5cdeb94720b570b6b6aa58de1876a63dd9f8ab1c
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 static ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_less, /* This is correct. See the ast_greater case below. */
1341 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1491 * the arguments and use < or >=.
1492 */
1493 if (this->oper == ast_greater || this->oper == ast_lequal) {
1494 ir_rvalue *const tmp = op[0];
1495 op[0] = op[1];
1496 op[1] = tmp;
1497 }
1498
1499 result = new(ctx) ir_expression(operations[this->oper], type,
1500 op[0], op[1]);
1501 error_emitted = type->is_error();
1502 break;
1503
1504 case ast_nequal:
1505 case ast_equal:
1506 op[0] = this->subexpressions[0]->hir(instructions, state);
1507 op[1] = this->subexpressions[1]->hir(instructions, state);
1508
1509 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1510 *
1511 * "The equality operators equal (==), and not equal (!=)
1512 * operate on all types. They result in a scalar Boolean. If
1513 * the operand types do not match, then there must be a
1514 * conversion from Section 4.1.10 "Implicit Conversions"
1515 * applied to one operand that can make them match, in which
1516 * case this conversion is done."
1517 */
1518
1519 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1520 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1521 "no operation `%1$s' exists that takes a left-hand "
1522 "operand of type 'void' or a right operand of type "
1523 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1524 error_emitted = true;
1525 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1526 && !apply_implicit_conversion(op[1]->type, op[0], state))
1527 || (op[0]->type != op[1]->type)) {
1528 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1529 "type", (this->oper == ast_equal) ? "==" : "!=");
1530 error_emitted = true;
1531 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1532 !state->check_version(120, 300, &loc,
1533 "array comparisons forbidden")) {
1534 error_emitted = true;
1535 } else if ((op[0]->type->contains_subroutine() ||
1536 op[1]->type->contains_subroutine())) {
1537 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1538 error_emitted = true;
1539 } else if ((op[0]->type->contains_opaque() ||
1540 op[1]->type->contains_opaque())) {
1541 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1542 error_emitted = true;
1543 }
1544
1545 if (error_emitted) {
1546 result = new(ctx) ir_constant(false);
1547 } else {
1548 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1549 assert(result->type == glsl_type::bool_type);
1550 }
1551 break;
1552
1553 case ast_bit_and:
1554 case ast_bit_xor:
1555 case ast_bit_or:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557 op[1] = this->subexpressions[1]->hir(instructions, state);
1558 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1559 result = new(ctx) ir_expression(operations[this->oper], type,
1560 op[0], op[1]);
1561 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1562 break;
1563
1564 case ast_bit_not:
1565 op[0] = this->subexpressions[0]->hir(instructions, state);
1566
1567 if (!state->check_bitwise_operations_allowed(&loc)) {
1568 error_emitted = true;
1569 }
1570
1571 if (!op[0]->type->is_integer_32_64()) {
1572 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1573 error_emitted = true;
1574 }
1575
1576 type = error_emitted ? glsl_type::error_type : op[0]->type;
1577 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1578 break;
1579
1580 case ast_logic_and: {
1581 exec_list rhs_instructions;
1582 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1583 "LHS", &error_emitted);
1584 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1585 "RHS", &error_emitted);
1586
1587 if (rhs_instructions.is_empty()) {
1588 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1589 type = result->type;
1590 } else {
1591 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1592 "and_tmp",
1593 ir_var_temporary);
1594 instructions->push_tail(tmp);
1595
1596 ir_if *const stmt = new(ctx) ir_if(op[0]);
1597 instructions->push_tail(stmt);
1598
1599 stmt->then_instructions.append_list(&rhs_instructions);
1600 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1601 ir_assignment *const then_assign =
1602 new(ctx) ir_assignment(then_deref, op[1]);
1603 stmt->then_instructions.push_tail(then_assign);
1604
1605 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1606 ir_assignment *const else_assign =
1607 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1608 stmt->else_instructions.push_tail(else_assign);
1609
1610 result = new(ctx) ir_dereference_variable(tmp);
1611 type = tmp->type;
1612 }
1613 break;
1614 }
1615
1616 case ast_logic_or: {
1617 exec_list rhs_instructions;
1618 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1619 "LHS", &error_emitted);
1620 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1621 "RHS", &error_emitted);
1622
1623 if (rhs_instructions.is_empty()) {
1624 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1625 type = result->type;
1626 } else {
1627 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1628 "or_tmp",
1629 ir_var_temporary);
1630 instructions->push_tail(tmp);
1631
1632 ir_if *const stmt = new(ctx) ir_if(op[0]);
1633 instructions->push_tail(stmt);
1634
1635 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1636 ir_assignment *const then_assign =
1637 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1638 stmt->then_instructions.push_tail(then_assign);
1639
1640 stmt->else_instructions.append_list(&rhs_instructions);
1641 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1642 ir_assignment *const else_assign =
1643 new(ctx) ir_assignment(else_deref, op[1]);
1644 stmt->else_instructions.push_tail(else_assign);
1645
1646 result = new(ctx) ir_dereference_variable(tmp);
1647 type = tmp->type;
1648 }
1649 break;
1650 }
1651
1652 case ast_logic_xor:
1653 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1654 *
1655 * "The logical binary operators and (&&), or ( | | ), and
1656 * exclusive or (^^). They operate only on two Boolean
1657 * expressions and result in a Boolean expression."
1658 */
1659 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1660 &error_emitted);
1661 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1662 &error_emitted);
1663
1664 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1665 op[0], op[1]);
1666 break;
1667
1668 case ast_logic_not:
1669 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1670 "operand", &error_emitted);
1671
1672 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1673 op[0], NULL);
1674 break;
1675
1676 case ast_mul_assign:
1677 case ast_div_assign:
1678 case ast_add_assign:
1679 case ast_sub_assign: {
1680 this->subexpressions[0]->set_is_lhs(true);
1681 op[0] = this->subexpressions[0]->hir(instructions, state);
1682 op[1] = this->subexpressions[1]->hir(instructions, state);
1683
1684 orig_type = op[0]->type;
1685 type = arithmetic_result_type(op[0], op[1],
1686 (this->oper == ast_mul_assign),
1687 state, & loc);
1688
1689 if (type != orig_type) {
1690 _mesa_glsl_error(& loc, state,
1691 "could not implicitly convert "
1692 "%s to %s", type->name, orig_type->name);
1693 type = glsl_type::error_type;
1694 }
1695
1696 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1697 op[0], op[1]);
1698
1699 error_emitted =
1700 do_assignment(instructions, state,
1701 this->subexpressions[0]->non_lvalue_description,
1702 op[0]->clone(ctx, NULL), temp_rhs,
1703 &result, needs_rvalue, false,
1704 this->subexpressions[0]->get_location());
1705
1706 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1707 * explicitly test for this because none of the binary expression
1708 * operators allow array operands either.
1709 */
1710
1711 break;
1712 }
1713
1714 case ast_mod_assign: {
1715 this->subexpressions[0]->set_is_lhs(true);
1716 op[0] = this->subexpressions[0]->hir(instructions, state);
1717 op[1] = this->subexpressions[1]->hir(instructions, state);
1718
1719 orig_type = op[0]->type;
1720 type = modulus_result_type(op[0], op[1], state, &loc);
1721
1722 if (type != orig_type) {
1723 _mesa_glsl_error(& loc, state,
1724 "could not implicitly convert "
1725 "%s to %s", type->name, orig_type->name);
1726 type = glsl_type::error_type;
1727 }
1728
1729 assert(operations[this->oper] == ir_binop_mod);
1730
1731 ir_rvalue *temp_rhs;
1732 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1733 op[0], op[1]);
1734
1735 error_emitted =
1736 do_assignment(instructions, state,
1737 this->subexpressions[0]->non_lvalue_description,
1738 op[0]->clone(ctx, NULL), temp_rhs,
1739 &result, needs_rvalue, false,
1740 this->subexpressions[0]->get_location());
1741 break;
1742 }
1743
1744 case ast_ls_assign:
1745 case ast_rs_assign: {
1746 this->subexpressions[0]->set_is_lhs(true);
1747 op[0] = this->subexpressions[0]->hir(instructions, state);
1748 op[1] = this->subexpressions[1]->hir(instructions, state);
1749 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1750 &loc);
1751 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1752 type, op[0], op[1]);
1753 error_emitted =
1754 do_assignment(instructions, state,
1755 this->subexpressions[0]->non_lvalue_description,
1756 op[0]->clone(ctx, NULL), temp_rhs,
1757 &result, needs_rvalue, false,
1758 this->subexpressions[0]->get_location());
1759 break;
1760 }
1761
1762 case ast_and_assign:
1763 case ast_xor_assign:
1764 case ast_or_assign: {
1765 this->subexpressions[0]->set_is_lhs(true);
1766 op[0] = this->subexpressions[0]->hir(instructions, state);
1767 op[1] = this->subexpressions[1]->hir(instructions, state);
1768
1769 orig_type = op[0]->type;
1770 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1771
1772 if (type != orig_type) {
1773 _mesa_glsl_error(& loc, state,
1774 "could not implicitly convert "
1775 "%s to %s", type->name, orig_type->name);
1776 type = glsl_type::error_type;
1777 }
1778
1779 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1780 type, op[0], op[1]);
1781 error_emitted =
1782 do_assignment(instructions, state,
1783 this->subexpressions[0]->non_lvalue_description,
1784 op[0]->clone(ctx, NULL), temp_rhs,
1785 &result, needs_rvalue, false,
1786 this->subexpressions[0]->get_location());
1787 break;
1788 }
1789
1790 case ast_conditional: {
1791 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1792 *
1793 * "The ternary selection operator (?:). It operates on three
1794 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1795 * first expression, which must result in a scalar Boolean."
1796 */
1797 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1798 "condition", &error_emitted);
1799
1800 /* The :? operator is implemented by generating an anonymous temporary
1801 * followed by an if-statement. The last instruction in each branch of
1802 * the if-statement assigns a value to the anonymous temporary. This
1803 * temporary is the r-value of the expression.
1804 */
1805 exec_list then_instructions;
1806 exec_list else_instructions;
1807
1808 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1809 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1810
1811 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1812 *
1813 * "The second and third expressions can be any type, as
1814 * long their types match, or there is a conversion in
1815 * Section 4.1.10 "Implicit Conversions" that can be applied
1816 * to one of the expressions to make their types match. This
1817 * resulting matching type is the type of the entire
1818 * expression."
1819 */
1820 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1821 && !apply_implicit_conversion(op[2]->type, op[1], state))
1822 || (op[1]->type != op[2]->type)) {
1823 YYLTYPE loc = this->subexpressions[1]->get_location();
1824
1825 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1826 "operator must have matching types");
1827 error_emitted = true;
1828 type = glsl_type::error_type;
1829 } else {
1830 type = op[1]->type;
1831 }
1832
1833 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1834 *
1835 * "The second and third expressions must be the same type, but can
1836 * be of any type other than an array."
1837 */
1838 if (type->is_array() &&
1839 !state->check_version(120, 300, &loc,
1840 "second and third operands of ?: operator "
1841 "cannot be arrays")) {
1842 error_emitted = true;
1843 }
1844
1845 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1846 *
1847 * "Except for array indexing, structure member selection, and
1848 * parentheses, opaque variables are not allowed to be operands in
1849 * expressions; such use results in a compile-time error."
1850 */
1851 if (type->contains_opaque()) {
1852 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1853 "of the ?: operator");
1854 error_emitted = true;
1855 }
1856
1857 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1858
1859 if (then_instructions.is_empty()
1860 && else_instructions.is_empty()
1861 && cond_val != NULL) {
1862 result = cond_val->value.b[0] ? op[1] : op[2];
1863 } else {
1864 /* The copy to conditional_tmp reads the whole array. */
1865 if (type->is_array()) {
1866 mark_whole_array_access(op[1]);
1867 mark_whole_array_access(op[2]);
1868 }
1869
1870 ir_variable *const tmp =
1871 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1872 instructions->push_tail(tmp);
1873
1874 ir_if *const stmt = new(ctx) ir_if(op[0]);
1875 instructions->push_tail(stmt);
1876
1877 then_instructions.move_nodes_to(& stmt->then_instructions);
1878 ir_dereference *const then_deref =
1879 new(ctx) ir_dereference_variable(tmp);
1880 ir_assignment *const then_assign =
1881 new(ctx) ir_assignment(then_deref, op[1]);
1882 stmt->then_instructions.push_tail(then_assign);
1883
1884 else_instructions.move_nodes_to(& stmt->else_instructions);
1885 ir_dereference *const else_deref =
1886 new(ctx) ir_dereference_variable(tmp);
1887 ir_assignment *const else_assign =
1888 new(ctx) ir_assignment(else_deref, op[2]);
1889 stmt->else_instructions.push_tail(else_assign);
1890
1891 result = new(ctx) ir_dereference_variable(tmp);
1892 }
1893 break;
1894 }
1895
1896 case ast_pre_inc:
1897 case ast_pre_dec: {
1898 this->non_lvalue_description = (this->oper == ast_pre_inc)
1899 ? "pre-increment operation" : "pre-decrement operation";
1900
1901 op[0] = this->subexpressions[0]->hir(instructions, state);
1902 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1903
1904 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1905
1906 ir_rvalue *temp_rhs;
1907 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1908 op[0], op[1]);
1909
1910 error_emitted =
1911 do_assignment(instructions, state,
1912 this->subexpressions[0]->non_lvalue_description,
1913 op[0]->clone(ctx, NULL), temp_rhs,
1914 &result, needs_rvalue, false,
1915 this->subexpressions[0]->get_location());
1916 break;
1917 }
1918
1919 case ast_post_inc:
1920 case ast_post_dec: {
1921 this->non_lvalue_description = (this->oper == ast_post_inc)
1922 ? "post-increment operation" : "post-decrement operation";
1923 op[0] = this->subexpressions[0]->hir(instructions, state);
1924 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1925
1926 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1927
1928 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1929
1930 ir_rvalue *temp_rhs;
1931 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1932 op[0], op[1]);
1933
1934 /* Get a temporary of a copy of the lvalue before it's modified.
1935 * This may get thrown away later.
1936 */
1937 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1938
1939 ir_rvalue *junk_rvalue;
1940 error_emitted =
1941 do_assignment(instructions, state,
1942 this->subexpressions[0]->non_lvalue_description,
1943 op[0]->clone(ctx, NULL), temp_rhs,
1944 &junk_rvalue, false, false,
1945 this->subexpressions[0]->get_location());
1946
1947 break;
1948 }
1949
1950 case ast_field_selection:
1951 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1952 break;
1953
1954 case ast_array_index: {
1955 YYLTYPE index_loc = subexpressions[1]->get_location();
1956
1957 /* Getting if an array is being used uninitialized is beyond what we get
1958 * from ir_value.data.assigned. Setting is_lhs as true would force to
1959 * not raise a uninitialized warning when using an array
1960 */
1961 subexpressions[0]->set_is_lhs(true);
1962 op[0] = subexpressions[0]->hir(instructions, state);
1963 op[1] = subexpressions[1]->hir(instructions, state);
1964
1965 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1966 loc, index_loc);
1967
1968 if (result->type->is_error())
1969 error_emitted = true;
1970
1971 break;
1972 }
1973
1974 case ast_unsized_array_dim:
1975 assert(!"ast_unsized_array_dim: Should never get here.");
1976 break;
1977
1978 case ast_function_call:
1979 /* Should *NEVER* get here. ast_function_call should always be handled
1980 * by ast_function_expression::hir.
1981 */
1982 assert(0);
1983 break;
1984
1985 case ast_identifier: {
1986 /* ast_identifier can appear several places in a full abstract syntax
1987 * tree. This particular use must be at location specified in the grammar
1988 * as 'variable_identifier'.
1989 */
1990 ir_variable *var =
1991 state->symbols->get_variable(this->primary_expression.identifier);
1992
1993 if (var == NULL) {
1994 /* the identifier might be a subroutine name */
1995 char *sub_name;
1996 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1997 var = state->symbols->get_variable(sub_name);
1998 ralloc_free(sub_name);
1999 }
2000
2001 if (var != NULL) {
2002 var->data.used = true;
2003 result = new(ctx) ir_dereference_variable(var);
2004
2005 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2006 && !this->is_lhs
2007 && result->variable_referenced()->data.assigned != true
2008 && !is_gl_identifier(var->name)) {
2009 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2010 this->primary_expression.identifier);
2011 }
2012 } else {
2013 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2014 this->primary_expression.identifier);
2015
2016 result = ir_rvalue::error_value(ctx);
2017 error_emitted = true;
2018 }
2019 break;
2020 }
2021
2022 case ast_int_constant:
2023 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2024 break;
2025
2026 case ast_uint_constant:
2027 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2028 break;
2029
2030 case ast_float_constant:
2031 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2032 break;
2033
2034 case ast_bool_constant:
2035 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2036 break;
2037
2038 case ast_double_constant:
2039 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2040 break;
2041
2042 case ast_uint64_constant:
2043 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2044 break;
2045
2046 case ast_int64_constant:
2047 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2048 break;
2049
2050 case ast_sequence: {
2051 /* It should not be possible to generate a sequence in the AST without
2052 * any expressions in it.
2053 */
2054 assert(!this->expressions.is_empty());
2055
2056 /* The r-value of a sequence is the last expression in the sequence. If
2057 * the other expressions in the sequence do not have side-effects (and
2058 * therefore add instructions to the instruction list), they get dropped
2059 * on the floor.
2060 */
2061 exec_node *previous_tail = NULL;
2062 YYLTYPE previous_operand_loc = loc;
2063
2064 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2065 /* If one of the operands of comma operator does not generate any
2066 * code, we want to emit a warning. At each pass through the loop
2067 * previous_tail will point to the last instruction in the stream
2068 * *before* processing the previous operand. Naturally,
2069 * instructions->get_tail_raw() will point to the last instruction in
2070 * the stream *after* processing the previous operand. If the two
2071 * pointers match, then the previous operand had no effect.
2072 *
2073 * The warning behavior here differs slightly from GCC. GCC will
2074 * only emit a warning if none of the left-hand operands have an
2075 * effect. However, it will emit a warning for each. I believe that
2076 * there are some cases in C (especially with GCC extensions) where
2077 * it is useful to have an intermediate step in a sequence have no
2078 * effect, but I don't think these cases exist in GLSL. Either way,
2079 * it would be a giant hassle to replicate that behavior.
2080 */
2081 if (previous_tail == instructions->get_tail_raw()) {
2082 _mesa_glsl_warning(&previous_operand_loc, state,
2083 "left-hand operand of comma expression has "
2084 "no effect");
2085 }
2086
2087 /* The tail is directly accessed instead of using the get_tail()
2088 * method for performance reasons. get_tail() has extra code to
2089 * return NULL when the list is empty. We don't care about that
2090 * here, so using get_tail_raw() is fine.
2091 */
2092 previous_tail = instructions->get_tail_raw();
2093 previous_operand_loc = ast->get_location();
2094
2095 result = ast->hir(instructions, state);
2096 }
2097
2098 /* Any errors should have already been emitted in the loop above.
2099 */
2100 error_emitted = true;
2101 break;
2102 }
2103 }
2104 type = NULL; /* use result->type, not type. */
2105 assert(result != NULL || !needs_rvalue);
2106
2107 if (result && result->type->is_error() && !error_emitted)
2108 _mesa_glsl_error(& loc, state, "type mismatch");
2109
2110 return result;
2111 }
2112
2113 bool
2114 ast_expression::has_sequence_subexpression() const
2115 {
2116 switch (this->oper) {
2117 case ast_plus:
2118 case ast_neg:
2119 case ast_bit_not:
2120 case ast_logic_not:
2121 case ast_pre_inc:
2122 case ast_pre_dec:
2123 case ast_post_inc:
2124 case ast_post_dec:
2125 return this->subexpressions[0]->has_sequence_subexpression();
2126
2127 case ast_assign:
2128 case ast_add:
2129 case ast_sub:
2130 case ast_mul:
2131 case ast_div:
2132 case ast_mod:
2133 case ast_lshift:
2134 case ast_rshift:
2135 case ast_less:
2136 case ast_greater:
2137 case ast_lequal:
2138 case ast_gequal:
2139 case ast_nequal:
2140 case ast_equal:
2141 case ast_bit_and:
2142 case ast_bit_xor:
2143 case ast_bit_or:
2144 case ast_logic_and:
2145 case ast_logic_or:
2146 case ast_logic_xor:
2147 case ast_array_index:
2148 case ast_mul_assign:
2149 case ast_div_assign:
2150 case ast_add_assign:
2151 case ast_sub_assign:
2152 case ast_mod_assign:
2153 case ast_ls_assign:
2154 case ast_rs_assign:
2155 case ast_and_assign:
2156 case ast_xor_assign:
2157 case ast_or_assign:
2158 return this->subexpressions[0]->has_sequence_subexpression() ||
2159 this->subexpressions[1]->has_sequence_subexpression();
2160
2161 case ast_conditional:
2162 return this->subexpressions[0]->has_sequence_subexpression() ||
2163 this->subexpressions[1]->has_sequence_subexpression() ||
2164 this->subexpressions[2]->has_sequence_subexpression();
2165
2166 case ast_sequence:
2167 return true;
2168
2169 case ast_field_selection:
2170 case ast_identifier:
2171 case ast_int_constant:
2172 case ast_uint_constant:
2173 case ast_float_constant:
2174 case ast_bool_constant:
2175 case ast_double_constant:
2176 case ast_int64_constant:
2177 case ast_uint64_constant:
2178 return false;
2179
2180 case ast_aggregate:
2181 return false;
2182
2183 case ast_function_call:
2184 unreachable("should be handled by ast_function_expression::hir");
2185
2186 case ast_unsized_array_dim:
2187 unreachable("ast_unsized_array_dim: Should never get here.");
2188 }
2189
2190 return false;
2191 }
2192
2193 ir_rvalue *
2194 ast_expression_statement::hir(exec_list *instructions,
2195 struct _mesa_glsl_parse_state *state)
2196 {
2197 /* It is possible to have expression statements that don't have an
2198 * expression. This is the solitary semicolon:
2199 *
2200 * for (i = 0; i < 5; i++)
2201 * ;
2202 *
2203 * In this case the expression will be NULL. Test for NULL and don't do
2204 * anything in that case.
2205 */
2206 if (expression != NULL)
2207 expression->hir_no_rvalue(instructions, state);
2208
2209 /* Statements do not have r-values.
2210 */
2211 return NULL;
2212 }
2213
2214
2215 ir_rvalue *
2216 ast_compound_statement::hir(exec_list *instructions,
2217 struct _mesa_glsl_parse_state *state)
2218 {
2219 if (new_scope)
2220 state->symbols->push_scope();
2221
2222 foreach_list_typed (ast_node, ast, link, &this->statements)
2223 ast->hir(instructions, state);
2224
2225 if (new_scope)
2226 state->symbols->pop_scope();
2227
2228 /* Compound statements do not have r-values.
2229 */
2230 return NULL;
2231 }
2232
2233 /**
2234 * Evaluate the given exec_node (which should be an ast_node representing
2235 * a single array dimension) and return its integer value.
2236 */
2237 static unsigned
2238 process_array_size(exec_node *node,
2239 struct _mesa_glsl_parse_state *state)
2240 {
2241 void *mem_ctx = state;
2242
2243 exec_list dummy_instructions;
2244
2245 ast_node *array_size = exec_node_data(ast_node, node, link);
2246
2247 /**
2248 * Dimensions other than the outermost dimension can by unsized if they
2249 * are immediately sized by a constructor or initializer.
2250 */
2251 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2252 return 0;
2253
2254 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2255 YYLTYPE loc = array_size->get_location();
2256
2257 if (ir == NULL) {
2258 _mesa_glsl_error(& loc, state,
2259 "array size could not be resolved");
2260 return 0;
2261 }
2262
2263 if (!ir->type->is_integer()) {
2264 _mesa_glsl_error(& loc, state,
2265 "array size must be integer type");
2266 return 0;
2267 }
2268
2269 if (!ir->type->is_scalar()) {
2270 _mesa_glsl_error(& loc, state,
2271 "array size must be scalar type");
2272 return 0;
2273 }
2274
2275 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2276 if (size == NULL ||
2277 (state->is_version(120, 300) &&
2278 array_size->has_sequence_subexpression())) {
2279 _mesa_glsl_error(& loc, state, "array size must be a "
2280 "constant valued expression");
2281 return 0;
2282 }
2283
2284 if (size->value.i[0] <= 0) {
2285 _mesa_glsl_error(& loc, state, "array size must be > 0");
2286 return 0;
2287 }
2288
2289 assert(size->type == ir->type);
2290
2291 /* If the array size is const (and we've verified that
2292 * it is) then no instructions should have been emitted
2293 * when we converted it to HIR. If they were emitted,
2294 * then either the array size isn't const after all, or
2295 * we are emitting unnecessary instructions.
2296 */
2297 assert(dummy_instructions.is_empty());
2298
2299 return size->value.u[0];
2300 }
2301
2302 static const glsl_type *
2303 process_array_type(YYLTYPE *loc, const glsl_type *base,
2304 ast_array_specifier *array_specifier,
2305 struct _mesa_glsl_parse_state *state)
2306 {
2307 const glsl_type *array_type = base;
2308
2309 if (array_specifier != NULL) {
2310 if (base->is_array()) {
2311
2312 /* From page 19 (page 25) of the GLSL 1.20 spec:
2313 *
2314 * "Only one-dimensional arrays may be declared."
2315 */
2316 if (!state->check_arrays_of_arrays_allowed(loc)) {
2317 return glsl_type::error_type;
2318 }
2319 }
2320
2321 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2322 !node->is_head_sentinel(); node = node->prev) {
2323 unsigned array_size = process_array_size(node, state);
2324 array_type = glsl_type::get_array_instance(array_type, array_size);
2325 }
2326 }
2327
2328 return array_type;
2329 }
2330
2331 static bool
2332 precision_qualifier_allowed(const glsl_type *type)
2333 {
2334 /* Precision qualifiers apply to floating point, integer and opaque
2335 * types.
2336 *
2337 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2338 * "Any floating point or any integer declaration can have the type
2339 * preceded by one of these precision qualifiers [...] Literal
2340 * constants do not have precision qualifiers. Neither do Boolean
2341 * variables.
2342 *
2343 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2344 * spec also says:
2345 *
2346 * "Precision qualifiers are added for code portability with OpenGL
2347 * ES, not for functionality. They have the same syntax as in OpenGL
2348 * ES."
2349 *
2350 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2351 *
2352 * "uniform lowp sampler2D sampler;
2353 * highp vec2 coord;
2354 * ...
2355 * lowp vec4 col = texture2D (sampler, coord);
2356 * // texture2D returns lowp"
2357 *
2358 * From this, we infer that GLSL 1.30 (and later) should allow precision
2359 * qualifiers on sampler types just like float and integer types.
2360 */
2361 const glsl_type *const t = type->without_array();
2362
2363 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2364 !t->is_record();
2365 }
2366
2367 const glsl_type *
2368 ast_type_specifier::glsl_type(const char **name,
2369 struct _mesa_glsl_parse_state *state) const
2370 {
2371 const struct glsl_type *type;
2372
2373 if (this->type != NULL)
2374 type = this->type;
2375 else if (structure)
2376 type = structure->type;
2377 else
2378 type = state->symbols->get_type(this->type_name);
2379 *name = this->type_name;
2380
2381 YYLTYPE loc = this->get_location();
2382 type = process_array_type(&loc, type, this->array_specifier, state);
2383
2384 return type;
2385 }
2386
2387 /**
2388 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2389 *
2390 * "The precision statement
2391 *
2392 * precision precision-qualifier type;
2393 *
2394 * can be used to establish a default precision qualifier. The type field can
2395 * be either int or float or any of the sampler types, (...) If type is float,
2396 * the directive applies to non-precision-qualified floating point type
2397 * (scalar, vector, and matrix) declarations. If type is int, the directive
2398 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2399 * and unsigned) declarations."
2400 *
2401 * We use the symbol table to keep the values of the default precisions for
2402 * each 'type' in each scope and we use the 'type' string from the precision
2403 * statement as key in the symbol table. When we want to retrieve the default
2404 * precision associated with a given glsl_type we need to know the type string
2405 * associated with it. This is what this function returns.
