->test_expression->get_location();
6458
6459 _mesa_glsl_error(& loc,
6460 state,
6461 "switch-statement expression must be scalar "
6462 "integer");
6463 return NULL;
6464 }
6465
6466 /* Track the switch-statement nesting in a stack-like manner.
6467 */
6468 struct glsl_switch_state saved = state->switch_state;
6469
6470 state->switch_state.is_switch_innermost = true;
6471 state->switch_state.switch_nesting_ast = this;
6472 state->switch_state.labels_ht =
6473 _mesa_hash_table_create(NULL, key_contents,
6474 compare_case_value);
6475 state->switch_state.previous_default = NULL;
6476
6477 /* Initalize is_fallthru state to false.
6478 */
6479 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6480 state->switch_state.is_fallthru_var =
6481 new(ctx) ir_variable(glsl_type::bool_type,
6482 "switch_is_fallthru_tmp",
6483 ir_var_temporary);
6484 instructions->push_tail(state->switch_state.is_fallthru_var);
6485
6486 ir_dereference_variable *deref_is_fallthru_var =
6487 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6488 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6489 is_fallthru_val));
6490
6491 /* Initialize continue_inside state to false.
6492 */
6493 state->switch_state.continue_inside =
6494 new(ctx) ir_variable(glsl_type::bool_type,
6495 "continue_inside_tmp",
6496 ir_var_temporary);
6497 instructions->push_tail(state->switch_state.continue_inside);
6498
6499 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6500 ir_dereference_variable *deref_continue_inside_var =
6501 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6502 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6503 false_val));
6504
6505 state->switch_state.run_default =
6506 new(ctx) ir_variable(glsl_type::bool_type,
6507 "run_default_tmp",
6508 ir_var_temporary);
6509 instructions->push_tail(state->switch_state.run_default);
6510
6511 /* Loop around the switch is used for flow control. */
6512 ir_loop * loop = new(ctx) ir_loop();
6513 instructions->push_tail(loop);
6514
6515 /* Cache test expression.
6516 */
6517 test_to_hir(&loop->body_instructions, state);
6518
6519 /* Emit code for body of switch stmt.
6520 */
6521 body->hir(&loop->body_instructions, state);
6522
6523 /* Insert a break at the end to exit loop. */
6524 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6525 loop->body_instructions.push_tail(jump);
6526
6527 /* If we are inside loop, check if continue got called inside switch. */
6528 if (state->loop_nesting_ast != NULL) {
6529 ir_dereference_variable *deref_continue_inside =
6530 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6531 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6532 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6533
6534 if (state->loop_nesting_ast != NULL) {
6535 if (state->loop_nesting_ast->rest_expression) {
6536 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6537 state);
6538 }
6539 if (state->loop_nesting_ast->mode ==
6540 ast_iteration_statement::ast_do_while) {
6541 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6542 }
6543 }
6544 irif->then_instructions.push_tail(jump);
6545 instructions->push_tail(irif);
6546 }
6547
6548 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6549
6550 state->switch_state = saved;
6551
6552 /* Switch statements do not have r-values. */
6553 return NULL;
6554 }
6555
6556
6557 void
6558 ast_switch_statement::test_to_hir(exec_list *instructions,
6559 struct _mesa_glsl_parse_state *state)
6560 {
6561 void *ctx = state;
6562
6563 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6564 * on the switch test case. The first one would be already raised when
6565 * getting the test_expression at ast_switch_statement::hir
6566 */
6567 test_expression->set_is_lhs(true);
6568 /* Cache value of test expression. */
6569 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6570
6571 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6572 "switch_test_tmp",
6573 ir_var_temporary);
6574 ir_dereference_variable *deref_test_var =
6575 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6576
6577 instructions->push_tail(state->switch_state.test_var);
6578 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6579 }
6580
6581
6582 ir_rvalue *
6583 ast_switch_body::hir(exec_list *instructions,
6584 struct _mesa_glsl_parse_state *state)
6585 {
6586 if (stmts != NULL)
6587 stmts->hir(instructions, state);
6588
6589 /* Switch bodies do not have r-values. */
6590 return NULL;
6591 }
6592
6593 ir_rvalue *
6594 ast_case_statement_list::hir(exec_list *instructions,
6595 struct _mesa_glsl_parse_state *state)
6596 {
6597 exec_list default_case, after_default, tmp;
6598
6599 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6600 case_stmt->hir(&tmp, state);
6601
6602 /* Default case. */
6603 if (state->switch_state.previous_default && default_case.is_empty()) {
6604 default_case.append_list(&tmp);
6605 continue;
6606 }
6607
6608 /* If default case found, append 'after_default' list. */
6609 if (!default_case.is_empty())
6610 after_default.append_list(&tmp);
6611 else
6612 instructions->append_list(&tmp);
6613 }
6614
6615 /* Handle the default case. This is done here because default might not be
6616 * the last case. We need to add checks against following cases first to see
6617 * if default should be chosen or not.
6618 */
6619 if (!default_case.is_empty()) {
6620 struct hash_entry *entry;
6621 ir_factory body(instructions, state);
6622
6623 ir_expression *cmp = NULL;
6624
6625 hash_table_foreach(state->switch_state.labels_ht, entry) {
6626 const struct case_label *const l = (struct case_label *) entry->data;
6627
6628 /* If the switch init-value is the value of one of the labels that
6629 * occurs after the default case, disable execution of the default
6630 * case.
6631 */
6632 if (l->after_default) {
6633 ir_constant *const cnst =
6634 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6635 ? body.constant(unsigned(l->value))
6636 : body.constant(int(l->value));
6637
6638 cmp = cmp == NULL
6639 ? equal(cnst, state->switch_state.test_var)
6640 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6641 }
6642 }
6643
6644 if (cmp != NULL)
6645 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6646 else
6647 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6648
6649 /* Append default case and all cases after it. */
6650 instructions->append_list(&default_case);
6651 instructions->append_list(&after_default);
6652 }
6653
6654 /* Case statements do not have r-values. */
6655 return NULL;
6656 }
6657
6658 ir_rvalue *
6659 ast_case_statement::hir(exec_list *instructions,
6660 struct _mesa_glsl_parse_state *state)
6661 {
6662 labels->hir(instructions, state);
6663
6664 /* Guard case statements depending on fallthru state. */
6665 ir_dereference_variable *const deref_fallthru_guard =
6666 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6667 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6668
6669 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6670 stmt->hir(& test_fallthru->then_instructions, state);
6671
6672 instructions->push_tail(test_fallthru);
6673
6674 /* Case statements do not have r-values. */
6675 return NULL;
6676 }
6677
6678
6679 ir_rvalue *
6680 ast_case_label_list::hir(exec_list *instructions,
6681 struct _mesa_glsl_parse_state *state)
6682 {
6683 foreach_list_typed (ast_case_label, label, link, & this->labels)
6684 label->hir(instructions, state);
6685
6686 /* Case labels do not have r-values. */
6687 return NULL;
6688 }
6689
6690 ir_rvalue *
6691 ast_case_label::hir(exec_list *instructions,
6692 struct _mesa_glsl_parse_state *state)
6693 {
6694 ir_factory body(instructions, state);
6695
6696 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6697
6698 /* If not default case, ... */
6699 if (this->test_value != NULL) {
6700 /* Conditionally set fallthru state based on
6701 * comparison of cached test expression value to case label.
6702 */
6703 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6704 ir_constant *label_const =
6705 label_rval->constant_expression_value(body.mem_ctx);
6706
6707 if (!label_const) {
6708 YYLTYPE loc = this->test_value->get_location();
6709
6710 _mesa_glsl_error(& loc, state,
6711 "switch statement case label must be a "
6712 "constant expression");
6713
6714 /* Stuff a dummy value in to allow processing to continue. */
6715 label_const = body.constant(0);
6716 } else {
6717 hash_entry *entry =
6718 _mesa_hash_table_search(state->switch_state.labels_ht,
6719 &label_const->value.u[0]);
6720
6721 if (entry) {
6722 const struct case_label *const l =
6723 (struct case_label *) entry->data;
6724 const ast_expression *const previous_label = l->ast;
6725 YYLTYPE loc = this->test_value->get_location();
6726
6727 _mesa_glsl_error(& loc, state, "duplicate case value");
6728
6729 loc = previous_label->get_location();
6730 _mesa_glsl_error(& loc, state, "this is the previous case label");
6731 } else {
6732 struct case_label *l = ralloc(state->switch_state.labels_ht,
6733 struct case_label);
6734
6735 l->value = label_const->value.u[0];
6736 l->after_default = state->switch_state.previous_default != NULL;
6737 l->ast = this->test_value;
6738
6739 _mesa_hash_table_insert(state->switch_state.labels_ht,
6740 &label_const->value.u[0],
6741 l);
6742 }
6743 }
6744
6745 /* Create an r-value version of the ir_constant label here (after we may
6746 * have created a fake one in error cases) that can be passed to
6747 * apply_implicit_conversion below.
6748 */
6749 ir_rvalue *label = label_const;
6750
6751 ir_rvalue *deref_test_var =
6752 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6753
6754 /*
6755 * From GLSL 4.40 specification section 6.2 ("Selection"):
6756 *
6757 * "The type of the init-expression value in a switch statement must
6758 * be a scalar int or uint. The type of the constant-expression value
6759 * in a case label also must be a scalar int or uint. When any pair
6760 * of these values is tested for "equal value" and the types do not
6761 * match, an implicit conversion will be done to convert the int to a
6762 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6763 * is done."
