glsl: add xfb_stride compile time rules
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_UINT:
246 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2u;
250 default: return (ir_expression_operation)0;
251 }
252
253 case GLSL_TYPE_DOUBLE:
254 if (!state->has_double())
255 return (ir_expression_operation)0;
256 switch (from->base_type) {
257 case GLSL_TYPE_INT: return ir_unop_i2d;
258 case GLSL_TYPE_UINT: return ir_unop_u2d;
259 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
260 default: return (ir_expression_operation)0;
261 }
262
263 default: return (ir_expression_operation)0;
264 }
265 }
266
267
268 /**
269 * If a conversion is available, convert one operand to a different type
270 *
271 * The \c from \c ir_rvalue is converted "in place".
272 *
273 * \param to Type that the operand it to be converted to
274 * \param from Operand that is being converted
275 * \param state GLSL compiler state
276 *
277 * \return
278 * If a conversion is possible (or unnecessary), \c true is returned.
279 * Otherwise \c false is returned.
280 */
281 bool
282 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
283 struct _mesa_glsl_parse_state *state)
284 {
285 void *ctx = state;
286 if (to->base_type == from->type->base_type)
287 return true;
288
289 /* Prior to GLSL 1.20, there are no implicit conversions */
290 if (!state->is_version(120, 0))
291 return false;
292
293 /* ESSL does not allow implicit conversions */
294 if (state->es_shader)
295 return false;
296
297 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
298 *
299 * "There are no implicit array or structure conversions. For
300 * example, an array of int cannot be implicitly converted to an
301 * array of float.
302 */
303 if (!to->is_numeric() || !from->type->is_numeric())
304 return false;
305
306 /* We don't actually want the specific type `to`, we want a type
307 * with the same base type as `to`, but the same vector width as
308 * `from`.
309 */
310 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
311 from->type->matrix_columns);
312
313 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
314 if (op) {
315 from = new(ctx) ir_expression(op, to, from, NULL);
316 return true;
317 } else {
318 return false;
319 }
320 }
321
322
323 static const struct glsl_type *
324 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
325 bool multiply,
326 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
327 {
328 const glsl_type *type_a = value_a->type;
329 const glsl_type *type_b = value_b->type;
330
331 /* From GLSL 1.50 spec, page 56:
332 *
333 * "The arithmetic binary operators add (+), subtract (-),
334 * multiply (*), and divide (/) operate on integer and
335 * floating-point scalars, vectors, and matrices."
336 */
337 if (!type_a->is_numeric() || !type_b->is_numeric()) {
338 _mesa_glsl_error(loc, state,
339 "operands to arithmetic operators must be numeric");
340 return glsl_type::error_type;
341 }
342
343
344 /* "If one operand is floating-point based and the other is
345 * not, then the conversions from Section 4.1.10 "Implicit
346 * Conversions" are applied to the non-floating-point-based operand."
347 */
348 if (!apply_implicit_conversion(type_a, value_b, state)
349 && !apply_implicit_conversion(type_b, value_a, state)) {
350 _mesa_glsl_error(loc, state,
351 "could not implicitly convert operands to "
352 "arithmetic operator");
353 return glsl_type::error_type;
354 }
355 type_a = value_a->type;
356 type_b = value_b->type;
357
358 /* "If the operands are integer types, they must both be signed or
359 * both be unsigned."
360 *
361 * From this rule and the preceeding conversion it can be inferred that
362 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
363 * The is_numeric check above already filtered out the case where either
364 * type is not one of these, so now the base types need only be tested for
365 * equality.
366 */
367 if (type_a->base_type != type_b->base_type) {
368 _mesa_glsl_error(loc, state,
369 "base type mismatch for arithmetic operator");
370 return glsl_type::error_type;
371 }
372
373 /* "All arithmetic binary operators result in the same fundamental type
374 * (signed integer, unsigned integer, or floating-point) as the
375 * operands they operate on, after operand type conversion. After
376 * conversion, the following cases are valid
377 *
378 * * The two operands are scalars. In this case the operation is
379 * applied, resulting in a scalar."
380 */
381 if (type_a->is_scalar() && type_b->is_scalar())
382 return type_a;
383
384 /* "* One operand is a scalar, and the other is a vector or matrix.
385 * In this case, the scalar operation is applied independently to each
386 * component of the vector or matrix, resulting in the same size
387 * vector or matrix."
388 */
389 if (type_a->is_scalar()) {
390 if (!type_b->is_scalar())
391 return type_b;
392 } else if (type_b->is_scalar()) {
393 return type_a;
394 }
395
396 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
397 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
398 * handled.
399 */
400 assert(!type_a->is_scalar());
401 assert(!type_b->is_scalar());
402
403 /* "* The two operands are vectors of the same size. In this case, the
404 * operation is done component-wise resulting in the same size
405 * vector."
406 */
407 if (type_a->is_vector() && type_b->is_vector()) {
408 if (type_a == type_b) {
409 return type_a;
410 } else {
411 _mesa_glsl_error(loc, state,
412 "vector size mismatch for arithmetic operator");
413 return glsl_type::error_type;
414 }
415 }
416
417 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
418 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
419 * <vector, vector> have been handled. At least one of the operands must
420 * be matrix. Further, since there are no integer matrix types, the base
421 * type of both operands must be float.
422 */
423 assert(type_a->is_matrix() || type_b->is_matrix());
424 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
425 type_a->base_type == GLSL_TYPE_DOUBLE);
426 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
427 type_b->base_type == GLSL_TYPE_DOUBLE);
428
429 /* "* The operator is add (+), subtract (-), or divide (/), and the
430 * operands are matrices with the same number of rows and the same
431 * number of columns. In this case, the operation is done component-
432 * wise resulting in the same size matrix."
433 * * The operator is multiply (*), where both operands are matrices or
434 * one operand is a vector and the other a matrix. A right vector
435 * operand is treated as a column vector and a left vector operand as a
436 * row vector. In all these cases, it is required that the number of
437 * columns of the left operand is equal to the number of rows of the
438 * right operand. Then, the multiply (*) operation does a linear
439 * algebraic multiply, yielding an object that has the same number of
440 * rows as the left operand and the same number of columns as the right
441 * operand. Section 5.10 "Vector and Matrix Operations" explains in
442 * more detail how vectors and matrices are operated on."
443 */
444 if (! multiply) {
445 if (type_a == type_b)
446 return type_a;
447 } else {
448 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
449
450 if (type == glsl_type::error_type) {
451 _mesa_glsl_error(loc, state,
452 "size mismatch for matrix multiplication");
453 }
454
455 return type;
456 }
457
458
459 /* "All other cases are illegal."
460 */
461 _mesa_glsl_error(loc, state, "type mismatch");
462 return glsl_type::error_type;
463 }
464
465
466 static const struct glsl_type *
467 unary_arithmetic_result_type(const struct glsl_type *type,
468 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
469 {
470 /* From GLSL 1.50 spec, page 57:
471 *
472 * "The arithmetic unary operators negate (-), post- and pre-increment
473 * and decrement (-- and ++) operate on integer or floating-point
474 * values (including vectors and matrices). All unary operators work
475 * component-wise on their operands. These result with the same type
476 * they operated on."
477 */
478 if (!type->is_numeric()) {
479 _mesa_glsl_error(loc, state,
480 "operands to arithmetic operators must be numeric");
481 return glsl_type::error_type;
482 }
483
484 return type;
485 }
486
487 /**
488 * \brief Return the result type of a bit-logic operation.
489 *
490 * If the given types to the bit-logic operator are invalid, return
491 * glsl_type::error_type.
492 *
493 * \param value_a LHS of bit-logic op
494 * \param value_b RHS of bit-logic op
495 */
496 static const struct glsl_type *
497 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
498 ast_operators op,
499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501 const glsl_type *type_a = value_a->type;
502 const glsl_type *type_b = value_b->type;
503
504 if (!state->check_bitwise_operations_allowed(loc)) {
505 return glsl_type::error_type;
506 }
507
508 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
509 *
510 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
511 * (|). The operands must be of type signed or unsigned integers or
512 * integer vectors."
513 */
514 if (!type_a->is_integer()) {
515 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
516 ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
521 ast_expression::operator_string(op));
522 return glsl_type::error_type;
523 }
524
525 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
526 * make sense for bitwise operations, as they don't operate on floats.
527 *
528 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
529 * here. It wasn't clear whether or not we should apply them to bitwise
530 * operations. However, Khronos has decided that they should in future
531 * language revisions. Applications also rely on this behavior. We opt
532 * to apply them in general, but issue a portability warning.
533 *
534 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
535 */
536 if (type_a->base_type != type_b->base_type) {
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "`%s` operator",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 } else {
545 _mesa_glsl_warning(loc, state,
546 "some implementations may not support implicit "
547 "int -> uint conversions for `%s' operators; "
548 "consider casting explicitly for portability",
549 ast_expression::operator_string(op));
550 }
551 type_a = value_a->type;
552 type_b = value_b->type;
553 }
554
555 /* "The fundamental types of the operands (signed or unsigned) must
556 * match,"
557 */
558 if (type_a->base_type != type_b->base_type) {
559 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
560 "base type", ast_expression::operator_string(op));
561 return glsl_type::error_type;
562 }
563
564 /* "The operands cannot be vectors of differing size." */
565 if (type_a->is_vector() &&
566 type_b->is_vector() &&
567 type_a->vector_elements != type_b->vector_elements) {
568 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
569 "different sizes", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571 }
572
573 /* "If one operand is a scalar and the other a vector, the scalar is
574 * applied component-wise to the vector, resulting in the same type as
575 * the vector. The fundamental types of the operands [...] will be the
576 * resulting fundamental type."
577 */
578 if (type_a->is_scalar())
579 return type_b;
580 else
581 return type_a;
582 }
583
584 static const struct glsl_type *
585 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
586 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
587 {
588 const glsl_type *type_a = value_a->type;
589 const glsl_type *type_b = value_b->type;
590
591 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
592 return glsl_type::error_type;
593 }
594
595 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
596 *
597 * "The operator modulus (%) operates on signed or unsigned integers or
598 * integer vectors."
599 */
600 if (!type_a->is_integer()) {
601 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
602 return glsl_type::error_type;
603 }
604 if (!type_b->is_integer()) {
605 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
606 return glsl_type::error_type;
607 }
608
609 /* "If the fundamental types in the operands do not match, then the
610 * conversions from section 4.1.10 "Implicit Conversions" are applied
611 * to create matching types."
612 *
613 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
614 * int -> uint conversion rules. Prior to that, there were no implicit
615 * conversions. So it's harmless to apply them universally - no implicit
616 * conversions will exist. If the types don't match, we'll receive false,
617 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
618 *
619 * "The operand types must both be signed or unsigned."
620 */
621 if (!apply_implicit_conversion(type_a, value_b, state) &&
622 !apply_implicit_conversion(type_b, value_a, state)) {
623 _mesa_glsl_error(loc, state,
624 "could not implicitly convert operands to "
625 "modulus (%%) operator");
626 return glsl_type::error_type;
627 }
628 type_a = value_a->type;
629 type_b = value_b->type;
630
631 /* "The operands cannot be vectors of differing size. If one operand is
632 * a scalar and the other vector, then the scalar is applied component-
633 * wise to the vector, resulting in the same type as the vector. If both
634 * are vectors of the same size, the result is computed component-wise."
635 */
636 if (type_a->is_vector()) {
637 if (!type_b->is_vector()
638 || (type_a->vector_elements == type_b->vector_elements))
639 return type_a;
640 } else
641 return type_b;
642
643 /* "The operator modulus (%) is not defined for any other data types
644 * (non-integer types)."
645 */
646 _mesa_glsl_error(loc, state, "type mismatch");
647 return glsl_type::error_type;
648 }
649
650
651 static const struct glsl_type *
652 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
653 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
654 {
655 const glsl_type *type_a = value_a->type;
656 const glsl_type *type_b = value_b->type;
657
658 /* From GLSL 1.50 spec, page 56:
659 * "The relational operators greater than (>), less than (<), greater
660 * than or equal (>=), and less than or equal (<=) operate only on
661 * scalar integer and scalar floating-point expressions."
662 */
663 if (!type_a->is_numeric()
664 || !type_b->is_numeric()
665 || !type_a->is_scalar()
666 || !type_b->is_scalar()) {
667 _mesa_glsl_error(loc, state,
668 "operands to relational operators must be scalar and "
669 "numeric");
670 return glsl_type::error_type;
671 }
672
673 /* "Either the operands' types must match, or the conversions from
674 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
675 * operand, after which the types must match."
676 */
677 if (!apply_implicit_conversion(type_a, value_b, state)
678 && !apply_implicit_conversion(type_b, value_a, state)) {
679 _mesa_glsl_error(loc, state,
680 "could not implicitly convert operands to "
681 "relational operator");
682 return glsl_type::error_type;
683 }
684 type_a = value_a->type;
685 type_b = value_b->type;
686
687 if (type_a->base_type != type_b->base_type) {
688 _mesa_glsl_error(loc, state, "base type mismatch");
689 return glsl_type::error_type;
690 }
691
692 /* "The result is scalar Boolean."
693 */
694 return glsl_type::bool_type;
695 }
696
697 /**
698 * \brief Return the result type of a bit-shift operation.
699 *
700 * If the given types to the bit-shift operator are invalid, return
701 * glsl_type::error_type.
702 *
703 * \param type_a Type of LHS of bit-shift op
704 * \param type_b Type of RHS of bit-shift op
705 */
706 static const struct glsl_type *
707 shift_result_type(const struct glsl_type *type_a,
708 const struct glsl_type *type_b,
709 ast_operators op,
710 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
711 {
712 if (!state->check_bitwise_operations_allowed(loc)) {
713 return glsl_type::error_type;
714 }
715
716 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
717 *
718 * "The shift operators (<<) and (>>). For both operators, the operands
719 * must be signed or unsigned integers or integer vectors. One operand
720 * can be signed while the other is unsigned."
721 */
722 if (!type_a->is_integer()) {
723 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
724 "integer vector", ast_expression::operator_string(op));
725 return glsl_type::error_type;
726
727 }
728 if (!type_b->is_integer()) {
729 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
730 "integer vector", ast_expression::operator_string(op));
731 return glsl_type::error_type;
732 }
733
734 /* "If the first operand is a scalar, the second operand has to be
735 * a scalar as well."
736 */
737 if (type_a->is_scalar() && !type_b->is_scalar()) {
738 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
739 "second must be scalar as well",
740 ast_expression::operator_string(op));
741 return glsl_type::error_type;
742 }
743
744 /* If both operands are vectors, check that they have same number of
745 * elements.
746 */
747 if (type_a->is_vector() &&
748 type_b->is_vector() &&
749 type_a->vector_elements != type_b->vector_elements) {
750 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
751 "have same number of elements",
752 ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "In all cases, the resulting type will be the same type as the left
757 * operand."
758 */
759 return type_a;
760 }
761
762 /**
763 * Returns the innermost array index expression in an rvalue tree.
764 * This is the largest indexing level -- if an array of blocks, then
765 * it is the block index rather than an indexing expression for an
766 * array-typed member of an array of blocks.
767 */
768 static ir_rvalue *
769 find_innermost_array_index(ir_rvalue *rv)
770 {
771 ir_dereference_array *last = NULL;
772 while (rv) {
773 if (rv->as_dereference_array()) {
774 last = rv->as_dereference_array();
775 rv = last->array;
776 } else if (rv->as_dereference_record())
777 rv = rv->as_dereference_record()->record;
778 else if (rv->as_swizzle())
779 rv = rv->as_swizzle()->val;
780 else
781 rv = NULL;
782 }
783
784 if (last)
785 return last->array_index;
786
787 return NULL;
788 }
789
790 /**
791 * Validates that a value can be assigned to a location with a specified type
792 *
793 * Validates that \c rhs can be assigned to some location. If the types are
794 * not an exact match but an automatic conversion is possible, \c rhs will be
795 * converted.
796 *
797 * \return
798 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
799 * Otherwise the actual RHS to be assigned will be returned. This may be
800 * \c rhs, or it may be \c rhs after some type conversion.
801 *
802 * \note
803 * In addition to being used for assignments, this function is used to
804 * type-check return values.
805 */
806 static ir_rvalue *
807 validate_assignment(struct _mesa_glsl_parse_state *state,
808 YYLTYPE loc, ir_rvalue *lhs,
809 ir_rvalue *rhs, bool is_initializer)
810 {
811 /* If there is already some error in the RHS, just return it. Anything
812 * else will lead to an avalanche of error message back to the user.
813 */
814 if (rhs->type->is_error())
815 return rhs;
816
817 /* In the Tessellation Control Shader:
818 * If a per-vertex output variable is used as an l-value, it is an error
819 * if the expression indicating the vertex number is not the identifier
820 * `gl_InvocationID`.
821 */
822 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
823 ir_variable *var = lhs->variable_referenced();
824 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
825 ir_rvalue *index = find_innermost_array_index(lhs);
826 ir_variable *index_var = index ? index->variable_referenced() : NULL;
827 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
828 _mesa_glsl_error(&loc, state,
829 "Tessellation control shader outputs can only "
830 "be indexed by gl_InvocationID");
831 return NULL;
832 }
833 }
834 }
835
836 /* If the types are identical, the assignment can trivially proceed.
837 */
838 if (rhs->type == lhs->type)
839 return rhs;
840
841 /* If the array element types are the same and the LHS is unsized,
842 * the assignment is okay for initializers embedded in variable
843 * declarations.
844 *
845 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
846 * is handled by ir_dereference::is_lvalue.
847 */
848 const glsl_type *lhs_t = lhs->type;
849 const glsl_type *rhs_t = rhs->type;
850 bool unsized_array = false;
851 while(lhs_t->is_array()) {
852 if (rhs_t == lhs_t)
853 break; /* the rest of the inner arrays match so break out early */
854 if (!rhs_t->is_array()) {
855 unsized_array = false;
856 break; /* number of dimensions mismatch */
857 }
858 if (lhs_t->length == rhs_t->length) {
859 lhs_t = lhs_t->fields.array;
860 rhs_t = rhs_t->fields.array;
861 continue;
862 } else if (lhs_t->is_unsized_array()) {
863 unsized_array = true;
864 } else {
865 unsized_array = false;
866 break; /* sized array mismatch */
867 }
868 lhs_t = lhs_t->fields.array;
869 rhs_t = rhs_t->fields.array;
870 }
871 if (unsized_array) {
872 if (is_initializer) {
873 return rhs;
874 } else {
875 _mesa_glsl_error(&loc, state,
876 "implicitly sized arrays cannot be assigned");
877 return NULL;
878 }
879 }
880
881 /* Check for implicit conversion in GLSL 1.20 */
882 if (apply_implicit_conversion(lhs->type, rhs, state)) {
883 if (rhs->type == lhs->type)
884 return rhs;
885 }
886
887 _mesa_glsl_error(&loc, state,
888 "%s of type %s cannot be assigned to "
889 "variable of type %s",
890 is_initializer ? "initializer" : "value",
891 rhs->type->name, lhs->type->name);
892
893 return NULL;
894 }
895
896 static void
897 mark_whole_array_access(ir_rvalue *access)
898 {
899 ir_dereference_variable *deref = access->as_dereference_variable();
900
901 if (deref && deref->var) {
902 deref->var->data.max_array_access = deref->type->length - 1;
903 }
904 }
905
906 static bool
907 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
908 const char *non_lvalue_description,
909 ir_rvalue *lhs, ir_rvalue *rhs,
910 ir_rvalue **out_rvalue, bool needs_rvalue,
911 bool is_initializer,
912 YYLTYPE lhs_loc)
913 {
914 void *ctx = state;
915 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
916
917 ir_variable *lhs_var = lhs->variable_referenced();
918 if (lhs_var)
919 lhs_var->data.assigned = true;
920
921 if (!error_emitted) {
922 if (non_lvalue_description != NULL) {
923 _mesa_glsl_error(&lhs_loc, state,
924 "assignment to %s",
925 non_lvalue_description);
926 error_emitted = true;
927 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
928 (lhs_var->data.mode == ir_var_shader_storage &&
929 lhs_var->data.image_read_only))) {
930 /* We can have image_read_only set on both images and buffer variables,
931 * but in the former there is a distinction between assignments to
932 * the variable itself (read_only) and to the memory they point to
933 * (image_read_only), while in the case of buffer variables there is
934 * no such distinction, that is why this check here is limited to
935 * buffer variables alone.
936 */
937 _mesa_glsl_error(&lhs_loc, state,
938 "assignment to read-only variable '%s'",
939 lhs_var->name);
940 error_emitted = true;
941 } else if (lhs->type->is_array() &&
942 !state->check_version(120, 300, &lhs_loc,
943 "whole array assignment forbidden")) {
944 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
945 *
946 * "Other binary or unary expressions, non-dereferenced
947 * arrays, function names, swizzles with repeated fields,
948 * and constants cannot be l-values."
949 *
950 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
951 */
952 error_emitted = true;
953 } else if (!lhs->is_lvalue()) {
954 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
955 error_emitted = true;
956 }
957 }
958
959 ir_rvalue *new_rhs =
960 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
961 if (new_rhs != NULL) {
962 rhs = new_rhs;
963
964 /* If the LHS array was not declared with a size, it takes it size from
965 * the RHS. If the LHS is an l-value and a whole array, it must be a
966 * dereference of a variable. Any other case would require that the LHS
967 * is either not an l-value or not a whole array.
968 */
969 if (lhs->type->is_unsized_array()) {
970 ir_dereference *const d = lhs->as_dereference();
971
972 assert(d != NULL);
973
974 ir_variable *const var = d->variable_referenced();
975
976 assert(var != NULL);
977
978 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
979 /* FINISHME: This should actually log the location of the RHS. */
980 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
981 "previous access",
982 var->data.max_array_access);
983 }
984
985 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
986 rhs->type->array_size());
987 d->type = var->type;
988 }
989 if (lhs->type->is_array()) {
990 mark_whole_array_access(rhs);
991 mark_whole_array_access(lhs);
992 }
993 }
994
995 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
996 * but not post_inc) need the converted assigned value as an rvalue
997 * to handle things like:
998 *
999 * i = j += 1;
1000 */
1001 if (needs_rvalue) {
1002 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1003 ir_var_temporary);
1004 instructions->push_tail(var);
1005 instructions->push_tail(assign(var, rhs));
1006
1007 if (!error_emitted) {
1008 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1009 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1010 }
1011 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1012
1013 *out_rvalue = rvalue;
1014 } else {
1015 if (!error_emitted)
1016 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1017 *out_rvalue = NULL;
1018 }
1019
1020 return error_emitted;
1021 }
1022
1023 static ir_rvalue *
1024 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1025 {
1026 void *ctx = ralloc_parent(lvalue);
1027 ir_variable *var;
1028
1029 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1030 ir_var_temporary);
1031 instructions->push_tail(var);
1032
1033 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1034 lvalue));
1035
1036 return new(ctx) ir_dereference_variable(var);
1037 }
1038
1039
1040 ir_rvalue *
1041 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1042 {
1043 (void) instructions;
1044 (void) state;
1045
1046 return NULL;
1047 }
1048
1049 bool
1050 ast_node::has_sequence_subexpression() const
1051 {
1052 return false;
1053 }
1054
1055 void
1056 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1057 struct _mesa_glsl_parse_state *state)
1058 {
1059 (void)hir(instructions, state);
1060 }
1061
1062 void
1063 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 static ir_rvalue *
1070 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1071 {
1072 int join_op;
1073 ir_rvalue *cmp = NULL;
1074
1075 if (operation == ir_binop_all_equal)
1076 join_op = ir_binop_logic_and;
1077 else
1078 join_op = ir_binop_logic_or;
1079
1080 switch (op0->type->base_type) {
1081 case GLSL_TYPE_FLOAT:
1082 case GLSL_TYPE_UINT:
1083 case GLSL_TYPE_INT:
1084 case GLSL_TYPE_BOOL:
1085 case GLSL_TYPE_DOUBLE:
1086 return new(mem_ctx) ir_expression(operation, op0, op1);
1087
1088 case GLSL_TYPE_ARRAY: {
1089 for (unsigned int i = 0; i < op0->type->length; i++) {
1090 ir_rvalue *e0, *e1, *result;
1091
1092 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1093 new(mem_ctx) ir_constant(i));
1094 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1095 new(mem_ctx) ir_constant(i));
1096 result = do_comparison(mem_ctx, operation, e0, e1);
1097
1098 if (cmp) {
1099 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1100 } else {
1101 cmp = result;
1102 }
1103 }
1104
1105 mark_whole_array_access(op0);
1106 mark_whole_array_access(op1);
1107 break;
1108 }
1109
1110 case GLSL_TYPE_STRUCT: {
1111 for (unsigned int i = 0; i < op0->type->length; i++) {
1112 ir_rvalue *e0, *e1, *result;
1113 const char *field_name = op0->type->fields.structure[i].name;
1114
1115 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1116 field_name);
1117 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1118 field_name);
1119 result = do_comparison(mem_ctx, operation, e0, e1);
1120
1121 if (cmp) {
1122 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1123 } else {
1124 cmp = result;
1125 }
1126 }
1127 break;
1128 }
1129
1130 case GLSL_TYPE_ERROR:
1131 case GLSL_TYPE_VOID:
1132 case GLSL_TYPE_SAMPLER:
1133 case GLSL_TYPE_IMAGE:
1134 case GLSL_TYPE_INTERFACE:
1135 case GLSL_TYPE_ATOMIC_UINT:
1136 case GLSL_TYPE_SUBROUTINE:
1137 case GLSL_TYPE_FUNCTION:
1138 /* I assume a comparison of a struct containing a sampler just
1139 * ignores the sampler present in the type.
1140 */
1141 break;
1142 }
1143
1144 if (cmp == NULL)
1145 cmp = new(mem_ctx) ir_constant(true);
1146
1147 return cmp;
1148 }
1149
1150 /* For logical operations, we want to ensure that the operands are
1151 * scalar booleans. If it isn't, emit an error and return a constant
1152 * boolean to avoid triggering cascading error messages.
1153 */
1154 ir_rvalue *
1155 get_scalar_boolean_operand(exec_list *instructions,
1156 struct _mesa_glsl_parse_state *state,
1157 ast_expression *parent_expr,
1158 int operand,
1159 const char *operand_name,
1160 bool *error_emitted)
1161 {
1162 ast_expression *expr = parent_expr->subexpressions[operand];
1163 void *ctx = state;
1164 ir_rvalue *val = expr->hir(instructions, state);
1165
1166 if (val->type->is_boolean() && val->type->is_scalar())
1167 return val;
1168
1169 if (!*error_emitted) {
1170 YYLTYPE loc = expr->get_location();
1171 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1172 operand_name,
1173 parent_expr->operator_string(parent_expr->oper));
1174 *error_emitted = true;
1175 }
1176
1177 return new(ctx) ir_constant(true);
1178 }
1179
1180 /**
1181 * If name refers to a builtin array whose maximum allowed size is less than
1182 * size, report an error and return true. Otherwise return false.
1183 */
1184 void
1185 check_builtin_array_max_size(const char *name, unsigned size,
1186 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1187 {
1188 if ((strcmp("gl_TexCoord", name) == 0)
1189 && (size > state->Const.MaxTextureCoords)) {
1190 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1191 *
1192 * "The size [of gl_TexCoord] can be at most
1193 * gl_MaxTextureCoords."
1194 */
1195 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1196 "be larger than gl_MaxTextureCoords (%u)",
1197 state->Const.MaxTextureCoords);
1198 } else if (strcmp("gl_ClipDistance", name) == 0
1199 && size > state->Const.MaxClipPlanes) {
1200 /* From section 7.1 (Vertex Shader Special Variables) of the
1201 * GLSL 1.30 spec:
1202 *
1203 * "The gl_ClipDistance array is predeclared as unsized and
1204 * must be sized by the shader either redeclaring it with a
1205 * size or indexing it only with integral constant
1206 * expressions. ... The size can be at most
1207 * gl_MaxClipDistances."
1208 */
1209 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1210 "be larger than gl_MaxClipDistances (%u)",
1211 state->Const.MaxClipPlanes);
1212 }
1213 }
1214
1215 /**
1216 * Create the constant 1, of a which is appropriate for incrementing and
1217 * decrementing values of the given GLSL type. For example, if type is vec4,
1218 * this creates a constant value of 1.0 having type float.
1219 *
1220 * If the given type is invalid for increment and decrement operators, return
1221 * a floating point 1--the error will be detected later.
1222 */
1223 static ir_rvalue *
1224 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1225 {
1226 switch (type->base_type) {
1227 case GLSL_TYPE_UINT:
1228 return new(ctx) ir_constant((unsigned) 1);
1229 case GLSL_TYPE_INT:
1230 return new(ctx) ir_constant(1);
1231 default:
1232 case GLSL_TYPE_FLOAT:
1233 return new(ctx) ir_constant(1.0f);
1234 }
1235 }
1236
1237 ir_rvalue *
1238 ast_expression::hir(exec_list *instructions,
1239 struct _mesa_glsl_parse_state *state)
1240 {
1241 return do_hir(instructions, state, true);
1242 }
1243
1244 void
1245 ast_expression::hir_no_rvalue(exec_list *instructions,
1246 struct _mesa_glsl_parse_state *state)
1247 {
1248 do_hir(instructions, state, false);
1249 }
1250
1251 void
1252 ast_expression::set_is_lhs(bool new_value)
1253 {
1254 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1255 * if we lack a identifier we can just skip it.
1256 */
1257 if (this->primary_expression.identifier == NULL)
1258 return;
1259
1260 this->is_lhs = new_value;
1261
1262 /* We need to go through the subexpressions tree to cover cases like
1263 * ast_field_selection
1264 */
1265 if (this->subexpressions[0] != NULL)
1266 this->subexpressions[0]->set_is_lhs(new_value);
1267 }
1268
1269 ir_rvalue *
1270 ast_expression::do_hir(exec_list *instructions,
1271 struct _mesa_glsl_parse_state *state,
1272 bool needs_rvalue)
1273 {
1274 void *ctx = state;
1275 static const int operations[AST_NUM_OPERATORS] = {
1276 -1, /* ast_assign doesn't convert to ir_expression. */
1277 -1, /* ast_plus doesn't convert to ir_expression. */
1278 ir_unop_neg,
1279 ir_binop_add,
1280 ir_binop_sub,
1281 ir_binop_mul,
1282 ir_binop_div,
1283 ir_binop_mod,
1284 ir_binop_lshift,
1285 ir_binop_rshift,
1286 ir_binop_less,
1287 ir_binop_greater,
1288 ir_binop_lequal,
1289 ir_binop_gequal,
1290 ir_binop_all_equal,
1291 ir_binop_any_nequal,
1292 ir_binop_bit_and,
1293 ir_binop_bit_xor,
1294 ir_binop_bit_or,
1295 ir_unop_bit_not,
1296 ir_binop_logic_and,
1297 ir_binop_logic_xor,
1298 ir_binop_logic_or,
1299 ir_unop_logic_not,
1300
1301 /* Note: The following block of expression types actually convert
1302 * to multiple IR instructions.