2406 */
2407 static const char *
2408 get_type_name_for_precision_qualifier(const glsl_type *type)
2409 {
2410 switch (type->base_type) {
2411 case GLSL_TYPE_FLOAT:
2412 return "float";
2413 case GLSL_TYPE_UINT:
2414 case GLSL_TYPE_INT:
2415 return "int";
2416 case GLSL_TYPE_ATOMIC_UINT:
2417 return "atomic_uint";
2418 case GLSL_TYPE_IMAGE:
2419 /* fallthrough */
2420 case GLSL_TYPE_SAMPLER: {
2421 const unsigned type_idx =
2422 type->sampler_array + 2 * type->sampler_shadow;
2423 const unsigned offset = type->is_sampler() ? 0 : 4;
2424 assert(type_idx < 4);
2425 switch (type->sampled_type) {
2426 case GLSL_TYPE_FLOAT:
2427 switch (type->sampler_dimensionality) {
2428 case GLSL_SAMPLER_DIM_1D: {
2429 assert(type->is_sampler());
2430 static const char *const names[4] = {
2431 "sampler1D", "sampler1DArray",
2432 "sampler1DShadow", "sampler1DArrayShadow"
2433 };
2434 return names[type_idx];
2435 }
2436 case GLSL_SAMPLER_DIM_2D: {
2437 static const char *const names[8] = {
2438 "sampler2D", "sampler2DArray",
2439 "sampler2DShadow", "sampler2DArrayShadow",
2440 "image2D", "image2DArray", NULL, NULL
2441 };
2442 return names[offset + type_idx];
2443 }
2444 case GLSL_SAMPLER_DIM_3D: {
2445 static const char *const names[8] = {
2446 "sampler3D", NULL, NULL, NULL,
2447 "image3D", NULL, NULL, NULL
2448 };
2449 return names[offset + type_idx];
2450 }
2451 case GLSL_SAMPLER_DIM_CUBE: {
2452 static const char *const names[8] = {
2453 "samplerCube", "samplerCubeArray",
2454 "samplerCubeShadow", "samplerCubeArrayShadow",
2455 "imageCube", NULL, NULL, NULL
2456 };
2457 return names[offset + type_idx];
2458 }
2459 case GLSL_SAMPLER_DIM_MS: {
2460 assert(type->is_sampler());
2461 static const char *const names[4] = {
2462 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2463 };
2464 return names[type_idx];
2465 }
2466 case GLSL_SAMPLER_DIM_RECT: {
2467 assert(type->is_sampler());
2468 static const char *const names[4] = {
2469 "samplerRect", NULL, "samplerRectShadow", NULL
2470 };
2471 return names[type_idx];
2472 }
2473 case GLSL_SAMPLER_DIM_BUF: {
2474 static const char *const names[8] = {
2475 "samplerBuffer", NULL, NULL, NULL,
2476 "imageBuffer", NULL, NULL, NULL
2477 };
2478 return names[offset + type_idx];
2479 }
2480 case GLSL_SAMPLER_DIM_EXTERNAL: {
2481 assert(type->is_sampler());
2482 static const char *const names[4] = {
2483 "samplerExternalOES", NULL, NULL, NULL
2484 };
2485 return names[type_idx];
2486 }
2487 default:
2488 unreachable("Unsupported sampler/image dimensionality");
2489 } /* sampler/image float dimensionality */
2490 break;
2491 case GLSL_TYPE_INT:
2492 switch (type->sampler_dimensionality) {
2493 case GLSL_SAMPLER_DIM_1D: {
2494 assert(type->is_sampler());
2495 static const char *const names[4] = {
2496 "isampler1D", "isampler1DArray", NULL, NULL
2497 };
2498 return names[type_idx];
2499 }
2500 case GLSL_SAMPLER_DIM_2D: {
2501 static const char *const names[8] = {
2502 "isampler2D", "isampler2DArray", NULL, NULL,
2503 "iimage2D", "iimage2DArray", NULL, NULL
2504 };
2505 return names[offset + type_idx];
2506 }
2507 case GLSL_SAMPLER_DIM_3D: {
2508 static const char *const names[8] = {
2509 "isampler3D", NULL, NULL, NULL,
2510 "iimage3D", NULL, NULL, NULL
2511 };
2512 return names[offset + type_idx];
2513 }
2514 case GLSL_SAMPLER_DIM_CUBE: {
2515 static const char *const names[8] = {
2516 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2517 "iimageCube", NULL, NULL, NULL
2518 };
2519 return names[offset + type_idx];
2520 }
2521 case GLSL_SAMPLER_DIM_MS: {
2522 assert(type->is_sampler());
2523 static const char *const names[4] = {
2524 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2525 };
2526 return names[type_idx];
2527 }
2528 case GLSL_SAMPLER_DIM_RECT: {
2529 assert(type->is_sampler());
2530 static const char *const names[4] = {
2531 "isamplerRect", NULL, "isamplerRectShadow", NULL
2532 };
2533 return names[type_idx];
2534 }
2535 case GLSL_SAMPLER_DIM_BUF: {
2536 static const char *const names[8] = {
2537 "isamplerBuffer", NULL, NULL, NULL,
2538 "iimageBuffer", NULL, NULL, NULL
2539 };
2540 return names[offset + type_idx];
2541 }
2542 default:
2543 unreachable("Unsupported isampler/iimage dimensionality");
2544 } /* sampler/image int dimensionality */
2545 break;
2546 case GLSL_TYPE_UINT:
2547 switch (type->sampler_dimensionality) {
2548 case GLSL_SAMPLER_DIM_1D: {
2549 assert(type->is_sampler());
2550 static const char *const names[4] = {
2551 "usampler1D", "usampler1DArray", NULL, NULL
2552 };
2553 return names[type_idx];
2554 }
2555 case GLSL_SAMPLER_DIM_2D: {
2556 static const char *const names[8] = {
2557 "usampler2D", "usampler2DArray", NULL, NULL,
2558 "uimage2D", "uimage2DArray", NULL, NULL
2559 };
2560 return names[offset + type_idx];
2561 }
2562 case GLSL_SAMPLER_DIM_3D: {
2563 static const char *const names[8] = {
2564 "usampler3D", NULL, NULL, NULL,
2565 "uimage3D", NULL, NULL, NULL
2566 };
2567 return names[offset + type_idx];
2568 }
2569 case GLSL_SAMPLER_DIM_CUBE: {
2570 static const char *const names[8] = {
2571 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2572 "uimageCube", NULL, NULL, NULL
2573 };
2574 return names[offset + type_idx];
2575 }
2576 case GLSL_SAMPLER_DIM_MS: {
2577 assert(type->is_sampler());
2578 static const char *const names[4] = {
2579 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2580 };
2581 return names[type_idx];
2582 }
2583 case GLSL_SAMPLER_DIM_RECT: {
2584 assert(type->is_sampler());
2585 static const char *const names[4] = {
2586 "usamplerRect", NULL, "usamplerRectShadow", NULL
2587 };
2588 return names[type_idx];
2589 }
2590 case GLSL_SAMPLER_DIM_BUF: {
2591 static const char *const names[8] = {
2592 "usamplerBuffer", NULL, NULL, NULL,
2593 "uimageBuffer", NULL, NULL, NULL
2594 };
2595 return names[offset + type_idx];
2596 }
2597 default:
2598 unreachable("Unsupported usampler/uimage dimensionality");
2599 } /* sampler/image uint dimensionality */
2600 break;
2601 default:
2602 unreachable("Unsupported sampler/image type");
2603 } /* sampler/image type */
2604 break;
2605 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2606 break;
2607 default:
2608 unreachable("Unsupported type");
2609 } /* base type */
2610 }
2611
2612 static unsigned
2613 select_gles_precision(unsigned qual_precision,
2614 const glsl_type *type,
2615 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2616 {
2617 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2618 * In GLES we take the precision from the type qualifier if present,
2619 * otherwise, if the type of the variable allows precision qualifiers at
2620 * all, we look for the default precision qualifier for that type in the
2621 * current scope.
2622 */
2623 assert(state->es_shader);
2624
2625 unsigned precision = GLSL_PRECISION_NONE;
2626 if (qual_precision) {
2627 precision = qual_precision;
2628 } else if (precision_qualifier_allowed(type)) {
2629 const char *type_name =
2630 get_type_name_for_precision_qualifier(type->without_array());
2631 assert(type_name != NULL);
2632
2633 precision =
2634 state->symbols->get_default_precision_qualifier(type_name);
2635 if (precision == ast_precision_none) {
2636 _mesa_glsl_error(loc, state,
2637 "No precision specified in this scope for type `%s'",
2638 type->name);
2639 }
2640 }
2641
2642
2643 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2644 *
2645 * "The default precision of all atomic types is highp. It is an error to
2646 * declare an atomic type with a different precision or to specify the
2647 * default precision for an atomic type to be lowp or mediump."
2648 */
2649 if (type->is_atomic_uint() && precision != ast_precision_high) {
2650 _mesa_glsl_error(loc, state,
2651 "atomic_uint can only have highp precision qualifier");
2652 }
2653
2654 return precision;
2655 }
2656
2657 const glsl_type *
2658 ast_fully_specified_type::glsl_type(const char **name,
2659 struct _mesa_glsl_parse_state *state) const
2660 {
2661 return this->specifier->glsl_type(name, state);
2662 }
2663
2664 /**
2665 * Determine whether a toplevel variable declaration declares a varying. This
2666 * function operates by examining the variable's mode and the shader target,
2667 * so it correctly identifies linkage variables regardless of whether they are
2668 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2669 *
2670 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2671 * this function will produce undefined results.
2672 */
2673 static bool
2674 is_varying_var(ir_variable *var, gl_shader_stage target)
2675 {
2676 switch (target) {
2677 case MESA_SHADER_VERTEX:
2678 return var->data.mode == ir_var_shader_out;
2679 case MESA_SHADER_FRAGMENT:
2680 return var->data.mode == ir_var_shader_in;
2681 default:
2682 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2683 }
2684 }
2685
2686 static bool
2687 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2688 {
2689 if (is_varying_var(var, state->stage))
2690 return true;
2691
2692 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2693 * "Only variables output from a vertex shader can be candidates
2694 * for invariance".
2695 */
2696 if (!state->is_version(130, 0))
2697 return false;
2698
2699 /*
2700 * Later specs remove this language - so allowed invariant
2701 * on fragment shader outputs as well.
2702 */
2703 if (state->stage == MESA_SHADER_FRAGMENT &&
2704 var->data.mode == ir_var_shader_out)
2705 return true;
2706 return false;
2707 }
2708
2709 /**
2710 * Matrix layout qualifiers are only allowed on certain types
2711 */
2712 static void
2713 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2714 YYLTYPE *loc,
2715 const glsl_type *type,
2716 ir_variable *var)
2717 {
2718 if (var && !var->is_in_buffer_block()) {
2719 /* Layout qualifiers may only apply to interface blocks and fields in
2720 * them.
2721 */
2722 _mesa_glsl_error(loc, state,
2723 "uniform block layout qualifiers row_major and "
2724 "column_major may not be applied to variables "
2725 "outside of uniform blocks");
2726 } else if (!type->without_array()->is_matrix()) {
2727 /* The OpenGL ES 3.0 conformance tests did not originally allow
2728 * matrix layout qualifiers on non-matrices. However, the OpenGL
2729 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2730 * amended to specifically allow these layouts on all types. Emit
2731 * a warning so that people know their code may not be portable.
2732 */
2733 _mesa_glsl_warning(loc, state,
2734 "uniform block layout qualifiers row_major and "
2735 "column_major applied to non-matrix types may "
2736 "be rejected by older compilers");
2737 }
2738 }
2739
2740 static bool
2741 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2742 struct _mesa_glsl_parse_state *state,
2743 unsigned xfb_buffer) {
2744 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2745 _mesa_glsl_error(loc, state,
2746 "invalid xfb_buffer specified %d is larger than "
2747 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2748 xfb_buffer,
2749 state->Const.MaxTransformFeedbackBuffers - 1);
2750 return false;
2751 }
2752
2753 return true;
2754 }
2755
2756 /* From the ARB_enhanced_layouts spec:
2757 *
2758 * "Variables and block members qualified with *xfb_offset* can be
2759 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2760 * The offset must be a multiple of the size of the first component of
2761 * the first qualified variable or block member, or a compile-time error
2762 * results. Further, if applied to an aggregate containing a double,
2763 * the offset must also be a multiple of 8, and the space taken in the
2764 * buffer will be a multiple of 8.
2765 */
2766 static bool
2767 validate_xfb_offset_qualifier(YYLTYPE *loc,
2768 struct _mesa_glsl_parse_state *state,
2769 int xfb_offset, const glsl_type *type,
2770 unsigned component_size) {
2771 const glsl_type *t_without_array = type->without_array();
2772
2773 if (xfb_offset != -1 && type->is_unsized_array()) {
2774 _mesa_glsl_error(loc, state,
2775 "xfb_offset can't be used with unsized arrays.");
2776 return false;
2777 }
2778
2779 /* Make sure nested structs don't contain unsized arrays, and validate
2780 * any xfb_offsets on interface members.
2781 */
2782 if (t_without_array->is_record() || t_without_array->is_interface())
2783 for (unsigned int i = 0; i < t_without_array->length; i++) {
2784 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2785
2786 /* When the interface block doesn't have an xfb_offset qualifier then
2787 * we apply the component size rules at the member level.
2788 */
2789 if (xfb_offset == -1)
2790 component_size = member_t->contains_double() ? 8 : 4;
2791
2792 int xfb_offset = t_without_array->fields.structure[i].offset;
2793 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2794 component_size);
2795 }
2796
2797 /* Nested structs or interface block without offset may not have had an
2798 * offset applied yet so return.
2799 */
2800 if (xfb_offset == -1) {
2801 return true;
2802 }
2803
2804 if (xfb_offset % component_size) {
2805 _mesa_glsl_error(loc, state,
2806 "invalid qualifier xfb_offset=%d must be a multiple "
2807 "of the first component size of the first qualified "
2808 "variable or block member. Or double if an aggregate "
2809 "that contains a double (%d).",
2810 xfb_offset, component_size);
2811 return false;
2812 }
2813
2814 return true;
2815 }
2816
2817 static bool
2818 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2819 unsigned stream)
2820 {
2821 if (stream >= state->ctx->Const.MaxVertexStreams) {
2822 _mesa_glsl_error(loc, state,
2823 "invalid stream specified %d is larger than "
2824 "MAX_VERTEX_STREAMS - 1 (%d).",
2825 stream, state->ctx->Const.MaxVertexStreams - 1);
2826 return false;
2827 }
2828
2829 return true;
2830 }
2831
2832 static void
2833 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2834 YYLTYPE *loc,
2835 ir_variable *var,
2836 const glsl_type *type,
2837 const ast_type_qualifier *qual)
2838 {
2839 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2840 _mesa_glsl_error(loc, state,
2841 "the \"binding\" qualifier only applies to uniforms and "
2842 "shader storage buffer objects");
2843 return;
2844 }
2845
2846 unsigned qual_binding;
2847 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2848 &qual_binding)) {
2849 return;
2850 }
2851
2852 const struct gl_context *const ctx = state->ctx;
2853 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2854 unsigned max_index = qual_binding + elements - 1;
2855 const glsl_type *base_type = type->without_array();
2856
2857 if (base_type->is_interface()) {
2858 /* UBOs. From page 60 of the GLSL 4.20 specification:
2859 * "If the binding point for any uniform block instance is less than zero,
2860 * or greater than or equal to the implementation-dependent maximum
2861 * number of uniform buffer bindings, a compilation error will occur.
2862 * When the binding identifier is used with a uniform block instanced as
2863 * an array of size N, all elements of the array from binding through
2864 * binding + N – 1 must be within this range."
2865 *
2866 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2867 */
2868 if (qual->flags.q.uniform &&
2869 max_index >= ctx->Const.MaxUniformBufferBindings) {
2870 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2871 "the maximum number of UBO binding points (%d)",
2872 qual_binding, elements,
2873 ctx->Const.MaxUniformBufferBindings);
2874 return;
2875 }
2876
2877 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2878 * "If the binding point for any uniform or shader storage block instance
2879 * is less than zero, or greater than or equal to the
2880 * implementation-dependent maximum number of uniform buffer bindings, a
2881 * compile-time error will occur. When the binding identifier is used
2882 * with a uniform or shader storage block instanced as an array of size
2883 * N, all elements of the array from binding through binding + N – 1 must
2884 * be within this range."
2885 */
2886 if (qual->flags.q.buffer &&
2887 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2888 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2889 "the maximum number of SSBO binding points (%d)",
2890 qual_binding, elements,
2891 ctx->Const.MaxShaderStorageBufferBindings);
2892 return;
2893 }
2894 } else if (base_type->is_sampler()) {
2895 /* Samplers. From page 63 of the GLSL 4.20 specification:
2896 * "If the binding is less than zero, or greater than or equal to the
2897 * implementation-dependent maximum supported number of units, a
2898 * compilation error will occur. When the binding identifier is used
2899 * with an array of size N, all elements of the array from binding
2900 * through binding + N - 1 must be within this range."
2901 */
2902 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2903
2904 if (max_index >= limit) {
2905 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2906 "exceeds the maximum number of texture image units "
2907 "(%u)", qual_binding, elements, limit);
2908
2909 return;
2910 }
2911 } else if (base_type->contains_atomic()) {
2912 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2913 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2914 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2915 "maximum number of atomic counter buffer bindings "
2916 "(%u)", qual_binding,
2917 ctx->Const.MaxAtomicBufferBindings);
2918
2919 return;
2920 }
2921 } else if ((state->is_version(420, 310) ||
2922 state->ARB_shading_language_420pack_enable) &&
2923 base_type->is_image()) {
2924 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2925 if (max_index >= ctx->Const.MaxImageUnits) {
2926 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2927 "maximum number of image units (%d)", max_index,
2928 ctx->Const.MaxImageUnits);
2929 return;
2930 }
2931
2932 } else {
2933 _mesa_glsl_error(loc, state,
2934 "the \"binding\" qualifier only applies to uniform "
2935 "blocks, storage blocks, opaque variables, or arrays "
2936 "thereof");
2937 return;
2938 }
2939
2940 var->data.explicit_binding = true;
2941 var->data.binding = qual_binding;
2942
2943 return;
2944 }
2945
2946 static void
2947 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2948 YYLTYPE *loc,
2949 const glsl_interp_mode interpolation,
2950 const struct glsl_type *var_type,
2951 ir_variable_mode mode)
2952 {
2953 if (state->stage != MESA_SHADER_FRAGMENT ||
2954 interpolation == INTERP_MODE_FLAT ||
2955 mode != ir_var_shader_in)
2956 return;
2957
2958 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2959 * so must integer vertex outputs.
2960 *
2961 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2962 * "Fragment shader inputs that are signed or unsigned integers or
2963 * integer vectors must be qualified with the interpolation qualifier
2964 * flat."
2965 *
2966 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2967 * "Fragment shader inputs that are, or contain, signed or unsigned
2968 * integers or integer vectors must be qualified with the
2969 * interpolation qualifier flat."
2970 *
2971 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2972 * "Vertex shader outputs that are, or contain, signed or unsigned
2973 * integers or integer vectors must be qualified with the
2974 * interpolation qualifier flat."
2975 *
2976 * Note that prior to GLSL 1.50, this requirement applied to vertex
2977 * outputs rather than fragment inputs. That creates problems in the
2978 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2979 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2980 * apply the restriction to both vertex outputs and fragment inputs.
2981 *
2982 * Note also that the desktop GLSL specs are missing the text "or
2983 * contain"; this is presumably an oversight, since there is no
2984 * reasonable way to interpolate a fragment shader input that contains
2985 * an integer. See Khronos bug #15671.
2986 */
2987 if (state->is_version(130, 300)
2988 && var_type->contains_integer()) {
2989 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2990 "an integer, then it must be qualified with 'flat'");
2991 }
2992
2993 /* Double fragment inputs must be qualified with 'flat'.
2994 *
2995 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2996 * "This extension does not support interpolation of double-precision
2997 * values; doubles used as fragment shader inputs must be qualified as
2998 * "flat"."
2999 *
3000 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3001 * "Fragment shader inputs that are signed or unsigned integers, integer
3002 * vectors, or any double-precision floating-point type must be
3003 * qualified with the interpolation qualifier flat."
3004 *
3005 * Note that the GLSL specs are missing the text "or contain"; this is
3006 * presumably an oversight. See Khronos bug #15671.
3007 *
3008 * The 'double' type does not exist in GLSL ES so far.
3009 */
3010 if (state->has_double()
3011 && var_type->contains_double()) {
3012 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3013 "a double, then it must be qualified with 'flat'");
3014 }
3015
3016 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3017 *
3018 * From section 4.3.4 of the ARB_bindless_texture spec:
3019 *
3020 * "(modify last paragraph, p. 35, allowing samplers and images as
3021 * fragment shader inputs) ... Fragment inputs can only be signed and
3022 * unsigned integers and integer vectors, floating point scalars,
3023 * floating-point vectors, matrices, sampler and image types, or arrays
3024 * or structures of these. Fragment shader inputs that are signed or
3025 * unsigned integers, integer vectors, or any double-precision floating-
3026 * point type, or any sampler or image type must be qualified with the
3027 * interpolation qualifier "flat"."
3028 */
3029 if (state->has_bindless()
3030 && (var_type->contains_sampler() || var_type->contains_image())) {
3031 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3032 "a bindless sampler (or image), then it must be "
3033 "qualified with 'flat'");
3034 }
3035 }
3036
3037 static void
3038 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3039 YYLTYPE *loc,
3040 const glsl_interp_mode interpolation,
3041 const struct ast_type_qualifier *qual,
3042 const struct glsl_type *var_type,
3043 ir_variable_mode mode)
3044 {
3045 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3046 * not to vertex shader inputs nor fragment shader outputs.
3047 *
3048 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3049 * "Outputs from a vertex shader (out) and inputs to a fragment
3050 * shader (in) can be further qualified with one or more of these
3051 * interpolation qualifiers"
3052 * ...
3053 * "These interpolation qualifiers may only precede the qualifiers in,
3054 * centroid in, out, or centroid out in a declaration. They do not apply
3055 * to the deprecated storage qualifiers varying or centroid
3056 * varying. They also do not apply to inputs into a vertex shader or
3057 * outputs from a fragment shader."
3058 *
3059 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3060 * "Outputs from a shader (out) and inputs to a shader (in) can be
3061 * further qualified with one of these interpolation qualifiers."
3062 * ...
3063 * "These interpolation qualifiers may only precede the qualifiers
3064 * in, centroid in, out, or centroid out in a declaration. They do
3065 * not apply to inputs into a vertex shader or outputs from a
3066 * fragment shader."
3067 */
3068 if (state->is_version(130, 300)
3069 && interpolation != INTERP_MODE_NONE) {
3070 const char *i = interpolation_string(interpolation);
3071 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3072 _mesa_glsl_error(loc, state,
3073 "interpolation qualifier `%s' can only be applied to "
3074 "shader inputs or outputs.", i);
3075
3076 switch (state->stage) {
3077 case MESA_SHADER_VERTEX:
3078 if (mode == ir_var_shader_in) {
3079 _mesa_glsl_error(loc, state,
3080 "interpolation qualifier '%s' cannot be applied to "
3081 "vertex shader inputs", i);
3082 }
3083 break;
3084 case MESA_SHADER_FRAGMENT:
3085 if (mode == ir_var_shader_out) {
3086 _mesa_glsl_error(loc, state,
3087 "interpolation qualifier '%s' cannot be applied to "
3088 "fragment shader outputs", i);
3089 }
3090 break;
3091 default:
3092 break;
3093 }
3094 }
3095
3096 /* Interpolation qualifiers cannot be applied to 'centroid' and
3097 * 'centroid varying'.
3098 *
3099 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3100 * "interpolation qualifiers may only precede the qualifiers in,
3101 * centroid in, out, or centroid out in a declaration. They do not apply
3102 * to the deprecated storage qualifiers varying or centroid varying."
3103 *
3104 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3105 */
3106 if (state->is_version(130, 0)
3107 && interpolation != INTERP_MODE_NONE
3108 && qual->flags.q.varying) {
3109
3110 const char *i = interpolation_string(interpolation);
3111 const char *s;
3112 if (qual->flags.q.centroid)
3113 s = "centroid varying";
3114 else
3115 s = "varying";
3116
3117 _mesa_glsl_error(loc, state,
3118 "qualifier '%s' cannot be applied to the "
3119 "deprecated storage qualifier '%s'", i, s);
3120 }
3121
3122 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3123 var_type, mode);
3124 }
3125
3126 static glsl_interp_mode
3127 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3128 const struct glsl_type *var_type,
3129 ir_variable_mode mode,
3130 struct _mesa_glsl_parse_state *state,
3131 YYLTYPE *loc)
3132 {
3133 glsl_interp_mode interpolation;
3134 if (qual->flags.q.flat)
3135 interpolation = INTERP_MODE_FLAT;
3136 else if (qual->flags.q.noperspective)
3137 interpolation = INTERP_MODE_NOPERSPECTIVE;
3138 else if (qual->flags.q.smooth)
3139 interpolation = INTERP_MODE_SMOOTH;
3140 else
3141 interpolation = INTERP_MODE_NONE;
3142
3143 validate_interpolation_qualifier(state, loc,
3144 interpolation,
3145 qual, var_type, mode);
3146
3147 return interpolation;
3148 }
3149
3150
3151 static void
3152 apply_explicit_location(const struct ast_type_qualifier *qual,
3153 ir_variable *var,
3154 struct _mesa_glsl_parse_state *state,
3155 YYLTYPE *loc)
3156 {
3157 bool fail = false;
3158
3159 unsigned qual_location;
3160 if (!process_qualifier_constant(state, loc, "location", qual->location,
3161 &qual_location)) {
3162 return;
3163 }
3164
3165 /* Checks for GL_ARB_explicit_uniform_location. */
3166 if (qual->flags.q.uniform) {
3167 if (!state->check_explicit_uniform_location_allowed(loc, var))
3168 return;
3169
3170 const struct gl_context *const ctx = state->ctx;
3171 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3172
3173 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3174 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3175 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3176 ctx->Const.MaxUserAssignableUniformLocations);
3177 return;
3178 }
3179
3180 var->data.explicit_location = true;
3181 var->data.location = qual_location;
3182 return;
3183 }
3184
3185 /* Between GL_ARB_explicit_attrib_location an
3186 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3187 * stage can be assigned explicit locations. The checking here associates
3188 * the correct extension with the correct stage's input / output:
3189 *
3190 * input output
3191 * ----- ------
3192 * vertex explicit_loc sso
3193 * tess control sso sso
3194 * tess eval sso sso
3195 * geometry sso sso
3196 * fragment sso explicit_loc
3197 */
3198 switch (state->stage) {
3199 case MESA_SHADER_VERTEX:
3200 if (var->data.mode == ir_var_shader_in) {
3201 if (!state->check_explicit_attrib_location_allowed(loc, var))
3202 return;
3203
3204 break;
3205 }
3206
3207 if (var->data.mode == ir_var_shader_out) {
3208 if (!state->check_separate_shader_objects_allowed(loc, var))
3209 return;
3210
3211 break;
3212 }
3213
3214 fail = true;
3215 break;
3216
3217 case MESA_SHADER_TESS_CTRL:
3218 case MESA_SHADER_TESS_EVAL:
3219 case MESA_SHADER_GEOMETRY:
3220 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3221 if (!state->check_separate_shader_objects_allowed(loc, var))
3222 return;
3223
3224 break;
3225 }
3226
3227 fail = true;
3228 break;
3229
3230 case MESA_SHADER_FRAGMENT:
3231 if (var->data.mode == ir_var_shader_in) {
3232 if (!state->check_separate_shader_objects_allowed(loc, var))
3233 return;
3234
3235 break;
3236 }
3237
3238 if (var->data.mode == ir_var_shader_out) {
3239 if (!state->check_explicit_attrib_location_allowed(loc, var))
3240 return;
3241
3242 break;
3243 }
3244
3245 fail = true;
3246 break;
3247
3248 case MESA_SHADER_COMPUTE:
3249 _mesa_glsl_error(loc, state,
3250 "compute shader variables cannot be given "
3251 "explicit locations");
3252 return;
3253 default:
3254 fail = true;
3255 break;
3256 };
3257
3258 if (fail) {
3259 _mesa_glsl_error(loc, state,
3260 "%s cannot be given an explicit location in %s shader",
3261 mode_string(var),
3262 _mesa_shader_stage_to_string(state->stage));
3263 } else {
3264 var->data.explicit_location = true;
3265
3266 switch (state->stage) {
3267 case MESA_SHADER_VERTEX:
3268 var->data.location = (var->data.mode == ir_var_shader_in)
3269 ? (qual_location + VERT_ATTRIB_GENERIC0)
3270 : (qual_location + VARYING_SLOT_VAR0);
3271 break;
3272
3273 case MESA_SHADER_TESS_CTRL:
3274 case MESA_SHADER_TESS_EVAL:
3275 case MESA_SHADER_GEOMETRY:
3276 if (var->data.patch)
3277 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3278 else
3279 var->data.location = qual_location + VARYING_SLOT_VAR0;
3280 break;
3281
3282 case MESA_SHADER_FRAGMENT:
3283 var->data.location = (var->data.mode == ir_var_shader_out)
3284 ? (qual_location + FRAG_RESULT_DATA0)
3285 : (qual_location + VARYING_SLOT_VAR0);
3286 break;
3287 default:
3288 assert(!"Unexpected shader type");
3289 break;
3290 }
3291
3292 /* Check if index was set for the uniform instead of the function */
3293 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3294 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3295 "used with subroutine functions");
3296 return;
3297 }
3298
3299 unsigned qual_index;
3300 if (qual->flags.q.explicit_index &&
3301 process_qualifier_constant(state, loc, "index", qual->index,
3302 &qual_index)) {
3303 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3304 * Layout Qualifiers):
3305 *
3306 * "It is also a compile-time error if a fragment shader
3307 * sets a layout index to less than 0 or greater than 1."
