compiler/glsl: allow sequence op as a const expr in gles 1.0
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_UINT:
246 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2u;
250 default: return (ir_expression_operation)0;
251 }
252
253 case GLSL_TYPE_DOUBLE:
254 if (!state->has_double())
255 return (ir_expression_operation)0;
256 switch (from->base_type) {
257 case GLSL_TYPE_INT: return ir_unop_i2d;
258 case GLSL_TYPE_UINT: return ir_unop_u2d;
259 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
260 default: return (ir_expression_operation)0;
261 }
262
263 default: return (ir_expression_operation)0;
264 }
265 }
266
267
268 /**
269 * If a conversion is available, convert one operand to a different type
270 *
271 * The \c from \c ir_rvalue is converted "in place".
272 *
273 * \param to Type that the operand it to be converted to
274 * \param from Operand that is being converted
275 * \param state GLSL compiler state
276 *
277 * \return
278 * If a conversion is possible (or unnecessary), \c true is returned.
279 * Otherwise \c false is returned.
280 */
281 bool
282 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
283 struct _mesa_glsl_parse_state *state)
284 {
285 void *ctx = state;
286 if (to->base_type == from->type->base_type)
287 return true;
288
289 /* Prior to GLSL 1.20, there are no implicit conversions */
290 if (!state->is_version(120, 0))
291 return false;
292
293 /* ESSL does not allow implicit conversions */
294 if (state->es_shader)
295 return false;
296
297 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
298 *
299 * "There are no implicit array or structure conversions. For
300 * example, an array of int cannot be implicitly converted to an
301 * array of float.
302 */
303 if (!to->is_numeric() || !from->type->is_numeric())
304 return false;
305
306 /* We don't actually want the specific type `to`, we want a type
307 * with the same base type as `to`, but the same vector width as
308 * `from`.
309 */
310 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
311 from->type->matrix_columns);
312
313 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
314 if (op) {
315 from = new(ctx) ir_expression(op, to, from, NULL);
316 return true;
317 } else {
318 return false;
319 }
320 }
321
322
323 static const struct glsl_type *
324 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
325 bool multiply,
326 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
327 {
328 const glsl_type *type_a = value_a->type;
329 const glsl_type *type_b = value_b->type;
330
331 /* From GLSL 1.50 spec, page 56:
332 *
333 * "The arithmetic binary operators add (+), subtract (-),
334 * multiply (*), and divide (/) operate on integer and
335 * floating-point scalars, vectors, and matrices."
336 */
337 if (!type_a->is_numeric() || !type_b->is_numeric()) {
338 _mesa_glsl_error(loc, state,
339 "operands to arithmetic operators must be numeric");
340 return glsl_type::error_type;
341 }
342
343
344 /* "If one operand is floating-point based and the other is
345 * not, then the conversions from Section 4.1.10 "Implicit
346 * Conversions" are applied to the non-floating-point-based operand."
347 */
348 if (!apply_implicit_conversion(type_a, value_b, state)
349 && !apply_implicit_conversion(type_b, value_a, state)) {
350 _mesa_glsl_error(loc, state,
351 "could not implicitly convert operands to "
352 "arithmetic operator");
353 return glsl_type::error_type;
354 }
355 type_a = value_a->type;
356 type_b = value_b->type;
357
358 /* "If the operands are integer types, they must both be signed or
359 * both be unsigned."
360 *
361 * From this rule and the preceeding conversion it can be inferred that
362 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
363 * The is_numeric check above already filtered out the case where either
364 * type is not one of these, so now the base types need only be tested for
365 * equality.
366 */
367 if (type_a->base_type != type_b->base_type) {
368 _mesa_glsl_error(loc, state,
369 "base type mismatch for arithmetic operator");
370 return glsl_type::error_type;
371 }
372
373 /* "All arithmetic binary operators result in the same fundamental type
374 * (signed integer, unsigned integer, or floating-point) as the
375 * operands they operate on, after operand type conversion. After
376 * conversion, the following cases are valid
377 *
378 * * The two operands are scalars. In this case the operation is
379 * applied, resulting in a scalar."
380 */
381 if (type_a->is_scalar() && type_b->is_scalar())
382 return type_a;
383
384 /* "* One operand is a scalar, and the other is a vector or matrix.
385 * In this case, the scalar operation is applied independently to each
386 * component of the vector or matrix, resulting in the same size
387 * vector or matrix."
388 */
389 if (type_a->is_scalar()) {
390 if (!type_b->is_scalar())
391 return type_b;
392 } else if (type_b->is_scalar()) {
393 return type_a;
394 }
395
396 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
397 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
398 * handled.
399 */
400 assert(!type_a->is_scalar());
401 assert(!type_b->is_scalar());
402
403 /* "* The two operands are vectors of the same size. In this case, the
404 * operation is done component-wise resulting in the same size
405 * vector."
406 */
407 if (type_a->is_vector() && type_b->is_vector()) {
408 if (type_a == type_b) {
409 return type_a;
410 } else {
411 _mesa_glsl_error(loc, state,
412 "vector size mismatch for arithmetic operator");
413 return glsl_type::error_type;
414 }
415 }
416
417 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
418 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
419 * <vector, vector> have been handled. At least one of the operands must
420 * be matrix. Further, since there are no integer matrix types, the base
421 * type of both operands must be float.
422 */
423 assert(type_a->is_matrix() || type_b->is_matrix());
424 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
425 type_a->base_type == GLSL_TYPE_DOUBLE);
426 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
427 type_b->base_type == GLSL_TYPE_DOUBLE);
428
429 /* "* The operator is add (+), subtract (-), or divide (/), and the
430 * operands are matrices with the same number of rows and the same
431 * number of columns. In this case, the operation is done component-
432 * wise resulting in the same size matrix."
433 * * The operator is multiply (*), where both operands are matrices or
434 * one operand is a vector and the other a matrix. A right vector
435 * operand is treated as a column vector and a left vector operand as a
436 * row vector. In all these cases, it is required that the number of
437 * columns of the left operand is equal to the number of rows of the
438 * right operand. Then, the multiply (*) operation does a linear
439 * algebraic multiply, yielding an object that has the same number of
440 * rows as the left operand and the same number of columns as the right
441 * operand. Section 5.10 "Vector and Matrix Operations" explains in
442 * more detail how vectors and matrices are operated on."
443 */
444 if (! multiply) {
445 if (type_a == type_b)
446 return type_a;
447 } else {
448 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
449
450 if (type == glsl_type::error_type) {
451 _mesa_glsl_error(loc, state,
452 "size mismatch for matrix multiplication");
453 }
454
455 return type;
456 }
457
458
459 /* "All other cases are illegal."
460 */
461 _mesa_glsl_error(loc, state, "type mismatch");
462 return glsl_type::error_type;
463 }
464
465
466 static const struct glsl_type *
467 unary_arithmetic_result_type(const struct glsl_type *type,
468 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
469 {
470 /* From GLSL 1.50 spec, page 57:
471 *
472 * "The arithmetic unary operators negate (-), post- and pre-increment
473 * and decrement (-- and ++) operate on integer or floating-point
474 * values (including vectors and matrices). All unary operators work
475 * component-wise on their operands. These result with the same type
476 * they operated on."
477 */
478 if (!type->is_numeric()) {
479 _mesa_glsl_error(loc, state,
480 "operands to arithmetic operators must be numeric");
481 return glsl_type::error_type;
482 }
483
484 return type;
485 }
486
487 /**
488 * \brief Return the result type of a bit-logic operation.
489 *
490 * If the given types to the bit-logic operator are invalid, return
491 * glsl_type::error_type.
492 *
493 * \param value_a LHS of bit-logic op
494 * \param value_b RHS of bit-logic op
495 */
496 static const struct glsl_type *
497 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
498 ast_operators op,
499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501 const glsl_type *type_a = value_a->type;
502 const glsl_type *type_b = value_b->type;
503
504 if (!state->check_bitwise_operations_allowed(loc)) {
505 return glsl_type::error_type;
506 }
507
508 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
509 *
510 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
511 * (|). The operands must be of type signed or unsigned integers or
512 * integer vectors."
513 */
514 if (!type_a->is_integer()) {
515 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
516 ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
521 ast_expression::operator_string(op));
522 return glsl_type::error_type;
523 }
524
525 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
526 * make sense for bitwise operations, as they don't operate on floats.
527 *
528 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
529 * here. It wasn't clear whether or not we should apply them to bitwise
530 * operations. However, Khronos has decided that they should in future
531 * language revisions. Applications also rely on this behavior. We opt
532 * to apply them in general, but issue a portability warning.
533 *
534 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
535 */
536 if (type_a->base_type != type_b->base_type) {
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "`%s` operator",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 } else {
545 _mesa_glsl_warning(loc, state,
546 "some implementations may not support implicit "
547 "int -> uint conversions for `%s' operators; "
548 "consider casting explicitly for portability",
549 ast_expression::operator_string(op));
550 }
551 type_a = value_a->type;
552 type_b = value_b->type;
553 }
554
555 /* "The fundamental types of the operands (signed or unsigned) must
556 * match,"
557 */
558 if (type_a->base_type != type_b->base_type) {
559 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
560 "base type", ast_expression::operator_string(op));
561 return glsl_type::error_type;
562 }
563
564 /* "The operands cannot be vectors of differing size." */
565 if (type_a->is_vector() &&
566 type_b->is_vector() &&
567 type_a->vector_elements != type_b->vector_elements) {
568 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
569 "different sizes", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571 }
572
573 /* "If one operand is a scalar and the other a vector, the scalar is
574 * applied component-wise to the vector, resulting in the same type as
575 * the vector. The fundamental types of the operands [...] will be the
576 * resulting fundamental type."
577 */
578 if (type_a->is_scalar())
579 return type_b;
580 else
581 return type_a;
582 }
583
584 static const struct glsl_type *
585 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
586 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
587 {
588 const glsl_type *type_a = value_a->type;
589 const glsl_type *type_b = value_b->type;
590
591 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
592 return glsl_type::error_type;
593 }
594
595 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
596 *
597 * "The operator modulus (%) operates on signed or unsigned integers or
598 * integer vectors."
599 */
600 if (!type_a->is_integer()) {
601 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
602 return glsl_type::error_type;
603 }
604 if (!type_b->is_integer()) {
605 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
606 return glsl_type::error_type;
607 }
608
609 /* "If the fundamental types in the operands do not match, then the
610 * conversions from section 4.1.10 "Implicit Conversions" are applied
611 * to create matching types."
612 *
613 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
614 * int -> uint conversion rules. Prior to that, there were no implicit
615 * conversions. So it's harmless to apply them universally - no implicit
616 * conversions will exist. If the types don't match, we'll receive false,
617 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
618 *
619 * "The operand types must both be signed or unsigned."
620 */
621 if (!apply_implicit_conversion(type_a, value_b, state) &&
622 !apply_implicit_conversion(type_b, value_a, state)) {
623 _mesa_glsl_error(loc, state,
624 "could not implicitly convert operands to "
625 "modulus (%%) operator");
626 return glsl_type::error_type;
627 }
628 type_a = value_a->type;
629 type_b = value_b->type;
630
631 /* "The operands cannot be vectors of differing size. If one operand is
632 * a scalar and the other vector, then the scalar is applied component-
633 * wise to the vector, resulting in the same type as the vector. If both
634 * are vectors of the same size, the result is computed component-wise."
635 */
636 if (type_a->is_vector()) {
637 if (!type_b->is_vector()
638 || (type_a->vector_elements == type_b->vector_elements))
639 return type_a;
640 } else
641 return type_b;
642
643 /* "The operator modulus (%) is not defined for any other data types
644 * (non-integer types)."