1303 */
1304 ir_binop_mul, /* ast_mul_assign */
1305 ir_binop_div, /* ast_div_assign */
1306 ir_binop_mod, /* ast_mod_assign */
1307 ir_binop_add, /* ast_add_assign */
1308 ir_binop_sub, /* ast_sub_assign */
1309 ir_binop_lshift, /* ast_ls_assign */
1310 ir_binop_rshift, /* ast_rs_assign */
1311 ir_binop_bit_and, /* ast_and_assign */
1312 ir_binop_bit_xor, /* ast_xor_assign */
1313 ir_binop_bit_or, /* ast_or_assign */
1314
1315 -1, /* ast_conditional doesn't convert to ir_expression. */
1316 ir_binop_add, /* ast_pre_inc. */
1317 ir_binop_sub, /* ast_pre_dec. */
1318 ir_binop_add, /* ast_post_inc. */
1319 ir_binop_sub, /* ast_post_dec. */
1320 -1, /* ast_field_selection doesn't conv to ir_expression. */
1321 -1, /* ast_array_index doesn't convert to ir_expression. */
1322 -1, /* ast_function_call doesn't conv to ir_expression. */
1323 -1, /* ast_identifier doesn't convert to ir_expression. */
1324 -1, /* ast_int_constant doesn't convert to ir_expression. */
1325 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1326 -1, /* ast_float_constant doesn't conv to ir_expression. */
1327 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1328 -1, /* ast_sequence doesn't convert to ir_expression. */
1329 };
1330 ir_rvalue *result = NULL;
1331 ir_rvalue *op[3];
1332 const struct glsl_type *type; /* a temporary variable for switch cases */
1333 bool error_emitted = false;
1334 YYLTYPE loc;
1335
1336 loc = this->get_location();
1337
1338 switch (this->oper) {
1339 case ast_aggregate:
1340 assert(!"ast_aggregate: Should never get here.");
1341 break;
1342
1343 case ast_assign: {
1344 this->subexpressions[0]->set_is_lhs(true);
1345 op[0] = this->subexpressions[0]->hir(instructions, state);
1346 op[1] = this->subexpressions[1]->hir(instructions, state);
1347
1348 error_emitted =
1349 do_assignment(instructions, state,
1350 this->subexpressions[0]->non_lvalue_description,
1351 op[0], op[1], &result, needs_rvalue, false,
1352 this->subexpressions[0]->get_location());
1353 break;
1354 }
1355
1356 case ast_plus:
1357 op[0] = this->subexpressions[0]->hir(instructions, state);
1358
1359 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1360
1361 error_emitted = type->is_error();
1362
1363 result = op[0];
1364 break;
1365
1366 case ast_neg:
1367 op[0] = this->subexpressions[0]->hir(instructions, state);
1368
1369 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1370
1371 error_emitted = type->is_error();
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], NULL);
1375 break;
1376
1377 case ast_add:
1378 case ast_sub:
1379 case ast_mul:
1380 case ast_div:
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382 op[1] = this->subexpressions[1]->hir(instructions, state);
1383
1384 type = arithmetic_result_type(op[0], op[1],
1385 (this->oper == ast_mul),
1386 state, & loc);
1387 error_emitted = type->is_error();
1388
1389 result = new(ctx) ir_expression(operations[this->oper], type,
1390 op[0], op[1]);
1391 break;
1392
1393 case ast_mod:
1394 op[0] = this->subexpressions[0]->hir(instructions, state);
1395 op[1] = this->subexpressions[1]->hir(instructions, state);
1396
1397 type = modulus_result_type(op[0], op[1], state, &loc);
1398
1399 assert(operations[this->oper] == ir_binop_mod);
1400
1401 result = new(ctx) ir_expression(operations[this->oper], type,
1402 op[0], op[1]);
1403 error_emitted = type->is_error();
1404 break;
1405
1406 case ast_lshift:
1407 case ast_rshift:
1408 if (!state->check_bitwise_operations_allowed(&loc)) {
1409 error_emitted = true;
1410 }
1411
1412 op[0] = this->subexpressions[0]->hir(instructions, state);
1413 op[1] = this->subexpressions[1]->hir(instructions, state);
1414 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1415 &loc);
1416 result = new(ctx) ir_expression(operations[this->oper], type,
1417 op[0], op[1]);
1418 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1419 break;
1420
1421 case ast_less:
1422 case ast_greater:
1423 case ast_lequal:
1424 case ast_gequal:
1425 op[0] = this->subexpressions[0]->hir(instructions, state);
1426 op[1] = this->subexpressions[1]->hir(instructions, state);
1427
1428 type = relational_result_type(op[0], op[1], state, & loc);
1429
1430 /* The relational operators must either generate an error or result
1431 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1432 */
1433 assert(type->is_error()
1434 || ((type->base_type == GLSL_TYPE_BOOL)
1435 && type->is_scalar()));
1436
1437 result = new(ctx) ir_expression(operations[this->oper], type,
1438 op[0], op[1]);
1439 error_emitted = type->is_error();
1440 break;
1441
1442 case ast_nequal:
1443 case ast_equal:
1444 op[0] = this->subexpressions[0]->hir(instructions, state);
1445 op[1] = this->subexpressions[1]->hir(instructions, state);
1446
1447 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1448 *
1449 * "The equality operators equal (==), and not equal (!=)
1450 * operate on all types. They result in a scalar Boolean. If
1451 * the operand types do not match, then there must be a
1452 * conversion from Section 4.1.10 "Implicit Conversions"
1453 * applied to one operand that can make them match, in which
1454 * case this conversion is done."
1455 */
1456
1457 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1458 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1459 "no operation `%1$s' exists that takes a left-hand "
1460 "operand of type 'void' or a right operand of type "
1461 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1462 error_emitted = true;
1463 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1464 && !apply_implicit_conversion(op[1]->type, op[0], state))
1465 || (op[0]->type != op[1]->type)) {
1466 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1467 "type", (this->oper == ast_equal) ? "==" : "!=");
1468 error_emitted = true;
1469 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1470 !state->check_version(120, 300, &loc,
1471 "array comparisons forbidden")) {
1472 error_emitted = true;
1473 } else if ((op[0]->type->contains_opaque() ||
1474 op[1]->type->contains_opaque())) {
1475 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1476 error_emitted = true;
1477 }
1478
1479 if (error_emitted) {
1480 result = new(ctx) ir_constant(false);
1481 } else {
1482 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1483 assert(result->type == glsl_type::bool_type);
1484 }
1485 break;
1486
1487 case ast_bit_and:
1488 case ast_bit_xor:
1489 case ast_bit_or:
1490 op[0] = this->subexpressions[0]->hir(instructions, state);
1491 op[1] = this->subexpressions[1]->hir(instructions, state);
1492 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1493 result = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1496 break;
1497
1498 case ast_bit_not:
1499 op[0] = this->subexpressions[0]->hir(instructions, state);
1500
1501 if (!state->check_bitwise_operations_allowed(&loc)) {
1502 error_emitted = true;
1503 }
1504
1505 if (!op[0]->type->is_integer()) {
1506 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1507 error_emitted = true;
1508 }
1509
1510 type = error_emitted ? glsl_type::error_type : op[0]->type;
1511 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1512 break;
1513
1514 case ast_logic_and: {
1515 exec_list rhs_instructions;
1516 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1517 "LHS", &error_emitted);
1518 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1519 "RHS", &error_emitted);
1520
1521 if (rhs_instructions.is_empty()) {
1522 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1523 type = result->type;
1524 } else {
1525 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1526 "and_tmp",
1527 ir_var_temporary);
1528 instructions->push_tail(tmp);
1529
1530 ir_if *const stmt = new(ctx) ir_if(op[0]);
1531 instructions->push_tail(stmt);
1532
1533 stmt->then_instructions.append_list(&rhs_instructions);
1534 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1535 ir_assignment *const then_assign =
1536 new(ctx) ir_assignment(then_deref, op[1]);
1537 stmt->then_instructions.push_tail(then_assign);
1538
1539 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1540 ir_assignment *const else_assign =
1541 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1542 stmt->else_instructions.push_tail(else_assign);
1543
1544 result = new(ctx) ir_dereference_variable(tmp);
1545 type = tmp->type;
1546 }
1547 break;
1548 }
1549
1550 case ast_logic_or: {
1551 exec_list rhs_instructions;
1552 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1553 "LHS", &error_emitted);
1554 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1555 "RHS", &error_emitted);
1556
1557 if (rhs_instructions.is_empty()) {
1558 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1559 type = result->type;
1560 } else {
1561 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1562 "or_tmp",
1563 ir_var_temporary);
1564 instructions->push_tail(tmp);
1565
1566 ir_if *const stmt = new(ctx) ir_if(op[0]);
1567 instructions->push_tail(stmt);
1568
1569 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1570 ir_assignment *const then_assign =
1571 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1572 stmt->then_instructions.push_tail(then_assign);
1573
1574 stmt->else_instructions.append_list(&rhs_instructions);
1575 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1576 ir_assignment *const else_assign =
1577 new(ctx) ir_assignment(else_deref, op[1]);
1578 stmt->else_instructions.push_tail(else_assign);
1579
1580 result = new(ctx) ir_dereference_variable(tmp);
1581 type = tmp->type;
1582 }
1583 break;
1584 }
1585
1586 case ast_logic_xor:
1587 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1588 *
1589 * "The logical binary operators and (&&), or ( | | ), and
1590 * exclusive or (^^). They operate only on two Boolean
1591 * expressions and result in a Boolean expression."
1592 */
1593 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1594 &error_emitted);
1595 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1596 &error_emitted);
1597
1598 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1599 op[0], op[1]);
1600 break;
1601
1602 case ast_logic_not:
1603 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1604 "operand", &error_emitted);
1605
1606 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1607 op[0], NULL);
1608 break;
1609
1610 case ast_mul_assign:
1611 case ast_div_assign:
1612 case ast_add_assign:
1613 case ast_sub_assign: {
1614 this->subexpressions[0]->set_is_lhs(true);
1615 op[0] = this->subexpressions[0]->hir(instructions, state);
1616 op[1] = this->subexpressions[1]->hir(instructions, state);
1617
1618 type = arithmetic_result_type(op[0], op[1],
1619 (this->oper == ast_mul_assign),
1620 state, & loc);
1621
1622 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1623 op[0], op[1]);
1624
1625 error_emitted =
1626 do_assignment(instructions, state,
1627 this->subexpressions[0]->non_lvalue_description,
1628 op[0]->clone(ctx, NULL), temp_rhs,
1629 &result, needs_rvalue, false,
1630 this->subexpressions[0]->get_location());
1631
1632 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1633 * explicitly test for this because none of the binary expression
1634 * operators allow array operands either.
1635 */
1636
1637 break;
1638 }
1639
1640 case ast_mod_assign: {
1641 this->subexpressions[0]->set_is_lhs(true);
1642 op[0] = this->subexpressions[0]->hir(instructions, state);
1643 op[1] = this->subexpressions[1]->hir(instructions, state);
1644
1645 type = modulus_result_type(op[0], op[1], state, &loc);
1646
1647 assert(operations[this->oper] == ir_binop_mod);
1648
1649 ir_rvalue *temp_rhs;
1650 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1651 op[0], op[1]);
1652
1653 error_emitted =
1654 do_assignment(instructions, state,
1655 this->subexpressions[0]->non_lvalue_description,
1656 op[0]->clone(ctx, NULL), temp_rhs,
1657 &result, needs_rvalue, false,
1658 this->subexpressions[0]->get_location());
1659 break;
1660 }
1661
1662 case ast_ls_assign:
1663 case ast_rs_assign: {
1664 this->subexpressions[0]->set_is_lhs(true);
1665 op[0] = this->subexpressions[0]->hir(instructions, state);
1666 op[1] = this->subexpressions[1]->hir(instructions, state);
1667 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1668 &loc);
1669 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1670 type, op[0], op[1]);
1671 error_emitted =
1672 do_assignment(instructions, state,
1673 this->subexpressions[0]->non_lvalue_description,
1674 op[0]->clone(ctx, NULL), temp_rhs,
1675 &result, needs_rvalue, false,
1676 this->subexpressions[0]->get_location());
1677 break;
1678 }
1679
1680 case ast_and_assign:
1681 case ast_xor_assign:
1682 case ast_or_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1688 type, op[0], op[1]);
1689 error_emitted =
1690 do_assignment(instructions, state,
1691 this->subexpressions[0]->non_lvalue_description,
1692 op[0]->clone(ctx, NULL), temp_rhs,
1693 &result, needs_rvalue, false,
1694 this->subexpressions[0]->get_location());
1695 break;
1696 }
1697
1698 case ast_conditional: {
1699 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1700 *
1701 * "The ternary selection operator (?:). It operates on three
1702 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1703 * first expression, which must result in a scalar Boolean."
1704 */
1705 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1706 "condition", &error_emitted);
1707
1708 /* The :? operator is implemented by generating an anonymous temporary
1709 * followed by an if-statement. The last instruction in each branch of
1710 * the if-statement assigns a value to the anonymous temporary. This
1711 * temporary is the r-value of the expression.
1712 */
1713 exec_list then_instructions;
1714 exec_list else_instructions;
1715
1716 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1717 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1718
1719 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1720 *
1721 * "The second and third expressions can be any type, as
1722 * long their types match, or there is a conversion in
1723 * Section 4.1.10 "Implicit Conversions" that can be applied
1724 * to one of the expressions to make their types match. This
1725 * resulting matching type is the type of the entire
1726 * expression."
1727 */
1728 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1729 && !apply_implicit_conversion(op[2]->type, op[1], state))
1730 || (op[1]->type != op[2]->type)) {
1731 YYLTYPE loc = this->subexpressions[1]->get_location();
1732
1733 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1734 "operator must have matching types");
1735 error_emitted = true;
1736 type = glsl_type::error_type;
1737 } else {
1738 type = op[1]->type;
1739 }
1740
1741 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1742 *
1743 * "The second and third expressions must be the same type, but can
1744 * be of any type other than an array."
1745 */
1746 if (type->is_array() &&
1747 !state->check_version(120, 300, &loc,
1748 "second and third operands of ?: operator "
1749 "cannot be arrays")) {
1750 error_emitted = true;
1751 }
1752
1753 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1754 *
1755 * "Except for array indexing, structure member selection, and
1756 * parentheses, opaque variables are not allowed to be operands in
1757 * expressions; such use results in a compile-time error."
1758 */
1759 if (type->contains_opaque()) {
1760 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1761 "of the ?: operator");
1762 error_emitted = true;
1763 }
1764
1765 ir_constant *cond_val = op[0]->constant_expression_value();
1766
1767 if (then_instructions.is_empty()
1768 && else_instructions.is_empty()
1769 && cond_val != NULL) {
1770 result = cond_val->value.b[0] ? op[1] : op[2];
1771 } else {
1772 /* The copy to conditional_tmp reads the whole array. */
1773 if (type->is_array()) {
1774 mark_whole_array_access(op[1]);
1775 mark_whole_array_access(op[2]);
1776 }
1777
1778 ir_variable *const tmp =
1779 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1780 instructions->push_tail(tmp);
1781
1782 ir_if *const stmt = new(ctx) ir_if(op[0]);
1783 instructions->push_tail(stmt);
1784
1785 then_instructions.move_nodes_to(& stmt->then_instructions);
1786 ir_dereference *const then_deref =
1787 new(ctx) ir_dereference_variable(tmp);
1788 ir_assignment *const then_assign =
1789 new(ctx) ir_assignment(then_deref, op[1]);
1790 stmt->then_instructions.push_tail(then_assign);
1791
1792 else_instructions.move_nodes_to(& stmt->else_instructions);
1793 ir_dereference *const else_deref =
1794 new(ctx) ir_dereference_variable(tmp);
1795 ir_assignment *const else_assign =
1796 new(ctx) ir_assignment(else_deref, op[2]);
1797 stmt->else_instructions.push_tail(else_assign);
1798
1799 result = new(ctx) ir_dereference_variable(tmp);
1800 }
1801 break;
1802 }
1803
1804 case ast_pre_inc:
1805 case ast_pre_dec: {
1806 this->non_lvalue_description = (this->oper == ast_pre_inc)
1807 ? "pre-increment operation" : "pre-decrement operation";
1808
1809 op[0] = this->subexpressions[0]->hir(instructions, state);
1810 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1811
1812 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1813
1814 ir_rvalue *temp_rhs;
1815 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1816 op[0], op[1]);
1817
1818 error_emitted =
1819 do_assignment(instructions, state,
1820 this->subexpressions[0]->non_lvalue_description,
1821 op[0]->clone(ctx, NULL), temp_rhs,
1822 &result, needs_rvalue, false,
1823 this->subexpressions[0]->get_location());
1824 break;
1825 }
1826
1827 case ast_post_inc:
1828 case ast_post_dec: {
1829 this->non_lvalue_description = (this->oper == ast_post_inc)
1830 ? "post-increment operation" : "post-decrement operation";
1831 op[0] = this->subexpressions[0]->hir(instructions, state);
1832 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1833
1834 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1835
1836 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1837
1838 ir_rvalue *temp_rhs;
1839 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1840 op[0], op[1]);
1841
1842 /* Get a temporary of a copy of the lvalue before it's modified.
1843 * This may get thrown away later.
1844 */
1845 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1846
1847 ir_rvalue *junk_rvalue;
1848 error_emitted =
1849 do_assignment(instructions, state,
1850 this->subexpressions[0]->non_lvalue_description,
1851 op[0]->clone(ctx, NULL), temp_rhs,
1852 &junk_rvalue, false, false,
1853 this->subexpressions[0]->get_location());
1854
1855 break;
1856 }
1857
1858 case ast_field_selection:
1859 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1860 break;
1861
1862 case ast_array_index: {
1863 YYLTYPE index_loc = subexpressions[1]->get_location();
1864
1865 /* Getting if an array is being used uninitialized is beyond what we get
1866 * from ir_value.data.assigned. Setting is_lhs as true would force to
1867 * not raise a uninitialized warning when using an array
1868 */
1869 subexpressions[0]->set_is_lhs(true);
1870 op[0] = subexpressions[0]->hir(instructions, state);
1871 op[1] = subexpressions[1]->hir(instructions, state);
1872
1873 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1874 loc, index_loc);
1875
1876 if (result->type->is_error())
1877 error_emitted = true;
1878
1879 break;
1880 }
1881
1882 case ast_unsized_array_dim:
1883 assert(!"ast_unsized_array_dim: Should never get here.");
1884 break;
1885
1886 case ast_function_call:
1887 /* Should *NEVER* get here. ast_function_call should always be handled
1888 * by ast_function_expression::hir.
1889 */
1890 assert(0);
1891 break;
1892
1893 case ast_identifier: {
1894 /* ast_identifier can appear several places in a full abstract syntax
1895 * tree. This particular use must be at location specified in the grammar
1896 * as 'variable_identifier'.
1897 */
1898 ir_variable *var =
1899 state->symbols->get_variable(this->primary_expression.identifier);
1900
1901 if (var != NULL) {
1902 var->data.used = true;
1903 result = new(ctx) ir_dereference_variable(var);
1904
1905 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1906 && !this->is_lhs
1907 && result->variable_referenced()->data.assigned != true) {
1908 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1909 this->primary_expression.identifier);
1910 }
1911 } else {
1912 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1913 this->primary_expression.identifier);
1914
1915 result = ir_rvalue::error_value(ctx);
1916 error_emitted = true;
1917 }
1918 break;
1919 }
1920
1921 case ast_int_constant:
1922 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1923 break;
1924
1925 case ast_uint_constant:
1926 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1927 break;
1928
1929 case ast_float_constant:
1930 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1931 break;
1932
1933 case ast_bool_constant:
1934 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1935 break;
1936
1937 case ast_double_constant:
1938 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1939 break;
1940
1941 case ast_sequence: {
1942 /* It should not be possible to generate a sequence in the AST without
1943 * any expressions in it.
1944 */
1945 assert(!this->expressions.is_empty());
1946
1947 /* The r-value of a sequence is the last expression in the sequence. If
1948 * the other expressions in the sequence do not have side-effects (and
1949 * therefore add instructions to the instruction list), they get dropped
1950 * on the floor.
1951 */
1952 exec_node *previous_tail_pred = NULL;
1953 YYLTYPE previous_operand_loc = loc;
1954
1955 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1956 /* If one of the operands of comma operator does not generate any
1957 * code, we want to emit a warning. At each pass through the loop
1958 * previous_tail_pred will point to the last instruction in the
1959 * stream *before* processing the previous operand. Naturally,
1960 * instructions->tail_pred will point to the last instruction in the
1961 * stream *after* processing the previous operand. If the two
1962 * pointers match, then the previous operand had no effect.
1963 *
1964 * The warning behavior here differs slightly from GCC. GCC will
1965 * only emit a warning if none of the left-hand operands have an
1966 * effect. However, it will emit a warning for each. I believe that
1967 * there are some cases in C (especially with GCC extensions) where
1968 * it is useful to have an intermediate step in a sequence have no
1969 * effect, but I don't think these cases exist in GLSL. Either way,
1970 * it would be a giant hassle to replicate that behavior.
1971 */
1972 if (previous_tail_pred == instructions->tail_pred) {
1973 _mesa_glsl_warning(&previous_operand_loc, state,
1974 "left-hand operand of comma expression has "
1975 "no effect");
1976 }
1977
1978 /* tail_pred is directly accessed instead of using the get_tail()
1979 * method for performance reasons. get_tail() has extra code to
1980 * return NULL when the list is empty. We don't care about that
1981 * here, so using tail_pred directly is fine.
1982 */
1983 previous_tail_pred = instructions->tail_pred;
1984 previous_operand_loc = ast->get_location();
1985
1986 result = ast->hir(instructions, state);
1987 }
1988
1989 /* Any errors should have already been emitted in the loop above.
1990 */
1991 error_emitted = true;
1992 break;
1993 }
1994 }
1995 type = NULL; /* use result->type, not type. */
1996 assert(result != NULL || !needs_rvalue);
1997
1998 if (result && result->type->is_error() && !error_emitted)
1999 _mesa_glsl_error(& loc, state, "type mismatch");
2000
2001 return result;
2002 }
2003
2004 bool
2005 ast_expression::has_sequence_subexpression() const
2006 {
2007 switch (this->oper) {
2008 case ast_plus:
2009 case ast_neg:
2010 case ast_bit_not:
2011 case ast_logic_not:
2012 case ast_pre_inc:
2013 case ast_pre_dec:
2014 case ast_post_inc:
2015 case ast_post_dec:
2016 return this->subexpressions[0]->has_sequence_subexpression();
2017
2018 case ast_assign:
2019 case ast_add:
2020 case ast_sub:
2021 case ast_mul:
2022 case ast_div:
2023 case ast_mod:
2024 case ast_lshift:
2025 case ast_rshift:
2026 case ast_less:
2027 case ast_greater:
2028 case ast_lequal:
2029 case ast_gequal:
2030 case ast_nequal:
2031 case ast_equal:
2032 case ast_bit_and:
2033 case ast_bit_xor:
2034 case ast_bit_or:
2035 case ast_logic_and:
2036 case ast_logic_or:
2037 case ast_logic_xor:
2038 case ast_array_index:
2039 case ast_mul_assign:
2040 case ast_div_assign:
2041 case ast_add_assign:
2042 case ast_sub_assign:
2043 case ast_mod_assign:
2044 case ast_ls_assign:
2045 case ast_rs_assign:
2046 case ast_and_assign:
2047 case ast_xor_assign:
2048 case ast_or_assign:
2049 return this->subexpressions[0]->has_sequence_subexpression() ||
2050 this->subexpressions[1]->has_sequence_subexpression();
2051
2052 case ast_conditional:
2053 return this->subexpressions[0]->has_sequence_subexpression() ||
2054 this->subexpressions[1]->has_sequence_subexpression() ||
2055 this->subexpressions[2]->has_sequence_subexpression();
2056
2057 case ast_sequence:
2058 return true;
2059
2060 case ast_field_selection:
2061 case ast_identifier:
2062 case ast_int_constant:
2063 case ast_uint_constant:
2064 case ast_float_constant:
2065 case ast_bool_constant:
2066 case ast_double_constant:
2067 return false;
2068
2069 case ast_aggregate:
2070 unreachable("ast_aggregate: Should never get here.");
2071
2072 case ast_function_call:
2073 unreachable("should be handled by ast_function_expression::hir");
2074
2075 case ast_unsized_array_dim:
2076 unreachable("ast_unsized_array_dim: Should never get here.");
2077 }
2078
2079 return false;
2080 }
2081
2082 ir_rvalue *
2083 ast_expression_statement::hir(exec_list *instructions,
2084 struct _mesa_glsl_parse_state *state)
2085 {
2086 /* It is possible to have expression statements that don't have an
2087 * expression. This is the solitary semicolon:
2088 *
2089 * for (i = 0; i < 5; i++)
2090 * ;
2091 *
2092 * In this case the expression will be NULL. Test for NULL and don't do
2093 * anything in that case.
2094 */
2095 if (expression != NULL)
2096 expression->hir_no_rvalue(instructions, state);
2097
2098 /* Statements do not have r-values.
2099 */
2100 return NULL;
2101 }
2102
2103
2104 ir_rvalue *
2105 ast_compound_statement::hir(exec_list *instructions,
2106 struct _mesa_glsl_parse_state *state)
2107 {
2108 if (new_scope)
2109 state->symbols->push_scope();
2110
2111 foreach_list_typed (ast_node, ast, link, &this->statements)
2112 ast->hir(instructions, state);
2113
2114 if (new_scope)
2115 state->symbols->pop_scope();
2116
2117 /* Compound statements do not have r-values.
2118 */
2119 return NULL;
2120 }
2121
2122 /**
2123 * Evaluate the given exec_node (which should be an ast_node representing
2124 * a single array dimension) and return its integer value.
2125 */
2126 static unsigned
2127 process_array_size(exec_node *node,
2128 struct _mesa_glsl_parse_state *state)
2129 {
2130 exec_list dummy_instructions;
2131
2132 ast_node *array_size = exec_node_data(ast_node, node, link);
2133
2134 /**
2135 * Dimensions other than the outermost dimension can by unsized if they
2136 * are immediately sized by a constructor or initializer.
2137 */
2138 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2139 return 0;
2140
2141 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2142 YYLTYPE loc = array_size->get_location();
2143
2144 if (ir == NULL) {
2145 _mesa_glsl_error(& loc, state,
2146 "array size could not be resolved");
2147 return 0;
2148 }
2149
2150 if (!ir->type->is_integer()) {
2151 _mesa_glsl_error(& loc, state,
2152 "array size must be integer type");
2153 return 0;
2154 }
2155
2156 if (!ir->type->is_scalar()) {
2157 _mesa_glsl_error(& loc, state,
2158 "array size must be scalar type");
2159 return 0;
2160 }
2161
2162 ir_constant *const size = ir->constant_expression_value();
2163 if (size == NULL ||
2164 (state->is_version(120, 300) &&
2165 array_size->has_sequence_subexpression())) {
2166 _mesa_glsl_error(& loc, state, "array size must be a "
2167 "constant valued expression");
2168 return 0;
2169 }
2170
2171 if (size->value.i[0] <= 0) {
2172 _mesa_glsl_error(& loc, state, "array size must be > 0");
2173 return 0;
2174 }
2175
2176 assert(size->type == ir->type);
2177
2178 /* If the array size is const (and we've verified that
2179 * it is) then no instructions should have been emitted
2180 * when we converted it to HIR. If they were emitted,
2181 * then either the array size isn't const after all, or
2182 * we are emitting unnecessary instructions.
2183 */
2184 assert(dummy_instructions.is_empty());
2185
2186 return size->value.u[0];
2187 }
2188
2189 static const glsl_type *
2190 process_array_type(YYLTYPE *loc, const glsl_type *base,
2191 ast_array_specifier *array_specifier,
2192 struct _mesa_glsl_parse_state *state)
2193 {
2194 const glsl_type *array_type = base;
2195
2196 if (array_specifier != NULL) {
2197 if (base->is_array()) {
2198
2199 /* From page 19 (page 25) of the GLSL 1.20 spec:
2200 *
2201 * "Only one-dimensional arrays may be declared."
2202 */
2203 if (!state->check_arrays_of_arrays_allowed(loc)) {
2204 return glsl_type::error_type;
2205 }
2206 }
2207
2208 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2209 !node->is_head_sentinel(); node = node->prev) {
2210 unsigned array_size = process_array_size(node, state);
2211 array_type = glsl_type::get_array_instance(array_type, array_size);
2212 }
2213 }
2214
2215 return array_type;
2216 }
2217
2218 static bool
2219 precision_qualifier_allowed(const glsl_type *type)
2220 {
2221 /* Precision qualifiers apply to floating point, integer and opaque
2222 * types.
2223 *
2224 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2225 * "Any floating point or any integer declaration can have the type
2226 * preceded by one of these precision qualifiers [...] Literal
2227 * constants do not have precision qualifiers. Neither do Boolean
2228 * variables.
2229 *
2230 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2231 * spec also says:
2232 *
2233 * "Precision qualifiers are added for code portability with OpenGL
2234 * ES, not for functionality. They have the same syntax as in OpenGL
2235 * ES."
2236 *
2237 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2238 *
2239 * "uniform lowp sampler2D sampler;
2240 * highp vec2 coord;
2241 * ...
2242 * lowp vec4 col = texture2D (sampler, coord);
2243 * // texture2D returns lowp"
2244 *
2245 * From this, we infer that GLSL 1.30 (and later) should allow precision
2246 * qualifiers on sampler types just like float and integer types.
2247 */
2248 return (type->is_float()
2249 || type->is_integer()
2250 || type->contains_opaque())
2251 && !type->without_array()->is_record();
2252 }
2253
2254 const glsl_type *
2255 ast_type_specifier::glsl_type(const char **name,
2256 struct _mesa_glsl_parse_state *state) const
2257 {
2258 const struct glsl_type *type;
2259
2260 type = state->symbols->get_type(this->type_name);
2261 *name = this->type_name;
2262
2263 YYLTYPE loc = this->get_location();
2264 type = process_array_type(&loc, type, this->array_specifier, state);
2265
2266 return type;
2267 }
2268
2269 /**
2270 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2271 *
2272 * "The precision statement
2273 *
2274 * precision precision-qualifier type;
2275 *
2276 * can be used to establish a default precision qualifier. The type field can
2277 * be either int or float or any of the sampler types, (...) If type is float,
2278 * the directive applies to non-precision-qualified floating point type
2279 * (scalar, vector, and matrix) declarations. If type is int, the directive
2280 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2281 * and unsigned) declarations."