6764 */
6765 if (label->type != state->switch_state.test_var->type) {
6766 YYLTYPE loc = this->test_value->get_location();
6767
6768 const glsl_type *type_a = label->type;
6769 const glsl_type *type_b = state->switch_state.test_var->type;
6770
6771 /* Check if int->uint implicit conversion is supported. */
6772 bool integer_conversion_supported =
6773 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6774 state);
6775
6776 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6777 !integer_conversion_supported) {
6778 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6779 "init-expression and case label (%s != %s)",
6780 type_a->name, type_b->name);
6781 } else {
6782 /* Conversion of the case label. */
6783 if (type_a->base_type == GLSL_TYPE_INT) {
6784 if (!apply_implicit_conversion(glsl_type::uint_type,
6785 label, state))
6786 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6787 } else {
6788 /* Conversion of the init-expression value. */
6789 if (!apply_implicit_conversion(glsl_type::uint_type,
6790 deref_test_var, state))
6791 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6792 }
6793 }
6794
6795 /* If the implicit conversion was allowed, the types will already be
6796 * the same. If the implicit conversion wasn't allowed, smash the
6797 * type of the label anyway. This will prevent the expression
6798 * constructor (below) from failing an assertion.
6799 */
6800 label->type = deref_test_var->type;
6801 }
6802
6803 body.emit(assign(fallthru_var,
6804 logic_or(fallthru_var, equal(label, deref_test_var))));
6805 } else { /* default case */
6806 if (state->switch_state.previous_default) {
6807 YYLTYPE loc = this->get_location();
6808 _mesa_glsl_error(& loc, state,
6809 "multiple default labels in one switch");
6810
6811 loc = state->switch_state.previous_default->get_location();
6812 _mesa_glsl_error(& loc, state, "this is the first default label");
6813 }
6814 state->switch_state.previous_default = this;
6815
6816 /* Set fallthru condition on 'run_default' bool. */
6817 body.emit(assign(fallthru_var,
6818 logic_or(fallthru_var,
6819 state->switch_state.run_default)));
6820 }
6821
6822 /* Case statements do not have r-values. */
6823 return NULL;
6824 }
6825
6826 void
6827 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6828 struct _mesa_glsl_parse_state *state)
6829 {
6830 void *ctx = state;
6831
6832 if (condition != NULL) {
6833 ir_rvalue *const cond =
6834 condition->hir(instructions, state);
6835
6836 if ((cond == NULL)
6837 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6838 YYLTYPE loc = condition->get_location();
6839
6840 _mesa_glsl_error(& loc, state,
6841 "loop condition must be scalar boolean");
6842 } else {
6843 /* As the first code in the loop body, generate a block that looks
6844 * like 'if (!condition) break;' as the loop termination condition.
6845 */
6846 ir_rvalue *const not_cond =
6847 new(ctx) ir_expression(ir_unop_logic_not, cond);
6848
6849 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6850
6851 ir_jump *const break_stmt =
6852 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6853
6854 if_stmt->then_instructions.push_tail(break_stmt);
6855 instructions->push_tail(if_stmt);
6856 }
6857 }
6858 }
6859
6860
6861 ir_rvalue *
6862 ast_iteration_statement::hir(exec_list *instructions,
6863 struct _mesa_glsl_parse_state *state)
6864 {
6865 void *ctx = state;
6866
6867 /* For-loops and while-loops start a new scope, but do-while loops do not.
6868 */
6869 if (mode != ast_do_while)
6870 state->symbols->push_scope();
6871
6872 if (init_statement != NULL)
6873 init_statement->hir(instructions, state);
6874
6875 ir_loop *const stmt = new(ctx) ir_loop();
6876 instructions->push_tail(stmt);
6877
6878 /* Track the current loop nesting. */
6879 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6880
6881 state->loop_nesting_ast = this;
6882
6883 /* Likewise, indicate that following code is closest to a loop,
6884 * NOT closest to a switch.
6885 */
6886 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6887 state->switch_state.is_switch_innermost = false;
6888
6889 if (mode != ast_do_while)
6890 condition_to_hir(&stmt->body_instructions, state);
6891
6892 if (body != NULL)
6893 body->hir(& stmt->body_instructions, state);
6894
6895 if (rest_expression != NULL)
6896 rest_expression->hir(& stmt->body_instructions, state);
6897
6898 if (mode == ast_do_while)
6899 condition_to_hir(&stmt->body_instructions, state);
6900
6901 if (mode != ast_do_while)
6902 state->symbols->pop_scope();
6903
6904 /* Restore previous nesting before returning. */
6905 state->loop_nesting_ast = nesting_ast;
6906 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6907
6908 /* Loops do not have r-values.
6909 */
6910 return NULL;
6911 }
6912
6913
6914 /**
6915 * Determine if the given type is valid for establishing a default precision
6916 * qualifier.
6917 *
6918 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6919 *
6920 * "The precision statement
6921 *
6922 * precision precision-qualifier type;
6923 *
6924 * can be used to establish a default precision qualifier. The type field
6925 * can be either int or float or any of the sampler types, and the
6926 * precision-qualifier can be lowp, mediump, or highp."
6927 *
6928 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6929 * qualifiers on sampler types, but this seems like an oversight (since the
6930 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6931 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6932 * version.
6933 */
6934 static bool
6935 is_valid_default_precision_type(const struct glsl_type *const type)
6936 {
6937 if (type == NULL)
6938 return false;
6939
6940 switch (type->base_type) {
6941 case GLSL_TYPE_INT:
6942 case GLSL_TYPE_FLOAT:
6943 /* "int" and "float" are valid, but vectors and matrices are not. */
6944 return type->vector_elements == 1 && type->matrix_columns == 1;
6945 case GLSL_TYPE_SAMPLER:
6946 case GLSL_TYPE_IMAGE:
6947 case GLSL_TYPE_ATOMIC_UINT:
6948 return true;
6949 default:
6950 return false;
6951 }
6952 }
6953
6954
6955 ir_rvalue *
6956 ast_type_specifier::hir(exec_list *instructions,
6957 struct _mesa_glsl_parse_state *state)
6958 {
6959 if (this->default_precision == ast_precision_none && this->structure == NULL)
6960 return NULL;
6961
6962 YYLTYPE loc = this->get_location();
6963
6964 /* If this is a precision statement, check that the type to which it is
6965 * applied is either float or int.
6966 *
6967 * From section 4.5.3 of the GLSL 1.30 spec:
6968 * "The precision statement
6969 * precision precision-qualifier type;
6970 * can be used to establish a default precision qualifier. The type
6971 * field can be either int or float [...]. Any other types or
6972 * qualifiers will result in an error.
6973 */
6974 if (this->default_precision != ast_precision_none) {
6975 if (!state->check_precision_qualifiers_allowed(&loc))
6976 return NULL;
6977
6978 if (this->structure != NULL) {
6979 _mesa_glsl_error(&loc, state,
6980 "precision qualifiers do not apply to structures");
6981 return NULL;
6982 }
6983
6984 if (this->array_specifier != NULL) {
6985 _mesa_glsl_error(&loc, state,
6986 "default precision statements do not apply to "
6987 "arrays");
6988 return NULL;
6989 }
6990
6991 const struct glsl_type *const type =
6992 state->symbols->get_type(this->type_name);
6993 if (!is_valid_default_precision_type(type)) {
6994 _mesa_glsl_error(&loc, state,
6995 "default precision statements apply only to "
6996 "float, int, and opaque types");
6997 return NULL;
6998 }
6999
7000 if (state->es_shader) {
7001 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7002 * spec says:
7003 *
7004 * "Non-precision qualified declarations will use the precision
7005 * qualifier specified in the most recent precision statement
7006 * that is still in scope. The precision statement has the same
7007 * scoping rules as variable declarations. If it is declared
7008 * inside a compound statement, its effect stops at the end of
7009 * the innermost statement it was declared in. Precision
7010 * statements in nested scopes override precision statements in
7011 * outer scopes. Multiple precision statements for the same basic
7012 * type can appear inside the same scope, with later statements
7013 * overriding earlier statements within that scope."
7014 *
7015 * Default precision specifications follow the same scope rules as
7016 * variables. So, we can track the state of the default precision
7017 * qualifiers in the symbol table, and the rules will just work. This
7018 * is a slight abuse of the symbol table, but it has the semantics
7019 * that we want.
7020 */
7021 state->symbols->add_default_precision_qualifier(this->type_name,
7022 this->default_precision);
7023 }
7024
7025 /* FINISHME: Translate precision statements into IR. */
7026 return NULL;
7027 }
7028
7029 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7030 * process_record_constructor() can do type-checking on C-style initializer
7031 * expressions of structs, but ast_struct_specifier should only be translated
7032 * to HIR if it is declaring the type of a structure.
7033 *
7034 * The ->is_declaration field is false for initializers of variables
7035 * declared separately from the struct's type definition.