645 */
646 _mesa_glsl_error(loc, state, "type mismatch");
647 return glsl_type::error_type;
648 }
649
650
651 static const struct glsl_type *
652 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
653 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
654 {
655 const glsl_type *type_a = value_a->type;
656 const glsl_type *type_b = value_b->type;
657
658 /* From GLSL 1.50 spec, page 56:
659 * "The relational operators greater than (>), less than (<), greater
660 * than or equal (>=), and less than or equal (<=) operate only on
661 * scalar integer and scalar floating-point expressions."
662 */
663 if (!type_a->is_numeric()
664 || !type_b->is_numeric()
665 || !type_a->is_scalar()
666 || !type_b->is_scalar()) {
667 _mesa_glsl_error(loc, state,
668 "operands to relational operators must be scalar and "
669 "numeric");
670 return glsl_type::error_type;
671 }
672
673 /* "Either the operands' types must match, or the conversions from
674 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
675 * operand, after which the types must match."
676 */
677 if (!apply_implicit_conversion(type_a, value_b, state)
678 && !apply_implicit_conversion(type_b, value_a, state)) {
679 _mesa_glsl_error(loc, state,
680 "could not implicitly convert operands to "
681 "relational operator");
682 return glsl_type::error_type;
683 }
684 type_a = value_a->type;
685 type_b = value_b->type;
686
687 if (type_a->base_type != type_b->base_type) {
688 _mesa_glsl_error(loc, state, "base type mismatch");
689 return glsl_type::error_type;
690 }
691
692 /* "The result is scalar Boolean."
693 */
694 return glsl_type::bool_type;
695 }
696
697 /**
698 * \brief Return the result type of a bit-shift operation.
699 *
700 * If the given types to the bit-shift operator are invalid, return
701 * glsl_type::error_type.
702 *
703 * \param type_a Type of LHS of bit-shift op
704 * \param type_b Type of RHS of bit-shift op
705 */
706 static const struct glsl_type *
707 shift_result_type(const struct glsl_type *type_a,
708 const struct glsl_type *type_b,
709 ast_operators op,
710 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
711 {
712 if (!state->check_bitwise_operations_allowed(loc)) {
713 return glsl_type::error_type;
714 }
715
716 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
717 *
718 * "The shift operators (<<) and (>>). For both operators, the operands
719 * must be signed or unsigned integers or integer vectors. One operand
720 * can be signed while the other is unsigned."
721 */
722 if (!type_a->is_integer()) {
723 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
724 "integer vector", ast_expression::operator_string(op));
725 return glsl_type::error_type;
726
727 }
728 if (!type_b->is_integer()) {
729 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
730 "integer vector", ast_expression::operator_string(op));
731 return glsl_type::error_type;
732 }
733
734 /* "If the first operand is a scalar, the second operand has to be
735 * a scalar as well."
736 */
737 if (type_a->is_scalar() && !type_b->is_scalar()) {
738 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
739 "second must be scalar as well",
740 ast_expression::operator_string(op));
741 return glsl_type::error_type;
742 }
743
744 /* If both operands are vectors, check that they have same number of
745 * elements.
746 */
747 if (type_a->is_vector() &&
748 type_b->is_vector() &&
749 type_a->vector_elements != type_b->vector_elements) {
750 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
751 "have same number of elements",
752 ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "In all cases, the resulting type will be the same type as the left
757 * operand."
758 */
759 return type_a;
760 }
761
762 /**
763 * Returns the innermost array index expression in an rvalue tree.
764 * This is the largest indexing level -- if an array of blocks, then
765 * it is the block index rather than an indexing expression for an
766 * array-typed member of an array of blocks.
767 */
768 static ir_rvalue *
769 find_innermost_array_index(ir_rvalue *rv)
770 {
771 ir_dereference_array *last = NULL;
772 while (rv) {
773 if (rv->as_dereference_array()) {
774 last = rv->as_dereference_array();
775 rv = last->array;
776 } else if (rv->as_dereference_record())
777 rv = rv->as_dereference_record()->record;
778 else if (rv->as_swizzle())
779 rv = rv->as_swizzle()->val;
780 else
781 rv = NULL;
782 }
783
784 if (last)
785 return last->array_index;
786
787 return NULL;
788 }
789
790 /**
791 * Validates that a value can be assigned to a location with a specified type
792 *
793 * Validates that \c rhs can be assigned to some location. If the types are
794 * not an exact match but an automatic conversion is possible, \c rhs will be
795 * converted.
796 *
797 * \return
798 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
799 * Otherwise the actual RHS to be assigned will be returned. This may be
800 * \c rhs, or it may be \c rhs after some type conversion.
801 *
802 * \note
803 * In addition to being used for assignments, this function is used to
804 * type-check return values.
805 */
806 static ir_rvalue *
807 validate_assignment(struct _mesa_glsl_parse_state *state,
808 YYLTYPE loc, ir_rvalue *lhs,
809 ir_rvalue *rhs, bool is_initializer)
810 {
811 /* If there is already some error in the RHS, just return it. Anything
812 * else will lead to an avalanche of error message back to the user.
813 */
814 if (rhs->type->is_error())
815 return rhs;
816
817 /* In the Tessellation Control Shader:
818 * If a per-vertex output variable is used as an l-value, it is an error
819 * if the expression indicating the vertex number is not the identifier
820 * `gl_InvocationID`.
821 */
822 if (state->stage == MESA_SHADER_TESS_CTRL) {
823 ir_variable *var = lhs->variable_referenced();
824 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
825 ir_rvalue *index = find_innermost_array_index(lhs);
826 ir_variable *index_var = index ? index->variable_referenced() : NULL;
827 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
828 _mesa_glsl_error(&loc, state,
829 "Tessellation control shader outputs can only "
830 "be indexed by gl_InvocationID");
831 return NULL;
832 }
833 }
834 }
835
836 /* If the types are identical, the assignment can trivially proceed.
837 */
838 if (rhs->type == lhs->type)
839 return rhs;
840
841 /* If the array element types are the same and the LHS is unsized,
842 * the assignment is okay for initializers embedded in variable
843 * declarations.
844 *
845 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
846 * is handled by ir_dereference::is_lvalue.
847 */
848 const glsl_type *lhs_t = lhs->type;
849 const glsl_type *rhs_t = rhs->type;
850 bool unsized_array = false;
851 while(lhs_t->is_array()) {
852 if (rhs_t == lhs_t)
853 break; /* the rest of the inner arrays match so break out early */
854 if (!rhs_t->is_array()) {
855 unsized_array = false;
856 break; /* number of dimensions mismatch */
857 }
858 if (lhs_t->length == rhs_t->length) {
859 lhs_t = lhs_t->fields.array;
860 rhs_t = rhs_t->fields.array;
861 continue;
862 } else if (lhs_t->is_unsized_array()) {
863 unsized_array = true;
864 } else {
865 unsized_array = false;
866 break; /* sized array mismatch */
867 }
868 lhs_t = lhs_t->fields.array;
869 rhs_t = rhs_t->fields.array;
870 }
871 if (unsized_array) {
872 if (is_initializer) {
873 return rhs;
874 } else {
875 _mesa_glsl_error(&loc, state,
876 "implicitly sized arrays cannot be assigned");
877 return NULL;
878 }
879 }
880
881 /* Check for implicit conversion in GLSL 1.20 */
882 if (apply_implicit_conversion(lhs->type, rhs, state)) {
883 if (rhs->type == lhs->type)
884 return rhs;
885 }
886
887 _mesa_glsl_error(&loc, state,
888 "%s of type %s cannot be assigned to "
889 "variable of type %s",
890 is_initializer ? "initializer" : "value",
891 rhs->type->name, lhs->type->name);
892
893 return NULL;
894 }
895
896 static void
897 mark_whole_array_access(ir_rvalue *access)
898 {
899 ir_dereference_variable *deref = access->as_dereference_variable();
900
901 if (deref && deref->var) {
902 deref->var->data.max_array_access = deref->type->length - 1;
903 }
904 }
905
906 static bool
907 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
908 const char *non_lvalue_description,
909 ir_rvalue *lhs, ir_rvalue *rhs,
910 ir_rvalue **out_rvalue, bool needs_rvalue,
911 bool is_initializer,
912 YYLTYPE lhs_loc)
913 {
914 void *ctx = state;
915 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
916
917 ir_variable *lhs_var = lhs->variable_referenced();
918 if (lhs_var)
919 lhs_var->data.assigned = true;
920
921 if (!error_emitted) {
922 if (non_lvalue_description != NULL) {
923 _mesa_glsl_error(&lhs_loc, state,
924 "assignment to %s",
925 non_lvalue_description);
926 error_emitted = true;
927 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
928 (lhs_var->data.mode == ir_var_shader_storage &&
929 lhs_var->data.image_read_only))) {
930 /* We can have image_read_only set on both images and buffer variables,
931 * but in the former there is a distinction between assignments to
932 * the variable itself (read_only) and to the memory they point to
933 * (image_read_only), while in the case of buffer variables there is
934 * no such distinction, that is why this check here is limited to
935 * buffer variables alone.
936 */
937 _mesa_glsl_error(&lhs_loc, state,
938 "assignment to read-only variable '%s'",
939 lhs_var->name);
940 error_emitted = true;
941 } else if (lhs->type->is_array() &&
942 !state->check_version(120, 300, &lhs_loc,
943 "whole array assignment forbidden")) {
944 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
945 *
946 * "Other binary or unary expressions, non-dereferenced
947 * arrays, function names, swizzles with repeated fields,
948 * and constants cannot be l-values."
949 *
950 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
951 */
952 error_emitted = true;
953 } else if (!lhs->is_lvalue()) {
954 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
955 error_emitted = true;
956 }
957 }
958
959 ir_rvalue *new_rhs =
960 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
961 if (new_rhs != NULL) {
962 rhs = new_rhs;
963
964 /* If the LHS array was not declared with a size, it takes it size from
965 * the RHS. If the LHS is an l-value and a whole array, it must be a
966 * dereference of a variable. Any other case would require that the LHS
967 * is either not an l-value or not a whole array.