2282 *
2283 * We use the symbol table to keep the values of the default precisions for
2284 * each 'type' in each scope and we use the 'type' string from the precision
2285 * statement as key in the symbol table. When we want to retrieve the default
2286 * precision associated with a given glsl_type we need to know the type string
2287 * associated with it. This is what this function returns.
2288 */
2289 static const char *
2290 get_type_name_for_precision_qualifier(const glsl_type *type)
2291 {
2292 switch (type->base_type) {
2293 case GLSL_TYPE_FLOAT:
2294 return "float";
2295 case GLSL_TYPE_UINT:
2296 case GLSL_TYPE_INT:
2297 return "int";
2298 case GLSL_TYPE_ATOMIC_UINT:
2299 return "atomic_uint";
2300 case GLSL_TYPE_IMAGE:
2301 /* fallthrough */
2302 case GLSL_TYPE_SAMPLER: {
2303 const unsigned type_idx =
2304 type->sampler_array + 2 * type->sampler_shadow;
2305 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2306 assert(type_idx < 4);
2307 switch (type->sampled_type) {
2308 case GLSL_TYPE_FLOAT:
2309 switch (type->sampler_dimensionality) {
2310 case GLSL_SAMPLER_DIM_1D: {
2311 assert(type->base_type == GLSL_TYPE_SAMPLER);
2312 static const char *const names[4] = {
2313 "sampler1D", "sampler1DArray",
2314 "sampler1DShadow", "sampler1DArrayShadow"
2315 };
2316 return names[type_idx];
2317 }
2318 case GLSL_SAMPLER_DIM_2D: {
2319 static const char *const names[8] = {
2320 "sampler2D", "sampler2DArray",
2321 "sampler2DShadow", "sampler2DArrayShadow",
2322 "image2D", "image2DArray", NULL, NULL
2323 };
2324 return names[offset + type_idx];
2325 }
2326 case GLSL_SAMPLER_DIM_3D: {
2327 static const char *const names[8] = {
2328 "sampler3D", NULL, NULL, NULL,
2329 "image3D", NULL, NULL, NULL
2330 };
2331 return names[offset + type_idx];
2332 }
2333 case GLSL_SAMPLER_DIM_CUBE: {
2334 static const char *const names[8] = {
2335 "samplerCube", "samplerCubeArray",
2336 "samplerCubeShadow", "samplerCubeArrayShadow",
2337 "imageCube", NULL, NULL, NULL
2338 };
2339 return names[offset + type_idx];
2340 }
2341 case GLSL_SAMPLER_DIM_MS: {
2342 assert(type->base_type == GLSL_TYPE_SAMPLER);
2343 static const char *const names[4] = {
2344 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2345 };
2346 return names[type_idx];
2347 }
2348 case GLSL_SAMPLER_DIM_RECT: {
2349 assert(type->base_type == GLSL_TYPE_SAMPLER);
2350 static const char *const names[4] = {
2351 "samplerRect", NULL, "samplerRectShadow", NULL
2352 };
2353 return names[type_idx];
2354 }
2355 case GLSL_SAMPLER_DIM_BUF: {
2356 static const char *const names[8] = {
2357 "samplerBuffer", NULL, NULL, NULL,
2358 "imageBuffer", NULL, NULL, NULL
2359 };
2360 return names[offset + type_idx];
2361 }
2362 case GLSL_SAMPLER_DIM_EXTERNAL: {
2363 assert(type->base_type == GLSL_TYPE_SAMPLER);
2364 static const char *const names[4] = {
2365 "samplerExternalOES", NULL, NULL, NULL
2366 };
2367 return names[type_idx];
2368 }
2369 default:
2370 unreachable("Unsupported sampler/image dimensionality");
2371 } /* sampler/image float dimensionality */
2372 break;
2373 case GLSL_TYPE_INT:
2374 switch (type->sampler_dimensionality) {
2375 case GLSL_SAMPLER_DIM_1D: {
2376 assert(type->base_type == GLSL_TYPE_SAMPLER);
2377 static const char *const names[4] = {
2378 "isampler1D", "isampler1DArray", NULL, NULL
2379 };
2380 return names[type_idx];
2381 }
2382 case GLSL_SAMPLER_DIM_2D: {
2383 static const char *const names[8] = {
2384 "isampler2D", "isampler2DArray", NULL, NULL,
2385 "iimage2D", "iimage2DArray", NULL, NULL
2386 };
2387 return names[offset + type_idx];
2388 }
2389 case GLSL_SAMPLER_DIM_3D: {
2390 static const char *const names[8] = {
2391 "isampler3D", NULL, NULL, NULL,
2392 "iimage3D", NULL, NULL, NULL
2393 };
2394 return names[offset + type_idx];
2395 }
2396 case GLSL_SAMPLER_DIM_CUBE: {
2397 static const char *const names[8] = {
2398 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2399 "iimageCube", NULL, NULL, NULL
2400 };
2401 return names[offset + type_idx];
2402 }
2403 case GLSL_SAMPLER_DIM_MS: {
2404 assert(type->base_type == GLSL_TYPE_SAMPLER);
2405 static const char *const names[4] = {
2406 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2407 };
2408 return names[type_idx];
2409 }
2410 case GLSL_SAMPLER_DIM_RECT: {
2411 assert(type->base_type == GLSL_TYPE_SAMPLER);
2412 static const char *const names[4] = {
2413 "isamplerRect", NULL, "isamplerRectShadow", NULL
2414 };
2415 return names[type_idx];
2416 }
2417 case GLSL_SAMPLER_DIM_BUF: {
2418 static const char *const names[8] = {
2419 "isamplerBuffer", NULL, NULL, NULL,
2420 "iimageBuffer", NULL, NULL, NULL
2421 };
2422 return names[offset + type_idx];
2423 }
2424 default:
2425 unreachable("Unsupported isampler/iimage dimensionality");
2426 } /* sampler/image int dimensionality */
2427 break;
2428 case GLSL_TYPE_UINT:
2429 switch (type->sampler_dimensionality) {
2430 case GLSL_SAMPLER_DIM_1D: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "usampler1D", "usampler1DArray", NULL, NULL
2434 };
2435 return names[type_idx];
2436 }
2437 case GLSL_SAMPLER_DIM_2D: {
2438 static const char *const names[8] = {
2439 "usampler2D", "usampler2DArray", NULL, NULL,
2440 "uimage2D", "uimage2DArray", NULL, NULL
2441 };
2442 return names[offset + type_idx];
2443 }
2444 case GLSL_SAMPLER_DIM_3D: {
2445 static const char *const names[8] = {
2446 "usampler3D", NULL, NULL, NULL,
2447 "uimage3D", NULL, NULL, NULL
2448 };
2449 return names[offset + type_idx];
2450 }
2451 case GLSL_SAMPLER_DIM_CUBE: {
2452 static const char *const names[8] = {
2453 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2454 "uimageCube", NULL, NULL, NULL
2455 };
2456 return names[offset + type_idx];
2457 }
2458 case GLSL_SAMPLER_DIM_MS: {
2459 assert(type->base_type == GLSL_TYPE_SAMPLER);
2460 static const char *const names[4] = {
2461 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2462 };
2463 return names[type_idx];
2464 }
2465 case GLSL_SAMPLER_DIM_RECT: {
2466 assert(type->base_type == GLSL_TYPE_SAMPLER);
2467 static const char *const names[4] = {
2468 "usamplerRect", NULL, "usamplerRectShadow", NULL
2469 };
2470 return names[type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_BUF: {
2473 static const char *const names[8] = {
2474 "usamplerBuffer", NULL, NULL, NULL,
2475 "uimageBuffer", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 default:
2480 unreachable("Unsupported usampler/uimage dimensionality");
2481 } /* sampler/image uint dimensionality */
2482 break;
2483 default:
2484 unreachable("Unsupported sampler/image type");
2485 } /* sampler/image type */
2486 break;
2487 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2488 break;
2489 default:
2490 unreachable("Unsupported type");
2491 } /* base type */
2492 }
2493
2494 static unsigned
2495 select_gles_precision(unsigned qual_precision,
2496 const glsl_type *type,
2497 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2498 {
2499 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2500 * In GLES we take the precision from the type qualifier if present,
2501 * otherwise, if the type of the variable allows precision qualifiers at
2502 * all, we look for the default precision qualifier for that type in the
2503 * current scope.
2504 */
2505 assert(state->es_shader);
2506
2507 unsigned precision = GLSL_PRECISION_NONE;
2508 if (qual_precision) {
2509 precision = qual_precision;
2510 } else if (precision_qualifier_allowed(type)) {
2511 const char *type_name =
2512 get_type_name_for_precision_qualifier(type->without_array());
2513 assert(type_name != NULL);
2514
2515 precision =
2516 state->symbols->get_default_precision_qualifier(type_name);
2517 if (precision == ast_precision_none) {
2518 _mesa_glsl_error(loc, state,
2519 "No precision specified in this scope for type `%s'",
2520 type->name);
2521 }
2522 }
2523 return precision;
2524 }
2525
2526 const glsl_type *
2527 ast_fully_specified_type::glsl_type(const char **name,
2528 struct _mesa_glsl_parse_state *state) const
2529 {
2530 return this->specifier->glsl_type(name, state);
2531 }
2532
2533 /**
2534 * Determine whether a toplevel variable declaration declares a varying. This
2535 * function operates by examining the variable's mode and the shader target,
2536 * so it correctly identifies linkage variables regardless of whether they are
2537 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2538 *
2539 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2540 * this function will produce undefined results.
2541 */
2542 static bool
2543 is_varying_var(ir_variable *var, gl_shader_stage target)
2544 {
2545 switch (target) {
2546 case MESA_SHADER_VERTEX:
2547 return var->data.mode == ir_var_shader_out;
2548 case MESA_SHADER_FRAGMENT:
2549 return var->data.mode == ir_var_shader_in;
2550 default:
2551 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2552 }
2553 }
2554
2555
2556 /**
2557 * Matrix layout qualifiers are only allowed on certain types
2558 */
2559 static void
2560 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2561 YYLTYPE *loc,
2562 const glsl_type *type,
2563 ir_variable *var)
2564 {
2565 if (var && !var->is_in_buffer_block()) {
2566 /* Layout qualifiers may only apply to interface blocks and fields in
2567 * them.
2568 */
2569 _mesa_glsl_error(loc, state,
2570 "uniform block layout qualifiers row_major and "
2571 "column_major may not be applied to variables "
2572 "outside of uniform blocks");
2573 } else if (!type->without_array()->is_matrix()) {
2574 /* The OpenGL ES 3.0 conformance tests did not originally allow
2575 * matrix layout qualifiers on non-matrices. However, the OpenGL
2576 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2577 * amended to specifically allow these layouts on all types. Emit
2578 * a warning so that people know their code may not be portable.
2579 */
2580 _mesa_glsl_warning(loc, state,
2581 "uniform block layout qualifiers row_major and "
2582 "column_major applied to non-matrix types may "
2583 "be rejected by older compilers");
2584 }
2585 }
2586
2587 static bool
2588 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2589 struct _mesa_glsl_parse_state *state,
2590 unsigned xfb_buffer) {
2591 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2592 _mesa_glsl_error(loc, state,
2593 "invalid xfb_buffer specified %d is larger than "
2594 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2595 xfb_buffer,
2596 state->Const.MaxTransformFeedbackBuffers - 1);
2597 return false;
2598 }
2599
2600 return true;
2601 }
2602
2603 /* From the ARB_enhanced_layouts spec:
2604 *
2605 * "Variables and block members qualified with *xfb_offset* can be
2606 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2607 * The offset must be a multiple of the size of the first component of
2608 * the first qualified variable or block member, or a compile-time error
2609 * results. Further, if applied to an aggregate containing a double,
2610 * the offset must also be a multiple of 8, and the space taken in the
2611 * buffer will be a multiple of 8.
2612 */
2613 static bool
2614 validate_xfb_offset_qualifier(YYLTYPE *loc,
2615 struct _mesa_glsl_parse_state *state,
2616 int xfb_offset, const glsl_type *type,
2617 unsigned component_size) {
2618 const glsl_type *t_without_array = type->without_array();
2619
2620 if (xfb_offset != -1 && type->is_unsized_array()) {
2621 _mesa_glsl_error(loc, state,
2622 "xfb_offset can't be used with unsized arrays.");
2623 return false;
2624 }
2625
2626 /* Make sure nested structs don't contain unsized arrays, and validate
2627 * any xfb_offsets on interface members.
2628 */
2629 if (t_without_array->is_record() || t_without_array->is_interface())
2630 for (unsigned int i = 0; i < t_without_array->length; i++) {
2631 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2632
2633 /* When the interface block doesn't have an xfb_offset qualifier then
2634 * we apply the component size rules at the member level.
2635 */
2636 if (xfb_offset == -1)
2637 component_size = member_t->contains_double() ? 8 : 4;
2638
2639 int xfb_offset = t_without_array->fields.structure[i].offset;
2640 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2641 component_size);
2642 }
2643
2644 /* Nested structs or interface block without offset may not have had an
2645 * offset applied yet so return.
2646 */
2647 if (xfb_offset == -1) {
2648 return true;
2649 }
2650
2651 if (xfb_offset % component_size) {
2652 _mesa_glsl_error(loc, state,
2653 "invalid qualifier xfb_offset=%d must be a multiple "
2654 "of the first component size of the first qualified "
2655 "variable or block member. Or double if an aggregate "
2656 "that contains a double (%d).",
2657 xfb_offset, component_size);
2658 return false;
2659 }
2660
2661 return true;
2662 }
2663
2664 static bool
2665 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2666 unsigned stream)
2667 {
2668 if (stream >= state->ctx->Const.MaxVertexStreams) {
2669 _mesa_glsl_error(loc, state,
2670 "invalid stream specified %d is larger than "
2671 "MAX_VERTEX_STREAMS - 1 (%d).",
2672 stream, state->ctx->Const.MaxVertexStreams - 1);
2673 return false;
2674 }
2675
2676 return true;
2677 }
2678
2679 static void
2680 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2681 YYLTYPE *loc,
2682 ir_variable *var,
2683 const glsl_type *type,
2684 const ast_type_qualifier *qual)
2685 {
2686 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2687 _mesa_glsl_error(loc, state,
2688 "the \"binding\" qualifier only applies to uniforms and "
2689 "shader storage buffer objects");
2690 return;
2691 }
2692
2693 unsigned qual_binding;
2694 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2695 &qual_binding)) {
2696 return;
2697 }
2698
2699 const struct gl_context *const ctx = state->ctx;
2700 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2701 unsigned max_index = qual_binding + elements - 1;
2702 const glsl_type *base_type = type->without_array();
2703
2704 if (base_type->is_interface()) {
2705 /* UBOs. From page 60 of the GLSL 4.20 specification:
2706 * "If the binding point for any uniform block instance is less than zero,
2707 * or greater than or equal to the implementation-dependent maximum
2708 * number of uniform buffer bindings, a compilation error will occur.
2709 * When the binding identifier is used with a uniform block instanced as
2710 * an array of size N, all elements of the array from binding through
2711 * binding + N – 1 must be within this range."
2712 *
2713 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2714 */
2715 if (qual->flags.q.uniform &&
2716 max_index >= ctx->Const.MaxUniformBufferBindings) {
2717 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2718 "the maximum number of UBO binding points (%d)",
2719 qual_binding, elements,
2720 ctx->Const.MaxUniformBufferBindings);
2721 return;
2722 }
2723
2724 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2725 * "If the binding point for any uniform or shader storage block instance
2726 * is less than zero, or greater than or equal to the
2727 * implementation-dependent maximum number of uniform buffer bindings, a
2728 * compile-time error will occur. When the binding identifier is used
2729 * with a uniform or shader storage block instanced as an array of size
2730 * N, all elements of the array from binding through binding + N – 1 must
2731 * be within this range."
2732 */
2733 if (qual->flags.q.buffer &&
2734 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2735 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2736 "the maximum number of SSBO binding points (%d)",
2737 qual_binding, elements,
2738 ctx->Const.MaxShaderStorageBufferBindings);
2739 return;
2740 }
2741 } else if (base_type->is_sampler()) {
2742 /* Samplers. From page 63 of the GLSL 4.20 specification:
2743 * "If the binding is less than zero, or greater than or equal to the
2744 * implementation-dependent maximum supported number of units, a
2745 * compilation error will occur. When the binding identifier is used
2746 * with an array of size N, all elements of the array from binding
2747 * through binding + N - 1 must be within this range."
2748 */
2749 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2750
2751 if (max_index >= limit) {
2752 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2753 "exceeds the maximum number of texture image units "
2754 "(%u)", qual_binding, elements, limit);
2755
2756 return;
2757 }
2758 } else if (base_type->contains_atomic()) {
2759 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2760 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2761 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2762 " maximum number of atomic counter buffer bindings"
2763 "(%u)", qual_binding,
2764 ctx->Const.MaxAtomicBufferBindings);
2765
2766 return;
2767 }
2768 } else if ((state->is_version(420, 310) ||
2769 state->ARB_shading_language_420pack_enable) &&
2770 base_type->is_image()) {
2771 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2772 if (max_index >= ctx->Const.MaxImageUnits) {
2773 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2774 " maximum number of image units (%d)", max_index,
2775 ctx->Const.MaxImageUnits);
2776 return;
2777 }
2778
2779 } else {
2780 _mesa_glsl_error(loc, state,
2781 "the \"binding\" qualifier only applies to uniform "
2782 "blocks, opaque variables, or arrays thereof");
2783 return;
2784 }
2785
2786 var->data.explicit_binding = true;
2787 var->data.binding = qual_binding;
2788
2789 return;
2790 }
2791
2792
2793 static glsl_interp_qualifier
2794 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2795 ir_variable_mode mode,
2796 struct _mesa_glsl_parse_state *state,
2797 YYLTYPE *loc)
2798 {
2799 glsl_interp_qualifier interpolation;
2800 if (qual->flags.q.flat)
2801 interpolation = INTERP_QUALIFIER_FLAT;
2802 else if (qual->flags.q.noperspective)
2803 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2804 else if (qual->flags.q.smooth)
2805 interpolation = INTERP_QUALIFIER_SMOOTH;
2806 else
2807 interpolation = INTERP_QUALIFIER_NONE;
2808
2809 if (interpolation != INTERP_QUALIFIER_NONE) {
2810 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2811 _mesa_glsl_error(loc, state,
2812 "interpolation qualifier `%s' can only be applied to "
2813 "shader inputs or outputs.",
2814 interpolation_string(interpolation));
2815
2816 }
2817
2818 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2819 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2820 _mesa_glsl_error(loc, state,
2821 "interpolation qualifier `%s' cannot be applied to "
2822 "vertex shader inputs or fragment shader outputs",
2823 interpolation_string(interpolation));
2824 }
2825 } else if (state->es_shader &&
2826 ((mode == ir_var_shader_in &&
2827 state->stage != MESA_SHADER_VERTEX) ||
2828 (mode == ir_var_shader_out &&
2829 state->stage != MESA_SHADER_FRAGMENT))) {
2830 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2831 *
2832 * "When no interpolation qualifier is present, smooth interpolation
2833 * is used."
2834 */
2835 interpolation = INTERP_QUALIFIER_SMOOTH;
2836 }
2837
2838 return interpolation;
2839 }
2840
2841
2842 static void
2843 apply_explicit_location(const struct ast_type_qualifier *qual,
2844 ir_variable *var,
2845 struct _mesa_glsl_parse_state *state,
2846 YYLTYPE *loc)
2847 {
2848 bool fail = false;
2849
2850 unsigned qual_location;
2851 if (!process_qualifier_constant(state, loc, "location", qual->location,
2852 &qual_location)) {
2853 return;
2854 }
2855
2856 /* Checks for GL_ARB_explicit_uniform_location. */
2857 if (qual->flags.q.uniform) {
2858 if (!state->check_explicit_uniform_location_allowed(loc, var))
2859 return;
2860
2861 const struct gl_context *const ctx = state->ctx;
2862 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2863
2864 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2865 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2866 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2867 ctx->Const.MaxUserAssignableUniformLocations);
2868 return;
2869 }
2870
2871 var->data.explicit_location = true;
2872 var->data.location = qual_location;
2873 return;
2874 }
2875
2876 /* Between GL_ARB_explicit_attrib_location an
2877 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2878 * stage can be assigned explicit locations. The checking here associates
2879 * the correct extension with the correct stage's input / output:
2880 *
2881 * input output
2882 * ----- ------
2883 * vertex explicit_loc sso
2884 * tess control sso sso
2885 * tess eval sso sso
2886 * geometry sso sso
2887 * fragment sso explicit_loc
2888 */
2889 switch (state->stage) {
2890 case MESA_SHADER_VERTEX:
2891 if (var->data.mode == ir_var_shader_in) {
2892 if (!state->check_explicit_attrib_location_allowed(loc, var))
2893 return;
2894
2895 break;
2896 }
2897
2898 if (var->data.mode == ir_var_shader_out) {
2899 if (!state->check_separate_shader_objects_allowed(loc, var))
2900 return;
2901
2902 break;
2903 }
2904
2905 fail = true;
2906 break;
2907
2908 case MESA_SHADER_TESS_CTRL:
2909 case MESA_SHADER_TESS_EVAL:
2910 case MESA_SHADER_GEOMETRY:
2911 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2912 if (!state->check_separate_shader_objects_allowed(loc, var))
2913 return;
2914
2915 break;
2916 }
2917
2918 fail = true;
2919 break;
2920
2921 case MESA_SHADER_FRAGMENT:
2922 if (var->data.mode == ir_var_shader_in) {
2923 if (!state->check_separate_shader_objects_allowed(loc, var))
2924 return;
2925
2926 break;
2927 }
2928
2929 if (var->data.mode == ir_var_shader_out) {
2930 if (!state->check_explicit_attrib_location_allowed(loc, var))
2931 return;
2932
2933 break;
2934 }
2935
2936 fail = true;
2937 break;
2938
2939 case MESA_SHADER_COMPUTE:
2940 _mesa_glsl_error(loc, state,
2941 "compute shader variables cannot be given "
2942 "explicit locations");
2943 return;
2944 };
2945
2946 if (fail) {
2947 _mesa_glsl_error(loc, state,
2948 "%s cannot be given an explicit location in %s shader",
2949 mode_string(var),
2950 _mesa_shader_stage_to_string(state->stage));
2951 } else {
2952 var->data.explicit_location = true;
2953
2954 switch (state->stage) {
2955 case MESA_SHADER_VERTEX:
2956 var->data.location = (var->data.mode == ir_var_shader_in)
2957 ? (qual_location + VERT_ATTRIB_GENERIC0)
2958 : (qual_location + VARYING_SLOT_VAR0);
2959 break;
2960
2961 case MESA_SHADER_TESS_CTRL:
2962 case MESA_SHADER_TESS_EVAL:
2963 case MESA_SHADER_GEOMETRY:
2964 if (var->data.patch)
2965 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2966 else
2967 var->data.location = qual_location + VARYING_SLOT_VAR0;
2968 break;
2969
2970 case MESA_SHADER_FRAGMENT:
2971 var->data.location = (var->data.mode == ir_var_shader_out)
2972 ? (qual_location + FRAG_RESULT_DATA0)
2973 : (qual_location + VARYING_SLOT_VAR0);
2974 break;
2975 case MESA_SHADER_COMPUTE:
2976 assert(!"Unexpected shader type");
2977 break;
2978 }
2979
2980 /* Check if index was set for the uniform instead of the function */
2981 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2982 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2983 "used with subroutine functions");
2984 return;
2985 }
2986
2987 unsigned qual_index;
2988 if (qual->flags.q.explicit_index &&
2989 process_qualifier_constant(state, loc, "index", qual->index,
2990 &qual_index)) {
2991 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2992 * Layout Qualifiers):
2993 *
2994 * "It is also a compile-time error if a fragment shader
2995 * sets a layout index to less than 0 or greater than 1."
2996 *
2997 * Older specifications don't mandate a behavior; we take
2998 * this as a clarification and always generate the error.
2999 */
3000 if (qual_index > 1) {
3001 _mesa_glsl_error(loc, state,
3002 "explicit index may only be 0 or 1");
3003 } else {
3004 var->data.explicit_index = true;
3005 var->data.index = qual_index;
3006 }
3007 }
3008 }
3009 }
3010
3011 static void
3012 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3013 ir_variable *var,
3014 struct _mesa_glsl_parse_state *state,
3015 YYLTYPE *loc)
3016 {
3017 const glsl_type *base_type = var->type->without_array();
3018
3019 if (base_type->is_image()) {
3020 if (var->data.mode != ir_var_uniform &&
3021 var->data.mode != ir_var_function_in) {
3022 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3023 "function parameters or uniform-qualified "
3024 "global variables");
3025 }
3026
3027 var->data.image_read_only |= qual->flags.q.read_only;
3028 var->data.image_write_only |= qual->flags.q.write_only;
3029 var->data.image_coherent |= qual->flags.q.coherent;
3030 var->data.image_volatile |= qual->flags.q._volatile;
3031 var->data.image_restrict |= qual->flags.q.restrict_flag;
3032 var->data.read_only = true;
3033
3034 if (qual->flags.q.explicit_image_format) {
3035 if (var->data.mode == ir_var_function_in) {
3036 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3037 "used on image function parameters");
3038 }
3039
3040 if (qual->image_base_type != base_type->sampled_type) {
3041 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3042 "base data type of the image");
3043 }
3044
3045 var->data.image_format = qual->image_format;
3046 } else {
3047 if (var->data.mode == ir_var_uniform) {
3048 if (state->es_shader) {
3049 _mesa_glsl_error(loc, state, "all image uniforms "
3050 "must have a format layout qualifier");
3051
3052 } else if (!qual->flags.q.write_only) {
3053 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3054 "`writeonly' must have a format layout "
3055 "qualifier");
3056 }
3057 }
3058
3059 var->data.image_format = GL_NONE;
3060 }
3061
3062 /* From page 70 of the GLSL ES 3.1 specification:
3063 *
3064 * "Except for image variables qualified with the format qualifiers
3065 * r32f, r32i, and r32ui, image variables must specify either memory
3066 * qualifier readonly or the memory qualifier writeonly."
3067 */
3068 if (state->es_shader &&
3069 var->data.image_format != GL_R32F &&
3070 var->data.image_format != GL_R32I &&
3071 var->data.image_format != GL_R32UI &&
3072 !var->data.image_read_only &&
3073 !var->data.image_write_only) {
3074 _mesa_glsl_error(loc, state, "image variables of format other than "
3075 "r32f, r32i or r32ui must be qualified `readonly' or "
3076 "`writeonly'");
3077 }
3078
3079 } else if (qual->flags.q.read_only ||
3080 qual->flags.q.write_only ||
3081 qual->flags.q.coherent ||
3082 qual->flags.q._volatile ||
3083 qual->flags.q.restrict_flag ||
3084 qual->flags.q.explicit_image_format) {
3085 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3086 "images");
3087 }
3088 }
3089
3090 static inline const char*
3091 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3092 {
3093 if (origin_upper_left && pixel_center_integer)
3094 return "origin_upper_left, pixel_center_integer";
3095 else if (origin_upper_left)
3096 return "origin_upper_left";
3097 else if (pixel_center_integer)
3098 return "pixel_center_integer";
3099 else
3100 return " ";
3101 }
3102
3103 static inline bool
3104 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3105 const struct ast_type_qualifier *qual)
3106 {
3107 /* If gl_FragCoord was previously declared, and the qualifiers were
3108 * different in any way, return true.
3109 */
3110 if (state->fs_redeclares_gl_fragcoord) {
3111 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3112 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3113 }
3114
3115 return false;
3116 }
3117
3118 static inline void
3119 validate_array_dimensions(const glsl_type *t,
3120 struct _mesa_glsl_parse_state *state,
3121 YYLTYPE *loc) {
3122 if (t->is_array()) {
3123 t = t->fields.array;
3124 while (t->is_array()) {
3125 if (t->is_unsized_array()) {
3126 _mesa_glsl_error(loc, state,
3127 "only the outermost array dimension can "
3128 "be unsized",
3129 t->name);
3130 break;
3131 }
3132 t = t->fields.array;
3133 }
3134 }
3135 }
3136
3137 static void
3138 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3139 ir_variable *var,
3140 struct _mesa_glsl_parse_state *state,
3141 YYLTYPE *loc)
3142 {
3143 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3144
3145 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3146 *
3147 * "Within any shader, the first redeclarations of gl_FragCoord
3148 * must appear before any use of gl_FragCoord."
3149 *
3150 * Generate a compiler error if above condition is not met by the
3151 * fragment shader.
3152 */
3153 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3154 if (earlier != NULL &&
3155 earlier->data.used &&
3156 !state->fs_redeclares_gl_fragcoord) {
3157 _mesa_glsl_error(loc, state,
3158 "gl_FragCoord used before its first redeclaration "
3159 "in fragment shader");
3160 }
3161
3162 /* Make sure all gl_FragCoord redeclarations specify the same layout
3163 * qualifiers.
