glsl/ast: Explicitly track the set of case labels that occur after default
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 static ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 void *mem_ctx = state;
2233
2234 exec_list dummy_instructions;
2235
2236 ast_node *array_size = exec_node_data(ast_node, node, link);
2237
2238 /**
2239 * Dimensions other than the outermost dimension can by unsized if they
2240 * are immediately sized by a constructor or initializer.
2241 */
2242 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2243 return 0;
2244
2245 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2246 YYLTYPE loc = array_size->get_location();
2247
2248 if (ir == NULL) {
2249 _mesa_glsl_error(& loc, state,
2250 "array size could not be resolved");
2251 return 0;
2252 }
2253
2254 if (!ir->type->is_integer()) {
2255 _mesa_glsl_error(& loc, state,
2256 "array size must be integer type");
2257 return 0;
2258 }
2259
2260 if (!ir->type->is_scalar()) {
2261 _mesa_glsl_error(& loc, state,
2262 "array size must be scalar type");
2263 return 0;
2264 }
2265
2266 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2267 if (size == NULL ||
2268 (state->is_version(120, 300) &&
2269 array_size->has_sequence_subexpression())) {
2270 _mesa_glsl_error(& loc, state, "array size must be a "
2271 "constant valued expression");
2272 return 0;
2273 }
2274
2275 if (size->value.i[0] <= 0) {
2276 _mesa_glsl_error(& loc, state, "array size must be > 0");
2277 return 0;
2278 }
2279
2280 assert(size->type == ir->type);
2281
2282 /* If the array size is const (and we've verified that
2283 * it is) then no instructions should have been emitted
2284 * when we converted it to HIR. If they were emitted,
2285 * then either the array size isn't const after all, or
2286 * we are emitting unnecessary instructions.
2287 */
2288 assert(dummy_instructions.is_empty());
2289
2290 return size->value.u[0];
2291 }
2292
2293 static const glsl_type *
2294 process_array_type(YYLTYPE *loc, const glsl_type *base,
2295 ast_array_specifier *array_specifier,
2296 struct _mesa_glsl_parse_state *state)
2297 {
2298 const glsl_type *array_type = base;
2299
2300 if (array_specifier != NULL) {
2301 if (base->is_array()) {
2302
2303 /* From page 19 (page 25) of the GLSL 1.20 spec:
2304 *
2305 * "Only one-dimensional arrays may be declared."
2306 */
2307 if (!state->check_arrays_of_arrays_allowed(loc)) {
2308 return glsl_type::error_type;
2309 }
2310 }
2311
2312 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2313 !node->is_head_sentinel(); node = node->prev) {
2314 unsigned array_size = process_array_size(node, state);
2315 array_type = glsl_type::get_array_instance(array_type, array_size);
2316 }
2317 }
2318
2319 return array_type;
2320 }
2321
2322 static bool
2323 precision_qualifier_allowed(const glsl_type *type)
2324 {
2325 /* Precision qualifiers apply to floating point, integer and opaque
2326 * types.
2327 *
2328 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2329 * "Any floating point or any integer declaration can have the type
2330 * preceded by one of these precision qualifiers [...] Literal
2331 * constants do not have precision qualifiers. Neither do Boolean
2332 * variables.
2333 *
2334 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2335 * spec also says:
2336 *
2337 * "Precision qualifiers are added for code portability with OpenGL
2338 * ES, not for functionality. They have the same syntax as in OpenGL
2339 * ES."
2340 *
2341 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2342 *
2343 * "uniform lowp sampler2D sampler;
2344 * highp vec2 coord;
2345 * ...
2346 * lowp vec4 col = texture2D (sampler, coord);
2347 * // texture2D returns lowp"
2348 *
2349 * From this, we infer that GLSL 1.30 (and later) should allow precision
2350 * qualifiers on sampler types just like float and integer types.
2351 */
2352 const glsl_type *const t = type->without_array();
2353
2354 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2355 !t->is_record();
2356 }
2357
2358 const glsl_type *
2359 ast_type_specifier::glsl_type(const char **name,
2360 struct _mesa_glsl_parse_state *state) const
2361 {
2362 const struct glsl_type *type;
2363
2364 if (structure)
2365 type = structure->type;
2366 else
2367 type = state->symbols->get_type(this->type_name);
2368 *name = this->type_name;
2369
2370 YYLTYPE loc = this->get_location();
2371 type = process_array_type(&loc, type, this->array_specifier, state);
2372
2373 return type;
2374 }
2375
2376 /**
2377 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2378 *
2379 * "The precision statement
2380 *
2381 * precision precision-qualifier type;
2382 *
2383 * can be used to establish a default precision qualifier. The type field can
2384 * be either int or float or any of the sampler types, (...) If type is float,
2385 * the directive applies to non-precision-qualified floating point type
2386 * (scalar, vector, and matrix) declarations. If type is int, the directive
2387 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2388 * and unsigned) declarations."
2389 *
2390 * We use the symbol table to keep the values of the default precisions for
2391 * each 'type' in each scope and we use the 'type' string from the precision
2392 * statement as key in the symbol table. When we want to retrieve the default
2393 * precision associated with a given glsl_type we need to know the type string
2394 * associated with it. This is what this function returns.
2395 */
2396 static const char *
2397 get_type_name_for_precision_qualifier(const glsl_type *type)
2398 {
2399 switch (type->base_type) {
2400 case GLSL_TYPE_FLOAT:
2401 return "float";
2402 case GLSL_TYPE_UINT:
2403 case GLSL_TYPE_INT:
2404 return "int";
2405 case GLSL_TYPE_ATOMIC_UINT:
2406 return "atomic_uint";
2407 case GLSL_TYPE_IMAGE:
2408 /* fallthrough */
2409 case GLSL_TYPE_SAMPLER: {
2410 const unsigned type_idx =
2411 type->sampler_array + 2 * type->sampler_shadow;
2412 const unsigned offset = type->is_sampler() ? 0 : 4;
2413 assert(type_idx < 4);
2414 switch (type->sampled_type) {
2415 case GLSL_TYPE_FLOAT:
2416 switch (type->sampler_dimensionality) {
2417 case GLSL_SAMPLER_DIM_1D: {
2418 assert(type->is_sampler());
2419 static const char *const names[4] = {
2420 "sampler1D", "sampler1DArray",
2421 "sampler1DShadow", "sampler1DArrayShadow"
2422 };
2423 return names[type_idx];
2424 }
2425 case GLSL_SAMPLER_DIM_2D: {
2426 static const char *const names[8] = {
2427 "sampler2D", "sampler2DArray",
2428 "sampler2DShadow", "sampler2DArrayShadow",
2429 "image2D", "image2DArray", NULL, NULL
2430 };
2431 return names[offset + type_idx];
2432 }
2433 case GLSL_SAMPLER_DIM_3D: {
2434 static const char *const names[8] = {
2435 "sampler3D", NULL, NULL, NULL,
2436 "image3D", NULL, NULL, NULL
2437 };
2438 return names[offset + type_idx];
2439 }
2440 case GLSL_SAMPLER_DIM_CUBE: {
2441 static const char *const names[8] = {
2442 "samplerCube", "samplerCubeArray",
2443 "samplerCubeShadow", "samplerCubeArrayShadow",
2444 "imageCube", NULL, NULL, NULL
2445 };
2446 return names[offset + type_idx];
2447 }
2448 case GLSL_SAMPLER_DIM_MS: {
2449 assert(type->is_sampler());
2450 static const char *const names[4] = {
2451 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2452 };
2453 return names[type_idx];
2454 }
2455 case GLSL_SAMPLER_DIM_RECT: {
2456 assert(type->is_sampler());
2457 static const char *const names[4] = {
2458 "samplerRect", NULL, "samplerRectShadow", NULL
2459 };
2460 return names[type_idx];
2461 }
2462 case GLSL_SAMPLER_DIM_BUF: {
2463 static const char *const names[8] = {
2464 "samplerBuffer", NULL, NULL, NULL,
2465 "imageBuffer", NULL, NULL, NULL
2466 };
2467 return names[offset + type_idx];
2468 }
2469 case GLSL_SAMPLER_DIM_EXTERNAL: {
2470 assert(type->is_sampler());
2471 static const char *const names[4] = {
2472 "samplerExternalOES", NULL, NULL, NULL
2473 };
2474 return names[type_idx];
2475 }
2476 default:
2477 unreachable("Unsupported sampler/image dimensionality");
2478 } /* sampler/image float dimensionality */
2479 break;
2480 case GLSL_TYPE_INT:
2481 switch (type->sampler_dimensionality) {
2482 case GLSL_SAMPLER_DIM_1D: {
2483 assert(type->is_sampler());
2484 static const char *const names[4] = {
2485 "isampler1D", "isampler1DArray", NULL, NULL
2486 };
2487 return names[type_idx];
2488 }
2489 case GLSL_SAMPLER_DIM_2D: {
2490 static const char *const names[8] = {
2491 "isampler2D", "isampler2DArray", NULL, NULL,
2492 "iimage2D", "iimage2DArray", NULL, NULL
2493 };
2494 return names[offset + type_idx];
2495 }
2496 case GLSL_SAMPLER_DIM_3D: {
2497 static const char *const names[8] = {
2498 "isampler3D", NULL, NULL, NULL,
2499 "iimage3D", NULL, NULL, NULL
2500 };
2501 return names[offset + type_idx];
2502 }
2503 case GLSL_SAMPLER_DIM_CUBE: {
2504 static const char *const names[8] = {
2505 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2506 "iimageCube", NULL, NULL, NULL
2507 };
2508 return names[offset + type_idx];
2509 }
2510 case GLSL_SAMPLER_DIM_MS: {
2511 assert(type->is_sampler());
2512 static const char *const names[4] = {
2513 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2514 };
2515 return names[type_idx];
2516 }
2517 case GLSL_SAMPLER_DIM_RECT: {
2518 assert(type->is_sampler());
2519 static const char *const names[4] = {
2520 "isamplerRect", NULL, "isamplerRectShadow", NULL
2521 };
2522 return names[type_idx];
2523 }
2524 case GLSL_SAMPLER_DIM_BUF: {
2525 static const char *const names[8] = {
2526 "isamplerBuffer", NULL, NULL, NULL,
2527 "iimageBuffer", NULL, NULL, NULL
2528 };
2529 return names[offset + type_idx];
2530 }
2531 default:
2532 unreachable("Unsupported isampler/iimage dimensionality");
2533 } /* sampler/image int dimensionality */
2534 break;
2535 case GLSL_TYPE_UINT:
2536 switch (type->sampler_dimensionality) {
2537 case GLSL_SAMPLER_DIM_1D: {
2538 assert(type->is_sampler());
2539 static const char *const names[4] = {
2540 "usampler1D", "usampler1DArray", NULL, NULL
2541 };
2542 return names[type_idx];
2543 }
2544 case GLSL_SAMPLER_DIM_2D: {
2545 static const char *const names[8] = {
2546 "usampler2D", "usampler2DArray", NULL, NULL,
2547 "uimage2D", "uimage2DArray", NULL, NULL
2548 };
2549 return names[offset + type_idx];
2550 }
2551 case GLSL_SAMPLER_DIM_3D: {
2552 static const char *const names[8] = {
2553 "usampler3D", NULL, NULL, NULL,
2554 "uimage3D", NULL, NULL, NULL
2555 };
2556 return names[offset + type_idx];
2557 }
2558 case GLSL_SAMPLER_DIM_CUBE: {
2559 static const char *const names[8] = {
2560 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2561 "uimageCube", NULL, NULL, NULL
2562 };
2563 return names[offset + type_idx];
2564 }
2565 case GLSL_SAMPLER_DIM_MS: {
2566 assert(type->is_sampler());
2567 static const char *const names[4] = {
2568 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2569 };
2570 return names[type_idx];
2571 }
2572 case GLSL_SAMPLER_DIM_RECT: {
2573 assert(type->is_sampler());
2574 static const char *const names[4] = {
2575 "usamplerRect", NULL, "usamplerRectShadow", NULL
2576 };
2577 return names[type_idx];
2578 }
2579 case GLSL_SAMPLER_DIM_BUF: {
2580 static const char *const names[8] = {
2581 "usamplerBuffer", NULL, NULL, NULL,
2582 "uimageBuffer", NULL, NULL, NULL
2583 };
2584 return names[offset + type_idx];
2585 }
2586 default:
2587 unreachable("Unsupported usampler/uimage dimensionality");
2588 } /* sampler/image uint dimensionality */
2589 break;
2590 default:
2591 unreachable("Unsupported sampler/image type");
2592 } /* sampler/image type */
2593 break;
2594 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2595 break;
2596 default:
2597 unreachable("Unsupported type");
2598 } /* base type */
2599 }
2600
2601 static unsigned
2602 select_gles_precision(unsigned qual_precision,
2603 const glsl_type *type,
2604 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2605 {
2606 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2607 * In GLES we take the precision from the type qualifier if present,
2608 * otherwise, if the type of the variable allows precision qualifiers at
2609 * all, we look for the default precision qualifier for that type in the
2610 * current scope.
2611 */
2612 assert(state->es_shader);
2613
2614 unsigned precision = GLSL_PRECISION_NONE;
2615 if (qual_precision) {
2616 precision = qual_precision;
2617 } else if (precision_qualifier_allowed(type)) {
2618 const char *type_name =
2619 get_type_name_for_precision_qualifier(type->without_array());
2620 assert(type_name != NULL);
2621
2622 precision =
2623 state->symbols->get_default_precision_qualifier(type_name);
2624 if (precision == ast_precision_none) {
2625 _mesa_glsl_error(loc, state,
2626 "No precision specified in this scope for type `%s'",
2627 type->name);
2628 }
2629 }
2630
2631
2632 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2633 *
2634 * "The default precision of all atomic types is highp. It is an error to
2635 * declare an atomic type with a different precision or to specify the
2636 * default precision for an atomic type to be lowp or mediump."
2637 */
2638 if (type->is_atomic_uint() && precision != ast_precision_high) {
2639 _mesa_glsl_error(loc, state,
2640 "atomic_uint can only have highp precision qualifier");
2641 }
2642
2643 return precision;
2644 }
2645
2646 const glsl_type *
2647 ast_fully_specified_type::glsl_type(const char **name,
2648 struct _mesa_glsl_parse_state *state) const
2649 {
2650 return this->specifier->glsl_type(name, state);
2651 }
2652
2653 /**
2654 * Determine whether a toplevel variable declaration declares a varying. This
2655 * function operates by examining the variable's mode and the shader target,
2656 * so it correctly identifies linkage variables regardless of whether they are
2657 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2658 *
2659 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2660 * this function will produce undefined results.
2661 */
2662 static bool
2663 is_varying_var(ir_variable *var, gl_shader_stage target)
2664 {
2665 switch (target) {
2666 case MESA_SHADER_VERTEX:
2667 return var->data.mode == ir_var_shader_out;
2668 case MESA_SHADER_FRAGMENT:
2669 return var->data.mode == ir_var_shader_in;
2670 default:
2671 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2672 }
2673 }
2674
2675 static bool
2676 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2677 {
2678 if (is_varying_var(var, state->stage))
2679 return true;
2680
2681 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2682 * "Only variables output from a vertex shader can be candidates
2683 * for invariance".
2684 */
2685 if (!state->is_version(130, 0))
2686 return false;
2687
2688 /*
2689 * Later specs remove this language - so allowed invariant
2690 * on fragment shader outputs as well.
2691 */
2692 if (state->stage == MESA_SHADER_FRAGMENT &&
2693 var->data.mode == ir_var_shader_out)
2694 return true;
2695 return false;
2696 }
2697
2698 /**
2699 * Matrix layout qualifiers are only allowed on certain types
2700 */
2701 static void
2702 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2703 YYLTYPE *loc,
2704 const glsl_type *type,
2705 ir_variable *var)
2706 {
2707 if (var && !var->is_in_buffer_block()) {
2708 /* Layout qualifiers may only apply to interface blocks and fields in
2709 * them.
2710 */
2711 _mesa_glsl_error(loc, state,
2712 "uniform block layout qualifiers row_major and "
2713 "column_major may not be applied to variables "
2714 "outside of uniform blocks");
2715 } else if (!type->without_array()->is_matrix()) {
2716 /* The OpenGL ES 3.0 conformance tests did not originally allow
2717 * matrix layout qualifiers on non-matrices. However, the OpenGL
2718 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2719 * amended to specifically allow these layouts on all types. Emit
2720 * a warning so that people know their code may not be portable.
2721 */
2722 _mesa_glsl_warning(loc, state,
2723 "uniform block layout qualifiers row_major and "
2724 "column_major applied to non-matrix types may "
2725 "be rejected by older compilers");
2726 }
2727 }
2728
2729 static bool
2730 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2731 struct _mesa_glsl_parse_state *state,
2732 unsigned xfb_buffer) {
2733 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2734 _mesa_glsl_error(loc, state,
2735 "invalid xfb_buffer specified %d is larger than "
2736 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2737 xfb_buffer,
2738 state->Const.MaxTransformFeedbackBuffers - 1);
2739 return false;
2740 }
2741
2742 return true;
2743 }
2744
2745 /* From the ARB_enhanced_layouts spec:
2746 *
2747 * "Variables and block members qualified with *xfb_offset* can be
2748 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2749 * The offset must be a multiple of the size of the first component of
2750 * the first qualified variable or block member, or a compile-time error
2751 * results. Further, if applied to an aggregate containing a double,
2752 * the offset must also be a multiple of 8, and the space taken in the
2753 * buffer will be a multiple of 8.
2754 */
2755 static bool
2756 validate_xfb_offset_qualifier(YYLTYPE *loc,
2757 struct _mesa_glsl_parse_state *state,
2758 int xfb_offset, const glsl_type *type,
2759 unsigned component_size) {
2760 const glsl_type *t_without_array = type->without_array();
2761
2762 if (xfb_offset != -1 && type->is_unsized_array()) {
2763 _mesa_glsl_error(loc, state,
2764 "xfb_offset can't be used with unsized arrays.");
2765 return false;
2766 }
2767
2768 /* Make sure nested structs don't contain unsized arrays, and validate
2769 * any xfb_offsets on interface members.
2770 */
2771 if (t_without_array->is_record() || t_without_array->is_interface())
2772 for (unsigned int i = 0; i < t_without_array->length; i++) {
2773 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2774
2775 /* When the interface block doesn't have an xfb_offset qualifier then
2776 * we apply the component size rules at the member level.
2777 */
2778 if (xfb_offset == -1)
2779 component_size = member_t->contains_double() ? 8 : 4;
2780
2781 int xfb_offset = t_without_array->fields.structure[i].offset;
2782 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2783 component_size);
2784 }
2785
2786 /* Nested structs or interface block without offset may not have had an
2787 * offset applied yet so return.
2788 */
2789 if (xfb_offset == -1) {
2790 return true;
2791 }
2792
2793 if (xfb_offset % component_size) {
2794 _mesa_glsl_error(loc, state,
2795 "invalid qualifier xfb_offset=%d must be a multiple "
2796 "of the first component size of the first qualified "
2797 "variable or block member. Or double if an aggregate "
2798 "that contains a double (%d).",
2799 xfb_offset, component_size);
2800 return false;
2801 }
2802
2803 return true;
2804 }
2805
2806 static bool
2807 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2808 unsigned stream)
2809 {
2810 if (stream >= state->ctx->Const.MaxVertexStreams) {
2811 _mesa_glsl_error(loc, state,
2812 "invalid stream specified %d is larger than "
2813 "MAX_VERTEX_STREAMS - 1 (%d).",
2814 stream, state->ctx->Const.MaxVertexStreams - 1);
2815 return false;
2816 }
2817
2818 return true;
2819 }
2820
2821 static void
2822 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2823 YYLTYPE *loc,
2824 ir_variable *var,
2825 const glsl_type *type,
2826 const ast_type_qualifier *qual)
2827 {
2828 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2829 _mesa_glsl_error(loc, state,
2830 "the \"binding\" qualifier only applies to uniforms and "
2831 "shader storage buffer objects");
2832 return;
2833 }
2834
2835 unsigned qual_binding;
2836 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2837 &qual_binding)) {
2838 return;
2839 }
2840
2841 const struct gl_context *const ctx = state->ctx;
2842 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2843 unsigned max_index = qual_binding + elements - 1;
2844 const glsl_type *base_type = type->without_array();
2845
2846 if (base_type->is_interface()) {
2847 /* UBOs. From page 60 of the GLSL 4.20 specification:
2848 * "If the binding point for any uniform block instance is less than zero,
2849 * or greater than or equal to the implementation-dependent maximum
2850 * number of uniform buffer bindings, a compilation error will occur.
2851 * When the binding identifier is used with a uniform block instanced as
2852 * an array of size N, all elements of the array from binding through
2853 * binding + N – 1 must be within this range."
2854 *
2855 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2856 */
2857 if (qual->flags.q.uniform &&
2858 max_index >= ctx->Const.MaxUniformBufferBindings) {
2859 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2860 "the maximum number of UBO binding points (%d)",
2861 qual_binding, elements,
2862 ctx->Const.MaxUniformBufferBindings);
2863 return;
2864 }
2865
2866 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2867 * "If the binding point for any uniform or shader storage block instance
2868 * is less than zero, or greater than or equal to the
2869 * implementation-dependent maximum number of uniform buffer bindings, a
2870 * compile-time error will occur. When the binding identifier is used
2871 * with a uniform or shader storage block instanced as an array of size
2872 * N, all elements of the array from binding through binding + N – 1 must
2873 * be within this range."
2874 */
2875 if (qual->flags.q.buffer &&
2876 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2877 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2878 "the maximum number of SSBO binding points (%d)",
2879 qual_binding, elements,
2880 ctx->Const.MaxShaderStorageBufferBindings);
2881 return;
2882 }
2883 } else if (base_type->is_sampler()) {
2884 /* Samplers. From page 63 of the GLSL 4.20 specification:
2885 * "If the binding is less than zero, or greater than or equal to the
2886 * implementation-dependent maximum supported number of units, a
2887 * compilation error will occur. When the binding identifier is used
2888 * with an array of size N, all elements of the array from binding
2889 * through binding + N - 1 must be within this range."
2890 */
2891 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2892
2893 if (max_index >= limit) {
2894 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2895 "exceeds the maximum number of texture image units "
2896 "(%u)", qual_binding, elements, limit);
2897
2898 return;
2899 }
2900 } else if (base_type->contains_atomic()) {
2901 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2902 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2903 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2904 "maximum number of atomic counter buffer bindings "
2905 "(%u)", qual_binding,
2906 ctx->Const.MaxAtomicBufferBindings);
2907
2908 return;
2909 }
2910 } else if ((state->is_version(420, 310) ||
2911 state->ARB_shading_language_420pack_enable) &&
2912 base_type->is_image()) {
2913 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2914 if (max_index >= ctx->Const.MaxImageUnits) {
2915 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2916 "maximum number of image units (%d)", max_index,
2917 ctx->Const.MaxImageUnits);
2918 return;
2919 }
2920
2921 } else {
2922 _mesa_glsl_error(loc, state,
2923 "the \"binding\" qualifier only applies to uniform "
2924 "blocks, storage blocks, opaque variables, or arrays "
2925 "thereof");
2926 return;
2927 }
2928
2929 var->data.explicit_binding = true;
2930 var->data.binding = qual_binding;
2931
2932 return;
2933 }
2934
2935 static void
2936 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2937 YYLTYPE *loc,
2938 const glsl_interp_mode interpolation,
2939 const struct glsl_type *var_type,
2940 ir_variable_mode mode)
2941 {
2942 if (state->stage != MESA_SHADER_FRAGMENT ||
2943 interpolation == INTERP_MODE_FLAT ||
2944 mode != ir_var_shader_in)
2945 return;
2946
2947 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2948 * so must integer vertex outputs.
2949 *
2950 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2951 * "Fragment shader inputs that are signed or unsigned integers or
2952 * integer vectors must be qualified with the interpolation qualifier
2953 * flat."
2954 *
2955 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2956 * "Fragment shader inputs that are, or contain, signed or unsigned
2957 * integers or integer vectors must be qualified with the
2958 * interpolation qualifier flat."
2959 *
2960 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2961 * "Vertex shader outputs that are, or contain, signed or unsigned
2962 * integers or integer vectors must be qualified with the
2963 * interpolation qualifier flat."
2964 *
2965 * Note that prior to GLSL 1.50, this requirement applied to vertex
2966 * outputs rather than fragment inputs. That creates problems in the
2967 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2968 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2969 * apply the restriction to both vertex outputs and fragment inputs.
2970 *
2971 * Note also that the desktop GLSL specs are missing the text "or
2972 * contain"; this is presumably an oversight, since there is no
2973 * reasonable way to interpolate a fragment shader input that contains
2974 * an integer. See Khronos bug #15671.
2975 */
2976 if (state->is_version(130, 300)
2977 && var_type->contains_integer()) {
2978 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2979 "an integer, then it must be qualified with 'flat'");
2980 }
2981
2982 /* Double fragment inputs must be qualified with 'flat'.
2983 *
2984 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2985 * "This extension does not support interpolation of double-precision
2986 * values; doubles used as fragment shader inputs must be qualified as
2987 * "flat"."
2988 *
2989 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2990 * "Fragment shader inputs that are signed or unsigned integers, integer
2991 * vectors, or any double-precision floating-point type must be
2992 * qualified with the interpolation qualifier flat."
2993 *
2994 * Note that the GLSL specs are missing the text "or contain"; this is
2995 * presumably an oversight. See Khronos bug #15671.
2996 *
2997 * The 'double' type does not exist in GLSL ES so far.
2998 */
2999 if (state->has_double()
3000 && var_type->contains_double()) {
3001 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3002 "a double, then it must be qualified with 'flat'");
3003 }
3004
3005 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3006 *
3007 * From section 4.3.4 of the ARB_bindless_texture spec:
3008 *
3009 * "(modify last paragraph, p. 35, allowing samplers and images as
3010 * fragment shader inputs) ... Fragment inputs can only be signed and
3011 * unsigned integers and integer vectors, floating point scalars,
3012 * floating-point vectors, matrices, sampler and image types, or arrays
3013 * or structures of these. Fragment shader inputs that are signed or
3014 * unsigned integers, integer vectors, or any double-precision floating-
3015 * point type, or any sampler or image type must be qualified with the
3016 * interpolation qualifier "flat"."