968 */
969 if (lhs->type->is_unsized_array()) {
970 ir_dereference *const d = lhs->as_dereference();
971
972 assert(d != NULL);
973
974 ir_variable *const var = d->variable_referenced();
975
976 assert(var != NULL);
977
978 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
979 /* FINISHME: This should actually log the location of the RHS. */
980 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
981 "previous access",
982 var->data.max_array_access);
983 }
984
985 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
986 rhs->type->array_size());
987 d->type = var->type;
988 }
989 if (lhs->type->is_array()) {
990 mark_whole_array_access(rhs);
991 mark_whole_array_access(lhs);
992 }
993 }
994
995 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
996 * but not post_inc) need the converted assigned value as an rvalue
997 * to handle things like:
998 *
999 * i = j += 1;
1000 */
1001 if (needs_rvalue) {
1002 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1003 ir_var_temporary);
1004 instructions->push_tail(var);
1005 instructions->push_tail(assign(var, rhs));
1006
1007 if (!error_emitted) {
1008 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1009 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1010 }
1011 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1012
1013 *out_rvalue = rvalue;
1014 } else {
1015 if (!error_emitted)
1016 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1017 *out_rvalue = NULL;
1018 }
1019
1020 return error_emitted;
1021 }
1022
1023 static ir_rvalue *
1024 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1025 {
1026 void *ctx = ralloc_parent(lvalue);
1027 ir_variable *var;
1028
1029 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1030 ir_var_temporary);
1031 instructions->push_tail(var);
1032
1033 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1034 lvalue));
1035
1036 return new(ctx) ir_dereference_variable(var);
1037 }
1038
1039
1040 ir_rvalue *
1041 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1042 {
1043 (void) instructions;
1044 (void) state;
1045
1046 return NULL;
1047 }
1048
1049 bool
1050 ast_node::has_sequence_subexpression() const
1051 {
1052 return false;
1053 }
1054
1055 void
1056 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1057 struct _mesa_glsl_parse_state *state)
1058 {
1059 (void)hir(instructions, state);
1060 }
1061
1062 void
1063 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 static ir_rvalue *
1070 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1071 {
1072 int join_op;
1073 ir_rvalue *cmp = NULL;
1074
1075 if (operation == ir_binop_all_equal)
1076 join_op = ir_binop_logic_and;
1077 else
1078 join_op = ir_binop_logic_or;
1079
1080 switch (op0->type->base_type) {
1081 case GLSL_TYPE_FLOAT:
1082 case GLSL_TYPE_UINT:
1083 case GLSL_TYPE_INT:
1084 case GLSL_TYPE_BOOL:
1085 case GLSL_TYPE_DOUBLE:
1086 return new(mem_ctx) ir_expression(operation, op0, op1);
1087
1088 case GLSL_TYPE_ARRAY: {
1089 for (unsigned int i = 0; i < op0->type->length; i++) {
1090 ir_rvalue *e0, *e1, *result;
1091
1092 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1093 new(mem_ctx) ir_constant(i));
1094 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1095 new(mem_ctx) ir_constant(i));
1096 result = do_comparison(mem_ctx, operation, e0, e1);
1097
1098 if (cmp) {
1099 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1100 } else {
1101 cmp = result;
1102 }
1103 }
1104
1105 mark_whole_array_access(op0);
1106 mark_whole_array_access(op1);
1107 break;
1108 }
1109
1110 case GLSL_TYPE_STRUCT: {
1111 for (unsigned int i = 0; i < op0->type->length; i++) {
1112 ir_rvalue *e0, *e1, *result;
1113 const char *field_name = op0->type->fields.structure[i].name;
1114
1115 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1116 field_name);
1117 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1118 field_name);
1119 result = do_comparison(mem_ctx, operation, e0, e1);
1120
1121 if (cmp) {
1122 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1123 } else {
1124 cmp = result;
1125 }
1126 }
1127 break;
1128 }
1129
1130 case GLSL_TYPE_ERROR:
1131 case GLSL_TYPE_VOID:
1132 case GLSL_TYPE_SAMPLER:
1133 case GLSL_TYPE_IMAGE:
1134 case GLSL_TYPE_INTERFACE:
1135 case GLSL_TYPE_ATOMIC_UINT:
1136 case GLSL_TYPE_SUBROUTINE:
1137 case GLSL_TYPE_FUNCTION:
1138 /* I assume a comparison of a struct containing a sampler just
1139 * ignores the sampler present in the type.
1140 */
1141 break;
1142 }
1143
1144 if (cmp == NULL)
1145 cmp = new(mem_ctx) ir_constant(true);
1146
1147 return cmp;
1148 }
1149
1150 /* For logical operations, we want to ensure that the operands are
1151 * scalar booleans. If it isn't, emit an error and return a constant
1152 * boolean to avoid triggering cascading error messages.
1153 */
1154 ir_rvalue *
1155 get_scalar_boolean_operand(exec_list *instructions,
1156 struct _mesa_glsl_parse_state *state,
1157 ast_expression *parent_expr,
1158 int operand,
1159 const char *operand_name,
1160 bool *error_emitted)
1161 {
1162 ast_expression *expr = parent_expr->subexpressions[operand];
1163 void *ctx = state;
1164 ir_rvalue *val = expr->hir(instructions, state);
1165
1166 if (val->type->is_boolean() && val->type->is_scalar())
1167 return val;
1168
1169 if (!*error_emitted) {
1170 YYLTYPE loc = expr->get_location();
1171 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1172 operand_name,
1173 parent_expr->operator_string(parent_expr->oper));
1174 *error_emitted = true;
1175 }
1176
1177 return new(ctx) ir_constant(true);
1178 }
1179
1180 /**
1181 * If name refers to a builtin array whose maximum allowed size is less than
1182 * size, report an error and return true. Otherwise return false.
1183 */
1184 void
1185 check_builtin_array_max_size(const char *name, unsigned size,
1186 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1187 {
1188 if ((strcmp("gl_TexCoord", name) == 0)
1189 && (size > state->Const.MaxTextureCoords)) {
1190 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1191 *
1192 * "The size [of gl_TexCoord] can be at most
1193 * gl_MaxTextureCoords."
1194 */
1195 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1196 "be larger than gl_MaxTextureCoords (%u)",
1197 state->Const.MaxTextureCoords);
1198 } else if (strcmp("gl_ClipDistance", name) == 0
1199 && size > state->Const.MaxClipPlanes) {
1200 /* From section 7.1 (Vertex Shader Special Variables) of the
1201 * GLSL 1.30 spec:
1202 *
1203 * "The gl_ClipDistance array is predeclared as unsized and
1204 * must be sized by the shader either redeclaring it with a
1205 * size or indexing it only with integral constant
1206 * expressions. ... The size can be at most
1207 * gl_MaxClipDistances."
1208 */
1209 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1210 "be larger than gl_MaxClipDistances (%u)",
1211 state->Const.MaxClipPlanes);
1212 }
1213 }
1214
1215 /**
1216 * Create the constant 1, of a which is appropriate for incrementing and
1217 * decrementing values of the given GLSL type. For example, if type is vec4,
1218 * this creates a constant value of 1.0 having type float.
1219 *
1220 * If the given type is invalid for increment and decrement operators, return
1221 * a floating point 1--the error will be detected later.
1222 */
1223 static ir_rvalue *
1224 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1225 {
1226 switch (type->base_type) {
1227 case GLSL_TYPE_UINT:
1228 return new(ctx) ir_constant((unsigned) 1);
1229 case GLSL_TYPE_INT:
1230 return new(ctx) ir_constant(1);
1231 default:
1232 case GLSL_TYPE_FLOAT:
1233 return new(ctx) ir_constant(1.0f);
1234 }
1235 }
1236
1237 ir_rvalue *
1238 ast_expression::hir(exec_list *instructions,
1239 struct _mesa_glsl_parse_state *state)
1240 {
1241 return do_hir(instructions, state, true);
1242 }
1243
1244 void
1245 ast_expression::hir_no_rvalue(exec_list *instructions,
1246 struct _mesa_glsl_parse_state *state)
1247 {
1248 do_hir(instructions, state, false);
1249 }
1250
1251 ir_rvalue *
1252 ast_expression::do_hir(exec_list *instructions,
1253 struct _mesa_glsl_parse_state *state,
1254 bool needs_rvalue)
1255 {
1256 void *ctx = state;
1257 static const int operations[AST_NUM_OPERATORS] = {
1258 -1, /* ast_assign doesn't convert to ir_expression. */
1259 -1, /* ast_plus doesn't convert to ir_expression. */
1260 ir_unop_neg,
1261 ir_binop_add,
1262 ir_binop_sub,
1263 ir_binop_mul,
1264 ir_binop_div,
1265 ir_binop_mod,
1266 ir_binop_lshift,
1267 ir_binop_rshift,
1268 ir_binop_less,
1269 ir_binop_greater,
1270 ir_binop_lequal,
1271 ir_binop_gequal,
1272 ir_binop_all_equal,
1273 ir_binop_any_nequal,
1274 ir_binop_bit_and,
1275 ir_binop_bit_xor,
1276 ir_binop_bit_or,
1277 ir_unop_bit_not,
1278 ir_binop_logic_and,
1279 ir_binop_logic_xor,
1280 ir_binop_logic_or,
1281 ir_unop_logic_not,
1282
1283 /* Note: The following block of expression types actually convert
1284 * to multiple IR instructions.
1285 */
1286 ir_binop_mul, /* ast_mul_assign */
1287 ir_binop_div, /* ast_div_assign */
1288 ir_binop_mod, /* ast_mod_assign */
1289 ir_binop_add, /* ast_add_assign */
1290 ir_binop_sub, /* ast_sub_assign */
1291 ir_binop_lshift, /* ast_ls_assign */
1292 ir_binop_rshift, /* ast_rs_assign */
1293 ir_binop_bit_and, /* ast_and_assign */
1294 ir_binop_bit_xor, /* ast_xor_assign */
1295 ir_binop_bit_or, /* ast_or_assign */
1296
1297 -1, /* ast_conditional doesn't convert to ir_expression. */
1298 ir_binop_add, /* ast_pre_inc. */
1299 ir_binop_sub, /* ast_pre_dec. */
1300 ir_binop_add, /* ast_post_inc. */
1301 ir_binop_sub, /* ast_post_dec. */
1302 -1, /* ast_field_selection doesn't conv to ir_expression. */
1303 -1, /* ast_array_index doesn't convert to ir_expression. */
1304 -1, /* ast_function_call doesn't conv to ir_expression. */
1305 -1, /* ast_identifier doesn't convert to ir_expression. */
1306 -1, /* ast_int_constant doesn't convert to ir_expression. */
1307 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1308 -1, /* ast_float_constant doesn't conv to ir_expression. */
1309 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1310 -1, /* ast_sequence doesn't convert to ir_expression. */
1311 };
1312 ir_rvalue *result = NULL;
1313 ir_rvalue *op[3];
1314 const struct glsl_type *type; /* a temporary variable for switch cases */
1315 bool error_emitted = false;
1316 YYLTYPE loc;
1317
1318 loc = this->get_location();
1319
1320 switch (this->oper) {
1321 case ast_aggregate:
1322 assert(!"ast_aggregate: Should never get here.");
1323 break;
1324
1325 case ast_assign: {
1326 op[0] = this->subexpressions[0]->hir(instructions, state);
1327 op[1] = this->subexpressions[1]->hir(instructions, state);
1328
1329 error_emitted =
1330 do_assignment(instructions, state,
1331 this->subexpressions[0]->non_lvalue_description,
1332 op[0], op[1], &result, needs_rvalue, false,
1333 this->subexpressions[0]->get_location());
1334 break;
1335 }
1336
1337 case ast_plus:
1338 op[0] = this->subexpressions[0]->hir(instructions, state);
1339
1340 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1341
1342 error_emitted = type->is_error();
1343
1344 result = op[0];
1345 break;
1346
1347 case ast_neg:
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349
1350 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1351
1352 error_emitted = type->is_error();
1353
1354 result = new(ctx) ir_expression(operations[this->oper], type,
1355 op[0], NULL);
1356 break;
1357
1358 case ast_add:
1359 case ast_sub:
1360 case ast_mul:
1361 case ast_div:
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = arithmetic_result_type(op[0], op[1],
1366 (this->oper == ast_mul),
1367 state, & loc);
1368 error_emitted = type->is_error();
1369
1370 result = new(ctx) ir_expression(operations[this->oper], type,
1371 op[0], op[1]);
1372 break;
1373
1374 case ast_mod:
1375 op[0] = this->subexpressions[0]->hir(instructions, state);
1376 op[1] = this->subexpressions[1]->hir(instructions, state);
1377
1378 type = modulus_result_type(op[0], op[1], state, &loc);
1379
1380 assert(operations[this->oper] == ir_binop_mod);
1381
1382 result = new(ctx) ir_expression(operations[this->oper], type,
1383 op[0], op[1]);
1384 error_emitted = type->is_error();
1385 break;
1386
1387 case ast_lshift:
1388 case ast_rshift:
1389 if (!state->check_bitwise_operations_allowed(&loc)) {
1390 error_emitted = true;
1391 }
1392
1393 op[0] = this->subexpressions[0]->hir(instructions, state);
1394 op[1] = this->subexpressions[1]->hir(instructions, state);
1395 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1396 &loc);
1397 result = new(ctx) ir_expression(operations[this->oper], type,
1398 op[0], op[1]);
1399 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1400 break;
1401
1402 case ast_less:
1403 case ast_greater:
1404 case ast_lequal:
1405 case ast_gequal:
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 type = relational_result_type(op[0], op[1], state, & loc);
1410
1411 /* The relational operators must either generate an error or result
1412 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1413 */
1414 assert(type->is_error()
1415 || ((type->base_type == GLSL_TYPE_BOOL)
1416 && type->is_scalar()));
1417
1418 result = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420 error_emitted = type->is_error();
1421 break;
1422
1423 case ast_nequal:
1424 case ast_equal:
1425 op[0] = this->subexpressions[0]->hir(instructions, state);
1426 op[1] = this->subexpressions[1]->hir(instructions, state);
1427
1428 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1429 *
1430 * "The equality operators equal (==), and not equal (!=)
1431 * operate on all types. They result in a scalar Boolean. If
1432 * the operand types do not match, then there must be a
1433 * conversion from Section 4.1.10 "Implicit Conversions"
1434 * applied to one operand that can make them match, in which
1435 * case this conversion is done."