3308 *
3309 * Older specifications don't mandate a behavior; we take
3310 * this as a clarification and always generate the error.
3311 */
3312 if (qual_index > 1) {
3313 _mesa_glsl_error(loc, state,
3314 "explicit index may only be 0 or 1");
3315 } else {
3316 var->data.explicit_index = true;
3317 var->data.index = qual_index;
3318 }
3319 }
3320 }
3321 }
3322
3323 static bool
3324 validate_storage_for_sampler_image_types(ir_variable *var,
3325 struct _mesa_glsl_parse_state *state,
3326 YYLTYPE *loc)
3327 {
3328 /* From section 4.1.7 of the GLSL 4.40 spec:
3329 *
3330 * "[Opaque types] can only be declared as function
3331 * parameters or uniform-qualified variables."
3332 *
3333 * From section 4.1.7 of the ARB_bindless_texture spec:
3334 *
3335 * "Samplers may be declared as shader inputs and outputs, as uniform
3336 * variables, as temporary variables, and as function parameters."
3337 *
3338 * From section 4.1.X of the ARB_bindless_texture spec:
3339 *
3340 * "Images may be declared as shader inputs and outputs, as uniform
3341 * variables, as temporary variables, and as function parameters."
3342 */
3343 if (state->has_bindless()) {
3344 if (var->data.mode != ir_var_auto &&
3345 var->data.mode != ir_var_uniform &&
3346 var->data.mode != ir_var_shader_in &&
3347 var->data.mode != ir_var_shader_out &&
3348 var->data.mode != ir_var_function_in &&
3349 var->data.mode != ir_var_function_out &&
3350 var->data.mode != ir_var_function_inout) {
3351 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3352 "only be declared as shader inputs and outputs, as "
3353 "uniform variables, as temporary variables and as "
3354 "function parameters");
3355 return false;
3356 }
3357 } else {
3358 if (var->data.mode != ir_var_uniform &&
3359 var->data.mode != ir_var_function_in) {
3360 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3361 "declared as function parameters or "
3362 "uniform-qualified global variables");
3363 return false;
3364 }
3365 }
3366 return true;
3367 }
3368
3369 static bool
3370 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3371 YYLTYPE *loc,
3372 const struct ast_type_qualifier *qual,
3373 const glsl_type *type)
3374 {
3375 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3376 *
3377 * "Memory qualifiers are only supported in the declarations of image
3378 * variables, buffer variables, and shader storage blocks; it is an error
3379 * to use such qualifiers in any other declarations.
3380 */
3381 if (!type->is_image() && !qual->flags.q.buffer) {
3382 if (qual->flags.q.read_only ||
3383 qual->flags.q.write_only ||
3384 qual->flags.q.coherent ||
3385 qual->flags.q._volatile ||
3386 qual->flags.q.restrict_flag) {
3387 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3388 "in the declarations of image variables, buffer "
3389 "variables, and shader storage blocks");
3390 return false;
3391 }
3392 }
3393 return true;
3394 }
3395
3396 static bool
3397 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3398 YYLTYPE *loc,
3399 const struct ast_type_qualifier *qual,
3400 const glsl_type *type)
3401 {
3402 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3403 *
3404 * "Format layout qualifiers can be used on image variable declarations
3405 * (those declared with a basic type having “image ” in its keyword)."
3406 */
3407 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3408 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3409 "applied to images");
3410 return false;
3411 }
3412 return true;
3413 }
3414
3415 static void
3416 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3417 ir_variable *var,
3418 struct _mesa_glsl_parse_state *state,
3419 YYLTYPE *loc)
3420 {
3421 const glsl_type *base_type = var->type->without_array();
3422
3423 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3424 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3425 return;
3426
3427 if (!base_type->is_image())
3428 return;
3429
3430 if (!validate_storage_for_sampler_image_types(var, state, loc))
3431 return;
3432
3433 var->data.memory_read_only |= qual->flags.q.read_only;
3434 var->data.memory_write_only |= qual->flags.q.write_only;
3435 var->data.memory_coherent |= qual->flags.q.coherent;
3436 var->data.memory_volatile |= qual->flags.q._volatile;
3437 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3438
3439 if (qual->flags.q.explicit_image_format) {
3440 if (var->data.mode == ir_var_function_in) {
3441 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3442 "image function parameters");
3443 }
3444
3445 if (qual->image_base_type != base_type->sampled_type) {
3446 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3447 "data type of the image");
3448 }
3449
3450 var->data.image_format = qual->image_format;
3451 } else {
3452 if (var->data.mode == ir_var_uniform) {
3453 if (state->es_shader) {
3454 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3455 "format layout qualifier");
3456 } else if (!qual->flags.q.write_only) {
3457 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3458 "`writeonly' must have a format layout qualifier");
3459 }
3460 }
3461 var->data.image_format = GL_NONE;
3462 }
3463
3464 /* From page 70 of the GLSL ES 3.1 specification:
3465 *
3466 * "Except for image variables qualified with the format qualifiers r32f,
3467 * r32i, and r32ui, image variables must specify either memory qualifier
3468 * readonly or the memory qualifier writeonly."
3469 */
3470 if (state->es_shader &&
3471 var->data.image_format != GL_R32F &&
3472 var->data.image_format != GL_R32I &&
3473 var->data.image_format != GL_R32UI &&
3474 !var->data.memory_read_only &&
3475 !var->data.memory_write_only) {
3476 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3477 "r32i or r32ui must be qualified `readonly' or "
3478 "`writeonly'");
3479 }
3480 }
3481
3482 static inline const char*
3483 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3484 {
3485 if (origin_upper_left && pixel_center_integer)
3486 return "origin_upper_left, pixel_center_integer";
3487 else if (origin_upper_left)
3488 return "origin_upper_left";
3489 else if (pixel_center_integer)
3490 return "pixel_center_integer";
3491 else
3492 return " ";
3493 }
3494
3495 static inline bool
3496 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3497 const struct ast_type_qualifier *qual)
3498 {
3499 /* If gl_FragCoord was previously declared, and the qualifiers were
3500 * different in any way, return true.
3501 */
3502 if (state->fs_redeclares_gl_fragcoord) {
3503 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3504 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3505 }
3506
3507 return false;
3508 }
3509
3510 static inline void
3511 validate_array_dimensions(const glsl_type *t,
3512 struct _mesa_glsl_parse_state *state,
3513 YYLTYPE *loc) {
3514 if (t->is_array()) {
3515 t = t->fields.array;
3516 while (t->is_array()) {
3517 if (t->is_unsized_array()) {
3518 _mesa_glsl_error(loc, state,
3519 "only the outermost array dimension can "
3520 "be unsized",
3521 t->name);
3522 break;
3523 }
3524 t = t->fields.array;
3525 }
3526 }
3527 }
3528
3529 static void
3530 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3531 ir_variable *var,
3532 struct _mesa_glsl_parse_state *state,
3533 YYLTYPE *loc)
3534 {
3535 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3536 qual->flags.q.bindless_image ||
3537 qual->flags.q.bound_sampler ||
3538 qual->flags.q.bound_image;
3539
3540 /* The ARB_bindless_texture spec says:
3541 *
3542 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3543 * spec"
3544 *
3545 * "If these layout qualifiers are applied to other types of default block
3546 * uniforms, or variables with non-uniform storage, a compile-time error
3547 * will be generated."
3548 */
3549 if (has_local_qualifiers && !qual->flags.q.uniform) {
3550 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3551 "can only be applied to default block uniforms or "
3552 "variables with uniform storage");
3553 return;
3554 }
3555
3556 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3557 * but it makes sense to only allow bindless_sampler/bound_sampler for
3558 * sampler types, and respectively bindless_image/bound_image for image
3559 * types.
3560 */
3561 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3562 !var->type->contains_sampler()) {
3563 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3564 "be applied to sampler types");
3565 return;
3566 }
3567
3568 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3569 !var->type->contains_image()) {
3570 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3571 "applied to image types");
3572 return;
3573 }
3574
3575 /* The bindless_sampler/bindless_image (and respectively
3576 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3577 * local scope.
3578 */
3579 if (var->type->contains_sampler() || var->type->contains_image()) {
3580 var->data.bindless = qual->flags.q.bindless_sampler ||
3581 qual->flags.q.bindless_image ||
3582 state->bindless_sampler_specified ||
3583 state->bindless_image_specified;
3584
3585 var->data.bound = qual->flags.q.bound_sampler ||
3586 qual->flags.q.bound_image ||
3587 state->bound_sampler_specified ||
3588 state->bound_image_specified;
3589 }
3590 }
3591
3592 static void
3593 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3594 ir_variable *var,
3595 struct _mesa_glsl_parse_state *state,
3596 YYLTYPE *loc)
3597 {
3598 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3599
3600 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3601 *
3602 * "Within any shader, the first redeclarations of gl_FragCoord
3603 * must appear before any use of gl_FragCoord."
3604 *
3605 * Generate a compiler error if above condition is not met by the
3606 * fragment shader.
3607 */
3608 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3609 if (earlier != NULL &&
3610 earlier->data.used &&
3611 !state->fs_redeclares_gl_fragcoord) {
3612 _mesa_glsl_error(loc, state,
3613 "gl_FragCoord used before its first redeclaration "
3614 "in fragment shader");
3615 }
3616
3617 /* Make sure all gl_FragCoord redeclarations specify the same layout
3618 * qualifiers.
3619 */
3620 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3621 const char *const qual_string =
3622 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3623 qual->flags.q.pixel_center_integer);
3624
3625 const char *const state_string =
3626 get_layout_qualifier_string(state->fs_origin_upper_left,
3627 state->fs_pixel_center_integer);
3628
3629 _mesa_glsl_error(loc, state,
3630 "gl_FragCoord redeclared with different layout "
3631 "qualifiers (%s) and (%s) ",
3632 state_string,
3633 qual_string);
3634 }
3635 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3636 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3637 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3638 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3639 state->fs_redeclares_gl_fragcoord =
3640 state->fs_origin_upper_left ||
3641 state->fs_pixel_center_integer ||
3642 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3643 }
3644
3645 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3646 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3647 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3648 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3649 const char *const qual_string = (qual->flags.q.origin_upper_left)
3650 ? "origin_upper_left" : "pixel_center_integer";
3651
3652 _mesa_glsl_error(loc, state,
3653 "layout qualifier `%s' can only be applied to "
3654 "fragment shader input `gl_FragCoord'",
3655 qual_string);
3656 }
3657
3658 if (qual->flags.q.explicit_location) {
3659 apply_explicit_location(qual, var, state, loc);
3660
3661 if (qual->flags.q.explicit_component) {
3662 unsigned qual_component;
3663 if (process_qualifier_constant(state, loc, "component",
3664 qual->component, &qual_component)) {
3665 const glsl_type *type = var->type->without_array();
3666 unsigned components = type->component_slots();
3667
3668 if (type->is_matrix() || type->is_record()) {
3669 _mesa_glsl_error(loc, state, "component layout qualifier "
3670 "cannot be applied to a matrix, a structure, "
3671 "a block, or an array containing any of "
3672 "these.");
3673 } else if (qual_component != 0 &&
3674 (qual_component + components - 1) > 3) {
3675 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3676 (qual_component + components - 1));
3677 } else if (qual_component == 1 && type->is_64bit()) {
3678 /* We don't bother checking for 3 as it should be caught by the
3679 * overflow check above.
3680 */
3681 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3682 "component 1 or 3");
3683 } else {
3684 var->data.explicit_component = true;
3685 var->data.location_frac = qual_component;
3686 }
3687 }
3688 }
3689 } else if (qual->flags.q.explicit_index) {
3690 if (!qual->subroutine_list)
3691 _mesa_glsl_error(loc, state,
3692 "explicit index requires explicit location");
3693 } else if (qual->flags.q.explicit_component) {
3694 _mesa_glsl_error(loc, state,
3695 "explicit component requires explicit location");
3696 }
3697
3698 if (qual->flags.q.explicit_binding) {
3699 apply_explicit_binding(state, loc, var, var->type, qual);
3700 }
3701
3702 if (state->stage == MESA_SHADER_GEOMETRY &&
3703 qual->flags.q.out && qual->flags.q.stream) {
3704 unsigned qual_stream;
3705 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3706 &qual_stream) &&
3707 validate_stream_qualifier(loc, state, qual_stream)) {
3708 var->data.stream = qual_stream;
3709 }
3710 }
3711
3712 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3713 unsigned qual_xfb_buffer;
3714 if (process_qualifier_constant(state, loc, "xfb_buffer",
3715 qual->xfb_buffer, &qual_xfb_buffer) &&
3716 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3717 var->data.xfb_buffer = qual_xfb_buffer;
3718 if (qual->flags.q.explicit_xfb_buffer)
3719 var->data.explicit_xfb_buffer = true;
3720 }
3721 }
3722
3723 if (qual->flags.q.explicit_xfb_offset) {
3724 unsigned qual_xfb_offset;
3725 unsigned component_size = var->type->contains_double() ? 8 : 4;
3726
3727 if (process_qualifier_constant(state, loc, "xfb_offset",
3728 qual->offset, &qual_xfb_offset) &&
3729 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3730 var->type, component_size)) {
3731 var->data.offset = qual_xfb_offset;
3732 var->data.explicit_xfb_offset = true;
3733 }
3734 }
3735
3736 if (qual->flags.q.explicit_xfb_stride) {
3737 unsigned qual_xfb_stride;
3738 if (process_qualifier_constant(state, loc, "xfb_stride",
3739 qual->xfb_stride, &qual_xfb_stride)) {
3740 var->data.xfb_stride = qual_xfb_stride;
3741 var->data.explicit_xfb_stride = true;
3742 }
3743 }
3744
3745 if (var->type->contains_atomic()) {
3746 if (var->data.mode == ir_var_uniform) {
3747 if (var->data.explicit_binding) {
3748 unsigned *offset =
3749 &state->atomic_counter_offsets[var->data.binding];
3750
3751 if (*offset % ATOMIC_COUNTER_SIZE)
3752 _mesa_glsl_error(loc, state,
3753 "misaligned atomic counter offset");
3754
3755 var->data.offset = *offset;
3756 *offset += var->type->atomic_size();
3757
3758 } else {
3759 _mesa_glsl_error(loc, state,
3760 "atomic counters require explicit binding point");
3761 }
3762 } else if (var->data.mode != ir_var_function_in) {
3763 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3764 "function parameters or uniform-qualified "
3765 "global variables");
3766 }
3767 }
3768
3769 if (var->type->contains_sampler() &&
3770 !validate_storage_for_sampler_image_types(var, state, loc))
3771 return;
3772
3773 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3774 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3775 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3776 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3777 * These extensions and all following extensions that add the 'layout'
3778 * keyword have been modified to require the use of 'in' or 'out'.
3779 *
3780 * The following extension do not allow the deprecated keywords:
3781 *
3782 * GL_AMD_conservative_depth
3783 * GL_ARB_conservative_depth
3784 * GL_ARB_gpu_shader5
3785 * GL_ARB_separate_shader_objects
3786 * GL_ARB_tessellation_shader
3787 * GL_ARB_transform_feedback3
3788 * GL_ARB_uniform_buffer_object
3789 *
3790 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3791 * allow layout with the deprecated keywords.
3792 */
3793 const bool relaxed_layout_qualifier_checking =
3794 state->ARB_fragment_coord_conventions_enable;
3795
3796 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3797 || qual->flags.q.varying;
3798 if (qual->has_layout() && uses_deprecated_qualifier) {
3799 if (relaxed_layout_qualifier_checking) {
3800 _mesa_glsl_warning(loc, state,
3801 "`layout' qualifier may not be used with "
3802 "`attribute' or `varying'");
3803 } else {
3804 _mesa_glsl_error(loc, state,
3805 "`layout' qualifier may not be used with "
3806 "`attribute' or `varying'");
3807 }
3808 }
3809
3810 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3811 * AMD_conservative_depth.
3812 */
3813 if (qual->flags.q.depth_type
3814 && !state->is_version(420, 0)
3815 && !state->AMD_conservative_depth_enable
3816 && !state->ARB_conservative_depth_enable) {
3817 _mesa_glsl_error(loc, state,
3818 "extension GL_AMD_conservative_depth or "
3819 "GL_ARB_conservative_depth must be enabled "
3820 "to use depth layout qualifiers");
3821 } else if (qual->flags.q.depth_type
3822 && strcmp(var->name, "gl_FragDepth") != 0) {
3823 _mesa_glsl_error(loc, state,
3824 "depth layout qualifiers can be applied only to "
3825 "gl_FragDepth");
3826 }
3827
3828 switch (qual->depth_type) {
3829 case ast_depth_any:
3830 var->data.depth_layout = ir_depth_layout_any;
3831 break;
3832 case ast_depth_greater:
3833 var->data.depth_layout = ir_depth_layout_greater;
3834 break;
3835 case ast_depth_less:
3836 var->data.depth_layout = ir_depth_layout_less;
3837 break;
3838 case ast_depth_unchanged:
3839 var->data.depth_layout = ir_depth_layout_unchanged;
3840 break;
3841 default:
3842 var->data.depth_layout = ir_depth_layout_none;
3843 break;
3844 }
3845
3846 if (qual->flags.q.std140 ||
3847 qual->flags.q.std430 ||
3848 qual->flags.q.packed ||
3849 qual->flags.q.shared) {
3850 _mesa_glsl_error(loc, state,
3851 "uniform and shader storage block layout qualifiers "
3852 "std140, std430, packed, and shared can only be "
3853 "applied to uniform or shader storage blocks, not "
3854 "members");
3855 }
3856
3857 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3858 validate_matrix_layout_for_type(state, loc, var->type, var);
3859 }
3860
3861 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3862 * Inputs):
3863 *
3864 * "Fragment shaders also allow the following layout qualifier on in only
3865 * (not with variable declarations)
3866 * layout-qualifier-id
3867 * early_fragment_tests
3868 * [...]"
3869 */
3870 if (qual->flags.q.early_fragment_tests) {
3871 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3872 "valid in fragment shader input layout declaration.");
3873 }
3874
3875 if (qual->flags.q.inner_coverage) {
3876 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3877 "valid in fragment shader input layout declaration.");
3878 }
3879
3880 if (qual->flags.q.post_depth_coverage) {
3881 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3882 "valid in fragment shader input layout declaration.");
3883 }
3884
3885 if (state->has_bindless())
3886 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3887 }
3888
3889 static void
3890 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3891 ir_variable *var,
3892 struct _mesa_glsl_parse_state *state,
3893 YYLTYPE *loc,
3894 bool is_parameter)
3895 {
3896 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3897
3898 if (qual->flags.q.invariant) {
3899 if (var->data.used) {
3900 _mesa_glsl_error(loc, state,
3901 "variable `%s' may not be redeclared "
3902 "`invariant' after being used",
3903 var->name);
3904 } else {
3905 var->data.invariant = 1;
3906 }
3907 }
3908
3909 if (qual->flags.q.precise) {
3910 if (var->data.used) {
3911 _mesa_glsl_error(loc, state,
3912 "variable `%s' may not be redeclared "
3913 "`precise' after being used",
3914 var->name);
3915 } else {
3916 var->data.precise = 1;
3917 }
3918 }
3919
3920 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3921 _mesa_glsl_error(loc, state,
3922 "`subroutine' may only be applied to uniforms, "
3923 "subroutine type declarations, or function definitions");
3924 }
3925
3926 if (qual->flags.q.constant || qual->flags.q.attribute
3927 || qual->flags.q.uniform
3928 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3929 var->data.read_only = 1;
3930
3931 if (qual->flags.q.centroid)
3932 var->data.centroid = 1;
3933
3934 if (qual->flags.q.sample)
3935 var->data.sample = 1;
3936
3937 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3938 if (state->es_shader) {
3939 var->data.precision =
3940 select_gles_precision(qual->precision, var->type, state, loc);
3941 }
3942
3943 if (qual->flags.q.patch)
3944 var->data.patch = 1;
3945
3946 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3947 var->type = glsl_type::error_type;
3948 _mesa_glsl_error(loc, state,
3949 "`attribute' variables may not be declared in the "
3950 "%s shader",
3951 _mesa_shader_stage_to_string(state->stage));
3952 }
3953
3954 /* Disallow layout qualifiers which may only appear on layout declarations. */
3955 if (qual->flags.q.prim_type) {
3956 _mesa_glsl_error(loc, state,
3957 "Primitive type may only be specified on GS input or output "
3958 "layout declaration, not on variables.");
3959 }
3960
3961 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3962 *
3963 * "However, the const qualifier cannot be used with out or inout."
3964 *
3965 * The same section of the GLSL 4.40 spec further clarifies this saying:
3966 *
3967 * "The const qualifier cannot be used with out or inout, or a
3968 * compile-time error results."
3969 */
3970 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3971 _mesa_glsl_error(loc, state,
3972 "`const' may not be applied to `out' or `inout' "
3973 "function parameters");
3974 }
3975
3976 /* If there is no qualifier that changes the mode of the variable, leave
3977 * the setting alone.
3978 */
3979 assert(var->data.mode != ir_var_temporary);
3980 if (qual->flags.q.in && qual->flags.q.out)
3981 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3982 else if (qual->flags.q.in)
3983 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3984 else if (qual->flags.q.attribute
3985 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3986 var->data.mode = ir_var_shader_in;
3987 else if (qual->flags.q.out)
3988 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3989 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3990 var->data.mode = ir_var_shader_out;
3991 else if (qual->flags.q.uniform)
3992 var->data.mode = ir_var_uniform;
3993 else if (qual->flags.q.buffer)
3994 var->data.mode = ir_var_shader_storage;
3995 else if (qual->flags.q.shared_storage)
3996 var->data.mode = ir_var_shader_shared;
3997
3998 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3999 qual->flags.q.in && qual->flags.q.out;
4000
4001 if (!is_parameter && is_varying_var(var, state->stage)) {
4002 /* User-defined ins/outs are not permitted in compute shaders. */
4003 if (state->stage == MESA_SHADER_COMPUTE) {
4004 _mesa_glsl_error(loc, state,
4005 "user-defined input and output variables are not "
4006 "permitted in compute shaders");
4007 }
4008
4009 /* This variable is being used to link data between shader stages (in
4010 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4011 * that is allowed for such purposes.
4012 *
4013 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4014 *
4015 * "The varying qualifier can be used only with the data types
4016 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4017 * these."
4018 *
4019 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4020 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4021 *
4022 * "Fragment inputs can only be signed and unsigned integers and
4023 * integer vectors, float, floating-point vectors, matrices, or
4024 * arrays of these. Structures cannot be input.
4025 *
4026 * Similar text exists in the section on vertex shader outputs.
4027 *
4028 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4029 * 3.00 spec allows structs as well. Varying structs are also allowed
4030 * in GLSL 1.50.
4031 *
4032 * From section 4.3.4 of the ARB_bindless_texture spec:
4033 *
4034 * "(modify third paragraph of the section to allow sampler and image
4035 * types) ... Vertex shader inputs can only be float,
4036 * single-precision floating-point scalars, single-precision
4037 * floating-point vectors, matrices, signed and unsigned integers
4038 * and integer vectors, sampler and image types."
4039 *
4040 * From section 4.3.6 of the ARB_bindless_texture spec:
4041 *
4042 * "Output variables can only be floating-point scalars,
4043 * floating-point vectors, matrices, signed or unsigned integers or
4044 * integer vectors, sampler or image types, or arrays or structures
4045 * of any these."
4046 */
4047 switch (var->type->without_array()->base_type) {
4048 case GLSL_TYPE_FLOAT:
4049 /* Ok in all GLSL versions */
4050 break;
4051 case GLSL_TYPE_UINT:
4052 case GLSL_TYPE_INT:
4053 if (state->is_version(130, 300))
4054 break;
4055 _mesa_glsl_error(loc, state,
4056 "varying variables must be of base type float in %s",
4057 state->get_version_string());
4058 break;
4059 case GLSL_TYPE_STRUCT:
4060 if (state->is_version(150, 300))
4061 break;
4062 _mesa_glsl_error(loc, state,
4063 "varying variables may not be of type struct");
4064 break;
4065 case GLSL_TYPE_DOUBLE:
4066 case GLSL_TYPE_UINT64:
4067 case GLSL_TYPE_INT64:
4068 break;
4069 case GLSL_TYPE_SAMPLER:
4070 case GLSL_TYPE_IMAGE:
4071 if (state->has_bindless())
4072 break;
4073 /* fallthrough */
4074 default:
4075 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4076 break;
4077 }
4078 }
4079
4080 if (state->all_invariant && var->data.mode == ir_var_shader_out)
4081 var->data.invariant = true;
4082
4083 var->data.interpolation =
4084 interpret_interpolation_qualifier(qual, var->type,
4085 (ir_variable_mode) var->data.mode,
4086 state, loc);
4087
4088 /* Does the declaration use the deprecated 'attribute' or 'varying'
4089 * keywords?
4090 */
4091 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4092 || qual->flags.q.varying;
4093
4094
4095 /* Validate auxiliary storage qualifiers */
4096
4097 /* From section 4.3.4 of the GLSL 1.30 spec:
4098 * "It is an error to use centroid in in a vertex shader."
4099 *
4100 * From section 4.3.4 of the GLSL ES 3.00 spec:
4101 * "It is an error to use centroid in or interpolation qualifiers in
4102 * a vertex shader input."
4103 */
4104
4105 /* Section 4.3.6 of the GLSL 1.30 specification states:
4106 * "It is an error to use centroid out in a fragment shader."
4107 *
4108 * The GL_ARB_shading_language_420pack extension specification states:
4109 * "It is an error to use auxiliary storage qualifiers or interpolation
4110 * qualifiers on an output in a fragment shader."
4111 */
4112 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4113 _mesa_glsl_error(loc, state,
4114 "sample qualifier may only be used on `in` or `out` "
4115 "variables between shader stages");
4116 }
4117 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4118 _mesa_glsl_error(loc, state,
4119 "centroid qualifier may only be used with `in', "
4120 "`out' or `varying' variables between shader stages");
4121 }
4122
4123 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4124 _mesa_glsl_error(loc, state,
4125 "the shared storage qualifiers can only be used with "
4126 "compute shaders");
4127 }
4128
4129 apply_image_qualifier_to_variable(qual, var, state, loc);
4130 }
4131
4132 /**
4133 * Get the variable that is being redeclared by this declaration or if it
4134 * does not exist, the current declared variable.
4135 *
4136 * Semantic checks to verify the validity of the redeclaration are also
4137 * performed. If semantic checks fail, compilation error will be emitted via
4138 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4139 *
4140 * \returns
4141 * A pointer to an existing variable in the current scope if the declaration
4142 * is a redeclaration, current variable otherwise. \c is_declared boolean
4143 * will return \c true if the declaration is a redeclaration, \c false
4144 * otherwise.
4145 */
4146 static ir_variable *
4147 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4148 struct _mesa_glsl_parse_state *state,
4149 bool allow_all_redeclarations,
4150 bool *is_redeclaration)
4151 {
4152 ir_variable *var = *var_ptr;
4153
4154 /* Check if this declaration is actually a re-declaration, either to
4155 * resize an array or add qualifiers to an existing variable.
4156 *
4157 * This is allowed for variables in the current scope, or when at
4158 * global scope (for built-ins in the implicit outer scope).
4159 */
4160 ir_variable *earlier = state->symbols->get_variable(var->name);
4161 if (earlier == NULL ||
4162 (state->current_function != NULL &&
4163 !state->symbols->name_declared_this_scope(var->name))) {
4164 *is_redeclaration = false;
4165 return var;
4166 }
4167
4168 *is_redeclaration = true;
4169
4170 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4171 *
4172 * "It is legal to declare an array without a size and then
4173 * later re-declare the same name as an array of the same
4174 * type and specify a size."
4175 */
4176 if (earlier->type->is_unsized_array() && var->type->is_array()
4177 && (var->type->fields.array == earlier->type->fields.array)) {
4178 /* FINISHME: This doesn't match the qualifiers on the two
4179 * FINISHME: declarations. It's not 100% clear whether this is
4180 * FINISHME: required or not.
4181 */
4182
4183 const int size = var->type->array_size();
4184 check_builtin_array_max_size(var->name, size, loc, state);
4185 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4186 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4187 "previous access",
4188 earlier->data.max_array_access);
4189 }
4190
4191 earlier->type = var->type;
4192 delete var;
4193 var = NULL;
4194 *var_ptr = NULL;
4195 } else if ((state->ARB_fragment_coord_conventions_enable ||
4196 state->is_version(150, 0))
4197 && strcmp(var->name, "gl_FragCoord") == 0
4198 && earlier->type == var->type
4199 && var->data.mode == ir_var_shader_in) {
4200 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4201 * qualifiers.