3164 */
3165 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3166 const char *const qual_string =
3167 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3168 qual->flags.q.pixel_center_integer);
3169
3170 const char *const state_string =
3171 get_layout_qualifier_string(state->fs_origin_upper_left,
3172 state->fs_pixel_center_integer);
3173
3174 _mesa_glsl_error(loc, state,
3175 "gl_FragCoord redeclared with different layout "
3176 "qualifiers (%s) and (%s) ",
3177 state_string,
3178 qual_string);
3179 }
3180 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3181 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3182 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3183 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3184 state->fs_redeclares_gl_fragcoord =
3185 state->fs_origin_upper_left ||
3186 state->fs_pixel_center_integer ||
3187 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3188 }
3189
3190 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3191 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3192 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3193 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3194 const char *const qual_string = (qual->flags.q.origin_upper_left)
3195 ? "origin_upper_left" : "pixel_center_integer";
3196
3197 _mesa_glsl_error(loc, state,
3198 "layout qualifier `%s' can only be applied to "
3199 "fragment shader input `gl_FragCoord'",
3200 qual_string);
3201 }
3202
3203 if (qual->flags.q.explicit_location) {
3204 apply_explicit_location(qual, var, state, loc);
3205 } else if (qual->flags.q.explicit_index) {
3206 if (!qual->flags.q.subroutine_def)
3207 _mesa_glsl_error(loc, state,
3208 "explicit index requires explicit location");
3209 }
3210
3211 if (qual->flags.q.explicit_binding) {
3212 apply_explicit_binding(state, loc, var, var->type, qual);
3213 }
3214
3215 if (state->stage == MESA_SHADER_GEOMETRY &&
3216 qual->flags.q.out && qual->flags.q.stream) {
3217 unsigned qual_stream;
3218 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3219 &qual_stream) &&
3220 validate_stream_qualifier(loc, state, qual_stream)) {
3221 var->data.stream = qual_stream;
3222 }
3223 }
3224
3225 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3226 unsigned qual_xfb_buffer;
3227 if (process_qualifier_constant(state, loc, "xfb_buffer",
3228 qual->xfb_buffer, &qual_xfb_buffer) &&
3229 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3230 var->data.xfb_buffer = qual_xfb_buffer;
3231 if (qual->flags.q.explicit_xfb_buffer)
3232 var->data.explicit_xfb_buffer = true;
3233 }
3234 }
3235
3236 if (qual->flags.q.explicit_xfb_offset) {
3237 unsigned qual_xfb_offset;
3238 unsigned component_size = var->type->contains_double() ? 8 : 4;
3239
3240 if (process_qualifier_constant(state, loc, "xfb_offset",
3241 qual->offset, &qual_xfb_offset) &&
3242 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3243 var->type, component_size)) {
3244 var->data.offset = qual_xfb_offset;
3245 var->data.explicit_xfb_offset = true;
3246 }
3247 }
3248
3249 if (qual->flags.q.explicit_xfb_stride) {
3250 unsigned qual_xfb_stride;
3251 if (process_qualifier_constant(state, loc, "xfb_stride",
3252 qual->xfb_stride, &qual_xfb_stride)) {
3253 var->data.xfb_stride = qual_xfb_stride;
3254 var->data.explicit_xfb_stride = true;
3255 }
3256 }
3257
3258 if (var->type->contains_atomic()) {
3259 if (var->data.mode == ir_var_uniform) {
3260 if (var->data.explicit_binding) {
3261 unsigned *offset =
3262 &state->atomic_counter_offsets[var->data.binding];
3263
3264 if (*offset % ATOMIC_COUNTER_SIZE)
3265 _mesa_glsl_error(loc, state,
3266 "misaligned atomic counter offset");
3267
3268 var->data.offset = *offset;
3269 *offset += var->type->atomic_size();
3270
3271 } else {
3272 _mesa_glsl_error(loc, state,
3273 "atomic counters require explicit binding point");
3274 }
3275 } else if (var->data.mode != ir_var_function_in) {
3276 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3277 "function parameters or uniform-qualified "
3278 "global variables");
3279 }
3280 }
3281
3282 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3283 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3284 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3285 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3286 * These extensions and all following extensions that add the 'layout'
3287 * keyword have been modified to require the use of 'in' or 'out'.
3288 *
3289 * The following extension do not allow the deprecated keywords:
3290 *
3291 * GL_AMD_conservative_depth
3292 * GL_ARB_conservative_depth
3293 * GL_ARB_gpu_shader5
3294 * GL_ARB_separate_shader_objects
3295 * GL_ARB_tessellation_shader
3296 * GL_ARB_transform_feedback3
3297 * GL_ARB_uniform_buffer_object
3298 *
3299 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3300 * allow layout with the deprecated keywords.
3301 */
3302 const bool relaxed_layout_qualifier_checking =
3303 state->ARB_fragment_coord_conventions_enable;
3304
3305 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3306 || qual->flags.q.varying;
3307 if (qual->has_layout() && uses_deprecated_qualifier) {
3308 if (relaxed_layout_qualifier_checking) {
3309 _mesa_glsl_warning(loc, state,
3310 "`layout' qualifier may not be used with "
3311 "`attribute' or `varying'");
3312 } else {
3313 _mesa_glsl_error(loc, state,
3314 "`layout' qualifier may not be used with "
3315 "`attribute' or `varying'");
3316 }
3317 }
3318
3319 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3320 * AMD_conservative_depth.
3321 */
3322 int depth_layout_count = qual->flags.q.depth_any
3323 + qual->flags.q.depth_greater
3324 + qual->flags.q.depth_less
3325 + qual->flags.q.depth_unchanged;
3326 if (depth_layout_count > 0
3327 && !state->AMD_conservative_depth_enable
3328 && !state->ARB_conservative_depth_enable) {
3329 _mesa_glsl_error(loc, state,
3330 "extension GL_AMD_conservative_depth or "
3331 "GL_ARB_conservative_depth must be enabled "
3332 "to use depth layout qualifiers");
3333 } else if (depth_layout_count > 0
3334 && strcmp(var->name, "gl_FragDepth") != 0) {
3335 _mesa_glsl_error(loc, state,
3336 "depth layout qualifiers can be applied only to "
3337 "gl_FragDepth");
3338 } else if (depth_layout_count > 1
3339 && strcmp(var->name, "gl_FragDepth") == 0) {
3340 _mesa_glsl_error(loc, state,
3341 "at most one depth layout qualifier can be applied to "
3342 "gl_FragDepth");
3343 }
3344 if (qual->flags.q.depth_any)
3345 var->data.depth_layout = ir_depth_layout_any;
3346 else if (qual->flags.q.depth_greater)
3347 var->data.depth_layout = ir_depth_layout_greater;
3348 else if (qual->flags.q.depth_less)
3349 var->data.depth_layout = ir_depth_layout_less;
3350 else if (qual->flags.q.depth_unchanged)
3351 var->data.depth_layout = ir_depth_layout_unchanged;
3352 else
3353 var->data.depth_layout = ir_depth_layout_none;
3354
3355 if (qual->flags.q.std140 ||
3356 qual->flags.q.std430 ||
3357 qual->flags.q.packed ||
3358 qual->flags.q.shared) {
3359 _mesa_glsl_error(loc, state,
3360 "uniform and shader storage block layout qualifiers "
3361 "std140, std430, packed, and shared can only be "
3362 "applied to uniform or shader storage blocks, not "
3363 "members");
3364 }
3365
3366 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3367 validate_matrix_layout_for_type(state, loc, var->type, var);
3368 }
3369
3370 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3371 * Inputs):
3372 *
3373 * "Fragment shaders also allow the following layout qualifier on in only
3374 * (not with variable declarations)
3375 * layout-qualifier-id
3376 * early_fragment_tests
3377 * [...]"
3378 */
3379 if (qual->flags.q.early_fragment_tests) {
3380 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3381 "valid in fragment shader input layout declaration.");
3382 }
3383 }
3384
3385 static void
3386 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3387 ir_variable *var,
3388 struct _mesa_glsl_parse_state *state,
3389 YYLTYPE *loc,
3390 bool is_parameter)
3391 {
3392 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3393
3394 if (qual->flags.q.invariant) {
3395 if (var->data.used) {
3396 _mesa_glsl_error(loc, state,
3397 "variable `%s' may not be redeclared "
3398 "`invariant' after being used",
3399 var->name);
3400 } else {
3401 var->data.invariant = 1;
3402 }
3403 }
3404
3405 if (qual->flags.q.precise) {
3406 if (var->data.used) {
3407 _mesa_glsl_error(loc, state,
3408 "variable `%s' may not be redeclared "
3409 "`precise' after being used",
3410 var->name);
3411 } else {
3412 var->data.precise = 1;
3413 }
3414 }
3415
3416 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3417 _mesa_glsl_error(loc, state,
3418 "`subroutine' may only be applied to uniforms, "
3419 "subroutine type declarations, or function definitions");
3420 }
3421
3422 if (qual->flags.q.constant || qual->flags.q.attribute
3423 || qual->flags.q.uniform
3424 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3425 var->data.read_only = 1;
3426
3427 if (qual->flags.q.centroid)
3428 var->data.centroid = 1;
3429
3430 if (qual->flags.q.sample)
3431 var->data.sample = 1;
3432
3433 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3434 if (state->es_shader) {
3435 var->data.precision =
3436 select_gles_precision(qual->precision, var->type, state, loc);
3437 }
3438
3439 if (qual->flags.q.patch)
3440 var->data.patch = 1;
3441
3442 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3443 var->type = glsl_type::error_type;
3444 _mesa_glsl_error(loc, state,
3445 "`attribute' variables may not be declared in the "
3446 "%s shader",
3447 _mesa_shader_stage_to_string(state->stage));
3448 }
3449
3450 /* Disallow layout qualifiers which may only appear on layout declarations. */
3451 if (qual->flags.q.prim_type) {
3452 _mesa_glsl_error(loc, state,
3453 "Primitive type may only be specified on GS input or output "
3454 "layout declaration, not on variables.");
3455 }
3456
3457 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3458 *
3459 * "However, the const qualifier cannot be used with out or inout."
3460 *
3461 * The same section of the GLSL 4.40 spec further clarifies this saying:
3462 *
3463 * "The const qualifier cannot be used with out or inout, or a
3464 * compile-time error results."
3465 */
3466 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3467 _mesa_glsl_error(loc, state,
3468 "`const' may not be applied to `out' or `inout' "
3469 "function parameters");
3470 }
3471
3472 /* If there is no qualifier that changes the mode of the variable, leave
3473 * the setting alone.
3474 */
3475 assert(var->data.mode != ir_var_temporary);
3476 if (qual->flags.q.in && qual->flags.q.out)
3477 var->data.mode = ir_var_function_inout;
3478 else if (qual->flags.q.in)
3479 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3480 else if (qual->flags.q.attribute
3481 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3482 var->data.mode = ir_var_shader_in;
3483 else if (qual->flags.q.out)
3484 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3485 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3486 var->data.mode = ir_var_shader_out;
3487 else if (qual->flags.q.uniform)
3488 var->data.mode = ir_var_uniform;
3489 else if (qual->flags.q.buffer)
3490 var->data.mode = ir_var_shader_storage;
3491 else if (qual->flags.q.shared_storage)
3492 var->data.mode = ir_var_shader_shared;
3493
3494 if (!is_parameter && is_varying_var(var, state->stage)) {
3495 /* User-defined ins/outs are not permitted in compute shaders. */
3496 if (state->stage == MESA_SHADER_COMPUTE) {
3497 _mesa_glsl_error(loc, state,
3498 "user-defined input and output variables are not "
3499 "permitted in compute shaders");
3500 }
3501
3502 /* This variable is being used to link data between shader stages (in
3503 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3504 * that is allowed for such purposes.
3505 *
3506 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3507 *
3508 * "The varying qualifier can be used only with the data types
3509 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3510 * these."
3511 *
3512 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3513 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3514 *
3515 * "Fragment inputs can only be signed and unsigned integers and
3516 * integer vectors, float, floating-point vectors, matrices, or
3517 * arrays of these. Structures cannot be input.
3518 *
3519 * Similar text exists in the section on vertex shader outputs.
3520 *
3521 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3522 * 3.00 spec allows structs as well. Varying structs are also allowed
3523 * in GLSL 1.50.
3524 */
3525 switch (var->type->get_scalar_type()->base_type) {
3526 case GLSL_TYPE_FLOAT:
3527 /* Ok in all GLSL versions */
3528 break;
3529 case GLSL_TYPE_UINT:
3530 case GLSL_TYPE_INT:
3531 if (state->is_version(130, 300))
3532 break;
3533 _mesa_glsl_error(loc, state,
3534 "varying variables must be of base type float in %s",
3535 state->get_version_string());
3536 break;
3537 case GLSL_TYPE_STRUCT:
3538 if (state->is_version(150, 300))
3539 break;
3540 _mesa_glsl_error(loc, state,
3541 "varying variables may not be of type struct");
3542 break;
3543 case GLSL_TYPE_DOUBLE:
3544 break;
3545 default:
3546 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3547 break;
3548 }
3549 }
3550
3551 if (state->all_invariant && (state->current_function == NULL)) {
3552 switch (state->stage) {
3553 case MESA_SHADER_VERTEX:
3554 if (var->data.mode == ir_var_shader_out)
3555 var->data.invariant = true;
3556 break;
3557 case MESA_SHADER_TESS_CTRL:
3558 case MESA_SHADER_TESS_EVAL:
3559 case MESA_SHADER_GEOMETRY:
3560 if ((var->data.mode == ir_var_shader_in)
3561 || (var->data.mode == ir_var_shader_out))
3562 var->data.invariant = true;
3563 break;
3564 case MESA_SHADER_FRAGMENT:
3565 if (var->data.mode == ir_var_shader_in)
3566 var->data.invariant = true;
3567 break;
3568 case MESA_SHADER_COMPUTE:
3569 /* Invariance isn't meaningful in compute shaders. */
3570 break;
3571 }
3572 }
3573
3574 var->data.interpolation =
3575 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3576 state, loc);
3577
3578 /* Does the declaration use the deprecated 'attribute' or 'varying'
3579 * keywords?
3580 */
3581 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3582 || qual->flags.q.varying;
3583
3584
3585 /* Validate auxiliary storage qualifiers */
3586
3587 /* From section 4.3.4 of the GLSL 1.30 spec:
3588 * "It is an error to use centroid in in a vertex shader."
3589 *
3590 * From section 4.3.4 of the GLSL ES 3.00 spec:
3591 * "It is an error to use centroid in or interpolation qualifiers in
3592 * a vertex shader input."
3593 */
3594
3595 /* Section 4.3.6 of the GLSL 1.30 specification states:
3596 * "It is an error to use centroid out in a fragment shader."
3597 *
3598 * The GL_ARB_shading_language_420pack extension specification states:
3599 * "It is an error to use auxiliary storage qualifiers or interpolation
3600 * qualifiers on an output in a fragment shader."
3601 */
3602 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3603 _mesa_glsl_error(loc, state,
3604 "sample qualifier may only be used on `in` or `out` "
3605 "variables between shader stages");
3606 }
3607 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3608 _mesa_glsl_error(loc, state,
3609 "centroid qualifier may only be used with `in', "
3610 "`out' or `varying' variables between shader stages");
3611 }
3612
3613 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3614 _mesa_glsl_error(loc, state,
3615 "the shared storage qualifiers can only be used with "
3616 "compute shaders");
3617 }
3618
3619 apply_image_qualifier_to_variable(qual, var, state, loc);
3620 }
3621
3622 /**
3623 * Get the variable that is being redeclared by this declaration
3624 *
3625 * Semantic checks to verify the validity of the redeclaration are also
3626 * performed. If semantic checks fail, compilation error will be emitted via
3627 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3628 *
3629 * \returns
3630 * A pointer to an existing variable in the current scope if the declaration
3631 * is a redeclaration, \c NULL otherwise.
3632 */
3633 static ir_variable *
3634 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3635 struct _mesa_glsl_parse_state *state,
3636 bool allow_all_redeclarations)
3637 {
3638 /* Check if this declaration is actually a re-declaration, either to
3639 * resize an array or add qualifiers to an existing variable.
3640 *
3641 * This is allowed for variables in the current scope, or when at
3642 * global scope (for built-ins in the implicit outer scope).
3643 */
3644 ir_variable *earlier = state->symbols->get_variable(var->name);
3645 if (earlier == NULL ||
3646 (state->current_function != NULL &&
3647 !state->symbols->name_declared_this_scope(var->name))) {
3648 return NULL;
3649 }
3650
3651
3652 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3653 *
3654 * "It is legal to declare an array without a size and then
3655 * later re-declare the same name as an array of the same
3656 * type and specify a size."
3657 */
3658 if (earlier->type->is_unsized_array() && var->type->is_array()
3659 && (var->type->fields.array == earlier->type->fields.array)) {
3660 /* FINISHME: This doesn't match the qualifiers on the two
3661 * FINISHME: declarations. It's not 100% clear whether this is
3662 * FINISHME: required or not.
3663 */
3664
3665 const unsigned size = unsigned(var->type->array_size());
3666 check_builtin_array_max_size(var->name, size, loc, state);
3667 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3668 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3669 "previous access",
3670 earlier->data.max_array_access);
3671 }
3672
3673 earlier->type = var->type;
3674 delete var;
3675 var = NULL;
3676 } else if ((state->ARB_fragment_coord_conventions_enable ||
3677 state->is_version(150, 0))
3678 && strcmp(var->name, "gl_FragCoord") == 0
3679 && earlier->type == var->type
3680 && var->data.mode == ir_var_shader_in) {
3681 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3682 * qualifiers.
3683 */
3684 earlier->data.origin_upper_left = var->data.origin_upper_left;
3685 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3686
3687 /* According to section 4.3.7 of the GLSL 1.30 spec,
3688 * the following built-in varaibles can be redeclared with an
3689 * interpolation qualifier:
3690 * * gl_FrontColor
3691 * * gl_BackColor
3692 * * gl_FrontSecondaryColor
3693 * * gl_BackSecondaryColor
3694 * * gl_Color
3695 * * gl_SecondaryColor
3696 */
3697 } else if (state->is_version(130, 0)
3698 && (strcmp(var->name, "gl_FrontColor") == 0
3699 || strcmp(var->name, "gl_BackColor") == 0
3700 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3701 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3702 || strcmp(var->name, "gl_Color") == 0
3703 || strcmp(var->name, "gl_SecondaryColor") == 0)
3704 && earlier->type == var->type
3705 && earlier->data.mode == var->data.mode) {
3706 earlier->data.interpolation = var->data.interpolation;
3707
3708 /* Layout qualifiers for gl_FragDepth. */
3709 } else if ((state->AMD_conservative_depth_enable ||
3710 state->ARB_conservative_depth_enable)
3711 && strcmp(var->name, "gl_FragDepth") == 0
3712 && earlier->type == var->type
3713 && earlier->data.mode == var->data.mode) {
3714
3715 /** From the AMD_conservative_depth spec:
3716 * Within any shader, the first redeclarations of gl_FragDepth
3717 * must appear before any use of gl_FragDepth.
3718 */
3719 if (earlier->data.used) {
3720 _mesa_glsl_error(&loc, state,
3721 "the first redeclaration of gl_FragDepth "
3722 "must appear before any use of gl_FragDepth");
3723 }
3724
3725 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3726 if (earlier->data.depth_layout != ir_depth_layout_none
3727 && earlier->data.depth_layout != var->data.depth_layout) {
3728 _mesa_glsl_error(&loc, state,
3729 "gl_FragDepth: depth layout is declared here "
3730 "as '%s, but it was previously declared as "
3731 "'%s'",
3732 depth_layout_string(var->data.depth_layout),
3733 depth_layout_string(earlier->data.depth_layout));
3734 }
3735
3736 earlier->data.depth_layout = var->data.depth_layout;
3737
3738 } else if (allow_all_redeclarations) {
3739 if (earlier->data.mode != var->data.mode) {
3740 _mesa_glsl_error(&loc, state,
3741 "redeclaration of `%s' with incorrect qualifiers",
3742 var->name);
3743 } else if (earlier->type != var->type) {
3744 _mesa_glsl_error(&loc, state,
3745 "redeclaration of `%s' has incorrect type",
3746 var->name);
3747 }
3748 } else {
3749 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3750 }
3751
3752 return earlier;
3753 }
3754
3755 /**
3756 * Generate the IR for an initializer in a variable declaration
3757 */
3758 ir_rvalue *
3759 process_initializer(ir_variable *var, ast_declaration *decl,
3760 ast_fully_specified_type *type,
3761 exec_list *initializer_instructions,
3762 struct _mesa_glsl_parse_state *state)
3763 {
3764 ir_rvalue *result = NULL;
3765
3766 YYLTYPE initializer_loc = decl->initializer->get_location();
3767
3768 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3769 *
3770 * "All uniform variables are read-only and are initialized either
3771 * directly by an application via API commands, or indirectly by
3772 * OpenGL."
3773 */
3774 if (var->data.mode == ir_var_uniform) {
3775 state->check_version(120, 0, &initializer_loc,
3776 "cannot initialize uniform %s",
3777 var->name);
3778 }
3779
3780 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3781 *
3782 * "Buffer variables cannot have initializers."
3783 */
3784 if (var->data.mode == ir_var_shader_storage) {
3785 _mesa_glsl_error(&initializer_loc, state,
3786 "cannot initialize buffer variable %s",
3787 var->name);
3788 }
3789
3790 /* From section 4.1.7 of the GLSL 4.40 spec:
3791 *
3792 * "Opaque variables [...] are initialized only through the
3793 * OpenGL API; they cannot be declared with an initializer in a
3794 * shader."
3795 */
3796 if (var->type->contains_opaque()) {
3797 _mesa_glsl_error(&initializer_loc, state,
3798 "cannot initialize opaque variable %s",
3799 var->name);
3800 }
3801
3802 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3803 _mesa_glsl_error(&initializer_loc, state,
3804 "cannot initialize %s shader input / %s %s",
3805 _mesa_shader_stage_to_string(state->stage),
3806 (state->stage == MESA_SHADER_VERTEX)
3807 ? "attribute" : "varying",
3808 var->name);
3809 }
3810
3811 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3812 _mesa_glsl_error(&initializer_loc, state,
3813 "cannot initialize %s shader output %s",
3814 _mesa_shader_stage_to_string(state->stage),
3815 var->name);
3816 }
3817
3818 /* If the initializer is an ast_aggregate_initializer, recursively store
3819 * type information from the LHS into it, so that its hir() function can do
3820 * type checking.
3821 */
3822 if (decl->initializer->oper == ast_aggregate)
3823 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3824
3825 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3826 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3827
3828 /* Calculate the constant value if this is a const or uniform
3829 * declaration.
3830 *
3831 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3832 *
3833 * "Declarations of globals without a storage qualifier, or with
3834 * just the const qualifier, may include initializers, in which case
3835 * they will be initialized before the first line of main() is
3836 * executed. Such initializers must be a constant expression."
3837 *
3838 * The same section of the GLSL ES 3.00.4 spec has similar language.
3839 */
3840 if (type->qualifier.flags.q.constant
3841 || type->qualifier.flags.q.uniform
3842 || (state->es_shader && state->current_function == NULL)) {
3843 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3844 lhs, rhs, true);
3845 if (new_rhs != NULL) {
3846 rhs = new_rhs;
3847
3848 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3849 * says:
3850 *
3851 * "A constant expression is one of
3852 *
3853 * ...
3854 *
3855 * - an expression formed by an operator on operands that are
3856 * all constant expressions, including getting an element of
3857 * a constant array, or a field of a constant structure, or
3858 * components of a constant vector. However, the sequence
3859 * operator ( , ) and the assignment operators ( =, +=, ...)
3860 * are not included in the operators that can create a
3861 * constant expression."
3862 *
3863 * Section 12.43 (Sequence operator and constant expressions) says:
3864 *
3865 * "Should the following construct be allowed?
3866 *
3867 * float a[2,3];
3868 *
3869 * The expression within the brackets uses the sequence operator
3870 * (',') and returns the integer 3 so the construct is declaring
3871 * a single-dimensional array of size 3. In some languages, the
3872 * construct declares a two-dimensional array. It would be
3873 * preferable to make this construct illegal to avoid confusion.
3874 *
3875 * One possibility is to change the definition of the sequence
3876 * operator so that it does not return a constant-expression and
3877 * hence cannot be used to declare an array size.
3878 *
3879 * RESOLUTION: The result of a sequence operator is not a
3880 * constant-expression."
3881 *
3882 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3883 * contains language almost identical to the section 4.3.3 in the
3884 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3885 * versions.
3886 */
3887 ir_constant *constant_value = rhs->constant_expression_value();
3888 if (!constant_value ||
3889 (state->is_version(430, 300) &&
3890 decl->initializer->has_sequence_subexpression())) {
3891 const char *const variable_mode =
3892 (type->qualifier.flags.q.constant)
3893 ? "const"
3894 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3895
3896 /* If ARB_shading_language_420pack is enabled, initializers of
3897 * const-qualified local variables do not have to be constant
3898 * expressions. Const-qualified global variables must still be
3899 * initialized with constant expressions.
3900 */
3901 if (!state->has_420pack()
3902 || state->current_function == NULL) {
3903 _mesa_glsl_error(& initializer_loc, state,
3904 "initializer of %s variable `%s' must be a "
3905 "constant expression",
3906 variable_mode,
3907 decl->identifier);
3908 if (var->type->is_numeric()) {
3909 /* Reduce cascading errors. */
3910 var->constant_value = type->qualifier.flags.q.constant
3911 ? ir_constant::zero(state, var->type) : NULL;
3912 }
3913 }
3914 } else {
3915 rhs = constant_value;
3916 var->constant_value = type->qualifier.flags.q.constant
3917 ? constant_value : NULL;
3918 }
3919 } else {
3920 if (var->type->is_numeric()) {
3921 /* Reduce cascading errors. */
3922 var->constant_value = type->qualifier.flags.q.constant
3923 ? ir_constant::zero(state, var->type) : NULL;
3924 }
3925 }
3926 }
3927
3928 if (rhs && !rhs->type->is_error()) {
3929 bool temp = var->data.read_only;
3930 if (type->qualifier.flags.q.constant)
3931 var->data.read_only = false;
3932
3933 /* Never emit code to initialize a uniform.
3934 */
3935 const glsl_type *initializer_type;
3936 if (!type->qualifier.flags.q.uniform) {
3937 do_assignment(initializer_instructions, state,
3938 NULL,
3939 lhs, rhs,
3940 &result, true,
3941 true,
3942 type->get_location());
3943 initializer_type = result->type;
3944 } else
3945 initializer_type = rhs->type;
3946
3947 var->constant_initializer = rhs->constant_expression_value();
3948 var->data.has_initializer = true;
3949
3950 /* If the declared variable is an unsized array, it must inherrit
3951 * its full type from the initializer. A declaration such as
3952 *
3953 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3954 *
3955 * becomes
3956 *
3957 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3958 *
3959 * The assignment generated in the if-statement (below) will also
3960 * automatically handle this case for non-uniforms.
3961 *
3962 * If the declared variable is not an array, the types must
3963 * already match exactly. As a result, the type assignment
3964 * here can be done unconditionally. For non-uniforms the call
3965 * to do_assignment can change the type of the initializer (via
3966 * the implicit conversion rules). For uniforms the initializer
3967 * must be a constant expression, and the type of that expression
3968 * was validated above.
3969 */
3970 var->type = initializer_type;
3971
3972 var->data.read_only = temp;
3973 }
3974
3975 return result;
3976 }
3977
3978 static void
3979 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3980 YYLTYPE loc, ir_variable *var,
3981 unsigned num_vertices,
3982 unsigned *size,
3983 const char *var_category)
3984 {
3985 if (var->type->is_unsized_array()) {
3986 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3987 *
3988 * All geometry shader input unsized array declarations will be
3989 * sized by an earlier input layout qualifier, when present, as per
3990 * the following table.
3991 *
3992 * Followed by a table mapping each allowed input layout qualifier to
3993 * the corresponding input length.
3994 *
3995 * Similarly for tessellation control shader outputs.
3996 */
3997 if (num_vertices != 0)
3998 var->type = glsl_type::get_array_instance(var->type->fields.array,
3999 num_vertices);
4000 } else {
4001 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4002 * includes the following examples of compile-time errors:
4003 *
4004 * // code sequence within one shader...
4005 * in vec4 Color1[]; // size unknown
4006 * ...Color1.length()...// illegal, length() unknown
4007 * in vec4 Color2[2]; // size is 2
4008 * ...Color1.length()...// illegal, Color1 still has no size
4009 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4010 * layout(lines) in; // legal, input size is 2, matching
4011 * in vec4 Color4[3]; // illegal, contradicts layout
4012 * ...
4013 *
4014 * To detect the case illustrated by Color3, we verify that the size of
4015 * an explicitly-sized array matches the size of any previously declared
4016 * explicitly-sized array. To detect the case illustrated by Color4, we
4017 * verify that the size of an explicitly-sized array is consistent with
4018 * any previously declared input layout.
4019 */
4020 if (num_vertices != 0 && var->type->length != num_vertices) {
4021 _mesa_glsl_error(&loc, state,
4022 "%s size contradicts previously declared layout "
4023 "(size is %u, but layout requires a size of %u)",
4024 var_category, var->type->length, num_vertices);
4025 } else if (*size != 0 && var->type->length != *size) {
4026 _mesa_glsl_error(&loc, state,
4027 "%s sizes are inconsistent (size is %u, but a "
4028 "previous declaration has size %u)",
4029 var_category, var->type->length, *size);
4030 } else {
4031 *size = var->type->length;
4032 }
4033 }
4034 }
4035
4036 static void
4037 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4038 YYLTYPE loc, ir_variable *var)
4039 {
4040 unsigned num_vertices = 0;
4041
4042 if (state->tcs_output_vertices_specified) {
4043 if (!state->out_qualifier->vertices->
4044 process_qualifier_constant(state, "vertices",
4045 &num_vertices, false)) {
4046 return;
4047 }
4048
4049 if (num_vertices > state->Const.MaxPatchVertices) {
4050 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4051 "GL_MAX_PATCH_VERTICES", num_vertices);
4052 return;
4053 }
4054 }
4055
4056 if (!var->type->is_array() && !var->data.patch) {
4057 _mesa_glsl_error(&loc, state,
4058 "tessellation control shader outputs must be arrays");
4059
4060 /* To avoid cascading failures, short circuit the checks below. */
4061 return;
4062 }
4063
4064 if (var->data.patch)
4065 return;
4066
4067 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4068 &state->tcs_output_size,
4069 "tessellation control shader output");
4070 }
4071
4072 /**
4073 * Do additional processing necessary for tessellation control/evaluation shader
4074 * input declarations. This covers both interface block arrays and bare input
4075 * variables.
4076 */
4077 static void
4078 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4079 YYLTYPE loc, ir_variable *var)
4080 {
4081 if (!var->type->is_array() && !var->data.patch) {
4082 _mesa_glsl_error(&loc, state,
4083 "per-vertex tessellation shader inputs must be arrays");
4084 /* Avoid cascading failures. */
4085 return;
4086 }
4087
4088 if (var->data.patch)
4089 return;
4090
4091 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4092 if (var->type->is_unsized_array()) {
4093 var->type = glsl_type::get_array_instance(var->type->fields.array,
4094 state->Const.MaxPatchVertices);
4095 }
4096 }
4097
4098
4099 /**
4100 * Do additional processing necessary for geometry shader input declarations
4101 * (this covers both interface blocks arrays and bare input variables).
4102 */
4103 static void
4104 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4105 YYLTYPE loc, ir_variable *var)
4106 {
4107 unsigned num_vertices = 0;
4108
4109 if (state->gs_input_prim_type_specified) {
4110 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4111 }
4112
4113 /* Geometry shader input variables must be arrays. Caller should have
4114 * reported an error for this.