1436 */
1437
1438 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1439 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1440 "no operation `%1$s' exists that takes a left-hand "
1441 "operand of type 'void' or a right operand of type "
1442 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1443 error_emitted = true;
1444 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1445 && !apply_implicit_conversion(op[1]->type, op[0], state))
1446 || (op[0]->type != op[1]->type)) {
1447 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1448 "type", (this->oper == ast_equal) ? "==" : "!=");
1449 error_emitted = true;
1450 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1451 !state->check_version(120, 300, &loc,
1452 "array comparisons forbidden")) {
1453 error_emitted = true;
1454 } else if ((op[0]->type->contains_opaque() ||
1455 op[1]->type->contains_opaque())) {
1456 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1457 error_emitted = true;
1458 }
1459
1460 if (error_emitted) {
1461 result = new(ctx) ir_constant(false);
1462 } else {
1463 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1464 assert(result->type == glsl_type::bool_type);
1465 }
1466 break;
1467
1468 case ast_bit_and:
1469 case ast_bit_xor:
1470 case ast_bit_or:
1471 op[0] = this->subexpressions[0]->hir(instructions, state);
1472 op[1] = this->subexpressions[1]->hir(instructions, state);
1473 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1474 result = new(ctx) ir_expression(operations[this->oper], type,
1475 op[0], op[1]);
1476 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1477 break;
1478
1479 case ast_bit_not:
1480 op[0] = this->subexpressions[0]->hir(instructions, state);
1481
1482 if (!state->check_bitwise_operations_allowed(&loc)) {
1483 error_emitted = true;
1484 }
1485
1486 if (!op[0]->type->is_integer()) {
1487 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1488 error_emitted = true;
1489 }
1490
1491 type = error_emitted ? glsl_type::error_type : op[0]->type;
1492 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1493 break;
1494
1495 case ast_logic_and: {
1496 exec_list rhs_instructions;
1497 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1498 "LHS", &error_emitted);
1499 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1500 "RHS", &error_emitted);
1501
1502 if (rhs_instructions.is_empty()) {
1503 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1504 type = result->type;
1505 } else {
1506 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1507 "and_tmp",
1508 ir_var_temporary);
1509 instructions->push_tail(tmp);
1510
1511 ir_if *const stmt = new(ctx) ir_if(op[0]);
1512 instructions->push_tail(stmt);
1513
1514 stmt->then_instructions.append_list(&rhs_instructions);
1515 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1516 ir_assignment *const then_assign =
1517 new(ctx) ir_assignment(then_deref, op[1]);
1518 stmt->then_instructions.push_tail(then_assign);
1519
1520 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1521 ir_assignment *const else_assign =
1522 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1523 stmt->else_instructions.push_tail(else_assign);
1524
1525 result = new(ctx) ir_dereference_variable(tmp);
1526 type = tmp->type;
1527 }
1528 break;
1529 }
1530
1531 case ast_logic_or: {
1532 exec_list rhs_instructions;
1533 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1534 "LHS", &error_emitted);
1535 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1536 "RHS", &error_emitted);
1537
1538 if (rhs_instructions.is_empty()) {
1539 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1540 type = result->type;
1541 } else {
1542 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1543 "or_tmp",
1544 ir_var_temporary);
1545 instructions->push_tail(tmp);
1546
1547 ir_if *const stmt = new(ctx) ir_if(op[0]);
1548 instructions->push_tail(stmt);
1549
1550 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1551 ir_assignment *const then_assign =
1552 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1553 stmt->then_instructions.push_tail(then_assign);
1554
1555 stmt->else_instructions.append_list(&rhs_instructions);
1556 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1557 ir_assignment *const else_assign =
1558 new(ctx) ir_assignment(else_deref, op[1]);
1559 stmt->else_instructions.push_tail(else_assign);
1560
1561 result = new(ctx) ir_dereference_variable(tmp);
1562 type = tmp->type;
1563 }
1564 break;
1565 }
1566
1567 case ast_logic_xor:
1568 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1569 *
1570 * "The logical binary operators and (&&), or ( | | ), and
1571 * exclusive or (^^). They operate only on two Boolean
1572 * expressions and result in a Boolean expression."
1573 */
1574 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1575 &error_emitted);
1576 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1577 &error_emitted);
1578
1579 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1580 op[0], op[1]);
1581 break;
1582
1583 case ast_logic_not:
1584 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1585 "operand", &error_emitted);
1586
1587 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1588 op[0], NULL);
1589 break;
1590
1591 case ast_mul_assign:
1592 case ast_div_assign:
1593 case ast_add_assign:
1594 case ast_sub_assign: {
1595 op[0] = this->subexpressions[0]->hir(instructions, state);
1596 op[1] = this->subexpressions[1]->hir(instructions, state);
1597
1598 type = arithmetic_result_type(op[0], op[1],
1599 (this->oper == ast_mul_assign),
1600 state, & loc);
1601
1602 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1603 op[0], op[1]);
1604
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611
1612 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1613 * explicitly test for this because none of the binary expression
1614 * operators allow array operands either.
1615 */
1616
1617 break;
1618 }
1619
1620 case ast_mod_assign: {
1621 op[0] = this->subexpressions[0]->hir(instructions, state);
1622 op[1] = this->subexpressions[1]->hir(instructions, state);
1623
1624 type = modulus_result_type(op[0], op[1], state, &loc);
1625
1626 assert(operations[this->oper] == ir_binop_mod);
1627
1628 ir_rvalue *temp_rhs;
1629 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1630 op[0], op[1]);
1631
1632 error_emitted =
1633 do_assignment(instructions, state,
1634 this->subexpressions[0]->non_lvalue_description,
1635 op[0]->clone(ctx, NULL), temp_rhs,
1636 &result, needs_rvalue, false,
1637 this->subexpressions[0]->get_location());
1638 break;
1639 }
1640
1641 case ast_ls_assign:
1642 case ast_rs_assign: {
1643 op[0] = this->subexpressions[0]->hir(instructions, state);
1644 op[1] = this->subexpressions[1]->hir(instructions, state);
1645 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1646 &loc);
1647 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1648 type, op[0], op[1]);
1649 error_emitted =
1650 do_assignment(instructions, state,
1651 this->subexpressions[0]->non_lvalue_description,
1652 op[0]->clone(ctx, NULL), temp_rhs,
1653 &result, needs_rvalue, false,
1654 this->subexpressions[0]->get_location());
1655 break;
1656 }
1657
1658 case ast_and_assign:
1659 case ast_xor_assign:
1660 case ast_or_assign: {
1661 op[0] = this->subexpressions[0]->hir(instructions, state);
1662 op[1] = this->subexpressions[1]->hir(instructions, state);
1663 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1664 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1665 type, op[0], op[1]);
1666 error_emitted =
1667 do_assignment(instructions, state,
1668 this->subexpressions[0]->non_lvalue_description,
1669 op[0]->clone(ctx, NULL), temp_rhs,
1670 &result, needs_rvalue, false,
1671 this->subexpressions[0]->get_location());
1672 break;
1673 }
1674
1675 case ast_conditional: {
1676 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1677 *
1678 * "The ternary selection operator (?:). It operates on three
1679 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1680 * first expression, which must result in a scalar Boolean."
1681 */
1682 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1683 "condition", &error_emitted);
1684
1685 /* The :? operator is implemented by generating an anonymous temporary
1686 * followed by an if-statement. The last instruction in each branch of
1687 * the if-statement assigns a value to the anonymous temporary. This
1688 * temporary is the r-value of the expression.
1689 */
1690 exec_list then_instructions;
1691 exec_list else_instructions;
1692
1693 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1694 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1695
1696 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1697 *
1698 * "The second and third expressions can be any type, as
1699 * long their types match, or there is a conversion in
1700 * Section 4.1.10 "Implicit Conversions" that can be applied
1701 * to one of the expressions to make their types match. This
1702 * resulting matching type is the type of the entire
1703 * expression."
1704 */
1705 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1706 && !apply_implicit_conversion(op[2]->type, op[1], state))
1707 || (op[1]->type != op[2]->type)) {
1708 YYLTYPE loc = this->subexpressions[1]->get_location();
1709
1710 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1711 "operator must have matching types");
1712 error_emitted = true;
1713 type = glsl_type::error_type;
1714 } else {
1715 type = op[1]->type;
1716 }
1717
1718 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1719 *
1720 * "The second and third expressions must be the same type, but can
1721 * be of any type other than an array."
1722 */
1723 if (type->is_array() &&
1724 !state->check_version(120, 300, &loc,
1725 "second and third operands of ?: operator "
1726 "cannot be arrays")) {
1727 error_emitted = true;
1728 }
1729
1730 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1731 *
1732 * "Except for array indexing, structure member selection, and
1733 * parentheses, opaque variables are not allowed to be operands in
1734 * expressions; such use results in a compile-time error."
1735 */
1736 if (type->contains_opaque()) {
1737 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1738 "of the ?: operator");
1739 error_emitted = true;
1740 }
1741
1742 ir_constant *cond_val = op[0]->constant_expression_value();
1743
1744 if (then_instructions.is_empty()
1745 && else_instructions.is_empty()
1746 && cond_val != NULL) {
1747 result = cond_val->value.b[0] ? op[1] : op[2];
1748 } else {
1749 /* The copy to conditional_tmp reads the whole array. */
1750 if (type->is_array()) {
1751 mark_whole_array_access(op[1]);
1752 mark_whole_array_access(op[2]);
1753 }
1754
1755 ir_variable *const tmp =
1756 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1757 instructions->push_tail(tmp);
1758
1759 ir_if *const stmt = new(ctx) ir_if(op[0]);
1760 instructions->push_tail(stmt);
1761
1762 then_instructions.move_nodes_to(& stmt->then_instructions);
1763 ir_dereference *const then_deref =
1764 new(ctx) ir_dereference_variable(tmp);
1765 ir_assignment *const then_assign =
1766 new(ctx) ir_assignment(then_deref, op[1]);
1767 stmt->then_instructions.push_tail(then_assign);
1768
1769 else_instructions.move_nodes_to(& stmt->else_instructions);
1770 ir_dereference *const else_deref =
1771 new(ctx) ir_dereference_variable(tmp);
1772 ir_assignment *const else_assign =
1773 new(ctx) ir_assignment(else_deref, op[2]);
1774 stmt->else_instructions.push_tail(else_assign);
1775
1776 result = new(ctx) ir_dereference_variable(tmp);
1777 }
1778 break;
1779 }
1780
1781 case ast_pre_inc:
1782 case ast_pre_dec: {
1783 this->non_lvalue_description = (this->oper == ast_pre_inc)
1784 ? "pre-increment operation" : "pre-decrement operation";
1785
1786 op[0] = this->subexpressions[0]->hir(instructions, state);
1787 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1788
1789 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1790
1791 ir_rvalue *temp_rhs;
1792 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1793 op[0], op[1]);
1794
1795 error_emitted =
1796 do_assignment(instructions, state,
1797 this->subexpressions[0]->non_lvalue_description,
1798 op[0]->clone(ctx, NULL), temp_rhs,
1799 &result, needs_rvalue, false,
1800 this->subexpressions[0]->get_location());
1801 break;
1802 }
1803
1804 case ast_post_inc:
1805 case ast_post_dec: {
1806 this->non_lvalue_description = (this->oper == ast_post_inc)
1807 ? "post-increment operation" : "post-decrement operation";
1808 op[0] = this->subexpressions[0]->hir(instructions, state);
1809 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1810
1811 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1812
1813 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1814
1815 ir_rvalue *temp_rhs;
1816 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1817 op[0], op[1]);
1818
1819 /* Get a temporary of a copy of the lvalue before it's modified.