7036 *
7037 * struct S { ... }; (is_declaration = true)
7038 * struct T { ... } t = { ... }; (is_declaration = true)
7039 * S s = { ... }; (is_declaration = false)
7040 */
7041 if (this->structure != NULL && this->structure->is_declaration)
7042 return this->structure->hir(instructions, state);
7043
7044 return NULL;
7045 }
7046
7047
7048 /**
7049 * Process a structure or interface block tree into an array of structure fields
7050 *
7051 * After parsing, where there are some syntax differnces, structures and
7052 * interface blocks are almost identical. They are similar enough that the
7053 * AST for each can be processed the same way into a set of
7054 * \c glsl_struct_field to describe the members.
7055 *
7056 * If we're processing an interface block, var_mode should be the type of the
7057 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7058 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7059 * ir_var_auto.
7060 *
7061 * \return
7062 * The number of fields processed. A pointer to the array structure fields is
7063 * stored in \c *fields_ret.
7064 */
7065 static unsigned
7066 ast_process_struct_or_iface_block_members(exec_list *instructions,
7067 struct _mesa_glsl_parse_state *state,
7068 exec_list *declarations,
7069 glsl_struct_field **fields_ret,
7070 bool is_interface,
7071 enum glsl_matrix_layout matrix_layout,
7072 bool allow_reserved_names,
7073 ir_variable_mode var_mode,
7074 ast_type_qualifier *layout,
7075 unsigned block_stream,
7076 unsigned block_xfb_buffer,
7077 unsigned block_xfb_offset,
7078 unsigned expl_location,
7079 unsigned expl_align)
7080 {
7081 unsigned decl_count = 0;
7082 unsigned next_offset = 0;
7083
7084 /* Make an initial pass over the list of fields to determine how
7085 * many there are. Each element in this list is an ast_declarator_list.
7086 * This means that we actually need to count the number of elements in the
7087 * 'declarations' list in each of the elements.
7088 */
7089 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7090 decl_count += decl_list->declarations.length();
7091 }
7092
7093 /* Allocate storage for the fields and process the field
7094 * declarations. As the declarations are processed, try to also convert
7095 * the types to HIR. This ensures that structure definitions embedded in
7096 * other structure definitions or in interface blocks are processed.
7097 */
7098 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7099 decl_count);
7100
7101 bool first_member = true;
7102 bool first_member_has_explicit_location = false;
7103
7104 unsigned i = 0;
7105 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7106 const char *type_name;
7107 YYLTYPE loc = decl_list->get_location();
7108
7109 decl_list->type->specifier->hir(instructions, state);
7110
7111 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7112 *
7113 * "Anonymous structures are not supported; so embedded structures
7114 * must have a declarator. A name given to an embedded struct is
7115 * scoped at the same level as the struct it is embedded in."
7116 *
7117 * The same section of the GLSL 1.20 spec says:
7118 *
7119 * "Anonymous structures are not supported. Embedded structures are
7120 * not supported."
7121 *
7122 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7123 * embedded structures in 1.10 only.
7124 */
7125 if (state->language_version != 110 &&
7126 decl_list->type->specifier->structure != NULL)
7127 _mesa_glsl_error(&loc, state,
7128 "embedded structure declarations are not allowed");
7129
7130 const glsl_type *decl_type =
7131 decl_list->type->glsl_type(& type_name, state);
7132
7133 const struct ast_type_qualifier *const qual =
7134 &decl_list->type->qualifier;
7135
7136 /* From section 4.3.9 of the GLSL 4.40 spec:
7137 *
7138 * "[In interface blocks] opaque types are not allowed."
7139 *
7140 * It should be impossible for decl_type to be NULL here. Cases that
7141 * might naturally lead to decl_type being NULL, especially for the
7142 * is_interface case, will have resulted in compilation having
7143 * already halted due to a syntax error.
7144 */
7145 assert(decl_type);
7146
7147 if (is_interface) {
7148 /* From section 4.3.7 of the ARB_bindless_texture spec:
7149 *
7150 * "(remove the following bullet from the last list on p. 39,
7151 * thereby permitting sampler types in interface blocks; image
7152 * types are also permitted in blocks by this extension)"
7153 *
7154 * * sampler types are not allowed
7155 */
7156 if (decl_type->contains_atomic() ||
7157 (!state->has_bindless() && decl_type->contains_opaque())) {
7158 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7159 "interface block contains %s variable",
7160 state->has_bindless() ? "atomic" : "opaque");
7161 }
7162 } else {
7163 if (decl_type->contains_atomic()) {
7164 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7165 *
7166 * "Members of structures cannot be declared as atomic counter
7167 * types."
7168 */
7169 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7170 }
7171
7172 if (!state->has_bindless() && decl_type->contains_image()) {
7173 /* FINISHME: Same problem as with atomic counters.
7174 * FINISHME: Request clarification from Khronos and add
7175 * FINISHME: spec quotation here.
7176 */
7177 _mesa_glsl_error(&loc, state, "image in structure");
7178 }
7179 }
7180
7181 if (qual->flags.q.explicit_binding) {
7182 _mesa_glsl_error(&loc, state,
7183 "binding layout qualifier cannot be applied "
7184 "to struct or interface block members");
7185 }
7186
7187 if (is_interface) {
7188 if (!first_member) {
7189 if (!layout->flags.q.explicit_location &&
7190 ((first_member_has_explicit_location &&
7191 !qual->flags.q.explicit_location) ||
7192 (!first_member_has_explicit_location &&
7193 qual->flags.q.explicit_location))) {
7194 _mesa_glsl_error(&loc, state,
7195 "when block-level location layout qualifier "
7196 "is not supplied either all members must "
7197 "have a location layout qualifier or all "
7198 "members must not have a location layout "
7199 "qualifier");
7200 }
7201 } else {
7202 first_member = false;
7203 first_member_has_explicit_location =
7204 qual->flags.q.explicit_location;
7205 }
7206 }
7207
7208 if (qual->flags.q.std140 ||
7209 qual->flags.q.std430 ||
7210 qual->flags.q.packed ||
7211 qual->flags.q.shared) {
7212 _mesa_glsl_error(&loc, state,
7213 "uniform/shader storage block layout qualifiers "
7214 "std140, std430, packed, and shared can only be "
7215 "applied to uniform/shader storage blocks, not "
7216 "members");
7217 }
7218
7219 if (qual->flags.q.constant) {
7220 _mesa_glsl_error(&loc, state,
7221 "const storage qualifier cannot be applied "
7222 "to struct or interface block members");
7223 }
7224
7225 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7226 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7227
7228 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7229 *
7230 * "A block member may be declared with a stream identifier, but
7231 * the specified stream must match the stream associated with the
7232 * containing block."
7233 */
7234 if (qual->flags.q.explicit_stream) {
7235 unsigned qual_stream;
7236 if (process_qualifier_constant(state, &loc, "stream",
7237 qual->stream, &qual_stream) &&
7238 qual_stream != block_stream) {
7239 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7240 "interface block member does not match "
7241 "the interface block (%u vs %u)", qual_stream,
7242 block_stream);
7243 }
7244 }
7245
7246 int xfb_buffer;
7247 unsigned explicit_xfb_buffer = 0;
7248 if (qual->flags.q.explicit_xfb_buffer) {
7249 unsigned qual_xfb_buffer;
7250 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7251 qual->xfb_buffer, &qual_xfb_buffer)) {
7252 explicit_xfb_buffer = 1;
7253 if (qual_xfb_buffer != block_xfb_buffer)
7254 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7255 "interface block member does not match "
7256 "the interface block (%u vs %u)",
7257 qual_xfb_buffer, block_xfb_buffer);
7258 }
7259 xfb_buffer = (int) qual_xfb_buffer;
7260 } else {
7261 if (layout)
7262 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7263 xfb_buffer = (int) block_xfb_buffer;
7264 }
7265
7266 int xfb_stride = -1;
7267 if (qual->flags.q.explicit_xfb_stride) {
7268 unsigned qual_xfb_stride;
7269 if (process_qualifier_constant(state, &loc, "xfb_stride",
7270 qual->xfb_stride, &qual_xfb_stride)) {
7271 xfb_stride = (int) qual_xfb_stride;
7272 }
7273 }
7274
7275 if (qual->flags.q.uniform && qual->has_interpolation()) {
7276 _mesa_glsl_error(&loc, state,
7277 "interpolation qualifiers cannot be used "
7278 "with uniform interface blocks");
7279 }
7280
7281 if ((qual->flags.q.uniform || !is_interface) &&
7282 qual->has_auxiliary_storage()) {
7283 _mesa_glsl_error(&loc, state,
7284 "auxiliary storage qualifiers cannot be used "
7285 "in uniform blocks or structures.");
7286 }
7287
7288 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7289 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7290 _mesa_glsl_error(&loc, state,
7291 "row_major and column_major can only be "
7292 "applied to interface blocks");
7293 } else
7294 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7295 }
7296
7297 foreach_list_typed (ast_declaration, decl, link,
7298 &decl_list->declarations) {
7299 YYLTYPE loc = decl->get_location();
7300
7301 if (!allow_reserved_names)
7302 validate_identifier(decl->identifier, loc, state);
7303
7304 const struct glsl_type *field_type =
7305 process_array_type(&loc, decl_type, decl->array_specifier, state);
7306 validate_array_dimensions(field_type, state, &loc);
7307 fields[i].type = field_type;
7308 fields[i].name = decl->identifier;
7309 fields[i].interpolation =
7310 interpret_interpolation_qualifier(qual, field_type,
7311 var_mode, state, &loc);
7312 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7313 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7314 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7315 fields[i].precision = qual->precision;
7316 fields[i].offset = -1;
7317 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7318 fields[i].xfb_buffer = xfb_buffer;
7319 fields[i].xfb_stride = xfb_stride;
7320
7321 if (qual->flags.q.explicit_location) {
7322 unsigned qual_location;
7323 if (process_qualifier_constant(state, &loc, "location",
7324 qual->location, &qual_location)) {
7325 fields[i].location = qual_location +
7326 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7327 expl_location = fields[i].location +
7328 fields[i].type->count_attribute_slots(false);
7329 }
7330 } else {
7331 if (layout && layout->flags.q.explicit_location) {
7332 fields[i].location = expl_location;
7333 expl_location += fields[i].type->count_attribute_slots(false);
7334 } else {
7335 fields[i].location = -1;
7336 }
7337 }
7338
7339 /* Offset can only be used with std430 and std140 layouts an initial
7340 * value of 0 is used for error detection.