3017 */
3018 if (state->has_bindless()
3019 && (var_type->contains_sampler() || var_type->contains_image())) {
3020 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3021 "a bindless sampler (or image), then it must be "
3022 "qualified with 'flat'");
3023 }
3024 }
3025
3026 static void
3027 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3028 YYLTYPE *loc,
3029 const glsl_interp_mode interpolation,
3030 const struct ast_type_qualifier *qual,
3031 const struct glsl_type *var_type,
3032 ir_variable_mode mode)
3033 {
3034 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3035 * not to vertex shader inputs nor fragment shader outputs.
3036 *
3037 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3038 * "Outputs from a vertex shader (out) and inputs to a fragment
3039 * shader (in) can be further qualified with one or more of these
3040 * interpolation qualifiers"
3041 * ...
3042 * "These interpolation qualifiers may only precede the qualifiers in,
3043 * centroid in, out, or centroid out in a declaration. They do not apply
3044 * to the deprecated storage qualifiers varying or centroid
3045 * varying. They also do not apply to inputs into a vertex shader or
3046 * outputs from a fragment shader."
3047 *
3048 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3049 * "Outputs from a shader (out) and inputs to a shader (in) can be
3050 * further qualified with one of these interpolation qualifiers."
3051 * ...
3052 * "These interpolation qualifiers may only precede the qualifiers
3053 * in, centroid in, out, or centroid out in a declaration. They do
3054 * not apply to inputs into a vertex shader or outputs from a
3055 * fragment shader."
3056 */
3057 if (state->is_version(130, 300)
3058 && interpolation != INTERP_MODE_NONE) {
3059 const char *i = interpolation_string(interpolation);
3060 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3061 _mesa_glsl_error(loc, state,
3062 "interpolation qualifier `%s' can only be applied to "
3063 "shader inputs or outputs.", i);
3064
3065 switch (state->stage) {
3066 case MESA_SHADER_VERTEX:
3067 if (mode == ir_var_shader_in) {
3068 _mesa_glsl_error(loc, state,
3069 "interpolation qualifier '%s' cannot be applied to "
3070 "vertex shader inputs", i);
3071 }
3072 break;
3073 case MESA_SHADER_FRAGMENT:
3074 if (mode == ir_var_shader_out) {
3075 _mesa_glsl_error(loc, state,
3076 "interpolation qualifier '%s' cannot be applied to "
3077 "fragment shader outputs", i);
3078 }
3079 break;
3080 default:
3081 break;
3082 }
3083 }
3084
3085 /* Interpolation qualifiers cannot be applied to 'centroid' and
3086 * 'centroid varying'.
3087 *
3088 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3089 * "interpolation qualifiers may only precede the qualifiers in,
3090 * centroid in, out, or centroid out in a declaration. They do not apply
3091 * to the deprecated storage qualifiers varying or centroid varying."
3092 *
3093 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3094 */
3095 if (state->is_version(130, 0)
3096 && interpolation != INTERP_MODE_NONE
3097 && qual->flags.q.varying) {
3098
3099 const char *i = interpolation_string(interpolation);
3100 const char *s;
3101 if (qual->flags.q.centroid)
3102 s = "centroid varying";
3103 else
3104 s = "varying";
3105
3106 _mesa_glsl_error(loc, state,
3107 "qualifier '%s' cannot be applied to the "
3108 "deprecated storage qualifier '%s'", i, s);
3109 }
3110
3111 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3112 var_type, mode);
3113 }
3114
3115 static glsl_interp_mode
3116 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3117 const struct glsl_type *var_type,
3118 ir_variable_mode mode,
3119 struct _mesa_glsl_parse_state *state,
3120 YYLTYPE *loc)
3121 {
3122 glsl_interp_mode interpolation;
3123 if (qual->flags.q.flat)
3124 interpolation = INTERP_MODE_FLAT;
3125 else if (qual->flags.q.noperspective)
3126 interpolation = INTERP_MODE_NOPERSPECTIVE;
3127 else if (qual->flags.q.smooth)
3128 interpolation = INTERP_MODE_SMOOTH;
3129 else
3130 interpolation = INTERP_MODE_NONE;
3131
3132 validate_interpolation_qualifier(state, loc,
3133 interpolation,
3134 qual, var_type, mode);
3135
3136 return interpolation;
3137 }
3138
3139
3140 static void
3141 apply_explicit_location(const struct ast_type_qualifier *qual,
3142 ir_variable *var,
3143 struct _mesa_glsl_parse_state *state,
3144 YYLTYPE *loc)
3145 {
3146 bool fail = false;
3147
3148 unsigned qual_location;
3149 if (!process_qualifier_constant(state, loc, "location", qual->location,
3150 &qual_location)) {
3151 return;
3152 }
3153
3154 /* Checks for GL_ARB_explicit_uniform_location. */
3155 if (qual->flags.q.uniform) {
3156 if (!state->check_explicit_uniform_location_allowed(loc, var))
3157 return;
3158
3159 const struct gl_context *const ctx = state->ctx;
3160 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3161
3162 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3163 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3164 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3165 ctx->Const.MaxUserAssignableUniformLocations);
3166 return;
3167 }
3168
3169 var->data.explicit_location = true;
3170 var->data.location = qual_location;
3171 return;
3172 }
3173
3174 /* Between GL_ARB_explicit_attrib_location an
3175 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3176 * stage can be assigned explicit locations. The checking here associates
3177 * the correct extension with the correct stage's input / output:
3178 *
3179 * input output
3180 * ----- ------
3181 * vertex explicit_loc sso
3182 * tess control sso sso
3183 * tess eval sso sso
3184 * geometry sso sso
3185 * fragment sso explicit_loc
3186 */
3187 switch (state->stage) {
3188 case MESA_SHADER_VERTEX:
3189 if (var->data.mode == ir_var_shader_in) {
3190 if (!state->check_explicit_attrib_location_allowed(loc, var))
3191 return;
3192
3193 break;
3194 }
3195
3196 if (var->data.mode == ir_var_shader_out) {
3197 if (!state->check_separate_shader_objects_allowed(loc, var))
3198 return;
3199
3200 break;
3201 }
3202
3203 fail = true;
3204 break;
3205
3206 case MESA_SHADER_TESS_CTRL:
3207 case MESA_SHADER_TESS_EVAL:
3208 case MESA_SHADER_GEOMETRY:
3209 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3210 if (!state->check_separate_shader_objects_allowed(loc, var))
3211 return;
3212
3213 break;
3214 }
3215
3216 fail = true;
3217 break;
3218
3219 case MESA_SHADER_FRAGMENT:
3220 if (var->data.mode == ir_var_shader_in) {
3221 if (!state->check_separate_shader_objects_allowed(loc, var))
3222 return;
3223
3224 break;
3225 }
3226
3227 if (var->data.mode == ir_var_shader_out) {
3228 if (!state->check_explicit_attrib_location_allowed(loc, var))
3229 return;
3230
3231 break;
3232 }
3233
3234 fail = true;
3235 break;
3236
3237 case MESA_SHADER_COMPUTE:
3238 _mesa_glsl_error(loc, state,
3239 "compute shader variables cannot be given "
3240 "explicit locations");
3241 return;
3242 default:
3243 fail = true;
3244 break;
3245 };
3246
3247 if (fail) {
3248 _mesa_glsl_error(loc, state,
3249 "%s cannot be given an explicit location in %s shader",
3250 mode_string(var),
3251 _mesa_shader_stage_to_string(state->stage));
3252 } else {
3253 var->data.explicit_location = true;
3254
3255 switch (state->stage) {
3256 case MESA_SHADER_VERTEX:
3257 var->data.location = (var->data.mode == ir_var_shader_in)
3258 ? (qual_location + VERT_ATTRIB_GENERIC0)
3259 : (qual_location + VARYING_SLOT_VAR0);
3260 break;
3261
3262 case MESA_SHADER_TESS_CTRL:
3263 case MESA_SHADER_TESS_EVAL:
3264 case MESA_SHADER_GEOMETRY:
3265 if (var->data.patch)
3266 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3267 else
3268 var->data.location = qual_location + VARYING_SLOT_VAR0;
3269 break;
3270
3271 case MESA_SHADER_FRAGMENT:
3272 var->data.location = (var->data.mode == ir_var_shader_out)
3273 ? (qual_location + FRAG_RESULT_DATA0)
3274 : (qual_location + VARYING_SLOT_VAR0);
3275 break;
3276 default:
3277 assert(!"Unexpected shader type");
3278 break;
3279 }
3280
3281 /* Check if index was set for the uniform instead of the function */
3282 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3283 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3284 "used with subroutine functions");
3285 return;
3286 }
3287
3288 unsigned qual_index;
3289 if (qual->flags.q.explicit_index &&
3290 process_qualifier_constant(state, loc, "index", qual->index,
3291 &qual_index)) {
3292 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3293 * Layout Qualifiers):
3294 *
3295 * "It is also a compile-time error if a fragment shader
3296 * sets a layout index to less than 0 or greater than 1."
3297 *
3298 * Older specifications don't mandate a behavior; we take
3299 * this as a clarification and always generate the error.
3300 */
3301 if (qual_index > 1) {
3302 _mesa_glsl_error(loc, state,
3303 "explicit index may only be 0 or 1");
3304 } else {
3305 var->data.explicit_index = true;
3306 var->data.index = qual_index;
3307 }
3308 }
3309 }
3310 }
3311
3312 static bool
3313 validate_storage_for_sampler_image_types(ir_variable *var,
3314 struct _mesa_glsl_parse_state *state,
3315 YYLTYPE *loc)
3316 {
3317 /* From section 4.1.7 of the GLSL 4.40 spec:
3318 *
3319 * "[Opaque types] can only be declared as function
3320 * parameters or uniform-qualified variables."
3321 *
3322 * From section 4.1.7 of the ARB_bindless_texture spec:
3323 *
3324 * "Samplers may be declared as shader inputs and outputs, as uniform
3325 * variables, as temporary variables, and as function parameters."
3326 *
3327 * From section 4.1.X of the ARB_bindless_texture spec:
3328 *
3329 * "Images may be declared as shader inputs and outputs, as uniform
3330 * variables, as temporary variables, and as function parameters."
3331 */
3332 if (state->has_bindless()) {
3333 if (var->data.mode != ir_var_auto &&
3334 var->data.mode != ir_var_uniform &&
3335 var->data.mode != ir_var_shader_in &&
3336 var->data.mode != ir_var_shader_out &&
3337 var->data.mode != ir_var_function_in &&
3338 var->data.mode != ir_var_function_out &&
3339 var->data.mode != ir_var_function_inout) {
3340 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3341 "only be declared as shader inputs and outputs, as "
3342 "uniform variables, as temporary variables and as "
3343 "function parameters");
3344 return false;
3345 }
3346 } else {
3347 if (var->data.mode != ir_var_uniform &&
3348 var->data.mode != ir_var_function_in) {
3349 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3350 "declared as function parameters or "
3351 "uniform-qualified global variables");
3352 return false;
3353 }
3354 }
3355 return true;
3356 }
3357
3358 static bool
3359 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3360 YYLTYPE *loc,
3361 const struct ast_type_qualifier *qual,
3362 const glsl_type *type)
3363 {
3364 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3365 *
3366 * "Memory qualifiers are only supported in the declarations of image
3367 * variables, buffer variables, and shader storage blocks; it is an error
3368 * to use such qualifiers in any other declarations.
3369 */
3370 if (!type->is_image() && !qual->flags.q.buffer) {
3371 if (qual->flags.q.read_only ||
3372 qual->flags.q.write_only ||
3373 qual->flags.q.coherent ||
3374 qual->flags.q._volatile ||
3375 qual->flags.q.restrict_flag) {
3376 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3377 "in the declarations of image variables, buffer "
3378 "variables, and shader storage blocks");
3379 return false;
3380 }
3381 }
3382 return true;
3383 }
3384
3385 static bool
3386 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3387 YYLTYPE *loc,
3388 const struct ast_type_qualifier *qual,
3389 const glsl_type *type)
3390 {
3391 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3392 *
3393 * "Format layout qualifiers can be used on image variable declarations
3394 * (those declared with a basic type having “image ” in its keyword)."
3395 */
3396 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3397 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3398 "applied to images");
3399 return false;
3400 }
3401 return true;
3402 }
3403
3404 static void
3405 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3406 ir_variable *var,
3407 struct _mesa_glsl_parse_state *state,
3408 YYLTYPE *loc)
3409 {
3410 const glsl_type *base_type = var->type->without_array();
3411
3412 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3413 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3414 return;
3415
3416 if (!base_type->is_image())
3417 return;
3418
3419 if (!validate_storage_for_sampler_image_types(var, state, loc))
3420 return;
3421
3422 var->data.memory_read_only |= qual->flags.q.read_only;
3423 var->data.memory_write_only |= qual->flags.q.write_only;
3424 var->data.memory_coherent |= qual->flags.q.coherent;
3425 var->data.memory_volatile |= qual->flags.q._volatile;
3426 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3427
3428 if (qual->flags.q.explicit_image_format) {
3429 if (var->data.mode == ir_var_function_in) {
3430 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3431 "image function parameters");
3432 }
3433
3434 if (qual->image_base_type != base_type->sampled_type) {
3435 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3436 "data type of the image");
3437 }
3438
3439 var->data.image_format = qual->image_format;
3440 } else {
3441 if (var->data.mode == ir_var_uniform) {
3442 if (state->es_shader) {
3443 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3444 "format layout qualifier");
3445 } else if (!qual->flags.q.write_only) {
3446 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3447 "`writeonly' must have a format layout qualifier");
3448 }
3449 }
3450 var->data.image_format = GL_NONE;
3451 }
3452
3453 /* From page 70 of the GLSL ES 3.1 specification:
3454 *
3455 * "Except for image variables qualified with the format qualifiers r32f,
3456 * r32i, and r32ui, image variables must specify either memory qualifier
3457 * readonly or the memory qualifier writeonly."
3458 */
3459 if (state->es_shader &&
3460 var->data.image_format != GL_R32F &&
3461 var->data.image_format != GL_R32I &&
3462 var->data.image_format != GL_R32UI &&
3463 !var->data.memory_read_only &&
3464 !var->data.memory_write_only) {
3465 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3466 "r32i or r32ui must be qualified `readonly' or "
3467 "`writeonly'");
3468 }
3469 }
3470
3471 static inline const char*
3472 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3473 {
3474 if (origin_upper_left && pixel_center_integer)
3475 return "origin_upper_left, pixel_center_integer";
3476 else if (origin_upper_left)
3477 return "origin_upper_left";
3478 else if (pixel_center_integer)
3479 return "pixel_center_integer";
3480 else
3481 return " ";
3482 }
3483
3484 static inline bool
3485 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3486 const struct ast_type_qualifier *qual)
3487 {
3488 /* If gl_FragCoord was previously declared, and the qualifiers were
3489 * different in any way, return true.
3490 */
3491 if (state->fs_redeclares_gl_fragcoord) {
3492 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3493 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3494 }
3495
3496 return false;
3497 }
3498
3499 static inline void
3500 validate_array_dimensions(const glsl_type *t,
3501 struct _mesa_glsl_parse_state *state,
3502 YYLTYPE *loc) {
3503 if (t->is_array()) {
3504 t = t->fields.array;
3505 while (t->is_array()) {
3506 if (t->is_unsized_array()) {
3507 _mesa_glsl_error(loc, state,
3508 "only the outermost array dimension can "
3509 "be unsized",
3510 t->name);
3511 break;
3512 }
3513 t = t->fields.array;
3514 }
3515 }
3516 }
3517
3518 static void
3519 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3520 ir_variable *var,
3521 struct _mesa_glsl_parse_state *state,
3522 YYLTYPE *loc)
3523 {
3524 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3525 qual->flags.q.bindless_image ||
3526 qual->flags.q.bound_sampler ||
3527 qual->flags.q.bound_image;
3528
3529 /* The ARB_bindless_texture spec says:
3530 *
3531 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3532 * spec"
3533 *
3534 * "If these layout qualifiers are applied to other types of default block
3535 * uniforms, or variables with non-uniform storage, a compile-time error
3536 * will be generated."
3537 */
3538 if (has_local_qualifiers && !qual->flags.q.uniform) {
3539 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3540 "can only be applied to default block uniforms or "
3541 "variables with uniform storage");
3542 return;
3543 }
3544
3545 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3546 * but it makes sense to only allow bindless_sampler/bound_sampler for
3547 * sampler types, and respectively bindless_image/bound_image for image
3548 * types.
3549 */
3550 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3551 !var->type->contains_sampler()) {
3552 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3553 "be applied to sampler types");
3554 return;
3555 }
3556
3557 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3558 !var->type->contains_image()) {
3559 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3560 "applied to image types");
3561 return;
3562 }
3563
3564 /* The bindless_sampler/bindless_image (and respectively
3565 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3566 * local scope.
3567 */
3568 if (var->type->contains_sampler() || var->type->contains_image()) {
3569 var->data.bindless = qual->flags.q.bindless_sampler ||
3570 qual->flags.q.bindless_image ||
3571 state->bindless_sampler_specified ||
3572 state->bindless_image_specified;
3573
3574 var->data.bound = qual->flags.q.bound_sampler ||
3575 qual->flags.q.bound_image ||
3576 state->bound_sampler_specified ||
3577 state->bound_image_specified;
3578 }
3579 }
3580
3581 static void
3582 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3583 ir_variable *var,
3584 struct _mesa_glsl_parse_state *state,
3585 YYLTYPE *loc)
3586 {
3587 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3588
3589 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3590 *
3591 * "Within any shader, the first redeclarations of gl_FragCoord
3592 * must appear before any use of gl_FragCoord."
3593 *
3594 * Generate a compiler error if above condition is not met by the
3595 * fragment shader.
3596 */
3597 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3598 if (earlier != NULL &&
3599 earlier->data.used &&
3600 !state->fs_redeclares_gl_fragcoord) {
3601 _mesa_glsl_error(loc, state,
3602 "gl_FragCoord used before its first redeclaration "
3603 "in fragment shader");
3604 }
3605
3606 /* Make sure all gl_FragCoord redeclarations specify the same layout
3607 * qualifiers.
3608 */
3609 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3610 const char *const qual_string =
3611 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3612 qual->flags.q.pixel_center_integer);
3613
3614 const char *const state_string =
3615 get_layout_qualifier_string(state->fs_origin_upper_left,
3616 state->fs_pixel_center_integer);
3617
3618 _mesa_glsl_error(loc, state,
3619 "gl_FragCoord redeclared with different layout "
3620 "qualifiers (%s) and (%s) ",
3621 state_string,
3622 qual_string);
3623 }
3624 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3625 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3626 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3627 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3628 state->fs_redeclares_gl_fragcoord =
3629 state->fs_origin_upper_left ||
3630 state->fs_pixel_center_integer ||
3631 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3632 }
3633
3634 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3635 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3636 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3637 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3638 const char *const qual_string = (qual->flags.q.origin_upper_left)
3639 ? "origin_upper_left" : "pixel_center_integer";
3640
3641 _mesa_glsl_error(loc, state,
3642 "layout qualifier `%s' can only be applied to "
3643 "fragment shader input `gl_FragCoord'",
3644 qual_string);
3645 }
3646
3647 if (qual->flags.q.explicit_location) {
3648 apply_explicit_location(qual, var, state, loc);
3649
3650 if (qual->flags.q.explicit_component) {
3651 unsigned qual_component;
3652 if (process_qualifier_constant(state, loc, "component",
3653 qual->component, &qual_component)) {
3654 const glsl_type *type = var->type->without_array();
3655 unsigned components = type->component_slots();
3656
3657 if (type->is_matrix() || type->is_record()) {
3658 _mesa_glsl_error(loc, state, "component layout qualifier "
3659 "cannot be applied to a matrix, a structure, "
3660 "a block, or an array containing any of "
3661 "these.");
3662 } else if (qual_component != 0 &&
3663 (qual_component + components - 1) > 3) {
3664 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3665 (qual_component + components - 1));
3666 } else if (qual_component == 1 && type->is_64bit()) {
3667 /* We don't bother checking for 3 as it should be caught by the
3668 * overflow check above.
3669 */
3670 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3671 "component 1 or 3");
3672 } else {
3673 var->data.explicit_component = true;
3674 var->data.location_frac = qual_component;
3675 }
3676 }
3677 }
3678 } else if (qual->flags.q.explicit_index) {
3679 if (!qual->subroutine_list)
3680 _mesa_glsl_error(loc, state,
3681 "explicit index requires explicit location");
3682 } else if (qual->flags.q.explicit_component) {
3683 _mesa_glsl_error(loc, state,
3684 "explicit component requires explicit location");
3685 }
3686
3687 if (qual->flags.q.explicit_binding) {
3688 apply_explicit_binding(state, loc, var, var->type, qual);
3689 }
3690
3691 if (state->stage == MESA_SHADER_GEOMETRY &&
3692 qual->flags.q.out && qual->flags.q.stream) {
3693 unsigned qual_stream;
3694 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3695 &qual_stream) &&
3696 validate_stream_qualifier(loc, state, qual_stream)) {
3697 var->data.stream = qual_stream;
3698 }
3699 }
3700
3701 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3702 unsigned qual_xfb_buffer;
3703 if (process_qualifier_constant(state, loc, "xfb_buffer",
3704 qual->xfb_buffer, &qual_xfb_buffer) &&
3705 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3706 var->data.xfb_buffer = qual_xfb_buffer;
3707 if (qual->flags.q.explicit_xfb_buffer)
3708 var->data.explicit_xfb_buffer = true;
3709 }
3710 }
3711
3712 if (qual->flags.q.explicit_xfb_offset) {
3713 unsigned qual_xfb_offset;
3714 unsigned component_size = var->type->contains_double() ? 8 : 4;
3715
3716 if (process_qualifier_constant(state, loc, "xfb_offset",
3717 qual->offset, &qual_xfb_offset) &&
3718 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3719 var->type, component_size)) {
3720 var->data.offset = qual_xfb_offset;
3721 var->data.explicit_xfb_offset = true;
3722 }
3723 }
3724
3725 if (qual->flags.q.explicit_xfb_stride) {
3726 unsigned qual_xfb_stride;
3727 if (process_qualifier_constant(state, loc, "xfb_stride",
3728 qual->xfb_stride, &qual_xfb_stride)) {
3729 var->data.xfb_stride = qual_xfb_stride;
3730 var->data.explicit_xfb_stride = true;
3731 }
3732 }
3733
3734 if (var->type->contains_atomic()) {
3735 if (var->data.mode == ir_var_uniform) {
3736 if (var->data.explicit_binding) {
3737 unsigned *offset =
3738 &state->atomic_counter_offsets[var->data.binding];
3739
3740 if (*offset % ATOMIC_COUNTER_SIZE)
3741 _mesa_glsl_error(loc, state,
3742 "misaligned atomic counter offset");
3743
3744 var->data.offset = *offset;
3745 *offset += var->type->atomic_size();
3746
3747 } else {
3748 _mesa_glsl_error(loc, state,
3749 "atomic counters require explicit binding point");
3750 }
3751 } else if (var->data.mode != ir_var_function_in) {
3752 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3753 "function parameters or uniform-qualified "
3754 "global variables");
3755 }
3756 }
3757
3758 if (var->type->contains_sampler() &&
3759 !validate_storage_for_sampler_image_types(var, state, loc))
3760 return;
3761
3762 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3763 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3764 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3765 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3766 * These extensions and all following extensions that add the 'layout'
3767 * keyword have been modified to require the use of 'in' or 'out'.
3768 *
3769 * The following extension do not allow the deprecated keywords:
3770 *
3771 * GL_AMD_conservative_depth
3772 * GL_ARB_conservative_depth
3773 * GL_ARB_gpu_shader5
3774 * GL_ARB_separate_shader_objects
3775 * GL_ARB_tessellation_shader
3776 * GL_ARB_transform_feedback3
3777 * GL_ARB_uniform_buffer_object
3778 *
3779 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3780 * allow layout with the deprecated keywords.
3781 */
3782 const bool relaxed_layout_qualifier_checking =
3783 state->ARB_fragment_coord_conventions_enable;
3784
3785 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3786 || qual->flags.q.varying;
3787 if (qual->has_layout() && uses_deprecated_qualifier) {
3788 if (relaxed_layout_qualifier_checking) {
3789 _mesa_glsl_warning(loc, state,
3790 "`layout' qualifier may not be used with "
3791 "`attribute' or `varying'");
3792 } else {
3793 _mesa_glsl_error(loc, state,
3794 "`layout' qualifier may not be used with "
3795 "`attribute' or `varying'");
3796 }
3797 }
3798
3799 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3800 * AMD_conservative_depth.
3801 */
3802 if (qual->flags.q.depth_type
3803 && !state->is_version(420, 0)
3804 && !state->AMD_conservative_depth_enable
3805 && !state->ARB_conservative_depth_enable) {
3806 _mesa_glsl_error(loc, state,
3807 "extension GL_AMD_conservative_depth or "
3808 "GL_ARB_conservative_depth must be enabled "
3809 "to use depth layout qualifiers");
3810 } else if (qual->flags.q.depth_type
3811 && strcmp(var->name, "gl_FragDepth") != 0) {
3812 _mesa_glsl_error(loc, state,
3813 "depth layout qualifiers can be applied only to "
3814 "gl_FragDepth");
3815 }
3816
3817 switch (qual->depth_type) {
3818 case ast_depth_any:
3819 var->data.depth_layout = ir_depth_layout_any;
3820 break;
3821 case ast_depth_greater:
3822 var->data.depth_layout = ir_depth_layout_greater;
3823 break;
3824 case ast_depth_less:
3825 var->data.depth_layout = ir_depth_layout_less;
3826 break;
3827 case ast_depth_unchanged:
3828 var->data.depth_layout = ir_depth_layout_unchanged;
3829 break;
3830 default:
3831 var->data.depth_layout = ir_depth_layout_none;
3832 break;
3833 }
3834
3835 if (qual->flags.q.std140 ||
3836 qual->flags.q.std430 ||
3837 qual->flags.q.packed ||
3838 qual->flags.q.shared) {
3839 _mesa_glsl_error(loc, state,
3840 "uniform and shader storage block layout qualifiers "
3841 "std140, std430, packed, and shared can only be "
3842 "applied to uniform or shader storage blocks, not "
3843 "members");
3844 }
3845
3846 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3847 validate_matrix_layout_for_type(state, loc, var->type, var);
3848 }
3849
3850 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3851 * Inputs):
3852 *
3853 * "Fragment shaders also allow the following layout qualifier on in only
3854 * (not with variable declarations)
3855 * layout-qualifier-id
3856 * early_fragment_tests
3857 * [...]"