1820 * This may get thrown away later.
1821 */
1822 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1823
1824 ir_rvalue *junk_rvalue;
1825 error_emitted =
1826 do_assignment(instructions, state,
1827 this->subexpressions[0]->non_lvalue_description,
1828 op[0]->clone(ctx, NULL), temp_rhs,
1829 &junk_rvalue, false, false,
1830 this->subexpressions[0]->get_location());
1831
1832 break;
1833 }
1834
1835 case ast_field_selection:
1836 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1837 break;
1838
1839 case ast_array_index: {
1840 YYLTYPE index_loc = subexpressions[1]->get_location();
1841
1842 op[0] = subexpressions[0]->hir(instructions, state);
1843 op[1] = subexpressions[1]->hir(instructions, state);
1844
1845 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1846 loc, index_loc);
1847
1848 if (result->type->is_error())
1849 error_emitted = true;
1850
1851 break;
1852 }
1853
1854 case ast_unsized_array_dim:
1855 assert(!"ast_unsized_array_dim: Should never get here.");
1856 break;
1857
1858 case ast_function_call:
1859 /* Should *NEVER* get here. ast_function_call should always be handled
1860 * by ast_function_expression::hir.
1861 */
1862 assert(0);
1863 break;
1864
1865 case ast_identifier: {
1866 /* ast_identifier can appear several places in a full abstract syntax
1867 * tree. This particular use must be at location specified in the grammar
1868 * as 'variable_identifier'.
1869 */
1870 ir_variable *var =
1871 state->symbols->get_variable(this->primary_expression.identifier);
1872
1873 if (var != NULL) {
1874 var->data.used = true;
1875 result = new(ctx) ir_dereference_variable(var);
1876 } else {
1877 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1878 this->primary_expression.identifier);
1879
1880 result = ir_rvalue::error_value(ctx);
1881 error_emitted = true;
1882 }
1883 break;
1884 }
1885
1886 case ast_int_constant:
1887 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1888 break;
1889
1890 case ast_uint_constant:
1891 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1892 break;
1893
1894 case ast_float_constant:
1895 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1896 break;
1897
1898 case ast_bool_constant:
1899 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1900 break;
1901
1902 case ast_double_constant:
1903 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1904 break;
1905
1906 case ast_sequence: {
1907 /* It should not be possible to generate a sequence in the AST without
1908 * any expressions in it.
1909 */
1910 assert(!this->expressions.is_empty());
1911
1912 /* The r-value of a sequence is the last expression in the sequence. If
1913 * the other expressions in the sequence do not have side-effects (and
1914 * therefore add instructions to the instruction list), they get dropped
1915 * on the floor.
1916 */
1917 exec_node *previous_tail_pred = NULL;
1918 YYLTYPE previous_operand_loc = loc;
1919
1920 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1921 /* If one of the operands of comma operator does not generate any
1922 * code, we want to emit a warning. At each pass through the loop
1923 * previous_tail_pred will point to the last instruction in the
1924 * stream *before* processing the previous operand. Naturally,
1925 * instructions->tail_pred will point to the last instruction in the
1926 * stream *after* processing the previous operand. If the two
1927 * pointers match, then the previous operand had no effect.
1928 *
1929 * The warning behavior here differs slightly from GCC. GCC will
1930 * only emit a warning if none of the left-hand operands have an
1931 * effect. However, it will emit a warning for each. I believe that
1932 * there are some cases in C (especially with GCC extensions) where
1933 * it is useful to have an intermediate step in a sequence have no
1934 * effect, but I don't think these cases exist in GLSL. Either way,
1935 * it would be a giant hassle to replicate that behavior.
1936 */
1937 if (previous_tail_pred == instructions->tail_pred) {
1938 _mesa_glsl_warning(&previous_operand_loc, state,
1939 "left-hand operand of comma expression has "
1940 "no effect");
1941 }
1942
1943 /* tail_pred is directly accessed instead of using the get_tail()
1944 * method for performance reasons. get_tail() has extra code to
1945 * return NULL when the list is empty. We don't care about that
1946 * here, so using tail_pred directly is fine.
1947 */
1948 previous_tail_pred = instructions->tail_pred;
1949 previous_operand_loc = ast->get_location();
1950
1951 result = ast->hir(instructions, state);
1952 }
1953
1954 /* Any errors should have already been emitted in the loop above.
1955 */
1956 error_emitted = true;
1957 break;
1958 }
1959 }
1960 type = NULL; /* use result->type, not type. */
1961 assert(result != NULL || !needs_rvalue);
1962
1963 if (result && result->type->is_error() && !error_emitted)
1964 _mesa_glsl_error(& loc, state, "type mismatch");
1965
1966 return result;
1967 }
1968
1969 bool
1970 ast_expression::has_sequence_subexpression() const
1971 {
1972 switch (this->oper) {
1973 case ast_plus:
1974 case ast_neg:
1975 case ast_bit_not:
1976 case ast_logic_not:
1977 case ast_pre_inc:
1978 case ast_pre_dec:
1979 case ast_post_inc:
1980 case ast_post_dec:
1981 return this->subexpressions[0]->has_sequence_subexpression();
1982
1983 case ast_assign:
1984 case ast_add:
1985 case ast_sub:
1986 case ast_mul:
1987 case ast_div:
1988 case ast_mod:
1989 case ast_lshift:
1990 case ast_rshift:
1991 case ast_less:
1992 case ast_greater:
1993 case ast_lequal:
1994 case ast_gequal:
1995 case ast_nequal:
1996 case ast_equal:
1997 case ast_bit_and:
1998 case ast_bit_xor:
1999 case ast_bit_or:
2000 case ast_logic_and:
2001 case ast_logic_or:
2002 case ast_logic_xor:
2003 case ast_array_index:
2004 case ast_mul_assign:
2005 case ast_div_assign:
2006 case ast_add_assign:
2007 case ast_sub_assign:
2008 case ast_mod_assign:
2009 case ast_ls_assign:
2010 case ast_rs_assign:
2011 case ast_and_assign:
2012 case ast_xor_assign:
2013 case ast_or_assign:
2014 return this->subexpressions[0]->has_sequence_subexpression() ||
2015 this->subexpressions[1]->has_sequence_subexpression();
2016
2017 case ast_conditional:
2018 return this->subexpressions[0]->has_sequence_subexpression() ||
2019 this->subexpressions[1]->has_sequence_subexpression() ||
2020 this->subexpressions[2]->has_sequence_subexpression();
2021
2022 case ast_sequence:
2023 return true;
2024
2025 case ast_field_selection:
2026 case ast_identifier:
2027 case ast_int_constant:
2028 case ast_uint_constant:
2029 case ast_float_constant:
2030 case ast_bool_constant:
2031 case ast_double_constant:
2032 return false;
2033
2034 case ast_aggregate:
2035 unreachable("ast_aggregate: Should never get here.");
2036
2037 case ast_function_call:
2038 unreachable("should be handled by ast_function_expression::hir");
2039
2040 case ast_unsized_array_dim:
2041 unreachable("ast_unsized_array_dim: Should never get here.");
2042 }
2043
2044 return false;
2045 }
2046
2047 ir_rvalue *
2048 ast_expression_statement::hir(exec_list *instructions,
2049 struct _mesa_glsl_parse_state *state)
2050 {
2051 /* It is possible to have expression statements that don't have an
2052 * expression. This is the solitary semicolon:
2053 *
2054 * for (i = 0; i < 5; i++)
2055 * ;
2056 *
2057 * In this case the expression will be NULL. Test for NULL and don't do
2058 * anything in that case.
2059 */
2060 if (expression != NULL)
2061 expression->hir_no_rvalue(instructions, state);
2062
2063 /* Statements do not have r-values.
2064 */
2065 return NULL;
2066 }
2067
2068
2069 ir_rvalue *
2070 ast_compound_statement::hir(exec_list *instructions,
2071 struct _mesa_glsl_parse_state *state)
2072 {
2073 if (new_scope)
2074 state->symbols->push_scope();
2075
2076 foreach_list_typed (ast_node, ast, link, &this->statements)
2077 ast->hir(instructions, state);
2078
2079 if (new_scope)
2080 state->symbols->pop_scope();
2081
2082 /* Compound statements do not have r-values.
2083 */
2084 return NULL;
2085 }
2086
2087 /**
2088 * Evaluate the given exec_node (which should be an ast_node representing
2089 * a single array dimension) and return its integer value.
2090 */
2091 static unsigned
2092 process_array_size(exec_node *node,
2093 struct _mesa_glsl_parse_state *state)
2094 {
2095 exec_list dummy_instructions;
2096
2097 ast_node *array_size = exec_node_data(ast_node, node, link);
2098
2099 /**
2100 * Dimensions other than the outermost dimension can by unsized if they
2101 * are immediately sized by a constructor or initializer.
2102 */
2103 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2104 return 0;
2105
2106 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2107 YYLTYPE loc = array_size->get_location();
2108
2109 if (ir == NULL) {
2110 _mesa_glsl_error(& loc, state,
2111 "array size could not be resolved");
2112 return 0;
2113 }
2114
2115 if (!ir->type->is_integer()) {
2116 _mesa_glsl_error(& loc, state,
2117 "array size must be integer type");
2118 return 0;
2119 }
2120
2121 if (!ir->type->is_scalar()) {
2122 _mesa_glsl_error(& loc, state,
2123 "array size must be scalar type");
2124 return 0;
2125 }
2126
2127 ir_constant *const size = ir->constant_expression_value();
2128 if (size == NULL ||
2129 (state->is_version(120, 300) &&
2130 array_size->has_sequence_subexpression())) {
2131 _mesa_glsl_error(& loc, state, "array size must be a "
2132 "constant valued expression");
2133 return 0;
2134 }
2135
2136 if (size->value.i[0] <= 0) {
2137 _mesa_glsl_error(& loc, state, "array size must be > 0");
2138 return 0;
2139 }
2140
2141 assert(size->type == ir->type);
2142
2143 /* If the array size is const (and we've verified that
2144 * it is) then no instructions should have been emitted
2145 * when we converted it to HIR. If they were emitted,
2146 * then either the array size isn't const after all, or
2147 * we are emitting unnecessary instructions.
2148 */
2149 assert(dummy_instructions.is_empty());
2150
2151 return size->value.u[0];
2152 }
2153
2154 static const glsl_type *
2155 process_array_type(YYLTYPE *loc, const glsl_type *base,
2156 ast_array_specifier *array_specifier,
2157 struct _mesa_glsl_parse_state *state)
2158 {
2159 const glsl_type *array_type = base;
2160
2161 if (array_specifier != NULL) {
2162 if (base->is_array()) {
2163
2164 /* From page 19 (page 25) of the GLSL 1.20 spec:
2165 *
2166 * "Only one-dimensional arrays may be declared."