7341 */
7342 unsigned align = 0;
7343 unsigned size = 0;
7344 if (layout) {
7345 bool row_major;
7346 if (qual->flags.q.row_major ||
7347 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7348 row_major = true;
7349 } else {
7350 row_major = false;
7351 }
7352
7353 if(layout->flags.q.std140) {
7354 align = field_type->std140_base_alignment(row_major);
7355 size = field_type->std140_size(row_major);
7356 } else if (layout->flags.q.std430) {
7357 align = field_type->std430_base_alignment(row_major);
7358 size = field_type->std430_size(row_major);
7359 }
7360 }
7361
7362 if (qual->flags.q.explicit_offset) {
7363 unsigned qual_offset;
7364 if (process_qualifier_constant(state, &loc, "offset",
7365 qual->offset, &qual_offset)) {
7366 if (align != 0 && size != 0) {
7367 if (next_offset > qual_offset)
7368 _mesa_glsl_error(&loc, state, "layout qualifier "
7369 "offset overlaps previous member");
7370
7371 if (qual_offset % align) {
7372 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7373 "must be a multiple of the base "
7374 "alignment of %s", field_type->name);
7375 }
7376 fields[i].offset = qual_offset;
7377 next_offset = glsl_align(qual_offset + size, align);
7378 } else {
7379 _mesa_glsl_error(&loc, state, "offset can only be used "
7380 "with std430 and std140 layouts");
7381 }
7382 }
7383 }
7384
7385 if (qual->flags.q.explicit_align || expl_align != 0) {
7386 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7387 next_offset;
7388 if (align == 0 || size == 0) {
7389 _mesa_glsl_error(&loc, state, "align can only be used with "
7390 "std430 and std140 layouts");
7391 } else if (qual->flags.q.explicit_align) {
7392 unsigned member_align;
7393 if (process_qualifier_constant(state, &loc, "align",
7394 qual->align, &member_align)) {
7395 if (member_align == 0 ||
7396 member_align & (member_align - 1)) {
7397 _mesa_glsl_error(&loc, state, "align layout qualifier "
7398 "in not a power of 2");
7399 } else {
7400 fields[i].offset = glsl_align(offset, member_align);
7401 next_offset = glsl_align(fields[i].offset + size, align);
7402 }
7403 }
7404 } else {
7405 fields[i].offset = glsl_align(offset, expl_align);
7406 next_offset = glsl_align(fields[i].offset + size, align);
7407 }
7408 } else if (!qual->flags.q.explicit_offset) {
7409 if (align != 0 && size != 0)
7410 next_offset = glsl_align(next_offset + size, align);
7411 }
7412
7413 /* From the ARB_enhanced_layouts spec:
7414 *
7415 * "The given offset applies to the first component of the first
7416 * member of the qualified entity. Then, within the qualified
7417 * entity, subsequent components are each assigned, in order, to
7418 * the next available offset aligned to a multiple of that
7419 * component's size. Aggregate types are flattened down to the
7420 * component level to get this sequence of components."
7421 */
7422 if (qual->flags.q.explicit_xfb_offset) {
7423 unsigned xfb_offset;
7424 if (process_qualifier_constant(state, &loc, "xfb_offset",
7425 qual->offset, &xfb_offset)) {
7426 fields[i].offset = xfb_offset;
7427 block_xfb_offset = fields[i].offset +
7428 4 * field_type->component_slots();
7429 }
7430 } else {
7431 if (layout && layout->flags.q.explicit_xfb_offset) {
7432 unsigned align = field_type->is_64bit() ? 8 : 4;
7433 fields[i].offset = glsl_align(block_xfb_offset, align);
7434 block_xfb_offset += 4 * field_type->component_slots();
7435 }
7436 }
7437
7438 /* Propogate row- / column-major information down the fields of the
7439 * structure or interface block. Structures need this data because
7440 * the structure may contain a structure that contains ... a matrix
7441 * that need the proper layout.
7442 */
7443 if (is_interface && layout &&
7444 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7445 (field_type->without_array()->is_matrix()
7446 || field_type->without_array()->is_record())) {
7447 /* If no layout is specified for the field, inherit the layout
7448 * from the block.
7449 */
7450 fields[i].matrix_layout = matrix_layout;
7451
7452 if (qual->flags.q.row_major)
7453 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7454 else if (qual->flags.q.column_major)
7455 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7456
7457 /* If we're processing an uniform or buffer block, the matrix
7458 * layout must be decided by this point.
7459 */
7460 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7461 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7462 }
7463
7464 /* Memory qualifiers are allowed on buffer and image variables, while
7465 * the format qualifier is only accepted for images.
7466 */
7467 if (var_mode == ir_var_shader_storage ||
7468 field_type->without_array()->is_image()) {
7469 /* For readonly and writeonly qualifiers the field definition,
7470 * if set, overwrites the layout qualifier.
7471 */
7472 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7473 fields[i].memory_read_only = qual->flags.q.read_only;
7474 fields[i].memory_write_only = qual->flags.q.write_only;
7475 } else {
7476 fields[i].memory_read_only =
7477 layout ? layout->flags.q.read_only : 0;
7478 fields[i].memory_write_only =
7479 layout ? layout->flags.q.write_only : 0;
7480 }
7481
7482 /* For other qualifiers, we set the flag if either the layout
7483 * qualifier or the field qualifier are set
7484 */
7485 fields[i].memory_coherent = qual->flags.q.coherent ||
7486 (layout && layout->flags.q.coherent);
7487 fields[i].memory_volatile = qual->flags.q._volatile ||
7488 (layout && layout->flags.q._volatile);
7489 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7490 (layout && layout->flags.q.restrict_flag);
7491
7492 if (field_type->without_array()->is_image()) {
7493 if (qual->flags.q.explicit_image_format) {
7494 if (qual->image_base_type !=
7495 field_type->without_array()->sampled_type) {
7496 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7497 "match the base data type of the image");
7498 }
7499
7500 fields[i].image_format = qual->image_format;
7501 } else {
7502 if (!qual->flags.q.write_only) {
7503 _mesa_glsl_error(&loc, state, "image not qualified with "
7504 "`writeonly' must have a format layout "
7505 "qualifier");
7506 }
7507
7508 fields[i].image_format = GL_NONE;
7509 }
7510 }
7511 }
7512
7513 i++;
7514 }
7515 }
7516
7517 assert(i == decl_count);
7518
7519 *fields_ret = fields;
7520 return decl_count;
7521 }
7522
7523
7524 ir_rvalue *
7525 ast_struct_specifier::hir(exec_list *instructions,
7526 struct _mesa_glsl_parse_state *state)
7527 {
7528 YYLTYPE loc = this->get_location();
7529
7530 unsigned expl_location = 0;
7531 if (layout && layout->flags.q.explicit_location) {
7532 if (!process_qualifier_constant(state, &loc, "location",
7533 layout->location, &expl_location)) {
7534 return NULL;
7535 } else {
7536 expl_location = VARYING_SLOT_VAR0 + expl_location;
7537 }
7538 }
7539
7540 glsl_struct_field *fields;
7541 unsigned decl_count =
7542 ast_process_struct_or_iface_block_members(instructions,
7543 state,
7544 &this->declarations,
7545 &fields,
7546 false,
7547 GLSL_MATRIX_LAYOUT_INHERITED,
7548 false /* allow_reserved_names */,
7549 ir_var_auto,
7550 layout,
7551 0, /* for interface only */
7552 0, /* for interface only */
7553 0, /* for interface only */
7554 expl_location,
7555 0 /* for interface only */);
7556
7557 validate_identifier(this->name, loc, state);
7558
7559 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7560
7561 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7562 const glsl_type *match = state->symbols->get_type(name);
7563 /* allow struct matching for desktop GL - older UE4 does this */
7564 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7565 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7566 else
7567 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7568 } else {
7569 const glsl_type **s = reralloc(state, state->user_structures,
7570 const glsl_type *,
7571 state->num_user_structures + 1);
7572 if (s != NULL) {
7573 s[state->num_user_structures] = type;
7574 state->user_structures = s;
7575 state->num_user_structures++;
7576 }
7577 }
7578
7579 /* Structure type definitions do not have r-values.
7580 */
7581 return NULL;
7582 }
7583
7584
7585 /**
7586 * Visitor class which detects whether a given interface block has been used.