3858 */
3859 if (qual->flags.q.early_fragment_tests) {
3860 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3861 "valid in fragment shader input layout declaration.");
3862 }
3863
3864 if (qual->flags.q.inner_coverage) {
3865 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3866 "valid in fragment shader input layout declaration.");
3867 }
3868
3869 if (qual->flags.q.post_depth_coverage) {
3870 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3871 "valid in fragment shader input layout declaration.");
3872 }
3873
3874 if (state->has_bindless())
3875 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3876 }
3877
3878 static void
3879 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3880 ir_variable *var,
3881 struct _mesa_glsl_parse_state *state,
3882 YYLTYPE *loc,
3883 bool is_parameter)
3884 {
3885 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3886
3887 if (qual->flags.q.invariant) {
3888 if (var->data.used) {
3889 _mesa_glsl_error(loc, state,
3890 "variable `%s' may not be redeclared "
3891 "`invariant' after being used",
3892 var->name);
3893 } else {
3894 var->data.invariant = 1;
3895 }
3896 }
3897
3898 if (qual->flags.q.precise) {
3899 if (var->data.used) {
3900 _mesa_glsl_error(loc, state,
3901 "variable `%s' may not be redeclared "
3902 "`precise' after being used",
3903 var->name);
3904 } else {
3905 var->data.precise = 1;
3906 }
3907 }
3908
3909 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3910 _mesa_glsl_error(loc, state,
3911 "`subroutine' may only be applied to uniforms, "
3912 "subroutine type declarations, or function definitions");
3913 }
3914
3915 if (qual->flags.q.constant || qual->flags.q.attribute
3916 || qual->flags.q.uniform
3917 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3918 var->data.read_only = 1;
3919
3920 if (qual->flags.q.centroid)
3921 var->data.centroid = 1;
3922
3923 if (qual->flags.q.sample)
3924 var->data.sample = 1;
3925
3926 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3927 if (state->es_shader) {
3928 var->data.precision =
3929 select_gles_precision(qual->precision, var->type, state, loc);
3930 }
3931
3932 if (qual->flags.q.patch)
3933 var->data.patch = 1;
3934
3935 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3936 var->type = glsl_type::error_type;
3937 _mesa_glsl_error(loc, state,
3938 "`attribute' variables may not be declared in the "
3939 "%s shader",
3940 _mesa_shader_stage_to_string(state->stage));
3941 }
3942
3943 /* Disallow layout qualifiers which may only appear on layout declarations. */
3944 if (qual->flags.q.prim_type) {
3945 _mesa_glsl_error(loc, state,
3946 "Primitive type may only be specified on GS input or output "
3947 "layout declaration, not on variables.");
3948 }
3949
3950 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3951 *
3952 * "However, the const qualifier cannot be used with out or inout."
3953 *
3954 * The same section of the GLSL 4.40 spec further clarifies this saying:
3955 *
3956 * "The const qualifier cannot be used with out or inout, or a
3957 * compile-time error results."
3958 */
3959 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3960 _mesa_glsl_error(loc, state,
3961 "`const' may not be applied to `out' or `inout' "
3962 "function parameters");
3963 }
3964
3965 /* If there is no qualifier that changes the mode of the variable, leave
3966 * the setting alone.
3967 */
3968 assert(var->data.mode != ir_var_temporary);
3969 if (qual->flags.q.in && qual->flags.q.out)
3970 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3971 else if (qual->flags.q.in)
3972 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3973 else if (qual->flags.q.attribute
3974 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3975 var->data.mode = ir_var_shader_in;
3976 else if (qual->flags.q.out)
3977 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3978 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3979 var->data.mode = ir_var_shader_out;
3980 else if (qual->flags.q.uniform)
3981 var->data.mode = ir_var_uniform;
3982 else if (qual->flags.q.buffer)
3983 var->data.mode = ir_var_shader_storage;
3984 else if (qual->flags.q.shared_storage)
3985 var->data.mode = ir_var_shader_shared;
3986
3987 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3988 qual->flags.q.in && qual->flags.q.out;
3989
3990 if (!is_parameter && is_varying_var(var, state->stage)) {
3991 /* User-defined ins/outs are not permitted in compute shaders. */
3992 if (state->stage == MESA_SHADER_COMPUTE) {
3993 _mesa_glsl_error(loc, state,
3994 "user-defined input and output variables are not "
3995 "permitted in compute shaders");
3996 }
3997
3998 /* This variable is being used to link data between shader stages (in
3999 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4000 * that is allowed for such purposes.
4001 *
4002 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4003 *
4004 * "The varying qualifier can be used only with the data types
4005 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4006 * these."
4007 *
4008 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4009 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4010 *
4011 * "Fragment inputs can only be signed and unsigned integers and
4012 * integer vectors, float, floating-point vectors, matrices, or
4013 * arrays of these. Structures cannot be input.
4014 *
4015 * Similar text exists in the section on vertex shader outputs.
4016 *
4017 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4018 * 3.00 spec allows structs as well. Varying structs are also allowed
4019 * in GLSL 1.50.
4020 *
4021 * From section 4.3.4 of the ARB_bindless_texture spec:
4022 *
4023 * "(modify third paragraph of the section to allow sampler and image
4024 * types) ... Vertex shader inputs can only be float,
4025 * single-precision floating-point scalars, single-precision
4026 * floating-point vectors, matrices, signed and unsigned integers
4027 * and integer vectors, sampler and image types."
4028 *
4029 * From section 4.3.6 of the ARB_bindless_texture spec:
4030 *
4031 * "Output variables can only be floating-point scalars,
4032 * floating-point vectors, matrices, signed or unsigned integers or
4033 * integer vectors, sampler or image types, or arrays or structures
4034 * of any these."
4035 */
4036 switch (var->type->without_array()->base_type) {
4037 case GLSL_TYPE_FLOAT:
4038 /* Ok in all GLSL versions */
4039 break;
4040 case GLSL_TYPE_UINT:
4041 case GLSL_TYPE_INT:
4042 if (state->is_version(130, 300))
4043 break;
4044 _mesa_glsl_error(loc, state,
4045 "varying variables must be of base type float in %s",
4046 state->get_version_string());
4047 break;
4048 case GLSL_TYPE_STRUCT:
4049 if (state->is_version(150, 300))
4050 break;
4051 _mesa_glsl_error(loc, state,
4052 "varying variables may not be of type struct");
4053 break;
4054 case GLSL_TYPE_DOUBLE:
4055 case GLSL_TYPE_UINT64:
4056 case GLSL_TYPE_INT64:
4057 break;
4058 case GLSL_TYPE_SAMPLER:
4059 case GLSL_TYPE_IMAGE:
4060 if (state->has_bindless())
4061 break;
4062 /* fallthrough */
4063 default:
4064 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4065 break;
4066 }
4067 }
4068
4069 if (state->all_invariant && (state->current_function == NULL)) {
4070 switch (state->stage) {
4071 case MESA_SHADER_VERTEX:
4072 if (var->data.mode == ir_var_shader_out)
4073 var->data.invariant = true;
4074 break;
4075 case MESA_SHADER_TESS_CTRL:
4076 case MESA_SHADER_TESS_EVAL:
4077 case MESA_SHADER_GEOMETRY:
4078 if ((var->data.mode == ir_var_shader_in)
4079 || (var->data.mode == ir_var_shader_out))
4080 var->data.invariant = true;
4081 break;
4082 case MESA_SHADER_FRAGMENT:
4083 if (var->data.mode == ir_var_shader_in)
4084 var->data.invariant = true;
4085 break;
4086 case MESA_SHADER_COMPUTE:
4087 /* Invariance isn't meaningful in compute shaders. */
4088 break;
4089 default:
4090 break;
4091 }
4092 }
4093
4094 var->data.interpolation =
4095 interpret_interpolation_qualifier(qual, var->type,
4096 (ir_variable_mode) var->data.mode,
4097 state, loc);
4098
4099 /* Does the declaration use the deprecated 'attribute' or 'varying'
4100 * keywords?
4101 */
4102 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4103 || qual->flags.q.varying;
4104
4105
4106 /* Validate auxiliary storage qualifiers */
4107
4108 /* From section 4.3.4 of the GLSL 1.30 spec:
4109 * "It is an error to use centroid in in a vertex shader."
4110 *
4111 * From section 4.3.4 of the GLSL ES 3.00 spec:
4112 * "It is an error to use centroid in or interpolation qualifiers in
4113 * a vertex shader input."
4114 */
4115
4116 /* Section 4.3.6 of the GLSL 1.30 specification states:
4117 * "It is an error to use centroid out in a fragment shader."
4118 *
4119 * The GL_ARB_shading_language_420pack extension specification states:
4120 * "It is an error to use auxiliary storage qualifiers or interpolation
4121 * qualifiers on an output in a fragment shader."
4122 */
4123 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4124 _mesa_glsl_error(loc, state,
4125 "sample qualifier may only be used on `in` or `out` "
4126 "variables between shader stages");
4127 }
4128 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4129 _mesa_glsl_error(loc, state,
4130 "centroid qualifier may only be used with `in', "
4131 "`out' or `varying' variables between shader stages");
4132 }
4133
4134 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4135 _mesa_glsl_error(loc, state,
4136 "the shared storage qualifiers can only be used with "
4137 "compute shaders");
4138 }
4139
4140 apply_image_qualifier_to_variable(qual, var, state, loc);
4141 }
4142
4143 /**
4144 * Get the variable that is being redeclared by this declaration or if it
4145 * does not exist, the current declared variable.
4146 *
4147 * Semantic checks to verify the validity of the redeclaration are also
4148 * performed. If semantic checks fail, compilation error will be emitted via
4149 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4150 *
4151 * \returns
4152 * A pointer to an existing variable in the current scope if the declaration
4153 * is a redeclaration, current variable otherwise. \c is_declared boolean
4154 * will return \c true if the declaration is a redeclaration, \c false
4155 * otherwise.
4156 */
4157 static ir_variable *
4158 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4159 struct _mesa_glsl_parse_state *state,
4160 bool allow_all_redeclarations,
4161 bool *is_redeclaration)
4162 {
4163 ir_variable *var = *var_ptr;
4164
4165 /* Check if this declaration is actually a re-declaration, either to
4166 * resize an array or add qualifiers to an existing variable.
4167 *
4168 * This is allowed for variables in the current scope, or when at
4169 * global scope (for built-ins in the implicit outer scope).
4170 */
4171 ir_variable *earlier = state->symbols->get_variable(var->name);
4172 if (earlier == NULL ||
4173 (state->current_function != NULL &&
4174 !state->symbols->name_declared_this_scope(var->name))) {
4175 *is_redeclaration = false;
4176 return var;
4177 }
4178
4179 *is_redeclaration = true;
4180
4181 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4182 *
4183 * "It is legal to declare an array without a size and then
4184 * later re-declare the same name as an array of the same
4185 * type and specify a size."
4186 */
4187 if (earlier->type->is_unsized_array() && var->type->is_array()
4188 && (var->type->fields.array == earlier->type->fields.array)) {
4189 /* FINISHME: This doesn't match the qualifiers on the two
4190 * FINISHME: declarations. It's not 100% clear whether this is
4191 * FINISHME: required or not.
4192 */
4193
4194 const int size = var->type->array_size();
4195 check_builtin_array_max_size(var->name, size, loc, state);
4196 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4197 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4198 "previous access",
4199 earlier->data.max_array_access);
4200 }
4201
4202 earlier->type = var->type;
4203 delete var;
4204 var = NULL;
4205 *var_ptr = NULL;
4206 } else if ((state->ARB_fragment_coord_conventions_enable ||
4207 state->is_version(150, 0))
4208 && strcmp(var->name, "gl_FragCoord") == 0
4209 && earlier->type == var->type
4210 && var->data.mode == ir_var_shader_in) {
4211 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4212 * qualifiers.
4213 */
4214 earlier->data.origin_upper_left = var->data.origin_upper_left;
4215 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4216
4217 /* According to section 4.3.7 of the GLSL 1.30 spec,
4218 * the following built-in varaibles can be redeclared with an
4219 * interpolation qualifier:
4220 * * gl_FrontColor
4221 * * gl_BackColor
4222 * * gl_FrontSecondaryColor
4223 * * gl_BackSecondaryColor
4224 * * gl_Color
4225 * * gl_SecondaryColor
4226 */
4227 } else if (state->is_version(130, 0)
4228 && (strcmp(var->name, "gl_FrontColor") == 0
4229 || strcmp(var->name, "gl_BackColor") == 0
4230 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4231 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4232 || strcmp(var->name, "gl_Color") == 0
4233 || strcmp(var->name, "gl_SecondaryColor") == 0)
4234 && earlier->type == var->type
4235 && earlier->data.mode == var->data.mode) {
4236 earlier->data.interpolation = var->data.interpolation;
4237
4238 /* Layout qualifiers for gl_FragDepth. */
4239 } else if ((state->is_version(420, 0) ||
4240 state->AMD_conservative_depth_enable ||
4241 state->ARB_conservative_depth_enable)
4242 && strcmp(var->name, "gl_FragDepth") == 0
4243 && earlier->type == var->type
4244 && earlier->data.mode == var->data.mode) {
4245
4246 /** From the AMD_conservative_depth spec:
4247 * Within any shader, the first redeclarations of gl_FragDepth
4248 * must appear before any use of gl_FragDepth.
4249 */
4250 if (earlier->data.used) {
4251 _mesa_glsl_error(&loc, state,
4252 "the first redeclaration of gl_FragDepth "
4253 "must appear before any use of gl_FragDepth");
4254 }
4255
4256 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4257 if (earlier->data.depth_layout != ir_depth_layout_none
4258 && earlier->data.depth_layout != var->data.depth_layout) {
4259 _mesa_glsl_error(&loc, state,
4260 "gl_FragDepth: depth layout is declared here "
4261 "as '%s, but it was previously declared as "
4262 "'%s'",
4263 depth_layout_string(var->data.depth_layout),
4264 depth_layout_string(earlier->data.depth_layout));
4265 }
4266
4267 earlier->data.depth_layout = var->data.depth_layout;
4268
4269 } else if (state->has_framebuffer_fetch() &&
4270 strcmp(var->name, "gl_LastFragData") == 0 &&
4271 var->type == earlier->type &&
4272 var->data.mode == ir_var_auto) {
4273 /* According to the EXT_shader_framebuffer_fetch spec:
4274 *
4275 * "By default, gl_LastFragData is declared with the mediump precision
4276 * qualifier. This can be changed by redeclaring the corresponding
4277 * variables with the desired precision qualifier."
4278 */
4279 earlier->data.precision = var->data.precision;
4280
4281 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4282 state->allow_builtin_variable_redeclaration) {
4283 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4284 * valid, but some applications do it.
4285 */
4286 if (earlier->data.mode != var->data.mode &&
4287 !(earlier->data.mode == ir_var_system_value &&
4288 var->data.mode == ir_var_shader_in)) {
4289 _mesa_glsl_error(&loc, state,
4290 "redeclaration of `%s' with incorrect qualifiers",
4291 var->name);
4292 } else if (earlier->type != var->type) {
4293 _mesa_glsl_error(&loc, state,
4294 "redeclaration of `%s' has incorrect type",
4295 var->name);
4296 }
4297 } else if (allow_all_redeclarations) {
4298 if (earlier->data.mode != var->data.mode) {
4299 _mesa_glsl_error(&loc, state,
4300 "redeclaration of `%s' with incorrect qualifiers",
4301 var->name);
4302 } else if (earlier->type != var->type) {
4303 _mesa_glsl_error(&loc, state,
4304 "redeclaration of `%s' has incorrect type",
4305 var->name);
4306 }
4307 } else {
4308 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4309 }
4310
4311 return earlier;
4312 }
4313
4314 /**
4315 * Generate the IR for an initializer in a variable declaration
4316 */
4317 static ir_rvalue *
4318 process_initializer(ir_variable *var, ast_declaration *decl,
4319 ast_fully_specified_type *type,
4320 exec_list *initializer_instructions,
4321 struct _mesa_glsl_parse_state *state)
4322 {
4323 void *mem_ctx = state;
4324 ir_rvalue *result = NULL;
4325
4326 YYLTYPE initializer_loc = decl->initializer->get_location();
4327
4328 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4329 *
4330 * "All uniform variables are read-only and are initialized either
4331 * directly by an application via API commands, or indirectly by
4332 * OpenGL."
4333 */
4334 if (var->data.mode == ir_var_uniform) {
4335 state->check_version(120, 0, &initializer_loc,
4336 "cannot initialize uniform %s",
4337 var->name);
4338 }
4339
4340 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4341 *
4342 * "Buffer variables cannot have initializers."
4343 */
4344 if (var->data.mode == ir_var_shader_storage) {
4345 _mesa_glsl_error(&initializer_loc, state,
4346 "cannot initialize buffer variable %s",
4347 var->name);
4348 }
4349
4350 /* From section 4.1.7 of the GLSL 4.40 spec:
4351 *
4352 * "Opaque variables [...] are initialized only through the
4353 * OpenGL API; they cannot be declared with an initializer in a
4354 * shader."
4355 *
4356 * From section 4.1.7 of the ARB_bindless_texture spec:
4357 *
4358 * "Samplers may be declared as shader inputs and outputs, as uniform
4359 * variables, as temporary variables, and as function parameters."
4360 *
4361 * From section 4.1.X of the ARB_bindless_texture spec:
4362 *
4363 * "Images may be declared as shader inputs and outputs, as uniform
4364 * variables, as temporary variables, and as function parameters."
4365 */
4366 if (var->type->contains_atomic() ||
4367 (!state->has_bindless() && var->type->contains_opaque())) {
4368 _mesa_glsl_error(&initializer_loc, state,
4369 "cannot initialize %s variable %s",
4370 var->name, state->has_bindless() ? "atomic" : "opaque");
4371 }
4372
4373 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4374 _mesa_glsl_error(&initializer_loc, state,
4375 "cannot initialize %s shader input / %s %s",
4376 _mesa_shader_stage_to_string(state->stage),
4377 (state->stage == MESA_SHADER_VERTEX)
4378 ? "attribute" : "varying",
4379 var->name);
4380 }
4381
4382 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4383 _mesa_glsl_error(&initializer_loc, state,
4384 "cannot initialize %s shader output %s",
4385 _mesa_shader_stage_to_string(state->stage),
4386 var->name);
4387 }
4388
4389 /* If the initializer is an ast_aggregate_initializer, recursively store
4390 * type information from the LHS into it, so that its hir() function can do
4391 * type checking.
4392 */
4393 if (decl->initializer->oper == ast_aggregate)
4394 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4395
4396 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4397 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4398
4399 /* Calculate the constant value if this is a const or uniform
4400 * declaration.
4401 *
4402 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4403 *
4404 * "Declarations of globals without a storage qualifier, or with
4405 * just the const qualifier, may include initializers, in which case
4406 * they will be initialized before the first line of main() is
4407 * executed. Such initializers must be a constant expression."
4408 *
4409 * The same section of the GLSL ES 3.00.4 spec has similar language.
4410 */
4411 if (type->qualifier.flags.q.constant
4412 || type->qualifier.flags.q.uniform
4413 || (state->es_shader && state->current_function == NULL)) {
4414 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4415 lhs, rhs, true);
4416 if (new_rhs != NULL) {
4417 rhs = new_rhs;
4418
4419 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4420 * says:
4421 *
4422 * "A constant expression is one of
4423 *
4424 * ...
4425 *
4426 * - an expression formed by an operator on operands that are
4427 * all constant expressions, including getting an element of
4428 * a constant array, or a field of a constant structure, or
4429 * components of a constant vector. However, the sequence
4430 * operator ( , ) and the assignment operators ( =, +=, ...)
4431 * are not included in the operators that can create a
4432 * constant expression."
4433 *
4434 * Section 12.43 (Sequence operator and constant expressions) says:
4435 *
4436 * "Should the following construct be allowed?
4437 *
4438 * float a[2,3];
4439 *
4440 * The expression within the brackets uses the sequence operator
4441 * (',') and returns the integer 3 so the construct is declaring
4442 * a single-dimensional array of size 3. In some languages, the
4443 * construct declares a two-dimensional array. It would be
4444 * preferable to make this construct illegal to avoid confusion.
4445 *
4446 * One possibility is to change the definition of the sequence
4447 * operator so that it does not return a constant-expression and
4448 * hence cannot be used to declare an array size.
4449 *
4450 * RESOLUTION: The result of a sequence operator is not a
4451 * constant-expression."
4452 *
4453 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4454 * contains language almost identical to the section 4.3.3 in the
4455 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4456 * versions.
4457 */
4458 ir_constant *constant_value =
4459 rhs->constant_expression_value(mem_ctx);
4460
4461 if (!constant_value ||
4462 (state->is_version(430, 300) &&
4463 decl->initializer->has_sequence_subexpression())) {
4464 const char *const variable_mode =
4465 (type->qualifier.flags.q.constant)
4466 ? "const"
4467 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4468
4469 /* If ARB_shading_language_420pack is enabled, initializers of
4470 * const-qualified local variables do not have to be constant
4471 * expressions. Const-qualified global variables must still be
4472 * initialized with constant expressions.
4473 */
4474 if (!state->has_420pack()
4475 || state->current_function == NULL) {
4476 _mesa_glsl_error(& initializer_loc, state,
4477 "initializer of %s variable `%s' must be a "
4478 "constant expression",
4479 variable_mode,
4480 decl->identifier);
4481 if (var->type->is_numeric()) {
4482 /* Reduce cascading errors. */
4483 var->constant_value = type->qualifier.flags.q.constant
4484 ? ir_constant::zero(state, var->type) : NULL;
4485 }
4486 }
4487 } else {
4488 rhs = constant_value;
4489 var->constant_value = type->qualifier.flags.q.constant
4490 ? constant_value : NULL;
4491 }
4492 } else {
4493 if (var->type->is_numeric()) {
4494 /* Reduce cascading errors. */
4495 rhs = var->constant_value = type->qualifier.flags.q.constant
4496 ? ir_constant::zero(state, var->type) : NULL;
4497 }
4498 }
4499 }
4500
4501 if (rhs && !rhs->type->is_error()) {
4502 bool temp = var->data.read_only;
4503 if (type->qualifier.flags.q.constant)
4504 var->data.read_only = false;
4505
4506 /* Never emit code to initialize a uniform.
4507 */
4508 const glsl_type *initializer_type;
4509 if (!type->qualifier.flags.q.uniform) {
4510 do_assignment(initializer_instructions, state,
4511 NULL,
4512 lhs, rhs,
4513 &result, true,
4514 true,
4515 type->get_location());
4516 initializer_type = result->type;
4517 } else
4518 initializer_type = rhs->type;
4519
4520 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4521 var->data.has_initializer = true;
4522
4523 /* If the declared variable is an unsized array, it must inherrit
4524 * its full type from the initializer. A declaration such as
4525 *
4526 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4527 *
4528 * becomes
4529 *
4530 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4531 *
4532 * The assignment generated in the if-statement (below) will also
4533 * automatically handle this case for non-uniforms.
4534 *
4535 * If the declared variable is not an array, the types must
4536 * already match exactly. As a result, the type assignment
4537 * here can be done unconditionally. For non-uniforms the call
4538 * to do_assignment can change the type of the initializer (via
4539 * the implicit conversion rules). For uniforms the initializer
4540 * must be a constant expression, and the type of that expression
4541 * was validated above.
4542 */
4543 var->type = initializer_type;
4544
4545 var->data.read_only = temp;
4546 }
4547
4548 return result;
4549 }
4550
4551 static void
4552 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4553 YYLTYPE loc, ir_variable *var,
4554 unsigned num_vertices,
4555 unsigned *size,
4556 const char *var_category)
4557 {
4558 if (var->type->is_unsized_array()) {
4559 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4560 *
4561 * All geometry shader input unsized array declarations will be
4562 * sized by an earlier input layout qualifier, when present, as per
4563 * the following table.
4564 *
4565 * Followed by a table mapping each allowed input layout qualifier to
4566 * the corresponding input length.
4567 *
4568 * Similarly for tessellation control shader outputs.
4569 */
4570 if (num_vertices != 0)
4571 var->type = glsl_type::get_array_instance(var->type->fields.array,
4572 num_vertices);
4573 } else {
4574 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4575 * includes the following examples of compile-time errors:
4576 *
4577 * // code sequence within one shader...
4578 * in vec4 Color1[]; // size unknown
4579 * ...Color1.length()...// illegal, length() unknown
4580 * in vec4 Color2[2]; // size is 2
4581 * ...Color1.length()...// illegal, Color1 still has no size
4582 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4583 * layout(lines) in; // legal, input size is 2, matching
4584 * in vec4 Color4[3]; // illegal, contradicts layout
4585 * ...
4586 *
4587 * To detect the case illustrated by Color3, we verify that the size of
4588 * an explicitly-sized array matches the size of any previously declared
4589 * explicitly-sized array. To detect the case illustrated by Color4, we
4590 * verify that the size of an explicitly-sized array is consistent with
4591 * any previously declared input layout.
4592 */
4593 if (num_vertices != 0 && var->type->length != num_vertices) {
4594 _mesa_glsl_error(&loc, state,
4595 "%s size contradicts previously declared layout "
4596 "(size is %u, but layout requires a size of %u)",
4597 var_category, var->type->length, num_vertices);
4598 } else if (*size != 0 && var->type->length != *size) {
4599 _mesa_glsl_error(&loc, state,
4600 "%s sizes are inconsistent (size is %u, but a "
4601 "previous declaration has size %u)",
4602 var_category, var->type->length, *size);
4603 } else {
4604 *size = var->type->length;
4605 }
4606 }
4607 }
4608
4609 static void
4610 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4611 YYLTYPE loc, ir_variable *var)
4612 {
4613 unsigned num_vertices = 0;
4614
4615 if (state->tcs_output_vertices_specified) {
4616 if (!state->out_qualifier->vertices->
4617 process_qualifier_constant(state, "vertices",
4618 &num_vertices, false)) {
4619 return;
4620 }
4621
4622 if (num_vertices > state->Const.MaxPatchVertices) {
4623 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4624 "GL_MAX_PATCH_VERTICES", num_vertices);
4625 return;
4626 }
4627 }
4628
4629 if (!var->type->is_array() && !var->data.patch) {
4630 _mesa_glsl_error(&loc, state,
4631 "tessellation control shader outputs must be arrays");
4632
4633 /* To avoid cascading failures, short circuit the checks below. */
4634 return;
4635 }
4636
4637 if (var->data.patch)
4638 return;
4639
4640 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4641 &state->tcs_output_size,
4642 "tessellation control shader output");
4643 }
4644
4645 /**
4646 * Do additional processing necessary for tessellation control/evaluation shader
4647 * input declarations. This covers both interface block arrays and bare input
4648 * variables.