4202 */
4203 earlier->data.origin_upper_left = var->data.origin_upper_left;
4204 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4205
4206 /* According to section 4.3.7 of the GLSL 1.30 spec,
4207 * the following built-in varaibles can be redeclared with an
4208 * interpolation qualifier:
4209 * * gl_FrontColor
4210 * * gl_BackColor
4211 * * gl_FrontSecondaryColor
4212 * * gl_BackSecondaryColor
4213 * * gl_Color
4214 * * gl_SecondaryColor
4215 */
4216 } else if (state->is_version(130, 0)
4217 && (strcmp(var->name, "gl_FrontColor") == 0
4218 || strcmp(var->name, "gl_BackColor") == 0
4219 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4220 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4221 || strcmp(var->name, "gl_Color") == 0
4222 || strcmp(var->name, "gl_SecondaryColor") == 0)
4223 && earlier->type == var->type
4224 && earlier->data.mode == var->data.mode) {
4225 earlier->data.interpolation = var->data.interpolation;
4226
4227 /* Layout qualifiers for gl_FragDepth. */
4228 } else if ((state->is_version(420, 0) ||
4229 state->AMD_conservative_depth_enable ||
4230 state->ARB_conservative_depth_enable)
4231 && strcmp(var->name, "gl_FragDepth") == 0
4232 && earlier->type == var->type
4233 && earlier->data.mode == var->data.mode) {
4234
4235 /** From the AMD_conservative_depth spec:
4236 * Within any shader, the first redeclarations of gl_FragDepth
4237 * must appear before any use of gl_FragDepth.
4238 */
4239 if (earlier->data.used) {
4240 _mesa_glsl_error(&loc, state,
4241 "the first redeclaration of gl_FragDepth "
4242 "must appear before any use of gl_FragDepth");
4243 }
4244
4245 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4246 if (earlier->data.depth_layout != ir_depth_layout_none
4247 && earlier->data.depth_layout != var->data.depth_layout) {
4248 _mesa_glsl_error(&loc, state,
4249 "gl_FragDepth: depth layout is declared here "
4250 "as '%s, but it was previously declared as "
4251 "'%s'",
4252 depth_layout_string(var->data.depth_layout),
4253 depth_layout_string(earlier->data.depth_layout));
4254 }
4255
4256 earlier->data.depth_layout = var->data.depth_layout;
4257
4258 } else if (state->has_framebuffer_fetch() &&
4259 strcmp(var->name, "gl_LastFragData") == 0 &&
4260 var->type == earlier->type &&
4261 var->data.mode == ir_var_auto) {
4262 /* According to the EXT_shader_framebuffer_fetch spec:
4263 *
4264 * "By default, gl_LastFragData is declared with the mediump precision
4265 * qualifier. This can be changed by redeclaring the corresponding
4266 * variables with the desired precision qualifier."
4267 */
4268 earlier->data.precision = var->data.precision;
4269
4270 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4271 state->allow_builtin_variable_redeclaration) {
4272 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4273 * valid, but some applications do it.
4274 */
4275 if (earlier->data.mode != var->data.mode &&
4276 !(earlier->data.mode == ir_var_system_value &&
4277 var->data.mode == ir_var_shader_in)) {
4278 _mesa_glsl_error(&loc, state,
4279 "redeclaration of `%s' with incorrect qualifiers",
4280 var->name);
4281 } else if (earlier->type != var->type) {
4282 _mesa_glsl_error(&loc, state,
4283 "redeclaration of `%s' has incorrect type",
4284 var->name);
4285 }
4286 } else if (allow_all_redeclarations) {
4287 if (earlier->data.mode != var->data.mode) {
4288 _mesa_glsl_error(&loc, state,
4289 "redeclaration of `%s' with incorrect qualifiers",
4290 var->name);
4291 } else if (earlier->type != var->type) {
4292 _mesa_glsl_error(&loc, state,
4293 "redeclaration of `%s' has incorrect type",
4294 var->name);
4295 }
4296 } else {
4297 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4298 }
4299
4300 return earlier;
4301 }
4302
4303 /**
4304 * Generate the IR for an initializer in a variable declaration
4305 */
4306 static ir_rvalue *
4307 process_initializer(ir_variable *var, ast_declaration *decl,
4308 ast_fully_specified_type *type,
4309 exec_list *initializer_instructions,
4310 struct _mesa_glsl_parse_state *state)
4311 {
4312 void *mem_ctx = state;
4313 ir_rvalue *result = NULL;
4314
4315 YYLTYPE initializer_loc = decl->initializer->get_location();
4316
4317 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4318 *
4319 * "All uniform variables are read-only and are initialized either
4320 * directly by an application via API commands, or indirectly by
4321 * OpenGL."
4322 */
4323 if (var->data.mode == ir_var_uniform) {
4324 state->check_version(120, 0, &initializer_loc,
4325 "cannot initialize uniform %s",
4326 var->name);
4327 }
4328
4329 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4330 *
4331 * "Buffer variables cannot have initializers."
4332 */
4333 if (var->data.mode == ir_var_shader_storage) {
4334 _mesa_glsl_error(&initializer_loc, state,
4335 "cannot initialize buffer variable %s",
4336 var->name);
4337 }
4338
4339 /* From section 4.1.7 of the GLSL 4.40 spec:
4340 *
4341 * "Opaque variables [...] are initialized only through the
4342 * OpenGL API; they cannot be declared with an initializer in a
4343 * shader."
4344 *
4345 * From section 4.1.7 of the ARB_bindless_texture spec:
4346 *
4347 * "Samplers may be declared as shader inputs and outputs, as uniform
4348 * variables, as temporary variables, and as function parameters."
4349 *
4350 * From section 4.1.X of the ARB_bindless_texture spec:
4351 *
4352 * "Images may be declared as shader inputs and outputs, as uniform
4353 * variables, as temporary variables, and as function parameters."
4354 */
4355 if (var->type->contains_atomic() ||
4356 (!state->has_bindless() && var->type->contains_opaque())) {
4357 _mesa_glsl_error(&initializer_loc, state,
4358 "cannot initialize %s variable %s",
4359 var->name, state->has_bindless() ? "atomic" : "opaque");
4360 }
4361
4362 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4363 _mesa_glsl_error(&initializer_loc, state,
4364 "cannot initialize %s shader input / %s %s",
4365 _mesa_shader_stage_to_string(state->stage),
4366 (state->stage == MESA_SHADER_VERTEX)
4367 ? "attribute" : "varying",
4368 var->name);
4369 }
4370
4371 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4372 _mesa_glsl_error(&initializer_loc, state,
4373 "cannot initialize %s shader output %s",
4374 _mesa_shader_stage_to_string(state->stage),
4375 var->name);
4376 }
4377
4378 /* If the initializer is an ast_aggregate_initializer, recursively store
4379 * type information from the LHS into it, so that its hir() function can do
4380 * type checking.
4381 */
4382 if (decl->initializer->oper == ast_aggregate)
4383 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4384
4385 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4386 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4387
4388 /* Calculate the constant value if this is a const or uniform
4389 * declaration.
4390 *
4391 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4392 *
4393 * "Declarations of globals without a storage qualifier, or with
4394 * just the const qualifier, may include initializers, in which case
4395 * they will be initialized before the first line of main() is
4396 * executed. Such initializers must be a constant expression."
4397 *
4398 * The same section of the GLSL ES 3.00.4 spec has similar language.
4399 */
4400 if (type->qualifier.flags.q.constant
4401 || type->qualifier.flags.q.uniform
4402 || (state->es_shader && state->current_function == NULL)) {
4403 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4404 lhs, rhs, true);
4405 if (new_rhs != NULL) {
4406 rhs = new_rhs;
4407
4408 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4409 * says:
4410 *
4411 * "A constant expression is one of
4412 *
4413 * ...
4414 *
4415 * - an expression formed by an operator on operands that are
4416 * all constant expressions, including getting an element of
4417 * a constant array, or a field of a constant structure, or
4418 * components of a constant vector. However, the sequence
4419 * operator ( , ) and the assignment operators ( =, +=, ...)
4420 * are not included in the operators that can create a
4421 * constant expression."
4422 *
4423 * Section 12.43 (Sequence operator and constant expressions) says:
4424 *
4425 * "Should the following construct be allowed?
4426 *
4427 * float a[2,3];
4428 *
4429 * The expression within the brackets uses the sequence operator
4430 * (',') and returns the integer 3 so the construct is declaring
4431 * a single-dimensional array of size 3. In some languages, the
4432 * construct declares a two-dimensional array. It would be
4433 * preferable to make this construct illegal to avoid confusion.
4434 *
4435 * One possibility is to change the definition of the sequence
4436 * operator so that it does not return a constant-expression and
4437 * hence cannot be used to declare an array size.
4438 *
4439 * RESOLUTION: The result of a sequence operator is not a
4440 * constant-expression."
4441 *
4442 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4443 * contains language almost identical to the section 4.3.3 in the
4444 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4445 * versions.
4446 */
4447 ir_constant *constant_value =
4448 rhs->constant_expression_value(mem_ctx);
4449
4450 if (!constant_value ||
4451 (state->is_version(430, 300) &&
4452 decl->initializer->has_sequence_subexpression())) {
4453 const char *const variable_mode =
4454 (type->qualifier.flags.q.constant)
4455 ? "const"
4456 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4457
4458 /* If ARB_shading_language_420pack is enabled, initializers of
4459 * const-qualified local variables do not have to be constant
4460 * expressions. Const-qualified global variables must still be
4461 * initialized with constant expressions.
4462 */
4463 if (!state->has_420pack()
4464 || state->current_function == NULL) {
4465 _mesa_glsl_error(& initializer_loc, state,
4466 "initializer of %s variable `%s' must be a "
4467 "constant expression",
4468 variable_mode,
4469 decl->identifier);
4470 if (var->type->is_numeric()) {
4471 /* Reduce cascading errors. */
4472 var->constant_value = type->qualifier.flags.q.constant
4473 ? ir_constant::zero(state, var->type) : NULL;
4474 }
4475 }
4476 } else {
4477 rhs = constant_value;
4478 var->constant_value = type->qualifier.flags.q.constant
4479 ? constant_value : NULL;
4480 }
4481 } else {
4482 if (var->type->is_numeric()) {
4483 /* Reduce cascading errors. */
4484 rhs = var->constant_value = type->qualifier.flags.q.constant
4485 ? ir_constant::zero(state, var->type) : NULL;
4486 }
4487 }
4488 }
4489
4490 if (rhs && !rhs->type->is_error()) {
4491 bool temp = var->data.read_only;
4492 if (type->qualifier.flags.q.constant)
4493 var->data.read_only = false;
4494
4495 /* Never emit code to initialize a uniform.
4496 */
4497 const glsl_type *initializer_type;
4498 if (!type->qualifier.flags.q.uniform) {
4499 do_assignment(initializer_instructions, state,
4500 NULL,
4501 lhs, rhs,
4502 &result, true,
4503 true,
4504 type->get_location());
4505 initializer_type = result->type;
4506 } else
4507 initializer_type = rhs->type;
4508
4509 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4510 var->data.has_initializer = true;
4511
4512 /* If the declared variable is an unsized array, it must inherrit
4513 * its full type from the initializer. A declaration such as
4514 *
4515 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4516 *
4517 * becomes
4518 *
4519 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4520 *
4521 * The assignment generated in the if-statement (below) will also
4522 * automatically handle this case for non-uniforms.
4523 *
4524 * If the declared variable is not an array, the types must
4525 * already match exactly. As a result, the type assignment
4526 * here can be done unconditionally. For non-uniforms the call
4527 * to do_assignment can change the type of the initializer (via
4528 * the implicit conversion rules). For uniforms the initializer
4529 * must be a constant expression, and the type of that expression
4530 * was validated above.
4531 */
4532 var->type = initializer_type;
4533
4534 var->data.read_only = temp;
4535 }
4536
4537 return result;
4538 }
4539
4540 static void
4541 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4542 YYLTYPE loc, ir_variable *var,
4543 unsigned num_vertices,
4544 unsigned *size,
4545 const char *var_category)
4546 {
4547 if (var->type->is_unsized_array()) {
4548 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4549 *
4550 * All geometry shader input unsized array declarations will be
4551 * sized by an earlier input layout qualifier, when present, as per
4552 * the following table.
4553 *
4554 * Followed by a table mapping each allowed input layout qualifier to
4555 * the corresponding input length.
4556 *
4557 * Similarly for tessellation control shader outputs.
4558 */
4559 if (num_vertices != 0)
4560 var->type = glsl_type::get_array_instance(var->type->fields.array,
4561 num_vertices);
4562 } else {
4563 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4564 * includes the following examples of compile-time errors:
4565 *
4566 * // code sequence within one shader...
4567 * in vec4 Color1[]; // size unknown
4568 * ...Color1.length()...// illegal, length() unknown
4569 * in vec4 Color2[2]; // size is 2
4570 * ...Color1.length()...// illegal, Color1 still has no size
4571 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4572 * layout(lines) in; // legal, input size is 2, matching
4573 * in vec4 Color4[3]; // illegal, contradicts layout
4574 * ...
4575 *
4576 * To detect the case illustrated by Color3, we verify that the size of
4577 * an explicitly-sized array matches the size of any previously declared
4578 * explicitly-sized array. To detect the case illustrated by Color4, we
4579 * verify that the size of an explicitly-sized array is consistent with
4580 * any previously declared input layout.
4581 */
4582 if (num_vertices != 0 && var->type->length != num_vertices) {
4583 _mesa_glsl_error(&loc, state,
4584 "%s size contradicts previously declared layout "
4585 "(size is %u, but layout requires a size of %u)",
4586 var_category, var->type->length, num_vertices);
4587 } else if (*size != 0 && var->type->length != *size) {
4588 _mesa_glsl_error(&loc, state,
4589 "%s sizes are inconsistent (size is %u, but a "
4590 "previous declaration has size %u)",
4591 var_category, var->type->length, *size);
4592 } else {
4593 *size = var->type->length;
4594 }
4595 }
4596 }
4597
4598 static void
4599 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4600 YYLTYPE loc, ir_variable *var)
4601 {
4602 unsigned num_vertices = 0;
4603
4604 if (state->tcs_output_vertices_specified) {
4605 if (!state->out_qualifier->vertices->
4606 process_qualifier_constant(state, "vertices",
4607 &num_vertices, false)) {
4608 return;
4609 }
4610
4611 if (num_vertices > state->Const.MaxPatchVertices) {
4612 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4613 "GL_MAX_PATCH_VERTICES", num_vertices);
4614 return;
4615 }
4616 }
4617
4618 if (!var->type->is_array() && !var->data.patch) {
4619 _mesa_glsl_error(&loc, state,
4620 "tessellation control shader outputs must be arrays");
4621
4622 /* To avoid cascading failures, short circuit the checks below. */
4623 return;
4624 }
4625
4626 if (var->data.patch)
4627 return;
4628
4629 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4630 &state->tcs_output_size,
4631 "tessellation control shader output");
4632 }
4633
4634 /**
4635 * Do additional processing necessary for tessellation control/evaluation shader
4636 * input declarations. This covers both interface block arrays and bare input
4637 * variables.
4638 */
4639 static void
4640 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4641 YYLTYPE loc, ir_variable *var)
4642 {
4643 if (!var->type->is_array() && !var->data.patch) {
4644 _mesa_glsl_error(&loc, state,
4645 "per-vertex tessellation shader inputs must be arrays");
4646 /* Avoid cascading failures. */
4647 return;
4648 }
4649
4650 if (var->data.patch)
4651 return;
4652
4653 /* The ARB_tessellation_shader spec says:
4654 *
4655 * "Declaring an array size is optional. If no size is specified, it
4656 * will be taken from the implementation-dependent maximum patch size
4657 * (gl_MaxPatchVertices). If a size is specified, it must match the
4658 * maximum patch size; otherwise, a compile or link error will occur."
4659 *
4660 * This text appears twice, once for TCS inputs, and again for TES inputs.
4661 */
4662 if (var->type->is_unsized_array()) {
4663 var->type = glsl_type::get_array_instance(var->type->fields.array,
4664 state->Const.MaxPatchVertices);
4665 } else if (var->type->length != state->Const.MaxPatchVertices) {
4666 _mesa_glsl_error(&loc, state,
4667 "per-vertex tessellation shader input arrays must be "
4668 "sized to gl_MaxPatchVertices (%d).",
4669 state->Const.MaxPatchVertices);
4670 }
4671 }
4672
4673
4674 /**
4675 * Do additional processing necessary for geometry shader input declarations
4676 * (this covers both interface blocks arrays and bare input variables).
4677 */
4678 static void
4679 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4680 YYLTYPE loc, ir_variable *var)
4681 {
4682 unsigned num_vertices = 0;
4683
4684 if (state->gs_input_prim_type_specified) {
4685 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4686 }
4687
4688 /* Geometry shader input variables must be arrays. Caller should have
4689 * reported an error for this.
4690 */
4691 if (!var->type->is_array()) {
4692 assert(state->error);
4693
4694 /* To avoid cascading failures, short circuit the checks below. */
4695 return;
4696 }
4697
4698 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4699 &state->gs_input_size,
4700 "geometry shader input");
4701 }
4702
4703 static void
4704 validate_identifier(const char *identifier, YYLTYPE loc,
4705 struct _mesa_glsl_parse_state *state)
4706 {
4707 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4708 *
4709 * "Identifiers starting with "gl_" are reserved for use by
4710 * OpenGL, and may not be declared in a shader as either a
4711 * variable or a function."
4712 */
4713 if (is_gl_identifier(identifier)) {
4714 _mesa_glsl_error(&loc, state,
4715 "identifier `%s' uses reserved `gl_' prefix",
4716 identifier);
4717 } else if (strstr(identifier, "__")) {
4718 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4719 * spec:
4720 *
4721 * "In addition, all identifiers containing two
4722 * consecutive underscores (__) are reserved as
4723 * possible future keywords."
4724 *
4725 * The intention is that names containing __ are reserved for internal
4726 * use by the implementation, and names prefixed with GL_ are reserved
4727 * for use by Khronos. Names simply containing __ are dangerous to use,
4728 * but should be allowed.
4729 *
4730 * A future version of the GLSL specification will clarify this.
4731 */
4732 _mesa_glsl_warning(&loc, state,
4733 "identifier `%s' uses reserved `__' string",
4734 identifier);
4735 }
4736 }
4737
4738 ir_rvalue *
4739 ast_declarator_list::hir(exec_list *instructions,
4740 struct _mesa_glsl_parse_state *state)
4741 {
4742 void *ctx = state;
4743 const struct glsl_type *decl_type;
4744 const char *type_name = NULL;
4745 ir_rvalue *result = NULL;
4746 YYLTYPE loc = this->get_location();
4747
4748 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4749 *
4750 * "To ensure that a particular output variable is invariant, it is
4751 * necessary to use the invariant qualifier. It can either be used to
4752 * qualify a previously declared variable as being invariant
4753 *
4754 * invariant gl_Position; // make existing gl_Position be invariant"
4755 *
4756 * In these cases the parser will set the 'invariant' flag in the declarator
4757 * list, and the type will be NULL.
4758 */
4759 if (this->invariant) {
4760 assert(this->type == NULL);
4761
4762 if (state->current_function != NULL) {
4763 _mesa_glsl_error(& loc, state,
4764 "all uses of `invariant' keyword must be at global "
4765 "scope");
4766 }
4767
4768 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4769 assert(decl->array_specifier == NULL);
4770 assert(decl->initializer == NULL);
4771
4772 ir_variable *const earlier =
4773 state->symbols->get_variable(decl->identifier);
4774 if (earlier == NULL) {
4775 _mesa_glsl_error(& loc, state,
4776 "undeclared variable `%s' cannot be marked "
4777 "invariant", decl->identifier);
4778 } else if (!is_allowed_invariant(earlier, state)) {
4779 _mesa_glsl_error(&loc, state,
4780 "`%s' cannot be marked invariant; interfaces between "
4781 "shader stages only.", decl->identifier);
4782 } else if (earlier->data.used) {
4783 _mesa_glsl_error(& loc, state,
4784 "variable `%s' may not be redeclared "
4785 "`invariant' after being used",
4786 earlier->name);
4787 } else {
4788 earlier->data.invariant = true;
4789 }
4790 }
4791
4792 /* Invariant redeclarations do not have r-values.
4793 */
4794 return NULL;
4795 }
4796
4797 if (this->precise) {
4798 assert(this->type == NULL);
4799
4800 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4801 assert(decl->array_specifier == NULL);
4802 assert(decl->initializer == NULL);
4803
4804 ir_variable *const earlier =
4805 state->symbols->get_variable(decl->identifier);
4806 if (earlier == NULL) {
4807 _mesa_glsl_error(& loc, state,
4808 "undeclared variable `%s' cannot be marked "
4809 "precise", decl->identifier);
4810 } else if (state->current_function != NULL &&
4811 !state->symbols->name_declared_this_scope(decl->identifier)) {
4812 /* Note: we have to check if we're in a function, since
4813 * builtins are treated as having come from another scope.
4814 */
4815 _mesa_glsl_error(& loc, state,
4816 "variable `%s' from an outer scope may not be "
4817 "redeclared `precise' in this scope",
4818 earlier->name);
4819 } else if (earlier->data.used) {
4820 _mesa_glsl_error(& loc, state,
4821 "variable `%s' may not be redeclared "
4822 "`precise' after being used",
4823 earlier->name);
4824 } else {
4825 earlier->data.precise = true;
4826 }
4827 }
4828
4829 /* Precise redeclarations do not have r-values either. */
4830 return NULL;
4831 }
4832
4833 assert(this->type != NULL);
4834 assert(!this->invariant);
4835 assert(!this->precise);
4836
4837 /* The type specifier may contain a structure definition. Process that
4838 * before any of the variable declarations.
4839 */
4840 (void) this->type->specifier->hir(instructions, state);
4841
4842 decl_type = this->type->glsl_type(& type_name, state);
4843
4844 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4845 * "Buffer variables may only be declared inside interface blocks
4846 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4847 * shader storage blocks. It is a compile-time error to declare buffer
4848 * variables at global scope (outside a block)."
4849 */
4850 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4851 _mesa_glsl_error(&loc, state,
4852 "buffer variables cannot be declared outside "
4853 "interface blocks");
4854 }
4855
4856 /* An offset-qualified atomic counter declaration sets the default
4857 * offset for the next declaration within the same atomic counter
4858 * buffer.
4859 */
4860 if (decl_type && decl_type->contains_atomic()) {
4861 if (type->qualifier.flags.q.explicit_binding &&
4862 type->qualifier.flags.q.explicit_offset) {
4863 unsigned qual_binding;
4864 unsigned qual_offset;
4865 if (process_qualifier_constant(state, &loc, "binding",
4866 type->qualifier.binding,
4867 &qual_binding)
4868 && process_qualifier_constant(state, &loc, "offset",
4869 type->qualifier.offset,
4870 &qual_offset)) {
4871 state->atomic_counter_offsets[qual_binding] = qual_offset;
4872 }
4873 }
4874
4875 ast_type_qualifier allowed_atomic_qual_mask;
4876 allowed_atomic_qual_mask.flags.i = 0;
4877 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4878 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4879 allowed_atomic_qual_mask.flags.q.uniform = 1;
4880
4881 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4882 "invalid layout qualifier for",
4883 "atomic_uint");
4884 }
4885
4886 if (this->declarations.is_empty()) {
4887 /* If there is no structure involved in the program text, there are two
4888 * possible scenarios:
4889 *
4890 * - The program text contained something like 'vec4;'. This is an
4891 * empty declaration. It is valid but weird. Emit a warning.
4892 *
4893 * - The program text contained something like 'S;' and 'S' is not the
4894 * name of a known structure type. This is both invalid and weird.
4895 * Emit an error.
4896 *
4897 * - The program text contained something like 'mediump float;'
4898 * when the programmer probably meant 'precision mediump
4899 * float;' Emit a warning with a description of what they
4900 * probably meant to do.
4901 *
4902 * Note that if decl_type is NULL and there is a structure involved,
4903 * there must have been some sort of error with the structure. In this
4904 * case we assume that an error was already generated on this line of
4905 * code for the structure. There is no need to generate an additional,
4906 * confusing error.
4907 */
4908 assert(this->type->specifier->structure == NULL || decl_type != NULL
4909 || state->error);
4910
4911 if (decl_type == NULL) {
4912 _mesa_glsl_error(&loc, state,
4913 "invalid type `%s' in empty declaration",
4914 type_name);
4915 } else {
4916 if (decl_type->is_array()) {
4917 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4918 * spec:
4919 *
4920 * "... any declaration that leaves the size undefined is
4921 * disallowed as this would add complexity and there are no
4922 * use-cases."
4923 */
4924 if (state->es_shader && decl_type->is_unsized_array()) {
4925 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4926 "or implicitly defined");
4927 }
4928
4929 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4930 *
4931 * "The combinations of types and qualifiers that cause
4932 * compile-time or link-time errors are the same whether or not
4933 * the declaration is empty."
4934 */
4935 validate_array_dimensions(decl_type, state, &loc);
4936 }
4937
4938 if (decl_type->is_atomic_uint()) {
4939 /* Empty atomic counter declarations are allowed and useful
4940 * to set the default offset qualifier.
4941 */
4942 return NULL;
4943 } else if (this->type->qualifier.precision != ast_precision_none) {
4944 if (this->type->specifier->structure != NULL) {
4945 _mesa_glsl_error(&loc, state,
4946 "precision qualifiers can't be applied "
4947 "to structures");
4948 } else {
4949 static const char *const precision_names[] = {
4950 "highp",
4951 "highp",
4952 "mediump",
4953 "lowp"
4954 };
4955
4956 _mesa_glsl_warning(&loc, state,
4957 "empty declaration with precision "
4958 "qualifier, to set the default precision, "
4959 "use `precision %s %s;'",
4960 precision_names[this->type->
4961 qualifier.precision],
4962 type_name);
4963 }
4964 } else if (this->type->specifier->structure == NULL) {
4965 _mesa_glsl_warning(&loc, state, "empty declaration");
4966 }
4967 }
4968 }
4969
4970 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4971 const struct glsl_type *var_type;
4972 ir_variable *var;
4973 const char *identifier = decl->identifier;
4974 /* FINISHME: Emit a warning if a variable declaration shadows a
4975 * FINISHME: declaration at a higher scope.
4976 */
4977
4978 if ((decl_type == NULL) || decl_type->is_void()) {
4979 if (type_name != NULL) {
4980 _mesa_glsl_error(& loc, state,
4981 "invalid type `%s' in declaration of `%s'",
4982 type_name, decl->identifier);
4983 } else {
4984 _mesa_glsl_error(& loc, state,
4985 "invalid type in declaration of `%s'",
4986 decl->identifier);
4987 }
4988 continue;
4989 }
4990
4991 if (this->type->qualifier.is_subroutine_decl()) {
4992 const glsl_type *t;
4993 const char *name;
4994
4995 t = state->symbols->get_type(this->type->specifier->type_name);
4996 if (!t)
4997 _mesa_glsl_error(& loc, state,
4998 "invalid type in declaration of `%s'",
4999 decl->identifier);
5000 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5001
5002 identifier = name;
5003
5004 }
5005 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5006 state);
5007
5008 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5009
5010 /* The 'varying in' and 'varying out' qualifiers can only be used with
5011 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5012 * yet.
5013 */
5014 if (this->type->qualifier.flags.q.varying) {
5015 if (this->type->qualifier.flags.q.in) {
5016 _mesa_glsl_error(& loc, state,
5017 "`varying in' qualifier in declaration of "
5018 "`%s' only valid for geometry shaders using "
5019 "ARB_geometry_shader4 or EXT_geometry_shader4",
5020 decl->identifier);
5021 } else if (this->type->qualifier.flags.q.out) {
5022 _mesa_glsl_error(& loc, state,
5023 "`varying out' qualifier in declaration of "
5024 "`%s' only valid for geometry shaders using "
5025 "ARB_geometry_shader4 or EXT_geometry_shader4",
5026 decl->identifier);
5027 }
5028 }
5029
5030 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5031 *
5032 * "Global variables can only use the qualifiers const,
5033 * attribute, uniform, or varying. Only one may be
5034 * specified.
5035 *
5036 * Local variables can only use the qualifier const."
5037 *
5038 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5039 * any extension that adds the 'layout' keyword.
5040 */
5041 if (!state->is_version(130, 300)
5042 && !state->has_explicit_attrib_location()
5043 && !state->has_separate_shader_objects()
5044 && !state->ARB_fragment_coord_conventions_enable) {
5045 if (this->type->qualifier.flags.q.out) {
5046 _mesa_glsl_error(& loc, state,
5047 "`out' qualifier in declaration of `%s' "
5048 "only valid for function parameters in %s",
5049 decl->identifier, state->get_version_string());
5050 }
5051 if (this->type->qualifier.flags.q.in) {
5052 _mesa_glsl_error(& loc, state,
5053 "`in' qualifier in declaration of `%s' "
5054 "only valid for function parameters in %s",
5055 decl->identifier, state->get_version_string());
5056 }
5057 /* FINISHME: Test for other invalid qualifiers. */
5058 }
5059
5060 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5061 & loc, false);
5062 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5063 &loc);
5064
5065 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5066 && (var->type->is_numeric() || var->type->is_boolean())
5067 && state->zero_init) {
5068 const ir_constant_data data = { { 0 } };
5069 var->data.has_initializer = true;
5070 var->constant_initializer = new(var) ir_constant(var->type, &data);
5071 }
5072
5073 if (this->type->qualifier.flags.q.invariant) {
5074 if (!is_allowed_invariant(var, state)) {
5075 _mesa_glsl_error(&loc, state,
5076 "`%s' cannot be marked invariant; interfaces between "
5077 "shader stages only", var->name);
5078 }
5079 }
5080
5081 if (state->current_function != NULL) {
5082 const char *mode = NULL;
5083 const char *extra = "";
5084
5085 /* There is no need to check for 'inout' here because the parser will
5086 * only allow that in function parameter lists.