7587 */
7588 class interface_block_usage_visitor : public ir_hierarchical_visitor
7589 {
7590 public:
7591 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7592 : mode(mode), block(block), found(false)
7593 {
7594 }
7595
7596 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7597 {
7598 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7599 found = true;
7600 return visit_stop;
7601 }
7602 return visit_continue;
7603 }
7604
7605 bool usage_found() const
7606 {
7607 return this->found;
7608 }
7609
7610 private:
7611 ir_variable_mode mode;
7612 const glsl_type *block;
7613 bool found;
7614 };
7615
7616 static bool
7617 is_unsized_array_last_element(ir_variable *v)
7618 {
7619 const glsl_type *interface_type = v->get_interface_type();
7620 int length = interface_type->length;
7621
7622 assert(v->type->is_unsized_array());
7623
7624 /* Check if it is the last element of the interface */
7625 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7626 return true;
7627 return false;
7628 }
7629
7630 static void
7631 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7632 {
7633 var->data.memory_read_only = field.memory_read_only;
7634 var->data.memory_write_only = field.memory_write_only;
7635 var->data.memory_coherent = field.memory_coherent;
7636 var->data.memory_volatile = field.memory_volatile;
7637 var->data.memory_restrict = field.memory_restrict;
7638 }
7639
7640 ir_rvalue *
7641 ast_interface_block::hir(exec_list *instructions,
7642 struct _mesa_glsl_parse_state *state)
7643 {
7644 YYLTYPE loc = this->get_location();
7645
7646 /* Interface blocks must be declared at global scope */
7647 if (state->current_function != NULL) {
7648 _mesa_glsl_error(&loc, state,
7649 "Interface block `%s' must be declared "
7650 "at global scope",
7651 this->block_name);
7652 }
7653
7654 /* Validate qualifiers:
7655 *
7656 * - Layout Qualifiers as per the table in Section 4.4
7657 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7658 *
7659 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7660 * GLSL 4.50 spec:
7661 *
7662 * "Additionally, memory qualifiers may also be used in the declaration
7663 * of shader storage blocks"
7664 *
7665 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7666 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7667 * Layout Qualifiers) of the GLSL 4.50 spec says:
7668 *
7669 * "The std430 qualifier is supported only for shader storage blocks;
7670 * using std430 on a uniform block will result in a compile-time error."
7671 */
7672 ast_type_qualifier allowed_blk_qualifiers;
7673 allowed_blk_qualifiers.flags.i = 0;
7674 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7675 allowed_blk_qualifiers.flags.q.shared = 1;
7676 allowed_blk_qualifiers.flags.q.packed = 1;
7677 allowed_blk_qualifiers.flags.q.std140 = 1;
7678 allowed_blk_qualifiers.flags.q.row_major = 1;
7679 allowed_blk_qualifiers.flags.q.column_major = 1;
7680 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7681 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7682 if (this->layout.flags.q.buffer) {
7683 allowed_blk_qualifiers.flags.q.buffer = 1;
7684 allowed_blk_qualifiers.flags.q.std430 = 1;
7685 allowed_blk_qualifiers.flags.q.coherent = 1;
7686 allowed_blk_qualifiers.flags.q._volatile = 1;
7687 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7688 allowed_blk_qualifiers.flags.q.read_only = 1;
7689 allowed_blk_qualifiers.flags.q.write_only = 1;
7690 } else {
7691 allowed_blk_qualifiers.flags.q.uniform = 1;
7692 }
7693 } else {
7694 /* Interface block */
7695 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7696
7697 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7698 if (this->layout.flags.q.out) {
7699 allowed_blk_qualifiers.flags.q.out = 1;
7700 if (state->stage == MESA_SHADER_GEOMETRY ||
7701 state->stage == MESA_SHADER_TESS_CTRL ||
7702 state->stage == MESA_SHADER_TESS_EVAL ||
7703 state->stage == MESA_SHADER_VERTEX ) {
7704 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7705 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7706 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7707 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7708 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7709 if (state->stage == MESA_SHADER_GEOMETRY) {
7710 allowed_blk_qualifiers.flags.q.stream = 1;
7711 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7712 }
7713 if (state->stage == MESA_SHADER_TESS_CTRL) {
7714 allowed_blk_qualifiers.flags.q.patch = 1;
7715 }
7716 }
7717 } else {
7718 allowed_blk_qualifiers.flags.q.in = 1;
7719 if (state->stage == MESA_SHADER_TESS_EVAL) {
7720 allowed_blk_qualifiers.flags.q.patch = 1;
7721 }
7722 }
7723 }
7724
7725 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7726 "invalid qualifier for block",
7727 this->block_name);
7728
7729 enum glsl_interface_packing packing;
7730 if (this->layout.flags.q.std140) {
7731 packing = GLSL_INTERFACE_PACKING_STD140;
7732 } else if (this->layout.flags.q.packed) {
7733 packing = GLSL_INTERFACE_PACKING_PACKED;
7734 } else if (this->layout.flags.q.std430) {
7735 packing = GLSL_INTERFACE_PACKING_STD430;
7736 } else {
7737 /* The default layout is shared.
7738 */
7739 packing = GLSL_INTERFACE_PACKING_SHARED;
7740 }
7741
7742 ir_variable_mode var_mode;
7743 const char *iface_type_name;
7744 if (this->layout.flags.q.in) {
7745 var_mode = ir_var_shader_in;
7746 iface_type_name = "in";
7747 } else if (this->layout.flags.q.out) {
7748 var_mode = ir_var_shader_out;
7749 iface_type_name = "out";
7750 } else if (this->layout.flags.q.uniform) {
7751 var_mode = ir_var_uniform;
7752 iface_type_name = "uniform";
7753 } else if (this->layout.flags.q.buffer) {
7754 var_mode = ir_var_shader_storage;
7755 iface_type_name = "buffer";
7756 } else {
7757 var_mode = ir_var_auto;
7758 iface_type_name = "UNKNOWN";
7759 assert(!"interface block layout qualifier not found!");
7760 }
7761
7762 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7763 if (this->layout.flags.q.row_major)
7764 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7765 else if (this->layout.flags.q.column_major)
7766 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7767
7768 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7769 exec_list declared_variables;
7770 glsl_struct_field *fields;
7771
7772 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7773 * that we don't have incompatible qualifiers
7774 */
7775 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7776 _mesa_glsl_error(&loc, state,
7777 "Interface block sets both readonly and writeonly");
7778 }
7779
7780 unsigned qual_stream;
7781 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7782 &qual_stream) ||
7783 !validate_stream_qualifier(&loc, state, qual_stream)) {
7784 /* If the stream qualifier is invalid it doesn't make sense to continue
7785 * on and try to compare stream layouts on member variables against it
7786 * so just return early.
7787 */
7788 return NULL;
7789 }
7790
7791 unsigned qual_xfb_buffer;
7792 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7793 layout.xfb_buffer, &qual_xfb_buffer) ||
7794 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7795 return NULL;
7796 }
7797
7798 unsigned qual_xfb_offset;
7799 if (layout.flags.q.explicit_xfb_offset) {
7800 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7801 layout.offset, &qual_xfb_offset)) {
7802 return NULL;
7803 }
7804 }
7805
7806 unsigned qual_xfb_stride;
7807 if (layout.flags.q.explicit_xfb_stride) {
7808 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7809 layout.xfb_stride, &qual_xfb_stride)) {
7810 return NULL;
7811 }
7812 }
7813
7814 unsigned expl_location = 0;
7815 if (layout.flags.q.explicit_location) {
7816 if (!process_qualifier_constant(state, &loc, "location",
7817 layout.location, &expl_location)) {
7818 return NULL;
7819 } else {
7820 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7821 : VARYING_SLOT_VAR0;
7822 }
7823 }
7824
7825 unsigned expl_align = 0;
7826 if (layout.flags.q.explicit_align) {
7827 if (!process_qualifier_constant(state, &loc, "align",
7828 layout.align, &expl_align)) {
7829 return NULL;
7830 } else {
7831 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7832 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7833 "power of 2.");
7834 return NULL;
7835 }
7836 }
7837 }
7838
7839 unsigned int num_variables =
7840 ast_process_struct_or_iface_block_members(&declared_variables,
7841 state,
7842 &this->declarations,
7843 &fields,
7844 true,
7845 matrix_layout,
7846 redeclaring_per_vertex,
7847 var_mode,
7848 &this->layout,
7849 qual_stream,
7850 qual_xfb_buffer,
7851 qual_xfb_offset,
7852 expl_location,
7853 expl_align);
7854
7855 if (!redeclaring_per_vertex) {
7856 validate_identifier(this->block_name, loc, state);
7857
7858 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7859 *
7860 * "Block names have no other use within a shader beyond interface
7861 * matching; it is a compile-time error to use a block name at global
7862 * scope for anything other than as a block name."
7863 */
7864 ir_variable *var = state->symbols->get_variable(this->block_name);
7865 if (var && !var->type->is_interface()) {
7866 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7867 "already used in the scope.",
7868 this->block_name);
7869 }
7870 }
7871
7872 const glsl_type *earlier_per_vertex = NULL;
7873 if (redeclaring_per_vertex) {
7874 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7875 * the named interface block gl_in, we can find it by looking at the
7876 * previous declaration of gl_in. Otherwise we can find it by looking
7877 * at the previous decalartion of any of the built-in outputs,
7878 * e.g. gl_Position.
7879 *
7880 * Also check that the instance name and array-ness of the redeclaration
7881 * are correct.