4115 */
4116 if (!var->type->is_array()) {
4117 assert(state->error);
4118
4119 /* To avoid cascading failures, short circuit the checks below. */
4120 return;
4121 }
4122
4123 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4124 &state->gs_input_size,
4125 "geometry shader input");
4126 }
4127
4128 void
4129 validate_identifier(const char *identifier, YYLTYPE loc,
4130 struct _mesa_glsl_parse_state *state)
4131 {
4132 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4133 *
4134 * "Identifiers starting with "gl_" are reserved for use by
4135 * OpenGL, and may not be declared in a shader as either a
4136 * variable or a function."
4137 */
4138 if (is_gl_identifier(identifier)) {
4139 _mesa_glsl_error(&loc, state,
4140 "identifier `%s' uses reserved `gl_' prefix",
4141 identifier);
4142 } else if (strstr(identifier, "__")) {
4143 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4144 * spec:
4145 *
4146 * "In addition, all identifiers containing two
4147 * consecutive underscores (__) are reserved as
4148 * possible future keywords."
4149 *
4150 * The intention is that names containing __ are reserved for internal
4151 * use by the implementation, and names prefixed with GL_ are reserved
4152 * for use by Khronos. Names simply containing __ are dangerous to use,
4153 * but should be allowed.
4154 *
4155 * A future version of the GLSL specification will clarify this.
4156 */
4157 _mesa_glsl_warning(&loc, state,
4158 "identifier `%s' uses reserved `__' string",
4159 identifier);
4160 }
4161 }
4162
4163 ir_rvalue *
4164 ast_declarator_list::hir(exec_list *instructions,
4165 struct _mesa_glsl_parse_state *state)
4166 {
4167 void *ctx = state;
4168 const struct glsl_type *decl_type;
4169 const char *type_name = NULL;
4170 ir_rvalue *result = NULL;
4171 YYLTYPE loc = this->get_location();
4172
4173 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4174 *
4175 * "To ensure that a particular output variable is invariant, it is
4176 * necessary to use the invariant qualifier. It can either be used to
4177 * qualify a previously declared variable as being invariant
4178 *
4179 * invariant gl_Position; // make existing gl_Position be invariant"
4180 *
4181 * In these cases the parser will set the 'invariant' flag in the declarator
4182 * list, and the type will be NULL.
4183 */
4184 if (this->invariant) {
4185 assert(this->type == NULL);
4186
4187 if (state->current_function != NULL) {
4188 _mesa_glsl_error(& loc, state,
4189 "all uses of `invariant' keyword must be at global "
4190 "scope");
4191 }
4192
4193 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4194 assert(decl->array_specifier == NULL);
4195 assert(decl->initializer == NULL);
4196
4197 ir_variable *const earlier =
4198 state->symbols->get_variable(decl->identifier);
4199 if (earlier == NULL) {
4200 _mesa_glsl_error(& loc, state,
4201 "undeclared variable `%s' cannot be marked "
4202 "invariant", decl->identifier);
4203 } else if (!is_varying_var(earlier, state->stage)) {
4204 _mesa_glsl_error(&loc, state,
4205 "`%s' cannot be marked invariant; interfaces between "
4206 "shader stages only.", decl->identifier);
4207 } else if (earlier->data.used) {
4208 _mesa_glsl_error(& loc, state,
4209 "variable `%s' may not be redeclared "
4210 "`invariant' after being used",
4211 earlier->name);
4212 } else {
4213 earlier->data.invariant = true;
4214 }
4215 }
4216
4217 /* Invariant redeclarations do not have r-values.
4218 */
4219 return NULL;
4220 }
4221
4222 if (this->precise) {
4223 assert(this->type == NULL);
4224
4225 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4226 assert(decl->array_specifier == NULL);
4227 assert(decl->initializer == NULL);
4228
4229 ir_variable *const earlier =
4230 state->symbols->get_variable(decl->identifier);
4231 if (earlier == NULL) {
4232 _mesa_glsl_error(& loc, state,
4233 "undeclared variable `%s' cannot be marked "
4234 "precise", decl->identifier);
4235 } else if (state->current_function != NULL &&
4236 !state->symbols->name_declared_this_scope(decl->identifier)) {
4237 /* Note: we have to check if we're in a function, since
4238 * builtins are treated as having come from another scope.
4239 */
4240 _mesa_glsl_error(& loc, state,
4241 "variable `%s' from an outer scope may not be "
4242 "redeclared `precise' in this scope",
4243 earlier->name);
4244 } else if (earlier->data.used) {
4245 _mesa_glsl_error(& loc, state,
4246 "variable `%s' may not be redeclared "
4247 "`precise' after being used",
4248 earlier->name);
4249 } else {
4250 earlier->data.precise = true;
4251 }
4252 }
4253
4254 /* Precise redeclarations do not have r-values either. */
4255 return NULL;
4256 }
4257
4258 assert(this->type != NULL);
4259 assert(!this->invariant);
4260 assert(!this->precise);
4261
4262 /* The type specifier may contain a structure definition. Process that
4263 * before any of the variable declarations.
4264 */
4265 (void) this->type->specifier->hir(instructions, state);
4266
4267 decl_type = this->type->glsl_type(& type_name, state);
4268
4269 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4270 * "Buffer variables may only be declared inside interface blocks
4271 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4272 * shader storage blocks. It is a compile-time error to declare buffer
4273 * variables at global scope (outside a block)."
4274 */
4275 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4276 _mesa_glsl_error(&loc, state,
4277 "buffer variables cannot be declared outside "
4278 "interface blocks");
4279 }
4280
4281 /* An offset-qualified atomic counter declaration sets the default
4282 * offset for the next declaration within the same atomic counter
4283 * buffer.
4284 */
4285 if (decl_type && decl_type->contains_atomic()) {
4286 if (type->qualifier.flags.q.explicit_binding &&
4287 type->qualifier.flags.q.explicit_offset) {
4288 unsigned qual_binding;
4289 unsigned qual_offset;
4290 if (process_qualifier_constant(state, &loc, "binding",
4291 type->qualifier.binding,
4292 &qual_binding)
4293 && process_qualifier_constant(state, &loc, "offset",
4294 type->qualifier.offset,
4295 &qual_offset)) {
4296 state->atomic_counter_offsets[qual_binding] = qual_offset;
4297 }
4298 }
4299 }
4300
4301 if (this->declarations.is_empty()) {
4302 /* If there is no structure involved in the program text, there are two
4303 * possible scenarios:
4304 *
4305 * - The program text contained something like 'vec4;'. This is an
4306 * empty declaration. It is valid but weird. Emit a warning.
4307 *
4308 * - The program text contained something like 'S;' and 'S' is not the
4309 * name of a known structure type. This is both invalid and weird.
4310 * Emit an error.
4311 *
4312 * - The program text contained something like 'mediump float;'
4313 * when the programmer probably meant 'precision mediump
4314 * float;' Emit a warning with a description of what they
4315 * probably meant to do.
4316 *
4317 * Note that if decl_type is NULL and there is a structure involved,
4318 * there must have been some sort of error with the structure. In this
4319 * case we assume that an error was already generated on this line of
4320 * code for the structure. There is no need to generate an additional,
4321 * confusing error.
4322 */
4323 assert(this->type->specifier->structure == NULL || decl_type != NULL
4324 || state->error);
4325
4326 if (decl_type == NULL) {
4327 _mesa_glsl_error(&loc, state,
4328 "invalid type `%s' in empty declaration",
4329 type_name);
4330 } else {
4331 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4332 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4333 * spec:
4334 *
4335 * "... any declaration that leaves the size undefined is
4336 * disallowed as this would add complexity and there are no
4337 * use-cases."
4338 */
4339 if (state->es_shader && decl_type->is_unsized_array()) {
4340 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4341 "or implicitly defined");
4342 }
4343
4344 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4345 *
4346 * "The combinations of types and qualifiers that cause
4347 * compile-time or link-time errors are the same whether or not
4348 * the declaration is empty."
4349 */
4350 validate_array_dimensions(decl_type, state, &loc);
4351 }
4352
4353 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4354 /* Empty atomic counter declarations are allowed and useful
4355 * to set the default offset qualifier.
4356 */
4357 return NULL;
4358 } else if (this->type->qualifier.precision != ast_precision_none) {
4359 if (this->type->specifier->structure != NULL) {
4360 _mesa_glsl_error(&loc, state,
4361 "precision qualifiers can't be applied "
4362 "to structures");
4363 } else {
4364 static const char *const precision_names[] = {
4365 "highp",
4366 "highp",
4367 "mediump",
4368 "lowp"
4369 };
4370
4371 _mesa_glsl_warning(&loc, state,
4372 "empty declaration with precision "
4373 "qualifier, to set the default precision, "
4374 "use `precision %s %s;'",
4375 precision_names[this->type->
4376 qualifier.precision],
4377 type_name);
4378 }
4379 } else if (this->type->specifier->structure == NULL) {
4380 _mesa_glsl_warning(&loc, state, "empty declaration");
4381 }
4382 }
4383 }
4384
4385 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4386 const struct glsl_type *var_type;
4387 ir_variable *var;
4388 const char *identifier = decl->identifier;
4389 /* FINISHME: Emit a warning if a variable declaration shadows a
4390 * FINISHME: declaration at a higher scope.
4391 */
4392
4393 if ((decl_type == NULL) || decl_type->is_void()) {
4394 if (type_name != NULL) {
4395 _mesa_glsl_error(& loc, state,
4396 "invalid type `%s' in declaration of `%s'",
4397 type_name, decl->identifier);
4398 } else {
4399 _mesa_glsl_error(& loc, state,
4400 "invalid type in declaration of `%s'",
4401 decl->identifier);
4402 }
4403 continue;
4404 }
4405
4406 if (this->type->qualifier.flags.q.subroutine) {
4407 const glsl_type *t;
4408 const char *name;
4409
4410 t = state->symbols->get_type(this->type->specifier->type_name);
4411 if (!t)
4412 _mesa_glsl_error(& loc, state,
4413 "invalid type in declaration of `%s'",
4414 decl->identifier);
4415 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4416
4417 identifier = name;
4418
4419 }
4420 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4421 state);
4422
4423 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4424
4425 /* The 'varying in' and 'varying out' qualifiers can only be used with
4426 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4427 * yet.
4428 */
4429 if (this->type->qualifier.flags.q.varying) {
4430 if (this->type->qualifier.flags.q.in) {
4431 _mesa_glsl_error(& loc, state,
4432 "`varying in' qualifier in declaration of "
4433 "`%s' only valid for geometry shaders using "
4434 "ARB_geometry_shader4 or EXT_geometry_shader4",
4435 decl->identifier);
4436 } else if (this->type->qualifier.flags.q.out) {
4437 _mesa_glsl_error(& loc, state,
4438 "`varying out' qualifier in declaration of "
4439 "`%s' only valid for geometry shaders using "
4440 "ARB_geometry_shader4 or EXT_geometry_shader4",
4441 decl->identifier);
4442 }
4443 }
4444
4445 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4446 *
4447 * "Global variables can only use the qualifiers const,
4448 * attribute, uniform, or varying. Only one may be
4449 * specified.
4450 *
4451 * Local variables can only use the qualifier const."
4452 *
4453 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4454 * any extension that adds the 'layout' keyword.
4455 */
4456 if (!state->is_version(130, 300)
4457 && !state->has_explicit_attrib_location()
4458 && !state->has_separate_shader_objects()
4459 && !state->ARB_fragment_coord_conventions_enable) {
4460 if (this->type->qualifier.flags.q.out) {
4461 _mesa_glsl_error(& loc, state,
4462 "`out' qualifier in declaration of `%s' "
4463 "only valid for function parameters in %s",
4464 decl->identifier, state->get_version_string());
4465 }
4466 if (this->type->qualifier.flags.q.in) {
4467 _mesa_glsl_error(& loc, state,
4468 "`in' qualifier in declaration of `%s' "
4469 "only valid for function parameters in %s",
4470 decl->identifier, state->get_version_string());
4471 }
4472 /* FINISHME: Test for other invalid qualifiers. */
4473 }
4474
4475 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4476 & loc, false);
4477 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4478 &loc);
4479
4480 if (this->type->qualifier.flags.q.invariant) {
4481 if (!is_varying_var(var, state->stage)) {
4482 _mesa_glsl_error(&loc, state,
4483 "`%s' cannot be marked invariant; interfaces between "
4484 "shader stages only", var->name);
4485 }
4486 }
4487
4488 if (state->current_function != NULL) {
4489 const char *mode = NULL;
4490 const char *extra = "";
4491
4492 /* There is no need to check for 'inout' here because the parser will
4493 * only allow that in function parameter lists.
4494 */
4495 if (this->type->qualifier.flags.q.attribute) {
4496 mode = "attribute";
4497 } else if (this->type->qualifier.flags.q.subroutine) {
4498 mode = "subroutine uniform";
4499 } else if (this->type->qualifier.flags.q.uniform) {
4500 mode = "uniform";
4501 } else if (this->type->qualifier.flags.q.varying) {
4502 mode = "varying";
4503 } else if (this->type->qualifier.flags.q.in) {
4504 mode = "in";
4505 extra = " or in function parameter list";
4506 } else if (this->type->qualifier.flags.q.out) {
4507 mode = "out";
4508 extra = " or in function parameter list";
4509 }
4510
4511 if (mode) {
4512 _mesa_glsl_error(& loc, state,
4513 "%s variable `%s' must be declared at "
4514 "global scope%s",
4515 mode, var->name, extra);
4516 }
4517 } else if (var->data.mode == ir_var_shader_in) {
4518 var->data.read_only = true;
4519
4520 if (state->stage == MESA_SHADER_VERTEX) {
4521 bool error_emitted = false;
4522
4523 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4524 *
4525 * "Vertex shader inputs can only be float, floating-point
4526 * vectors, matrices, signed and unsigned integers and integer
4527 * vectors. Vertex shader inputs can also form arrays of these
4528 * types, but not structures."
4529 *
4530 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4531 *
4532 * "Vertex shader inputs can only be float, floating-point
4533 * vectors, matrices, signed and unsigned integers and integer
4534 * vectors. They cannot be arrays or structures."
4535 *
4536 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4537 *
4538 * "The attribute qualifier can be used only with float,
4539 * floating-point vectors, and matrices. Attribute variables
4540 * cannot be declared as arrays or structures."
4541 *
4542 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4543 *
4544 * "Vertex shader inputs can only be float, floating-point
4545 * vectors, matrices, signed and unsigned integers and integer
4546 * vectors. Vertex shader inputs cannot be arrays or
4547 * structures."
4548 */
4549 const glsl_type *check_type = var->type->without_array();
4550
4551 switch (check_type->base_type) {
4552 case GLSL_TYPE_FLOAT:
4553 break;
4554 case GLSL_TYPE_UINT:
4555 case GLSL_TYPE_INT:
4556 if (state->is_version(120, 300))
4557 break;
4558 case GLSL_TYPE_DOUBLE:
4559 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4560 break;
4561 /* FALLTHROUGH */
4562 default:
4563 _mesa_glsl_error(& loc, state,
4564 "vertex shader input / attribute cannot have "
4565 "type %s`%s'",
4566 var->type->is_array() ? "array of " : "",
4567 check_type->name);
4568 error_emitted = true;
4569 }
4570
4571 if (!error_emitted && var->type->is_array() &&
4572 !state->check_version(150, 0, &loc,
4573 "vertex shader input / attribute "
4574 "cannot have array type")) {
4575 error_emitted = true;
4576 }
4577 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4578 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4579 *
4580 * Geometry shader input variables get the per-vertex values
4581 * written out by vertex shader output variables of the same
4582 * names. Since a geometry shader operates on a set of
4583 * vertices, each input varying variable (or input block, see
4584 * interface blocks below) needs to be declared as an array.
4585 */
4586 if (!var->type->is_array()) {
4587 _mesa_glsl_error(&loc, state,
4588 "geometry shader inputs must be arrays");
4589 }
4590
4591 handle_geometry_shader_input_decl(state, loc, var);
4592 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4593 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4594 *
4595 * It is a compile-time error to declare a fragment shader
4596 * input with, or that contains, any of the following types:
4597 *
4598 * * A boolean type
4599 * * An opaque type
4600 * * An array of arrays
4601 * * An array of structures
4602 * * A structure containing an array
4603 * * A structure containing a structure
4604 */
4605 if (state->es_shader) {
4606 const glsl_type *check_type = var->type->without_array();
4607 if (check_type->is_boolean() ||
4608 check_type->contains_opaque()) {
4609 _mesa_glsl_error(&loc, state,
4610 "fragment shader input cannot have type %s",
4611 check_type->name);
4612 }
4613 if (var->type->is_array() &&
4614 var->type->fields.array->is_array()) {
4615 _mesa_glsl_error(&loc, state,
4616 "%s shader output "
4617 "cannot have an array of arrays",
4618 _mesa_shader_stage_to_string(state->stage));
4619 }
4620 if (var->type->is_array() &&
4621 var->type->fields.array->is_record()) {
4622 _mesa_glsl_error(&loc, state,
4623 "fragment shader input "
4624 "cannot have an array of structs");
4625 }
4626 if (var->type->is_record()) {
4627 for (unsigned i = 0; i < var->type->length; i++) {
4628 if (var->type->fields.structure[i].type->is_array() ||
4629 var->type->fields.structure[i].type->is_record())
4630 _mesa_glsl_error(&loc, state,
4631 "fragement shader input cannot have "
4632 "a struct that contains an "
4633 "array or struct");
4634 }
4635 }
4636 }
4637 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4638 state->stage == MESA_SHADER_TESS_EVAL) {
4639 handle_tess_shader_input_decl(state, loc, var);
4640 }
4641 } else if (var->data.mode == ir_var_shader_out) {
4642 const glsl_type *check_type = var->type->without_array();
4643
4644 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4645 *
4646 * It is a compile-time error to declare a vertex, tessellation
4647 * evaluation, tessellation control, or geometry shader output
4648 * that contains any of the following:
4649 *
4650 * * A Boolean type (bool, bvec2 ...)
4651 * * An opaque type
4652 */
4653 if (check_type->is_boolean() || check_type->contains_opaque())
4654 _mesa_glsl_error(&loc, state,
4655 "%s shader output cannot have type %s",
4656 _mesa_shader_stage_to_string(state->stage),
4657 check_type->name);
4658
4659 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4660 *
4661 * It is a compile-time error to declare a fragment shader output
4662 * that contains any of the following:
4663 *
4664 * * A Boolean type (bool, bvec2 ...)
4665 * * A double-precision scalar or vector (double, dvec2 ...)
4666 * * An opaque type
4667 * * Any matrix type
4668 * * A structure
4669 */
4670 if (state->stage == MESA_SHADER_FRAGMENT) {
4671 if (check_type->is_record() || check_type->is_matrix())
4672 _mesa_glsl_error(&loc, state,
4673 "fragment shader output "
4674 "cannot have struct or matrix type");
4675 switch (check_type->base_type) {
4676 case GLSL_TYPE_UINT:
4677 case GLSL_TYPE_INT:
4678 case GLSL_TYPE_FLOAT:
4679 break;
4680 default:
4681 _mesa_glsl_error(&loc, state,
4682 "fragment shader output cannot have "
4683 "type %s", check_type->name);
4684 }
4685 }
4686
4687 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4688 *
4689 * It is a compile-time error to declare a vertex shader output
4690 * with, or that contains, any of the following types:
4691 *
4692 * * A boolean type
4693 * * An opaque type
4694 * * An array of arrays
4695 * * An array of structures
4696 * * A structure containing an array
4697 * * A structure containing a structure
4698 *
4699 * It is a compile-time error to declare a fragment shader output
4700 * with, or that contains, any of the following types:
4701 *
4702 * * A boolean type
4703 * * An opaque type
4704 * * A matrix
4705 * * A structure
4706 * * An array of array
4707 */
4708 if (state->es_shader) {
4709 if (var->type->is_array() &&
4710 var->type->fields.array->is_array()) {
4711 _mesa_glsl_error(&loc, state,
4712 "%s shader output "
4713 "cannot have an array of arrays",
4714 _mesa_shader_stage_to_string(state->stage));
4715 }
4716 if (state->stage == MESA_SHADER_VERTEX) {
4717 if (var->type->is_array() &&
4718 var->type->fields.array->is_record()) {
4719 _mesa_glsl_error(&loc, state,
4720 "vertex shader output "
4721 "cannot have an array of structs");
4722 }
4723 if (var->type->is_record()) {
4724 for (unsigned i = 0; i < var->type->length; i++) {
4725 if (var->type->fields.structure[i].type->is_array() ||
4726 var->type->fields.structure[i].type->is_record())
4727 _mesa_glsl_error(&loc, state,
4728 "vertex shader output cannot have a "
4729 "struct that contains an "
4730 "array or struct");
4731 }
4732 }
4733 }
4734 }
4735
4736 if (state->stage == MESA_SHADER_TESS_CTRL) {
4737 handle_tess_ctrl_shader_output_decl(state, loc, var);
4738 }
4739 } else if (var->type->contains_subroutine()) {
4740 /* declare subroutine uniforms as hidden */
4741 var->data.how_declared = ir_var_hidden;
4742 }
4743
4744 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4745 * so must integer vertex outputs.
4746 *
4747 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4748 * "Fragment shader inputs that are signed or unsigned integers or
4749 * integer vectors must be qualified with the interpolation qualifier
4750 * flat."
4751 *
4752 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4753 * "Fragment shader inputs that are, or contain, signed or unsigned
4754 * integers or integer vectors must be qualified with the
4755 * interpolation qualifier flat."
4756 *
4757 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4758 * "Vertex shader outputs that are, or contain, signed or unsigned
4759 * integers or integer vectors must be qualified with the
4760 * interpolation qualifier flat."
4761 *
4762 * Note that prior to GLSL 1.50, this requirement applied to vertex
4763 * outputs rather than fragment inputs. That creates problems in the
4764 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4765 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4766 * apply the restriction to both vertex outputs and fragment inputs.
4767 *
4768 * Note also that the desktop GLSL specs are missing the text "or
4769 * contain"; this is presumably an oversight, since there is no
4770 * reasonable way to interpolate a fragment shader input that contains
4771 * an integer.
4772 */
4773 if (state->is_version(130, 300) &&
4774 var->type->contains_integer() &&
4775 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4776 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4777 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4778 && state->es_shader))) {
4779 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4780 "vertex output" : "fragment input";
4781 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4782 "an integer, then it must be qualified with 'flat'",
4783 var_type);
4784 }
4785
4786 /* Double fragment inputs must be qualified with 'flat'. */
4787 if (var->type->contains_double() &&
4788 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4789 state->stage == MESA_SHADER_FRAGMENT &&
4790 var->data.mode == ir_var_shader_in) {
4791 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4792 "a double, then it must be qualified with 'flat'",
4793 var_type);
4794 }
4795
4796 /* Interpolation qualifiers cannot be applied to 'centroid' and
4797 * 'centroid varying'.
4798 *
4799 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4800 * "interpolation qualifiers may only precede the qualifiers in,
4801 * centroid in, out, or centroid out in a declaration. They do not apply
4802 * to the deprecated storage qualifiers varying or centroid varying."
4803 *
4804 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4805 */
4806 if (state->is_version(130, 0)
4807 && this->type->qualifier.has_interpolation()
4808 && this->type->qualifier.flags.q.varying) {
4809
4810 const char *i = interpolation_string(var->data.interpolation);
4811 const char *s;
4812 if (this->type->qualifier.flags.q.centroid)
4813 s = "centroid varying";
4814 else
4815 s = "varying";
4816
4817 _mesa_glsl_error(&loc, state,
4818 "qualifier '%s' cannot be applied to the "
4819 "deprecated storage qualifier '%s'", i, s);
4820 }
4821
4822
4823 /* Interpolation qualifiers can only apply to vertex shader outputs and
4824 * fragment shader inputs.
4825 *
4826 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4827 * "Outputs from a vertex shader (out) and inputs to a fragment
4828 * shader (in) can be further qualified with one or more of these
4829 * interpolation qualifiers"
4830 *
4831 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4832 * "These interpolation qualifiers may only precede the qualifiers
4833 * in, centroid in, out, or centroid out in a declaration. They do
4834 * not apply to inputs into a vertex shader or outputs from a
4835 * fragment shader."
4836 */
4837 if (state->is_version(130, 300)
4838 && this->type->qualifier.has_interpolation()) {
4839
4840 const char *i = interpolation_string(var->data.interpolation);
4841 switch (state->stage) {
4842 case MESA_SHADER_VERTEX:
4843 if (this->type->qualifier.flags.q.in) {
4844 _mesa_glsl_error(&loc, state,
4845 "qualifier '%s' cannot be applied to vertex "
4846 "shader inputs", i);
4847 }
4848 break;
4849 case MESA_SHADER_FRAGMENT:
4850 if (this->type->qualifier.flags.q.out) {
4851 _mesa_glsl_error(&loc, state,
4852 "qualifier '%s' cannot be applied to fragment "
4853 "shader outputs", i);
4854 }
4855 break;
4856 default:
4857 break;
4858 }
4859 }
4860
4861
4862 /* From section 4.3.4 of the GLSL 4.00 spec:
4863 * "Input variables may not be declared using the patch in qualifier
4864 * in tessellation control or geometry shaders."
4865 *
4866 * From section 4.3.6 of the GLSL 4.00 spec:
4867 * "It is an error to use patch out in a vertex, tessellation
4868 * evaluation, or geometry shader."
4869 *
4870 * This doesn't explicitly forbid using them in a fragment shader, but
4871 * that's probably just an oversight.
4872 */
4873 if (state->stage != MESA_SHADER_TESS_EVAL
4874 && this->type->qualifier.flags.q.patch
4875 && this->type->qualifier.flags.q.in) {
4876
4877 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4878 "tessellation evaluation shader");
4879 }
4880
4881 if (state->stage != MESA_SHADER_TESS_CTRL
4882 && this->type->qualifier.flags.q.patch
4883 && this->type->qualifier.flags.q.out) {
4884
4885 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4886 "tessellation control shader");
4887 }
4888
4889 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4890 */
4891 if (this->type->qualifier.precision != ast_precision_none) {
4892 state->check_precision_qualifiers_allowed(&loc);
4893 }
4894
4895
4896 /* If a precision qualifier is allowed on a type, it is allowed on
4897 * an array of that type.
4898 */
4899 if (!(this->type->qualifier.precision == ast_precision_none
4900 || precision_qualifier_allowed(var->type->without_array()))) {
4901
4902 _mesa_glsl_error(&loc, state,
4903 "precision qualifiers apply only to floating point"
4904 ", integer and opaque types");
4905 }
4906
4907 /* From section 4.1.7 of the GLSL 4.40 spec:
4908 *
4909 * "[Opaque types] can only be declared as function
4910 * parameters or uniform-qualified variables."
4911 */
4912 if (var_type->contains_opaque() &&
4913 !this->type->qualifier.flags.q.uniform) {
4914 _mesa_glsl_error(&loc, state,
4915 "opaque variables must be declared uniform");
4916 }
4917
4918 /* Process the initializer and add its instructions to a temporary
4919 * list. This list will be added to the instruction stream (below) after
4920 * the declaration is added. This is done because in some cases (such as
4921 * redeclarations) the declaration may not actually be added to the
4922 * instruction stream.
4923 */
4924 exec_list initializer_instructions;
4925
4926 /* Examine var name here since var may get deleted in the next call */
4927 bool var_is_gl_id = is_gl_identifier(var->name);
4928
4929 ir_variable *earlier =
4930 get_variable_being_redeclared(var, decl->get_location(), state,
4931 false /* allow_all_redeclarations */);
4932 if (earlier != NULL) {
4933 if (var_is_gl_id &&
4934 earlier->data.how_declared == ir_var_declared_in_block) {
4935 _mesa_glsl_error(&loc, state,
4936 "`%s' has already been redeclared using "
4937 "gl_PerVertex", earlier->name);
4938 }
4939 earlier->data.how_declared = ir_var_declared_normally;
4940 }
4941
4942 if (decl->initializer != NULL) {
4943 result = process_initializer((earlier == NULL) ? var : earlier,
4944 decl, this->type,
4945 &initializer_instructions, state);
4946 } else {
4947 validate_array_dimensions(var_type, state, &loc);
4948 }
4949
4950 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4951 *
4952 * "It is an error to write to a const variable outside of
4953 * its declaration, so they must be initialized when
4954 * declared."
4955 */
4956 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4957 _mesa_glsl_error(& loc, state,
4958 "const declaration of `%s' must be initialized",
4959 decl->identifier);
4960 }
4961
4962 if (state->es_shader) {
4963 const glsl_type *const t = (earlier == NULL)
4964 ? var->type : earlier->type;
4965
4966 if (t->is_unsized_array())
4967 /* Section 10.17 of the GLSL ES 1.00 specification states that
4968 * unsized array declarations have been removed from the language.
4969 * Arrays that are sized using an initializer are still explicitly
4970 * sized. However, GLSL ES 1.00 does not allow array
4971 * initializers. That is only allowed in GLSL ES 3.00.
4972 *
4973 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4974 *
4975 * "An array type can also be formed without specifying a size
4976 * if the definition includes an initializer:
4977 *
4978 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4979 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4980 *
4981 * float a[5];
4982 * float b[] = a;"
4983 */
4984 _mesa_glsl_error(& loc, state,
4985 "unsized array declarations are not allowed in "
4986 "GLSL ES");
4987 }
4988
4989 /* If the declaration is not a redeclaration, there are a few additional
4990 * semantic checks that must be applied. In addition, variable that was
4991 * created for the declaration should be added to the IR stream.
4992 */
4993 if (earlier == NULL) {
4994 validate_identifier(decl->identifier, loc, state);
4995
4996 /* Add the variable to the symbol table. Note that the initializer's
4997 * IR was already processed earlier (though it hasn't been emitted
4998 * yet), without the variable in scope.
4999 *
5000 * This differs from most C-like languages, but it follows the GLSL
5001 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5002 * spec:
5003 *
5004 * "Within a declaration, the scope of a name starts immediately
5005 * after the initializer if present or immediately after the name
5006 * being declared if not."
5007 */
5008 if (!state->symbols->add_variable(var)) {
5009 YYLTYPE loc = this->get_location();
5010 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5011 "current scope", decl->identifier);
5012 continue;
5013 }
5014
5015 /* Push the variable declaration to the top. It means that all the
5016 * variable declarations will appear in a funny last-to-first order,
5017 * but otherwise we run into trouble if a function is prototyped, a
5018 * global var is decled, then the function is defined with usage of
5019 * the global var. See glslparsertest's CorrectModule.frag.