5087 */
5088 if (this->type->qualifier.flags.q.attribute) {
5089 mode = "attribute";
5090 } else if (this->type->qualifier.is_subroutine_decl()) {
5091 mode = "subroutine uniform";
5092 } else if (this->type->qualifier.flags.q.uniform) {
5093 mode = "uniform";
5094 } else if (this->type->qualifier.flags.q.varying) {
5095 mode = "varying";
5096 } else if (this->type->qualifier.flags.q.in) {
5097 mode = "in";
5098 extra = " or in function parameter list";
5099 } else if (this->type->qualifier.flags.q.out) {
5100 mode = "out";
5101 extra = " or in function parameter list";
5102 }
5103
5104 if (mode) {
5105 _mesa_glsl_error(& loc, state,
5106 "%s variable `%s' must be declared at "
5107 "global scope%s",
5108 mode, var->name, extra);
5109 }
5110 } else if (var->data.mode == ir_var_shader_in) {
5111 var->data.read_only = true;
5112
5113 if (state->stage == MESA_SHADER_VERTEX) {
5114 bool error_emitted = false;
5115
5116 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5117 *
5118 * "Vertex shader inputs can only be float, floating-point
5119 * vectors, matrices, signed and unsigned integers and integer
5120 * vectors. Vertex shader inputs can also form arrays of these
5121 * types, but not structures."
5122 *
5123 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5124 *
5125 * "Vertex shader inputs can only be float, floating-point
5126 * vectors, matrices, signed and unsigned integers and integer
5127 * vectors. They cannot be arrays or structures."
5128 *
5129 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5130 *
5131 * "The attribute qualifier can be used only with float,
5132 * floating-point vectors, and matrices. Attribute variables
5133 * cannot be declared as arrays or structures."
5134 *
5135 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5136 *
5137 * "Vertex shader inputs can only be float, floating-point
5138 * vectors, matrices, signed and unsigned integers and integer
5139 * vectors. Vertex shader inputs cannot be arrays or
5140 * structures."
5141 *
5142 * From section 4.3.4 of the ARB_bindless_texture spec:
5143 *
5144 * "(modify third paragraph of the section to allow sampler and
5145 * image types) ... Vertex shader inputs can only be float,
5146 * single-precision floating-point scalars, single-precision
5147 * floating-point vectors, matrices, signed and unsigned
5148 * integers and integer vectors, sampler and image types."
5149 */
5150 const glsl_type *check_type = var->type->without_array();
5151
5152 switch (check_type->base_type) {
5153 case GLSL_TYPE_FLOAT:
5154 break;
5155 case GLSL_TYPE_UINT64:
5156 case GLSL_TYPE_INT64:
5157 break;
5158 case GLSL_TYPE_UINT:
5159 case GLSL_TYPE_INT:
5160 if (state->is_version(120, 300))
5161 break;
5162 case GLSL_TYPE_DOUBLE:
5163 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5164 break;
5165 case GLSL_TYPE_SAMPLER:
5166 if (check_type->is_sampler() && state->has_bindless())
5167 break;
5168 case GLSL_TYPE_IMAGE:
5169 if (check_type->is_image() && state->has_bindless())
5170 break;
5171 /* FALLTHROUGH */
5172 default:
5173 _mesa_glsl_error(& loc, state,
5174 "vertex shader input / attribute cannot have "
5175 "type %s`%s'",
5176 var->type->is_array() ? "array of " : "",
5177 check_type->name);
5178 error_emitted = true;
5179 }
5180
5181 if (!error_emitted && var->type->is_array() &&
5182 !state->check_version(150, 0, &loc,
5183 "vertex shader input / attribute "
5184 "cannot have array type")) {
5185 error_emitted = true;
5186 }
5187 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5188 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5189 *
5190 * Geometry shader input variables get the per-vertex values
5191 * written out by vertex shader output variables of the same
5192 * names. Since a geometry shader operates on a set of
5193 * vertices, each input varying variable (or input block, see
5194 * interface blocks below) needs to be declared as an array.
5195 */
5196 if (!var->type->is_array()) {
5197 _mesa_glsl_error(&loc, state,
5198 "geometry shader inputs must be arrays");
5199 }
5200
5201 handle_geometry_shader_input_decl(state, loc, var);
5202 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5203 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5204 *
5205 * It is a compile-time error to declare a fragment shader
5206 * input with, or that contains, any of the following types:
5207 *
5208 * * A boolean type
5209 * * An opaque type
5210 * * An array of arrays
5211 * * An array of structures
5212 * * A structure containing an array
5213 * * A structure containing a structure
5214 */
5215 if (state->es_shader) {
5216 const glsl_type *check_type = var->type->without_array();
5217 if (check_type->is_boolean() ||
5218 check_type->contains_opaque()) {
5219 _mesa_glsl_error(&loc, state,
5220 "fragment shader input cannot have type %s",
5221 check_type->name);
5222 }
5223 if (var->type->is_array() &&
5224 var->type->fields.array->is_array()) {
5225 _mesa_glsl_error(&loc, state,
5226 "%s shader output "
5227 "cannot have an array of arrays",
5228 _mesa_shader_stage_to_string(state->stage));
5229 }
5230 if (var->type->is_array() &&
5231 var->type->fields.array->is_record()) {
5232 _mesa_glsl_error(&loc, state,
5233 "fragment shader input "
5234 "cannot have an array of structs");
5235 }
5236 if (var->type->is_record()) {
5237 for (unsigned i = 0; i < var->type->length; i++) {
5238 if (var->type->fields.structure[i].type->is_array() ||
5239 var->type->fields.structure[i].type->is_record())
5240 _mesa_glsl_error(&loc, state,
5241 "fragment shader input cannot have "
5242 "a struct that contains an "
5243 "array or struct");
5244 }
5245 }
5246 }
5247 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5248 state->stage == MESA_SHADER_TESS_EVAL) {
5249 handle_tess_shader_input_decl(state, loc, var);
5250 }
5251 } else if (var->data.mode == ir_var_shader_out) {
5252 const glsl_type *check_type = var->type->without_array();
5253
5254 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5255 *
5256 * It is a compile-time error to declare a fragment shader output
5257 * that contains any of the following:
5258 *
5259 * * A Boolean type (bool, bvec2 ...)
5260 * * A double-precision scalar or vector (double, dvec2 ...)
5261 * * An opaque type
5262 * * Any matrix type
5263 * * A structure
5264 */
5265 if (state->stage == MESA_SHADER_FRAGMENT) {
5266 if (check_type->is_record() || check_type->is_matrix())
5267 _mesa_glsl_error(&loc, state,
5268 "fragment shader output "
5269 "cannot have struct or matrix type");
5270 switch (check_type->base_type) {
5271 case GLSL_TYPE_UINT:
5272 case GLSL_TYPE_INT:
5273 case GLSL_TYPE_FLOAT:
5274 break;
5275 default:
5276 _mesa_glsl_error(&loc, state,
5277 "fragment shader output cannot have "
5278 "type %s", check_type->name);
5279 }
5280 }
5281
5282 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5283 *
5284 * It is a compile-time error to declare a vertex shader output
5285 * with, or that contains, any of the following types:
5286 *
5287 * * A boolean type
5288 * * An opaque type
5289 * * An array of arrays
5290 * * An array of structures
5291 * * A structure containing an array
5292 * * A structure containing a structure
5293 *
5294 * It is a compile-time error to declare a fragment shader output
5295 * with, or that contains, any of the following types:
5296 *
5297 * * A boolean type
5298 * * An opaque type
5299 * * A matrix
5300 * * A structure
5301 * * An array of array
5302 *
5303 * ES 3.20 updates this to apply to tessellation and geometry shaders
5304 * as well. Because there are per-vertex arrays in the new stages,
5305 * it strikes the "array of..." rules and replaces them with these:
5306 *
5307 * * For per-vertex-arrayed variables (applies to tessellation
5308 * control, tessellation evaluation and geometry shaders):
5309 *
5310 * * Per-vertex-arrayed arrays of arrays
5311 * * Per-vertex-arrayed arrays of structures
5312 *
5313 * * For non-per-vertex-arrayed variables:
5314 *
5315 * * An array of arrays
5316 * * An array of structures
5317 *
5318 * which basically says to unwrap the per-vertex aspect and apply
5319 * the old rules.
5320 */
5321 if (state->es_shader) {
5322 if (var->type->is_array() &&
5323 var->type->fields.array->is_array()) {
5324 _mesa_glsl_error(&loc, state,
5325 "%s shader output "
5326 "cannot have an array of arrays",
5327 _mesa_shader_stage_to_string(state->stage));
5328 }
5329 if (state->stage <= MESA_SHADER_GEOMETRY) {
5330 const glsl_type *type = var->type;
5331
5332 if (state->stage == MESA_SHADER_TESS_CTRL &&
5333 !var->data.patch && var->type->is_array()) {
5334 type = var->type->fields.array;
5335 }
5336
5337 if (type->is_array() && type->fields.array->is_record()) {
5338 _mesa_glsl_error(&loc, state,
5339 "%s shader output cannot have "
5340 "an array of structs",
5341 _mesa_shader_stage_to_string(state->stage));
5342 }
5343 if (type->is_record()) {
5344 for (unsigned i = 0; i < type->length; i++) {
5345 if (type->fields.structure[i].type->is_array() ||
5346 type->fields.structure[i].type->is_record())
5347 _mesa_glsl_error(&loc, state,
5348 "%s shader output cannot have a "
5349 "struct that contains an "
5350 "array or struct",
5351 _mesa_shader_stage_to_string(state->stage));
5352 }
5353 }
5354 }
5355 }
5356
5357 if (state->stage == MESA_SHADER_TESS_CTRL) {
5358 handle_tess_ctrl_shader_output_decl(state, loc, var);
5359 }
5360 } else if (var->type->contains_subroutine()) {
5361 /* declare subroutine uniforms as hidden */
5362 var->data.how_declared = ir_var_hidden;
5363 }
5364
5365 /* From section 4.3.4 of the GLSL 4.00 spec:
5366 * "Input variables may not be declared using the patch in qualifier
5367 * in tessellation control or geometry shaders."
5368 *
5369 * From section 4.3.6 of the GLSL 4.00 spec:
5370 * "It is an error to use patch out in a vertex, tessellation
5371 * evaluation, or geometry shader."
5372 *
5373 * This doesn't explicitly forbid using them in a fragment shader, but
5374 * that's probably just an oversight.
5375 */
5376 if (state->stage != MESA_SHADER_TESS_EVAL
5377 && this->type->qualifier.flags.q.patch
5378 && this->type->qualifier.flags.q.in) {
5379
5380 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5381 "tessellation evaluation shader");
5382 }
5383
5384 if (state->stage != MESA_SHADER_TESS_CTRL
5385 && this->type->qualifier.flags.q.patch
5386 && this->type->qualifier.flags.q.out) {
5387
5388 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5389 "tessellation control shader");
5390 }
5391
5392 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5393 */
5394 if (this->type->qualifier.precision != ast_precision_none) {
5395 state->check_precision_qualifiers_allowed(&loc);
5396 }
5397
5398 if (this->type->qualifier.precision != ast_precision_none &&
5399 !precision_qualifier_allowed(var->type)) {
5400 _mesa_glsl_error(&loc, state,
5401 "precision qualifiers apply only to floating point"
5402 ", integer and opaque types");
5403 }
5404
5405 /* From section 4.1.7 of the GLSL 4.40 spec:
5406 *
5407 * "[Opaque types] can only be declared as function
5408 * parameters or uniform-qualified variables."
5409 *
5410 * From section 4.1.7 of the ARB_bindless_texture spec:
5411 *
5412 * "Samplers may be declared as shader inputs and outputs, as uniform
5413 * variables, as temporary variables, and as function parameters."
5414 *
5415 * From section 4.1.X of the ARB_bindless_texture spec:
5416 *
5417 * "Images may be declared as shader inputs and outputs, as uniform
5418 * variables, as temporary variables, and as function parameters."
5419 */
5420 if (!this->type->qualifier.flags.q.uniform &&
5421 (var_type->contains_atomic() ||
5422 (!state->has_bindless() && var_type->contains_opaque()))) {
5423 _mesa_glsl_error(&loc, state,
5424 "%s variables must be declared uniform",
5425 state->has_bindless() ? "atomic" : "opaque");
5426 }
5427
5428 /* Process the initializer and add its instructions to a temporary
5429 * list. This list will be added to the instruction stream (below) after
5430 * the declaration is added. This is done because in some cases (such as
5431 * redeclarations) the declaration may not actually be added to the
5432 * instruction stream.
5433 */
5434 exec_list initializer_instructions;
5435
5436 /* Examine var name here since var may get deleted in the next call */
5437 bool var_is_gl_id = is_gl_identifier(var->name);
5438
5439 bool is_redeclaration;
5440 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5441 false /* allow_all_redeclarations */,
5442 &is_redeclaration);
5443 if (is_redeclaration) {
5444 if (var_is_gl_id &&
5445 var->data.how_declared == ir_var_declared_in_block) {
5446 _mesa_glsl_error(&loc, state,
5447 "`%s' has already been redeclared using "
5448 "gl_PerVertex", var->name);
5449 }
5450 var->data.how_declared = ir_var_declared_normally;
5451 }
5452
5453 if (decl->initializer != NULL) {
5454 result = process_initializer(var,
5455 decl, this->type,
5456 &initializer_instructions, state);
5457 } else {
5458 validate_array_dimensions(var_type, state, &loc);
5459 }
5460
5461 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5462 *
5463 * "It is an error to write to a const variable outside of
5464 * its declaration, so they must be initialized when
5465 * declared."
5466 */
5467 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5468 _mesa_glsl_error(& loc, state,
5469 "const declaration of `%s' must be initialized",
5470 decl->identifier);
5471 }
5472
5473 if (state->es_shader) {
5474 const glsl_type *const t = var->type;
5475
5476 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5477 *
5478 * The GL_OES_tessellation_shader spec says about inputs:
5479 *
5480 * "Declaring an array size is optional. If no size is specified,
5481 * it will be taken from the implementation-dependent maximum
5482 * patch size (gl_MaxPatchVertices)."
5483 *
5484 * and about TCS outputs:
5485 *
5486 * "If no size is specified, it will be taken from output patch
5487 * size declared in the shader."
5488 *
5489 * The GL_OES_geometry_shader spec says:
5490 *
5491 * "All geometry shader input unsized array declarations will be
5492 * sized by an earlier input primitive layout qualifier, when
5493 * present, as per the following table."
5494 */
5495 const bool implicitly_sized =
5496 (var->data.mode == ir_var_shader_in &&
5497 state->stage >= MESA_SHADER_TESS_CTRL &&
5498 state->stage <= MESA_SHADER_GEOMETRY) ||
5499 (var->data.mode == ir_var_shader_out &&
5500 state->stage == MESA_SHADER_TESS_CTRL);
5501
5502 if (t->is_unsized_array() && !implicitly_sized)
5503 /* Section 10.17 of the GLSL ES 1.00 specification states that
5504 * unsized array declarations have been removed from the language.
5505 * Arrays that are sized using an initializer are still explicitly
5506 * sized. However, GLSL ES 1.00 does not allow array
5507 * initializers. That is only allowed in GLSL ES 3.00.
5508 *
5509 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5510 *
5511 * "An array type can also be formed without specifying a size
5512 * if the definition includes an initializer:
5513 *
5514 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5515 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5516 *
5517 * float a[5];
5518 * float b[] = a;"
5519 */
5520 _mesa_glsl_error(& loc, state,
5521 "unsized array declarations are not allowed in "
5522 "GLSL ES");
5523 }
5524
5525 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5526 *
5527 * "It is a compile-time error to declare an unsized array of
5528 * atomic_uint"
5529 */
5530 if (var->type->is_unsized_array() &&
5531 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5532 _mesa_glsl_error(& loc, state,
5533 "Unsized array of atomic_uint is not allowed");
5534 }
5535
5536 /* If the declaration is not a redeclaration, there are a few additional
5537 * semantic checks that must be applied. In addition, variable that was
5538 * created for the declaration should be added to the IR stream.
5539 */
5540 if (!is_redeclaration) {
5541 validate_identifier(decl->identifier, loc, state);
5542
5543 /* Add the variable to the symbol table. Note that the initializer's
5544 * IR was already processed earlier (though it hasn't been emitted
5545 * yet), without the variable in scope.
5546 *
5547 * This differs from most C-like languages, but it follows the GLSL
5548 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5549 * spec:
5550 *
5551 * "Within a declaration, the scope of a name starts immediately
5552 * after the initializer if present or immediately after the name
5553 * being declared if not."
5554 */
5555 if (!state->symbols->add_variable(var)) {
5556 YYLTYPE loc = this->get_location();
5557 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5558 "current scope", decl->identifier);
5559 continue;
5560 }
5561
5562 /* Push the variable declaration to the top. It means that all the
5563 * variable declarations will appear in a funny last-to-first order,
5564 * but otherwise we run into trouble if a function is prototyped, a
5565 * global var is decled, then the function is defined with usage of
5566 * the global var. See glslparsertest's CorrectModule.frag.
5567 */
5568 instructions->push_head(var);
5569 }
5570
5571 instructions->append_list(&initializer_instructions);
5572 }
5573
5574
5575 /* Generally, variable declarations do not have r-values. However,
5576 * one is used for the declaration in
5577 *
5578 * while (bool b = some_condition()) {
5579 * ...
5580 * }
5581 *
5582 * so we return the rvalue from the last seen declaration here.
5583 */
5584 return result;
5585 }
5586
5587
5588 ir_rvalue *
5589 ast_parameter_declarator::hir(exec_list *instructions,
5590 struct _mesa_glsl_parse_state *state)
5591 {
5592 void *ctx = state;
5593 const struct glsl_type *type;
5594 const char *name = NULL;
5595 YYLTYPE loc = this->get_location();
5596
5597 type = this->type->glsl_type(& name, state);
5598
5599 if (type == NULL) {
5600 if (name != NULL) {
5601 _mesa_glsl_error(& loc, state,
5602 "invalid type `%s' in declaration of `%s'",
5603 name, this->identifier);
5604 } else {
5605 _mesa_glsl_error(& loc, state,
5606 "invalid type in declaration of `%s'",
5607 this->identifier);
5608 }
5609
5610 type = glsl_type::error_type;
5611 }
5612
5613 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5614 *
5615 * "Functions that accept no input arguments need not use void in the
5616 * argument list because prototypes (or definitions) are required and
5617 * therefore there is no ambiguity when an empty argument list "( )" is
5618 * declared. The idiom "(void)" as a parameter list is provided for
5619 * convenience."
5620 *
5621 * Placing this check here prevents a void parameter being set up
5622 * for a function, which avoids tripping up checks for main taking
5623 * parameters and lookups of an unnamed symbol.
5624 */
5625 if (type->is_void()) {
5626 if (this->identifier != NULL)
5627 _mesa_glsl_error(& loc, state,
5628 "named parameter cannot have type `void'");
5629
5630 is_void = true;
5631 return NULL;
5632 }
5633
5634 if (formal_parameter && (this->identifier == NULL)) {
5635 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5636 return NULL;
5637 }
5638
5639 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5640 * call already handled the "vec4[..] foo" case.
5641 */
5642 type = process_array_type(&loc, type, this->array_specifier, state);
5643
5644 if (!type->is_error() && type->is_unsized_array()) {
5645 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5646 "a declared size");
5647 type = glsl_type::error_type;
5648 }
5649
5650 is_void = false;
5651 ir_variable *var = new(ctx)
5652 ir_variable(type, this->identifier, ir_var_function_in);
5653
5654 /* Apply any specified qualifiers to the parameter declaration. Note that
5655 * for function parameters the default mode is 'in'.
5656 */
5657 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5658 true);
5659
5660 /* From section 4.1.7 of the GLSL 4.40 spec:
5661 *
5662 * "Opaque variables cannot be treated as l-values; hence cannot
5663 * be used as out or inout function parameters, nor can they be
5664 * assigned into."
5665 *
5666 * From section 4.1.7 of the ARB_bindless_texture spec:
5667 *
5668 * "Samplers can be used as l-values, so can be assigned into and used
5669 * as "out" and "inout" function parameters."
5670 *
5671 * From section 4.1.X of the ARB_bindless_texture spec:
5672 *
5673 * "Images can be used as l-values, so can be assigned into and used as
5674 * "out" and "inout" function parameters."
5675 */
5676 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5677 && (type->contains_atomic() ||
5678 (!state->has_bindless() && type->contains_opaque()))) {
5679 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5680 "contain %s variables",
5681 state->has_bindless() ? "atomic" : "opaque");
5682 type = glsl_type::error_type;
5683 }
5684
5685 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5686 *
5687 * "When calling a function, expressions that do not evaluate to
5688 * l-values cannot be passed to parameters declared as out or inout."
5689 *
5690 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5691 *
5692 * "Other binary or unary expressions, non-dereferenced arrays,
5693 * function names, swizzles with repeated fields, and constants
5694 * cannot be l-values."
5695 *
5696 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5697 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5698 */
5699 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5700 && type->is_array()
5701 && !state->check_version(120, 100, &loc,
5702 "arrays cannot be out or inout parameters")) {
5703 type = glsl_type::error_type;
5704 }
5705
5706 instructions->push_tail(var);
5707
5708 /* Parameter declarations do not have r-values.
5709 */
5710 return NULL;
5711 }
5712
5713
5714 void
5715 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5716 bool formal,
5717 exec_list *ir_parameters,
5718 _mesa_glsl_parse_state *state)
5719 {
5720 ast_parameter_declarator *void_param = NULL;
5721 unsigned count = 0;
5722
5723 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5724 param->formal_parameter = formal;
5725 param->hir(ir_parameters, state);
5726
5727 if (param->is_void)
5728 void_param = param;
5729
5730 count++;
5731 }
5732
5733 if ((void_param != NULL) && (count > 1)) {
5734 YYLTYPE loc = void_param->get_location();
5735
5736 _mesa_glsl_error(& loc, state,
5737 "`void' parameter must be only parameter");
5738 }
5739 }
5740
5741
5742 void
5743 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5744 {
5745 /* IR invariants disallow function declarations or definitions
5746 * nested within other function definitions. But there is no
5747 * requirement about the relative order of function declarations
5748 * and definitions with respect to one another. So simply insert
5749 * the new ir_function block at the end of the toplevel instruction
5750 * list.
5751 */
5752 state->toplevel_ir->push_tail(f);
5753 }
5754
5755
5756 ir_rvalue *
5757 ast_function::hir(exec_list *instructions,
5758 struct _mesa_glsl_parse_state *state)
5759 {
5760 void *ctx = state;
5761 ir_function *f = NULL;
5762 ir_function_signature *sig = NULL;
5763 exec_list hir_parameters;
5764 YYLTYPE loc = this->get_location();
5765
5766 const char *const name = identifier;
5767
5768 /* New functions are always added to the top-level IR instruction stream,
5769 * so this instruction list pointer is ignored. See also emit_function
5770 * (called below).
5771 */
5772 (void) instructions;
5773
5774 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5775 *
5776 * "Function declarations (prototypes) cannot occur inside of functions;
5777 * they must be at global scope, or for the built-in functions, outside
5778 * the global scope."
5779 *
5780 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5781 *
5782 * "User defined functions may only be defined within the global scope."
5783 *
5784 * Note that this language does not appear in GLSL 1.10.
5785 */
5786 if ((state->current_function != NULL) &&
5787 state->is_version(120, 100)) {
5788 YYLTYPE loc = this->get_location();
5789 _mesa_glsl_error(&loc, state,
5790 "declaration of function `%s' not allowed within "
5791 "function body", name);
5792 }
5793
5794 validate_identifier(name, this->get_location(), state);
5795
5796 /* Convert the list of function parameters to HIR now so that they can be
5797 * used below to compare this function's signature with previously seen
5798 * signatures for functions with the same name.
5799 */
5800 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5801 is_definition,
5802 & hir_parameters, state);
5803
5804 const char *return_type_name;
5805 const glsl_type *return_type =
5806 this->return_type->glsl_type(& return_type_name, state);
5807
5808 if (!return_type) {
5809 YYLTYPE loc = this->get_location();
5810 _mesa_glsl_error(&loc, state,
5811 "function `%s' has undeclared return type `%s'",
5812 name, return_type_name);
5813 return_type = glsl_type::error_type;
5814 }
5815
5816 /* ARB_shader_subroutine states:
5817 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5818 * subroutine(...) to a function declaration."
5819 */
5820 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5821 YYLTYPE loc = this->get_location();
5822 _mesa_glsl_error(&loc, state,
5823 "function declaration `%s' cannot have subroutine prepended",
5824 name);
5825 }
5826
5827 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5828 * "No qualifier is allowed on the return type of a function."
5829 */
5830 if (this->return_type->has_qualifiers(state)) {
5831 YYLTYPE loc = this->get_location();
5832 _mesa_glsl_error(& loc, state,
5833 "function `%s' return type has qualifiers", name);
5834 }
5835
5836 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5837 *
5838 * "Arrays are allowed as arguments and as the return type. In both
5839 * cases, the array must be explicitly sized."
5840 */
5841 if (return_type->is_unsized_array()) {
5842 YYLTYPE loc = this->get_location();
5843 _mesa_glsl_error(& loc, state,
5844 "function `%s' return type array must be explicitly "
5845 "sized", name);
5846 }
5847
5848 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5849 *
5850 * "Arrays are allowed as arguments, but not as the return type. [...]
5851 * The return type can also be a structure if the structure does not
5852 * contain an array."
5853 */
5854 if (state->language_version == 100 && return_type->contains_array()) {
5855 YYLTYPE loc = this->get_location();
5856 _mesa_glsl_error(& loc, state,
5857 "function `%s' return type contains an array", name);
5858 }
5859
5860 /* From section 4.1.7 of the GLSL 4.40 spec:
5861 *
5862 * "[Opaque types] can only be declared as function parameters
5863 * or uniform-qualified variables."
5864 *
5865 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5866 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5867 * (Images)", this should be allowed.
5868 */
5869 if (return_type->contains_atomic() ||
5870 (!state->has_bindless() && return_type->contains_opaque())) {
5871 YYLTYPE loc = this->get_location();
5872 _mesa_glsl_error(&loc, state,
5873 "function `%s' return type can't contain an %s type",
5874 name, state->has_bindless() ? "atomic" : "opaque");
5875 }
5876
5877 /**/
5878 if (return_type->is_subroutine()) {
5879 YYLTYPE loc = this->get_location();
5880 _mesa_glsl_error(&loc, state,
5881 "function `%s' return type can't be a subroutine type",
5882 name);
5883 }
5884
5885
5886 /* Create an ir_function if one doesn't already exist. */
5887 f = state->symbols->get_function(name);
5888 if (f == NULL) {
5889 f = new(ctx) ir_function(name);
5890 if (!this->return_type->qualifier.is_subroutine_decl()) {
5891 if (!state->symbols->add_function(f)) {
5892 /* This function name shadows a non-function use of the same name. */
5893 YYLTYPE loc = this->get_location();
5894 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5895 "non-function", name);
5896 return NULL;
5897 }
5898 }
5899 emit_function(state, f);
5900 }
5901
5902 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5903 *
5904 * "A shader cannot redefine or overload built-in functions."
5905 *
5906 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5907 *
5908 * "User code can overload the built-in functions but cannot redefine
5909 * them."
5910 */
5911 if (state->es_shader) {
5912 /* Local shader has no exact candidates; check the built-ins. */
5913 _mesa_glsl_initialize_builtin_functions();
5914 if (state->language_version >= 300 &&
5915 _mesa_glsl_has_builtin_function(state, name)) {
5916 YYLTYPE loc = this->get_location();
5917 _mesa_glsl_error(& loc, state,
5918 "A shader cannot redefine or overload built-in "
5919 "function `%s' in GLSL ES 3.00", name);
5920 return NULL;
5921 }
5922
5923 if (state->language_version == 100) {
5924 ir_function_signature *sig =
5925 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5926 if (sig && sig->is_builtin()) {
5927 _mesa_glsl_error(& loc, state,
5928 "A shader cannot redefine built-in "
5929 "function `%s' in GLSL ES 1.00", name);
5930 }
5931 }
5932 }
5933
5934 /* Verify that this function's signature either doesn't match a previously
5935 * seen signature for a function with the same name, or, if a match is found,
5936 * that the previously seen signature does not have an associated definition.