7882 */
7883 switch (var_mode) {
7884 case ir_var_shader_in:
7885 if (ir_variable *earlier_gl_in =
7886 state->symbols->get_variable("gl_in")) {
7887 earlier_per_vertex = earlier_gl_in->get_interface_type();
7888 } else {
7889 _mesa_glsl_error(&loc, state,
7890 "redeclaration of gl_PerVertex input not allowed "
7891 "in the %s shader",
7892 _mesa_shader_stage_to_string(state->stage));
7893 }
7894 if (this->instance_name == NULL ||
7895 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7896 !this->array_specifier->is_single_dimension()) {
7897 _mesa_glsl_error(&loc, state,
7898 "gl_PerVertex input must be redeclared as "
7899 "gl_in[]");
7900 }
7901 break;
7902 case ir_var_shader_out:
7903 if (ir_variable *earlier_gl_Position =
7904 state->symbols->get_variable("gl_Position")) {
7905 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7906 } else if (ir_variable *earlier_gl_out =
7907 state->symbols->get_variable("gl_out")) {
7908 earlier_per_vertex = earlier_gl_out->get_interface_type();
7909 } else {
7910 _mesa_glsl_error(&loc, state,
7911 "redeclaration of gl_PerVertex output not "
7912 "allowed in the %s shader",
7913 _mesa_shader_stage_to_string(state->stage));
7914 }
7915 if (state->stage == MESA_SHADER_TESS_CTRL) {
7916 if (this->instance_name == NULL ||
7917 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7918 _mesa_glsl_error(&loc, state,
7919 "gl_PerVertex output must be redeclared as "
7920 "gl_out[]");
7921 }
7922 } else {
7923 if (this->instance_name != NULL) {
7924 _mesa_glsl_error(&loc, state,
7925 "gl_PerVertex output may not be redeclared with "
7926 "an instance name");
7927 }
7928 }
7929 break;
7930 default:
7931 _mesa_glsl_error(&loc, state,
7932 "gl_PerVertex must be declared as an input or an "
7933 "output");
7934 break;
7935 }
7936
7937 if (earlier_per_vertex == NULL) {
7938 /* An error has already been reported. Bail out to avoid null
7939 * dereferences later in this function.
7940 */
7941 return NULL;
7942 }
7943
7944 /* Copy locations from the old gl_PerVertex interface block. */
7945 for (unsigned i = 0; i < num_variables; i++) {
7946 int j = earlier_per_vertex->field_index(fields[i].name);
7947 if (j == -1) {
7948 _mesa_glsl_error(&loc, state,
7949 "redeclaration of gl_PerVertex must be a subset "
7950 "of the built-in members of gl_PerVertex");
7951 } else {
7952 fields[i].location =
7953 earlier_per_vertex->fields.structure[j].location;
7954 fields[i].offset =
7955 earlier_per_vertex->fields.structure[j].offset;
7956 fields[i].interpolation =
7957 earlier_per_vertex->fields.structure[j].interpolation;
7958 fields[i].centroid =
7959 earlier_per_vertex->fields.structure[j].centroid;
7960 fields[i].sample =
7961 earlier_per_vertex->fields.structure[j].sample;
7962 fields[i].patch =
7963 earlier_per_vertex->fields.structure[j].patch;
7964 fields[i].precision =
7965 earlier_per_vertex->fields.structure[j].precision;
7966 fields[i].explicit_xfb_buffer =
7967 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7968 fields[i].xfb_buffer =
7969 earlier_per_vertex->fields.structure[j].xfb_buffer;
7970 fields[i].xfb_stride =
7971 earlier_per_vertex->fields.structure[j].xfb_stride;
7972 }
7973 }
7974
7975 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7976 * spec:
7977 *
7978 * If a built-in interface block is redeclared, it must appear in
7979 * the shader before any use of any member included in the built-in
7980 * declaration, or a compilation error will result.
7981 *
7982 * This appears to be a clarification to the behaviour established for
7983 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7984 * regardless of GLSL version.
7985 */
7986 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7987 v.run(instructions);
7988 if (v.usage_found()) {
7989 _mesa_glsl_error(&loc, state,
7990 "redeclaration of a built-in interface block must "
7991 "appear before any use of any member of the "
7992 "interface block");
7993 }
7994 }
7995
7996 const glsl_type *block_type =
7997 glsl_type::get_interface_instance(fields,
7998 num_variables,
7999 packing,
8000 matrix_layout ==
8001 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8002 this->block_name);
8003
8004 unsigned component_size = block_type->contains_double() ? 8 : 4;
8005 int xfb_offset =
8006 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8007 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8008 component_size);
8009
8010 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8011 YYLTYPE loc = this->get_location();
8012 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8013 "already taken in the current scope",
8014 this->block_name, iface_type_name);
8015 }
8016
8017 /* Since interface blocks cannot contain statements, it should be
8018 * impossible for the block to generate any instructions.
8019 */
8020 assert(declared_variables.is_empty());
8021
8022 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8023 *
8024 * Geometry shader input variables get the per-vertex values written
8025 * out by vertex shader output variables of the same names. Since a
8026 * geometry shader operates on a set of vertices, each input varying
8027 * variable (or input block, see interface blocks below) needs to be
8028 * declared as an array.
8029 */
8030 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8031 var_mode == ir_var_shader_in) {
8032 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8033 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8034 state->stage == MESA_SHADER_TESS_EVAL) &&
8035 !this->layout.flags.q.patch &&
8036 this->array_specifier == NULL &&
8037 var_mode == ir_var_shader_in) {
8038 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8039 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8040 !this->layout.flags.q.patch &&
8041 this->array_specifier == NULL &&
8042 var_mode == ir_var_shader_out) {
8043 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8044 }
8045
8046
8047 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8048 * says:
8049 *
8050 * "If an instance name (instance-name) is used, then it puts all the
8051 * members inside a scope within its own name space, accessed with the
8052 * field selector ( . ) operator (analogously to structures)."
8053 */
8054 if (this->instance_name) {
8055 if (redeclaring_per_vertex) {
8056 /* When a built-in in an unnamed interface block is redeclared,
8057 * get_variable_being_redeclared() calls
8058 * check_builtin_array_max_size() to make sure that built-in array
8059 * variables aren't redeclared to illegal sizes. But we're looking
8060 * at a redeclaration of a named built-in interface block. So we
8061 * have to manually call check_builtin_array_max_size() for all parts
8062 * of the interface that are arrays.
8063 */
8064 for (unsigned i = 0; i < num_variables; i++) {
8065 if (fields[i].type->is_array()) {
8066 const unsigned size = fields[i].type->array_size();
8067 check_builtin_array_max_size(fields[i].name, size, loc, state);
8068 }
8069 }
8070 } else {
8071 validate_identifier(this->instance_name, loc, state);
8072 }
8073
8074 ir_variable *var;
8075
8076 if (this->array_specifier != NULL) {
8077 const glsl_type *block_array_type =
8078 process_array_type(&loc, block_type, this->array_specifier, state);
8079
8080 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8081 *
8082 * For uniform blocks declared an array, each individual array
8083 * element corresponds to a separate buffer object backing one
8084 * instance of the block. As the array size indicates the number
8085 * of buffer objects needed, uniform block array declarations
8086 * must specify an array size.
8087 *
8088 * And a few paragraphs later:
8089 *
8090 * Geometry shader input blocks must be declared as arrays and
8091 * follow the array declaration and linking rules for all
8092 * geometry shader inputs. All other input and output block
8093 * arrays must specify an array size.
8094 *
8095 * The same applies to tessellation shaders.
8096 *
8097 * The upshot of this is that the only circumstance where an
8098 * interface array size *doesn't* need to be specified is on a
8099 * geometry shader input, tessellation control shader input,
8100 * tessellation control shader output, and tessellation evaluation
8101 * shader input.