4649 */
4650 static void
4651 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4652 YYLTYPE loc, ir_variable *var)
4653 {
4654 if (!var->type->is_array() && !var->data.patch) {
4655 _mesa_glsl_error(&loc, state,
4656 "per-vertex tessellation shader inputs must be arrays");
4657 /* Avoid cascading failures. */
4658 return;
4659 }
4660
4661 if (var->data.patch)
4662 return;
4663
4664 /* The ARB_tessellation_shader spec says:
4665 *
4666 * "Declaring an array size is optional. If no size is specified, it
4667 * will be taken from the implementation-dependent maximum patch size
4668 * (gl_MaxPatchVertices). If a size is specified, it must match the
4669 * maximum patch size; otherwise, a compile or link error will occur."
4670 *
4671 * This text appears twice, once for TCS inputs, and again for TES inputs.
4672 */
4673 if (var->type->is_unsized_array()) {
4674 var->type = glsl_type::get_array_instance(var->type->fields.array,
4675 state->Const.MaxPatchVertices);
4676 } else if (var->type->length != state->Const.MaxPatchVertices) {
4677 _mesa_glsl_error(&loc, state,
4678 "per-vertex tessellation shader input arrays must be "
4679 "sized to gl_MaxPatchVertices (%d).",
4680 state->Const.MaxPatchVertices);
4681 }
4682 }
4683
4684
4685 /**
4686 * Do additional processing necessary for geometry shader input declarations
4687 * (this covers both interface blocks arrays and bare input variables).
4688 */
4689 static void
4690 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4691 YYLTYPE loc, ir_variable *var)
4692 {
4693 unsigned num_vertices = 0;
4694
4695 if (state->gs_input_prim_type_specified) {
4696 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4697 }
4698
4699 /* Geometry shader input variables must be arrays. Caller should have
4700 * reported an error for this.
4701 */
4702 if (!var->type->is_array()) {
4703 assert(state->error);
4704
4705 /* To avoid cascading failures, short circuit the checks below. */
4706 return;
4707 }
4708
4709 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4710 &state->gs_input_size,
4711 "geometry shader input");
4712 }
4713
4714 static void
4715 validate_identifier(const char *identifier, YYLTYPE loc,
4716 struct _mesa_glsl_parse_state *state)
4717 {
4718 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4719 *
4720 * "Identifiers starting with "gl_" are reserved for use by
4721 * OpenGL, and may not be declared in a shader as either a
4722 * variable or a function."
4723 */
4724 if (is_gl_identifier(identifier)) {
4725 _mesa_glsl_error(&loc, state,
4726 "identifier `%s' uses reserved `gl_' prefix",
4727 identifier);
4728 } else if (strstr(identifier, "__")) {
4729 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4730 * spec:
4731 *
4732 * "In addition, all identifiers containing two
4733 * consecutive underscores (__) are reserved as
4734 * possible future keywords."
4735 *
4736 * The intention is that names containing __ are reserved for internal
4737 * use by the implementation, and names prefixed with GL_ are reserved
4738 * for use by Khronos. Names simply containing __ are dangerous to use,
4739 * but should be allowed.
4740 *
4741 * A future version of the GLSL specification will clarify this.
4742 */
4743 _mesa_glsl_warning(&loc, state,
4744 "identifier `%s' uses reserved `__' string",
4745 identifier);
4746 }
4747 }
4748
4749 ir_rvalue *
4750 ast_declarator_list::hir(exec_list *instructions,
4751 struct _mesa_glsl_parse_state *state)
4752 {
4753 void *ctx = state;
4754 const struct glsl_type *decl_type;
4755 const char *type_name = NULL;
4756 ir_rvalue *result = NULL;
4757 YYLTYPE loc = this->get_location();
4758
4759 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4760 *
4761 * "To ensure that a particular output variable is invariant, it is
4762 * necessary to use the invariant qualifier. It can either be used to
4763 * qualify a previously declared variable as being invariant
4764 *
4765 * invariant gl_Position; // make existing gl_Position be invariant"
4766 *
4767 * In these cases the parser will set the 'invariant' flag in the declarator
4768 * list, and the type will be NULL.
4769 */
4770 if (this->invariant) {
4771 assert(this->type == NULL);
4772
4773 if (state->current_function != NULL) {
4774 _mesa_glsl_error(& loc, state,
4775 "all uses of `invariant' keyword must be at global "
4776 "scope");
4777 }
4778
4779 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4780 assert(decl->array_specifier == NULL);
4781 assert(decl->initializer == NULL);
4782
4783 ir_variable *const earlier =
4784 state->symbols->get_variable(decl->identifier);
4785 if (earlier == NULL) {
4786 _mesa_glsl_error(& loc, state,
4787 "undeclared variable `%s' cannot be marked "
4788 "invariant", decl->identifier);
4789 } else if (!is_allowed_invariant(earlier, state)) {
4790 _mesa_glsl_error(&loc, state,
4791 "`%s' cannot be marked invariant; interfaces between "
4792 "shader stages only.", decl->identifier);
4793 } else if (earlier->data.used) {
4794 _mesa_glsl_error(& loc, state,
4795 "variable `%s' may not be redeclared "
4796 "`invariant' after being used",
4797 earlier->name);
4798 } else {
4799 earlier->data.invariant = true;
4800 }
4801 }
4802
4803 /* Invariant redeclarations do not have r-values.
4804 */
4805 return NULL;
4806 }
4807
4808 if (this->precise) {
4809 assert(this->type == NULL);
4810
4811 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4812 assert(decl->array_specifier == NULL);
4813 assert(decl->initializer == NULL);
4814
4815 ir_variable *const earlier =
4816 state->symbols->get_variable(decl->identifier);
4817 if (earlier == NULL) {
4818 _mesa_glsl_error(& loc, state,
4819 "undeclared variable `%s' cannot be marked "
4820 "precise", decl->identifier);
4821 } else if (state->current_function != NULL &&
4822 !state->symbols->name_declared_this_scope(decl->identifier)) {
4823 /* Note: we have to check if we're in a function, since
4824 * builtins are treated as having come from another scope.
4825 */
4826 _mesa_glsl_error(& loc, state,
4827 "variable `%s' from an outer scope may not be "
4828 "redeclared `precise' in this scope",
4829 earlier->name);
4830 } else if (earlier->data.used) {
4831 _mesa_glsl_error(& loc, state,
4832 "variable `%s' may not be redeclared "
4833 "`precise' after being used",
4834 earlier->name);
4835 } else {
4836 earlier->data.precise = true;
4837 }
4838 }
4839
4840 /* Precise redeclarations do not have r-values either. */
4841 return NULL;
4842 }
4843
4844 assert(this->type != NULL);
4845 assert(!this->invariant);
4846 assert(!this->precise);
4847
4848 /* The type specifier may contain a structure definition. Process that
4849 * before any of the variable declarations.
4850 */
4851 (void) this->type->specifier->hir(instructions, state);
4852
4853 decl_type = this->type->glsl_type(& type_name, state);
4854
4855 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4856 * "Buffer variables may only be declared inside interface blocks
4857 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4858 * shader storage blocks. It is a compile-time error to declare buffer
4859 * variables at global scope (outside a block)."
4860 */
4861 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4862 _mesa_glsl_error(&loc, state,
4863 "buffer variables cannot be declared outside "
4864 "interface blocks");
4865 }
4866
4867 /* An offset-qualified atomic counter declaration sets the default
4868 * offset for the next declaration within the same atomic counter
4869 * buffer.
4870 */
4871 if (decl_type && decl_type->contains_atomic()) {
4872 if (type->qualifier.flags.q.explicit_binding &&
4873 type->qualifier.flags.q.explicit_offset) {
4874 unsigned qual_binding;
4875 unsigned qual_offset;
4876 if (process_qualifier_constant(state, &loc, "binding",
4877 type->qualifier.binding,
4878 &qual_binding)
4879 && process_qualifier_constant(state, &loc, "offset",
4880 type->qualifier.offset,
4881 &qual_offset)) {
4882 state->atomic_counter_offsets[qual_binding] = qual_offset;
4883 }
4884 }
4885
4886 ast_type_qualifier allowed_atomic_qual_mask;
4887 allowed_atomic_qual_mask.flags.i = 0;
4888 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4889 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4890 allowed_atomic_qual_mask.flags.q.uniform = 1;
4891
4892 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4893 "invalid layout qualifier for",
4894 "atomic_uint");
4895 }
4896
4897 if (this->declarations.is_empty()) {
4898 /* If there is no structure involved in the program text, there are two
4899 * possible scenarios:
4900 *
4901 * - The program text contained something like 'vec4;'. This is an
4902 * empty declaration. It is valid but weird. Emit a warning.
4903 *
4904 * - The program text contained something like 'S;' and 'S' is not the
4905 * name of a known structure type. This is both invalid and weird.
4906 * Emit an error.
4907 *
4908 * - The program text contained something like 'mediump float;'
4909 * when the programmer probably meant 'precision mediump
4910 * float;' Emit a warning with a description of what they
4911 * probably meant to do.
4912 *
4913 * Note that if decl_type is NULL and there is a structure involved,
4914 * there must have been some sort of error with the structure. In this
4915 * case we assume that an error was already generated on this line of
4916 * code for the structure. There is no need to generate an additional,
4917 * confusing error.
4918 */
4919 assert(this->type->specifier->structure == NULL || decl_type != NULL
4920 || state->error);
4921
4922 if (decl_type == NULL) {
4923 _mesa_glsl_error(&loc, state,
4924 "invalid type `%s' in empty declaration",
4925 type_name);
4926 } else {
4927 if (decl_type->is_array()) {
4928 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4929 * spec:
4930 *
4931 * "... any declaration that leaves the size undefined is
4932 * disallowed as this would add complexity and there are no
4933 * use-cases."
4934 */
4935 if (state->es_shader && decl_type->is_unsized_array()) {
4936 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4937 "or implicitly defined");
4938 }
4939
4940 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4941 *
4942 * "The combinations of types and qualifiers that cause
4943 * compile-time or link-time errors are the same whether or not
4944 * the declaration is empty."
4945 */
4946 validate_array_dimensions(decl_type, state, &loc);
4947 }
4948
4949 if (decl_type->is_atomic_uint()) {
4950 /* Empty atomic counter declarations are allowed and useful
4951 * to set the default offset qualifier.
4952 */
4953 return NULL;
4954 } else if (this->type->qualifier.precision != ast_precision_none) {
4955 if (this->type->specifier->structure != NULL) {
4956 _mesa_glsl_error(&loc, state,
4957 "precision qualifiers can't be applied "
4958 "to structures");
4959 } else {
4960 static const char *const precision_names[] = {
4961 "highp",
4962 "highp",
4963 "mediump",
4964 "lowp"
4965 };
4966
4967 _mesa_glsl_warning(&loc, state,
4968 "empty declaration with precision "
4969 "qualifier, to set the default precision, "
4970 "use `precision %s %s;'",
4971 precision_names[this->type->
4972 qualifier.precision],
4973 type_name);
4974 }
4975 } else if (this->type->specifier->structure == NULL) {
4976 _mesa_glsl_warning(&loc, state, "empty declaration");
4977 }
4978 }
4979 }
4980
4981 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4982 const struct glsl_type *var_type;
4983 ir_variable *var;
4984 const char *identifier = decl->identifier;
4985 /* FINISHME: Emit a warning if a variable declaration shadows a
4986 * FINISHME: declaration at a higher scope.
4987 */
4988
4989 if ((decl_type == NULL) || decl_type->is_void()) {
4990 if (type_name != NULL) {
4991 _mesa_glsl_error(& loc, state,
4992 "invalid type `%s' in declaration of `%s'",
4993 type_name, decl->identifier);
4994 } else {
4995 _mesa_glsl_error(& loc, state,
4996 "invalid type in declaration of `%s'",
4997 decl->identifier);
4998 }
4999 continue;
5000 }
5001
5002 if (this->type->qualifier.is_subroutine_decl()) {
5003 const glsl_type *t;
5004 const char *name;
5005
5006 t = state->symbols->get_type(this->type->specifier->type_name);
5007 if (!t)
5008 _mesa_glsl_error(& loc, state,
5009 "invalid type in declaration of `%s'",
5010 decl->identifier);
5011 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5012
5013 identifier = name;
5014
5015 }
5016 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5017 state);
5018
5019 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5020
5021 /* The 'varying in' and 'varying out' qualifiers can only be used with
5022 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5023 * yet.
5024 */
5025 if (this->type->qualifier.flags.q.varying) {
5026 if (this->type->qualifier.flags.q.in) {
5027 _mesa_glsl_error(& loc, state,
5028 "`varying in' qualifier in declaration of "
5029 "`%s' only valid for geometry shaders using "
5030 "ARB_geometry_shader4 or EXT_geometry_shader4",
5031 decl->identifier);
5032 } else if (this->type->qualifier.flags.q.out) {
5033 _mesa_glsl_error(& loc, state,
5034 "`varying out' qualifier in declaration of "
5035 "`%s' only valid for geometry shaders using "
5036 "ARB_geometry_shader4 or EXT_geometry_shader4",
5037 decl->identifier);
5038 }
5039 }
5040
5041 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5042 *
5043 * "Global variables can only use the qualifiers const,
5044 * attribute, uniform, or varying. Only one may be
5045 * specified.
5046 *
5047 * Local variables can only use the qualifier const."
5048 *
5049 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5050 * any extension that adds the 'layout' keyword.
5051 */
5052 if (!state->is_version(130, 300)
5053 && !state->has_explicit_attrib_location()
5054 && !state->has_separate_shader_objects()
5055 && !state->ARB_fragment_coord_conventions_enable) {
5056 if (this->type->qualifier.flags.q.out) {
5057 _mesa_glsl_error(& loc, state,
5058 "`out' qualifier in declaration of `%s' "
5059 "only valid for function parameters in %s",
5060 decl->identifier, state->get_version_string());
5061 }
5062 if (this->type->qualifier.flags.q.in) {
5063 _mesa_glsl_error(& loc, state,
5064 "`in' qualifier in declaration of `%s' "
5065 "only valid for function parameters in %s",
5066 decl->identifier, state->get_version_string());
5067 }
5068 /* FINISHME: Test for other invalid qualifiers. */
5069 }
5070
5071 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5072 & loc, false);
5073 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5074 &loc);
5075
5076 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5077 && (var->type->is_numeric() || var->type->is_boolean())
5078 && state->zero_init) {
5079 const ir_constant_data data = { { 0 } };
5080 var->data.has_initializer = true;
5081 var->constant_initializer = new(var) ir_constant(var->type, &data);
5082 }
5083
5084 if (this->type->qualifier.flags.q.invariant) {
5085 if (!is_allowed_invariant(var, state)) {
5086 _mesa_glsl_error(&loc, state,
5087 "`%s' cannot be marked invariant; interfaces between "
5088 "shader stages only", var->name);
5089 }
5090 }
5091
5092 if (state->current_function != NULL) {
5093 const char *mode = NULL;
5094 const char *extra = "";
5095
5096 /* There is no need to check for 'inout' here because the parser will
5097 * only allow that in function parameter lists.
5098 */
5099 if (this->type->qualifier.flags.q.attribute) {
5100 mode = "attribute";
5101 } else if (this->type->qualifier.is_subroutine_decl()) {
5102 mode = "subroutine uniform";
5103 } else if (this->type->qualifier.flags.q.uniform) {
5104 mode = "uniform";
5105 } else if (this->type->qualifier.flags.q.varying) {
5106 mode = "varying";
5107 } else if (this->type->qualifier.flags.q.in) {
5108 mode = "in";
5109 extra = " or in function parameter list";
5110 } else if (this->type->qualifier.flags.q.out) {
5111 mode = "out";
5112 extra = " or in function parameter list";
5113 }
5114
5115 if (mode) {
5116 _mesa_glsl_error(& loc, state,
5117 "%s variable `%s' must be declared at "
5118 "global scope%s",
5119 mode, var->name, extra);
5120 }
5121 } else if (var->data.mode == ir_var_shader_in) {
5122 var->data.read_only = true;
5123
5124 if (state->stage == MESA_SHADER_VERTEX) {
5125 bool error_emitted = false;
5126
5127 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5128 *
5129 * "Vertex shader inputs can only be float, floating-point
5130 * vectors, matrices, signed and unsigned integers and integer
5131 * vectors. Vertex shader inputs can also form arrays of these
5132 * types, but not structures."
5133 *
5134 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5135 *
5136 * "Vertex shader inputs can only be float, floating-point
5137 * vectors, matrices, signed and unsigned integers and integer
5138 * vectors. They cannot be arrays or structures."
5139 *
5140 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5141 *
5142 * "The attribute qualifier can be used only with float,
5143 * floating-point vectors, and matrices. Attribute variables
5144 * cannot be declared as arrays or structures."
5145 *
5146 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5147 *
5148 * "Vertex shader inputs can only be float, floating-point
5149 * vectors, matrices, signed and unsigned integers and integer
5150 * vectors. Vertex shader inputs cannot be arrays or
5151 * structures."
5152 *
5153 * From section 4.3.4 of the ARB_bindless_texture spec:
5154 *
5155 * "(modify third paragraph of the section to allow sampler and
5156 * image types) ... Vertex shader inputs can only be float,
5157 * single-precision floating-point scalars, single-precision
5158 * floating-point vectors, matrices, signed and unsigned
5159 * integers and integer vectors, sampler and image types."
5160 */
5161 const glsl_type *check_type = var->type->without_array();
5162
5163 switch (check_type->base_type) {
5164 case GLSL_TYPE_FLOAT:
5165 break;
5166 case GLSL_TYPE_UINT64:
5167 case GLSL_TYPE_INT64:
5168 break;
5169 case GLSL_TYPE_UINT:
5170 case GLSL_TYPE_INT:
5171 if (state->is_version(120, 300))
5172 break;
5173 case GLSL_TYPE_DOUBLE:
5174 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5175 break;
5176 case GLSL_TYPE_SAMPLER:
5177 if (check_type->is_sampler() && state->has_bindless())
5178 break;
5179 case GLSL_TYPE_IMAGE:
5180 if (check_type->is_image() && state->has_bindless())
5181 break;
5182 /* FALLTHROUGH */
5183 default:
5184 _mesa_glsl_error(& loc, state,
5185 "vertex shader input / attribute cannot have "
5186 "type %s`%s'",
5187 var->type->is_array() ? "array of " : "",
5188 check_type->name);
5189 error_emitted = true;
5190 }
5191
5192 if (!error_emitted && var->type->is_array() &&
5193 !state->check_version(150, 0, &loc,
5194 "vertex shader input / attribute "
5195 "cannot have array type")) {
5196 error_emitted = true;
5197 }
5198 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5199 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5200 *
5201 * Geometry shader input variables get the per-vertex values
5202 * written out by vertex shader output variables of the same
5203 * names. Since a geometry shader operates on a set of
5204 * vertices, each input varying variable (or input block, see
5205 * interface blocks below) needs to be declared as an array.
5206 */
5207 if (!var->type->is_array()) {
5208 _mesa_glsl_error(&loc, state,
5209 "geometry shader inputs must be arrays");
5210 }
5211
5212 handle_geometry_shader_input_decl(state, loc, var);
5213 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5214 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5215 *
5216 * It is a compile-time error to declare a fragment shader
5217 * input with, or that contains, any of the following types:
5218 *
5219 * * A boolean type
5220 * * An opaque type
5221 * * An array of arrays
5222 * * An array of structures
5223 * * A structure containing an array
5224 * * A structure containing a structure
5225 */
5226 if (state->es_shader) {
5227 const glsl_type *check_type = var->type->without_array();
5228 if (check_type->is_boolean() ||
5229 check_type->contains_opaque()) {
5230 _mesa_glsl_error(&loc, state,
5231 "fragment shader input cannot have type %s",
5232 check_type->name);
5233 }
5234 if (var->type->is_array() &&
5235 var->type->fields.array->is_array()) {
5236 _mesa_glsl_error(&loc, state,
5237 "%s shader output "
5238 "cannot have an array of arrays",
5239 _mesa_shader_stage_to_string(state->stage));
5240 }
5241 if (var->type->is_array() &&
5242 var->type->fields.array->is_record()) {
5243 _mesa_glsl_error(&loc, state,
5244 "fragment shader input "
5245 "cannot have an array of structs");
5246 }
5247 if (var->type->is_record()) {
5248 for (unsigned i = 0; i < var->type->length; i++) {
5249 if (var->type->fields.structure[i].type->is_array() ||
5250 var->type->fields.structure[i].type->is_record())
5251 _mesa_glsl_error(&loc, state,
5252 "fragement shader input cannot have "
5253 "a struct that contains an "
5254 "array or struct");
5255 }
5256 }
5257 }
5258 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5259 state->stage == MESA_SHADER_TESS_EVAL) {
5260 handle_tess_shader_input_decl(state, loc, var);
5261 }
5262 } else if (var->data.mode == ir_var_shader_out) {
5263 const glsl_type *check_type = var->type->without_array();
5264
5265 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5266 *
5267 * It is a compile-time error to declare a fragment shader output
5268 * that contains any of the following:
5269 *
5270 * * A Boolean type (bool, bvec2 ...)
5271 * * A double-precision scalar or vector (double, dvec2 ...)
5272 * * An opaque type
5273 * * Any matrix type
5274 * * A structure
5275 */
5276 if (state->stage == MESA_SHADER_FRAGMENT) {
5277 if (check_type->is_record() || check_type->is_matrix())
5278 _mesa_glsl_error(&loc, state,
5279 "fragment shader output "
5280 "cannot have struct or matrix type");
5281 switch (check_type->base_type) {
5282 case GLSL_TYPE_UINT:
5283 case GLSL_TYPE_INT:
5284 case GLSL_TYPE_FLOAT:
5285 break;
5286 default:
5287 _mesa_glsl_error(&loc, state,
5288 "fragment shader output cannot have "
5289 "type %s", check_type->name);
5290 }
5291 }
5292
5293 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5294 *
5295 * It is a compile-time error to declare a vertex shader output
5296 * with, or that contains, any of the following types:
5297 *
5298 * * A boolean type
5299 * * An opaque type
5300 * * An array of arrays
5301 * * An array of structures
5302 * * A structure containing an array
5303 * * A structure containing a structure
5304 *
5305 * It is a compile-time error to declare a fragment shader output
5306 * with, or that contains, any of the following types:
5307 *
5308 * * A boolean type
5309 * * An opaque type
5310 * * A matrix
5311 * * A structure
5312 * * An array of array
5313 *
5314 * ES 3.20 updates this to apply to tessellation and geometry shaders
5315 * as well. Because there are per-vertex arrays in the new stages,
5316 * it strikes the "array of..." rules and replaces them with these:
5317 *
5318 * * For per-vertex-arrayed variables (applies to tessellation
5319 * control, tessellation evaluation and geometry shaders):
5320 *
5321 * * Per-vertex-arrayed arrays of arrays
5322 * * Per-vertex-arrayed arrays of structures
5323 *
5324 * * For non-per-vertex-arrayed variables:
5325 *
5326 * * An array of arrays
5327 * * An array of structures
5328 *
5329 * which basically says to unwrap the per-vertex aspect and apply
5330 * the old rules.
5331 */
5332 if (state->es_shader) {
5333 if (var->type->is_array() &&
5334 var->type->fields.array->is_array()) {
5335 _mesa_glsl_error(&loc, state,
5336 "%s shader output "
5337 "cannot have an array of arrays",
5338 _mesa_shader_stage_to_string(state->stage));
5339 }
5340 if (state->stage <= MESA_SHADER_GEOMETRY) {
5341 const glsl_type *type = var->type;
5342
5343 if (state->stage == MESA_SHADER_TESS_CTRL &&
5344 !var->data.patch && var->type->is_array()) {
5345 type = var->type->fields.array;
5346 }
5347
5348 if (type->is_array() && type->fields.array->is_record()) {
5349 _mesa_glsl_error(&loc, state,
5350 "%s shader output cannot have "
5351 "an array of structs",
5352 _mesa_shader_stage_to_string(state->stage));
5353 }
5354 if (type->is_record()) {
5355 for (unsigned i = 0; i < type->length; i++) {
5356 if (type->fields.structure[i].type->is_array() ||
5357 type->fields.structure[i].type->is_record())
5358 _mesa_glsl_error(&loc, state,
5359 "%s shader output cannot have a "
5360 "struct that contains an "
5361 "array or struct",
5362 _mesa_shader_stage_to_string(state->stage));
5363 }
5364 }
5365 }
5366 }
5367
5368 if (state->stage == MESA_SHADER_TESS_CTRL) {
5369 handle_tess_ctrl_shader_output_decl(state, loc, var);
5370 }
5371 } else if (var->type->contains_subroutine()) {
5372 /* declare subroutine uniforms as hidden */
5373 var->data.how_declared = ir_var_hidden;
5374 }
5375
5376 /* From section 4.3.4 of the GLSL 4.00 spec:
5377 * "Input variables may not be declared using the patch in qualifier
5378 * in tessellation control or geometry shaders."
5379 *
5380 * From section 4.3.6 of the GLSL 4.00 spec:
5381 * "It is an error to use patch out in a vertex, tessellation
5382 * evaluation, or geometry shader."
5383 *
5384 * This doesn't explicitly forbid using them in a fragment shader, but
5385 * that's probably just an oversight.
5386 */
5387 if (state->stage != MESA_SHADER_TESS_EVAL
5388 && this->type->qualifier.flags.q.patch
5389 && this->type->qualifier.flags.q.in) {
5390
5391 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5392 "tessellation evaluation shader");
5393 }
5394
5395 if (state->stage != MESA_SHADER_TESS_CTRL
5396 && this->type->qualifier.flags.q.patch
5397 && this->type->qualifier.flags.q.out) {
5398
5399 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5400 "tessellation control shader");
5401 }
5402
5403 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5404 */
5405 if (this->type->qualifier.precision != ast_precision_none) {
5406 state->check_precision_qualifiers_allowed(&loc);
5407 }
5408
5409 if (this->type->qualifier.precision != ast_precision_none &&
5410 !precision_qualifier_allowed(var->type)) {
5411 _mesa_glsl_error(&loc, state,
5412 "precision qualifiers apply only to floating point"
5413 ", integer and opaque types");
5414 }
5415
5416 /* From section 4.1.7 of the GLSL 4.40 spec:
5417 *
5418 * "[Opaque types] can only be declared as function
5419 * parameters or uniform-qualified variables."