5937 */
5938 if (state->es_shader || f->has_user_signature()) {
5939 sig = f->exact_matching_signature(state, &hir_parameters);
5940 if (sig != NULL) {
5941 const char *badvar = sig->qualifiers_match(&hir_parameters);
5942 if (badvar != NULL) {
5943 YYLTYPE loc = this->get_location();
5944
5945 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5946 "qualifiers don't match prototype", name, badvar);
5947 }
5948
5949 if (sig->return_type != return_type) {
5950 YYLTYPE loc = this->get_location();
5951
5952 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5953 "match prototype", name);
5954 }
5955
5956 if (sig->is_defined) {
5957 if (is_definition) {
5958 YYLTYPE loc = this->get_location();
5959 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5960 } else {
5961 /* We just encountered a prototype that exactly matches a
5962 * function that's already been defined. This is redundant,
5963 * and we should ignore it.
5964 */
5965 return NULL;
5966 }
5967 } else if (state->language_version == 100 && !is_definition) {
5968 /* From the GLSL 1.00 spec, section 4.2.7:
5969 *
5970 * "A particular variable, structure or function declaration
5971 * may occur at most once within a scope with the exception
5972 * that a single function prototype plus the corresponding
5973 * function definition are allowed."
5974 */
5975 YYLTYPE loc = this->get_location();
5976 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
5977 }
5978 }
5979 }
5980
5981 /* Verify the return type of main() */
5982 if (strcmp(name, "main") == 0) {
5983 if (! return_type->is_void()) {
5984 YYLTYPE loc = this->get_location();
5985
5986 _mesa_glsl_error(& loc, state, "main() must return void");
5987 }
5988
5989 if (!hir_parameters.is_empty()) {
5990 YYLTYPE loc = this->get_location();
5991
5992 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5993 }
5994 }
5995
5996 /* Finish storing the information about this new function in its signature.
5997 */
5998 if (sig == NULL) {
5999 sig = new(ctx) ir_function_signature(return_type);
6000 f->add_signature(sig);
6001 }
6002
6003 sig->replace_parameters(&hir_parameters);
6004 signature = sig;
6005
6006 if (this->return_type->qualifier.subroutine_list) {
6007 int idx;
6008
6009 if (this->return_type->qualifier.flags.q.explicit_index) {
6010 unsigned qual_index;
6011 if (process_qualifier_constant(state, &loc, "index",
6012 this->return_type->qualifier.index,
6013 &qual_index)) {
6014 if (!state->has_explicit_uniform_location()) {
6015 _mesa_glsl_error(&loc, state, "subroutine index requires "
6016 "GL_ARB_explicit_uniform_location or "
6017 "GLSL 4.30");
6018 } else if (qual_index >= MAX_SUBROUTINES) {
6019 _mesa_glsl_error(&loc, state,
6020 "invalid subroutine index (%d) index must "
6021 "be a number between 0 and "
6022 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6023 MAX_SUBROUTINES - 1);
6024 } else {
6025 f->subroutine_index = qual_index;
6026 }
6027 }
6028 }
6029
6030 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6031 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6032 f->num_subroutine_types);
6033 idx = 0;
6034 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6035 const struct glsl_type *type;
6036 /* the subroutine type must be already declared */
6037 type = state->symbols->get_type(decl->identifier);
6038 if (!type) {
6039 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6040 }
6041
6042 for (int i = 0; i < state->num_subroutine_types; i++) {
6043 ir_function *fn = state->subroutine_types[i];
6044 ir_function_signature *tsig = NULL;
6045
6046 if (strcmp(fn->name, decl->identifier))
6047 continue;
6048
6049 tsig = fn->matching_signature(state, &sig->parameters,
6050 false);
6051 if (!tsig) {
6052 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6053 } else {
6054 if (tsig->return_type != sig->return_type) {
6055 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6056 }
6057 }
6058 }
6059 f->subroutine_types[idx++] = type;
6060 }
6061 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6062 ir_function *,
6063 state->num_subroutines + 1);
6064 state->subroutines[state->num_subroutines] = f;
6065 state->num_subroutines++;
6066
6067 }
6068
6069 if (this->return_type->qualifier.is_subroutine_decl()) {
6070 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6071 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6072 return NULL;
6073 }
6074 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6075 ir_function *,
6076 state->num_subroutine_types + 1);
6077 state->subroutine_types[state->num_subroutine_types] = f;
6078 state->num_subroutine_types++;
6079
6080 f->is_subroutine = true;
6081 }
6082
6083 /* Function declarations (prototypes) do not have r-values.
6084 */
6085 return NULL;
6086 }
6087
6088
6089 ir_rvalue *
6090 ast_function_definition::hir(exec_list *instructions,
6091 struct _mesa_glsl_parse_state *state)
6092 {
6093 prototype->is_definition = true;
6094 prototype->hir(instructions, state);
6095
6096 ir_function_signature *signature = prototype->signature;
6097 if (signature == NULL)
6098 return NULL;
6099
6100 assert(state->current_function == NULL);
6101 state->current_function = signature;
6102 state->found_return = false;
6103
6104 /* Duplicate parameters declared in the prototype as concrete variables.
6105 * Add these to the symbol table.
6106 */
6107 state->symbols->push_scope();
6108 foreach_in_list(ir_variable, var, &signature->parameters) {
6109 assert(var->as_variable() != NULL);
6110
6111 /* The only way a parameter would "exist" is if two parameters have
6112 * the same name.
6113 */
6114 if (state->symbols->name_declared_this_scope(var->name)) {
6115 YYLTYPE loc = this->get_location();
6116
6117 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6118 } else {
6119 state->symbols->add_variable(var);
6120 }
6121 }
6122
6123 /* Convert the body of the function to HIR. */
6124 this->body->hir(&signature->body, state);
6125 signature->is_defined = true;
6126
6127 state->symbols->pop_scope();
6128
6129 assert(state->current_function == signature);
6130 state->current_function = NULL;
6131
6132 if (!signature->return_type->is_void() && !state->found_return) {
6133 YYLTYPE loc = this->get_location();
6134 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6135 "%s, but no return statement",
6136 signature->function_name(),
6137 signature->return_type->name);
6138 }
6139
6140 /* Function definitions do not have r-values.
6141 */
6142 return NULL;
6143 }
6144
6145
6146 ir_rvalue *
6147 ast_jump_statement::hir(exec_list *instructions,
6148 struct _mesa_glsl_parse_state *state)
6149 {
6150 void *ctx = state;
6151
6152 switch (mode) {
6153 case ast_return: {
6154 ir_return *inst;
6155 assert(state->current_function);
6156
6157 if (opt_return_value) {
6158 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6159
6160 /* The value of the return type can be NULL if the shader says
6161 * 'return foo();' and foo() is a function that returns void.
6162 *
6163 * NOTE: The GLSL spec doesn't say that this is an error. The type
6164 * of the return value is void. If the return type of the function is
6165 * also void, then this should compile without error. Seriously.
6166 */
6167 const glsl_type *const ret_type =
6168 (ret == NULL) ? glsl_type::void_type : ret->type;
6169
6170 /* Implicit conversions are not allowed for return values prior to
6171 * ARB_shading_language_420pack.
6172 */
6173 if (state->current_function->return_type != ret_type) {
6174 YYLTYPE loc = this->get_location();
6175
6176 if (state->has_420pack()) {
6177 if (!apply_implicit_conversion(state->current_function->return_type,
6178 ret, state)) {
6179 _mesa_glsl_error(& loc, state,
6180 "could not implicitly convert return value "
6181 "to %s, in function `%s'",
6182 state->current_function->return_type->name,
6183 state->current_function->function_name());
6184 }
6185 } else {
6186 _mesa_glsl_error(& loc, state,
6187 "`return' with wrong type %s, in function `%s' "
6188 "returning %s",
6189 ret_type->name,
6190 state->current_function->function_name(),
6191 state->current_function->return_type->name);
6192 }
6193 } else if (state->current_function->return_type->base_type ==
6194 GLSL_TYPE_VOID) {
6195 YYLTYPE loc = this->get_location();
6196
6197 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6198 * specs add a clarification:
6199 *
6200 * "A void function can only use return without a return argument, even if
6201 * the return argument has void type. Return statements only accept values:
6202 *
6203 * void func1() { }
6204 * void func2() { return func1(); } // illegal return statement"
6205 */
6206 _mesa_glsl_error(& loc, state,
6207 "void functions can only use `return' without a "
6208 "return argument");
6209 }
6210
6211 inst = new(ctx) ir_return(ret);
6212 } else {
6213 if (state->current_function->return_type->base_type !=
6214 GLSL_TYPE_VOID) {
6215 YYLTYPE loc = this->get_location();
6216
6217 _mesa_glsl_error(& loc, state,
6218 "`return' with no value, in function %s returning "
6219 "non-void",
6220 state->current_function->function_name());
6221 }
6222 inst = new(ctx) ir_return;
6223 }
6224
6225 state->found_return = true;
6226 instructions->push_tail(inst);
6227 break;
6228 }
6229
6230 case ast_discard:
6231 if (state->stage != MESA_SHADER_FRAGMENT) {
6232 YYLTYPE loc = this->get_location();
6233
6234 _mesa_glsl_error(& loc, state,
6235 "`discard' may only appear in a fragment shader");
6236 }
6237 instructions->push_tail(new(ctx) ir_discard);
6238 break;
6239
6240 case ast_break:
6241 case ast_continue:
6242 if (mode == ast_continue &&
6243 state->loop_nesting_ast == NULL) {
6244 YYLTYPE loc = this->get_location();
6245
6246 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6247 } else if (mode == ast_break &&
6248 state->loop_nesting_ast == NULL &&
6249 state->switch_state.switch_nesting_ast == NULL) {
6250 YYLTYPE loc = this->get_location();
6251
6252 _mesa_glsl_error(& loc, state,
6253 "break may only appear in a loop or a switch");
6254 } else {
6255 /* For a loop, inline the for loop expression again, since we don't
6256 * know where near the end of the loop body the normal copy of it is
6257 * going to be placed. Same goes for the condition for a do-while
6258 * loop.
6259 */
6260 if (state->loop_nesting_ast != NULL &&
6261 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6262 if (state->loop_nesting_ast->rest_expression) {
6263 state->loop_nesting_ast->rest_expression->hir(instructions,
6264 state);
6265 }
6266 if (state->loop_nesting_ast->mode ==
6267 ast_iteration_statement::ast_do_while) {
6268 state->loop_nesting_ast->condition_to_hir(instructions, state);
6269 }
6270 }
6271
6272 if (state->switch_state.is_switch_innermost &&
6273 mode == ast_continue) {
6274 /* Set 'continue_inside' to true. */
6275 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6276 ir_dereference_variable *deref_continue_inside_var =
6277 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6278 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6279 true_val));
6280
6281 /* Break out from the switch, continue for the loop will
6282 * be called right after switch. */
6283 ir_loop_jump *const jump =
6284 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6285 instructions->push_tail(jump);
6286
6287 } else if (state->switch_state.is_switch_innermost &&
6288 mode == ast_break) {
6289 /* Force break out of switch by inserting a break. */
6290 ir_loop_jump *const jump =
6291 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6292 instructions->push_tail(jump);
6293 } else {
6294 ir_loop_jump *const jump =
6295 new(ctx) ir_loop_jump((mode == ast_break)
6296 ? ir_loop_jump::jump_break
6297 : ir_loop_jump::jump_continue);
6298 instructions->push_tail(jump);
6299 }
6300 }
6301
6302 break;
6303 }
6304
6305 /* Jump instructions do not have r-values.
6306 */
6307 return NULL;
6308 }
6309
6310
6311 ir_rvalue *
6312 ast_selection_statement::hir(exec_list *instructions,
6313 struct _mesa_glsl_parse_state *state)
6314 {
6315 void *ctx = state;
6316
6317 ir_rvalue *const condition = this->condition->hir(instructions, state);
6318
6319 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6320 *
6321 * "Any expression whose type evaluates to a Boolean can be used as the
6322 * conditional expression bool-expression. Vector types are not accepted
6323 * as the expression to if."
6324 *
6325 * The checks are separated so that higher quality diagnostics can be
6326 * generated for cases where both rules are violated.
6327 */
6328 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6329 YYLTYPE loc = this->condition->get_location();
6330
6331 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6332 "boolean");
6333 }
6334
6335 ir_if *const stmt = new(ctx) ir_if(condition);
6336
6337 if (then_statement != NULL) {
6338 state->symbols->push_scope();
6339 then_statement->hir(& stmt->then_instructions, state);
6340 state->symbols->pop_scope();
6341 }
6342
6343 if (else_statement != NULL) {
6344 state->symbols->push_scope();
6345 else_statement->hir(& stmt->else_instructions, state);
6346 state->symbols->pop_scope();
6347 }
6348
6349 instructions->push_tail(stmt);
6350
6351 /* if-statements do not have r-values.
6352 */
6353 return NULL;
6354 }
6355
6356
6357 struct case_label {
6358 /** Value of the case label. */
6359 unsigned value;
6360
6361 /** Does this label occur after the default? */
6362 bool after_default;
6363
6364 /**
6365 * AST for the case label.
6366 *
6367 * This is only used to generate error messages for duplicate labels.
6368 */
6369 ast_expression *ast;
6370 };
6371
6372 /* Used for detection of duplicate case values, compare
6373 * given contents directly.
6374 */
6375 static bool
6376 compare_case_value(const void *a, const void *b)
6377 {
6378 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6379 }
6380
6381
6382 /* Used for detection of duplicate case values, just
6383 * returns key contents as is.
6384 */
6385 static unsigned
6386 key_contents(const void *key)
6387 {
6388 return ((struct case_label *) key)->value;
6389 }
6390
6391
6392 ir_rvalue *
6393 ast_switch_statement::hir(exec_list *instructions,
6394 struct _mesa_glsl_parse_state *state)
6395 {
6396 void *ctx = state;
6397
6398 ir_rvalue *const test_expression =
6399 this->test_expression->hir(instructions, state);
6400
6401 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6402 *
6403 * "The type of init-expression in a switch statement must be a
6404 * scalar integer."
6405 */
6406 if (!test_expression->type->is_scalar() ||
6407 !test_expression->type->is_integer()) {
6408 YYLTYPE loc = this->test_expression->get_location();
6409
6410 _mesa_glsl_error(& loc,
6411 state,
6412 "switch-statement expression must be scalar "
6413 "integer");
6414 return NULL;
6415 }
6416
6417 /* Track the switch-statement nesting in a stack-like manner.
6418 */
6419 struct glsl_switch_state saved = state->switch_state;
6420
6421 state->switch_state.is_switch_innermost = true;
6422 state->switch_state.switch_nesting_ast = this;
6423 state->switch_state.labels_ht =
6424 _mesa_hash_table_create(NULL, key_contents,
6425 compare_case_value);
6426 state->switch_state.previous_default = NULL;
6427
6428 /* Initalize is_fallthru state to false.
6429 */
6430 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6431 state->switch_state.is_fallthru_var =
6432 new(ctx) ir_variable(glsl_type::bool_type,
6433 "switch_is_fallthru_tmp",
6434 ir_var_temporary);
6435 instructions->push_tail(state->switch_state.is_fallthru_var);
6436
6437 ir_dereference_variable *deref_is_fallthru_var =
6438 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6439 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6440 is_fallthru_val));
6441
6442 /* Initialize continue_inside state to false.
6443 */
6444 state->switch_state.continue_inside =
6445 new(ctx) ir_variable(glsl_type::bool_type,
6446 "continue_inside_tmp",
6447 ir_var_temporary);
6448 instructions->push_tail(state->switch_state.continue_inside);
6449
6450 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6451 ir_dereference_variable *deref_continue_inside_var =
6452 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6453 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6454 false_val));
6455
6456 state->switch_state.run_default =
6457 new(ctx) ir_variable(glsl_type::bool_type,
6458 "run_default_tmp",
6459 ir_var_temporary);
6460 instructions->push_tail(state->switch_state.run_default);
6461
6462 /* Loop around the switch is used for flow control. */
6463 ir_loop * loop = new(ctx) ir_loop();
6464 instructions->push_tail(loop);
6465
6466 /* Cache test expression.
6467 */
6468 test_to_hir(&loop->body_instructions, state);
6469
6470 /* Emit code for body of switch stmt.
6471 */
6472 body->hir(&loop->body_instructions, state);
6473
6474 /* Insert a break at the end to exit loop. */
6475 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6476 loop->body_instructions.push_tail(jump);
6477
6478 /* If we are inside loop, check if continue got called inside switch. */
6479 if (state->loop_nesting_ast != NULL) {
6480 ir_dereference_variable *deref_continue_inside =
6481 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6482 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6483 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6484
6485 if (state->loop_nesting_ast != NULL) {
6486 if (state->loop_nesting_ast->rest_expression) {
6487 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6488 state);
6489 }
6490 if (state->loop_nesting_ast->mode ==
6491 ast_iteration_statement::ast_do_while) {
6492 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6493 }
6494 }
6495 irif->then_instructions.push_tail(jump);
6496 instructions->push_tail(irif);
6497 }
6498
6499 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6500
6501 state->switch_state = saved;
6502
6503 /* Switch statements do not have r-values. */
6504 return NULL;
6505 }
6506
6507
6508 void
6509 ast_switch_statement::test_to_hir(exec_list *instructions,
6510 struct _mesa_glsl_parse_state *state)
6511 {
6512 void *ctx = state;
6513
6514 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6515 * on the switch test case. The first one would be already raised when
6516 * getting the test_expression at ast_switch_statement::hir
6517 */
6518 test_expression->set_is_lhs(true);
6519 /* Cache value of test expression. */
6520 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6521
6522 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6523 "switch_test_tmp",
6524 ir_var_temporary);
6525 ir_dereference_variable *deref_test_var =
6526 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6527
6528 instructions->push_tail(state->switch_state.test_var);
6529 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6530 }
6531
6532
6533 ir_rvalue *
6534 ast_switch_body::hir(exec_list *instructions,
6535 struct _mesa_glsl_parse_state *state)
6536 {
6537 if (stmts != NULL)
6538 stmts->hir(instructions, state);
6539
6540 /* Switch bodies do not have r-values. */
6541 return NULL;
6542 }
6543
6544 ir_rvalue *
6545 ast_case_statement_list::hir(exec_list *instructions,
6546 struct _mesa_glsl_parse_state *state)
6547 {
6548 exec_list default_case, after_default, tmp;
6549
6550 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6551 case_stmt->hir(&tmp, state);
6552
6553 /* Default case. */
6554 if (state->switch_state.previous_default && default_case.is_empty()) {
6555 default_case.append_list(&tmp);
6556 continue;
6557 }
6558
6559 /* If default case found, append 'after_default' list. */
6560 if (!default_case.is_empty())
6561 after_default.append_list(&tmp);
6562 else
6563 instructions->append_list(&tmp);
6564 }
6565
6566 /* Handle the default case. This is done here because default might not be
6567 * the last case. We need to add checks against following cases first to see
6568 * if default should be chosen or not.
6569 */
6570 if (!default_case.is_empty()) {
6571 struct hash_entry *entry;
6572 ir_factory body(instructions, state);
6573
6574 ir_expression *cmp = NULL;
6575
6576 hash_table_foreach(state->switch_state.labels_ht, entry) {
6577 const struct case_label *const l = (struct case_label *) entry->data;
6578
6579 /* If the switch init-value is the value of one of the labels that
6580 * occurs after the default case, disable execution of the default
6581 * case.
6582 */
6583 if (l->after_default) {
6584 ir_constant *const cnst =
6585 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6586 ? body.constant(unsigned(l->value))
6587 : body.constant(int(l->value));
6588
6589 cmp = cmp == NULL
6590 ? equal(cnst, state->switch_state.test_var)
6591 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6592 }
6593 }
6594
6595 if (cmp != NULL)
6596 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6597 else
6598 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6599
6600 /* Append default case and all cases after it. */
6601 instructions->append_list(&default_case);
6602 instructions->append_list(&after_default);
6603 }
6604
6605 /* Case statements do not have r-values. */
6606 return NULL;
6607 }
6608
6609 ir_rvalue *
6610 ast_case_statement::hir(exec_list *instructions,
6611 struct _mesa_glsl_parse_state *state)
6612 {
6613 labels->hir(instructions, state);
6614
6615 /* Guard case statements depending on fallthru state. */
6616 ir_dereference_variable *const deref_fallthru_guard =
6617 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6618 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6619
6620 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6621 stmt->hir(& test_fallthru->then_instructions, state);
6622
6623 instructions->push_tail(test_fallthru);
6624
6625 /* Case statements do not have r-values. */
6626 return NULL;
6627 }
6628
6629
6630 ir_rvalue *
6631 ast_case_label_list::hir(exec_list *instructions,
6632 struct _mesa_glsl_parse_state *state)
6633 {
6634 foreach_list_typed (ast_case_label, label, link, & this->labels)
6635 label->hir(instructions, state);
6636
6637 /* Case labels do not have r-values. */
6638 return NULL;
6639 }
6640
6641 ir_rvalue *
6642 ast_case_label::hir(exec_list *instructions,
6643 struct _mesa_glsl_parse_state *state)
6644 {
6645 ir_factory body(instructions, state);
6646
6647 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6648
6649 /* If not default case, ... */
6650 if (this->test_value != NULL) {
6651 /* Conditionally set fallthru state based on
6652 * comparison of cached test expression value to case label.
6653 */
6654 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6655 ir_constant *label_const =
6656 label_rval->constant_expression_value(body.mem_ctx);
6657
6658 if (!label_const) {
6659 YYLTYPE loc = this->test_value->get_location();
6660
6661 _mesa_glsl_error(& loc, state,
6662 "switch statement case label must be a "
6663 "constant expression");
6664
6665 /* Stuff a dummy value in to allow processing to continue. */
6666 label_const = body.constant(0);
6667 } else {
6668 hash_entry *entry =
6669 _mesa_hash_table_search(state->switch_state.labels_ht,
6670 &label_const->value.u[0]);
6671
6672 if (entry) {
6673 const struct case_label *const l =
6674 (struct case_label *) entry->data;
6675 const ast_expression *const previous_label = l->ast;
6676 YYLTYPE loc = this->test_value->get_location();
6677
6678 _mesa_glsl_error(& loc, state, "duplicate case value");
6679
6680 loc = previous_label->get_location();
6681 _mesa_glsl_error(& loc, state, "this is the previous case label");
6682 } else {
6683 struct case_label *l = ralloc(state->switch_state.labels_ht,
6684 struct case_label);
6685
6686 l->value = label_const->value.u[0];
6687 l->after_default = state->switch_state.previous_default != NULL;
6688 l->ast = this->test_value;
6689
6690 _mesa_hash_table_insert(state->switch_state.labels_ht,
6691 &label_const->value.u[0],
6692 l);
6693 }
6694 }
6695
6696 /* Create an r-value version of the ir_constant label here (after we may
6697 * have created a fake one in error cases) that can be passed to
6698 * apply_implicit_conversion below.
6699 */
6700 ir_rvalue *label = label_const;
6701
6702 ir_rvalue *deref_test_var =
6703 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6704
6705 /*
6706 * From GLSL 4.40 specification section 6.2 ("Selection"):
6707 *
6708 * "The type of the init-expression value in a switch statement must
6709 * be a scalar int or uint. The type of the constant-expression value
6710 * in a case label also must be a scalar int or uint. When any pair
6711 * of these values is tested for "equal value" and the types do not
6712 * match, an implicit conversion will be done to convert the int to a
6713 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6714 * is done."
6715 */
6716 if (label->type != state->switch_state.test_var->type) {
6717 YYLTYPE loc = this->test_value->get_location();
6718
6719 const glsl_type *type_a = label->type;
6720 const glsl_type *type_b = state->switch_state.test_var->type;
6721
6722 /* Check if int->uint implicit conversion is supported. */
6723 bool integer_conversion_supported =
6724 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6725 state);
6726
6727 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6728 !integer_conversion_supported) {
6729 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6730 "init-expression and case label (%s != %s)",
6731 type_a->name, type_b->name);
6732 } else {
6733 /* Conversion of the case label. */
6734 if (type_a->base_type == GLSL_TYPE_INT) {
6735 if (!apply_implicit_conversion(glsl_type::uint_type,
6736 label, state))
6737 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6738 } else {
6739 /* Conversion of the init-expression value. */
6740 if (!apply_implicit_conversion(glsl_type::uint_type,
6741 deref_test_var, state))
6742 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6743 }
6744 }
6745
6746 /* If the implicit conversion was allowed, the types will already be
6747 * the same. If the implicit conversion wasn't allowed, smash the
6748 * type of the label anyway. This will prevent the expression
6749 * constructor (below) from failing an assertion.
6750 */
6751 label->type = deref_test_var->type;
6752 }
6753
6754 body.emit(assign(fallthru_var,
6755 logic_or(fallthru_var, equal(label, deref_test_var))));
6756 } else { /* default case */
6757 if (state->switch_state.previous_default) {
6758 YYLTYPE loc = this->get_location();
6759 _mesa_glsl_error(& loc, state,
6760 "multiple default labels in one switch");
6761
6762 loc = state->switch_state.previous_default->get_location();
6763 _mesa_glsl_error(& loc, state, "this is the first default label");
6764 }
6765 state->switch_state.previous_default = this;
6766
6767 /* Set fallthru condition on 'run_default' bool. */
6768 body.emit(assign(fallthru_var,
6769 logic_or(fallthru_var,
6770 state->switch_state.run_default)));
6771 }
6772
6773 /* Case statements do not have r-values. */
6774 return NULL;
6775 }
6776
6777 void
6778 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6779 struct _mesa_glsl_parse_state *state)
6780 {
6781 void *ctx = state;
6782
6783 if (condition != NULL) {
6784 ir_rvalue *const cond =
6785 condition->hir(instructions, state);
6786
6787 if ((cond == NULL)
6788 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6789 YYLTYPE loc = condition->get_location();
6790
6791 _mesa_glsl_error(& loc, state,
6792 "loop condition must be scalar boolean");
6793 } else {
6794 /* As the first code in the loop body, generate a block that looks
6795 * like 'if (!condition) break;' as the loop termination condition.
6796 */
6797 ir_rvalue *const not_cond =
6798 new(ctx) ir_expression(ir_unop_logic_not, cond);
6799
6800 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6801
6802 ir_jump *const break_stmt =
6803 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6804
6805 if_stmt->then_instructions.push_tail(break_stmt);
6806 instructions->push_tail(if_stmt);
6807 }
6808 }
6809 }
6810
6811
6812 ir_rvalue *
6813 ast_iteration_statement::hir(exec_list *instructions,
6814 struct _mesa_glsl_parse_state *state)
6815 {
6816 void *ctx = state;
6817
6818 /* For-loops and while-loops start a new scope, but do-while loops do not.
6819 */
6820 if (mode != ast_do_while)
6821 state->symbols->push_scope();
6822
6823 if (init_statement != NULL)
6824 init_statement->hir(instructions, state);
6825
6826 ir_loop *const stmt = new(ctx) ir_loop();
6827 instructions->push_tail(stmt);
6828
6829 /* Track the current loop nesting. */
6830 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6831
6832 state->loop_nesting_ast = this;
6833
6834 /* Likewise, indicate that following code is closest to a loop,
6835 * NOT closest to a switch.
6836 */
6837 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6838 state->switch_state.is_switch_innermost = false;
6839
6840 if (mode != ast_do_while)
6841 condition_to_hir(&stmt->body_instructions, state);
6842
6843 if (body != NULL)
6844 body->hir(& stmt->body_instructions, state);
6845
6846 if (rest_expression != NULL)
6847 rest_expression->hir(& stmt->body_instructions, state);
6848
6849 if (mode == ast_do_while)
6850 condition_to_hir(&stmt->body_instructions, state);
6851
6852 if (mode != ast_do_while)
6853 state->symbols->pop_scope();
6854
6855 /* Restore previous nesting before returning. */
6856 state->loop_nesting_ast = nesting_ast;
6857 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6858
6859 /* Loops do not have r-values.
6860 */
6861 return NULL;
6862 }
6863
6864
6865 /**
6866 * Determine if the given type is valid for establishing a default precision
6867 * qualifier.
6868 *
6869 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6870 *
6871 * "The precision statement
6872 *
6873 * precision precision-qualifier type;
6874 *
6875 * can be used to establish a default precision qualifier. The type field
6876 * can be either int or float or any of the sampler types, and the
6877 * precision-qualifier can be lowp, mediump, or highp."
6878 *
6879 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6880 * qualifiers on sampler types, but this seems like an oversight (since the
6881 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6882 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6883 * version.
6884 */
6885 static bool
6886 is_valid_default_precision_type(const struct glsl_type *const type)
6887 {
6888 if (type == NULL)
6889 return false;
6890
6891 switch (type->base_type) {
6892 case GLSL_TYPE_INT:
6893 case GLSL_TYPE_FLOAT:
6894 /* "int" and "float" are valid, but vectors and matrices are not. */
6895 return type->vector_elements == 1 && type->matrix_columns == 1;
6896 case GLSL_TYPE_SAMPLER:
6897 case GLSL_TYPE_IMAGE:
6898 case GLSL_TYPE_ATOMIC_UINT:
6899 return true;
6900 default:
6901 return false;
6902 }
6903 }
6904
6905
6906 ir_rvalue *
6907 ast_type_specifier::hir(exec_list *instructions,
6908 struct _mesa_glsl_parse_state *state)
6909 {
6910 if (this->default_precision == ast_precision_none && this->structure == NULL)
6911 return NULL;
6912
6913 YYLTYPE loc = this->get_location();
6914
6915 /* If this is a precision statement, check that the type to which it is
6916 * applied is either float or int.