2167 */
2168 if (!state->check_arrays_of_arrays_allowed(loc)) {
2169 return glsl_type::error_type;
2170 }
2171 }
2172
2173 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2174 !node->is_head_sentinel(); node = node->prev) {
2175 unsigned array_size = process_array_size(node, state);
2176 array_type = glsl_type::get_array_instance(array_type, array_size);
2177 }
2178 }
2179
2180 return array_type;
2181 }
2182
2183 static bool
2184 precision_qualifier_allowed(const glsl_type *type)
2185 {
2186 /* Precision qualifiers apply to floating point, integer and opaque
2187 * types.
2188 *
2189 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2190 * "Any floating point or any integer declaration can have the type
2191 * preceded by one of these precision qualifiers [...] Literal
2192 * constants do not have precision qualifiers. Neither do Boolean
2193 * variables.
2194 *
2195 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2196 * spec also says:
2197 *
2198 * "Precision qualifiers are added for code portability with OpenGL
2199 * ES, not for functionality. They have the same syntax as in OpenGL
2200 * ES."
2201 *
2202 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2203 *
2204 * "uniform lowp sampler2D sampler;
2205 * highp vec2 coord;
2206 * ...
2207 * lowp vec4 col = texture2D (sampler, coord);
2208 * // texture2D returns lowp"
2209 *
2210 * From this, we infer that GLSL 1.30 (and later) should allow precision
2211 * qualifiers on sampler types just like float and integer types.
2212 */
2213 return (type->is_float()
2214 || type->is_integer()
2215 || type->contains_opaque())
2216 && !type->without_array()->is_record();
2217 }
2218
2219 const glsl_type *
2220 ast_type_specifier::glsl_type(const char **name,
2221 struct _mesa_glsl_parse_state *state) const
2222 {
2223 const struct glsl_type *type;
2224
2225 type = state->symbols->get_type(this->type_name);
2226 *name = this->type_name;
2227
2228 YYLTYPE loc = this->get_location();
2229 type = process_array_type(&loc, type, this->array_specifier, state);
2230
2231 return type;
2232 }
2233
2234 /**
2235 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2236 *
2237 * "The precision statement
2238 *
2239 * precision precision-qualifier type;
2240 *
2241 * can be used to establish a default precision qualifier. The type field can
2242 * be either int or float or any of the sampler types, (...) If type is float,
2243 * the directive applies to non-precision-qualified floating point type
2244 * (scalar, vector, and matrix) declarations. If type is int, the directive
2245 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2246 * and unsigned) declarations."
2247 *
2248 * We use the symbol table to keep the values of the default precisions for
2249 * each 'type' in each scope and we use the 'type' string from the precision
2250 * statement as key in the symbol table. When we want to retrieve the default
2251 * precision associated with a given glsl_type we need to know the type string
2252 * associated with it. This is what this function returns.
2253 */
2254 static const char *
2255 get_type_name_for_precision_qualifier(const glsl_type *type)
2256 {
2257 switch (type->base_type) {
2258 case GLSL_TYPE_FLOAT:
2259 return "float";
2260 case GLSL_TYPE_UINT:
2261 case GLSL_TYPE_INT:
2262 return "int";
2263 case GLSL_TYPE_ATOMIC_UINT:
2264 return "atomic_uint";
2265 case GLSL_TYPE_IMAGE:
2266 /* fallthrough */
2267 case GLSL_TYPE_SAMPLER: {
2268 const unsigned type_idx =
2269 type->sampler_array + 2 * type->sampler_shadow;
2270 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2271 assert(type_idx < 4);
2272 switch (type->sampled_type) {
2273 case GLSL_TYPE_FLOAT:
2274 switch (type->sampler_dimensionality) {
2275 case GLSL_SAMPLER_DIM_1D: {
2276 assert(type->base_type == GLSL_TYPE_SAMPLER);
2277 static const char *const names[4] = {
2278 "sampler1D", "sampler1DArray",
2279 "sampler1DShadow", "sampler1DArrayShadow"
2280 };
2281 return names[type_idx];
2282 }
2283 case GLSL_SAMPLER_DIM_2D: {
2284 static const char *const names[8] = {
2285 "sampler2D", "sampler2DArray",
2286 "sampler2DShadow", "sampler2DArrayShadow",
2287 "image2D", "image2DArray", NULL, NULL
2288 };
2289 return names[offset + type_idx];
2290 }
2291 case GLSL_SAMPLER_DIM_3D: {
2292 static const char *const names[8] = {
2293 "sampler3D", NULL, NULL, NULL,
2294 "image3D", NULL, NULL, NULL
2295 };
2296 return names[offset + type_idx];
2297 }
2298 case GLSL_SAMPLER_DIM_CUBE: {
2299 static const char *const names[8] = {
2300 "samplerCube", "samplerCubeArray",
2301 "samplerCubeShadow", "samplerCubeArrayShadow",
2302 "imageCube", NULL, NULL, NULL
2303 };
2304 return names[offset + type_idx];
2305 }
2306 case GLSL_SAMPLER_DIM_MS: {
2307 assert(type->base_type == GLSL_TYPE_SAMPLER);
2308 static const char *const names[4] = {
2309 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2310 };
2311 return names[type_idx];
2312 }
2313 case GLSL_SAMPLER_DIM_RECT: {
2314 assert(type->base_type == GLSL_TYPE_SAMPLER);
2315 static const char *const names[4] = {
2316 "samplerRect", NULL, "samplerRectShadow", NULL
2317 };
2318 return names[type_idx];
2319 }
2320 case GLSL_SAMPLER_DIM_BUF: {
2321 assert(type->base_type == GLSL_TYPE_SAMPLER);
2322 static const char *const names[4] = {
2323 "samplerBuffer", NULL, NULL, NULL
2324 };
2325 return names[type_idx];
2326 }
2327 case GLSL_SAMPLER_DIM_EXTERNAL: {
2328 assert(type->base_type == GLSL_TYPE_SAMPLER);
2329 static const char *const names[4] = {
2330 "samplerExternalOES", NULL, NULL, NULL
2331 };
2332 return names[type_idx];
2333 }
2334 default:
2335 unreachable("Unsupported sampler/image dimensionality");
2336 } /* sampler/image float dimensionality */
2337 break;
2338 case GLSL_TYPE_INT:
2339 switch (type->sampler_dimensionality) {
2340 case GLSL_SAMPLER_DIM_1D: {
2341 assert(type->base_type == GLSL_TYPE_SAMPLER);
2342 static const char *const names[4] = {
2343 "isampler1D", "isampler1DArray", NULL, NULL
2344 };
2345 return names[type_idx];
2346 }
2347 case GLSL_SAMPLER_DIM_2D: {
2348 static const char *const names[8] = {
2349 "isampler2D", "isampler2DArray", NULL, NULL,
2350 "iimage2D", "iimage2DArray", NULL, NULL
2351 };
2352 return names[offset + type_idx];
2353 }
2354 case GLSL_SAMPLER_DIM_3D: {
2355 static const char *const names[8] = {
2356 "isampler3D", NULL, NULL, NULL,
2357 "iimage3D", NULL, NULL, NULL
2358 };
2359 return names[offset + type_idx];
2360 }
2361 case GLSL_SAMPLER_DIM_CUBE: {
2362 static const char *const names[8] = {
2363 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2364 "iimageCube", NULL, NULL, NULL
2365 };
2366 return names[offset + type_idx];
2367 }
2368 case GLSL_SAMPLER_DIM_MS: {
2369 assert(type->base_type == GLSL_TYPE_SAMPLER);
2370 static const char *const names[4] = {
2371 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2372 };
2373 return names[type_idx];
2374 }
2375 case GLSL_SAMPLER_DIM_RECT: {
2376 assert(type->base_type == GLSL_TYPE_SAMPLER);
2377 static const char *const names[4] = {
2378 "isamplerRect", NULL, "isamplerRectShadow", NULL
2379 };
2380 return names[type_idx];
2381 }
2382 case GLSL_SAMPLER_DIM_BUF: {
2383 assert(type->base_type == GLSL_TYPE_SAMPLER);
2384 static const char *const names[4] = {
2385 "isamplerBuffer", NULL, NULL, NULL
2386 };
2387 return names[type_idx];
2388 }
2389 default:
2390 unreachable("Unsupported isampler/iimage dimensionality");
2391 } /* sampler/image int dimensionality */
2392 break;
2393 case GLSL_TYPE_UINT:
2394 switch (type->sampler_dimensionality) {
2395 case GLSL_SAMPLER_DIM_1D: {
2396 assert(type->base_type == GLSL_TYPE_SAMPLER);
2397 static const char *const names[4] = {
2398 "usampler1D", "usampler1DArray", NULL, NULL
2399 };
2400 return names[type_idx];
2401 }
2402 case GLSL_SAMPLER_DIM_2D: {
2403 static const char *const names[8] = {
2404 "usampler2D", "usampler2DArray", NULL, NULL,
2405 "uimage2D", "uimage2DArray", NULL, NULL
2406 };
2407 return names[offset + type_idx];
2408 }
2409 case GLSL_SAMPLER_DIM_3D: {
2410 static const char *const names[8] = {
2411 "usampler3D", NULL, NULL, NULL,
2412 "uimage3D", NULL, NULL, NULL
2413 };
2414 return names[offset + type_idx];
2415 }
2416 case GLSL_SAMPLER_DIM_CUBE: {
2417 static const char *const names[8] = {
2418 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2419 "uimageCube", NULL, NULL, NULL
2420 };
2421 return names[offset + type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_MS: {
2424 assert(type->base_type == GLSL_TYPE_SAMPLER);
2425 static const char *const names[4] = {
2426 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2427 };
2428 return names[type_idx];
2429 }
2430 case GLSL_SAMPLER_DIM_RECT: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "usamplerRect", NULL, "usamplerRectShadow", NULL
2434 };
2435 return names[type_idx];
2436 }
2437 case GLSL_SAMPLER_DIM_BUF: {
2438 assert(type->base_type == GLSL_TYPE_SAMPLER);
2439 static const char *const names[4] = {
2440 "usamplerBuffer", NULL, NULL, NULL
2441 };
2442 return names[type_idx];
2443 }
2444 default:
2445 unreachable("Unsupported usampler/uimage dimensionality");
2446 } /* sampler/image uint dimensionality */
2447 break;
2448 default:
2449 unreachable("Unsupported sampler/image type");
2450 } /* sampler/image type */
2451 break;
2452 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2453 break;
2454 default:
2455 unreachable("Unsupported type");
2456 } /* base type */
2457 }
2458
2459 static unsigned
2460 select_gles_precision(unsigned qual_precision,
2461 const glsl_type *type,
2462 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2463 {
2464 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2465 * In GLES we take the precision from the type qualifier if present,
2466 * otherwise, if the type of the variable allows precision qualifiers at
2467 * all, we look for the default precision qualifier for that type in the
2468 * current scope.
2469 */
2470 assert(state->es_shader);
2471
2472 unsigned precision = GLSL_PRECISION_NONE;
2473 if (qual_precision) {
2474 precision = qual_precision;
2475 } else if (precision_qualifier_allowed(type)) {
2476 const char *type_name =
2477 get_type_name_for_precision_qualifier(type->without_array());
2478 assert(type_name != NULL);
2479
2480 precision =
2481 state->symbols->get_default_precision_qualifier(type_name);
2482 if (precision == ast_precision_none) {
2483 _mesa_glsl_error(loc, state,
2484 "No precision specified in this scope for type `%s'",
2485 type->name);
2486 }
2487 }
2488 return precision;
2489 }
2490
2491 const glsl_type *
2492 ast_fully_specified_type::glsl_type(const char **name,
2493 struct _mesa_glsl_parse_state *state) const
2494 {
2495 return this->specifier->glsl_type(name, state);
2496 }
2497
2498 /**
2499 * Determine whether a toplevel variable declaration declares a varying. This
2500 * function operates by examining the variable's mode and the shader target,
2501 * so it correctly identifies linkage variables regardless of whether they are
2502 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2503 *
2504 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2505 * this function will produce undefined results.