5420 *
5421 * From section 4.1.7 of the ARB_bindless_texture spec:
5422 *
5423 * "Samplers may be declared as shader inputs and outputs, as uniform
5424 * variables, as temporary variables, and as function parameters."
5425 *
5426 * From section 4.1.X of the ARB_bindless_texture spec:
5427 *
5428 * "Images may be declared as shader inputs and outputs, as uniform
5429 * variables, as temporary variables, and as function parameters."
5430 */
5431 if (!this->type->qualifier.flags.q.uniform &&
5432 (var_type->contains_atomic() ||
5433 (!state->has_bindless() && var_type->contains_opaque()))) {
5434 _mesa_glsl_error(&loc, state,
5435 "%s variables must be declared uniform",
5436 state->has_bindless() ? "atomic" : "opaque");
5437 }
5438
5439 /* Process the initializer and add its instructions to a temporary
5440 * list. This list will be added to the instruction stream (below) after
5441 * the declaration is added. This is done because in some cases (such as
5442 * redeclarations) the declaration may not actually be added to the
5443 * instruction stream.
5444 */
5445 exec_list initializer_instructions;
5446
5447 /* Examine var name here since var may get deleted in the next call */
5448 bool var_is_gl_id = is_gl_identifier(var->name);
5449
5450 bool is_redeclaration;
5451 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5452 false /* allow_all_redeclarations */,
5453 &is_redeclaration);
5454 if (is_redeclaration) {
5455 if (var_is_gl_id &&
5456 var->data.how_declared == ir_var_declared_in_block) {
5457 _mesa_glsl_error(&loc, state,
5458 "`%s' has already been redeclared using "
5459 "gl_PerVertex", var->name);
5460 }
5461 var->data.how_declared = ir_var_declared_normally;
5462 }
5463
5464 if (decl->initializer != NULL) {
5465 result = process_initializer(var,
5466 decl, this->type,
5467 &initializer_instructions, state);
5468 } else {
5469 validate_array_dimensions(var_type, state, &loc);
5470 }
5471
5472 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5473 *
5474 * "It is an error to write to a const variable outside of
5475 * its declaration, so they must be initialized when
5476 * declared."
5477 */
5478 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5479 _mesa_glsl_error(& loc, state,
5480 "const declaration of `%s' must be initialized",
5481 decl->identifier);
5482 }
5483
5484 if (state->es_shader) {
5485 const glsl_type *const t = var->type;
5486
5487 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5488 *
5489 * The GL_OES_tessellation_shader spec says about inputs:
5490 *
5491 * "Declaring an array size is optional. If no size is specified,
5492 * it will be taken from the implementation-dependent maximum
5493 * patch size (gl_MaxPatchVertices)."
5494 *
5495 * and about TCS outputs:
5496 *
5497 * "If no size is specified, it will be taken from output patch
5498 * size declared in the shader."
5499 *
5500 * The GL_OES_geometry_shader spec says:
5501 *
5502 * "All geometry shader input unsized array declarations will be
5503 * sized by an earlier input primitive layout qualifier, when
5504 * present, as per the following table."
5505 */
5506 const bool implicitly_sized =
5507 (var->data.mode == ir_var_shader_in &&
5508 state->stage >= MESA_SHADER_TESS_CTRL &&
5509 state->stage <= MESA_SHADER_GEOMETRY) ||
5510 (var->data.mode == ir_var_shader_out &&
5511 state->stage == MESA_SHADER_TESS_CTRL);
5512
5513 if (t->is_unsized_array() && !implicitly_sized)
5514 /* Section 10.17 of the GLSL ES 1.00 specification states that
5515 * unsized array declarations have been removed from the language.
5516 * Arrays that are sized using an initializer are still explicitly
5517 * sized. However, GLSL ES 1.00 does not allow array
5518 * initializers. That is only allowed in GLSL ES 3.00.
5519 *
5520 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5521 *
5522 * "An array type can also be formed without specifying a size
5523 * if the definition includes an initializer:
5524 *
5525 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5526 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5527 *
5528 * float a[5];
5529 * float b[] = a;"
5530 */
5531 _mesa_glsl_error(& loc, state,
5532 "unsized array declarations are not allowed in "
5533 "GLSL ES");
5534 }
5535
5536 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5537 *
5538 * "It is a compile-time error to declare an unsized array of
5539 * atomic_uint"
5540 */
5541 if (var->type->is_unsized_array() &&
5542 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5543 _mesa_glsl_error(& loc, state,
5544 "Unsized array of atomic_uint is not allowed");
5545 }
5546
5547 /* If the declaration is not a redeclaration, there are a few additional
5548 * semantic checks that must be applied. In addition, variable that was
5549 * created for the declaration should be added to the IR stream.
5550 */
5551 if (!is_redeclaration) {
5552 validate_identifier(decl->identifier, loc, state);
5553
5554 /* Add the variable to the symbol table. Note that the initializer's
5555 * IR was already processed earlier (though it hasn't been emitted
5556 * yet), without the variable in scope.
5557 *
5558 * This differs from most C-like languages, but it follows the GLSL
5559 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5560 * spec:
5561 *
5562 * "Within a declaration, the scope of a name starts immediately
5563 * after the initializer if present or immediately after the name
5564 * being declared if not."
5565 */
5566 if (!state->symbols->add_variable(var)) {
5567 YYLTYPE loc = this->get_location();
5568 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5569 "current scope", decl->identifier);
5570 continue;
5571 }
5572
5573 /* Push the variable declaration to the top. It means that all the
5574 * variable declarations will appear in a funny last-to-first order,
5575 * but otherwise we run into trouble if a function is prototyped, a
5576 * global var is decled, then the function is defined with usage of
5577 * the global var. See glslparsertest's CorrectModule.frag.
5578 */
5579 instructions->push_head(var);
5580 }
5581
5582 instructions->append_list(&initializer_instructions);
5583 }
5584
5585
5586 /* Generally, variable declarations do not have r-values. However,
5587 * one is used for the declaration in
5588 *
5589 * while (bool b = some_condition()) {
5590 * ...
5591 * }
5592 *
5593 * so we return the rvalue from the last seen declaration here.
5594 */
5595 return result;
5596 }
5597
5598
5599 ir_rvalue *
5600 ast_parameter_declarator::hir(exec_list *instructions,
5601 struct _mesa_glsl_parse_state *state)
5602 {
5603 void *ctx = state;
5604 const struct glsl_type *type;
5605 const char *name = NULL;
5606 YYLTYPE loc = this->get_location();
5607
5608 type = this->type->glsl_type(& name, state);
5609
5610 if (type == NULL) {
5611 if (name != NULL) {
5612 _mesa_glsl_error(& loc, state,
5613 "invalid type `%s' in declaration of `%s'",
5614 name, this->identifier);
5615 } else {
5616 _mesa_glsl_error(& loc, state,
5617 "invalid type in declaration of `%s'",
5618 this->identifier);
5619 }
5620
5621 type = glsl_type::error_type;
5622 }
5623
5624 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5625 *
5626 * "Functions that accept no input arguments need not use void in the
5627 * argument list because prototypes (or definitions) are required and
5628 * therefore there is no ambiguity when an empty argument list "( )" is
5629 * declared. The idiom "(void)" as a parameter list is provided for
5630 * convenience."
5631 *
5632 * Placing this check here prevents a void parameter being set up
5633 * for a function, which avoids tripping up checks for main taking
5634 * parameters and lookups of an unnamed symbol.
5635 */
5636 if (type->is_void()) {
5637 if (this->identifier != NULL)
5638 _mesa_glsl_error(& loc, state,
5639 "named parameter cannot have type `void'");
5640
5641 is_void = true;
5642 return NULL;
5643 }
5644
5645 if (formal_parameter && (this->identifier == NULL)) {
5646 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5647 return NULL;
5648 }
5649
5650 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5651 * call already handled the "vec4[..] foo" case.
5652 */
5653 type = process_array_type(&loc, type, this->array_specifier, state);
5654
5655 if (!type->is_error() && type->is_unsized_array()) {
5656 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5657 "a declared size");
5658 type = glsl_type::error_type;
5659 }
5660
5661 is_void = false;
5662 ir_variable *var = new(ctx)
5663 ir_variable(type, this->identifier, ir_var_function_in);
5664
5665 /* Apply any specified qualifiers to the parameter declaration. Note that
5666 * for function parameters the default mode is 'in'.
5667 */
5668 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5669 true);
5670
5671 /* From section 4.1.7 of the GLSL 4.40 spec:
5672 *
5673 * "Opaque variables cannot be treated as l-values; hence cannot
5674 * be used as out or inout function parameters, nor can they be
5675 * assigned into."
5676 *
5677 * From section 4.1.7 of the ARB_bindless_texture spec:
5678 *
5679 * "Samplers can be used as l-values, so can be assigned into and used
5680 * as "out" and "inout" function parameters."
5681 *
5682 * From section 4.1.X of the ARB_bindless_texture spec:
5683 *
5684 * "Images can be used as l-values, so can be assigned into and used as
5685 * "out" and "inout" function parameters."
5686 */
5687 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5688 && (type->contains_atomic() ||
5689 (!state->has_bindless() && type->contains_opaque()))) {
5690 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5691 "contain %s variables",
5692 state->has_bindless() ? "atomic" : "opaque");
5693 type = glsl_type::error_type;
5694 }
5695
5696 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5697 *
5698 * "When calling a function, expressions that do not evaluate to
5699 * l-values cannot be passed to parameters declared as out or inout."
5700 *
5701 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5702 *
5703 * "Other binary or unary expressions, non-dereferenced arrays,
5704 * function names, swizzles with repeated fields, and constants
5705 * cannot be l-values."
5706 *
5707 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5708 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5709 */
5710 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5711 && type->is_array()
5712 && !state->check_version(120, 100, &loc,
5713 "arrays cannot be out or inout parameters")) {
5714 type = glsl_type::error_type;
5715 }
5716
5717 instructions->push_tail(var);
5718
5719 /* Parameter declarations do not have r-values.
5720 */
5721 return NULL;
5722 }
5723
5724
5725 void
5726 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5727 bool formal,
5728 exec_list *ir_parameters,
5729 _mesa_glsl_parse_state *state)
5730 {
5731 ast_parameter_declarator *void_param = NULL;
5732 unsigned count = 0;
5733
5734 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5735 param->formal_parameter = formal;
5736 param->hir(ir_parameters, state);
5737
5738 if (param->is_void)
5739 void_param = param;
5740
5741 count++;
5742 }
5743
5744 if ((void_param != NULL) && (count > 1)) {
5745 YYLTYPE loc = void_param->get_location();
5746
5747 _mesa_glsl_error(& loc, state,
5748 "`void' parameter must be only parameter");
5749 }
5750 }
5751
5752
5753 void
5754 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5755 {
5756 /* IR invariants disallow function declarations or definitions
5757 * nested within other function definitions. But there is no
5758 * requirement about the relative order of function declarations
5759 * and definitions with respect to one another. So simply insert
5760 * the new ir_function block at the end of the toplevel instruction
5761 * list.
5762 */
5763 state->toplevel_ir->push_tail(f);
5764 }
5765
5766
5767 ir_rvalue *
5768 ast_function::hir(exec_list *instructions,
5769 struct _mesa_glsl_parse_state *state)
5770 {
5771 void *ctx = state;
5772 ir_function *f = NULL;
5773 ir_function_signature *sig = NULL;
5774 exec_list hir_parameters;
5775 YYLTYPE loc = this->get_location();
5776
5777 const char *const name = identifier;
5778
5779 /* New functions are always added to the top-level IR instruction stream,
5780 * so this instruction list pointer is ignored. See also emit_function
5781 * (called below).
5782 */
5783 (void) instructions;
5784
5785 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5786 *
5787 * "Function declarations (prototypes) cannot occur inside of functions;
5788 * they must be at global scope, or for the built-in functions, outside
5789 * the global scope."
5790 *
5791 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5792 *
5793 * "User defined functions may only be defined within the global scope."
5794 *
5795 * Note that this language does not appear in GLSL 1.10.
5796 */
5797 if ((state->current_function != NULL) &&
5798 state->is_version(120, 100)) {
5799 YYLTYPE loc = this->get_location();
5800 _mesa_glsl_error(&loc, state,
5801 "declaration of function `%s' not allowed within "
5802 "function body", name);
5803 }
5804
5805 validate_identifier(name, this->get_location(), state);
5806
5807 /* Convert the list of function parameters to HIR now so that they can be
5808 * used below to compare this function's signature with previously seen
5809 * signatures for functions with the same name.
5810 */
5811 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5812 is_definition,
5813 & hir_parameters, state);
5814
5815 const char *return_type_name;
5816 const glsl_type *return_type =
5817 this->return_type->glsl_type(& return_type_name, state);
5818
5819 if (!return_type) {
5820 YYLTYPE loc = this->get_location();
5821 _mesa_glsl_error(&loc, state,
5822 "function `%s' has undeclared return type `%s'",
5823 name, return_type_name);
5824 return_type = glsl_type::error_type;
5825 }
5826
5827 /* ARB_shader_subroutine states:
5828 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5829 * subroutine(...) to a function declaration."
5830 */
5831 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5832 YYLTYPE loc = this->get_location();
5833 _mesa_glsl_error(&loc, state,
5834 "function declaration `%s' cannot have subroutine prepended",
5835 name);
5836 }
5837
5838 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5839 * "No qualifier is allowed on the return type of a function."
5840 */
5841 if (this->return_type->has_qualifiers(state)) {
5842 YYLTYPE loc = this->get_location();
5843 _mesa_glsl_error(& loc, state,
5844 "function `%s' return type has qualifiers", name);
5845 }
5846
5847 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5848 *
5849 * "Arrays are allowed as arguments and as the return type. In both
5850 * cases, the array must be explicitly sized."
5851 */
5852 if (return_type->is_unsized_array()) {
5853 YYLTYPE loc = this->get_location();
5854 _mesa_glsl_error(& loc, state,
5855 "function `%s' return type array must be explicitly "
5856 "sized", name);
5857 }
5858
5859 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5860 *
5861 * "Arrays are allowed as arguments, but not as the return type. [...]
5862 * The return type can also be a structure if the structure does not
5863 * contain an array."
5864 */
5865 if (state->language_version == 100 && return_type->contains_array()) {
5866 YYLTYPE loc = this->get_location();
5867 _mesa_glsl_error(& loc, state,
5868 "function `%s' return type contains an array", name);
5869 }
5870
5871 /* From section 4.1.7 of the GLSL 4.40 spec:
5872 *
5873 * "[Opaque types] can only be declared as function parameters
5874 * or uniform-qualified variables."
5875 *
5876 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5877 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5878 * (Images)", this should be allowed.
5879 */
5880 if (return_type->contains_atomic() ||
5881 (!state->has_bindless() && return_type->contains_opaque())) {
5882 YYLTYPE loc = this->get_location();
5883 _mesa_glsl_error(&loc, state,
5884 "function `%s' return type can't contain an %s type",
5885 name, state->has_bindless() ? "atomic" : "opaque");
5886 }
5887
5888 /**/
5889 if (return_type->is_subroutine()) {
5890 YYLTYPE loc = this->get_location();
5891 _mesa_glsl_error(&loc, state,
5892 "function `%s' return type can't be a subroutine type",
5893 name);
5894 }
5895
5896
5897 /* Create an ir_function if one doesn't already exist. */
5898 f = state->symbols->get_function(name);
5899 if (f == NULL) {
5900 f = new(ctx) ir_function(name);
5901 if (!this->return_type->qualifier.is_subroutine_decl()) {
5902 if (!state->symbols->add_function(f)) {
5903 /* This function name shadows a non-function use of the same name. */
5904 YYLTYPE loc = this->get_location();
5905 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5906 "non-function", name);
5907 return NULL;
5908 }
5909 }
5910 emit_function(state, f);
5911 }
5912
5913 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5914 *
5915 * "A shader cannot redefine or overload built-in functions."
5916 *
5917 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5918 *
5919 * "User code can overload the built-in functions but cannot redefine
5920 * them."
5921 */
5922 if (state->es_shader) {
5923 /* Local shader has no exact candidates; check the built-ins. */
5924 _mesa_glsl_initialize_builtin_functions();
5925 if (state->language_version >= 300 &&
5926 _mesa_glsl_has_builtin_function(state, name)) {
5927 YYLTYPE loc = this->get_location();
5928 _mesa_glsl_error(& loc, state,
5929 "A shader cannot redefine or overload built-in "
5930 "function `%s' in GLSL ES 3.00", name);
5931 return NULL;
5932 }
5933
5934 if (state->language_version == 100) {
5935 ir_function_signature *sig =
5936 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5937 if (sig && sig->is_builtin()) {
5938 _mesa_glsl_error(& loc, state,
5939 "A shader cannot redefine built-in "
5940 "function `%s' in GLSL ES 1.00", name);
5941 }
5942 }
5943 }
5944
5945 /* Verify that this function's signature either doesn't match a previously
5946 * seen signature for a function with the same name, or, if a match is found,
5947 * that the previously seen signature does not have an associated definition.
5948 */
5949 if (state->es_shader || f->has_user_signature()) {
5950 sig = f->exact_matching_signature(state, &hir_parameters);
5951 if (sig != NULL) {
5952 const char *badvar = sig->qualifiers_match(&hir_parameters);
5953 if (badvar != NULL) {
5954 YYLTYPE loc = this->get_location();
5955
5956 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5957 "qualifiers don't match prototype", name, badvar);
5958 }
5959
5960 if (sig->return_type != return_type) {
5961 YYLTYPE loc = this->get_location();
5962
5963 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5964 "match prototype", name);
5965 }
5966
5967 if (sig->is_defined) {
5968 if (is_definition) {
5969 YYLTYPE loc = this->get_location();
5970 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5971 } else {
5972 /* We just encountered a prototype that exactly matches a
5973 * function that's already been defined. This is redundant,
5974 * and we should ignore it.
5975 */
5976 return NULL;
5977 }
5978 } else if (state->language_version == 100 && !is_definition) {
5979 /* From the GLSL 1.00 spec, section 4.2.7:
5980 *
5981 * "A particular variable, structure or function declaration
5982 * may occur at most once within a scope with the exception
5983 * that a single function prototype plus the corresponding
5984 * function definition are allowed."
5985 */
5986 YYLTYPE loc = this->get_location();
5987 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
5988 }
5989 }
5990 }
5991
5992 /* Verify the return type of main() */
5993 if (strcmp(name, "main") == 0) {
5994 if (! return_type->is_void()) {
5995 YYLTYPE loc = this->get_location();
5996
5997 _mesa_glsl_error(& loc, state, "main() must return void");
5998 }
5999
6000 if (!hir_parameters.is_empty()) {
6001 YYLTYPE loc = this->get_location();
6002
6003 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6004 }
6005 }
6006
6007 /* Finish storing the information about this new function in its signature.
6008 */
6009 if (sig == NULL) {
6010 sig = new(ctx) ir_function_signature(return_type);
6011 f->add_signature(sig);
6012 }
6013
6014 sig->replace_parameters(&hir_parameters);
6015 signature = sig;
6016
6017 if (this->return_type->qualifier.subroutine_list) {
6018 int idx;
6019
6020 if (this->return_type->qualifier.flags.q.explicit_index) {
6021 unsigned qual_index;
6022 if (process_qualifier_constant(state, &loc, "index",
6023 this->return_type->qualifier.index,
6024 &qual_index)) {
6025 if (!state->has_explicit_uniform_location()) {
6026 _mesa_glsl_error(&loc, state, "subroutine index requires "
6027 "GL_ARB_explicit_uniform_location or "
6028 "GLSL 4.30");
6029 } else if (qual_index >= MAX_SUBROUTINES) {
6030 _mesa_glsl_error(&loc, state,
6031 "invalid subroutine index (%d) index must "
6032 "be a number between 0 and "
6033 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6034 MAX_SUBROUTINES - 1);
6035 } else {
6036 f->subroutine_index = qual_index;
6037 }
6038 }
6039 }
6040
6041 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6042 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6043 f->num_subroutine_types);
6044 idx = 0;
6045 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6046 const struct glsl_type *type;
6047 /* the subroutine type must be already declared */
6048 type = state->symbols->get_type(decl->identifier);
6049 if (!type) {
6050 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6051 }
6052
6053 for (int i = 0; i < state->num_subroutine_types; i++) {
6054 ir_function *fn = state->subroutine_types[i];
6055 ir_function_signature *tsig = NULL;
6056
6057 if (strcmp(fn->name, decl->identifier))
6058 continue;
6059
6060 tsig = fn->matching_signature(state, &sig->parameters,
6061 false);
6062 if (!tsig) {
6063 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6064 } else {
6065 if (tsig->return_type != sig->return_type) {
6066 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6067 }
6068 }
6069 }
6070 f->subroutine_types[idx++] = type;
6071 }
6072 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6073 ir_function *,
6074 state->num_subroutines + 1);
6075 state->subroutines[state->num_subroutines] = f;
6076 state->num_subroutines++;
6077
6078 }
6079
6080 if (this->return_type->qualifier.is_subroutine_decl()) {
6081 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6082 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6083 return NULL;
6084 }
6085 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6086 ir_function *,
6087 state->num_subroutine_types + 1);
6088 state->subroutine_types[state->num_subroutine_types] = f;
6089 state->num_subroutine_types++;
6090
6091 f->is_subroutine = true;
6092 }
6093
6094 /* Function declarations (prototypes) do not have r-values.
6095 */
6096 return NULL;
6097 }
6098
6099
6100 ir_rvalue *
6101 ast_function_definition::hir(exec_list *instructions,
6102 struct _mesa_glsl_parse_state *state)
6103 {
6104 prototype->is_definition = true;
6105 prototype->hir(instructions, state);
6106
6107 ir_function_signature *signature = prototype->signature;
6108 if (signature == NULL)
6109 return NULL;
6110
6111 assert(state->current_function == NULL);
6112 state->current_function = signature;
6113 state->found_return = false;
6114
6115 /* Duplicate parameters declared in the prototype as concrete variables.
6116 * Add these to the symbol table.
6117 */
6118 state->symbols->push_scope();
6119 foreach_in_list(ir_variable, var, &signature->parameters) {
6120 assert(var->as_variable() != NULL);
6121
6122 /* The only way a parameter would "exist" is if two parameters have
6123 * the same name.
6124 */
6125 if (state->symbols->name_declared_this_scope(var->name)) {
6126 YYLTYPE loc = this->get_location();
6127
6128 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6129 } else {
6130 state->symbols->add_variable(var);
6131 }
6132 }
6133
6134 /* Convert the body of the function to HIR. */
6135 this->body->hir(&signature->body, state);
6136 signature->is_defined = true;
6137
6138 state->symbols->pop_scope();
6139
6140 assert(state->current_function == signature);
6141 state->current_function = NULL;
6142
6143 if (!signature->return_type->is_void() && !state->found_return) {
6144 YYLTYPE loc = this->get_location();
6145 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6146 "%s, but no return statement",
6147 signature->function_name(),
6148 signature->return_type->name);
6149 }
6150
6151 /* Function definitions do not have r-values.
6152 */
6153 return NULL;
6154 }
6155
6156
6157 ir_rvalue *
6158 ast_jump_statement::hir(exec_list *instructions,
6159 struct _mesa_glsl_parse_state *state)
6160 {
6161 void *ctx = state;
6162
6163 switch (mode) {
6164 case ast_return: {
6165 ir_return *inst;
6166 assert(state->current_function);
6167
6168 if (opt_return_value) {
6169 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6170
6171 /* The value of the return type can be NULL if the shader says
6172 * 'return foo();' and foo() is a function that returns void.
6173 *
6174 * NOTE: The GLSL spec doesn't say that this is an error. The type
6175 * of the return value is void. If the return type of the function is
6176 * also void, then this should compile without error. Seriously.
6177 */
6178 const glsl_type *const ret_type =
6179 (ret == NULL) ? glsl_type::void_type : ret->type;
6180
6181 /* Implicit conversions are not allowed for return values prior to
6182 * ARB_shading_language_420pack.
6183 */
6184 if (state->current_function->return_type != ret_type) {
6185 YYLTYPE loc = this->get_location();
6186
6187 if (state->has_420pack()) {
6188 if (!apply_implicit_conversion(state->current_function->return_type,
6189 ret, state)) {
6190 _mesa_glsl_error(& loc, state,
6191 "could not implicitly convert return value "
6192 "to %s, in function `%s'",
6193 state->current_function->return_type->name,
6194 state->current_function->function_name());
6195 }
6196 } else {
6197 _mesa_glsl_error(& loc, state,
6198 "`return' with wrong type %s, in function `%s' "
6199 "returning %s",
6200 ret_type->name,
6201 state->current_function->function_name(),
6202 state->current_function->return_type->name);
6203 }
6204 } else if (state->current_function->return_type->base_type ==
6205 GLSL_TYPE_VOID) {
6206 YYLTYPE loc = this->get_location();
6207
6208 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6209 * specs add a clarification:
6210 *
6211 * "A void function can only use return without a return argument, even if
6212 * the return argument has void type. Return statements only accept values:
6213 *
6214 * void func1() { }
6215 * void func2() { return func1(); } // illegal return statement"
6216 */
6217 _mesa_glsl_error(& loc, state,
6218 "void functions can only use `return' without a "
6219 "return argument");
6220 }
6221
6222 inst = new(ctx) ir_return(ret);
6223 } else {
6224 if (state->current_function->return_type->base_type !=
6225 GLSL_TYPE_VOID) {
6226 YYLTYPE loc = this->get_location();
6227
6228 _mesa_glsl_error(& loc, state,
6229 "`return' with no value, in function %s returning "
6230 "non-void",
6231 state->current_function->function_name());
6232 }
6233 inst = new(ctx) ir_return;
6234 }
6235
6236 state->found_return = true;
6237 instructions->push_tail(inst);
6238 break;
6239 }
6240
6241 case ast_discard:
6242 if (state->stage != MESA_SHADER_FRAGMENT) {
6243 YYLTYPE loc = this->get_location();
6244
6245 _mesa_glsl_error(& loc, state,
6246 "`discard' may only appear in a fragment shader");
6247 }
6248 instructions->push_tail(new(ctx) ir_discard);
6249 break;
6250
6251 case ast_break:
6252 case ast_continue:
6253 if (mode == ast_continue &&
6254 state->loop_nesting_ast == NULL) {
6255 YYLTYPE loc = this->get_location();
6256
6257 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6258 } else if (mode == ast_break &&
6259 state->loop_nesting_ast == NULL &&
6260 state->switch_state.switch_nesting_ast == NULL) {
6261 YYLTYPE loc = this->get_location();
6262
6263 _mesa_glsl_error(& loc, state,
6264 "break may only appear in a loop or a switch");
6265 } else {
6266 /* For a loop, inline the for loop expression again, since we don't
6267 * know where near the end of the loop body the normal copy of it is
6268 * going to be placed. Same goes for the condition for a do-while
6269 * loop.