6917 *
6918 * From section 4.5.3 of the GLSL 1.30 spec:
6919 * "The precision statement
6920 * precision precision-qualifier type;
6921 * can be used to establish a default precision qualifier. The type
6922 * field can be either int or float [...]. Any other types or
6923 * qualifiers will result in an error.
6924 */
6925 if (this->default_precision != ast_precision_none) {
6926 if (!state->check_precision_qualifiers_allowed(&loc))
6927 return NULL;
6928
6929 if (this->structure != NULL) {
6930 _mesa_glsl_error(&loc, state,
6931 "precision qualifiers do not apply to structures");
6932 return NULL;
6933 }
6934
6935 if (this->array_specifier != NULL) {
6936 _mesa_glsl_error(&loc, state,
6937 "default precision statements do not apply to "
6938 "arrays");
6939 return NULL;
6940 }
6941
6942 const struct glsl_type *const type =
6943 state->symbols->get_type(this->type_name);
6944 if (!is_valid_default_precision_type(type)) {
6945 _mesa_glsl_error(&loc, state,
6946 "default precision statements apply only to "
6947 "float, int, and opaque types");
6948 return NULL;
6949 }
6950
6951 if (state->es_shader) {
6952 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6953 * spec says:
6954 *
6955 * "Non-precision qualified declarations will use the precision
6956 * qualifier specified in the most recent precision statement
6957 * that is still in scope. The precision statement has the same
6958 * scoping rules as variable declarations. If it is declared
6959 * inside a compound statement, its effect stops at the end of
6960 * the innermost statement it was declared in. Precision
6961 * statements in nested scopes override precision statements in
6962 * outer scopes. Multiple precision statements for the same basic
6963 * type can appear inside the same scope, with later statements
6964 * overriding earlier statements within that scope."
6965 *
6966 * Default precision specifications follow the same scope rules as
6967 * variables. So, we can track the state of the default precision
6968 * qualifiers in the symbol table, and the rules will just work. This
6969 * is a slight abuse of the symbol table, but it has the semantics
6970 * that we want.
6971 */
6972 state->symbols->add_default_precision_qualifier(this->type_name,
6973 this->default_precision);
6974 }
6975
6976 /* FINISHME: Translate precision statements into IR. */
6977 return NULL;
6978 }
6979
6980 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6981 * process_record_constructor() can do type-checking on C-style initializer
6982 * expressions of structs, but ast_struct_specifier should only be translated
6983 * to HIR if it is declaring the type of a structure.
6984 *
6985 * The ->is_declaration field is false for initializers of variables
6986 * declared separately from the struct's type definition.
6987 *
6988 * struct S { ... }; (is_declaration = true)
6989 * struct T { ... } t = { ... }; (is_declaration = true)
6990 * S s = { ... }; (is_declaration = false)
6991 */
6992 if (this->structure != NULL && this->structure->is_declaration)
6993 return this->structure->hir(instructions, state);
6994
6995 return NULL;
6996 }
6997
6998
6999 /**
7000 * Process a structure or interface block tree into an array of structure fields
7001 *
7002 * After parsing, where there are some syntax differnces, structures and
7003 * interface blocks are almost identical. They are similar enough that the
7004 * AST for each can be processed the same way into a set of
7005 * \c glsl_struct_field to describe the members.
7006 *
7007 * If we're processing an interface block, var_mode should be the type of the
7008 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7009 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7010 * ir_var_auto.
7011 *
7012 * \return
7013 * The number of fields processed. A pointer to the array structure fields is
7014 * stored in \c *fields_ret.
7015 */
7016 static unsigned
7017 ast_process_struct_or_iface_block_members(exec_list *instructions,
7018 struct _mesa_glsl_parse_state *state,
7019 exec_list *declarations,
7020 glsl_struct_field **fields_ret,
7021 bool is_interface,
7022 enum glsl_matrix_layout matrix_layout,
7023 bool allow_reserved_names,
7024 ir_variable_mode var_mode,
7025 ast_type_qualifier *layout,
7026 unsigned block_stream,
7027 unsigned block_xfb_buffer,
7028 unsigned block_xfb_offset,
7029 unsigned expl_location,
7030 unsigned expl_align)
7031 {
7032 unsigned decl_count = 0;
7033 unsigned next_offset = 0;
7034
7035 /* Make an initial pass over the list of fields to determine how
7036 * many there are. Each element in this list is an ast_declarator_list.
7037 * This means that we actually need to count the number of elements in the
7038 * 'declarations' list in each of the elements.
7039 */
7040 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7041 decl_count += decl_list->declarations.length();
7042 }
7043
7044 /* Allocate storage for the fields and process the field
7045 * declarations. As the declarations are processed, try to also convert
7046 * the types to HIR. This ensures that structure definitions embedded in
7047 * other structure definitions or in interface blocks are processed.
7048 */
7049 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7050 decl_count);
7051
7052 bool first_member = true;
7053 bool first_member_has_explicit_location = false;
7054
7055 unsigned i = 0;
7056 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7057 const char *type_name;
7058 YYLTYPE loc = decl_list->get_location();
7059
7060 decl_list->type->specifier->hir(instructions, state);
7061
7062 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7063 *
7064 * "Anonymous structures are not supported; so embedded structures
7065 * must have a declarator. A name given to an embedded struct is
7066 * scoped at the same level as the struct it is embedded in."
7067 *
7068 * The same section of the GLSL 1.20 spec says:
7069 *
7070 * "Anonymous structures are not supported. Embedded structures are
7071 * not supported."
7072 *
7073 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7074 * embedded structures in 1.10 only.
7075 */
7076 if (state->language_version != 110 &&
7077 decl_list->type->specifier->structure != NULL)
7078 _mesa_glsl_error(&loc, state,
7079 "embedded structure declarations are not allowed");
7080
7081 const glsl_type *decl_type =
7082 decl_list->type->glsl_type(& type_name, state);
7083
7084 const struct ast_type_qualifier *const qual =
7085 &decl_list->type->qualifier;
7086
7087 /* From section 4.3.9 of the GLSL 4.40 spec:
7088 *
7089 * "[In interface blocks] opaque types are not allowed."
7090 *
7091 * It should be impossible for decl_type to be NULL here. Cases that
7092 * might naturally lead to decl_type being NULL, especially for the
7093 * is_interface case, will have resulted in compilation having
7094 * already halted due to a syntax error.
7095 */
7096 assert(decl_type);
7097
7098 if (is_interface) {
7099 /* From section 4.3.7 of the ARB_bindless_texture spec:
7100 *
7101 * "(remove the following bullet from the last list on p. 39,
7102 * thereby permitting sampler types in interface blocks; image
7103 * types are also permitted in blocks by this extension)"
7104 *
7105 * * sampler types are not allowed
7106 */
7107 if (decl_type->contains_atomic() ||
7108 (!state->has_bindless() && decl_type->contains_opaque())) {
7109 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7110 "interface block contains %s variable",
7111 state->has_bindless() ? "atomic" : "opaque");
7112 }
7113 } else {
7114 if (decl_type->contains_atomic()) {
7115 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7116 *
7117 * "Members of structures cannot be declared as atomic counter
7118 * types."
7119 */
7120 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7121 }
7122
7123 if (!state->has_bindless() && decl_type->contains_image()) {
7124 /* FINISHME: Same problem as with atomic counters.
7125 * FINISHME: Request clarification from Khronos and add
7126 * FINISHME: spec quotation here.
7127 */
7128 _mesa_glsl_error(&loc, state, "image in structure");
7129 }
7130 }
7131
7132 if (qual->flags.q.explicit_binding) {
7133 _mesa_glsl_error(&loc, state,
7134 "binding layout qualifier cannot be applied "
7135 "to struct or interface block members");
7136 }
7137
7138 if (is_interface) {
7139 if (!first_member) {
7140 if (!layout->flags.q.explicit_location &&
7141 ((first_member_has_explicit_location &&
7142 !qual->flags.q.explicit_location) ||
7143 (!first_member_has_explicit_location &&
7144 qual->flags.q.explicit_location))) {
7145 _mesa_glsl_error(&loc, state,
7146 "when block-level location layout qualifier "
7147 "is not supplied either all members must "
7148 "have a location layout qualifier or all "
7149 "members must not have a location layout "
7150 "qualifier");
7151 }
7152 } else {
7153 first_member = false;
7154 first_member_has_explicit_location =
7155 qual->flags.q.explicit_location;
7156 }
7157 }
7158
7159 if (qual->flags.q.std140 ||
7160 qual->flags.q.std430 ||
7161 qual->flags.q.packed ||
7162 qual->flags.q.shared) {
7163 _mesa_glsl_error(&loc, state,
7164 "uniform/shader storage block layout qualifiers "
7165 "std140, std430, packed, and shared can only be "
7166 "applied to uniform/shader storage blocks, not "
7167 "members");
7168 }
7169
7170 if (qual->flags.q.constant) {
7171 _mesa_glsl_error(&loc, state,
7172 "const storage qualifier cannot be applied "
7173 "to struct or interface block members");
7174 }
7175
7176 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7177 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7178
7179 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7180 *
7181 * "A block member may be declared with a stream identifier, but
7182 * the specified stream must match the stream associated with the
7183 * containing block."
7184 */
7185 if (qual->flags.q.explicit_stream) {
7186 unsigned qual_stream;
7187 if (process_qualifier_constant(state, &loc, "stream",
7188 qual->stream, &qual_stream) &&
7189 qual_stream != block_stream) {
7190 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7191 "interface block member does not match "
7192 "the interface block (%u vs %u)", qual_stream,
7193 block_stream);
7194 }
7195 }
7196
7197 int xfb_buffer;
7198 unsigned explicit_xfb_buffer = 0;
7199 if (qual->flags.q.explicit_xfb_buffer) {
7200 unsigned qual_xfb_buffer;
7201 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7202 qual->xfb_buffer, &qual_xfb_buffer)) {
7203 explicit_xfb_buffer = 1;
7204 if (qual_xfb_buffer != block_xfb_buffer)
7205 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7206 "interface block member does not match "
7207 "the interface block (%u vs %u)",
7208 qual_xfb_buffer, block_xfb_buffer);
7209 }
7210 xfb_buffer = (int) qual_xfb_buffer;
7211 } else {
7212 if (layout)
7213 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7214 xfb_buffer = (int) block_xfb_buffer;
7215 }
7216
7217 int xfb_stride = -1;
7218 if (qual->flags.q.explicit_xfb_stride) {
7219 unsigned qual_xfb_stride;
7220 if (process_qualifier_constant(state, &loc, "xfb_stride",
7221 qual->xfb_stride, &qual_xfb_stride)) {
7222 xfb_stride = (int) qual_xfb_stride;
7223 }
7224 }
7225
7226 if (qual->flags.q.uniform && qual->has_interpolation()) {
7227 _mesa_glsl_error(&loc, state,
7228 "interpolation qualifiers cannot be used "
7229 "with uniform interface blocks");
7230 }
7231
7232 if ((qual->flags.q.uniform || !is_interface) &&
7233 qual->has_auxiliary_storage()) {
7234 _mesa_glsl_error(&loc, state,
7235 "auxiliary storage qualifiers cannot be used "
7236 "in uniform blocks or structures.");
7237 }
7238
7239 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7240 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7241 _mesa_glsl_error(&loc, state,
7242 "row_major and column_major can only be "
7243 "applied to interface blocks");
7244 } else
7245 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7246 }
7247
7248 foreach_list_typed (ast_declaration, decl, link,
7249 &decl_list->declarations) {
7250 YYLTYPE loc = decl->get_location();
7251
7252 if (!allow_reserved_names)
7253 validate_identifier(decl->identifier, loc, state);
7254
7255 const struct glsl_type *field_type =
7256 process_array_type(&loc, decl_type, decl->array_specifier, state);
7257 validate_array_dimensions(field_type, state, &loc);
7258 fields[i].type = field_type;
7259 fields[i].name = decl->identifier;
7260 fields[i].interpolation =
7261 interpret_interpolation_qualifier(qual, field_type,
7262 var_mode, state, &loc);
7263 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7264 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7265 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7266 fields[i].precision = qual->precision;
7267 fields[i].offset = -1;
7268 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7269 fields[i].xfb_buffer = xfb_buffer;
7270 fields[i].xfb_stride = xfb_stride;
7271
7272 if (qual->flags.q.explicit_location) {
7273 unsigned qual_location;
7274 if (process_qualifier_constant(state, &loc, "location",
7275 qual->location, &qual_location)) {
7276 fields[i].location = qual_location +
7277 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7278 expl_location = fields[i].location +
7279 fields[i].type->count_attribute_slots(false);
7280 }
7281 } else {
7282 if (layout && layout->flags.q.explicit_location) {
7283 fields[i].location = expl_location;
7284 expl_location += fields[i].type->count_attribute_slots(false);
7285 } else {
7286 fields[i].location = -1;
7287 }
7288 }
7289
7290 /* Offset can only be used with std430 and std140 layouts an initial
7291 * value of 0 is used for error detection.
7292 */
7293 unsigned align = 0;
7294 unsigned size = 0;
7295 if (layout) {
7296 bool row_major;
7297 if (qual->flags.q.row_major ||
7298 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7299 row_major = true;
7300 } else {
7301 row_major = false;
7302 }
7303
7304 if(layout->flags.q.std140) {
7305 align = field_type->std140_base_alignment(row_major);
7306 size = field_type->std140_size(row_major);
7307 } else if (layout->flags.q.std430) {
7308 align = field_type->std430_base_alignment(row_major);
7309 size = field_type->std430_size(row_major);
7310 }
7311 }
7312
7313 if (qual->flags.q.explicit_offset) {
7314 unsigned qual_offset;
7315 if (process_qualifier_constant(state, &loc, "offset",
7316 qual->offset, &qual_offset)) {
7317 if (align != 0 && size != 0) {
7318 if (next_offset > qual_offset)
7319 _mesa_glsl_error(&loc, state, "layout qualifier "
7320 "offset overlaps previous member");
7321
7322 if (qual_offset % align) {
7323 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7324 "must be a multiple of the base "
7325 "alignment of %s", field_type->name);
7326 }
7327 fields[i].offset = qual_offset;
7328 next_offset = glsl_align(qual_offset + size, align);
7329 } else {
7330 _mesa_glsl_error(&loc, state, "offset can only be used "
7331 "with std430 and std140 layouts");
7332 }
7333 }
7334 }
7335
7336 if (qual->flags.q.explicit_align || expl_align != 0) {
7337 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7338 next_offset;
7339 if (align == 0 || size == 0) {
7340 _mesa_glsl_error(&loc, state, "align can only be used with "
7341 "std430 and std140 layouts");
7342 } else if (qual->flags.q.explicit_align) {
7343 unsigned member_align;
7344 if (process_qualifier_constant(state, &loc, "align",
7345 qual->align, &member_align)) {
7346 if (member_align == 0 ||
7347 member_align & (member_align - 1)) {
7348 _mesa_glsl_error(&loc, state, "align layout qualifier "
7349 "in not a power of 2");
7350 } else {
7351 fields[i].offset = glsl_align(offset, member_align);
7352 next_offset = glsl_align(fields[i].offset + size, align);
7353 }
7354 }
7355 } else {
7356 fields[i].offset = glsl_align(offset, expl_align);
7357 next_offset = glsl_align(fields[i].offset + size, align);
7358 }
7359 } else if (!qual->flags.q.explicit_offset) {
7360 if (align != 0 && size != 0)
7361 next_offset = glsl_align(next_offset + size, align);
7362 }
7363
7364 /* From the ARB_enhanced_layouts spec:
7365 *
7366 * "The given offset applies to the first component of the first
7367 * member of the qualified entity. Then, within the qualified
7368 * entity, subsequent components are each assigned, in order, to
7369 * the next available offset aligned to a multiple of that
7370 * component's size. Aggregate types are flattened down to the
7371 * component level to get this sequence of components."
7372 */
7373 if (qual->flags.q.explicit_xfb_offset) {
7374 unsigned xfb_offset;
7375 if (process_qualifier_constant(state, &loc, "xfb_offset",
7376 qual->offset, &xfb_offset)) {
7377 fields[i].offset = xfb_offset;
7378 block_xfb_offset = fields[i].offset +
7379 4 * field_type->component_slots();
7380 }
7381 } else {
7382 if (layout && layout->flags.q.explicit_xfb_offset) {
7383 unsigned align = field_type->is_64bit() ? 8 : 4;
7384 fields[i].offset = glsl_align(block_xfb_offset, align);
7385 block_xfb_offset += 4 * field_type->component_slots();
7386 }
7387 }
7388
7389 /* Propogate row- / column-major information down the fields of the
7390 * structure or interface block. Structures need this data because
7391 * the structure may contain a structure that contains ... a matrix
7392 * that need the proper layout.
7393 */
7394 if (is_interface && layout &&
7395 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7396 (field_type->without_array()->is_matrix()
7397 || field_type->without_array()->is_record())) {
7398 /* If no layout is specified for the field, inherit the layout
7399 * from the block.
7400 */
7401 fields[i].matrix_layout = matrix_layout;
7402
7403 if (qual->flags.q.row_major)
7404 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7405 else if (qual->flags.q.column_major)
7406 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7407
7408 /* If we're processing an uniform or buffer block, the matrix
7409 * layout must be decided by this point.
7410 */
7411 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7412 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7413 }
7414
7415 /* Memory qualifiers are allowed on buffer and image variables, while
7416 * the format qualifier is only accepted for images.
7417 */
7418 if (var_mode == ir_var_shader_storage ||
7419 field_type->without_array()->is_image()) {
7420 /* For readonly and writeonly qualifiers the field definition,
7421 * if set, overwrites the layout qualifier.
7422 */
7423 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7424 fields[i].memory_read_only = qual->flags.q.read_only;
7425 fields[i].memory_write_only = qual->flags.q.write_only;
7426 } else {
7427 fields[i].memory_read_only =
7428 layout ? layout->flags.q.read_only : 0;
7429 fields[i].memory_write_only =
7430 layout ? layout->flags.q.write_only : 0;
7431 }
7432
7433 /* For other qualifiers, we set the flag if either the layout
7434 * qualifier or the field qualifier are set
7435 */
7436 fields[i].memory_coherent = qual->flags.q.coherent ||
7437 (layout && layout->flags.q.coherent);
7438 fields[i].memory_volatile = qual->flags.q._volatile ||
7439 (layout && layout->flags.q._volatile);
7440 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7441 (layout && layout->flags.q.restrict_flag);
7442
7443 if (field_type->without_array()->is_image()) {
7444 if (qual->flags.q.explicit_image_format) {
7445 if (qual->image_base_type !=
7446 field_type->without_array()->sampled_type) {
7447 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7448 "match the base data type of the image");
7449 }
7450
7451 fields[i].image_format = qual->image_format;
7452 } else {
7453 if (!qual->flags.q.write_only) {
7454 _mesa_glsl_error(&loc, state, "image not qualified with "
7455 "`writeonly' must have a format layout "
7456 "qualifier");
7457 }
7458
7459 fields[i].image_format = GL_NONE;
7460 }
7461 }
7462 }
7463
7464 i++;
7465 }
7466 }
7467
7468 assert(i == decl_count);
7469
7470 *fields_ret = fields;
7471 return decl_count;
7472 }
7473
7474
7475 ir_rvalue *
7476 ast_struct_specifier::hir(exec_list *instructions,
7477 struct _mesa_glsl_parse_state *state)
7478 {
7479 YYLTYPE loc = this->get_location();
7480
7481 unsigned expl_location = 0;
7482 if (layout && layout->flags.q.explicit_location) {
7483 if (!process_qualifier_constant(state, &loc, "location",
7484 layout->location, &expl_location)) {
7485 return NULL;
7486 } else {
7487 expl_location = VARYING_SLOT_VAR0 + expl_location;
7488 }
7489 }
7490
7491 glsl_struct_field *fields;
7492 unsigned decl_count =
7493 ast_process_struct_or_iface_block_members(instructions,
7494 state,
7495 &this->declarations,
7496 &fields,
7497 false,
7498 GLSL_MATRIX_LAYOUT_INHERITED,
7499 false /* allow_reserved_names */,
7500 ir_var_auto,
7501 layout,
7502 0, /* for interface only */
7503 0, /* for interface only */
7504 0, /* for interface only */
7505 expl_location,
7506 0 /* for interface only */);
7507
7508 validate_identifier(this->name, loc, state);
7509
7510 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7511
7512 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7513 const glsl_type *match = state->symbols->get_type(name);
7514 /* allow struct matching for desktop GL - older UE4 does this */
7515 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7516 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7517 else
7518 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7519 } else {
7520 const glsl_type **s = reralloc(state, state->user_structures,
7521 const glsl_type *,
7522 state->num_user_structures + 1);
7523 if (s != NULL) {
7524 s[state->num_user_structures] = type;
7525 state->user_structures = s;
7526 state->num_user_structures++;
7527 }
7528 }
7529
7530 /* Structure type definitions do not have r-values.
7531 */
7532 return NULL;
7533 }
7534
7535
7536 /**
7537 * Visitor class which detects whether a given interface block has been used.
7538 */
7539 class interface_block_usage_visitor : public ir_hierarchical_visitor
7540 {
7541 public:
7542 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7543 : mode(mode), block(block), found(false)
7544 {
7545 }
7546
7547 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7548 {
7549 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7550 found = true;
7551 return visit_stop;
7552 }
7553 return visit_continue;
7554 }
7555
7556 bool usage_found() const
7557 {
7558 return this->found;
7559 }
7560
7561 private:
7562 ir_variable_mode mode;
7563 const glsl_type *block;
7564 bool found;
7565 };
7566
7567 static bool
7568 is_unsized_array_last_element(ir_variable *v)
7569 {
7570 const glsl_type *interface_type = v->get_interface_type();
7571 int length = interface_type->length;
7572
7573 assert(v->type->is_unsized_array());
7574
7575 /* Check if it is the last element of the interface */
7576 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7577 return true;
7578 return false;
7579 }
7580
7581 static void
7582 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7583 {
7584 var->data.memory_read_only = field.memory_read_only;
7585 var->data.memory_write_only = field.memory_write_only;
7586 var->data.memory_coherent = field.memory_coherent;
7587 var->data.memory_volatile = field.memory_volatile;
7588 var->data.memory_restrict = field.memory_restrict;
7589 }
7590
7591 ir_rvalue *
7592 ast_interface_block::hir(exec_list *instructions,
7593 struct _mesa_glsl_parse_state *state)
7594 {
7595 YYLTYPE loc = this->get_location();
7596
7597 /* Interface blocks must be declared at global scope */
7598 if (state->current_function != NULL) {
7599 _mesa_glsl_error(&loc, state,
7600 "Interface block `%s' must be declared "
7601 "at global scope",
7602 this->block_name);
7603 }
7604
7605 /* Validate qualifiers:
7606 *
7607 * - Layout Qualifiers as per the table in Section 4.4
7608 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7609 *
7610 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7611 * GLSL 4.50 spec:
7612 *
7613 * "Additionally, memory qualifiers may also be used in the declaration
7614 * of shader storage blocks"
7615 *
7616 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7617 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7618 * Layout Qualifiers) of the GLSL 4.50 spec says:
7619 *
7620 * "The std430 qualifier is supported only for shader storage blocks;
7621 * using std430 on a uniform block will result in a compile-time error."
7622 */
7623 ast_type_qualifier allowed_blk_qualifiers;
7624 allowed_blk_qualifiers.flags.i = 0;
7625 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7626 allowed_blk_qualifiers.flags.q.shared = 1;
7627 allowed_blk_qualifiers.flags.q.packed = 1;
7628 allowed_blk_qualifiers.flags.q.std140 = 1;
7629 allowed_blk_qualifiers.flags.q.row_major = 1;
7630 allowed_blk_qualifiers.flags.q.column_major = 1;
7631 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7632 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7633 if (this->layout.flags.q.buffer) {
7634 allowed_blk_qualifiers.flags.q.buffer = 1;
7635 allowed_blk_qualifiers.flags.q.std430 = 1;
7636 allowed_blk_qualifiers.flags.q.coherent = 1;
7637 allowed_blk_qualifiers.flags.q._volatile = 1;
7638 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7639 allowed_blk_qualifiers.flags.q.read_only = 1;
7640 allowed_blk_qualifiers.flags.q.write_only = 1;
7641 } else {
7642 allowed_blk_qualifiers.flags.q.uniform = 1;
7643 }
7644 } else {
7645 /* Interface block */
7646 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7647
7648 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7649 if (this->layout.flags.q.out) {
7650 allowed_blk_qualifiers.flags.q.out = 1;
7651 if (state->stage == MESA_SHADER_GEOMETRY ||
7652 state->stage == MESA_SHADER_TESS_CTRL ||
7653 state->stage == MESA_SHADER_TESS_EVAL ||
7654 state->stage == MESA_SHADER_VERTEX ) {
7655 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7656 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7657 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7658 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7659 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7660 if (state->stage == MESA_SHADER_GEOMETRY) {
7661 allowed_blk_qualifiers.flags.q.stream = 1;
7662 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7663 }
7664 if (state->stage == MESA_SHADER_TESS_CTRL) {
7665 allowed_blk_qualifiers.flags.q.patch = 1;
7666 }
7667 }
7668 } else {
7669 allowed_blk_qualifiers.flags.q.in = 1;
7670 if (state->stage == MESA_SHADER_TESS_EVAL) {
7671 allowed_blk_qualifiers.flags.q.patch = 1;
7672 }
7673 }
7674 }
7675
7676 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7677 "invalid qualifier for block",
7678 this->block_name);
7679
7680 enum glsl_interface_packing packing;
7681 if (this->layout.flags.q.std140) {
7682 packing = GLSL_INTERFACE_PACKING_STD140;
7683 } else if (this->layout.flags.q.packed) {
7684 packing = GLSL_INTERFACE_PACKING_PACKED;
7685 } else if (this->layout.flags.q.std430) {
7686 packing = GLSL_INTERFACE_PACKING_STD430;
7687 } else {
7688 /* The default layout is shared.
7689 */
7690 packing = GLSL_INTERFACE_PACKING_SHARED;
7691 }
7692
7693 ir_variable_mode var_mode;
7694 const char *iface_type_name;
7695 if (this->layout.flags.q.in) {
7696 var_mode = ir_var_shader_in;
7697 iface_type_name = "in";
7698 } else if (this->layout.flags.q.out) {
7699 var_mode = ir_var_shader_out;
7700 iface_type_name = "out";
7701 } else if (this->layout.flags.q.uniform) {
7702 var_mode = ir_var_uniform;
7703 iface_type_name = "uniform";
7704 } else if (this->layout.flags.q.buffer) {
7705 var_mode = ir_var_shader_storage;
7706 iface_type_name = "buffer";
7707 } else {
7708 var_mode = ir_var_auto;
7709 iface_type_name = "UNKNOWN";
7710 assert(!"interface block layout qualifier not found!");
7711 }
7712
7713 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7714 if (this->layout.flags.q.row_major)
7715 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7716 else if (this->layout.flags.q.column_major)
7717 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7718
7719 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7720 exec_list declared_variables;
7721 glsl_struct_field *fields;
7722
7723 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7724 * that we don't have incompatible qualifiers
7725 */
7726 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7727 _mesa_glsl_error(&loc, state,
7728 "Interface block sets both readonly and writeonly");
7729 }
7730
7731 unsigned qual_stream;
7732 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7733 &qual_stream) ||
7734 !validate_stream_qualifier(&loc, state, qual_stream)) {
7735 /* If the stream qualifier is invalid it doesn't make sense to continue
7736 * on and try to compare stream layouts on member variables against it
7737 * so just return early.
7738 */
7739 return NULL;
7740 }
7741
7742 unsigned qual_xfb_buffer;
7743 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7744 layout.xfb_buffer, &qual_xfb_buffer) ||
7745 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7746 return NULL;
7747 }
7748
7749 unsigned qual_xfb_offset;
7750 if (layout.flags.q.explicit_xfb_offset) {
7751 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7752 layout.offset, &qual_xfb_offset)) {
7753 return NULL;
7754 }
7755 }
7756
7757 unsigned qual_xfb_stride;
7758 if (layout.flags.q.explicit_xfb_stride) {
7759 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7760 layout.xfb_stride, &qual_xfb_stride)) {
7761 return NULL;
7762 }
7763 }
7764
7765 unsigned expl_location = 0;
7766 if (layout.flags.q.explicit_location) {
7767 if (!process_qualifier_constant(state, &loc, "location",
7768 layout.location, &expl_location)) {
7769 return NULL;
7770 } else {
7771 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7772 : VARYING_SLOT_VAR0;
7773 }
7774 }
7775
7776 unsigned expl_align = 0;
7777 if (layout.flags.q.explicit_align) {
7778 if (!process_qualifier_constant(state, &loc, "align",
7779 layout.align, &expl_align)) {
7780 return NULL;
7781 } else {
7782 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7783 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7784 "power of 2.");
7785 return NULL;
7786 }
7787 }
7788 }
7789
7790 unsigned int num_variables =
7791 ast_process_struct_or_iface_block_members(&declared_variables,
7792 state,
7793 &this->declarations,
7794 &fields,
7795 true,
7796 matrix_layout,
7797 redeclaring_per_vertex,
7798 var_mode,
7799 &this->layout,
7800 qual_stream,
7801 qual_xfb_buffer,
7802 qual_xfb_offset,
7803 expl_location,
7804 expl_align);
7805
7806 if (!redeclaring_per_vertex) {
7807 validate_identifier(this->block_name, loc, state);
7808
7809 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7810 *
7811 * "Block names have no other use within a shader beyond interface
7812 * matching; it is a compile-time error to use a block name at global
7813 * scope for anything other than as a block name."