5020 */
5021 instructions->push_head(var);
5022 }
5023
5024 instructions->append_list(&initializer_instructions);
5025 }
5026
5027
5028 /* Generally, variable declarations do not have r-values. However,
5029 * one is used for the declaration in
5030 *
5031 * while (bool b = some_condition()) {
5032 * ...
5033 * }
5034 *
5035 * so we return the rvalue from the last seen declaration here.
5036 */
5037 return result;
5038 }
5039
5040
5041 ir_rvalue *
5042 ast_parameter_declarator::hir(exec_list *instructions,
5043 struct _mesa_glsl_parse_state *state)
5044 {
5045 void *ctx = state;
5046 const struct glsl_type *type;
5047 const char *name = NULL;
5048 YYLTYPE loc = this->get_location();
5049
5050 type = this->type->glsl_type(& name, state);
5051
5052 if (type == NULL) {
5053 if (name != NULL) {
5054 _mesa_glsl_error(& loc, state,
5055 "invalid type `%s' in declaration of `%s'",
5056 name, this->identifier);
5057 } else {
5058 _mesa_glsl_error(& loc, state,
5059 "invalid type in declaration of `%s'",
5060 this->identifier);
5061 }
5062
5063 type = glsl_type::error_type;
5064 }
5065
5066 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5067 *
5068 * "Functions that accept no input arguments need not use void in the
5069 * argument list because prototypes (or definitions) are required and
5070 * therefore there is no ambiguity when an empty argument list "( )" is
5071 * declared. The idiom "(void)" as a parameter list is provided for
5072 * convenience."
5073 *
5074 * Placing this check here prevents a void parameter being set up
5075 * for a function, which avoids tripping up checks for main taking
5076 * parameters and lookups of an unnamed symbol.
5077 */
5078 if (type->is_void()) {
5079 if (this->identifier != NULL)
5080 _mesa_glsl_error(& loc, state,
5081 "named parameter cannot have type `void'");
5082
5083 is_void = true;
5084 return NULL;
5085 }
5086
5087 if (formal_parameter && (this->identifier == NULL)) {
5088 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5089 return NULL;
5090 }
5091
5092 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5093 * call already handled the "vec4[..] foo" case.
5094 */
5095 type = process_array_type(&loc, type, this->array_specifier, state);
5096
5097 if (!type->is_error() && type->is_unsized_array()) {
5098 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5099 "a declared size");
5100 type = glsl_type::error_type;
5101 }
5102
5103 is_void = false;
5104 ir_variable *var = new(ctx)
5105 ir_variable(type, this->identifier, ir_var_function_in);
5106
5107 /* Apply any specified qualifiers to the parameter declaration. Note that
5108 * for function parameters the default mode is 'in'.
5109 */
5110 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5111 true);
5112
5113 /* From section 4.1.7 of the GLSL 4.40 spec:
5114 *
5115 * "Opaque variables cannot be treated as l-values; hence cannot
5116 * be used as out or inout function parameters, nor can they be
5117 * assigned into."
5118 */
5119 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5120 && type->contains_opaque()) {
5121 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5122 "contain opaque variables");
5123 type = glsl_type::error_type;
5124 }
5125
5126 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5127 *
5128 * "When calling a function, expressions that do not evaluate to
5129 * l-values cannot be passed to parameters declared as out or inout."
5130 *
5131 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5132 *
5133 * "Other binary or unary expressions, non-dereferenced arrays,
5134 * function names, swizzles with repeated fields, and constants
5135 * cannot be l-values."
5136 *
5137 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5138 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5139 */
5140 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5141 && type->is_array()
5142 && !state->check_version(120, 100, &loc,
5143 "arrays cannot be out or inout parameters")) {
5144 type = glsl_type::error_type;
5145 }
5146
5147 instructions->push_tail(var);
5148
5149 /* Parameter declarations do not have r-values.
5150 */
5151 return NULL;
5152 }
5153
5154
5155 void
5156 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5157 bool formal,
5158 exec_list *ir_parameters,
5159 _mesa_glsl_parse_state *state)
5160 {
5161 ast_parameter_declarator *void_param = NULL;
5162 unsigned count = 0;
5163
5164 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5165 param->formal_parameter = formal;
5166 param->hir(ir_parameters, state);
5167
5168 if (param->is_void)
5169 void_param = param;
5170
5171 count++;
5172 }
5173
5174 if ((void_param != NULL) && (count > 1)) {
5175 YYLTYPE loc = void_param->get_location();
5176
5177 _mesa_glsl_error(& loc, state,
5178 "`void' parameter must be only parameter");
5179 }
5180 }
5181
5182
5183 void
5184 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5185 {
5186 /* IR invariants disallow function declarations or definitions
5187 * nested within other function definitions. But there is no
5188 * requirement about the relative order of function declarations
5189 * and definitions with respect to one another. So simply insert
5190 * the new ir_function block at the end of the toplevel instruction
5191 * list.
5192 */
5193 state->toplevel_ir->push_tail(f);
5194 }
5195
5196
5197 ir_rvalue *
5198 ast_function::hir(exec_list *instructions,
5199 struct _mesa_glsl_parse_state *state)
5200 {
5201 void *ctx = state;
5202 ir_function *f = NULL;
5203 ir_function_signature *sig = NULL;
5204 exec_list hir_parameters;
5205 YYLTYPE loc = this->get_location();
5206
5207 const char *const name = identifier;
5208
5209 /* New functions are always added to the top-level IR instruction stream,
5210 * so this instruction list pointer is ignored. See also emit_function
5211 * (called below).
5212 */
5213 (void) instructions;
5214
5215 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5216 *
5217 * "Function declarations (prototypes) cannot occur inside of functions;
5218 * they must be at global scope, or for the built-in functions, outside
5219 * the global scope."
5220 *
5221 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5222 *
5223 * "User defined functions may only be defined within the global scope."
5224 *
5225 * Note that this language does not appear in GLSL 1.10.
5226 */
5227 if ((state->current_function != NULL) &&
5228 state->is_version(120, 100)) {
5229 YYLTYPE loc = this->get_location();
5230 _mesa_glsl_error(&loc, state,
5231 "declaration of function `%s' not allowed within "
5232 "function body", name);
5233 }
5234
5235 validate_identifier(name, this->get_location(), state);
5236
5237 /* Convert the list of function parameters to HIR now so that they can be
5238 * used below to compare this function's signature with previously seen
5239 * signatures for functions with the same name.
5240 */
5241 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5242 is_definition,
5243 & hir_parameters, state);
5244
5245 const char *return_type_name;
5246 const glsl_type *return_type =
5247 this->return_type->glsl_type(& return_type_name, state);
5248
5249 if (!return_type) {
5250 YYLTYPE loc = this->get_location();
5251 _mesa_glsl_error(&loc, state,
5252 "function `%s' has undeclared return type `%s'",
5253 name, return_type_name);
5254 return_type = glsl_type::error_type;
5255 }
5256
5257 /* ARB_shader_subroutine states:
5258 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5259 * subroutine(...) to a function declaration."
5260 */
5261 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5262 YYLTYPE loc = this->get_location();
5263 _mesa_glsl_error(&loc, state,
5264 "function declaration `%s' cannot have subroutine prepended",
5265 name);
5266 }
5267
5268 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5269 * "No qualifier is allowed on the return type of a function."
5270 */
5271 if (this->return_type->has_qualifiers(state)) {
5272 YYLTYPE loc = this->get_location();
5273 _mesa_glsl_error(& loc, state,
5274 "function `%s' return type has qualifiers", name);
5275 }
5276
5277 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5278 *
5279 * "Arrays are allowed as arguments and as the return type. In both
5280 * cases, the array must be explicitly sized."
5281 */
5282 if (return_type->is_unsized_array()) {
5283 YYLTYPE loc = this->get_location();
5284 _mesa_glsl_error(& loc, state,
5285 "function `%s' return type array must be explicitly "
5286 "sized", name);
5287 }
5288
5289 /* From section 4.1.7 of the GLSL 4.40 spec:
5290 *
5291 * "[Opaque types] can only be declared as function parameters
5292 * or uniform-qualified variables."
5293 */
5294 if (return_type->contains_opaque()) {
5295 YYLTYPE loc = this->get_location();
5296 _mesa_glsl_error(&loc, state,
5297 "function `%s' return type can't contain an opaque type",
5298 name);
5299 }
5300
5301 /* Create an ir_function if one doesn't already exist. */
5302 f = state->symbols->get_function(name);
5303 if (f == NULL) {
5304 f = new(ctx) ir_function(name);
5305 if (!this->return_type->qualifier.flags.q.subroutine) {
5306 if (!state->symbols->add_function(f)) {
5307 /* This function name shadows a non-function use of the same name. */
5308 YYLTYPE loc = this->get_location();
5309 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5310 "non-function", name);
5311 return NULL;
5312 }
5313 }
5314 emit_function(state, f);
5315 }
5316
5317 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5318 *
5319 * "A shader cannot redefine or overload built-in functions."
5320 *
5321 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5322 *
5323 * "User code can overload the built-in functions but cannot redefine
5324 * them."
5325 */
5326 if (state->es_shader && state->language_version >= 300) {
5327 /* Local shader has no exact candidates; check the built-ins. */
5328 _mesa_glsl_initialize_builtin_functions();
5329 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5330 YYLTYPE loc = this->get_location();
5331 _mesa_glsl_error(& loc, state,
5332 "A shader cannot redefine or overload built-in "
5333 "function `%s' in GLSL ES 3.00", name);
5334 return NULL;
5335 }
5336 }
5337
5338 /* Verify that this function's signature either doesn't match a previously
5339 * seen signature for a function with the same name, or, if a match is found,
5340 * that the previously seen signature does not have an associated definition.
5341 */
5342 if (state->es_shader || f->has_user_signature()) {
5343 sig = f->exact_matching_signature(state, &hir_parameters);
5344 if (sig != NULL) {
5345 const char *badvar = sig->qualifiers_match(&hir_parameters);
5346 if (badvar != NULL) {
5347 YYLTYPE loc = this->get_location();
5348
5349 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5350 "qualifiers don't match prototype", name, badvar);
5351 }
5352
5353 if (sig->return_type != return_type) {
5354 YYLTYPE loc = this->get_location();
5355
5356 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5357 "match prototype", name);
5358 }
5359
5360 if (sig->is_defined) {
5361 if (is_definition) {
5362 YYLTYPE loc = this->get_location();
5363 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5364 } else {
5365 /* We just encountered a prototype that exactly matches a
5366 * function that's already been defined. This is redundant,
5367 * and we should ignore it.
5368 */
5369 return NULL;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* Verify the return type of main() */
5376 if (strcmp(name, "main") == 0) {
5377 if (! return_type->is_void()) {
5378 YYLTYPE loc = this->get_location();
5379
5380 _mesa_glsl_error(& loc, state, "main() must return void");
5381 }
5382
5383 if (!hir_parameters.is_empty()) {
5384 YYLTYPE loc = this->get_location();
5385
5386 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5387 }
5388 }
5389
5390 /* Finish storing the information about this new function in its signature.
5391 */
5392 if (sig == NULL) {
5393 sig = new(ctx) ir_function_signature(return_type);
5394 f->add_signature(sig);
5395 }
5396
5397 sig->replace_parameters(&hir_parameters);
5398 signature = sig;
5399
5400 if (this->return_type->qualifier.flags.q.subroutine_def) {
5401 int idx;
5402
5403 if (this->return_type->qualifier.flags.q.explicit_index) {
5404 unsigned qual_index;
5405 if (process_qualifier_constant(state, &loc, "index",
5406 this->return_type->qualifier.index,
5407 &qual_index)) {
5408 if (!state->has_explicit_uniform_location()) {
5409 _mesa_glsl_error(&loc, state, "subroutine index requires "
5410 "GL_ARB_explicit_uniform_location or "
5411 "GLSL 4.30");
5412 } else if (qual_index >= MAX_SUBROUTINES) {
5413 _mesa_glsl_error(&loc, state,
5414 "invalid subroutine index (%d) index must "
5415 "be a number between 0 and "
5416 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5417 MAX_SUBROUTINES - 1);
5418 } else {
5419 f->subroutine_index = qual_index;
5420 }
5421 }
5422 }
5423
5424 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5425 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5426 f->num_subroutine_types);
5427 idx = 0;
5428 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5429 const struct glsl_type *type;
5430 /* the subroutine type must be already declared */
5431 type = state->symbols->get_type(decl->identifier);
5432 if (!type) {
5433 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5434 }
5435 f->subroutine_types[idx++] = type;
5436 }
5437 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5438 ir_function *,
5439 state->num_subroutines + 1);
5440 state->subroutines[state->num_subroutines] = f;
5441 state->num_subroutines++;
5442
5443 }
5444
5445 if (this->return_type->qualifier.flags.q.subroutine) {
5446 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5447 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5448 return NULL;
5449 }
5450 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5451 ir_function *,
5452 state->num_subroutine_types + 1);
5453 state->subroutine_types[state->num_subroutine_types] = f;
5454 state->num_subroutine_types++;
5455
5456 f->is_subroutine = true;
5457 }
5458
5459 /* Function declarations (prototypes) do not have r-values.
5460 */
5461 return NULL;
5462 }
5463
5464
5465 ir_rvalue *
5466 ast_function_definition::hir(exec_list *instructions,
5467 struct _mesa_glsl_parse_state *state)
5468 {
5469 prototype->is_definition = true;
5470 prototype->hir(instructions, state);
5471
5472 ir_function_signature *signature = prototype->signature;
5473 if (signature == NULL)
5474 return NULL;
5475
5476 assert(state->current_function == NULL);
5477 state->current_function = signature;
5478 state->found_return = false;
5479
5480 /* Duplicate parameters declared in the prototype as concrete variables.
5481 * Add these to the symbol table.
5482 */
5483 state->symbols->push_scope();
5484 foreach_in_list(ir_variable, var, &signature->parameters) {
5485 assert(var->as_variable() != NULL);
5486
5487 /* The only way a parameter would "exist" is if two parameters have
5488 * the same name.
5489 */
5490 if (state->symbols->name_declared_this_scope(var->name)) {
5491 YYLTYPE loc = this->get_location();
5492
5493 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5494 } else {
5495 state->symbols->add_variable(var);
5496 }
5497 }
5498
5499 /* Convert the body of the function to HIR. */
5500 this->body->hir(&signature->body, state);
5501 signature->is_defined = true;
5502
5503 state->symbols->pop_scope();
5504
5505 assert(state->current_function == signature);
5506 state->current_function = NULL;
5507
5508 if (!signature->return_type->is_void() && !state->found_return) {
5509 YYLTYPE loc = this->get_location();
5510 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5511 "%s, but no return statement",
5512 signature->function_name(),
5513 signature->return_type->name);
5514 }
5515
5516 /* Function definitions do not have r-values.
5517 */
5518 return NULL;
5519 }
5520
5521
5522 ir_rvalue *
5523 ast_jump_statement::hir(exec_list *instructions,
5524 struct _mesa_glsl_parse_state *state)
5525 {
5526 void *ctx = state;
5527
5528 switch (mode) {
5529 case ast_return: {
5530 ir_return *inst;
5531 assert(state->current_function);
5532
5533 if (opt_return_value) {
5534 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5535
5536 /* The value of the return type can be NULL if the shader says
5537 * 'return foo();' and foo() is a function that returns void.
5538 *
5539 * NOTE: The GLSL spec doesn't say that this is an error. The type
5540 * of the return value is void. If the return type of the function is
5541 * also void, then this should compile without error. Seriously.
5542 */
5543 const glsl_type *const ret_type =
5544 (ret == NULL) ? glsl_type::void_type : ret->type;
5545
5546 /* Implicit conversions are not allowed for return values prior to
5547 * ARB_shading_language_420pack.
5548 */
5549 if (state->current_function->return_type != ret_type) {
5550 YYLTYPE loc = this->get_location();
5551
5552 if (state->has_420pack()) {
5553 if (!apply_implicit_conversion(state->current_function->return_type,
5554 ret, state)) {
5555 _mesa_glsl_error(& loc, state,
5556 "could not implicitly convert return value "
5557 "to %s, in function `%s'",
5558 state->current_function->return_type->name,
5559 state->current_function->function_name());
5560 }
5561 } else {
5562 _mesa_glsl_error(& loc, state,
5563 "`return' with wrong type %s, in function `%s' "
5564 "returning %s",
5565 ret_type->name,
5566 state->current_function->function_name(),
5567 state->current_function->return_type->name);
5568 }
5569 } else if (state->current_function->return_type->base_type ==
5570 GLSL_TYPE_VOID) {
5571 YYLTYPE loc = this->get_location();
5572
5573 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5574 * specs add a clarification:
5575 *
5576 * "A void function can only use return without a return argument, even if
5577 * the return argument has void type. Return statements only accept values:
5578 *
5579 * void func1() { }
5580 * void func2() { return func1(); } // illegal return statement"
5581 */
5582 _mesa_glsl_error(& loc, state,
5583 "void functions can only use `return' without a "
5584 "return argument");
5585 }
5586
5587 inst = new(ctx) ir_return(ret);
5588 } else {
5589 if (state->current_function->return_type->base_type !=
5590 GLSL_TYPE_VOID) {
5591 YYLTYPE loc = this->get_location();
5592
5593 _mesa_glsl_error(& loc, state,
5594 "`return' with no value, in function %s returning "
5595 "non-void",
5596 state->current_function->function_name());
5597 }
5598 inst = new(ctx) ir_return;
5599 }
5600
5601 state->found_return = true;
5602 instructions->push_tail(inst);
5603 break;
5604 }
5605
5606 case ast_discard:
5607 if (state->stage != MESA_SHADER_FRAGMENT) {
5608 YYLTYPE loc = this->get_location();
5609
5610 _mesa_glsl_error(& loc, state,
5611 "`discard' may only appear in a fragment shader");
5612 }
5613 instructions->push_tail(new(ctx) ir_discard);
5614 break;
5615
5616 case ast_break:
5617 case ast_continue:
5618 if (mode == ast_continue &&
5619 state->loop_nesting_ast == NULL) {
5620 YYLTYPE loc = this->get_location();
5621
5622 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5623 } else if (mode == ast_break &&
5624 state->loop_nesting_ast == NULL &&
5625 state->switch_state.switch_nesting_ast == NULL) {
5626 YYLTYPE loc = this->get_location();
5627
5628 _mesa_glsl_error(& loc, state,
5629 "break may only appear in a loop or a switch");
5630 } else {
5631 /* For a loop, inline the for loop expression again, since we don't
5632 * know where near the end of the loop body the normal copy of it is
5633 * going to be placed. Same goes for the condition for a do-while
5634 * loop.
5635 */
5636 if (state->loop_nesting_ast != NULL &&
5637 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5638 if (state->loop_nesting_ast->rest_expression) {
5639 state->loop_nesting_ast->rest_expression->hir(instructions,
5640 state);
5641 }
5642 if (state->loop_nesting_ast->mode ==
5643 ast_iteration_statement::ast_do_while) {
5644 state->loop_nesting_ast->condition_to_hir(instructions, state);
5645 }
5646 }
5647
5648 if (state->switch_state.is_switch_innermost &&
5649 mode == ast_continue) {
5650 /* Set 'continue_inside' to true. */
5651 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5652 ir_dereference_variable *deref_continue_inside_var =
5653 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5654 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5655 true_val));
5656
5657 /* Break out from the switch, continue for the loop will
5658 * be called right after switch. */
5659 ir_loop_jump *const jump =
5660 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5661 instructions->push_tail(jump);
5662
5663 } else if (state->switch_state.is_switch_innermost &&
5664 mode == ast_break) {
5665 /* Force break out of switch by inserting a break. */
5666 ir_loop_jump *const jump =
5667 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5668 instructions->push_tail(jump);
5669 } else {
5670 ir_loop_jump *const jump =
5671 new(ctx) ir_loop_jump((mode == ast_break)
5672 ? ir_loop_jump::jump_break
5673 : ir_loop_jump::jump_continue);
5674 instructions->push_tail(jump);
5675 }
5676 }
5677
5678 break;
5679 }
5680
5681 /* Jump instructions do not have r-values.
5682 */
5683 return NULL;
5684 }
5685
5686
5687 ir_rvalue *
5688 ast_selection_statement::hir(exec_list *instructions,
5689 struct _mesa_glsl_parse_state *state)
5690 {
5691 void *ctx = state;
5692
5693 ir_rvalue *const condition = this->condition->hir(instructions, state);
5694
5695 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5696 *
5697 * "Any expression whose type evaluates to a Boolean can be used as the
5698 * conditional expression bool-expression. Vector types are not accepted
5699 * as the expression to if."
5700 *
5701 * The checks are separated so that higher quality diagnostics can be
5702 * generated for cases where both rules are violated.
5703 */
5704 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5705 YYLTYPE loc = this->condition->get_location();
5706
5707 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5708 "boolean");
5709 }
5710
5711 ir_if *const stmt = new(ctx) ir_if(condition);
5712
5713 if (then_statement != NULL) {
5714 state->symbols->push_scope();
5715 then_statement->hir(& stmt->then_instructions, state);
5716 state->symbols->pop_scope();
5717 }
5718
5719 if (else_statement != NULL) {
5720 state->symbols->push_scope();
5721 else_statement->hir(& stmt->else_instructions, state);
5722 state->symbols->pop_scope();
5723 }
5724
5725 instructions->push_tail(stmt);
5726
5727 /* if-statements do not have r-values.
5728 */
5729 return NULL;
5730 }
5731
5732
5733 ir_rvalue *
5734 ast_switch_statement::hir(exec_list *instructions,
5735 struct _mesa_glsl_parse_state *state)
5736 {
5737 void *ctx = state;
5738
5739 ir_rvalue *const test_expression =
5740 this->test_expression->hir(instructions, state);
5741
5742 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5743 *
5744 * "The type of init-expression in a switch statement must be a
5745 * scalar integer."
5746 */
5747 if (!test_expression->type->is_scalar() ||
5748 !test_expression->type->is_integer()) {
5749 YYLTYPE loc = this->test_expression->get_location();
5750
5751 _mesa_glsl_error(& loc,
5752 state,
5753 "switch-statement expression must be scalar "
5754 "integer");
5755 }
5756
5757 /* Track the switch-statement nesting in a stack-like manner.
5758 */
5759 struct glsl_switch_state saved = state->switch_state;
5760
5761 state->switch_state.is_switch_innermost = true;
5762 state->switch_state.switch_nesting_ast = this;
5763 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5764 hash_table_pointer_compare);
5765 state->switch_state.previous_default = NULL;
5766
5767 /* Initalize is_fallthru state to false.
5768 */
5769 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5770 state->switch_state.is_fallthru_var =
5771 new(ctx) ir_variable(glsl_type::bool_type,
5772 "switch_is_fallthru_tmp",
5773 ir_var_temporary);
5774 instructions->push_tail(state->switch_state.is_fallthru_var);
5775
5776 ir_dereference_variable *deref_is_fallthru_var =
5777 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5778 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5779 is_fallthru_val));
5780
5781 /* Initialize continue_inside state to false.
5782 */
5783 state->switch_state.continue_inside =
5784 new(ctx) ir_variable(glsl_type::bool_type,
5785 "continue_inside_tmp",
5786 ir_var_temporary);
5787 instructions->push_tail(state->switch_state.continue_inside);
5788
5789 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5790 ir_dereference_variable *deref_continue_inside_var =
5791 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5792 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5793 false_val));
5794
5795 state->switch_state.run_default =
5796 new(ctx) ir_variable(glsl_type::bool_type,
5797 "run_default_tmp",
5798 ir_var_temporary);
5799 instructions->push_tail(state->switch_state.run_default);
5800
5801 /* Loop around the switch is used for flow control. */
5802 ir_loop * loop = new(ctx) ir_loop();
5803 instructions->push_tail(loop);
5804
5805 /* Cache test expression.
5806 */
5807 test_to_hir(&loop->body_instructions, state);
5808
5809 /* Emit code for body of switch stmt.
5810 */
5811 body->hir(&loop->body_instructions, state);
5812
5813 /* Insert a break at the end to exit loop. */
5814 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5815 loop->body_instructions.push_tail(jump);
5816
5817 /* If we are inside loop, check if continue got called inside switch. */
5818 if (state->loop_nesting_ast != NULL) {
5819 ir_dereference_variable *deref_continue_inside =
5820 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5821 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5822 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5823
5824 if (state->loop_nesting_ast != NULL) {
5825 if (state->loop_nesting_ast->rest_expression) {
5826 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5827 state);
5828 }
5829 if (state->loop_nesting_ast->mode ==
5830 ast_iteration_statement::ast_do_while) {
5831 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5832 }
5833 }
5834 irif->then_instructions.push_tail(jump);
5835 instructions->push_tail(irif);
5836 }
5837
5838 hash_table_dtor(state->switch_state.labels_ht);
5839
5840 state->switch_state = saved;
5841
5842 /* Switch statements do not have r-values. */
5843 return NULL;
5844 }
5845
5846
5847 void
5848 ast_switch_statement::test_to_hir(exec_list *instructions,
5849 struct _mesa_glsl_parse_state *state)
5850 {
5851 void *ctx = state;
5852
5853 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5854 * on the switch test case. The first one would be already raised when
5855 * getting the test_expression at ast_switch_statement::hir
5856 */
5857 test_expression->set_is_lhs(true);
5858 /* Cache value of test expression. */
5859 ir_rvalue *const test_val =
5860 test_expression->hir(instructions,
5861 state);
5862
5863 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5864 "switch_test_tmp",
5865 ir_var_temporary);
5866 ir_dereference_variable *deref_test_var =
5867 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5868
5869 instructions->push_tail(state->switch_state.test_var);
5870 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5871 }
5872
5873
5874 ir_rvalue *
5875 ast_switch_body::hir(exec_list *instructions,
5876 struct _mesa_glsl_parse_state *state)
5877 {
5878 if (stmts != NULL)
5879 stmts->hir(instructions, state);
5880
5881 /* Switch bodies do not have r-values. */
5882 return NULL;
5883 }
5884
5885 ir_rvalue *
5886 ast_case_statement_list::hir(exec_list *instructions,
5887 struct _mesa_glsl_parse_state *state)
5888 {
5889 exec_list default_case, after_default, tmp;
5890
5891 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5892 case_stmt->hir(&tmp, state);
5893
5894 /* Default case. */
5895 if (state->switch_state.previous_default && default_case.is_empty()) {
5896 default_case.append_list(&tmp);
5897 continue;
5898 }
5899
5900 /* If default case found, append 'after_default' list. */
5901 if (!default_case.is_empty())
5902 after_default.append_list(&tmp);
5903 else
5904 instructions->append_list(&tmp);
5905 }
5906
5907 /* Handle the default case. This is done here because default might not be
5908 * the last case. We need to add checks against following cases first to see
5909 * if default should be chosen or not.
5910 */
5911 if (!default_case.is_empty()) {
5912
5913 ir_rvalue *const true_val = new (state) ir_constant(true);
5914 ir_dereference_variable *deref_run_default_var =
5915 new(state) ir_dereference_variable(state->switch_state.run_default);
5916
5917 /* Choose to run default case initially, following conditional
5918 * assignments might change this.
5919 */
5920 ir_assignment *const init_var =
5921 new(state) ir_assignment(deref_run_default_var, true_val);
5922 instructions->push_tail(init_var);
5923
5924 /* Default case was the last one, no checks required. */
5925 if (after_default.is_empty()) {
5926 instructions->append_list(&default_case);
5927 return NULL;
5928 }
5929
5930 foreach_in_list(ir_instruction, ir, &after_default) {
5931 ir_assignment *assign = ir->as_assignment();
5932
5933 if (!assign)
5934 continue;
5935
5936 /* Clone the check between case label and init expression. */
5937 ir_expression *exp = (ir_expression*) assign->condition;
5938 ir_expression *clone = exp->clone(state, NULL);
5939
5940 ir_dereference_variable *deref_var =
5941 new(state) ir_dereference_variable(state->switch_state.run_default);
5942 ir_rvalue *const false_val = new (state) ir_constant(false);
5943
5944 ir_assignment *const set_false =
5945 new(state) ir_assignment(deref_var, false_val, clone);
5946
5947 instructions->push_tail(set_false);
5948 }
5949
5950 /* Append default case and all cases after it. */
5951 instructions->append_list(&default_case);
5952 instructions->append_list(&after_default);
5953 }
5954
5955 /* Case statements do not have r-values. */
5956 return NULL;
5957 }
5958
5959 ir_rvalue *
5960 ast_case_statement::hir(exec_list *instructions,
5961 struct _mesa_glsl_parse_state *state)
5962 {
5963 labels->hir(instructions, state);
5964
5965 /* Guard case statements depending on fallthru state. */
5966 ir_dereference_variable *const deref_fallthru_guard =
5967 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5968 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5969
5970 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5971 stmt->hir(& test_fallthru->then_instructions, state);
5972
5973 instructions->push_tail(test_fallthru);
5974
5975 /* Case statements do not have r-values. */
5976 return NULL;
5977 }
5978
5979
5980 ir_rvalue *
5981 ast_case_label_list::hir(exec_list *instructions,
5982 struct _mesa_glsl_parse_state *state)
5983 {
5984 foreach_list_typed (ast_case_label, label, link, & this->labels)
5985 label->hir(instructions, state);
5986
5987 /* Case labels do not have r-values. */
5988 return NULL;
5989 }
5990
5991 ir_rvalue *
5992 ast_case_label::hir(exec_list *instructions,
5993 struct _mesa_glsl_parse_state *state)
5994 {
5995 void *ctx = state;
5996
5997 ir_dereference_variable *deref_fallthru_var =
5998 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5999
6000 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6001
6002 /* If not default case, ... */
6003 if (this->test_value != NULL) {
6004 /* Conditionally set fallthru state based on
6005 * comparison of cached test expression value to case label.
6006 */
6007 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6008 ir_constant *label_const = label_rval->constant_expression_value();
6009
6010 if (!label_const) {
6011 YYLTYPE loc = this->test_value->get_location();
6012
6013 _mesa_glsl_error(& loc, state,
6014 "switch statement case label must be a "
6015 "constant expression");
6016
6017 /* Stuff a dummy value in to allow processing to continue. */
6018 label_const = new(ctx) ir_constant(0);
6019 } else {
6020 ast_expression *previous_label = (ast_expression *)
6021 hash_table_find(state->switch_state.labels_ht,
6022 (void *)(uintptr_t)label_const->value.u[0]);
6023
6024 if (previous_label) {
6025 YYLTYPE loc = this->test_value->get_location();
6026 _mesa_glsl_error(& loc, state, "duplicate case value");
6027
6028 loc = previous_label->get_location();
6029 _mesa_glsl_error(& loc, state, "this is the previous case label");
6030 } else {
6031 hash_table_insert(state->switch_state.labels_ht,
6032 this->test_value,
6033 (void *)(uintptr_t)label_const->value.u[0]);
6034 }
6035 }
6036
6037 ir_dereference_variable *deref_test_var =
6038 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6039
6040 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6041 label_const,
6042 deref_test_var);
6043
6044 /*
6045 * From GLSL 4.40 specification section 6.2 ("Selection"):
6046 *
6047 * "The type of the init-expression value in a switch statement must
6048 * be a scalar int or uint. The type of the constant-expression value
6049 * in a case label also must be a scalar int or uint. When any pair
6050 * of these values is tested for "equal value" and the types do not
6051 * match, an implicit conversion will be done to convert the int to a
6052 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6053 * is done."