6270 */
6271 if (state->loop_nesting_ast != NULL &&
6272 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6273 if (state->loop_nesting_ast->rest_expression) {
6274 state->loop_nesting_ast->rest_expression->hir(instructions,
6275 state);
6276 }
6277 if (state->loop_nesting_ast->mode ==
6278 ast_iteration_statement::ast_do_while) {
6279 state->loop_nesting_ast->condition_to_hir(instructions, state);
6280 }
6281 }
6282
6283 if (state->switch_state.is_switch_innermost &&
6284 mode == ast_continue) {
6285 /* Set 'continue_inside' to true. */
6286 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6287 ir_dereference_variable *deref_continue_inside_var =
6288 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6289 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6290 true_val));
6291
6292 /* Break out from the switch, continue for the loop will
6293 * be called right after switch. */
6294 ir_loop_jump *const jump =
6295 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6296 instructions->push_tail(jump);
6297
6298 } else if (state->switch_state.is_switch_innermost &&
6299 mode == ast_break) {
6300 /* Force break out of switch by inserting a break. */
6301 ir_loop_jump *const jump =
6302 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6303 instructions->push_tail(jump);
6304 } else {
6305 ir_loop_jump *const jump =
6306 new(ctx) ir_loop_jump((mode == ast_break)
6307 ? ir_loop_jump::jump_break
6308 : ir_loop_jump::jump_continue);
6309 instructions->push_tail(jump);
6310 }
6311 }
6312
6313 break;
6314 }
6315
6316 /* Jump instructions do not have r-values.
6317 */
6318 return NULL;
6319 }
6320
6321
6322 ir_rvalue *
6323 ast_selection_statement::hir(exec_list *instructions,
6324 struct _mesa_glsl_parse_state *state)
6325 {
6326 void *ctx = state;
6327
6328 ir_rvalue *const condition = this->condition->hir(instructions, state);
6329
6330 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6331 *
6332 * "Any expression whose type evaluates to a Boolean can be used as the
6333 * conditional expression bool-expression. Vector types are not accepted
6334 * as the expression to if."
6335 *
6336 * The checks are separated so that higher quality diagnostics can be
6337 * generated for cases where both rules are violated.
6338 */
6339 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6340 YYLTYPE loc = this->condition->get_location();
6341
6342 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6343 "boolean");
6344 }
6345
6346 ir_if *const stmt = new(ctx) ir_if(condition);
6347
6348 if (then_statement != NULL) {
6349 state->symbols->push_scope();
6350 then_statement->hir(& stmt->then_instructions, state);
6351 state->symbols->pop_scope();
6352 }
6353
6354 if (else_statement != NULL) {
6355 state->symbols->push_scope();
6356 else_statement->hir(& stmt->else_instructions, state);
6357 state->symbols->pop_scope();
6358 }
6359
6360 instructions->push_tail(stmt);
6361
6362 /* if-statements do not have r-values.
6363 */
6364 return NULL;
6365 }
6366
6367
6368 struct case_label {
6369 /** Value of the case label. */
6370 unsigned value;
6371
6372 /** Does this label occur after the default? */
6373 bool after_default;
6374
6375 /**
6376 * AST for the case label.
6377 *
6378 * This is only used to generate error messages for duplicate labels.
6379 */
6380 ast_expression *ast;
6381 };
6382
6383 /* Used for detection of duplicate case values, compare
6384 * given contents directly.
6385 */
6386 static bool
6387 compare_case_value(const void *a, const void *b)
6388 {
6389 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6390 }
6391
6392
6393 /* Used for detection of duplicate case values, just
6394 * returns key contents as is.
6395 */
6396 static unsigned
6397 key_contents(const void *key)
6398 {
6399 return ((struct case_label *) key)->value;
6400 }
6401
6402
6403 ir_rvalue *
6404 ast_switch_statement::hir(exec_list *instructions,
6405 struct _mesa_glsl_parse_state *state)
6406 {
6407 void *ctx = state;
6408
6409 ir_rvalue *const test_expression =
6410 this->test_expression->hir(instructions, state);
6411
6412 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6413 *
6414 * "The type of init-expression in a switch statement must be a
6415 * scalar integer."
6416 */
6417 if (!test_expression->type->is_scalar() ||
6418 !test_expression->type->is_integer()) {
6419 YYLTYPE loc = this->test_expression->get_location();
6420
6421 _mesa_glsl_error(& loc,
6422 state,
6423 "switch-statement expression must be scalar "
6424 "integer");
6425 return NULL;
6426 }
6427
6428 /* Track the switch-statement nesting in a stack-like manner.
6429 */
6430 struct glsl_switch_state saved = state->switch_state;
6431
6432 state->switch_state.is_switch_innermost = true;
6433 state->switch_state.switch_nesting_ast = this;
6434 state->switch_state.labels_ht =
6435 _mesa_hash_table_create(NULL, key_contents,
6436 compare_case_value);
6437 state->switch_state.previous_default = NULL;
6438
6439 /* Initalize is_fallthru state to false.
6440 */
6441 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6442 state->switch_state.is_fallthru_var =
6443 new(ctx) ir_variable(glsl_type::bool_type,
6444 "switch_is_fallthru_tmp",
6445 ir_var_temporary);
6446 instructions->push_tail(state->switch_state.is_fallthru_var);
6447
6448 ir_dereference_variable *deref_is_fallthru_var =
6449 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6450 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6451 is_fallthru_val));
6452
6453 /* Initialize continue_inside state to false.
6454 */
6455 state->switch_state.continue_inside =
6456 new(ctx) ir_variable(glsl_type::bool_type,
6457 "continue_inside_tmp",
6458 ir_var_temporary);
6459 instructions->push_tail(state->switch_state.continue_inside);
6460
6461 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6462 ir_dereference_variable *deref_continue_inside_var =
6463 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6464 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6465 false_val));
6466
6467 state->switch_state.run_default =
6468 new(ctx) ir_variable(glsl_type::bool_type,
6469 "run_default_tmp",
6470 ir_var_temporary);
6471 instructions->push_tail(state->switch_state.run_default);
6472
6473 /* Loop around the switch is used for flow control. */
6474 ir_loop * loop = new(ctx) ir_loop();
6475 instructions->push_tail(loop);
6476
6477 /* Cache test expression.
6478 */
6479 test_to_hir(&loop->body_instructions, state);
6480
6481 /* Emit code for body of switch stmt.
6482 */
6483 body->hir(&loop->body_instructions, state);
6484
6485 /* Insert a break at the end to exit loop. */
6486 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6487 loop->body_instructions.push_tail(jump);
6488
6489 /* If we are inside loop, check if continue got called inside switch. */
6490 if (state->loop_nesting_ast != NULL) {
6491 ir_dereference_variable *deref_continue_inside =
6492 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6493 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6494 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6495
6496 if (state->loop_nesting_ast != NULL) {
6497 if (state->loop_nesting_ast->rest_expression) {
6498 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6499 state);
6500 }
6501 if (state->loop_nesting_ast->mode ==
6502 ast_iteration_statement::ast_do_while) {
6503 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6504 }
6505 }
6506 irif->then_instructions.push_tail(jump);
6507 instructions->push_tail(irif);
6508 }
6509
6510 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6511
6512 state->switch_state = saved;
6513
6514 /* Switch statements do not have r-values. */
6515 return NULL;
6516 }
6517
6518
6519 void
6520 ast_switch_statement::test_to_hir(exec_list *instructions,
6521 struct _mesa_glsl_parse_state *state)
6522 {
6523 void *ctx = state;
6524
6525 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6526 * on the switch test case. The first one would be already raised when
6527 * getting the test_expression at ast_switch_statement::hir
6528 */
6529 test_expression->set_is_lhs(true);
6530 /* Cache value of test expression. */
6531 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6532
6533 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6534 "switch_test_tmp",
6535 ir_var_temporary);
6536 ir_dereference_variable *deref_test_var =
6537 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6538
6539 instructions->push_tail(state->switch_state.test_var);
6540 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6541 }
6542
6543
6544 ir_rvalue *
6545 ast_switch_body::hir(exec_list *instructions,
6546 struct _mesa_glsl_parse_state *state)
6547 {
6548 if (stmts != NULL)
6549 stmts->hir(instructions, state);
6550
6551 /* Switch bodies do not have r-values. */
6552 return NULL;
6553 }
6554
6555 ir_rvalue *
6556 ast_case_statement_list::hir(exec_list *instructions,
6557 struct _mesa_glsl_parse_state *state)
6558 {
6559 exec_list default_case, after_default, tmp;
6560
6561 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6562 case_stmt->hir(&tmp, state);
6563
6564 /* Default case. */
6565 if (state->switch_state.previous_default && default_case.is_empty()) {
6566 default_case.append_list(&tmp);
6567 continue;
6568 }
6569
6570 /* If default case found, append 'after_default' list. */
6571 if (!default_case.is_empty())
6572 after_default.append_list(&tmp);
6573 else
6574 instructions->append_list(&tmp);
6575 }
6576
6577 /* Handle the default case. This is done here because default might not be
6578 * the last case. We need to add checks against following cases first to see
6579 * if default should be chosen or not.
6580 */
6581 if (!default_case.is_empty()) {
6582
6583 ir_rvalue *const true_val = new (state) ir_constant(true);
6584 ir_dereference_variable *deref_run_default_var =
6585 new(state) ir_dereference_variable(state->switch_state.run_default);
6586
6587 /* Choose to run default case initially, following conditional
6588 * assignments might change this.
6589 */
6590 ir_assignment *const init_var =
6591 new(state) ir_assignment(deref_run_default_var, true_val);
6592 instructions->push_tail(init_var);
6593
6594 /* Default case was the last one, no checks required. */
6595 if (after_default.is_empty()) {
6596 instructions->append_list(&default_case);
6597 return NULL;
6598 }
6599
6600 struct hash_entry *entry;
6601 ir_factory body(instructions, state);
6602
6603 hash_table_foreach(state->switch_state.labels_ht, entry) {
6604 const struct case_label *const l = (struct case_label *) entry->data;
6605
6606 /* If the switch init-value is the value of one of the labels that
6607 * occurs after the default case, disable execution of the default
6608 * case.
6609 */
6610 if (l->after_default) {
6611 ir_constant *const cnst =
6612 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6613 ? body.constant(unsigned(l->value))
6614 : body.constant(int(l->value));
6615
6616 body.emit(assign(state->switch_state.run_default,
6617 body.constant(false),
6618 equal(cnst, state->switch_state.test_var)));
6619 }
6620 }
6621
6622 /* Append default case and all cases after it. */
6623 instructions->append_list(&default_case);
6624 instructions->append_list(&after_default);
6625 }
6626
6627 /* Case statements do not have r-values. */
6628 return NULL;
6629 }
6630
6631 ir_rvalue *
6632 ast_case_statement::hir(exec_list *instructions,
6633 struct _mesa_glsl_parse_state *state)
6634 {
6635 labels->hir(instructions, state);
6636
6637 /* Guard case statements depending on fallthru state. */
6638 ir_dereference_variable *const deref_fallthru_guard =
6639 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6640 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6641
6642 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6643 stmt->hir(& test_fallthru->then_instructions, state);
6644
6645 instructions->push_tail(test_fallthru);
6646
6647 /* Case statements do not have r-values. */
6648 return NULL;
6649 }
6650
6651
6652 ir_rvalue *
6653 ast_case_label_list::hir(exec_list *instructions,
6654 struct _mesa_glsl_parse_state *state)
6655 {
6656 foreach_list_typed (ast_case_label, label, link, & this->labels)
6657 label->hir(instructions, state);
6658
6659 /* Case labels do not have r-values. */
6660 return NULL;
6661 }
6662
6663 ir_rvalue *
6664 ast_case_label::hir(exec_list *instructions,
6665 struct _mesa_glsl_parse_state *state)
6666 {
6667 ir_factory body(instructions, state);
6668
6669 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6670
6671 /* If not default case, ... */
6672 if (this->test_value != NULL) {
6673 /* Conditionally set fallthru state based on
6674 * comparison of cached test expression value to case label.
6675 */
6676 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6677 ir_constant *label_const =
6678 label_rval->constant_expression_value(body.mem_ctx);
6679
6680 if (!label_const) {
6681 YYLTYPE loc = this->test_value->get_location();
6682
6683 _mesa_glsl_error(& loc, state,
6684 "switch statement case label must be a "
6685 "constant expression");
6686
6687 /* Stuff a dummy value in to allow processing to continue. */
6688 label_const = body.constant(0);
6689 } else {
6690 hash_entry *entry =
6691 _mesa_hash_table_search(state->switch_state.labels_ht,
6692 &label_const->value.u[0]);
6693
6694 if (entry) {
6695 const struct case_label *const l =
6696 (struct case_label *) entry->data;
6697 const ast_expression *const previous_label = l->ast;
6698 YYLTYPE loc = this->test_value->get_location();
6699
6700 _mesa_glsl_error(& loc, state, "duplicate case value");
6701
6702 loc = previous_label->get_location();
6703 _mesa_glsl_error(& loc, state, "this is the previous case label");
6704 } else {
6705 struct case_label *l = ralloc(state->switch_state.labels_ht,
6706 struct case_label);
6707
6708 l->value = label_const->value.u[0];
6709 l->after_default = state->switch_state.previous_default != NULL;
6710 l->ast = this->test_value;
6711
6712 _mesa_hash_table_insert(state->switch_state.labels_ht,
6713 &label_const->value.u[0],
6714 l);
6715 }
6716 }
6717
6718 /* Create an r-value version of the ir_constant label here (after we may
6719 * have created a fake one in error cases) that can be passed to
6720 * apply_implicit_conversion below.
6721 */
6722 ir_rvalue *label = label_const;
6723
6724 ir_rvalue *deref_test_var =
6725 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6726
6727 /*
6728 * From GLSL 4.40 specification section 6.2 ("Selection"):
6729 *
6730 * "The type of the init-expression value in a switch statement must
6731 * be a scalar int or uint. The type of the constant-expression value
6732 * in a case label also must be a scalar int or uint. When any pair
6733 * of these values is tested for "equal value" and the types do not
6734 * match, an implicit conversion will be done to convert the int to a
6735 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6736 * is done."
6737 */
6738 if (label->type != state->switch_state.test_var->type) {
6739 YYLTYPE loc = this->test_value->get_location();
6740
6741 const glsl_type *type_a = label->type;
6742 const glsl_type *type_b = state->switch_state.test_var->type;
6743
6744 /* Check if int->uint implicit conversion is supported. */
6745 bool integer_conversion_supported =
6746 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6747 state);
6748
6749 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6750 !integer_conversion_supported) {
6751 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6752 "init-expression and case label (%s != %s)",
6753 type_a->name, type_b->name);
6754 } else {
6755 /* Conversion of the case label. */
6756 if (type_a->base_type == GLSL_TYPE_INT) {
6757 if (!apply_implicit_conversion(glsl_type::uint_type,
6758 label, state))
6759 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6760 } else {
6761 /* Conversion of the init-expression value. */
6762 if (!apply_implicit_conversion(glsl_type::uint_type,
6763 deref_test_var, state))
6764 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6765 }
6766 }
6767
6768 /* If the implicit conversion was allowed, the types will already be
6769 * the same. If the implicit conversion wasn't allowed, smash the
6770 * type of the label anyway. This will prevent the expression
6771 * constructor (below) from failing an assertion.
6772 */
6773 label->type = deref_test_var->type;
6774 }
6775
6776 body.emit(assign(fallthru_var,
6777 body.constant(true),
6778 equal(label, deref_test_var)));
6779 } else { /* default case */
6780 if (state->switch_state.previous_default) {
6781 YYLTYPE loc = this->get_location();
6782 _mesa_glsl_error(& loc, state,
6783 "multiple default labels in one switch");
6784
6785 loc = state->switch_state.previous_default->get_location();
6786 _mesa_glsl_error(& loc, state, "this is the first default label");
6787 }
6788 state->switch_state.previous_default = this;
6789
6790 /* Set fallthru condition on 'run_default' bool. */
6791 body.emit(assign(fallthru_var, body.constant(true),
6792 state->switch_state.run_default));
6793 }
6794
6795 /* Case statements do not have r-values. */
6796 return NULL;
6797 }
6798
6799 void
6800 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6801 struct _mesa_glsl_parse_state *state)
6802 {
6803 void *ctx = state;
6804
6805 if (condition != NULL) {
6806 ir_rvalue *const cond =
6807 condition->hir(instructions, state);
6808
6809 if ((cond == NULL)
6810 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6811 YYLTYPE loc = condition->get_location();
6812
6813 _mesa_glsl_error(& loc, state,
6814 "loop condition must be scalar boolean");
6815 } else {
6816 /* As the first code in the loop body, generate a block that looks
6817 * like 'if (!condition) break;' as the loop termination condition.
6818 */
6819 ir_rvalue *const not_cond =
6820 new(ctx) ir_expression(ir_unop_logic_not, cond);
6821
6822 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6823
6824 ir_jump *const break_stmt =
6825 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6826
6827 if_stmt->then_instructions.push_tail(break_stmt);
6828 instructions->push_tail(if_stmt);
6829 }
6830 }
6831 }
6832
6833
6834 ir_rvalue *
6835 ast_iteration_statement::hir(exec_list *instructions,
6836 struct _mesa_glsl_parse_state *state)
6837 {
6838 void *ctx = state;
6839
6840 /* For-loops and while-loops start a new scope, but do-while loops do not.
6841 */
6842 if (mode != ast_do_while)
6843 state->symbols->push_scope();
6844
6845 if (init_statement != NULL)
6846 init_statement->hir(instructions, state);
6847
6848 ir_loop *const stmt = new(ctx) ir_loop();
6849 instructions->push_tail(stmt);
6850
6851 /* Track the current loop nesting. */
6852 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6853
6854 state->loop_nesting_ast = this;
6855
6856 /* Likewise, indicate that following code is closest to a loop,
6857 * NOT closest to a switch.
6858 */
6859 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6860 state->switch_state.is_switch_innermost = false;
6861
6862 if (mode != ast_do_while)
6863 condition_to_hir(&stmt->body_instructions, state);
6864
6865 if (body != NULL)
6866 body->hir(& stmt->body_instructions, state);
6867
6868 if (rest_expression != NULL)
6869 rest_expression->hir(& stmt->body_instructions, state);
6870
6871 if (mode == ast_do_while)
6872 condition_to_hir(&stmt->body_instructions, state);
6873
6874 if (mode != ast_do_while)
6875 state->symbols->pop_scope();
6876
6877 /* Restore previous nesting before returning. */
6878 state->loop_nesting_ast = nesting_ast;
6879 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6880
6881 /* Loops do not have r-values.
6882 */
6883 return NULL;
6884 }
6885
6886
6887 /**
6888 * Determine if the given type is valid for establishing a default precision
6889 * qualifier.
6890 *
6891 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6892 *
6893 * "The precision statement
6894 *
6895 * precision precision-qualifier type;
6896 *
6897 * can be used to establish a default precision qualifier. The type field
6898 * can be either int or float or any of the sampler types, and the
6899 * precision-qualifier can be lowp, mediump, or highp."
6900 *
6901 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6902 * qualifiers on sampler types, but this seems like an oversight (since the
6903 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6904 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6905 * version.
6906 */
6907 static bool
6908 is_valid_default_precision_type(const struct glsl_type *const type)
6909 {
6910 if (type == NULL)
6911 return false;
6912
6913 switch (type->base_type) {
6914 case GLSL_TYPE_INT:
6915 case GLSL_TYPE_FLOAT:
6916 /* "int" and "float" are valid, but vectors and matrices are not. */
6917 return type->vector_elements == 1 && type->matrix_columns == 1;
6918 case GLSL_TYPE_SAMPLER:
6919 case GLSL_TYPE_IMAGE:
6920 case GLSL_TYPE_ATOMIC_UINT:
6921 return true;
6922 default:
6923 return false;
6924 }
6925 }
6926
6927
6928 ir_rvalue *
6929 ast_type_specifier::hir(exec_list *instructions,
6930 struct _mesa_glsl_parse_state *state)
6931 {
6932 if (this->default_precision == ast_precision_none && this->structure == NULL)
6933 return NULL;
6934
6935 YYLTYPE loc = this->get_location();
6936
6937 /* If this is a precision statement, check that the type to which it is
6938 * applied is either float or int.
6939 *
6940 * From section 4.5.3 of the GLSL 1.30 spec:
6941 * "The precision statement
6942 * precision precision-qualifier type;
6943 * can be used to establish a default precision qualifier. The type
6944 * field can be either int or float [...]. Any other types or
6945 * qualifiers will result in an error.
6946 */
6947 if (this->default_precision != ast_precision_none) {
6948 if (!state->check_precision_qualifiers_allowed(&loc))
6949 return NULL;
6950
6951 if (this->structure != NULL) {
6952 _mesa_glsl_error(&loc, state,
6953 "precision qualifiers do not apply to structures");
6954 return NULL;
6955 }
6956
6957 if (this->array_specifier != NULL) {
6958 _mesa_glsl_error(&loc, state,
6959 "default precision statements do not apply to "
6960 "arrays");
6961 return NULL;
6962 }
6963
6964 const struct glsl_type *const type =
6965 state->symbols->get_type(this->type_name);
6966 if (!is_valid_default_precision_type(type)) {
6967 _mesa_glsl_error(&loc, state,
6968 "default precision statements apply only to "
6969 "float, int, and opaque types");
6970 return NULL;
6971 }
6972
6973 if (state->es_shader) {
6974 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6975 * spec says:
6976 *
6977 * "Non-precision qualified declarations will use the precision
6978 * qualifier specified in the most recent precision statement
6979 * that is still in scope. The precision statement has the same
6980 * scoping rules as variable declarations. If it is declared
6981 * inside a compound statement, its effect stops at the end of
6982 * the innermost statement it was declared in. Precision
6983 * statements in nested scopes override precision statements in
6984 * outer scopes. Multiple precision statements for the same basic
6985 * type can appear inside the same scope, with later statements
6986 * overriding earlier statements within that scope."
6987 *
6988 * Default precision specifications follow the same scope rules as
6989 * variables. So, we can track the state of the default precision
6990 * qualifiers in the symbol table, and the rules will just work. This
6991 * is a slight abuse of the symbol table, but it has the semantics
6992 * that we want.
6993 */
6994 state->symbols->add_default_precision_qualifier(this->type_name,
6995 this->default_precision);
6996 }
6997
6998 /* FINISHME: Translate precision statements into IR. */
6999 return NULL;
7000 }
7001
7002 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7003 * process_record_constructor() can do type-checking on C-style initializer
7004 * expressions of structs, but ast_struct_specifier should only be translated
7005 * to HIR if it is declaring the type of a structure.
7006 *
7007 * The ->is_declaration field is false for initializers of variables
7008 * declared separately from the struct's type definition.
7009 *
7010 * struct S { ... }; (is_declaration = true)
7011 * struct T { ... } t = { ... }; (is_declaration = true)
7012 * S s = { ... }; (is_declaration = false)
7013 */
7014 if (this->structure != NULL && this->structure->is_declaration)
7015 return this->structure->hir(instructions, state);
7016
7017 return NULL;
7018 }
7019
7020
7021 /**
7022 * Process a structure or interface block tree into an array of structure fields
7023 *
7024 * After parsing, where there are some syntax differnces, structures and
7025 * interface blocks are almost identical. They are similar enough that the
7026 * AST for each can be processed the same way into a set of
7027 * \c glsl_struct_field to describe the members.
7028 *
7029 * If we're processing an interface block, var_mode should be the type of the
7030 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7031 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7032 * ir_var_auto.
7033 *
7034 * \return
7035 * The number of fields processed. A pointer to the array structure fields is
7036 * stored in \c *fields_ret.
7037 */
7038 static unsigned
7039 ast_process_struct_or_iface_block_members(exec_list *instructions,
7040 struct _mesa_glsl_parse_state *state,
7041 exec_list *declarations,
7042 glsl_struct_field **fields_ret,
7043 bool is_interface,
7044 enum glsl_matrix_layout matrix_layout,
7045 bool allow_reserved_names,
7046 ir_variable_mode var_mode,
7047 ast_type_qualifier *layout,
7048 unsigned block_stream,
7049 unsigned block_xfb_buffer,
7050 unsigned block_xfb_offset,
7051 unsigned expl_location,
7052 unsigned expl_align)
7053 {
7054 unsigned decl_count = 0;
7055 unsigned next_offset = 0;
7056
7057 /* Make an initial pass over the list of fields to determine how
7058 * many there are. Each element in this list is an ast_declarator_list.
7059 * This means that we actually need to count the number of elements in the
7060 * 'declarations' list in each of the elements.
7061 */
7062 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7063 decl_count += decl_list->declarations.length();
7064 }
7065
7066 /* Allocate storage for the fields and process the field
7067 * declarations. As the declarations are processed, try to also convert
7068 * the types to HIR. This ensures that structure definitions embedded in
7069 * other structure definitions or in interface blocks are processed.
7070 */
7071 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7072 decl_count);
7073
7074 bool first_member = true;
7075 bool first_member_has_explicit_location = false;
7076
7077 unsigned i = 0;
7078 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7079 const char *type_name;
7080 YYLTYPE loc = decl_list->get_location();
7081
7082 decl_list->type->specifier->hir(instructions, state);
7083
7084 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7085 *
7086 * "Anonymous structures are not supported; so embedded structures
7087 * must have a declarator. A name given to an embedded struct is
7088 * scoped at the same level as the struct it is embedded in."