7814 */
7815 ir_variable *var = state->symbols->get_variable(this->block_name);
7816 if (var && !var->type->is_interface()) {
7817 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7818 "already used in the scope.",
7819 this->block_name);
7820 }
7821 }
7822
7823 const glsl_type *earlier_per_vertex = NULL;
7824 if (redeclaring_per_vertex) {
7825 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7826 * the named interface block gl_in, we can find it by looking at the
7827 * previous declaration of gl_in. Otherwise we can find it by looking
7828 * at the previous decalartion of any of the built-in outputs,
7829 * e.g. gl_Position.
7830 *
7831 * Also check that the instance name and array-ness of the redeclaration
7832 * are correct.
7833 */
7834 switch (var_mode) {
7835 case ir_var_shader_in:
7836 if (ir_variable *earlier_gl_in =
7837 state->symbols->get_variable("gl_in")) {
7838 earlier_per_vertex = earlier_gl_in->get_interface_type();
7839 } else {
7840 _mesa_glsl_error(&loc, state,
7841 "redeclaration of gl_PerVertex input not allowed "
7842 "in the %s shader",
7843 _mesa_shader_stage_to_string(state->stage));
7844 }
7845 if (this->instance_name == NULL ||
7846 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7847 !this->array_specifier->is_single_dimension()) {
7848 _mesa_glsl_error(&loc, state,
7849 "gl_PerVertex input must be redeclared as "
7850 "gl_in[]");
7851 }
7852 break;
7853 case ir_var_shader_out:
7854 if (ir_variable *earlier_gl_Position =
7855 state->symbols->get_variable("gl_Position")) {
7856 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7857 } else if (ir_variable *earlier_gl_out =
7858 state->symbols->get_variable("gl_out")) {
7859 earlier_per_vertex = earlier_gl_out->get_interface_type();
7860 } else {
7861 _mesa_glsl_error(&loc, state,
7862 "redeclaration of gl_PerVertex output not "
7863 "allowed in the %s shader",
7864 _mesa_shader_stage_to_string(state->stage));
7865 }
7866 if (state->stage == MESA_SHADER_TESS_CTRL) {
7867 if (this->instance_name == NULL ||
7868 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7869 _mesa_glsl_error(&loc, state,
7870 "gl_PerVertex output must be redeclared as "
7871 "gl_out[]");
7872 }
7873 } else {
7874 if (this->instance_name != NULL) {
7875 _mesa_glsl_error(&loc, state,
7876 "gl_PerVertex output may not be redeclared with "
7877 "an instance name");
7878 }
7879 }
7880 break;
7881 default:
7882 _mesa_glsl_error(&loc, state,
7883 "gl_PerVertex must be declared as an input or an "
7884 "output");
7885 break;
7886 }
7887
7888 if (earlier_per_vertex == NULL) {
7889 /* An error has already been reported. Bail out to avoid null
7890 * dereferences later in this function.
7891 */
7892 return NULL;
7893 }
7894
7895 /* Copy locations from the old gl_PerVertex interface block. */
7896 for (unsigned i = 0; i < num_variables; i++) {
7897 int j = earlier_per_vertex->field_index(fields[i].name);
7898 if (j == -1) {
7899 _mesa_glsl_error(&loc, state,
7900 "redeclaration of gl_PerVertex must be a subset "
7901 "of the built-in members of gl_PerVertex");
7902 } else {
7903 fields[i].location =
7904 earlier_per_vertex->fields.structure[j].location;
7905 fields[i].offset =
7906 earlier_per_vertex->fields.structure[j].offset;
7907 fields[i].interpolation =
7908 earlier_per_vertex->fields.structure[j].interpolation;
7909 fields[i].centroid =
7910 earlier_per_vertex->fields.structure[j].centroid;
7911 fields[i].sample =
7912 earlier_per_vertex->fields.structure[j].sample;
7913 fields[i].patch =
7914 earlier_per_vertex->fields.structure[j].patch;
7915 fields[i].precision =
7916 earlier_per_vertex->fields.structure[j].precision;
7917 fields[i].explicit_xfb_buffer =
7918 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7919 fields[i].xfb_buffer =
7920 earlier_per_vertex->fields.structure[j].xfb_buffer;
7921 fields[i].xfb_stride =
7922 earlier_per_vertex->fields.structure[j].xfb_stride;
7923 }
7924 }
7925
7926 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7927 * spec:
7928 *
7929 * If a built-in interface block is redeclared, it must appear in
7930 * the shader before any use of any member included in the built-in
7931 * declaration, or a compilation error will result.
7932 *
7933 * This appears to be a clarification to the behaviour established for
7934 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7935 * regardless of GLSL version.
7936 */
7937 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7938 v.run(instructions);
7939 if (v.usage_found()) {
7940 _mesa_glsl_error(&loc, state,
7941 "redeclaration of a built-in interface block must "
7942 "appear before any use of any member of the "
7943 "interface block");
7944 }
7945 }
7946
7947 const glsl_type *block_type =
7948 glsl_type::get_interface_instance(fields,
7949 num_variables,
7950 packing,
7951 matrix_layout ==
7952 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7953 this->block_name);
7954
7955 unsigned component_size = block_type->contains_double() ? 8 : 4;
7956 int xfb_offset =
7957 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7958 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7959 component_size);
7960
7961 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7962 YYLTYPE loc = this->get_location();
7963 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7964 "already taken in the current scope",
7965 this->block_name, iface_type_name);
7966 }
7967
7968 /* Since interface blocks cannot contain statements, it should be
7969 * impossible for the block to generate any instructions.
7970 */
7971 assert(declared_variables.is_empty());
7972
7973 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7974 *
7975 * Geometry shader input variables get the per-vertex values written
7976 * out by vertex shader output variables of the same names. Since a
7977 * geometry shader operates on a set of vertices, each input varying
7978 * variable (or input block, see interface blocks below) needs to be
7979 * declared as an array.
7980 */
7981 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7982 var_mode == ir_var_shader_in) {
7983 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7984 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7985 state->stage == MESA_SHADER_TESS_EVAL) &&
7986 !this->layout.flags.q.patch &&
7987 this->array_specifier == NULL &&
7988 var_mode == ir_var_shader_in) {
7989 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7990 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7991 !this->layout.flags.q.patch &&
7992 this->array_specifier == NULL &&
7993 var_mode == ir_var_shader_out) {
7994 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7995 }
7996
7997
7998 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7999 * says:
8000 *
8001 * "If an instance name (instance-name) is used, then it puts all the
8002 * members inside a scope within its own name space, accessed with the
8003 * field selector ( . ) operator (analogously to structures)."
8004 */
8005 if (this->instance_name) {
8006 if (redeclaring_per_vertex) {
8007 /* When a built-in in an unnamed interface block is redeclared,
8008 * get_variable_being_redeclared() calls
8009 * check_builtin_array_max_size() to make sure that built-in array
8010 * variables aren't redeclared to illegal sizes. But we're looking
8011 * at a redeclaration of a named built-in interface block. So we
8012 * have to manually call check_builtin_array_max_size() for all parts
8013 * of the interface that are arrays.
8014 */
8015 for (unsigned i = 0; i < num_variables; i++) {
8016 if (fields[i].type->is_array()) {
8017 const unsigned size = fields[i].type->array_size();
8018 check_builtin_array_max_size(fields[i].name, size, loc, state);
8019 }
8020 }
8021 } else {
8022 validate_identifier(this->instance_name, loc, state);
8023 }
8024
8025 ir_variable *var;
8026
8027 if (this->array_specifier != NULL) {
8028 const glsl_type *block_array_type =
8029 process_array_type(&loc, block_type, this->array_specifier, state);
8030
8031 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8032 *
8033 * For uniform blocks declared an array, each individual array
8034 * element corresponds to a separate buffer object backing one
8035 * instance of the block. As the array size indicates the number
8036 * of buffer objects needed, uniform block array declarations
8037 * must specify an array size.
8038 *
8039 * And a few paragraphs later:
8040 *
8041 * Geometry shader input blocks must be declared as arrays and
8042 * follow the array declaration and linking rules for all
8043 * geometry shader inputs. All other input and output block
8044 * arrays must specify an array size.
8045 *
8046 * The same applies to tessellation shaders.
8047 *
8048 * The upshot of this is that the only circumstance where an
8049 * interface array size *doesn't* need to be specified is on a
8050 * geometry shader input, tessellation control shader input,
8051 * tessellation control shader output, and tessellation evaluation
8052 * shader input.
8053 */
8054 if (block_array_type->is_unsized_array()) {
8055 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8056 state->stage == MESA_SHADER_TESS_CTRL ||
8057 state->stage == MESA_SHADER_TESS_EVAL;
8058 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8059
8060 if (this->layout.flags.q.in) {
8061 if (!allow_inputs)
8062 _mesa_glsl_error(&loc, state,
8063 "unsized input block arrays not allowed in "
8064 "%s shader",
8065 _mesa_shader_stage_to_string(state->stage));
8066 } else if (this->layout.flags.q.out) {
8067 if (!allow_outputs)
8068 _mesa_glsl_error(&loc, state,
8069 "unsized output block arrays not allowed in "
8070 "%s shader",
8071 _mesa_shader_stage_to_string(state->stage));
8072 } else {
8073 /* by elimination, this is a uniform block array */
8074 _mesa_glsl_error(&loc, state,
8075 "unsized uniform block arrays not allowed in "
8076 "%s shader",
8077 _mesa_shader_stage_to_string(state->stage));
8078 }
8079 }
8080
8081 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8082 *
8083 * * Arrays of arrays of blocks are not allowed
8084 */
8085 if (state->es_shader && block_array_type->is_array() &&
8086 block_array_type->fields.array->is_array()) {
8087 _mesa_glsl_error(&loc, state,
8088 "arrays of arrays interface blocks are "
8089 "not allowed");
8090 }
8091
8092 var = new(state) ir_variable(block_array_type,
8093 this->instance_name,
8094 var_mode);
8095 } else {
8096 var = new(state) ir_variable(block_type,
8097 this->instance_name,
8098 var_mode);
8099 }
8100
8101 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8102 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8103
8104 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8105 var->data.read_only = true;
8106
8107 var->data.patch = this->layout.flags.q.patch;
8108
8109 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8110 handle_geometry_shader_input_decl(state, loc, var);
8111 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8112 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8113 handle_tess_shader_input_decl(state, loc, var);
8114 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8115 handle_tess_ctrl_shader_output_decl(state, loc, var);
8116
8117 for (unsigned i = 0; i < num_variables; i++) {
8118 if (var->data.mode == ir_var_shader_storage)
8119 apply_memory_qualifiers(var, fields[i]);
8120 }
8121
8122 if (ir_variable *earlier =
8123 state->symbols->get_variable(this->instance_name)) {
8124 if (!redeclaring_per_vertex) {
8125 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8126 this->instance_name);
8127 }
8128 earlier->data.how_declared = ir_var_declared_normally;
8129 earlier->type = var->type;
8130 earlier->reinit_interface_type(block_type);
8131 delete var;
8132 } else {
8133 if (this->layout.flags.q.explicit_binding) {
8134 apply_explicit_binding(state, &loc, var, var->type,
8135 &this->layout);
8136 }
8137
8138 var->data.stream = qual_stream;
8139 if (layout.flags.q.explicit_location) {
8140 var->data.location = expl_location;
8141 var->data.explicit_location = true;
8142 }
8143
8144 state->symbols->add_variable(var);
8145 instructions->push_tail(var);
8146 }
8147 } else {
8148 /* In order to have an array size, the block must also be declared with
8149 * an instance name.
8150 */
8151 assert(this->array_specifier == NULL);
8152
8153 for (unsigned i = 0; i < num_variables; i++) {
8154 ir_variable *var =
8155 new(state) ir_variable(fields[i].type,
8156 ralloc_strdup(state, fields[i].name),
8157 var_mode);
8158 var->data.interpolation = fields[i].interpolation;
8159 var->data.centroid = fields[i].centroid;
8160 var->data.sample = fields[i].sample;
8161 var->data.patch = fields[i].patch;
8162 var->data.stream = qual_stream;
8163 var->data.location = fields[i].location;
8164
8165 if (fields[i].location != -1)
8166 var->data.explicit_location = true;
8167
8168 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8169 var->data.xfb_buffer = fields[i].xfb_buffer;
8170
8171 if (fields[i].offset != -1)
8172 var->data.explicit_xfb_offset = true;
8173 var->data.offset = fields[i].offset;
8174
8175 var->init_interface_type(block_type);
8176
8177 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8178 var->data.read_only = true;
8179
8180 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8181 if (state->es_shader) {
8182 var->data.precision =
8183 select_gles_precision(fields[i].precision, fields[i].type,
8184 state, &loc);
8185 }
8186
8187 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8188 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8189 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8190 } else {
8191 var->data.matrix_layout = fields[i].matrix_layout;
8192 }
8193
8194 if (var->data.mode == ir_var_shader_storage)
8195 apply_memory_qualifiers(var, fields[i]);
8196
8197 /* Examine var name here since var may get deleted in the next call */
8198 bool var_is_gl_id = is_gl_identifier(var->name);
8199
8200 if (redeclaring_per_vertex) {
8201 bool is_redeclaration;
8202 var =
8203 get_variable_being_redeclared(&var, loc, state,
8204 true /* allow_all_redeclarations */,
8205 &is_redeclaration);
8206 if (!var_is_gl_id || !is_redeclaration) {
8207 _mesa_glsl_error(&loc, state,
8208 "redeclaration of gl_PerVertex can only "
8209 "include built-in variables");
8210 } else if (var->data.how_declared == ir_var_declared_normally) {
8211 _mesa_glsl_error(&loc, state,
8212 "`%s' has already been redeclared",
8213 var->name);
8214 } else {
8215 var->data.how_declared = ir_var_declared_in_block;
8216 var->reinit_interface_type(block_type);
8217 }
8218 continue;
8219 }
8220
8221 if (state->symbols->get_variable(var->name) != NULL)
8222 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8223
8224 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8225 * The UBO declaration itself doesn't get an ir_variable unless it
8226 * has an instance name. This is ugly.
8227 */
8228 if (this->layout.flags.q.explicit_binding) {
8229 apply_explicit_binding(state, &loc, var,
8230 var->get_interface_type(), &this->layout);
8231 }
8232
8233 if (var->type->is_unsized_array()) {
8234 if (var->is_in_shader_storage_block() &&
8235 is_unsized_array_last_element(var)) {
8236 var->data.from_ssbo_unsized_array = true;
8237 } else {
8238 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8239 *
8240 * "If an array is declared as the last member of a shader storage
8241 * block and the size is not specified at compile-time, it is
8242 * sized at run-time. In all other cases, arrays are sized only
8243 * at compile-time."
8244 *
8245 * In desktop GLSL it is allowed to have unsized-arrays that are
8246 * not last, as long as we can determine that they are implicitly
8247 * sized.
8248 */
8249 if (state->es_shader) {
8250 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8251 "definition: only last member of a shader "
8252 "storage block can be defined as unsized "
8253 "array", fields[i].name);
8254 }
8255 }
8256 }
8257
8258 state->symbols->add_variable(var);
8259 instructions->push_tail(var);
8260 }
8261
8262 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8263 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8264 *
8265 * It is also a compilation error ... to redeclare a built-in
8266 * block and then use a member from that built-in block that was
8267 * not included in the redeclaration.
8268 *
8269 * This appears to be a clarification to the behaviour established
8270 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8271 * behaviour regardless of GLSL version.
8272 *
8273 * To prevent the shader from using a member that was not included in
8274 * the redeclaration, we disable any ir_variables that are still
8275 * associated with the old declaration of gl_PerVertex (since we've
8276 * already updated all of the variables contained in the new
8277 * gl_PerVertex to point to it).
8278 *
8279 * As a side effect this will prevent
8280 * validate_intrastage_interface_blocks() from getting confused and
8281 * thinking there are conflicting definitions of gl_PerVertex in the
8282 * shader.
8283 */
8284 foreach_in_list_safe(ir_instruction, node, instructions) {
8285 ir_variable *const var = node->as_variable();
8286 if (var != NULL &&
8287 var->get_interface_type() == earlier_per_vertex &&
8288 var->data.mode == var_mode) {
8289 if (var->data.how_declared == ir_var_declared_normally) {
8290 _mesa_glsl_error(&loc, state,
8291 "redeclaration of gl_PerVertex cannot "
8292 "follow a redeclaration of `%s'",
8293 var->name);
8294 }
8295 state->symbols->disable_variable(var->name);
8296 var->remove();
8297 }
8298 }
8299 }
8300 }
8301
8302 return NULL;
8303 }
8304
8305
8306 ir_rvalue *
8307 ast_tcs_output_layout::hir(exec_list *instructions,
8308 struct _mesa_glsl_parse_state *state)
8309 {
8310 YYLTYPE loc = this->get_location();
8311
8312 unsigned num_vertices;
8313 if (!state->out_qualifier->vertices->
8314 process_qualifier_constant(state, "vertices", &num_vertices,
8315 false)) {
8316 /* return here to stop cascading incorrect error messages */
8317 return NULL;
8318 }
8319
8320 /* If any shader outputs occurred before this declaration and specified an
8321 * array size, make sure the size they specified is consistent with the
8322 * primitive type.
8323 */
8324 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8325 _mesa_glsl_error(&loc, state,
8326 "this tessellation control shader output layout "
8327 "specifies %u vertices, but a previous output "
8328 "is declared with size %u",
8329 num_vertices, state->tcs_output_size);
8330 return NULL;
8331 }
8332
8333 state->tcs_output_vertices_specified = true;
8334
8335 /* If any shader outputs occurred before this declaration and did not
8336 * specify an array size, their size is determined now.
8337 */
8338 foreach_in_list (ir_instruction, node, instructions) {
8339 ir_variable *var = node->as_variable();
8340 if (var == NULL || var->data.mode != ir_var_shader_out)
8341 continue;
8342
8343 /* Note: Not all tessellation control shader output are arrays. */
8344 if (!var->type->is_unsized_array() || var->data.patch)
8345 continue;
8346
8347 if (var->data.max_array_access >= (int)num_vertices) {
8348 _mesa_glsl_error(&loc, state,
8349 "this tessellation control shader output layout "
8350 "specifies %u vertices, but an access to element "
8351 "%u of output `%s' already exists", num_vertices,
8352 var->data.max_array_access, var->name);
8353 } else {
8354 var->type = glsl_type::get_array_instance(var->type->fields.array,
8355 num_vertices);
8356 }
8357 }
8358
8359 return NULL;
8360 }
8361
8362
8363 ir_rvalue *
8364 ast_gs_input_layout::hir(exec_list *instructions,
8365 struct _mesa_glsl_parse_state *state)
8366 {
8367 YYLTYPE loc = this->get_location();
8368
8369 /* Should have been prevented by the parser. */
8370 assert(!state->gs_input_prim_type_specified
8371 || state->in_qualifier->prim_type == this->prim_type);
8372
8373 /* If any shader inputs occurred before this declaration and specified an
8374 * array size, make sure the size they specified is consistent with the
8375 * primitive type.
8376 */
8377 unsigned num_vertices = vertices_per_prim(this->prim_type);
8378 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8379 _mesa_glsl_error(&loc, state,
8380 "this geometry shader input layout implies %u vertices"
8381 " per primitive, but a previous input is declared"
8382 " with size %u", num_vertices, state->gs_input_size);
8383 return NULL;
8384 }
8385
8386 state->gs_input_prim_type_specified = true;
8387
8388 /* If any shader inputs occurred before this declaration and did not
8389 * specify an array size, their size is determined now.
8390 */
8391 foreach_in_list(ir_instruction, node, instructions) {
8392 ir_variable *var = node->as_variable();
8393 if (var == NULL || var->data.mode != ir_var_shader_in)
8394 continue;
8395
8396 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8397 * array; skip it.
8398 */
8399
8400 if (var->type->is_unsized_array()) {
8401 if (var->data.max_array_access >= (int)num_vertices) {
8402 _mesa_glsl_error(&loc, state,
8403 "this geometry shader input layout implies %u"
8404 " vertices, but an access to element %u of input"
8405 " `%s' already exists", num_vertices,
8406 var->data.max_array_access, var->name);
8407 } else {
8408 var->type = glsl_type::get_array_instance(var->type->fields.array,
8409 num_vertices);
8410 }
8411 }
8412 }
8413
8414 return NULL;
8415 }
8416
8417
8418 ir_rvalue *
8419 ast_cs_input_layout::hir(exec_list *instructions,
8420 struct _mesa_glsl_parse_state *state)
8421 {
8422 YYLTYPE loc = this->get_location();
8423
8424 /* From the ARB_compute_shader specification:
8425 *
8426 * If the local size of the shader in any dimension is greater
8427 * than the maximum size supported by the implementation for that
8428 * dimension, a compile-time error results.
8429 *
8430 * It is not clear from the spec how the error should be reported if
8431 * the total size of the work group exceeds
8432 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8433 * report it at compile time as well.
8434 */
8435 GLuint64 total_invocations = 1;
8436 unsigned qual_local_size[3];
8437 for (int i = 0; i < 3; i++) {
8438
8439 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8440 'x' + i);
8441 /* Infer a local_size of 1 for unspecified dimensions */
8442 if (this->local_size[i] == NULL) {
8443 qual_local_size[i] = 1;
8444 } else if (!this->local_size[i]->
8445 process_qualifier_constant(state, local_size_str,
8446 &qual_local_size[i], false)) {
8447 ralloc_free(local_size_str);
8448 return NULL;
8449 }
8450 ralloc_free(local_size_str);
8451
8452 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8453 _mesa_glsl_error(&loc, state,
8454 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8455 " (%d)", 'x' + i,
8456 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8457 break;
8458 }
8459 total_invocations *= qual_local_size[i];
8460 if (total_invocations >
8461 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8462 _mesa_glsl_error(&loc, state,
8463 "product of local_sizes exceeds "
8464 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8465 state->ctx->Const.MaxComputeWorkGroupInvocations);
8466 break;
8467 }
8468 }
8469
8470 /* If any compute input layout declaration preceded this one, make sure it
8471 * was consistent with this one.
8472 */
8473 if (state->cs_input_local_size_specified) {
8474 for (int i = 0; i < 3; i++) {
8475 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8476 _mesa_glsl_error(&loc, state,
8477 "compute shader input layout does not match"
8478 " previous declaration");
8479 return NULL;
8480 }
8481 }
8482 }
8483
8484 /* The ARB_compute_variable_group_size spec says:
8485 *
8486 * If a compute shader including a *local_size_variable* qualifier also
8487 * declares a fixed local group size using the *local_size_x*,
8488 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8489 * results
8490 */
8491 if (state->cs_input_local_size_variable_specified) {
8492 _mesa_glsl_error(&loc, state,
8493 "compute shader can't include both a variable and a "
8494 "fixed local group size");
8495 return NULL;
8496 }
8497
8498 state->cs_input_local_size_specified = true;
8499 for (int i = 0; i < 3; i++)
8500 state->cs_input_local_size[i] = qual_local_size[i];
8501
8502 /* We may now declare the built-in constant gl_WorkGroupSize (see
8503 * builtin_variable_generator::generate_constants() for why we didn't
8504 * declare it earlier).
8505 */
8506 ir_variable *var = new(state->symbols)
8507 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8508 var->data.how_declared = ir_var_declared_implicitly;
8509 var->data.read_only = true;
8510 instructions->push_tail(var);
8511 state->symbols->add_variable(var);
8512 ir_constant_data data;
8513 memset(&data, 0, sizeof(data));
8514 for (int i = 0; i < 3; i++)
8515 data.u[i] = qual_local_size[i];
8516 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8517 var->constant_initializer =
8518 new(var) ir_constant(glsl_type::uvec3_type, &data);
8519 var->data.has_initializer = true;
8520
8521 return NULL;
8522 }
8523
8524
8525 static void
8526 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8527 exec_list *instructions)
8528 {
8529 bool gl_FragColor_assigned = false;
8530 bool gl_FragData_assigned = false;
8531 bool gl_FragSecondaryColor_assigned = false;
8532 bool gl_FragSecondaryData_assigned = false;
8533 bool user_defined_fs_output_assigned = false;
8534 ir_variable *user_defined_fs_output = NULL;
8535
8536 /* It would be nice to have proper location information. */
8537 YYLTYPE loc;
8538 memset(&loc, 0, sizeof(loc));
8539
8540 foreach_in_list(ir_instruction, node, instructions) {
8541 ir_variable *var = node->as_variable();
8542
8543 if (!var || !var->data.assigned)
8544 continue;
8545
8546 if (strcmp(var->name, "gl_FragColor") == 0)
8547 gl_FragColor_assigned = true;
8548 else if (strcmp(var->name, "gl_FragData") == 0)
8549 gl_FragData_assigned = true;
8550 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8551 gl_FragSecondaryColor_assigned = true;
8552 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8553 gl_FragSecondaryData_assigned = true;
8554 else if (!is_gl_identifier(var->name)) {
8555 if (state->stage == MESA_SHADER_FRAGMENT &&
8556 var->data.mode == ir_var_shader_out) {
8557 user_defined_fs_output_assigned = true;
8558 user_defined_fs_output = var;
8559 }
8560 }
8561 }
8562
8563 /* From the GLSL 1.30 spec:
8564 *
8565 * "If a shader statically assigns a value to gl_FragColor, it
8566 * may not assign a value to any element of gl_FragData. If a
8567 * shader statically writes a value to any element of
8568 * gl_FragData, it may not assign a value to
8569 * gl_FragColor. That is, a shader may assign values to either
8570 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8571 * linked together must also consistently write just one of
8572 * these variables. Similarly, if user declared output
8573 * variables are in use (statically assigned to), then the
8574 * built-in variables gl_FragColor and gl_FragData may not be
8575 * assigned to. These incorrect usages all generate compile
8576 * time errors."
8577 */
8578 if (gl_FragColor_assigned && gl_FragData_assigned) {
8579 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8580 "`gl_FragColor' and `gl_FragData'");
8581 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8582 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8583 "`gl_FragColor' and `%s'",
8584 user_defined_fs_output->name);
8585 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8586 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8587 "`gl_FragSecondaryColorEXT' and"
8588 " `gl_FragSecondaryDataEXT'");
8589 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8590 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8591 "`gl_FragColor' and"
8592 " `gl_FragSecondaryDataEXT'");
8593 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8594 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8595 "`gl_FragData' and"
8596 " `gl_FragSecondaryColorEXT'");
8597 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8598 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8599 "`gl_FragData' and `%s'",
8600 user_defined_fs_output->name);
8601 }
8602
8603 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8604 !state->EXT_blend_func_extended_enable) {
8605 _mesa_glsl_error(&loc, state,
8606 "Dual source blending requires EXT_blend_func_extended");
8607 }
8608 }
8609
8610
8611 static void
8612 remove_per_vertex_blocks(exec_list *instructions,
8613 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8614 {
8615 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8616 * if it exists in this shader type.
8617 */
8618 const glsl_type *per_vertex = NULL;
8619 switch (mode) {
8620 case ir_var_shader_in:
8621 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8622 per_vertex = gl_in->get_interface_type();
8623 break;
8624 case ir_var_shader_out:
8625 if (ir_variable *gl_Position =
8626 state->symbols->get_variable("gl_Position")) {
8627 per_vertex = gl_Position->get_interface_type();
8628 }
8629 break;
8630 default:
8631 assert(!"Unexpected mode");
8632 break;
8633 }
8634
8635 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8636 * need to do anything.
8637 */
8638 if (per_vertex == NULL)
8639 return;
8640
8641 /* If the interface block is used by the shader, then we don't need to do
8642 * anything.
8643 */
8644 interface_block_usage_visitor v(mode, per_vertex);
8645 v.run(instructions);
8646 if (v.usage_found())
8647 return;
8648
8649 /* Remove any ir_variable declarations that refer to the interface block
8650 * we're removing.
8651 */
8652 foreach_in_list_safe(ir_instruction, node, instructions) {
8653 ir_variable *const var = node->as_variable();
8654 if (var != NULL && var->get_interface_type() == per_vertex &&
8655 var->data.mode == mode) {
8656 state->symbols->disable_variable(var->name);
8657 var->remove();
8658 }
8659 }
8660 }