2506 */
2507 static bool
2508 is_varying_var(ir_variable *var, gl_shader_stage target)
2509 {
2510 switch (target) {
2511 case MESA_SHADER_VERTEX:
2512 return var->data.mode == ir_var_shader_out;
2513 case MESA_SHADER_FRAGMENT:
2514 return var->data.mode == ir_var_shader_in;
2515 default:
2516 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2517 }
2518 }
2519
2520
2521 /**
2522 * Matrix layout qualifiers are only allowed on certain types
2523 */
2524 static void
2525 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2526 YYLTYPE *loc,
2527 const glsl_type *type,
2528 ir_variable *var)
2529 {
2530 if (var && !var->is_in_buffer_block()) {
2531 /* Layout qualifiers may only apply to interface blocks and fields in
2532 * them.
2533 */
2534 _mesa_glsl_error(loc, state,
2535 "uniform block layout qualifiers row_major and "
2536 "column_major may not be applied to variables "
2537 "outside of uniform blocks");
2538 } else if (!type->without_array()->is_matrix()) {
2539 /* The OpenGL ES 3.0 conformance tests did not originally allow
2540 * matrix layout qualifiers on non-matrices. However, the OpenGL
2541 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2542 * amended to specifically allow these layouts on all types. Emit
2543 * a warning so that people know their code may not be portable.
2544 */
2545 _mesa_glsl_warning(loc, state,
2546 "uniform block layout qualifiers row_major and "
2547 "column_major applied to non-matrix types may "
2548 "be rejected by older compilers");
2549 }
2550 }
2551
2552 static bool
2553 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2554 YYLTYPE *loc,
2555 const char *qual_indentifier,
2556 ast_expression *const_expression,
2557 unsigned *value)
2558 {
2559 exec_list dummy_instructions;
2560
2561 if (const_expression == NULL) {
2562 *value = 0;
2563 return true;
2564 }
2565
2566 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2567
2568 ir_constant *const const_int = ir->constant_expression_value();
2569 if (const_int == NULL || !const_int->type->is_integer()) {
2570 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2571 "expression", qual_indentifier);
2572 return false;
2573 }
2574
2575 if (const_int->value.i[0] < 0) {
2576 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2577 qual_indentifier, const_int->value.u[0]);
2578 return false;
2579 }
2580
2581 /* If the location is const (and we've verified that
2582 * it is) then no instructions should have been emitted
2583 * when we converted it to HIR. If they were emitted,
2584 * then either the location isn't const after all, or
2585 * we are emitting unnecessary instructions.
2586 */
2587 assert(dummy_instructions.is_empty());
2588
2589 *value = const_int->value.u[0];
2590 return true;
2591 }
2592
2593 static bool
2594 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2595 unsigned stream)
2596 {
2597 if (stream >= state->ctx->Const.MaxVertexStreams) {
2598 _mesa_glsl_error(loc, state,
2599 "invalid stream specified %d is larger than "
2600 "MAX_VERTEX_STREAMS - 1 (%d).",
2601 stream, state->ctx->Const.MaxVertexStreams - 1);
2602 return false;
2603 }
2604
2605 return true;
2606 }
2607
2608 static void
2609 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2610 YYLTYPE *loc,
2611 ir_variable *var,
2612 const glsl_type *type,
2613 const ast_type_qualifier *qual)
2614 {
2615 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2616 _mesa_glsl_error(loc, state,
2617 "the \"binding\" qualifier only applies to uniforms and "
2618 "shader storage buffer objects");
2619 return;
2620 }
2621
2622 unsigned qual_binding;
2623 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2624 &qual_binding)) {
2625 return;
2626 }
2627
2628 const struct gl_context *const ctx = state->ctx;
2629 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2630 unsigned max_index = qual_binding + elements - 1;
2631 const glsl_type *base_type = type->without_array();
2632
2633 if (base_type->is_interface()) {
2634 /* UBOs. From page 60 of the GLSL 4.20 specification:
2635 * "If the binding point for any uniform block instance is less than zero,
2636 * or greater than or equal to the implementation-dependent maximum
2637 * number of uniform buffer bindings, a compilation error will occur.
2638 * When the binding identifier is used with a uniform block instanced as
2639 * an array of size N, all elements of the array from binding through
2640 * binding + N – 1 must be within this range."
2641 *
2642 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2643 */
2644 if (qual->flags.q.uniform &&
2645 max_index >= ctx->Const.MaxUniformBufferBindings) {
2646 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2647 "the maximum number of UBO binding points (%d)",
2648 qual_binding, elements,
2649 ctx->Const.MaxUniformBufferBindings);
2650 return;
2651 }
2652
2653 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2654 * "If the binding point for any uniform or shader storage block instance
2655 * is less than zero, or greater than or equal to the
2656 * implementation-dependent maximum number of uniform buffer bindings, a
2657 * compile-time error will occur. When the binding identifier is used
2658 * with a uniform or shader storage block instanced as an array of size
2659 * N, all elements of the array from binding through binding + N – 1 must
2660 * be within this range."
2661 */
2662 if (qual->flags.q.buffer &&
2663 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2664 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2665 "the maximum number of SSBO binding points (%d)",
2666 qual_binding, elements,
2667 ctx->Const.MaxShaderStorageBufferBindings);
2668 return;
2669 }
2670 } else if (base_type->is_sampler()) {
2671 /* Samplers. From page 63 of the GLSL 4.20 specification:
2672 * "If the binding is less than zero, or greater than or equal to the
2673 * implementation-dependent maximum supported number of units, a
2674 * compilation error will occur. When the binding identifier is used
2675 * with an array of size N, all elements of the array from binding
2676 * through binding + N - 1 must be within this range."
2677 */
2678 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2679
2680 if (max_index >= limit) {
2681 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2682 "exceeds the maximum number of texture image units "
2683 "(%u)", qual_binding, elements, limit);
2684
2685 return;
2686 }
2687 } else if (base_type->contains_atomic()) {
2688 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2689 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2690 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2691 " maximum number of atomic counter buffer bindings"
2692 "(%u)", qual_binding,
2693 ctx->Const.MaxAtomicBufferBindings);
2694
2695 return;
2696 }
2697 } else if ((state->is_version(420, 310) ||
2698 state->ARB_shading_language_420pack_enable) &&
2699 base_type->is_image()) {
2700 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2701 if (max_index >= ctx->Const.MaxImageUnits) {
2702 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2703 " maximum number of image units (%d)", max_index,
2704 ctx->Const.MaxImageUnits);
2705 return;
2706 }
2707
2708 } else {
2709 _mesa_glsl_error(loc, state,
2710 "the \"binding\" qualifier only applies to uniform "
2711 "blocks, opaque variables, or arrays thereof");
2712 return;
2713 }
2714
2715 var->data.explicit_binding = true;
2716 var->data.binding = qual_binding;
2717
2718 return;
2719 }
2720
2721
2722 static glsl_interp_qualifier
2723 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2724 ir_variable_mode mode,
2725 struct _mesa_glsl_parse_state *state,
2726 YYLTYPE *loc)
2727 {
2728 glsl_interp_qualifier interpolation;
2729 if (qual->flags.q.flat)
2730 interpolation = INTERP_QUALIFIER_FLAT;
2731 else if (qual->flags.q.noperspective)
2732 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2733 else if (qual->flags.q.smooth)
2734 interpolation = INTERP_QUALIFIER_SMOOTH;
2735 else
2736 interpolation = INTERP_QUALIFIER_NONE;
2737
2738 if (interpolation != INTERP_QUALIFIER_NONE) {
2739 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2740 _mesa_glsl_error(loc, state,
2741 "interpolation qualifier `%s' can only be applied to "
2742 "shader inputs or outputs.",
2743 interpolation_string(interpolation));
2744
2745 }
2746
2747 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2748 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2749 _mesa_glsl_error(loc, state,
2750 "interpolation qualifier `%s' cannot be applied to "
2751 "vertex shader inputs or fragment shader outputs",
2752 interpolation_string(interpolation));
2753 }
2754 } else if (state->es_shader &&
2755 ((mode == ir_var_shader_in &&
2756 state->stage != MESA_SHADER_VERTEX) ||
2757 (mode == ir_var_shader_out &&
2758 state->stage != MESA_SHADER_FRAGMENT))) {
2759 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2760 *
2761 * "When no interpolation qualifier is present, smooth interpolation
2762 * is used."
2763 */
2764 interpolation = INTERP_QUALIFIER_SMOOTH;
2765 }
2766
2767 return interpolation;
2768 }
2769
2770
2771 static void
2772 apply_explicit_location(const struct ast_type_qualifier *qual,
2773 ir_variable *var,
2774 struct _mesa_glsl_parse_state *state,
2775 YYLTYPE *loc)
2776 {
2777 bool fail = false;
2778
2779 unsigned qual_location;
2780 if (!process_qualifier_constant(state, loc, "location", qual->location,
2781 &qual_location)) {
2782 return;
2783 }
2784
2785 /* Checks for GL_ARB_explicit_uniform_location. */
2786 if (qual->flags.q.uniform) {
2787 if (!state->check_explicit_uniform_location_allowed(loc, var))
2788 return;
2789
2790 const struct gl_context *const ctx = state->ctx;
2791 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2792
2793 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2794 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2795 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2796 ctx->Const.MaxUserAssignableUniformLocations);
2797 return;
2798 }
2799
2800 var->data.explicit_location = true;
2801 var->data.location = qual_location;
2802 return;
2803 }
2804
2805 /* Between GL_ARB_explicit_attrib_location an
2806 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2807 * stage can be assigned explicit locations. The checking here associates
2808 * the correct extension with the correct stage's input / output:
2809 *
2810 * input output
2811 * ----- ------
2812 * vertex explicit_loc sso
2813 * tess control sso sso
2814 * tess eval sso sso
2815 * geometry sso sso
2816 * fragment sso explicit_loc
2817 */
2818 switch (state->stage) {
2819 case MESA_SHADER_VERTEX:
2820 if (var->data.mode == ir_var_shader_in) {
2821 if (!state->check_explicit_attrib_location_allowed(loc, var))
2822 return;
2823
2824 break;
2825 }
2826
2827 if (var->data.mode == ir_var_shader_out) {
2828 if (!state->check_separate_shader_objects_allowed(loc, var))
2829 return;
2830
2831 break;
2832 }
2833
2834 fail = true;
2835 break;
2836
2837 case MESA_SHADER_TESS_CTRL:
2838 case MESA_SHADER_TESS_EVAL:
2839 case MESA_SHADER_GEOMETRY:
2840 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2841 if (!state->check_separate_shader_objects_allowed(loc, var))
2842 return;
2843
2844 break;
2845 }
2846
2847 fail = true;
2848 break;
2849
2850 case MESA_SHADER_FRAGMENT:
2851 if (var->data.mode == ir_var_shader_in) {
2852 if (!state->check_separate_shader_objects_allowed(loc, var))
2853 return;
2854
2855 break;
2856 }
2857
2858 if (var->data.mode == ir_var_shader_out) {
2859 if (!state->check_explicit_attrib_location_allowed(loc, var))
2860 return;
2861
2862 break;
2863 }
2864
2865 fail = true;
2866 break;
2867
2868 case MESA_SHADER_COMPUTE:
2869 _mesa_glsl_error(loc, state,
2870 "compute shader variables cannot be given "
2871 "explicit locations");
2872 return;
2873 };
2874
2875 if (fail) {
2876 _mesa_glsl_error(loc, state,
2877 "%s cannot be given an explicit location in %s shader",
2878 mode_string(var),
2879 _mesa_shader_stage_to_string(state->stage));
2880 } else {
2881 var->data.explicit_location = true;
2882
2883 switch (state->stage) {
2884 case MESA_SHADER_VERTEX:
2885 var->data.location = (var->data.mode == ir_var_shader_in)
2886 ? (qual_location + VERT_ATTRIB_GENERIC0)
2887 : (qual_location + VARYING_SLOT_VAR0);
2888 break;
2889
2890 case MESA_SHADER_TESS_CTRL:
2891 case MESA_SHADER_TESS_EVAL:
2892 case MESA_SHADER_GEOMETRY:
2893 if (var->data.patch)
2894 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2895 else
2896 var->data.location = qual_location + VARYING_SLOT_VAR0;
2897 break;
2898
2899 case MESA_SHADER_FRAGMENT:
2900 var->data.location = (var->data.mode == ir_var_shader_out)
2901 ? (qual_location + FRAG_RESULT_DATA0)
2902 : (qual_location + VARYING_SLOT_VAR0);
2903 break;
2904 case MESA_SHADER_COMPUTE:
2905 assert(!"Unexpected shader type");
2906 break;
2907 }
2908
2909 /* Check if index was set for the uniform instead of the function */
2910 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2911 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2912 "used with subroutine functions");
2913 return;
2914 }
2915
2916 unsigned qual_index;
2917 if (qual->flags.q.explicit_index &&
2918 process_qualifier_constant(state, loc, "index", qual->index,
2919 &qual_index)) {
2920 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2921 * Layout Qualifiers):
2922 *
2923 * "It is also a compile-time error if a fragment shader
2924 * sets a layout index to less than 0 or greater than 1."