7089 *
7090 * The same section of the GLSL 1.20 spec says:
7091 *
7092 * "Anonymous structures are not supported. Embedded structures are
7093 * not supported."
7094 *
7095 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7096 * embedded structures in 1.10 only.
7097 */
7098 if (state->language_version != 110 &&
7099 decl_list->type->specifier->structure != NULL)
7100 _mesa_glsl_error(&loc, state,
7101 "embedded structure declarations are not allowed");
7102
7103 const glsl_type *decl_type =
7104 decl_list->type->glsl_type(& type_name, state);
7105
7106 const struct ast_type_qualifier *const qual =
7107 &decl_list->type->qualifier;
7108
7109 /* From section 4.3.9 of the GLSL 4.40 spec:
7110 *
7111 * "[In interface blocks] opaque types are not allowed."
7112 *
7113 * It should be impossible for decl_type to be NULL here. Cases that
7114 * might naturally lead to decl_type being NULL, especially for the
7115 * is_interface case, will have resulted in compilation having
7116 * already halted due to a syntax error.
7117 */
7118 assert(decl_type);
7119
7120 if (is_interface) {
7121 /* From section 4.3.7 of the ARB_bindless_texture spec:
7122 *
7123 * "(remove the following bullet from the last list on p. 39,
7124 * thereby permitting sampler types in interface blocks; image
7125 * types are also permitted in blocks by this extension)"
7126 *
7127 * * sampler types are not allowed
7128 */
7129 if (decl_type->contains_atomic() ||
7130 (!state->has_bindless() && decl_type->contains_opaque())) {
7131 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7132 "interface block contains %s variable",
7133 state->has_bindless() ? "atomic" : "opaque");
7134 }
7135 } else {
7136 if (decl_type->contains_atomic()) {
7137 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7138 *
7139 * "Members of structures cannot be declared as atomic counter
7140 * types."
7141 */
7142 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7143 }
7144
7145 if (!state->has_bindless() && decl_type->contains_image()) {
7146 /* FINISHME: Same problem as with atomic counters.
7147 * FINISHME: Request clarification from Khronos and add
7148 * FINISHME: spec quotation here.
7149 */
7150 _mesa_glsl_error(&loc, state, "image in structure");
7151 }
7152 }
7153
7154 if (qual->flags.q.explicit_binding) {
7155 _mesa_glsl_error(&loc, state,
7156 "binding layout qualifier cannot be applied "
7157 "to struct or interface block members");
7158 }
7159
7160 if (is_interface) {
7161 if (!first_member) {
7162 if (!layout->flags.q.explicit_location &&
7163 ((first_member_has_explicit_location &&
7164 !qual->flags.q.explicit_location) ||
7165 (!first_member_has_explicit_location &&
7166 qual->flags.q.explicit_location))) {
7167 _mesa_glsl_error(&loc, state,
7168 "when block-level location layout qualifier "
7169 "is not supplied either all members must "
7170 "have a location layout qualifier or all "
7171 "members must not have a location layout "
7172 "qualifier");
7173 }
7174 } else {
7175 first_member = false;
7176 first_member_has_explicit_location =
7177 qual->flags.q.explicit_location;
7178 }
7179 }
7180
7181 if (qual->flags.q.std140 ||
7182 qual->flags.q.std430 ||
7183 qual->flags.q.packed ||
7184 qual->flags.q.shared) {
7185 _mesa_glsl_error(&loc, state,
7186 "uniform/shader storage block layout qualifiers "
7187 "std140, std430, packed, and shared can only be "
7188 "applied to uniform/shader storage blocks, not "
7189 "members");
7190 }
7191
7192 if (qual->flags.q.constant) {
7193 _mesa_glsl_error(&loc, state,
7194 "const storage qualifier cannot be applied "
7195 "to struct or interface block members");
7196 }
7197
7198 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7199 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7200
7201 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7202 *
7203 * "A block member may be declared with a stream identifier, but
7204 * the specified stream must match the stream associated with the
7205 * containing block."
7206 */
7207 if (qual->flags.q.explicit_stream) {
7208 unsigned qual_stream;
7209 if (process_qualifier_constant(state, &loc, "stream",
7210 qual->stream, &qual_stream) &&
7211 qual_stream != block_stream) {
7212 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7213 "interface block member does not match "
7214 "the interface block (%u vs %u)", qual_stream,
7215 block_stream);
7216 }
7217 }
7218
7219 int xfb_buffer;
7220 unsigned explicit_xfb_buffer = 0;
7221 if (qual->flags.q.explicit_xfb_buffer) {
7222 unsigned qual_xfb_buffer;
7223 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7224 qual->xfb_buffer, &qual_xfb_buffer)) {
7225 explicit_xfb_buffer = 1;
7226 if (qual_xfb_buffer != block_xfb_buffer)
7227 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7228 "interface block member does not match "
7229 "the interface block (%u vs %u)",
7230 qual_xfb_buffer, block_xfb_buffer);
7231 }
7232 xfb_buffer = (int) qual_xfb_buffer;
7233 } else {
7234 if (layout)
7235 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7236 xfb_buffer = (int) block_xfb_buffer;
7237 }
7238
7239 int xfb_stride = -1;
7240 if (qual->flags.q.explicit_xfb_stride) {
7241 unsigned qual_xfb_stride;
7242 if (process_qualifier_constant(state, &loc, "xfb_stride",
7243 qual->xfb_stride, &qual_xfb_stride)) {
7244 xfb_stride = (int) qual_xfb_stride;
7245 }
7246 }
7247
7248 if (qual->flags.q.uniform && qual->has_interpolation()) {
7249 _mesa_glsl_error(&loc, state,
7250 "interpolation qualifiers cannot be used "
7251 "with uniform interface blocks");
7252 }
7253
7254 if ((qual->flags.q.uniform || !is_interface) &&
7255 qual->has_auxiliary_storage()) {
7256 _mesa_glsl_error(&loc, state,
7257 "auxiliary storage qualifiers cannot be used "
7258 "in uniform blocks or structures.");
7259 }
7260
7261 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7262 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7263 _mesa_glsl_error(&loc, state,
7264 "row_major and column_major can only be "
7265 "applied to interface blocks");
7266 } else
7267 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7268 }
7269
7270 foreach_list_typed (ast_declaration, decl, link,
7271 &decl_list->declarations) {
7272 YYLTYPE loc = decl->get_location();
7273
7274 if (!allow_reserved_names)
7275 validate_identifier(decl->identifier, loc, state);
7276
7277 const struct glsl_type *field_type =
7278 process_array_type(&loc, decl_type, decl->array_specifier, state);
7279 validate_array_dimensions(field_type, state, &loc);
7280 fields[i].type = field_type;
7281 fields[i].name = decl->identifier;
7282 fields[i].interpolation =
7283 interpret_interpolation_qualifier(qual, field_type,
7284 var_mode, state, &loc);
7285 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7286 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7287 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7288 fields[i].precision = qual->precision;
7289 fields[i].offset = -1;
7290 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7291 fields[i].xfb_buffer = xfb_buffer;
7292 fields[i].xfb_stride = xfb_stride;
7293
7294 if (qual->flags.q.explicit_location) {
7295 unsigned qual_location;
7296 if (process_qualifier_constant(state, &loc, "location",
7297 qual->location, &qual_location)) {
7298 fields[i].location = qual_location +
7299 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7300 expl_location = fields[i].location +
7301 fields[i].type->count_attribute_slots(false);
7302 }
7303 } else {
7304 if (layout && layout->flags.q.explicit_location) {
7305 fields[i].location = expl_location;
7306 expl_location += fields[i].type->count_attribute_slots(false);
7307 } else {
7308 fields[i].location = -1;
7309 }
7310 }
7311
7312 /* Offset can only be used with std430 and std140 layouts an initial
7313 * value of 0 is used for error detection.
7314 */
7315 unsigned align = 0;
7316 unsigned size = 0;
7317 if (layout) {
7318 bool row_major;
7319 if (qual->flags.q.row_major ||
7320 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7321 row_major = true;
7322 } else {
7323 row_major = false;
7324 }
7325
7326 if(layout->flags.q.std140) {
7327 align = field_type->std140_base_alignment(row_major);
7328 size = field_type->std140_size(row_major);
7329 } else if (layout->flags.q.std430) {
7330 align = field_type->std430_base_alignment(row_major);
7331 size = field_type->std430_size(row_major);
7332 }
7333 }
7334
7335 if (qual->flags.q.explicit_offset) {
7336 unsigned qual_offset;
7337 if (process_qualifier_constant(state, &loc, "offset",
7338 qual->offset, &qual_offset)) {
7339 if (align != 0 && size != 0) {
7340 if (next_offset > qual_offset)
7341 _mesa_glsl_error(&loc, state, "layout qualifier "
7342 "offset overlaps previous member");
7343
7344 if (qual_offset % align) {
7345 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7346 "must be a multiple of the base "
7347 "alignment of %s", field_type->name);
7348 }
7349 fields[i].offset = qual_offset;
7350 next_offset = glsl_align(qual_offset + size, align);
7351 } else {
7352 _mesa_glsl_error(&loc, state, "offset can only be used "
7353 "with std430 and std140 layouts");
7354 }
7355 }
7356 }
7357
7358 if (qual->flags.q.explicit_align || expl_align != 0) {
7359 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7360 next_offset;
7361 if (align == 0 || size == 0) {
7362 _mesa_glsl_error(&loc, state, "align can only be used with "
7363 "std430 and std140 layouts");
7364 } else if (qual->flags.q.explicit_align) {
7365 unsigned member_align;
7366 if (process_qualifier_constant(state, &loc, "align",
7367 qual->align, &member_align)) {
7368 if (member_align == 0 ||
7369 member_align & (member_align - 1)) {
7370 _mesa_glsl_error(&loc, state, "align layout qualifier "
7371 "in not a power of 2");
7372 } else {
7373 fields[i].offset = glsl_align(offset, member_align);
7374 next_offset = glsl_align(fields[i].offset + size, align);
7375 }
7376 }
7377 } else {
7378 fields[i].offset = glsl_align(offset, expl_align);
7379 next_offset = glsl_align(fields[i].offset + size, align);
7380 }
7381 } else if (!qual->flags.q.explicit_offset) {
7382 if (align != 0 && size != 0)
7383 next_offset = glsl_align(next_offset + size, align);
7384 }
7385
7386 /* From the ARB_enhanced_layouts spec:
7387 *
7388 * "The given offset applies to the first component of the first
7389 * member of the qualified entity. Then, within the qualified
7390 * entity, subsequent components are each assigned, in order, to
7391 * the next available offset aligned to a multiple of that
7392 * component's size. Aggregate types are flattened down to the
7393 * component level to get this sequence of components."
7394 */
7395 if (qual->flags.q.explicit_xfb_offset) {
7396 unsigned xfb_offset;
7397 if (process_qualifier_constant(state, &loc, "xfb_offset",
7398 qual->offset, &xfb_offset)) {
7399 fields[i].offset = xfb_offset;
7400 block_xfb_offset = fields[i].offset +
7401 4 * field_type->component_slots();
7402 }
7403 } else {
7404 if (layout && layout->flags.q.explicit_xfb_offset) {
7405 unsigned align = field_type->is_64bit() ? 8 : 4;
7406 fields[i].offset = glsl_align(block_xfb_offset, align);
7407 block_xfb_offset += 4 * field_type->component_slots();
7408 }
7409 }
7410
7411 /* Propogate row- / column-major information down the fields of the
7412 * structure or interface block. Structures need this data because
7413 * the structure may contain a structure that contains ... a matrix
7414 * that need the proper layout.
7415 */
7416 if (is_interface && layout &&
7417 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7418 (field_type->without_array()->is_matrix()
7419 || field_type->without_array()->is_record())) {
7420 /* If no layout is specified for the field, inherit the layout
7421 * from the block.
7422 */
7423 fields[i].matrix_layout = matrix_layout;
7424
7425 if (qual->flags.q.row_major)
7426 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7427 else if (qual->flags.q.column_major)
7428 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7429
7430 /* If we're processing an uniform or buffer block, the matrix
7431 * layout must be decided by this point.
7432 */
7433 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7434 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7435 }
7436
7437 /* Memory qualifiers are allowed on buffer and image variables, while
7438 * the format qualifier is only accepted for images.
7439 */
7440 if (var_mode == ir_var_shader_storage ||
7441 field_type->without_array()->is_image()) {
7442 /* For readonly and writeonly qualifiers the field definition,
7443 * if set, overwrites the layout qualifier.
7444 */
7445 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7446 fields[i].memory_read_only = qual->flags.q.read_only;
7447 fields[i].memory_write_only = qual->flags.q.write_only;
7448 } else {
7449 fields[i].memory_read_only =
7450 layout ? layout->flags.q.read_only : 0;
7451 fields[i].memory_write_only =
7452 layout ? layout->flags.q.write_only : 0;
7453 }
7454
7455 /* For other qualifiers, we set the flag if either the layout
7456 * qualifier or the field qualifier are set
7457 */
7458 fields[i].memory_coherent = qual->flags.q.coherent ||
7459 (layout && layout->flags.q.coherent);
7460 fields[i].memory_volatile = qual->flags.q._volatile ||
7461 (layout && layout->flags.q._volatile);
7462 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7463 (layout && layout->flags.q.restrict_flag);
7464
7465 if (field_type->without_array()->is_image()) {
7466 if (qual->flags.q.explicit_image_format) {
7467 if (qual->image_base_type !=
7468 field_type->without_array()->sampled_type) {
7469 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7470 "match the base data type of the image");
7471 }
7472
7473 fields[i].image_format = qual->image_format;
7474 } else {
7475 if (!qual->flags.q.write_only) {
7476 _mesa_glsl_error(&loc, state, "image not qualified with "
7477 "`writeonly' must have a format layout "
7478 "qualifier");
7479 }
7480
7481 fields[i].image_format = GL_NONE;
7482 }
7483 }
7484 }
7485
7486 i++;
7487 }
7488 }
7489
7490 assert(i == decl_count);
7491
7492 *fields_ret = fields;
7493 return decl_count;
7494 }
7495
7496
7497 ir_rvalue *
7498 ast_struct_specifier::hir(exec_list *instructions,
7499 struct _mesa_glsl_parse_state *state)
7500 {
7501 YYLTYPE loc = this->get_location();
7502
7503 unsigned expl_location = 0;
7504 if (layout && layout->flags.q.explicit_location) {
7505 if (!process_qualifier_constant(state, &loc, "location",
7506 layout->location, &expl_location)) {
7507 return NULL;
7508 } else {
7509 expl_location = VARYING_SLOT_VAR0 + expl_location;
7510 }
7511 }
7512
7513 glsl_struct_field *fields;
7514 unsigned decl_count =
7515 ast_process_struct_or_iface_block_members(instructions,
7516 state,
7517 &this->declarations,
7518 &fields,
7519 false,
7520 GLSL_MATRIX_LAYOUT_INHERITED,
7521 false /* allow_reserved_names */,
7522 ir_var_auto,
7523 layout,
7524 0, /* for interface only */
7525 0, /* for interface only */
7526 0, /* for interface only */
7527 expl_location,
7528 0 /* for interface only */);
7529
7530 validate_identifier(this->name, loc, state);
7531
7532 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7533
7534 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7535 const glsl_type *match = state->symbols->get_type(name);
7536 /* allow struct matching for desktop GL - older UE4 does this */
7537 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7538 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7539 else
7540 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7541 } else {
7542 const glsl_type **s = reralloc(state, state->user_structures,
7543 const glsl_type *,
7544 state->num_user_structures + 1);
7545 if (s != NULL) {
7546 s[state->num_user_structures] = type;
7547 state->user_structures = s;
7548 state->num_user_structures++;
7549 }
7550 }
7551
7552 /* Structure type definitions do not have r-values.
7553 */
7554 return NULL;
7555 }
7556
7557
7558 /**
7559 * Visitor class which detects whether a given interface block has been used.
7560 */
7561 class interface_block_usage_visitor : public ir_hierarchical_visitor
7562 {
7563 public:
7564 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7565 : mode(mode), block(block), found(false)
7566 {
7567 }
7568
7569 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7570 {
7571 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7572 found = true;
7573 return visit_stop;
7574 }
7575 return visit_continue;
7576 }
7577
7578 bool usage_found() const
7579 {
7580 return this->found;
7581 }
7582
7583 private:
7584 ir_variable_mode mode;
7585 const glsl_type *block;
7586 bool found;
7587 };
7588
7589 static bool
7590 is_unsized_array_last_element(ir_variable *v)
7591 {
7592 const glsl_type *interface_type = v->get_interface_type();
7593 int length = interface_type->length;
7594
7595 assert(v->type->is_unsized_array());
7596
7597 /* Check if it is the last element of the interface */
7598 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7599 return true;
7600 return false;
7601 }
7602
7603 static void
7604 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7605 {
7606 var->data.memory_read_only = field.memory_read_only;
7607 var->data.memory_write_only = field.memory_write_only;
7608 var->data.memory_coherent = field.memory_coherent;
7609 var->data.memory_volatile = field.memory_volatile;
7610 var->data.memory_restrict = field.memory_restrict;
7611 }
7612
7613 ir_rvalue *
7614 ast_interface_block::hir(exec_list *instructions,
7615 struct _mesa_glsl_parse_state *state)
7616 {
7617 YYLTYPE loc = this->get_location();
7618
7619 /* Interface blocks must be declared at global scope */
7620 if (state->current_function != NULL) {
7621 _mesa_glsl_error(&loc, state,
7622 "Interface block `%s' must be declared "
7623 "at global scope",
7624 this->block_name);
7625 }
7626
7627 /* Validate qualifiers:
7628 *
7629 * - Layout Qualifiers as per the table in Section 4.4
7630 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7631 *
7632 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7633 * GLSL 4.50 spec:
7634 *
7635 * "Additionally, memory qualifiers may also be used in the declaration
7636 * of shader storage blocks"
7637 *
7638 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7639 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7640 * Layout Qualifiers) of the GLSL 4.50 spec says:
7641 *
7642 * "The std430 qualifier is supported only for shader storage blocks;
7643 * using std430 on a uniform block will result in a compile-time error."
7644 */
7645 ast_type_qualifier allowed_blk_qualifiers;
7646 allowed_blk_qualifiers.flags.i = 0;
7647 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7648 allowed_blk_qualifiers.flags.q.shared = 1;
7649 allowed_blk_qualifiers.flags.q.packed = 1;
7650 allowed_blk_qualifiers.flags.q.std140 = 1;
7651 allowed_blk_qualifiers.flags.q.row_major = 1;
7652 allowed_blk_qualifiers.flags.q.column_major = 1;
7653 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7654 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7655 if (this->layout.flags.q.buffer) {
7656 allowed_blk_qualifiers.flags.q.buffer = 1;
7657 allowed_blk_qualifiers.flags.q.std430 = 1;
7658 allowed_blk_qualifiers.flags.q.coherent = 1;
7659 allowed_blk_qualifiers.flags.q._volatile = 1;
7660 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7661 allowed_blk_qualifiers.flags.q.read_only = 1;
7662 allowed_blk_qualifiers.flags.q.write_only = 1;
7663 } else {
7664 allowed_blk_qualifiers.flags.q.uniform = 1;
7665 }
7666 } else {
7667 /* Interface block */
7668 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7669
7670 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7671 if (this->layout.flags.q.out) {
7672 allowed_blk_qualifiers.flags.q.out = 1;
7673 if (state->stage == MESA_SHADER_GEOMETRY ||
7674 state->stage == MESA_SHADER_TESS_CTRL ||
7675 state->stage == MESA_SHADER_TESS_EVAL ||
7676 state->stage == MESA_SHADER_VERTEX ) {
7677 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7678 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7679 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7680 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7681 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7682 if (state->stage == MESA_SHADER_GEOMETRY) {
7683 allowed_blk_qualifiers.flags.q.stream = 1;
7684 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7685 }
7686 if (state->stage == MESA_SHADER_TESS_CTRL) {
7687 allowed_blk_qualifiers.flags.q.patch = 1;
7688 }
7689 }
7690 } else {
7691 allowed_blk_qualifiers.flags.q.in = 1;
7692 if (state->stage == MESA_SHADER_TESS_EVAL) {
7693 allowed_blk_qualifiers.flags.q.patch = 1;
7694 }
7695 }
7696 }
7697
7698 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7699 "invalid qualifier for block",
7700 this->block_name);
7701
7702 enum glsl_interface_packing packing;
7703 if (this->layout.flags.q.std140) {
7704 packing = GLSL_INTERFACE_PACKING_STD140;
7705 } else if (this->layout.flags.q.packed) {
7706 packing = GLSL_INTERFACE_PACKING_PACKED;
7707 } else if (this->layout.flags.q.std430) {
7708 packing = GLSL_INTERFACE_PACKING_STD430;
7709 } else {
7710 /* The default layout is shared.
7711 */
7712 packing = GLSL_INTERFACE_PACKING_SHARED;
7713 }
7714
7715 ir_variable_mode var_mode;
7716 const char *iface_type_name;
7717 if (this->layout.flags.q.in) {
7718 var_mode = ir_var_shader_in;
7719 iface_type_name = "in";
7720 } else if (this->layout.flags.q.out) {
7721 var_mode = ir_var_shader_out;
7722 iface_type_name = "out";
7723 } else if (this->layout.flags.q.uniform) {
7724 var_mode = ir_var_uniform;
7725 iface_type_name = "uniform";
7726 } else if (this->layout.flags.q.buffer) {
7727 var_mode = ir_var_shader_storage;
7728 iface_type_name = "buffer";
7729 } else {
7730 var_mode = ir_var_auto;
7731 iface_type_name = "UNKNOWN";
7732 assert(!"interface block layout qualifier not found!");
7733 }
7734
7735 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7736 if (this->layout.flags.q.row_major)
7737 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7738 else if (this->layout.flags.q.column_major)
7739 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7740
7741 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7742 exec_list declared_variables;
7743 glsl_struct_field *fields;
7744
7745 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7746 * that we don't have incompatible qualifiers
7747 */
7748 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7749 _mesa_glsl_error(&loc, state,
7750 "Interface block sets both readonly and writeonly");
7751 }
7752
7753 unsigned qual_stream;
7754 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7755 &qual_stream) ||
7756 !validate_stream_qualifier(&loc, state, qual_stream)) {
7757 /* If the stream qualifier is invalid it doesn't make sense to continue
7758 * on and try to compare stream layouts on member variables against it
7759 * so just return early.
7760 */
7761 return NULL;
7762 }
7763
7764 unsigned qual_xfb_buffer;
7765 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7766 layout.xfb_buffer, &qual_xfb_buffer) ||
7767 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7768 return NULL;
7769 }
7770
7771 unsigned qual_xfb_offset;
7772 if (layout.flags.q.explicit_xfb_offset) {
7773 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7774 layout.offset, &qual_xfb_offset)) {
7775 return NULL;
7776 }
7777 }
7778
7779 unsigned qual_xfb_stride;
7780 if (layout.flags.q.explicit_xfb_stride) {
7781 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7782 layout.xfb_stride, &qual_xfb_stride)) {
7783 return NULL;
7784 }
7785 }
7786
7787 unsigned expl_location = 0;
7788 if (layout.flags.q.explicit_location) {
7789 if (!process_qualifier_constant(state, &loc, "location",
7790 layout.location, &expl_location)) {
7791 return NULL;
7792 } else {
7793 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7794 : VARYING_SLOT_VAR0;
7795 }
7796 }
7797
7798 unsigned expl_align = 0;
7799 if (layout.flags.q.explicit_align) {
7800 if (!process_qualifier_constant(state, &loc, "align",
7801 layout.align, &expl_align)) {
7802 return NULL;
7803 } else {
7804 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7805 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7806 "power of 2.");
7807 return NULL;
7808 }
7809 }
7810 }
7811
7812 unsigned int num_variables =
7813 ast_process_struct_or_iface_block_members(&declared_variables,
7814 state,
7815 &this->declarations,
7816 &fields,
7817 true,
7818 matrix_layout,
7819 redeclaring_per_vertex,
7820 var_mode,
7821 &this->layout,
7822 qual_stream,
7823 qual_xfb_buffer,
7824 qual_xfb_offset,
7825 expl_location,
7826 expl_align);
7827
7828 if (!redeclaring_per_vertex) {
7829 validate_identifier(this->block_name, loc, state);
7830
7831 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7832 *
7833 * "Block names have no other use within a shader beyond interface
7834 * matching; it is a compile-time error to use a block name at global
7835 * scope for anything other than as a block name."
7836 */
7837 ir_variable *var = state->symbols->get_variable(this->block_name);
7838 if (var && !var->type->is_interface()) {
7839 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7840 "already used in the scope.",
7841 this->block_name);
7842 }
7843 }
7844
7845 const glsl_type *earlier_per_vertex = NULL;
7846 if (redeclaring_per_vertex) {
7847 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7848 * the named interface block gl_in, we can find it by looking at the
7849 * previous declaration of gl_in. Otherwise we can find it by looking
7850 * at the previous decalartion of any of the built-in outputs,
7851 * e.g. gl_Position.
7852 *
7853 * Also check that the instance name and array-ness of the redeclaration
7854 * are correct.
7855 */
7856 switch (var_mode) {
7857 case ir_var_shader_in:
7858 if (ir_variable *earlier_gl_in =
7859 state->symbols->get_variable("gl_in")) {
7860 earlier_per_vertex = earlier_gl_in->get_interface_type();
7861 } else {
7862 _mesa_glsl_error(&loc, state,
7863 "redeclaration of gl_PerVertex input not allowed "
7864 "in the %s shader",
7865 _mesa_shader_stage_to_string(state->stage));
7866 }
7867 if (this->instance_name == NULL ||
7868 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7869 !this->array_specifier->is_single_dimension()) {
7870 _mesa_glsl_error(&loc, state,
7871 "gl_PerVertex input must be redeclared as "
7872 "gl_in[]");
7873 }
7874 break;
7875 case ir_var_shader_out:
7876 if (ir_variable *earlier_gl_Position =
7877 state->symbols->get_variable("gl_Position")) {
7878 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7879 } else if (ir_variable *earlier_gl_out =
7880 state->symbols->get_variable("gl_out")) {
7881 earlier_per_vertex = earlier_gl_out->get_interface_type();
7882 } else {
7883 _mesa_glsl_error(&loc, state,
7884 "redeclaration of gl_PerVertex output not "
7885 "allowed in the %s shader",
7886 _mesa_shader_stage_to_string(state->stage));
7887 }
7888 if (state->stage == MESA_SHADER_TESS_CTRL) {
7889 if (this->instance_name == NULL ||
7890 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7891 _mesa_glsl_error(&loc, state,
7892 "gl_PerVertex output must be redeclared as "
7893 "gl_out[]");
7894 }
7895 } else {
7896 if (this->instance_name != NULL) {
7897 _mesa_glsl_error(&loc, state,
7898 "gl_PerVertex output may not be redeclared with "
7899 "an instance name");
7900 }
7901 }
7902 break;
7903 default:
7904 _mesa_glsl_error(&loc, state,
7905 "gl_PerVertex must be declared as an input or an "
7906 "output");
7907 break;
7908 }
7909
7910 if (earlier_per_vertex == NULL) {
7911 /* An error has already been reported. Bail out to avoid null
7912 * dereferences later in this function.