8102 */
8103 if (block_array_type->is_unsized_array()) {
8104 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8105 state->stage == MESA_SHADER_TESS_CTRL ||
8106 state->stage == MESA_SHADER_TESS_EVAL;
8107 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8108
8109 if (this->layout.flags.q.in) {
8110 if (!allow_inputs)
8111 _mesa_glsl_error(&loc, state,
8112 "unsized input block arrays not allowed in "
8113 "%s shader",
8114 _mesa_shader_stage_to_string(state->stage));
8115 } else if (this->layout.flags.q.out) {
8116 if (!allow_outputs)
8117 _mesa_glsl_error(&loc, state,
8118 "unsized output block arrays not allowed in "
8119 "%s shader",
8120 _mesa_shader_stage_to_string(state->stage));
8121 } else {
8122 /* by elimination, this is a uniform block array */
8123 _mesa_glsl_error(&loc, state,
8124 "unsized uniform block arrays not allowed in "
8125 "%s shader",
8126 _mesa_shader_stage_to_string(state->stage));
8127 }
8128 }
8129
8130 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8131 *
8132 * * Arrays of arrays of blocks are not allowed
8133 */
8134 if (state->es_shader && block_array_type->is_array() &&
8135 block_array_type->fields.array->is_array()) {
8136 _mesa_glsl_error(&loc, state,
8137 "arrays of arrays interface blocks are "
8138 "not allowed");
8139 }
8140
8141 var = new(state) ir_variable(block_array_type,
8142 this->instance_name,
8143 var_mode);
8144 } else {
8145 var = new(state) ir_variable(block_type,
8146 this->instance_name,
8147 var_mode);
8148 }
8149
8150 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8151 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8152
8153 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8154 var->data.read_only = true;
8155
8156 var->data.patch = this->layout.flags.q.patch;
8157
8158 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8159 handle_geometry_shader_input_decl(state, loc, var);
8160 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8161 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8162 handle_tess_shader_input_decl(state, loc, var);
8163 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8164 handle_tess_ctrl_shader_output_decl(state, loc, var);
8165
8166 for (unsigned i = 0; i < num_variables; i++) {
8167 if (var->data.mode == ir_var_shader_storage)
8168 apply_memory_qualifiers(var, fields[i]);
8169 }
8170
8171 if (ir_variable *earlier =
8172 state->symbols->get_variable(this->instance_name)) {
8173 if (!redeclaring_per_vertex) {
8174 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8175 this->instance_name);
8176 }
8177 earlier->data.how_declared = ir_var_declared_normally;
8178 earlier->type = var->type;
8179 earlier->reinit_interface_type(block_type);
8180 delete var;
8181 } else {
8182 if (this->layout.flags.q.explicit_binding) {
8183 apply_explicit_binding(state, &loc, var, var->type,
8184 &this->layout);
8185 }
8186
8187 var->data.stream = qual_stream;
8188 if (layout.flags.q.explicit_location) {
8189 var->data.location = expl_location;
8190 var->data.explicit_location = true;
8191 }
8192
8193 state->symbols->add_variable(var);
8194 instructions->push_tail(var);
8195 }
8196 } else {
8197 /* In order to have an array size, the block must also be declared with
8198 * an instance name.
8199 */
8200 assert(this->array_specifier == NULL);
8201
8202 for (unsigned i = 0; i < num_variables; i++) {
8203 ir_variable *var =
8204 new(state) ir_variable(fields[i].type,
8205 ralloc_strdup(state, fields[i].name),
8206 var_mode);
8207 var->data.interpolation = fields[i].interpolation;
8208 var->data.centroid = fields[i].centroid;
8209 var->data.sample = fields[i].sample;
8210 var->data.patch = fields[i].patch;
8211 var->data.stream = qual_stream;
8212 var->data.location = fields[i].location;
8213
8214 if (fields[i].location != -1)
8215 var->data.explicit_location = true;
8216
8217 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8218 var->data.xfb_buffer = fields[i].xfb_buffer;
8219
8220 if (fields[i].offset != -1)
8221 var->data.explicit_xfb_offset = true;
8222 var->data.offset = fields[i].offset;
8223
8224 var->init_interface_type(block_type);
8225
8226 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8227 var->data.read_only = true;
8228
8229 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8230 if (state->es_shader) {
8231 var->data.precision =
8232 select_gles_precision(fields[i].precision, fields[i].type,
8233 state, &loc);
8234 }
8235
8236 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8237 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8238 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8239 } else {
8240 var->data.matrix_layout = fields[i].matrix_layout;
8241 }
8242
8243 if (var->data.mode == ir_var_shader_storage)
8244 apply_memory_qualifiers(var, fields[i]);
8245
8246 /* Examine var name here since var may get deleted in the next call */
8247 bool var_is_gl_id = is_gl_identifier(var->name);
8248
8249 if (redeclaring_per_vertex) {
8250 bool is_redeclaration;
8251 var =
8252 get_variable_being_redeclared(&var, loc, state,
8253 true /* allow_all_redeclarations */,
8254 &is_redeclaration);
8255 if (!var_is_gl_id || !is_redeclaration) {
8256 _mesa_glsl_error(&loc, state,
8257 "redeclaration of gl_PerVertex can only "
8258 "include built-in variables");
8259 } else if (var->data.how_declared == ir_var_declared_normally) {
8260 _mesa_glsl_error(&loc, state,
8261 "`%s' has already been redeclared",
8262 var->name);
8263 } else {
8264 var->data.how_declared = ir_var_declared_in_block;
8265 var->reinit_interface_type(block_type);
8266 }
8267 continue;
8268 }
8269
8270 if (state->symbols->get_variable(var->name) != NULL)
8271 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8272
8273 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8274 * The UBO declaration itself doesn't get an ir_variable unless it
8275 * has an instance name. This is ugly.
8276 */
8277 if (this->layout.flags.q.explicit_binding) {
8278 apply_explicit_binding(state, &loc, var,
8279 var->get_interface_type(), &this->layout);
8280 }
8281
8282 if (var->type->is_unsized_array()) {
8283 if (var->is_in_shader_storage_block() &&
8284 is_unsized_array_last_element(var)) {
8285 var->data.from_ssbo_unsized_array = true;
8286 } else {
8287 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8288 *
8289 * "If an array is declared as the last member of a shader storage
8290 * block and the size is not specified at compile-time, it is
8291 * sized at run-time. In all other cases, arrays are sized only
8292 * at compile-time."
8293 *
8294 * In desktop GLSL it is allowed to have unsized-arrays that are
8295 * not last, as long as we can determine that they are implicitly
8296 * sized.
8297 */
8298 if (state->es_shader) {
8299 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8300 "definition: only last member of a shader "
8301 "storage block can be defined as unsized "
8302 "array", fields[i].name);
8303 }
8304 }
8305 }
8306
8307 state->symbols->add_variable(var);
8308 instructions->push_tail(var);
8309 }
8310
8311 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8312 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8313 *
8314 * It is also a compilation error ... to redeclare a built-in
8315 * block and then use a member from that built-in block that was
8316 * not included in the redeclaration.
8317 *
8318 * This appears to be a clarification to the behaviour established
8319 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8320 * behaviour regardless of GLSL version.
8321 *
8322 * To prevent the shader from using a member that was not included in
8323 * the redeclaration, we disable any ir_variables that are still
8324 * associated with the old declaration of gl_PerVertex (since we've
8325 * already updated all of the variables contained in the new
8326 * gl_PerVertex to point to it).
8327 *
8328 * As a side effect this will prevent
8329 * validate_intrastage_interface_blocks() from getting confused and
8330 * thinking there are conflicting definitions of gl_PerVertex in the
8331 * shader.
8332 */
8333 foreach_in_list_safe(ir_instruction, node, instructions) {
8334 ir_variable *const var = node->as_variable();
8335 if (var != NULL &&
8336 var->get_interface_type() == earlier_per_vertex &&
8337 var->data.mode == var_mode) {
8338 if (var->data.how_declared == ir_var_declared_normally) {
8339 _mesa_glsl_error(&loc, state,
8340 "redeclaration of gl_PerVertex cannot "
8341 "follow a redeclaration of `%s'",
8342 var->name);
8343 }
8344 state->symbols->disable_variable(var->name);
8345 var->remove();
8346 }
8347 }
8348 }
8349 }
8350
8351 return NULL;
8352 }
8353
8354
8355 ir_rvalue *
8356 ast_tcs_output_layout::hir(exec_list *instructions,
8357 struct _mesa_glsl_parse_state *state)
8358 {
8359 YYLTYPE loc = this->get_location();
8360
8361 unsigned num_vertices;
8362 if (!state->out_qualifier->vertices->
8363 process_qualifier_constant(state, "vertices", &num_vertices,
8364 false)) {
8365 /* return here to stop cascading incorrect error messages */
8366 return NULL;
8367 }
8368
8369 /* If any shader outputs occurred before this declaration and specified an
8370 * array size, make sure the size they specified is consistent with the
8371 * primitive type.
8372 */
8373 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8374 _mesa_glsl_error(&loc, state,
8375 "this tessellation control shader output layout "
8376 "specifies %u vertices, but a previous output "
8377 "is declared with size %u",
8378 num_vertices, state->tcs_output_size);
8379 return NULL;
8380 }
8381
8382 state->tcs_output_vertices_specified = true;
8383
8384 /* If any shader outputs occurred before this declaration and did not
8385 * specify an array size, their size is determined now.
8386 */
8387 foreach_in_list (ir_instruction, node, instructions) {
8388 ir_variable *var = node->as_variable();
8389 if (var == NULL || var->data.mode != ir_var_shader_out)
8390 continue;
8391
8392 /* Note: Not all tessellation control shader output are arrays. */
8393 if (!var->type->is_unsized_array() || var->data.patch)
8394 continue;
8395
8396 if (var->data.max_array_access >= (int)num_vertices) {
8397 _mesa_glsl_error(&loc, state,
8398 "this tessellation control shader output layout "
8399 "specifies %u vertices, but an access to element "
8400 "%u of output `%s' already exists", num_vertices,
8401 var->data.max_array_access, var->name);
8402 } else {
8403 var->type = glsl_type::get_array_instance(var->type->fields.array,
8404 num_vertices);
8405 }
8406 }
8407
8408 return NULL;
8409 }
8410
8411
8412 ir_rvalue *
8413 ast_gs_input_layout::hir(exec_list *instructions,
8414 struct _mesa_glsl_parse_state *state)
8415 {
8416 YYLTYPE loc = this->get_location();
8417
8418 /* Should have been prevented by the parser. */
8419 assert(!state->gs_input_prim_type_specified
8420 || state->in_qualifier->prim_type == this->prim_type);
8421
8422 /* If any shader inputs occurred before this declaration and specified an
8423 * array size, make sure the size they specified is consistent with the
8424 * primitive type.