6054 */
6055 if (label_const->type != state->switch_state.test_var->type) {
6056 YYLTYPE loc = this->test_value->get_location();
6057
6058 const glsl_type *type_a = label_const->type;
6059 const glsl_type *type_b = state->switch_state.test_var->type;
6060
6061 /* Check if int->uint implicit conversion is supported. */
6062 bool integer_conversion_supported =
6063 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6064 state);
6065
6066 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6067 !integer_conversion_supported) {
6068 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6069 "init-expression and case label (%s != %s)",
6070 type_a->name, type_b->name);
6071 } else {
6072 /* Conversion of the case label. */
6073 if (type_a->base_type == GLSL_TYPE_INT) {
6074 if (!apply_implicit_conversion(glsl_type::uint_type,
6075 test_cond->operands[0], state))
6076 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6077 } else {
6078 /* Conversion of the init-expression value. */
6079 if (!apply_implicit_conversion(glsl_type::uint_type,
6080 test_cond->operands[1], state))
6081 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6082 }
6083 }
6084 }
6085
6086 ir_assignment *set_fallthru_on_test =
6087 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6088
6089 instructions->push_tail(set_fallthru_on_test);
6090 } else { /* default case */
6091 if (state->switch_state.previous_default) {
6092 YYLTYPE loc = this->get_location();
6093 _mesa_glsl_error(& loc, state,
6094 "multiple default labels in one switch");
6095
6096 loc = state->switch_state.previous_default->get_location();
6097 _mesa_glsl_error(& loc, state, "this is the first default label");
6098 }
6099 state->switch_state.previous_default = this;
6100
6101 /* Set fallthru condition on 'run_default' bool. */
6102 ir_dereference_variable *deref_run_default =
6103 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6104 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6105 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6106 cond_true,
6107 deref_run_default);
6108
6109 /* Set falltrhu state. */
6110 ir_assignment *set_fallthru =
6111 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6112
6113 instructions->push_tail(set_fallthru);
6114 }
6115
6116 /* Case statements do not have r-values. */
6117 return NULL;
6118 }
6119
6120 void
6121 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6122 struct _mesa_glsl_parse_state *state)
6123 {
6124 void *ctx = state;
6125
6126 if (condition != NULL) {
6127 ir_rvalue *const cond =
6128 condition->hir(instructions, state);
6129
6130 if ((cond == NULL)
6131 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6132 YYLTYPE loc = condition->get_location();
6133
6134 _mesa_glsl_error(& loc, state,
6135 "loop condition must be scalar boolean");
6136 } else {
6137 /* As the first code in the loop body, generate a block that looks
6138 * like 'if (!condition) break;' as the loop termination condition.
6139 */
6140 ir_rvalue *const not_cond =
6141 new(ctx) ir_expression(ir_unop_logic_not, cond);
6142
6143 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6144
6145 ir_jump *const break_stmt =
6146 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6147
6148 if_stmt->then_instructions.push_tail(break_stmt);
6149 instructions->push_tail(if_stmt);
6150 }
6151 }
6152 }
6153
6154
6155 ir_rvalue *
6156 ast_iteration_statement::hir(exec_list *instructions,
6157 struct _mesa_glsl_parse_state *state)
6158 {
6159 void *ctx = state;
6160
6161 /* For-loops and while-loops start a new scope, but do-while loops do not.
6162 */
6163 if (mode != ast_do_while)
6164 state->symbols->push_scope();
6165
6166 if (init_statement != NULL)
6167 init_statement->hir(instructions, state);
6168
6169 ir_loop *const stmt = new(ctx) ir_loop();
6170 instructions->push_tail(stmt);
6171
6172 /* Track the current loop nesting. */
6173 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6174
6175 state->loop_nesting_ast = this;
6176
6177 /* Likewise, indicate that following code is closest to a loop,
6178 * NOT closest to a switch.
6179 */
6180 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6181 state->switch_state.is_switch_innermost = false;
6182
6183 if (mode != ast_do_while)
6184 condition_to_hir(&stmt->body_instructions, state);
6185
6186 if (body != NULL)
6187 body->hir(& stmt->body_instructions, state);
6188
6189 if (rest_expression != NULL)
6190 rest_expression->hir(& stmt->body_instructions, state);
6191
6192 if (mode == ast_do_while)
6193 condition_to_hir(&stmt->body_instructions, state);
6194
6195 if (mode != ast_do_while)
6196 state->symbols->pop_scope();
6197
6198 /* Restore previous nesting before returning. */
6199 state->loop_nesting_ast = nesting_ast;
6200 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6201
6202 /* Loops do not have r-values.
6203 */
6204 return NULL;
6205 }
6206
6207
6208 /**
6209 * Determine if the given type is valid for establishing a default precision
6210 * qualifier.
6211 *
6212 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6213 *
6214 * "The precision statement
6215 *
6216 * precision precision-qualifier type;
6217 *
6218 * can be used to establish a default precision qualifier. The type field
6219 * can be either int or float or any of the sampler types, and the
6220 * precision-qualifier can be lowp, mediump, or highp."
6221 *
6222 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6223 * qualifiers on sampler types, but this seems like an oversight (since the
6224 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6225 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6226 * version.
6227 */
6228 static bool
6229 is_valid_default_precision_type(const struct glsl_type *const type)
6230 {
6231 if (type == NULL)
6232 return false;
6233
6234 switch (type->base_type) {
6235 case GLSL_TYPE_INT:
6236 case GLSL_TYPE_FLOAT:
6237 /* "int" and "float" are valid, but vectors and matrices are not. */
6238 return type->vector_elements == 1 && type->matrix_columns == 1;
6239 case GLSL_TYPE_SAMPLER:
6240 case GLSL_TYPE_IMAGE:
6241 case GLSL_TYPE_ATOMIC_UINT:
6242 return true;
6243 default:
6244 return false;
6245 }
6246 }
6247
6248
6249 ir_rvalue *
6250 ast_type_specifier::hir(exec_list *instructions,
6251 struct _mesa_glsl_parse_state *state)
6252 {
6253 if (this->default_precision == ast_precision_none && this->structure == NULL)
6254 return NULL;
6255
6256 YYLTYPE loc = this->get_location();
6257
6258 /* If this is a precision statement, check that the type to which it is
6259 * applied is either float or int.
6260 *
6261 * From section 4.5.3 of the GLSL 1.30 spec:
6262 * "The precision statement
6263 * precision precision-qualifier type;
6264 * can be used to establish a default precision qualifier. The type
6265 * field can be either int or float [...]. Any other types or
6266 * qualifiers will result in an error.
6267 */
6268 if (this->default_precision != ast_precision_none) {
6269 if (!state->check_precision_qualifiers_allowed(&loc))
6270 return NULL;
6271
6272 if (this->structure != NULL) {
6273 _mesa_glsl_error(&loc, state,
6274 "precision qualifiers do not apply to structures");
6275 return NULL;
6276 }
6277
6278 if (this->array_specifier != NULL) {
6279 _mesa_glsl_error(&loc, state,
6280 "default precision statements do not apply to "
6281 "arrays");
6282 return NULL;
6283 }
6284
6285 const struct glsl_type *const type =
6286 state->symbols->get_type(this->type_name);
6287 if (!is_valid_default_precision_type(type)) {
6288 _mesa_glsl_error(&loc, state,
6289 "default precision statements apply only to "
6290 "float, int, and opaque types");
6291 return NULL;
6292 }
6293
6294 if (state->es_shader) {
6295 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6296 * spec says:
6297 *
6298 * "Non-precision qualified declarations will use the precision
6299 * qualifier specified in the most recent precision statement
6300 * that is still in scope. The precision statement has the same
6301 * scoping rules as variable declarations. If it is declared
6302 * inside a compound statement, its effect stops at the end of
6303 * the innermost statement it was declared in. Precision
6304 * statements in nested scopes override precision statements in
6305 * outer scopes. Multiple precision statements for the same basic
6306 * type can appear inside the same scope, with later statements
6307 * overriding earlier statements within that scope."
6308 *
6309 * Default precision specifications follow the same scope rules as
6310 * variables. So, we can track the state of the default precision
6311 * qualifiers in the symbol table, and the rules will just work. This
6312 * is a slight abuse of the symbol table, but it has the semantics
6313 * that we want.
6314 */
6315 state->symbols->add_default_precision_qualifier(this->type_name,
6316 this->default_precision);
6317 }
6318
6319 /* FINISHME: Translate precision statements into IR. */
6320 return NULL;
6321 }
6322
6323 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6324 * process_record_constructor() can do type-checking on C-style initializer
6325 * expressions of structs, but ast_struct_specifier should only be translated
6326 * to HIR if it is declaring the type of a structure.
6327 *
6328 * The ->is_declaration field is false for initializers of variables
6329 * declared separately from the struct's type definition.
6330 *
6331 * struct S { ... }; (is_declaration = true)
6332 * struct T { ... } t = { ... }; (is_declaration = true)
6333 * S s = { ... }; (is_declaration = false)
6334 */
6335 if (this->structure != NULL && this->structure->is_declaration)
6336 return this->structure->hir(instructions, state);
6337
6338 return NULL;
6339 }
6340
6341
6342 /**
6343 * Process a structure or interface block tree into an array of structure fields
6344 *
6345 * After parsing, where there are some syntax differnces, structures and
6346 * interface blocks are almost identical. They are similar enough that the
6347 * AST for each can be processed the same way into a set of
6348 * \c glsl_struct_field to describe the members.
6349 *
6350 * If we're processing an interface block, var_mode should be the type of the
6351 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6352 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6353 * ir_var_auto.
6354 *
6355 * \return
6356 * The number of fields processed. A pointer to the array structure fields is
6357 * stored in \c *fields_ret.
6358 */
6359 static unsigned
6360 ast_process_struct_or_iface_block_members(exec_list *instructions,
6361 struct _mesa_glsl_parse_state *state,
6362 exec_list *declarations,
6363 glsl_struct_field **fields_ret,
6364 bool is_interface,
6365 enum glsl_matrix_layout matrix_layout,
6366 bool allow_reserved_names,
6367 ir_variable_mode var_mode,
6368 ast_type_qualifier *layout,
6369 unsigned block_stream,
6370 unsigned block_xfb_buffer,
6371 unsigned block_xfb_offset,
6372 unsigned expl_location,
6373 unsigned expl_align)
6374 {
6375 unsigned decl_count = 0;
6376 unsigned next_offset = 0;
6377
6378 /* Make an initial pass over the list of fields to determine how
6379 * many there are. Each element in this list is an ast_declarator_list.
6380 * This means that we actually need to count the number of elements in the
6381 * 'declarations' list in each of the elements.
6382 */
6383 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6384 decl_count += decl_list->declarations.length();
6385 }
6386
6387 /* Allocate storage for the fields and process the field
6388 * declarations. As the declarations are processed, try to also convert
6389 * the types to HIR. This ensures that structure definitions embedded in
6390 * other structure definitions or in interface blocks are processed.
6391 */
6392 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6393 decl_count);
6394
6395 bool first_member = true;
6396 bool first_member_has_explicit_location = false;
6397
6398 unsigned i = 0;
6399 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6400 const char *type_name;
6401 YYLTYPE loc = decl_list->get_location();
6402
6403 decl_list->type->specifier->hir(instructions, state);
6404
6405 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6406 *
6407 * "Anonymous structures are not supported; so embedded structures
6408 * must have a declarator. A name given to an embedded struct is
6409 * scoped at the same level as the struct it is embedded in."
6410 *
6411 * The same section of the GLSL 1.20 spec says:
6412 *
6413 * "Anonymous structures are not supported. Embedded structures are
6414 * not supported."
6415 *
6416 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6417 * embedded structures in 1.10 only.
6418 */
6419 if (state->language_version != 110 &&
6420 decl_list->type->specifier->structure != NULL)
6421 _mesa_glsl_error(&loc, state,
6422 "embedded structure declarations are not allowed");
6423
6424 const glsl_type *decl_type =
6425 decl_list->type->glsl_type(& type_name, state);
6426
6427 const struct ast_type_qualifier *const qual =
6428 &decl_list->type->qualifier;
6429
6430 /* From section 4.3.9 of the GLSL 4.40 spec:
6431 *
6432 * "[In interface blocks] opaque types are not allowed."
6433 *
6434 * It should be impossible for decl_type to be NULL here. Cases that
6435 * might naturally lead to decl_type being NULL, especially for the
6436 * is_interface case, will have resulted in compilation having
6437 * already halted due to a syntax error.
6438 */
6439 assert(decl_type);
6440
6441 if (is_interface) {
6442 if (decl_type->contains_opaque()) {
6443 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6444 "interface block contains opaque variable");
6445 }
6446 } else {
6447 if (decl_type->contains_atomic()) {
6448 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6449 *
6450 * "Members of structures cannot be declared as atomic counter
6451 * types."
6452 */
6453 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6454 }
6455
6456 if (decl_type->contains_image()) {
6457 /* FINISHME: Same problem as with atomic counters.
6458 * FINISHME: Request clarification from Khronos and add
6459 * FINISHME: spec quotation here.
6460 */
6461 _mesa_glsl_error(&loc, state, "image in structure");
6462 }
6463 }
6464
6465 if (qual->flags.q.explicit_binding) {
6466 _mesa_glsl_error(&loc, state,
6467 "binding layout qualifier cannot be applied "
6468 "to struct or interface block members");
6469 }
6470
6471 if (is_interface) {
6472 if (!first_member) {
6473 if (!layout->flags.q.explicit_location &&
6474 ((first_member_has_explicit_location &&
6475 !qual->flags.q.explicit_location) ||
6476 (!first_member_has_explicit_location &&
6477 qual->flags.q.explicit_location))) {
6478 _mesa_glsl_error(&loc, state,
6479 "when block-level location layout qualifier "
6480 "is not supplied either all members must "
6481 "have a location layout qualifier or all "
6482 "members must not have a location layout "
6483 "qualifier");
6484 }
6485 } else {
6486 first_member = false;
6487 first_member_has_explicit_location =
6488 qual->flags.q.explicit_location;
6489 }
6490 }
6491
6492 if (qual->flags.q.std140 ||
6493 qual->flags.q.std430 ||
6494 qual->flags.q.packed ||
6495 qual->flags.q.shared) {
6496 _mesa_glsl_error(&loc, state,
6497 "uniform/shader storage block layout qualifiers "
6498 "std140, std430, packed, and shared can only be "
6499 "applied to uniform/shader storage blocks, not "
6500 "members");
6501 }
6502
6503 if (qual->flags.q.constant) {
6504 _mesa_glsl_error(&loc, state,
6505 "const storage qualifier cannot be applied "
6506 "to struct or interface block members");
6507 }
6508
6509 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6510 *
6511 * "A block member may be declared with a stream identifier, but
6512 * the specified stream must match the stream associated with the
6513 * containing block."
6514 */
6515 if (qual->flags.q.explicit_stream) {
6516 unsigned qual_stream;
6517 if (process_qualifier_constant(state, &loc, "stream",
6518 qual->stream, &qual_stream) &&
6519 qual_stream != block_stream) {
6520 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6521 "interface block member does not match "
6522 "the interface block (%u vs %u)", qual_stream,
6523 block_stream);
6524 }
6525 }
6526
6527 int xfb_buffer;
6528 unsigned explicit_xfb_buffer = 0;
6529 if (qual->flags.q.explicit_xfb_buffer) {
6530 unsigned qual_xfb_buffer;
6531 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6532 qual->xfb_buffer, &qual_xfb_buffer)) {
6533 explicit_xfb_buffer = 1;
6534 if (qual_xfb_buffer != block_xfb_buffer)
6535 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6536 "interface block member does not match "
6537 "the interface block (%u vs %u)",
6538 qual_xfb_buffer, block_xfb_buffer);
6539 }
6540 xfb_buffer = (int) qual_xfb_buffer;
6541 } else {
6542 if (layout)
6543 explicit_xfb_buffer = layout->flags.q.xfb_buffer;
6544 xfb_buffer = (int) block_xfb_buffer;
6545 }
6546
6547 int xfb_stride = -1;
6548 if (qual->flags.q.explicit_xfb_stride) {
6549 unsigned qual_xfb_stride;
6550 if (process_qualifier_constant(state, &loc, "xfb_stride",
6551 qual->xfb_stride, &qual_xfb_stride)) {
6552 xfb_stride = (int) qual_xfb_stride;
6553 }
6554 }
6555
6556 if (qual->flags.q.uniform && qual->has_interpolation()) {
6557 _mesa_glsl_error(&loc, state,
6558 "interpolation qualifiers cannot be used "
6559 "with uniform interface blocks");
6560 }
6561
6562 if ((qual->flags.q.uniform || !is_interface) &&
6563 qual->has_auxiliary_storage()) {
6564 _mesa_glsl_error(&loc, state,
6565 "auxiliary storage qualifiers cannot be used "
6566 "in uniform blocks or structures.");
6567 }
6568
6569 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6570 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6571 _mesa_glsl_error(&loc, state,
6572 "row_major and column_major can only be "
6573 "applied to interface blocks");
6574 } else
6575 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6576 }
6577
6578 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6579 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6580 "readonly and writeonly.");
6581 }
6582
6583 foreach_list_typed (ast_declaration, decl, link,
6584 &decl_list->declarations) {
6585 YYLTYPE loc = decl->get_location();
6586
6587 if (!allow_reserved_names)
6588 validate_identifier(decl->identifier, loc, state);
6589
6590 const struct glsl_type *field_type =
6591 process_array_type(&loc, decl_type, decl->array_specifier, state);
6592 validate_array_dimensions(field_type, state, &loc);
6593 fields[i].type = field_type;
6594 fields[i].name = decl->identifier;
6595 fields[i].interpolation =
6596 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6597 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6598 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6599 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6600 fields[i].precision = qual->precision;
6601 fields[i].offset = -1;
6602 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6603 fields[i].xfb_buffer = xfb_buffer;
6604 fields[i].xfb_stride = xfb_stride;
6605
6606 if (qual->flags.q.explicit_location) {
6607 unsigned qual_location;
6608 if (process_qualifier_constant(state, &loc, "location",
6609 qual->location, &qual_location)) {
6610 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6611 expl_location = fields[i].location +
6612 fields[i].type->count_attribute_slots(false);
6613 }
6614 } else {
6615 if (layout && layout->flags.q.explicit_location) {
6616 fields[i].location = expl_location;
6617 expl_location += fields[i].type->count_attribute_slots(false);
6618 } else {
6619 fields[i].location = -1;
6620 }
6621 }
6622
6623 /* Offset can only be used with std430 and std140 layouts an initial
6624 * value of 0 is used for error detection.
6625 */
6626 unsigned align = 0;
6627 unsigned size = 0;
6628 if (layout) {
6629 bool row_major;
6630 if (qual->flags.q.row_major ||
6631 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6632 row_major = true;
6633 } else {
6634 row_major = false;
6635 }
6636
6637 if(layout->flags.q.std140) {
6638 align = field_type->std140_base_alignment(row_major);
6639 size = field_type->std140_size(row_major);
6640 } else if (layout->flags.q.std430) {
6641 align = field_type->std430_base_alignment(row_major);
6642 size = field_type->std430_size(row_major);
6643 }
6644 }
6645
6646 if (qual->flags.q.explicit_offset) {
6647 unsigned qual_offset;
6648 if (process_qualifier_constant(state, &loc, "offset",
6649 qual->offset, &qual_offset)) {
6650 if (align != 0 && size != 0) {
6651 if (next_offset > qual_offset)
6652 _mesa_glsl_error(&loc, state, "layout qualifier "
6653 "offset overlaps previous member");
6654
6655 if (qual_offset % align) {
6656 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6657 "must be a multiple of the base "
6658 "alignment of %s", field_type->name);
6659 }
6660 fields[i].offset = qual_offset;
6661 next_offset = glsl_align(qual_offset + size, align);
6662 } else {
6663 _mesa_glsl_error(&loc, state, "offset can only be used "
6664 "with std430 and std140 layouts");
6665 }
6666 }
6667 }
6668
6669 if (qual->flags.q.explicit_align || expl_align != 0) {
6670 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6671 next_offset;
6672 if (align == 0 || size == 0) {
6673 _mesa_glsl_error(&loc, state, "align can only be used with "
6674 "std430 and std140 layouts");
6675 } else if (qual->flags.q.explicit_align) {
6676 unsigned member_align;
6677 if (process_qualifier_constant(state, &loc, "align",
6678 qual->align, &member_align)) {
6679 if (member_align == 0 ||
6680 member_align & (member_align - 1)) {
6681 _mesa_glsl_error(&loc, state, "align layout qualifier "
6682 "in not a power of 2");
6683 } else {
6684 fields[i].offset = glsl_align(offset, member_align);
6685 next_offset = glsl_align(fields[i].offset + size, align);
6686 }
6687 }
6688 } else {
6689 fields[i].offset = glsl_align(offset, expl_align);
6690 next_offset = glsl_align(fields[i].offset + size, align);
6691 }
6692 }
6693
6694 if (!qual->flags.q.explicit_offset) {
6695 if (align != 0 && size != 0)
6696 next_offset = glsl_align(next_offset + size, align);
6697 }
6698
6699 /* From the ARB_enhanced_layouts spec:
6700 *
6701 * "The given offset applies to the first component of the first
6702 * member of the qualified entity. Then, within the qualified
6703 * entity, subsequent components are each assigned, in order, to
6704 * the next available offset aligned to a multiple of that
6705 * component's size. Aggregate types are flattened down to the
6706 * component level to get this sequence of components."
6707 */
6708 if (qual->flags.q.explicit_xfb_offset) {
6709 unsigned xfb_offset;
6710 if (process_qualifier_constant(state, &loc, "xfb_offset",
6711 qual->offset, &xfb_offset)) {
6712 fields[i].offset = xfb_offset;
6713 block_xfb_offset = fields[i].offset +
6714 4 * field_type->component_slots();
6715 }
6716 } else {
6717 if (layout && layout->flags.q.explicit_xfb_offset) {
6718 unsigned align = field_type->is_double() ? 8 : 4;
6719 fields[i].offset = glsl_align(block_xfb_offset, align);
6720 block_xfb_offset += 4 * field_type->component_slots();
6721 }
6722 }
6723
6724 /* Propogate row- / column-major information down the fields of the
6725 * structure or interface block. Structures need this data because
6726 * the structure may contain a structure that contains ... a matrix
6727 * that need the proper layout.
6728 */
6729 if (is_interface &&
6730 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6731 (field_type->without_array()->is_matrix()
6732 || field_type->without_array()->is_record())) {
6733 /* If no layout is specified for the field, inherit the layout
6734 * from the block.
6735 */
6736 fields[i].matrix_layout = matrix_layout;
6737
6738 if (qual->flags.q.row_major)
6739 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6740 else if (qual->flags.q.column_major)
6741 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6742
6743 /* If we're processing an uniform or buffer block, the matrix
6744 * layout must be decided by this point.
6745 */
6746 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6747 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6748 }
6749
6750 /* Image qualifiers are allowed on buffer variables, which can only
6751 * be defined inside shader storage buffer objects
6752 */
6753 if (layout && var_mode == ir_var_shader_storage) {
6754 /* For readonly and writeonly qualifiers the field definition,
6755 * if set, overwrites the layout qualifier.
6756 */
6757 if (qual->flags.q.read_only) {
6758 fields[i].image_read_only = true;
6759 fields[i].image_write_only = false;
6760 } else if (qual->flags.q.write_only) {
6761 fields[i].image_read_only = false;
6762 fields[i].image_write_only = true;
6763 } else {
6764 fields[i].image_read_only = layout->flags.q.read_only;
6765 fields[i].image_write_only = layout->flags.q.write_only;
6766 }
6767
6768 /* For other qualifiers, we set the flag if either the layout
6769 * qualifier or the field qualifier are set
6770 */
6771 fields[i].image_coherent = qual->flags.q.coherent ||
6772 layout->flags.q.coherent;
6773 fields[i].image_volatile = qual->flags.q._volatile ||
6774 layout->flags.q._volatile;
6775 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6776 layout->flags.q.restrict_flag;
6777 }
6778
6779 i++;
6780 }
6781 }
6782
6783 assert(i == decl_count);
6784
6785 *fields_ret = fields;
6786 return decl_count;
6787 }
6788
6789
6790 ir_rvalue *
6791 ast_struct_specifier::hir(exec_list *instructions,
6792 struct _mesa_glsl_parse_state *state)
6793 {
6794 YYLTYPE loc = this->get_location();
6795
6796 unsigned expl_location = 0;
6797 if (layout && layout->flags.q.explicit_location) {
6798 if (!process_qualifier_constant(state, &loc, "location",
6799 layout->location, &expl_location)) {
6800 return NULL;
6801 } else {
6802 expl_location = VARYING_SLOT_VAR0 + expl_location;
6803 }
6804 }
6805
6806 glsl_struct_field *fields;
6807 unsigned decl_count =
6808 ast_process_struct_or_iface_block_members(instructions,
6809 state,
6810 &this->declarations,
6811 &fields,
6812 false,
6813 GLSL_MATRIX_LAYOUT_INHERITED,
6814 false /* allow_reserved_names */,
6815 ir_var_auto,
6816 layout,
6817 0, /* for interface only */
6818 0, /* for interface only */
6819 0, /* for interface only */
6820 expl_location,
6821 0 /* for interface only */);
6822
6823 validate_identifier(this->name, loc, state);
6824
6825 const glsl_type *t =
6826 glsl_type::get_record_instance(fields, decl_count, this->name);
6827
6828 if (!state->symbols->add_type(name, t)) {
6829 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6830 } else {
6831 const glsl_type **s = reralloc(state, state->user_structures,
6832 const glsl_type *,
6833 state->num_user_structures + 1);
6834 if (s != NULL) {
6835 s[state->num_user_structures] = t;
6836 state->user_structures = s;
6837 state->num_user_structures++;
6838 }
6839 }
6840
6841 /* Structure type definitions do not have r-values.
6842 */
6843 return NULL;
6844 }
6845
6846
6847 /**
6848 * Visitor class which detects whether a given interface block has been used.
6849 */
6850 class interface_block_usage_visitor : public ir_hierarchical_visitor
6851 {
6852 public:
6853 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6854 : mode(mode), block(block), found(false)
6855 {
6856 }
6857
6858 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6859 {
6860 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6861 found = true;
6862 return visit_stop;
6863 }
6864 return visit_continue;
6865 }
6866
6867 bool usage_found() const
6868 {
6869 return this->found;
6870 }
6871
6872 private:
6873 ir_variable_mode mode;
6874 const glsl_type *block;
6875 bool found;
6876 };
6877
6878 static bool
6879 is_unsized_array_last_element(ir_variable *v)
6880 {
6881 const glsl_type *interface_type = v->get_interface_type();
6882 int length = interface_type->length;
6883
6884 assert(v->type->is_unsized_array());
6885
6886 /* Check if it is the last element of the interface */
6887 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6888 return true;
6889 return false;
6890 }
6891
6892 ir_rvalue *
6893 ast_interface_block::hir(exec_list *instructions,
6894 struct _mesa_glsl_parse_state *state)
6895 {
6896 YYLTYPE loc = this->get_location();
6897
6898 /* Interface blocks must be declared at global scope */
6899 if (state->current_function != NULL) {
6900 _mesa_glsl_error(&loc, state,
6901 "Interface block `%s' must be declared "
6902 "at global scope",
6903 this->block_name);
6904 }
6905
6906 if (!this->layout.flags.q.buffer &&
6907 this->layout.flags.q.std430) {
6908 _mesa_glsl_error(&loc, state,
6909 "std430 storage block layout qualifier is supported "
6910 "only for shader storage blocks");
6911 }
6912
6913 /* The ast_interface_block has a list of ast_declarator_lists. We
6914 * need to turn those into ir_variables with an association
6915 * with this uniform block.
6916 */
6917 enum glsl_interface_packing packing;
6918 if (this->layout.flags.q.shared) {
6919 packing = GLSL_INTERFACE_PACKING_SHARED;
6920 } else if (this->layout.flags.q.packed) {
6921 packing = GLSL_INTERFACE_PACKING_PACKED;
6922 } else if (this->layout.flags.q.std430) {
6923 packing = GLSL_INTERFACE_PACKING_STD430;
6924 } else {
6925 /* The default layout is std140.
6926 */
6927 packing = GLSL_INTERFACE_PACKING_STD140;
6928 }
6929
6930 ir_variable_mode var_mode;
6931 const char *iface_type_name;
6932 if (this->layout.flags.q.in) {
6933 var_mode = ir_var_shader_in;
6934 iface_type_name = "in";
6935 } else if (this->layout.flags.q.out) {
6936 var_mode = ir_var_shader_out;
6937 iface_type_name = "out";
6938 } else if (this->layout.flags.q.uniform) {
6939 var_mode = ir_var_uniform;
6940 iface_type_name = "uniform";
6941 } else if (this->layout.flags.q.buffer) {
6942 var_mode = ir_var_shader_storage;
6943 iface_type_name = "buffer";
6944 } else {
6945 var_mode = ir_var_auto;
6946 iface_type_name = "UNKNOWN";
6947 assert(!"interface block layout qualifier not found!");
6948 }
6949
6950 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6951 if (this->layout.flags.q.row_major)
6952 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6953 else if (this->layout.flags.q.column_major)
6954 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6955
6956 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6957 exec_list declared_variables;
6958 glsl_struct_field *fields;
6959
6960 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6961 * that we don't have incompatible qualifiers
6962 */
6963 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6964 _mesa_glsl_error(&loc, state,
6965 "Interface block sets both readonly and writeonly");
6966 }
6967
6968 unsigned qual_stream;
6969 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6970 &qual_stream) ||
6971 !validate_stream_qualifier(&loc, state, qual_stream)) {
6972 /* If the stream qualifier is invalid it doesn't make sense to continue
6973 * on and try to compare stream layouts on member variables against it
6974 * so just return early.