7913 */
7914 return NULL;
7915 }
7916
7917 /* Copy locations from the old gl_PerVertex interface block. */
7918 for (unsigned i = 0; i < num_variables; i++) {
7919 int j = earlier_per_vertex->field_index(fields[i].name);
7920 if (j == -1) {
7921 _mesa_glsl_error(&loc, state,
7922 "redeclaration of gl_PerVertex must be a subset "
7923 "of the built-in members of gl_PerVertex");
7924 } else {
7925 fields[i].location =
7926 earlier_per_vertex->fields.structure[j].location;
7927 fields[i].offset =
7928 earlier_per_vertex->fields.structure[j].offset;
7929 fields[i].interpolation =
7930 earlier_per_vertex->fields.structure[j].interpolation;
7931 fields[i].centroid =
7932 earlier_per_vertex->fields.structure[j].centroid;
7933 fields[i].sample =
7934 earlier_per_vertex->fields.structure[j].sample;
7935 fields[i].patch =
7936 earlier_per_vertex->fields.structure[j].patch;
7937 fields[i].precision =
7938 earlier_per_vertex->fields.structure[j].precision;
7939 fields[i].explicit_xfb_buffer =
7940 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7941 fields[i].xfb_buffer =
7942 earlier_per_vertex->fields.structure[j].xfb_buffer;
7943 fields[i].xfb_stride =
7944 earlier_per_vertex->fields.structure[j].xfb_stride;
7945 }
7946 }
7947
7948 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7949 * spec:
7950 *
7951 * If a built-in interface block is redeclared, it must appear in
7952 * the shader before any use of any member included in the built-in
7953 * declaration, or a compilation error will result.
7954 *
7955 * This appears to be a clarification to the behaviour established for
7956 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7957 * regardless of GLSL version.
7958 */
7959 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7960 v.run(instructions);
7961 if (v.usage_found()) {
7962 _mesa_glsl_error(&loc, state,
7963 "redeclaration of a built-in interface block must "
7964 "appear before any use of any member of the "
7965 "interface block");
7966 }
7967 }
7968
7969 const glsl_type *block_type =
7970 glsl_type::get_interface_instance(fields,
7971 num_variables,
7972 packing,
7973 matrix_layout ==
7974 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7975 this->block_name);
7976
7977 unsigned component_size = block_type->contains_double() ? 8 : 4;
7978 int xfb_offset =
7979 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7980 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7981 component_size);
7982
7983 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7984 YYLTYPE loc = this->get_location();
7985 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7986 "already taken in the current scope",
7987 this->block_name, iface_type_name);
7988 }
7989
7990 /* Since interface blocks cannot contain statements, it should be
7991 * impossible for the block to generate any instructions.
7992 */
7993 assert(declared_variables.is_empty());
7994
7995 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7996 *
7997 * Geometry shader input variables get the per-vertex values written
7998 * out by vertex shader output variables of the same names. Since a
7999 * geometry shader operates on a set of vertices, each input varying
8000 * variable (or input block, see interface blocks below) needs to be
8001 * declared as an array.
8002 */
8003 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8004 var_mode == ir_var_shader_in) {
8005 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8006 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8007 state->stage == MESA_SHADER_TESS_EVAL) &&
8008 !this->layout.flags.q.patch &&
8009 this->array_specifier == NULL &&
8010 var_mode == ir_var_shader_in) {
8011 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8012 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8013 !this->layout.flags.q.patch &&
8014 this->array_specifier == NULL &&
8015 var_mode == ir_var_shader_out) {
8016 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8017 }
8018
8019
8020 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8021 * says:
8022 *
8023 * "If an instance name (instance-name) is used, then it puts all the
8024 * members inside a scope within its own name space, accessed with the
8025 * field selector ( . ) operator (analogously to structures)."
8026 */
8027 if (this->instance_name) {
8028 if (redeclaring_per_vertex) {
8029 /* When a built-in in an unnamed interface block is redeclared,
8030 * get_variable_being_redeclared() calls
8031 * check_builtin_array_max_size() to make sure that built-in array
8032 * variables aren't redeclared to illegal sizes. But we're looking
8033 * at a redeclaration of a named built-in interface block. So we
8034 * have to manually call check_builtin_array_max_size() for all parts
8035 * of the interface that are arrays.
8036 */
8037 for (unsigned i = 0; i < num_variables; i++) {
8038 if (fields[i].type->is_array()) {
8039 const unsigned size = fields[i].type->array_size();
8040 check_builtin_array_max_size(fields[i].name, size, loc, state);
8041 }
8042 }
8043 } else {
8044 validate_identifier(this->instance_name, loc, state);
8045 }
8046
8047 ir_variable *var;
8048
8049 if (this->array_specifier != NULL) {
8050 const glsl_type *block_array_type =
8051 process_array_type(&loc, block_type, this->array_specifier, state);
8052
8053 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8054 *
8055 * For uniform blocks declared an array, each individual array
8056 * element corresponds to a separate buffer object backing one
8057 * instance of the block. As the array size indicates the number
8058 * of buffer objects needed, uniform block array declarations
8059 * must specify an array size.
8060 *
8061 * And a few paragraphs later:
8062 *
8063 * Geometry shader input blocks must be declared as arrays and
8064 * follow the array declaration and linking rules for all
8065 * geometry shader inputs. All other input and output block
8066 * arrays must specify an array size.
8067 *
8068 * The same applies to tessellation shaders.
8069 *
8070 * The upshot of this is that the only circumstance where an
8071 * interface array size *doesn't* need to be specified is on a
8072 * geometry shader input, tessellation control shader input,
8073 * tessellation control shader output, and tessellation evaluation
8074 * shader input.
8075 */
8076 if (block_array_type->is_unsized_array()) {
8077 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8078 state->stage == MESA_SHADER_TESS_CTRL ||
8079 state->stage == MESA_SHADER_TESS_EVAL;
8080 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8081
8082 if (this->layout.flags.q.in) {
8083 if (!allow_inputs)
8084 _mesa_glsl_error(&loc, state,
8085 "unsized input block arrays not allowed in "
8086 "%s shader",
8087 _mesa_shader_stage_to_string(state->stage));
8088 } else if (this->layout.flags.q.out) {
8089 if (!allow_outputs)
8090 _mesa_glsl_error(&loc, state,
8091 "unsized output block arrays not allowed in "
8092 "%s shader",
8093 _mesa_shader_stage_to_string(state->stage));
8094 } else {
8095 /* by elimination, this is a uniform block array */
8096 _mesa_glsl_error(&loc, state,
8097 "unsized uniform block arrays not allowed in "
8098 "%s shader",
8099 _mesa_shader_stage_to_string(state->stage));
8100 }
8101 }
8102
8103 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8104 *
8105 * * Arrays of arrays of blocks are not allowed
8106 */
8107 if (state->es_shader && block_array_type->is_array() &&
8108 block_array_type->fields.array->is_array()) {
8109 _mesa_glsl_error(&loc, state,
8110 "arrays of arrays interface blocks are "
8111 "not allowed");
8112 }
8113
8114 var = new(state) ir_variable(block_array_type,
8115 this->instance_name,
8116 var_mode);
8117 } else {
8118 var = new(state) ir_variable(block_type,
8119 this->instance_name,
8120 var_mode);
8121 }
8122
8123 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8124 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8125
8126 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8127 var->data.read_only = true;
8128
8129 var->data.patch = this->layout.flags.q.patch;
8130
8131 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8132 handle_geometry_shader_input_decl(state, loc, var);
8133 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8134 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8135 handle_tess_shader_input_decl(state, loc, var);
8136 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8137 handle_tess_ctrl_shader_output_decl(state, loc, var);
8138
8139 for (unsigned i = 0; i < num_variables; i++) {
8140 if (var->data.mode == ir_var_shader_storage)
8141 apply_memory_qualifiers(var, fields[i]);
8142 }
8143
8144 if (ir_variable *earlier =
8145 state->symbols->get_variable(this->instance_name)) {
8146 if (!redeclaring_per_vertex) {
8147 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8148 this->instance_name);
8149 }
8150 earlier->data.how_declared = ir_var_declared_normally;
8151 earlier->type = var->type;
8152 earlier->reinit_interface_type(block_type);
8153 delete var;
8154 } else {
8155 if (this->layout.flags.q.explicit_binding) {
8156 apply_explicit_binding(state, &loc, var, var->type,
8157 &this->layout);
8158 }
8159
8160 var->data.stream = qual_stream;
8161 if (layout.flags.q.explicit_location) {
8162 var->data.location = expl_location;
8163 var->data.explicit_location = true;
8164 }
8165
8166 state->symbols->add_variable(var);
8167 instructions->push_tail(var);
8168 }
8169 } else {
8170 /* In order to have an array size, the block must also be declared with
8171 * an instance name.
8172 */
8173 assert(this->array_specifier == NULL);
8174
8175 for (unsigned i = 0; i < num_variables; i++) {
8176 ir_variable *var =
8177 new(state) ir_variable(fields[i].type,
8178 ralloc_strdup(state, fields[i].name),
8179 var_mode);
8180 var->data.interpolation = fields[i].interpolation;
8181 var->data.centroid = fields[i].centroid;
8182 var->data.sample = fields[i].sample;
8183 var->data.patch = fields[i].patch;
8184 var->data.stream = qual_stream;
8185 var->data.location = fields[i].location;
8186
8187 if (fields[i].location != -1)
8188 var->data.explicit_location = true;
8189
8190 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8191 var->data.xfb_buffer = fields[i].xfb_buffer;
8192
8193 if (fields[i].offset != -1)
8194 var->data.explicit_xfb_offset = true;
8195 var->data.offset = fields[i].offset;
8196
8197 var->init_interface_type(block_type);
8198
8199 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8200 var->data.read_only = true;
8201
8202 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8203 if (state->es_shader) {
8204 var->data.precision =
8205 select_gles_precision(fields[i].precision, fields[i].type,
8206 state, &loc);
8207 }
8208
8209 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8210 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8211 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8212 } else {
8213 var->data.matrix_layout = fields[i].matrix_layout;
8214 }
8215
8216 if (var->data.mode == ir_var_shader_storage)
8217 apply_memory_qualifiers(var, fields[i]);
8218
8219 /* Examine var name here since var may get deleted in the next call */
8220 bool var_is_gl_id = is_gl_identifier(var->name);
8221
8222 if (redeclaring_per_vertex) {
8223 bool is_redeclaration;
8224 var =
8225 get_variable_being_redeclared(&var, loc, state,
8226 true /* allow_all_redeclarations */,
8227 &is_redeclaration);
8228 if (!var_is_gl_id || !is_redeclaration) {
8229 _mesa_glsl_error(&loc, state,
8230 "redeclaration of gl_PerVertex can only "
8231 "include built-in variables");
8232 } else if (var->data.how_declared == ir_var_declared_normally) {
8233 _mesa_glsl_error(&loc, state,
8234 "`%s' has already been redeclared",
8235 var->name);
8236 } else {
8237 var->data.how_declared = ir_var_declared_in_block;
8238 var->reinit_interface_type(block_type);
8239 }
8240 continue;
8241 }
8242
8243 if (state->symbols->get_variable(var->name) != NULL)
8244 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8245
8246 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8247 * The UBO declaration itself doesn't get an ir_variable unless it
8248 * has an instance name. This is ugly.
8249 */
8250 if (this->layout.flags.q.explicit_binding) {
8251 apply_explicit_binding(state, &loc, var,
8252 var->get_interface_type(), &this->layout);
8253 }
8254
8255 if (var->type->is_unsized_array()) {
8256 if (var->is_in_shader_storage_block() &&
8257 is_unsized_array_last_element(var)) {
8258 var->data.from_ssbo_unsized_array = true;
8259 } else {
8260 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8261 *
8262 * "If an array is declared as the last member of a shader storage
8263 * block and the size is not specified at compile-time, it is
8264 * sized at run-time. In all other cases, arrays are sized only
8265 * at compile-time."
8266 *
8267 * In desktop GLSL it is allowed to have unsized-arrays that are
8268 * not last, as long as we can determine that they are implicitly
8269 * sized.
8270 */
8271 if (state->es_shader) {
8272 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8273 "definition: only last member of a shader "
8274 "storage block can be defined as unsized "
8275 "array", fields[i].name);
8276 }
8277 }
8278 }
8279
8280 state->symbols->add_variable(var);
8281 instructions->push_tail(var);
8282 }
8283
8284 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8285 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8286 *
8287 * It is also a compilation error ... to redeclare a built-in
8288 * block and then use a member from that built-in block that was
8289 * not included in the redeclaration.
8290 *
8291 * This appears to be a clarification to the behaviour established
8292 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8293 * behaviour regardless of GLSL version.
8294 *
8295 * To prevent the shader from using a member that was not included in
8296 * the redeclaration, we disable any ir_variables that are still
8297 * associated with the old declaration of gl_PerVertex (since we've
8298 * already updated all of the variables contained in the new
8299 * gl_PerVertex to point to it).
8300 *
8301 * As a side effect this will prevent
8302 * validate_intrastage_interface_blocks() from getting confused and
8303 * thinking there are conflicting definitions of gl_PerVertex in the
8304 * shader.
8305 */
8306 foreach_in_list_safe(ir_instruction, node, instructions) {
8307 ir_variable *const var = node->as_variable();
8308 if (var != NULL &&
8309 var->get_interface_type() == earlier_per_vertex &&
8310 var->data.mode == var_mode) {
8311 if (var->data.how_declared == ir_var_declared_normally) {
8312 _mesa_glsl_error(&loc, state,
8313 "redeclaration of gl_PerVertex cannot "
8314 "follow a redeclaration of `%s'",
8315 var->name);
8316 }
8317 state->symbols->disable_variable(var->name);
8318 var->remove();
8319 }
8320 }
8321 }
8322 }
8323
8324 return NULL;
8325 }
8326
8327
8328 ir_rvalue *
8329 ast_tcs_output_layout::hir(exec_list *instructions,
8330 struct _mesa_glsl_parse_state *state)
8331 {
8332 YYLTYPE loc = this->get_location();
8333
8334 unsigned num_vertices;
8335 if (!state->out_qualifier->vertices->
8336 process_qualifier_constant(state, "vertices", &num_vertices,
8337 false)) {
8338 /* return here to stop cascading incorrect error messages */
8339 return NULL;
8340 }
8341
8342 /* If any shader outputs occurred before this declaration and specified an
8343 * array size, make sure the size they specified is consistent with the
8344 * primitive type.
8345 */
8346 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8347 _mesa_glsl_error(&loc, state,
8348 "this tessellation control shader output layout "
8349 "specifies %u vertices, but a previous output "
8350 "is declared with size %u",
8351 num_vertices, state->tcs_output_size);
8352 return NULL;
8353 }
8354
8355 state->tcs_output_vertices_specified = true;
8356
8357 /* If any shader outputs occurred before this declaration and did not
8358 * specify an array size, their size is determined now.
8359 */
8360 foreach_in_list (ir_instruction, node, instructions) {
8361 ir_variable *var = node->as_variable();
8362 if (var == NULL || var->data.mode != ir_var_shader_out)
8363 continue;
8364
8365 /* Note: Not all tessellation control shader output are arrays. */
8366 if (!var->type->is_unsized_array() || var->data.patch)
8367 continue;
8368
8369 if (var->data.max_array_access >= (int)num_vertices) {
8370 _mesa_glsl_error(&loc, state,
8371 "this tessellation control shader output layout "
8372 "specifies %u vertices, but an access to element "
8373 "%u of output `%s' already exists", num_vertices,
8374 var->data.max_array_access, var->name);
8375 } else {
8376 var->type = glsl_type::get_array_instance(var->type->fields.array,
8377 num_vertices);
8378 }
8379 }
8380
8381 return NULL;
8382 }
8383
8384
8385 ir_rvalue *
8386 ast_gs_input_layout::hir(exec_list *instructions,
8387 struct _mesa_glsl_parse_state *state)
8388 {
8389 YYLTYPE loc = this->get_location();
8390
8391 /* Should have been prevented by the parser. */
8392 assert(!state->gs_input_prim_type_specified
8393 || state->in_qualifier->prim_type == this->prim_type);
8394
8395 /* If any shader inputs occurred before this declaration and specified an
8396 * array size, make sure the size they specified is consistent with the
8397 * primitive type.
8398 */
8399 unsigned num_vertices = vertices_per_prim(this->prim_type);
8400 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8401 _mesa_glsl_error(&loc, state,
8402 "this geometry shader input layout implies %u vertices"
8403 " per primitive, but a previous input is declared"
8404 " with size %u", num_vertices, state->gs_input_size);
8405 return NULL;
8406 }
8407
8408 state->gs_input_prim_type_specified = true;
8409
8410 /* If any shader inputs occurred before this declaration and did not
8411 * specify an array size, their size is determined now.
8412 */
8413 foreach_in_list(ir_instruction, node, instructions) {
8414 ir_variable *var = node->as_variable();
8415 if (var == NULL || var->data.mode != ir_var_shader_in)
8416 continue;
8417
8418 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8419 * array; skip it.
8420 */
8421
8422 if (var->type->is_unsized_array()) {
8423 if (var->data.max_array_access >= (int)num_vertices) {
8424 _mesa_glsl_error(&loc, state,
8425 "this geometry shader input layout implies %u"
8426 " vertices, but an access to element %u of input"
8427 " `%s' already exists", num_vertices,
8428 var->data.max_array_access, var->name);
8429 } else {
8430 var->type = glsl_type::get_array_instance(var->type->fields.array,
8431 num_vertices);
8432 }
8433 }
8434 }
8435
8436 return NULL;
8437 }
8438
8439
8440 ir_rvalue *
8441 ast_cs_input_layout::hir(exec_list *instructions,
8442 struct _mesa_glsl_parse_state *state)
8443 {
8444 YYLTYPE loc = this->get_location();
8445
8446 /* From the ARB_compute_shader specification:
8447 *
8448 * If the local size of the shader in any dimension is greater
8449 * than the maximum size supported by the implementation for that
8450 * dimension, a compile-time error results.
8451 *
8452 * It is not clear from the spec how the error should be reported if
8453 * the total size of the work group exceeds
8454 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8455 * report it at compile time as well.
8456 */
8457 GLuint64 total_invocations = 1;
8458 unsigned qual_local_size[3];
8459 for (int i = 0; i < 3; i++) {
8460
8461 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8462 'x' + i);
8463 /* Infer a local_size of 1 for unspecified dimensions */
8464 if (this->local_size[i] == NULL) {
8465 qual_local_size[i] = 1;
8466 } else if (!this->local_size[i]->
8467 process_qualifier_constant(state, local_size_str,
8468 &qual_local_size[i], false)) {
8469 ralloc_free(local_size_str);
8470 return NULL;
8471 }
8472 ralloc_free(local_size_str);
8473
8474 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8475 _mesa_glsl_error(&loc, state,
8476 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8477 " (%d)", 'x' + i,
8478 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8479 break;
8480 }
8481 total_invocations *= qual_local_size[i];
8482 if (total_invocations >
8483 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8484 _mesa_glsl_error(&loc, state,
8485 "product of local_sizes exceeds "
8486 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8487 state->ctx->Const.MaxComputeWorkGroupInvocations);
8488 break;
8489 }
8490 }
8491
8492 /* If any compute input layout declaration preceded this one, make sure it
8493 * was consistent with this one.
8494 */
8495 if (state->cs_input_local_size_specified) {
8496 for (int i = 0; i < 3; i++) {
8497 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8498 _mesa_glsl_error(&loc, state,
8499 "compute shader input layout does not match"
8500 " previous declaration");
8501 return NULL;
8502 }
8503 }
8504 }
8505
8506 /* The ARB_compute_variable_group_size spec says:
8507 *
8508 * If a compute shader including a *local_size_variable* qualifier also
8509 * declares a fixed local group size using the *local_size_x*,
8510 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8511 * results
8512 */
8513 if (state->cs_input_local_size_variable_specified) {
8514 _mesa_glsl_error(&loc, state,
8515 "compute shader can't include both a variable and a "
8516 "fixed local group size");
8517 return NULL;
8518 }
8519
8520 state->cs_input_local_size_specified = true;
8521 for (int i = 0; i < 3; i++)
8522 state->cs_input_local_size[i] = qual_local_size[i];
8523
8524 /* We may now declare the built-in constant gl_WorkGroupSize (see
8525 * builtin_variable_generator::generate_constants() for why we didn't
8526 * declare it earlier).
8527 */
8528 ir_variable *var = new(state->symbols)
8529 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8530 var->data.how_declared = ir_var_declared_implicitly;
8531 var->data.read_only = true;
8532 instructions->push_tail(var);
8533 state->symbols->add_variable(var);
8534 ir_constant_data data;
8535 memset(&data, 0, sizeof(data));
8536 for (int i = 0; i < 3; i++)
8537 data.u[i] = qual_local_size[i];
8538 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8539 var->constant_initializer =
8540 new(var) ir_constant(glsl_type::uvec3_type, &data);
8541 var->data.has_initializer = true;
8542
8543 return NULL;
8544 }
8545
8546
8547 static void
8548 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8549 exec_list *instructions)
8550 {
8551 bool gl_FragColor_assigned = false;
8552 bool gl_FragData_assigned = false;
8553 bool gl_FragSecondaryColor_assigned = false;
8554 bool gl_FragSecondaryData_assigned = false;
8555 bool user_defined_fs_output_assigned = false;
8556 ir_variable *user_defined_fs_output = NULL;
8557
8558 /* It would be nice to have proper location information. */
8559 YYLTYPE loc;
8560 memset(&loc, 0, sizeof(loc));
8561
8562 foreach_in_list(ir_instruction, node, instructions) {
8563 ir_variable *var = node->as_variable();
8564
8565 if (!var || !var->data.assigned)
8566 continue;
8567
8568 if (strcmp(var->name, "gl_FragColor") == 0)
8569 gl_FragColor_assigned = true;
8570 else if (strcmp(var->name, "gl_FragData") == 0)
8571 gl_FragData_assigned = true;
8572 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8573 gl_FragSecondaryColor_assigned = true;
8574 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8575 gl_FragSecondaryData_assigned = true;
8576 else if (!is_gl_identifier(var->name)) {
8577 if (state->stage == MESA_SHADER_FRAGMENT &&
8578 var->data.mode == ir_var_shader_out) {
8579 user_defined_fs_output_assigned = true;
8580 user_defined_fs_output = var;
8581 }
8582 }
8583 }
8584
8585 /* From the GLSL 1.30 spec:
8586 *
8587 * "If a shader statically assigns a value to gl_FragColor, it
8588 * may not assign a value to any element of gl_FragData. If a
8589 * shader statically writes a value to any element of
8590 * gl_FragData, it may not assign a value to
8591 * gl_FragColor. That is, a shader may assign values to either
8592 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8593 * linked together must also consistently write just one of
8594 * these variables. Similarly, if user declared output
8595 * variables are in use (statically assigned to), then the
8596 * built-in variables gl_FragColor and gl_FragData may not be
8597 * assigned to. These incorrect usages all generate compile
8598 * time errors."
8599 */
8600 if (gl_FragColor_assigned && gl_FragData_assigned) {
8601 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8602 "`gl_FragColor' and `gl_FragData'");
8603 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8604 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8605 "`gl_FragColor' and `%s'",
8606 user_defined_fs_output->name);
8607 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8608 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8609 "`gl_FragSecondaryColorEXT' and"
8610 " `gl_FragSecondaryDataEXT'");
8611 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8612 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8613 "`gl_FragColor' and"
8614 " `gl_FragSecondaryDataEXT'");
8615 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8616 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8617 "`gl_FragData' and"
8618 " `gl_FragSecondaryColorEXT'");
8619 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8620 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8621 "`gl_FragData' and `%s'",
8622 user_defined_fs_output->name);
8623 }
8624
8625 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8626 !state->EXT_blend_func_extended_enable) {
8627 _mesa_glsl_error(&loc, state,
8628 "Dual source blending requires EXT_blend_func_extended");
8629 }
8630 }
8631
8632
8633 static void
8634 remove_per_vertex_blocks(exec_list *instructions,
8635 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8636 {
8637 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8638 * if it exists in this shader type.
8639 */
8640 const glsl_type *per_vertex = NULL;
8641 switch (mode) {
8642 case ir_var_shader_in:
8643 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8644 per_vertex = gl_in->get_interface_type();
8645 break;
8646 case ir_var_shader_out:
8647 if (ir_variable *gl_Position =
8648 state->symbols->get_variable("gl_Position")) {
8649 per_vertex = gl_Position->get_interface_type();
8650 }
8651 break;
8652 default:
8653 assert(!"Unexpected mode");
8654 break;
8655 }
8656
8657 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8658 * need to do anything.
8659 */
8660 if (per_vertex == NULL)
8661 return;
8662
8663 /* If the interface block is used by the shader, then we don't need to do
8664 * anything.
8665 */
8666 interface_block_usage_visitor v(mode, per_vertex);
8667 v.run(instructions);
8668 if (v.usage_found())
8669 return;
8670
8671 /* Remove any ir_variable declarations that refer to the interface block
8672 * we're removing.
8673 */
8674 foreach_in_list_safe(ir_instruction, node, instructions) {
8675 ir_variable *const var = node->as_variable();
8676 if (var != NULL && var->get_interface_type() == per_vertex &&
8677 var->data.mode == mode) {
8678 state->symbols->disable_variable(var->name);
8679 var->remove();
8680 }
8681 }
8682 }