8425 */
8426 unsigned num_vertices = vertices_per_prim(this->prim_type);
8427 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8428 _mesa_glsl_error(&loc, state,
8429 "this geometry shader input layout implies %u vertices"
8430 " per primitive, but a previous input is declared"
8431 " with size %u", num_vertices, state->gs_input_size);
8432 return NULL;
8433 }
8434
8435 state->gs_input_prim_type_specified = true;
8436
8437 /* If any shader inputs occurred before this declaration and did not
8438 * specify an array size, their size is determined now.
8439 */
8440 foreach_in_list(ir_instruction, node, instructions) {
8441 ir_variable *var = node->as_variable();
8442 if (var == NULL || var->data.mode != ir_var_shader_in)
8443 continue;
8444
8445 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8446 * array; skip it.
8447 */
8448
8449 if (var->type->is_unsized_array()) {
8450 if (var->data.max_array_access >= (int)num_vertices) {
8451 _mesa_glsl_error(&loc, state,
8452 "this geometry shader input layout implies %u"
8453 " vertices, but an access to element %u of input"
8454 " `%s' already exists", num_vertices,
8455 var->data.max_array_access, var->name);
8456 } else {
8457 var->type = glsl_type::get_array_instance(var->type->fields.array,
8458 num_vertices);
8459 }
8460 }
8461 }
8462
8463 return NULL;
8464 }
8465
8466
8467 ir_rvalue *
8468 ast_cs_input_layout::hir(exec_list *instructions,
8469 struct _mesa_glsl_parse_state *state)
8470 {
8471 YYLTYPE loc = this->get_location();
8472
8473 /* From the ARB_compute_shader specification:
8474 *
8475 * If the local size of the shader in any dimension is greater
8476 * than the maximum size supported by the implementation for that
8477 * dimension, a compile-time error results.
8478 *
8479 * It is not clear from the spec how the error should be reported if
8480 * the total size of the work group exceeds
8481 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8482 * report it at compile time as well.
8483 */
8484 GLuint64 total_invocations = 1;
8485 unsigned qual_local_size[3];
8486 for (int i = 0; i < 3; i++) {
8487
8488 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8489 'x' + i);
8490 /* Infer a local_size of 1 for unspecified dimensions */
8491 if (this->local_size[i] == NULL) {
8492 qual_local_size[i] = 1;
8493 } else if (!this->local_size[i]->
8494 process_qualifier_constant(state, local_size_str,
8495 &qual_local_size[i], false)) {
8496 ralloc_free(local_size_str);
8497 return NULL;
8498 }
8499 ralloc_free(local_size_str);
8500
8501 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8502 _mesa_glsl_error(&loc, state,
8503 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8504 " (%d)", 'x' + i,
8505 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8506 break;
8507 }
8508 total_invocations *= qual_local_size[i];
8509 if (total_invocations >
8510 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8511 _mesa_glsl_error(&loc, state,
8512 "product of local_sizes exceeds "
8513 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8514 state->ctx->Const.MaxComputeWorkGroupInvocations);
8515 break;
8516 }
8517 }
8518
8519 /* If any compute input layout declaration preceded this one, make sure it
8520 * was consistent with this one.
8521 */
8522 if (state->cs_input_local_size_specified) {
8523 for (int i = 0; i < 3; i++) {
8524 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8525 _mesa_glsl_error(&loc, state,
8526 "compute shader input layout does not match"
8527 " previous declaration");
8528 return NULL;
8529 }
8530 }
8531 }
8532
8533 /* The ARB_compute_variable_group_size spec says:
8534 *
8535 * If a compute shader including a *local_size_variable* qualifier also
8536 * declares a fixed local group size using the *local_size_x*,
8537 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8538 * results
8539 */
8540 if (state->cs_input_local_size_variable_specified) {
8541 _mesa_glsl_error(&loc, state,
8542 "compute shader can't include both a variable and a "
8543 "fixed local group size");
8544 return NULL;
8545 }
8546
8547 state->cs_input_local_size_specified = true;
8548 for (int i = 0; i < 3; i++)
8549 state->cs_input_local_size[i] = qual_local_size[i];
8550
8551 /* We may now declare the built-in constant gl_WorkGroupSize (see
8552 * builtin_variable_generator::generate_constants() for why we didn't
8553 * declare it earlier).
8554 */
8555 ir_variable *var = new(state->symbols)
8556 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8557 var->data.how_declared = ir_var_declared_implicitly;
8558 var->data.read_only = true;
8559 instructions->push_tail(var);
8560 state->symbols->add_variable(var);
8561 ir_constant_data data;
8562 memset(&data, 0, sizeof(data));
8563 for (int i = 0; i < 3; i++)
8564 data.u[i] = qual_local_size[i];
8565 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8566 var->constant_initializer =
8567 new(var) ir_constant(glsl_type::uvec3_type, &data);
8568 var->data.has_initializer = true;
8569
8570 return NULL;
8571 }
8572
8573
8574 static void
8575 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8576 exec_list *instructions)
8577 {
8578 bool gl_FragColor_assigned = false;
8579 bool gl_FragData_assigned = false;
8580 bool gl_FragSecondaryColor_assigned = false;
8581 bool gl_FragSecondaryData_assigned = false;
8582 bool user_defined_fs_output_assigned = false;
8583 ir_variable *user_defined_fs_output = NULL;
8584
8585 /* It would be nice to have proper location information. */
8586 YYLTYPE loc;
8587 memset(&loc, 0, sizeof(loc));
8588
8589 foreach_in_list(ir_instruction, node, instructions) {
8590 ir_variable *var = node->as_variable();
8591
8592 if (!var || !var->data.assigned)
8593 continue;
8594
8595 if (strcmp(var->name, "gl_FragColor") == 0)
8596 gl_FragColor_assigned = true;
8597 else if (strcmp(var->name, "gl_FragData") == 0)
8598 gl_FragData_assigned = true;
8599 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8600 gl_FragSecondaryColor_assigned = true;
8601 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8602 gl_FragSecondaryData_assigned = true;
8603 else if (!is_gl_identifier(var->name)) {
8604 if (state->stage == MESA_SHADER_FRAGMENT &&
8605 var->data.mode == ir_var_shader_out) {
8606 user_defined_fs_output_assigned = true;
8607 user_defined_fs_output = var;
8608 }
8609 }
8610 }
8611
8612 /* From the GLSL 1.30 spec:
8613 *
8614 * "If a shader statically assigns a value to gl_FragColor, it
8615 * may not assign a value to any element of gl_FragData. If a
8616 * shader statically writes a value to any element of
8617 * gl_FragData, it may not assign a value to
8618 * gl_FragColor. That is, a shader may assign values to either
8619 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8620 * linked together must also consistently write just one of
8621 * these variables. Similarly, if user declared output
8622 * variables are in use (statically assigned to), then the
8623 * built-in variables gl_FragColor and gl_FragData may not be
8624 * assigned to. These incorrect usages all generate compile
8625 * time errors."
8626 */
8627 if (gl_FragColor_assigned && gl_FragData_assigned) {
8628 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8629 "`gl_FragColor' and `gl_FragData'");
8630 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8631 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8632 "`gl_FragColor' and `%s'",
8633 user_defined_fs_output->name);
8634 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8635 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8636 "`gl_FragSecondaryColorEXT' and"
8637 " `gl_FragSecondaryDataEXT'");
8638 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8639 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8640 "`gl_FragColor' and"
8641 " `gl_FragSecondaryDataEXT'");
8642 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8643 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8644 "`gl_FragData' and"
8645 " `gl_FragSecondaryColorEXT'");
8646 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8647 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8648 "`gl_FragData' and `%s'",
8649 user_defined_fs_output->name);
8650 }
8651
8652 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8653 !state->EXT_blend_func_extended_enable) {
8654 _mesa_glsl_error(&loc, state,
8655 "Dual source blending requires EXT_blend_func_extended");
8656 }
8657 }
8658
8659
8660 static void
8661 remove_per_vertex_blocks(exec_list *instructions,
8662 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8663 {
8664 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8665 * if it exists in this shader type.
8666 */
8667 const glsl_type *per_vertex = NULL;
8668 switch (mode) {
8669 case ir_var_shader_in:
8670 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8671 per_vertex = gl_in->get_interface_type();
8672 break;
8673 case ir_var_shader_out:
8674 if (ir_variable *gl_Position =
8675 state->symbols->get_variable("gl_Position")) {
8676 per_vertex = gl_Position->get_interface_type();
8677 }
8678 break;
8679 default:
8680 assert(!"Unexpected mode");
8681 break;
8682 }
8683
8684 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8685 * need to do anything.
8686 */
8687 if (per_vertex == NULL)
8688 return;
8689
8690 /* If the interface block is used by the shader, then we don't need to do
8691 * anything.
8692 */
8693 interface_block_usage_visitor v(mode, per_vertex);
8694 v.run(instructions);
8695 if (v.usage_found())
8696 return;
8697
8698 /* Remove any ir_variable declarations that refer to the interface block
8699 * we're removing.
8700 */
8701 foreach_in_list_safe(ir_instruction, node, instructions) {
8702 ir_variable *const var = node->as_variable();
8703 if (var != NULL && var->get_interface_type() == per_vertex &&
8704 var->data.mode == mode) {
8705 state->symbols->disable_variable(var->name);
8706 var->remove();
8707 }
8708 }
8709 }