6975 */
6976 return NULL;
6977 }
6978
6979 unsigned qual_xfb_buffer;
6980 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
6981 layout.xfb_buffer, &qual_xfb_buffer) ||
6982 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
6983 return NULL;
6984 }
6985
6986 unsigned qual_xfb_offset;
6987 if (layout.flags.q.explicit_xfb_offset) {
6988 if (!process_qualifier_constant(state, &loc, "xfb_offset",
6989 layout.offset, &qual_xfb_offset)) {
6990 return NULL;
6991 }
6992 }
6993
6994 unsigned qual_xfb_stride;
6995 if (layout.flags.q.explicit_xfb_stride) {
6996 if (!process_qualifier_constant(state, &loc, "xfb_stride",
6997 layout.xfb_stride, &qual_xfb_stride)) {
6998 return NULL;
6999 }
7000 }
7001
7002 unsigned expl_location = 0;
7003 if (layout.flags.q.explicit_location) {
7004 if (!process_qualifier_constant(state, &loc, "location",
7005 layout.location, &expl_location)) {
7006 return NULL;
7007 } else {
7008 expl_location = VARYING_SLOT_VAR0 + expl_location;
7009 }
7010 }
7011
7012 unsigned expl_align = 0;
7013 if (layout.flags.q.explicit_align) {
7014 if (!process_qualifier_constant(state, &loc, "align",
7015 layout.align, &expl_align)) {
7016 return NULL;
7017 } else {
7018 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7019 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7020 "power of 2.");
7021 return NULL;
7022 }
7023 }
7024 }
7025
7026 unsigned int num_variables =
7027 ast_process_struct_or_iface_block_members(&declared_variables,
7028 state,
7029 &this->declarations,
7030 &fields,
7031 true,
7032 matrix_layout,
7033 redeclaring_per_vertex,
7034 var_mode,
7035 &this->layout,
7036 qual_stream,
7037 qual_xfb_buffer,
7038 qual_xfb_offset,
7039 expl_location,
7040 expl_align);
7041
7042 if (!redeclaring_per_vertex) {
7043 validate_identifier(this->block_name, loc, state);
7044
7045 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7046 *
7047 * "Block names have no other use within a shader beyond interface
7048 * matching; it is a compile-time error to use a block name at global
7049 * scope for anything other than as a block name."
7050 */
7051 ir_variable *var = state->symbols->get_variable(this->block_name);
7052 if (var && !var->type->is_interface()) {
7053 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7054 "already used in the scope.",
7055 this->block_name);
7056 }
7057 }
7058
7059 const glsl_type *earlier_per_vertex = NULL;
7060 if (redeclaring_per_vertex) {
7061 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7062 * the named interface block gl_in, we can find it by looking at the
7063 * previous declaration of gl_in. Otherwise we can find it by looking
7064 * at the previous decalartion of any of the built-in outputs,
7065 * e.g. gl_Position.
7066 *
7067 * Also check that the instance name and array-ness of the redeclaration
7068 * are correct.
7069 */
7070 switch (var_mode) {
7071 case ir_var_shader_in:
7072 if (ir_variable *earlier_gl_in =
7073 state->symbols->get_variable("gl_in")) {
7074 earlier_per_vertex = earlier_gl_in->get_interface_type();
7075 } else {
7076 _mesa_glsl_error(&loc, state,
7077 "redeclaration of gl_PerVertex input not allowed "
7078 "in the %s shader",
7079 _mesa_shader_stage_to_string(state->stage));
7080 }
7081 if (this->instance_name == NULL ||
7082 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7083 !this->array_specifier->is_single_dimension()) {
7084 _mesa_glsl_error(&loc, state,
7085 "gl_PerVertex input must be redeclared as "
7086 "gl_in[]");
7087 }
7088 break;
7089 case ir_var_shader_out:
7090 if (ir_variable *earlier_gl_Position =
7091 state->symbols->get_variable("gl_Position")) {
7092 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7093 } else if (ir_variable *earlier_gl_out =
7094 state->symbols->get_variable("gl_out")) {
7095 earlier_per_vertex = earlier_gl_out->get_interface_type();
7096 } else {
7097 _mesa_glsl_error(&loc, state,
7098 "redeclaration of gl_PerVertex output not "
7099 "allowed in the %s shader",
7100 _mesa_shader_stage_to_string(state->stage));
7101 }
7102 if (state->stage == MESA_SHADER_TESS_CTRL) {
7103 if (this->instance_name == NULL ||
7104 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7105 _mesa_glsl_error(&loc, state,
7106 "gl_PerVertex output must be redeclared as "
7107 "gl_out[]");
7108 }
7109 } else {
7110 if (this->instance_name != NULL) {
7111 _mesa_glsl_error(&loc, state,
7112 "gl_PerVertex output may not be redeclared with "
7113 "an instance name");
7114 }
7115 }
7116 break;
7117 default:
7118 _mesa_glsl_error(&loc, state,
7119 "gl_PerVertex must be declared as an input or an "
7120 "output");
7121 break;
7122 }
7123
7124 if (earlier_per_vertex == NULL) {
7125 /* An error has already been reported. Bail out to avoid null
7126 * dereferences later in this function.
7127 */
7128 return NULL;
7129 }
7130
7131 /* Copy locations from the old gl_PerVertex interface block. */
7132 for (unsigned i = 0; i < num_variables; i++) {
7133 int j = earlier_per_vertex->field_index(fields[i].name);
7134 if (j == -1) {
7135 _mesa_glsl_error(&loc, state,
7136 "redeclaration of gl_PerVertex must be a subset "
7137 "of the built-in members of gl_PerVertex");
7138 } else {
7139 fields[i].location =
7140 earlier_per_vertex->fields.structure[j].location;
7141 fields[i].offset =
7142 earlier_per_vertex->fields.structure[j].offset;
7143 fields[i].interpolation =
7144 earlier_per_vertex->fields.structure[j].interpolation;
7145 fields[i].centroid =
7146 earlier_per_vertex->fields.structure[j].centroid;
7147 fields[i].sample =
7148 earlier_per_vertex->fields.structure[j].sample;
7149 fields[i].patch =
7150 earlier_per_vertex->fields.structure[j].patch;
7151 fields[i].precision =
7152 earlier_per_vertex->fields.structure[j].precision;
7153 fields[i].explicit_xfb_buffer =
7154 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7155 fields[i].xfb_buffer =
7156 earlier_per_vertex->fields.structure[j].xfb_buffer;
7157 fields[i].xfb_stride =
7158 earlier_per_vertex->fields.structure[j].xfb_stride;
7159 }
7160 }
7161
7162 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7163 * spec:
7164 *
7165 * If a built-in interface block is redeclared, it must appear in
7166 * the shader before any use of any member included in the built-in
7167 * declaration, or a compilation error will result.
7168 *
7169 * This appears to be a clarification to the behaviour established for
7170 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7171 * regardless of GLSL version.
7172 */
7173 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7174 v.run(instructions);
7175 if (v.usage_found()) {
7176 _mesa_glsl_error(&loc, state,
7177 "redeclaration of a built-in interface block must "
7178 "appear before any use of any member of the "
7179 "interface block");
7180 }
7181 }
7182
7183 const glsl_type *block_type =
7184 glsl_type::get_interface_instance(fields,
7185 num_variables,
7186 packing,
7187 this->block_name);
7188
7189 unsigned component_size = block_type->contains_double() ? 8 : 4;
7190 int xfb_offset =
7191 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7192 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7193 component_size);
7194
7195 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7196 YYLTYPE loc = this->get_location();
7197 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7198 "already taken in the current scope",
7199 this->block_name, iface_type_name);
7200 }
7201
7202 /* Since interface blocks cannot contain statements, it should be
7203 * impossible for the block to generate any instructions.
7204 */
7205 assert(declared_variables.is_empty());
7206
7207 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7208 *
7209 * Geometry shader input variables get the per-vertex values written
7210 * out by vertex shader output variables of the same names. Since a
7211 * geometry shader operates on a set of vertices, each input varying
7212 * variable (or input block, see interface blocks below) needs to be
7213 * declared as an array.
7214 */
7215 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7216 var_mode == ir_var_shader_in) {
7217 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7218 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7219 state->stage == MESA_SHADER_TESS_EVAL) &&
7220 this->array_specifier == NULL &&
7221 var_mode == ir_var_shader_in) {
7222 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7223 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7224 this->array_specifier == NULL &&
7225 var_mode == ir_var_shader_out) {
7226 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7227 }
7228
7229
7230 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7231 * says:
7232 *
7233 * "If an instance name (instance-name) is used, then it puts all the
7234 * members inside a scope within its own name space, accessed with the
7235 * field selector ( . ) operator (analogously to structures)."
7236 */
7237 if (this->instance_name) {
7238 if (redeclaring_per_vertex) {
7239 /* When a built-in in an unnamed interface block is redeclared,
7240 * get_variable_being_redeclared() calls
7241 * check_builtin_array_max_size() to make sure that built-in array
7242 * variables aren't redeclared to illegal sizes. But we're looking
7243 * at a redeclaration of a named built-in interface block. So we
7244 * have to manually call check_builtin_array_max_size() for all parts
7245 * of the interface that are arrays.
7246 */
7247 for (unsigned i = 0; i < num_variables; i++) {
7248 if (fields[i].type->is_array()) {
7249 const unsigned size = fields[i].type->array_size();
7250 check_builtin_array_max_size(fields[i].name, size, loc, state);
7251 }
7252 }
7253 } else {
7254 validate_identifier(this->instance_name, loc, state);
7255 }
7256
7257 ir_variable *var;
7258
7259 if (this->array_specifier != NULL) {
7260 const glsl_type *block_array_type =
7261 process_array_type(&loc, block_type, this->array_specifier, state);
7262
7263 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7264 *
7265 * For uniform blocks declared an array, each individual array
7266 * element corresponds to a separate buffer object backing one
7267 * instance of the block. As the array size indicates the number
7268 * of buffer objects needed, uniform block array declarations
7269 * must specify an array size.
7270 *
7271 * And a few paragraphs later:
7272 *
7273 * Geometry shader input blocks must be declared as arrays and
7274 * follow the array declaration and linking rules for all
7275 * geometry shader inputs. All other input and output block
7276 * arrays must specify an array size.
7277 *
7278 * The same applies to tessellation shaders.
7279 *
7280 * The upshot of this is that the only circumstance where an
7281 * interface array size *doesn't* need to be specified is on a
7282 * geometry shader input, tessellation control shader input,
7283 * tessellation control shader output, and tessellation evaluation
7284 * shader input.
7285 */
7286 if (block_array_type->is_unsized_array()) {
7287 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7288 state->stage == MESA_SHADER_TESS_CTRL ||
7289 state->stage == MESA_SHADER_TESS_EVAL;
7290 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7291
7292 if (this->layout.flags.q.in) {
7293 if (!allow_inputs)
7294 _mesa_glsl_error(&loc, state,
7295 "unsized input block arrays not allowed in "
7296 "%s shader",
7297 _mesa_shader_stage_to_string(state->stage));
7298 } else if (this->layout.flags.q.out) {
7299 if (!allow_outputs)
7300 _mesa_glsl_error(&loc, state,
7301 "unsized output block arrays not allowed in "
7302 "%s shader",
7303 _mesa_shader_stage_to_string(state->stage));
7304 } else {
7305 /* by elimination, this is a uniform block array */
7306 _mesa_glsl_error(&loc, state,
7307 "unsized uniform block arrays not allowed in "
7308 "%s shader",
7309 _mesa_shader_stage_to_string(state->stage));
7310 }
7311 }
7312
7313 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7314 *
7315 * * Arrays of arrays of blocks are not allowed
7316 */
7317 if (state->es_shader && block_array_type->is_array() &&
7318 block_array_type->fields.array->is_array()) {
7319 _mesa_glsl_error(&loc, state,
7320 "arrays of arrays interface blocks are "
7321 "not allowed");
7322 }
7323
7324 var = new(state) ir_variable(block_array_type,
7325 this->instance_name,
7326 var_mode);
7327 } else {
7328 var = new(state) ir_variable(block_type,
7329 this->instance_name,
7330 var_mode);
7331 }
7332
7333 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7334 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7335
7336 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7337 var->data.read_only = true;
7338
7339 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7340 handle_geometry_shader_input_decl(state, loc, var);
7341 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7342 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7343 handle_tess_shader_input_decl(state, loc, var);
7344 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7345 handle_tess_ctrl_shader_output_decl(state, loc, var);
7346
7347 for (unsigned i = 0; i < num_variables; i++) {
7348 if (fields[i].type->is_unsized_array()) {
7349 if (var_mode == ir_var_shader_storage) {
7350 if (i != (num_variables - 1)) {
7351 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7352 "only last member of a shader storage block "
7353 "can be defined as unsized array",
7354 fields[i].name);
7355 }
7356 } else {
7357 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7358 *
7359 * "If an array is declared as the last member of a shader storage
7360 * block and the size is not specified at compile-time, it is
7361 * sized at run-time. In all other cases, arrays are sized only
7362 * at compile-time."
7363 */
7364 if (state->es_shader) {
7365 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7366 "only last member of a shader storage block "
7367 "can be defined as unsized array",
7368 fields[i].name);
7369 }
7370 }
7371 }
7372 }
7373
7374 if (ir_variable *earlier =
7375 state->symbols->get_variable(this->instance_name)) {
7376 if (!redeclaring_per_vertex) {
7377 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7378 this->instance_name);
7379 }
7380 earlier->data.how_declared = ir_var_declared_normally;
7381 earlier->type = var->type;
7382 earlier->reinit_interface_type(block_type);
7383 delete var;
7384 } else {
7385 if (this->layout.flags.q.explicit_binding) {
7386 apply_explicit_binding(state, &loc, var, var->type,
7387 &this->layout);
7388 }
7389
7390 var->data.stream = qual_stream;
7391 if (layout.flags.q.explicit_location) {
7392 var->data.location = expl_location;
7393 var->data.explicit_location = true;
7394 }
7395
7396 state->symbols->add_variable(var);
7397 instructions->push_tail(var);
7398 }
7399 } else {
7400 /* In order to have an array size, the block must also be declared with
7401 * an instance name.
7402 */
7403 assert(this->array_specifier == NULL);
7404
7405 for (unsigned i = 0; i < num_variables; i++) {
7406 ir_variable *var =
7407 new(state) ir_variable(fields[i].type,
7408 ralloc_strdup(state, fields[i].name),
7409 var_mode);
7410 var->data.interpolation = fields[i].interpolation;
7411 var->data.centroid = fields[i].centroid;
7412 var->data.sample = fields[i].sample;
7413 var->data.patch = fields[i].patch;
7414 var->data.stream = qual_stream;
7415 var->data.location = fields[i].location;
7416
7417 if (fields[i].location != -1)
7418 var->data.explicit_location = true;
7419
7420 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7421 var->data.xfb_buffer = fields[i].xfb_buffer;
7422
7423 if (fields[i].offset != -1)
7424 var->data.explicit_xfb_offset = true;
7425 var->data.offset = fields[i].offset;
7426
7427 var->init_interface_type(block_type);
7428
7429 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7430 var->data.read_only = true;
7431
7432 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7433 if (state->es_shader) {
7434 var->data.precision =
7435 select_gles_precision(fields[i].precision, fields[i].type,
7436 state, &loc);
7437 }
7438
7439 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7440 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7441 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7442 } else {
7443 var->data.matrix_layout = fields[i].matrix_layout;
7444 }
7445
7446 if (var->data.mode == ir_var_shader_storage) {
7447 var->data.image_read_only = fields[i].image_read_only;
7448 var->data.image_write_only = fields[i].image_write_only;
7449 var->data.image_coherent = fields[i].image_coherent;
7450 var->data.image_volatile = fields[i].image_volatile;
7451 var->data.image_restrict = fields[i].image_restrict;
7452 }
7453
7454 /* Examine var name here since var may get deleted in the next call */
7455 bool var_is_gl_id = is_gl_identifier(var->name);
7456
7457 if (redeclaring_per_vertex) {
7458 ir_variable *earlier =
7459 get_variable_being_redeclared(var, loc, state,
7460 true /* allow_all_redeclarations */);
7461 if (!var_is_gl_id || earlier == NULL) {
7462 _mesa_glsl_error(&loc, state,
7463 "redeclaration of gl_PerVertex can only "
7464 "include built-in variables");
7465 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7466 _mesa_glsl_error(&loc, state,
7467 "`%s' has already been redeclared",
7468 earlier->name);
7469 } else {
7470 earlier->data.how_declared = ir_var_declared_in_block;
7471 earlier->reinit_interface_type(block_type);
7472 }
7473 continue;
7474 }
7475
7476 if (state->symbols->get_variable(var->name) != NULL)
7477 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7478
7479 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7480 * The UBO declaration itself doesn't get an ir_variable unless it
7481 * has an instance name. This is ugly.
7482 */
7483 if (this->layout.flags.q.explicit_binding) {
7484 apply_explicit_binding(state, &loc, var,
7485 var->get_interface_type(), &this->layout);
7486 }
7487
7488 if (var->type->is_unsized_array()) {
7489 if (var->is_in_shader_storage_block()) {
7490 if (!is_unsized_array_last_element(var)) {
7491 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7492 "only last member of a shader storage block "
7493 "can be defined as unsized array",
7494 var->name);
7495 }
7496 var->data.from_ssbo_unsized_array = true;
7497 } else {
7498 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7499 *
7500 * "If an array is declared as the last member of a shader storage
7501 * block and the size is not specified at compile-time, it is
7502 * sized at run-time. In all other cases, arrays are sized only
7503 * at compile-time."
7504 */
7505 if (state->es_shader) {
7506 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7507 "only last member of a shader storage block "
7508 "can be defined as unsized array",
7509 var->name);
7510 }
7511 }
7512 }
7513
7514 state->symbols->add_variable(var);
7515 instructions->push_tail(var);
7516 }
7517
7518 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7519 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7520 *
7521 * It is also a compilation error ... to redeclare a built-in
7522 * block and then use a member from that built-in block that was
7523 * not included in the redeclaration.
7524 *
7525 * This appears to be a clarification to the behaviour established
7526 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7527 * behaviour regardless of GLSL version.
7528 *
7529 * To prevent the shader from using a member that was not included in
7530 * the redeclaration, we disable any ir_variables that are still
7531 * associated with the old declaration of gl_PerVertex (since we've
7532 * already updated all of the variables contained in the new
7533 * gl_PerVertex to point to it).
7534 *
7535 * As a side effect this will prevent
7536 * validate_intrastage_interface_blocks() from getting confused and
7537 * thinking there are conflicting definitions of gl_PerVertex in the
7538 * shader.
7539 */
7540 foreach_in_list_safe(ir_instruction, node, instructions) {
7541 ir_variable *const var = node->as_variable();
7542 if (var != NULL &&
7543 var->get_interface_type() == earlier_per_vertex &&
7544 var->data.mode == var_mode) {
7545 if (var->data.how_declared == ir_var_declared_normally) {
7546 _mesa_glsl_error(&loc, state,
7547 "redeclaration of gl_PerVertex cannot "
7548 "follow a redeclaration of `%s'",
7549 var->name);
7550 }
7551 state->symbols->disable_variable(var->name);
7552 var->remove();
7553 }
7554 }
7555 }
7556 }
7557
7558 return NULL;
7559 }
7560
7561
7562 ir_rvalue *
7563 ast_tcs_output_layout::hir(exec_list *instructions,
7564 struct _mesa_glsl_parse_state *state)
7565 {
7566 YYLTYPE loc = this->get_location();
7567
7568 unsigned num_vertices;
7569 if (!state->out_qualifier->vertices->
7570 process_qualifier_constant(state, "vertices", &num_vertices,
7571 false)) {
7572 /* return here to stop cascading incorrect error messages */
7573 return NULL;
7574 }
7575
7576 /* If any shader outputs occurred before this declaration and specified an
7577 * array size, make sure the size they specified is consistent with the
7578 * primitive type.
7579 */
7580 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7581 _mesa_glsl_error(&loc, state,
7582 "this tessellation control shader output layout "
7583 "specifies %u vertices, but a previous output "
7584 "is declared with size %u",
7585 num_vertices, state->tcs_output_size);
7586 return NULL;
7587 }
7588
7589 state->tcs_output_vertices_specified = true;
7590
7591 /* If any shader outputs occurred before this declaration and did not
7592 * specify an array size, their size is determined now.
7593 */
7594 foreach_in_list (ir_instruction, node, instructions) {
7595 ir_variable *var = node->as_variable();
7596 if (var == NULL || var->data.mode != ir_var_shader_out)
7597 continue;
7598
7599 /* Note: Not all tessellation control shader output are arrays. */
7600 if (!var->type->is_unsized_array() || var->data.patch)
7601 continue;
7602
7603 if (var->data.max_array_access >= num_vertices) {
7604 _mesa_glsl_error(&loc, state,
7605 "this tessellation control shader output layout "
7606 "specifies %u vertices, but an access to element "
7607 "%u of output `%s' already exists", num_vertices,
7608 var->data.max_array_access, var->name);
7609 } else {
7610 var->type = glsl_type::get_array_instance(var->type->fields.array,
7611 num_vertices);
7612 }
7613 }
7614
7615 return NULL;
7616 }
7617
7618
7619 ir_rvalue *
7620 ast_gs_input_layout::hir(exec_list *instructions,
7621 struct _mesa_glsl_parse_state *state)
7622 {
7623 YYLTYPE loc = this->get_location();
7624
7625 /* If any geometry input layout declaration preceded this one, make sure it
7626 * was consistent with this one.
7627 */
7628 if (state->gs_input_prim_type_specified &&
7629 state->in_qualifier->prim_type != this->prim_type) {
7630 _mesa_glsl_error(&loc, state,
7631 "geometry shader input layout does not match"
7632 " previous declaration");
7633 return NULL;
7634 }
7635
7636 /* If any shader inputs occurred before this declaration and specified an
7637 * array size, make sure the size they specified is consistent with the
7638 * primitive type.
7639 */
7640 unsigned num_vertices = vertices_per_prim(this->prim_type);
7641 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7642 _mesa_glsl_error(&loc, state,
7643 "this geometry shader input layout implies %u vertices"
7644 " per primitive, but a previous input is declared"
7645 " with size %u", num_vertices, state->gs_input_size);
7646 return NULL;
7647 }
7648
7649 state->gs_input_prim_type_specified = true;
7650
7651 /* If any shader inputs occurred before this declaration and did not
7652 * specify an array size, their size is determined now.
7653 */
7654 foreach_in_list(ir_instruction, node, instructions) {
7655 ir_variable *var = node->as_variable();
7656 if (var == NULL || var->data.mode != ir_var_shader_in)
7657 continue;
7658
7659 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7660 * array; skip it.
7661 */
7662
7663 if (var->type->is_unsized_array()) {
7664 if (var->data.max_array_access >= num_vertices) {
7665 _mesa_glsl_error(&loc, state,
7666 "this geometry shader input layout implies %u"
7667 " vertices, but an access to element %u of input"
7668 " `%s' already exists", num_vertices,
7669 var->data.max_array_access, var->name);
7670 } else {
7671 var->type = glsl_type::get_array_instance(var->type->fields.array,
7672 num_vertices);
7673 }
7674 }
7675 }
7676
7677 return NULL;
7678 }
7679
7680
7681 ir_rvalue *
7682 ast_cs_input_layout::hir(exec_list *instructions,
7683 struct _mesa_glsl_parse_state *state)
7684 {
7685 YYLTYPE loc = this->get_location();
7686
7687 /* From the ARB_compute_shader specification:
7688 *
7689 * If the local size of the shader in any dimension is greater
7690 * than the maximum size supported by the implementation for that
7691 * dimension, a compile-time error results.
7692 *
7693 * It is not clear from the spec how the error should be reported if
7694 * the total size of the work group exceeds
7695 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7696 * report it at compile time as well.
7697 */
7698 GLuint64 total_invocations = 1;
7699 unsigned qual_local_size[3];
7700 for (int i = 0; i < 3; i++) {
7701
7702 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7703 'x' + i);
7704 /* Infer a local_size of 1 for unspecified dimensions */
7705 if (this->local_size[i] == NULL) {
7706 qual_local_size[i] = 1;
7707 } else if (!this->local_size[i]->
7708 process_qualifier_constant(state, local_size_str,
7709 &qual_local_size[i], false)) {
7710 ralloc_free(local_size_str);
7711 return NULL;
7712 }
7713 ralloc_free(local_size_str);
7714
7715 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7716 _mesa_glsl_error(&loc, state,
7717 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7718 " (%d)", 'x' + i,
7719 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7720 break;
7721 }
7722 total_invocations *= qual_local_size[i];
7723 if (total_invocations >
7724 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7725 _mesa_glsl_error(&loc, state,
7726 "product of local_sizes exceeds "
7727 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7728 state->ctx->Const.MaxComputeWorkGroupInvocations);
7729 break;
7730 }
7731 }
7732
7733 /* If any compute input layout declaration preceded this one, make sure it
7734 * was consistent with this one.
7735 */
7736 if (state->cs_input_local_size_specified) {
7737 for (int i = 0; i < 3; i++) {
7738 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7739 _mesa_glsl_error(&loc, state,
7740 "compute shader input layout does not match"
7741 " previous declaration");
7742 return NULL;
7743 }
7744 }
7745 }
7746
7747 state->cs_input_local_size_specified = true;
7748 for (int i = 0; i < 3; i++)
7749 state->cs_input_local_size[i] = qual_local_size[i];
7750
7751 /* We may now declare the built-in constant gl_WorkGroupSize (see
7752 * builtin_variable_generator::generate_constants() for why we didn't
7753 * declare it earlier).
7754 */
7755 ir_variable *var = new(state->symbols)
7756 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7757 var->data.how_declared = ir_var_declared_implicitly;
7758 var->data.read_only = true;
7759 instructions->push_tail(var);
7760 state->symbols->add_variable(var);
7761 ir_constant_data data;
7762 memset(&data, 0, sizeof(data));
7763 for (int i = 0; i < 3; i++)
7764 data.u[i] = qual_local_size[i];
7765 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7766 var->constant_initializer =
7767 new(var) ir_constant(glsl_type::uvec3_type, &data);
7768 var->data.has_initializer = true;
7769
7770 return NULL;
7771 }
7772
7773
7774 static void
7775 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7776 exec_list *instructions)
7777 {
7778 bool gl_FragColor_assigned = false;
7779 bool gl_FragData_assigned = false;
7780 bool gl_FragSecondaryColor_assigned = false;
7781 bool gl_FragSecondaryData_assigned = false;
7782 bool user_defined_fs_output_assigned = false;
7783 ir_variable *user_defined_fs_output = NULL;
7784
7785 /* It would be nice to have proper location information. */
7786 YYLTYPE loc;
7787 memset(&loc, 0, sizeof(loc));
7788
7789 foreach_in_list(ir_instruction, node, instructions) {
7790 ir_variable *var = node->as_variable();
7791
7792 if (!var || !var->data.assigned)
7793 continue;
7794
7795 if (strcmp(var->name, "gl_FragColor") == 0)
7796 gl_FragColor_assigned = true;
7797 else if (strcmp(var->name, "gl_FragData") == 0)
7798 gl_FragData_assigned = true;
7799 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7800 gl_FragSecondaryColor_assigned = true;
7801 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7802 gl_FragSecondaryData_assigned = true;
7803 else if (!is_gl_identifier(var->name)) {
7804 if (state->stage == MESA_SHADER_FRAGMENT &&
7805 var->data.mode == ir_var_shader_out) {
7806 user_defined_fs_output_assigned = true;
7807 user_defined_fs_output = var;
7808 }
7809 }
7810 }
7811
7812 /* From the GLSL 1.30 spec:
7813 *
7814 * "If a shader statically assigns a value to gl_FragColor, it
7815 * may not assign a value to any element of gl_FragData. If a
7816 * shader statically writes a value to any element of
7817 * gl_FragData, it may not assign a value to
7818 * gl_FragColor. That is, a shader may assign values to either
7819 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7820 * linked together must also consistently write just one of
7821 * these variables. Similarly, if user declared output
7822 * variables are in use (statically assigned to), then the
7823 * built-in variables gl_FragColor and gl_FragData may not be
7824 * assigned to. These incorrect usages all generate compile
7825 * time errors."
7826 */
7827 if (gl_FragColor_assigned && gl_FragData_assigned) {
7828 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7829 "`gl_FragColor' and `gl_FragData'");
7830 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7831 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7832 "`gl_FragColor' and `%s'",
7833 user_defined_fs_output->name);
7834 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7835 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7836 "`gl_FragSecondaryColorEXT' and"
7837 " `gl_FragSecondaryDataEXT'");
7838 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7839 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7840 "`gl_FragColor' and"
7841 " `gl_FragSecondaryDataEXT'");
7842 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7843 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7844 "`gl_FragData' and"
7845 " `gl_FragSecondaryColorEXT'");
7846 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7847 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7848 "`gl_FragData' and `%s'",
7849 user_defined_fs_output->name);
7850 }
7851
7852 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7853 !state->EXT_blend_func_extended_enable) {
7854 _mesa_glsl_error(&loc, state,
7855 "Dual source blending requires EXT_blend_func_extended");
7856 }
7857 }
7858
7859
7860 static void
7861 remove_per_vertex_blocks(exec_list *instructions,
7862 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7863 {
7864 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7865 * if it exists in this shader type.
7866 */
7867 const glsl_type *per_vertex = NULL;
7868 switch (mode) {
7869 case ir_var_shader_in:
7870 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7871 per_vertex = gl_in->get_interface_type();
7872 break;
7873 case ir_var_shader_out:
7874 if (ir_variable *gl_Position =
7875 state->symbols->get_variable("gl_Position")) {
7876 per_vertex = gl_Position->get_interface_type();
7877 }
7878 break;
7879 default:
7880 assert(!"Unexpected mode");
7881 break;
7882 }
7883
7884 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7885 * need to do anything.
7886 */
7887 if (per_vertex == NULL)
7888 return;
7889
7890 /* If the interface block is used by the shader, then we don't need to do
7891 * anything.
7892 */
7893 interface_block_usage_visitor v(mode, per_vertex);
7894 v.run(instructions);
7895 if (v.usage_found())
7896 return;
7897
7898 /* Remove any ir_variable declarations that refer to the interface block
7899 * we're removing.
7900 */
7901 foreach_in_list_safe(ir_instruction, node, instructions) {
7902 ir_variable *const var = node->as_variable();
7903 if (var != NULL && var->get_interface_type() == per_vertex &&
7904 var->data.mode == mode) {
7905 state->symbols->disable_variable(var->name);
7906 var->remove();
7907 }
7908 }
7909 }