2925 *
2926 * Older specifications don't mandate a behavior; we take
2927 * this as a clarification and always generate the error.
2928 */
2929 if (qual_index > 1) {
2930 _mesa_glsl_error(loc, state,
2931 "explicit index may only be 0 or 1");
2932 } else {
2933 var->data.explicit_index = true;
2934 var->data.index = qual_index;
2935 }
2936 }
2937 }
2938 }
2939
2940 static void
2941 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2942 ir_variable *var,
2943 struct _mesa_glsl_parse_state *state,
2944 YYLTYPE *loc)
2945 {
2946 const glsl_type *base_type = var->type->without_array();
2947
2948 if (base_type->is_image()) {
2949 if (var->data.mode != ir_var_uniform &&
2950 var->data.mode != ir_var_function_in) {
2951 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2952 "function parameters or uniform-qualified "
2953 "global variables");
2954 }
2955
2956 var->data.image_read_only |= qual->flags.q.read_only;
2957 var->data.image_write_only |= qual->flags.q.write_only;
2958 var->data.image_coherent |= qual->flags.q.coherent;
2959 var->data.image_volatile |= qual->flags.q._volatile;
2960 var->data.image_restrict |= qual->flags.q.restrict_flag;
2961 var->data.read_only = true;
2962
2963 if (qual->flags.q.explicit_image_format) {
2964 if (var->data.mode == ir_var_function_in) {
2965 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2966 "used on image function parameters");
2967 }
2968
2969 if (qual->image_base_type != base_type->sampled_type) {
2970 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2971 "base data type of the image");
2972 }
2973
2974 var->data.image_format = qual->image_format;
2975 } else {
2976 if (var->data.mode == ir_var_uniform) {
2977 if (state->es_shader) {
2978 _mesa_glsl_error(loc, state, "all image uniforms "
2979 "must have a format layout qualifier");
2980
2981 } else if (!qual->flags.q.write_only) {
2982 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2983 "`writeonly' must have a format layout "
2984 "qualifier");
2985 }
2986 }
2987
2988 var->data.image_format = GL_NONE;
2989 }
2990
2991 /* From page 70 of the GLSL ES 3.1 specification:
2992 *
2993 * "Except for image variables qualified with the format qualifiers
2994 * r32f, r32i, and r32ui, image variables must specify either memory
2995 * qualifier readonly or the memory qualifier writeonly."
2996 */
2997 if (state->es_shader &&
2998 var->data.image_format != GL_R32F &&
2999 var->data.image_format != GL_R32I &&
3000 var->data.image_format != GL_R32UI &&
3001 !var->data.image_read_only &&
3002 !var->data.image_write_only) {
3003 _mesa_glsl_error(loc, state, "image variables of format other than "
3004 "r32f, r32i or r32ui must be qualified `readonly' or "
3005 "`writeonly'");
3006 }
3007
3008 } else if (qual->flags.q.read_only ||
3009 qual->flags.q.write_only ||
3010 qual->flags.q.coherent ||
3011 qual->flags.q._volatile ||
3012 qual->flags.q.restrict_flag ||
3013 qual->flags.q.explicit_image_format) {
3014 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3015 "images");
3016 }
3017 }
3018
3019 static inline const char*
3020 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3021 {
3022 if (origin_upper_left && pixel_center_integer)
3023 return "origin_upper_left, pixel_center_integer";
3024 else if (origin_upper_left)
3025 return "origin_upper_left";
3026 else if (pixel_center_integer)
3027 return "pixel_center_integer";
3028 else
3029 return " ";
3030 }
3031
3032 static inline bool
3033 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3034 const struct ast_type_qualifier *qual)
3035 {
3036 /* If gl_FragCoord was previously declared, and the qualifiers were
3037 * different in any way, return true.
3038 */
3039 if (state->fs_redeclares_gl_fragcoord) {
3040 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3041 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3042 }
3043
3044 return false;
3045 }
3046
3047 static inline void
3048 validate_array_dimensions(const glsl_type *t,
3049 struct _mesa_glsl_parse_state *state,
3050 YYLTYPE *loc) {
3051 if (t->is_array()) {
3052 t = t->fields.array;
3053 while (t->is_array()) {
3054 if (t->is_unsized_array()) {
3055 _mesa_glsl_error(loc, state,
3056 "only the outermost array dimension can "
3057 "be unsized",
3058 t->name);
3059 break;
3060 }
3061 t = t->fields.array;
3062 }
3063 }
3064 }
3065
3066 static void
3067 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3068 ir_variable *var,
3069 struct _mesa_glsl_parse_state *state,
3070 YYLTYPE *loc)
3071 {
3072 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3073
3074 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3075 *
3076 * "Within any shader, the first redeclarations of gl_FragCoord
3077 * must appear before any use of gl_FragCoord."
3078 *
3079 * Generate a compiler error if above condition is not met by the
3080 * fragment shader.
3081 */
3082 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3083 if (earlier != NULL &&
3084 earlier->data.used &&
3085 !state->fs_redeclares_gl_fragcoord) {
3086 _mesa_glsl_error(loc, state,
3087 "gl_FragCoord used before its first redeclaration "
3088 "in fragment shader");
3089 }
3090
3091 /* Make sure all gl_FragCoord redeclarations specify the same layout
3092 * qualifiers.
3093 */
3094 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3095 const char *const qual_string =
3096 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3097 qual->flags.q.pixel_center_integer);
3098
3099 const char *const state_string =
3100 get_layout_qualifier_string(state->fs_origin_upper_left,
3101 state->fs_pixel_center_integer);
3102
3103 _mesa_glsl_error(loc, state,
3104 "gl_FragCoord redeclared with different layout "
3105 "qualifiers (%s) and (%s) ",
3106 state_string,
3107 qual_string);
3108 }
3109 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3110 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3111 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3112 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3113 state->fs_redeclares_gl_fragcoord =
3114 state->fs_origin_upper_left ||
3115 state->fs_pixel_center_integer ||
3116 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3117 }
3118
3119 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3120 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3121 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3122 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3123 const char *const qual_string = (qual->flags.q.origin_upper_left)
3124 ? "origin_upper_left" : "pixel_center_integer";
3125
3126 _mesa_glsl_error(loc, state,
3127 "layout qualifier `%s' can only be applied to "
3128 "fragment shader input `gl_FragCoord'",
3129 qual_string);
3130 }
3131
3132 if (qual->flags.q.explicit_location) {
3133 apply_explicit_location(qual, var, state, loc);
3134 } else if (qual->flags.q.explicit_index) {
3135 if (!qual->flags.q.subroutine_def)
3136 _mesa_glsl_error(loc, state,
3137 "explicit index requires explicit location");
3138 }
3139
3140 if (qual->flags.q.explicit_binding) {
3141 apply_explicit_binding(state, loc, var, var->type, qual);
3142 }
3143
3144 if (state->stage == MESA_SHADER_GEOMETRY &&
3145 qual->flags.q.out && qual->flags.q.stream) {
3146 unsigned qual_stream;
3147 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3148 &qual_stream) &&
3149 validate_stream_qualifier(loc, state, qual_stream)) {
3150 var->data.stream = qual_stream;
3151 }
3152 }
3153
3154 if (var->type->contains_atomic()) {
3155 if (var->data.mode == ir_var_uniform) {
3156 if (var->data.explicit_binding) {
3157 unsigned *offset =
3158 &state->atomic_counter_offsets[var->data.binding];
3159
3160 if (*offset % ATOMIC_COUNTER_SIZE)
3161 _mesa_glsl_error(loc, state,
3162 "misaligned atomic counter offset");
3163
3164 var->data.offset = *offset;
3165 *offset += var->type->atomic_size();
3166
3167 } else {
3168 _mesa_glsl_error(loc, state,
3169 "atomic counters require explicit binding point");
3170 }
3171 } else if (var->data.mode != ir_var_function_in) {
3172 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3173 "function parameters or uniform-qualified "
3174 "global variables");
3175 }
3176 }
3177
3178 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3179 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3180 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3181 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3182 * These extensions and all following extensions that add the 'layout'
3183 * keyword have been modified to require the use of 'in' or 'out'.
3184 *
3185 * The following extension do not allow the deprecated keywords:
3186 *
3187 * GL_AMD_conservative_depth
3188 * GL_ARB_conservative_depth
3189 * GL_ARB_gpu_shader5
3190 * GL_ARB_separate_shader_objects
3191 * GL_ARB_tessellation_shader
3192 * GL_ARB_transform_feedback3
3193 * GL_ARB_uniform_buffer_object
3194 *
3195 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3196 * allow layout with the deprecated keywords.
3197 */
3198 const bool relaxed_layout_qualifier_checking =
3199 state->ARB_fragment_coord_conventions_enable;
3200
3201 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3202 || qual->flags.q.varying;
3203 if (qual->has_layout() && uses_deprecated_qualifier) {
3204 if (relaxed_layout_qualifier_checking) {
3205 _mesa_glsl_warning(loc, state,
3206 "`layout' qualifier may not be used with "
3207 "`attribute' or `varying'");
3208 } else {
3209 _mesa_glsl_error(loc, state,
3210 "`layout' qualifier may not be used with "
3211 "`attribute' or `varying'");
3212 }
3213 }
3214
3215 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3216 * AMD_conservative_depth.
3217 */
3218 int depth_layout_count = qual->flags.q.depth_any
3219 + qual->flags.q.depth_greater
3220 + qual->flags.q.depth_less
3221 + qual->flags.q.depth_unchanged;
3222 if (depth_layout_count > 0
3223 && !state->AMD_conservative_depth_enable
3224 && !state->ARB_conservative_depth_enable) {
3225 _mesa_glsl_error(loc, state,
3226 "extension GL_AMD_conservative_depth or "
3227 "GL_ARB_conservative_depth must be enabled "
3228 "to use depth layout qualifiers");
3229 } else if (depth_layout_count > 0
3230 && strcmp(var->name, "gl_FragDepth") != 0) {
3231 _mesa_glsl_error(loc, state,
3232 "depth layout qualifiers can be applied only to "
3233 "gl_FragDepth");
3234 } else if (depth_layout_count > 1
3235 && strcmp(var->name, "gl_FragDepth") == 0) {
3236 _mesa_glsl_error(loc, state,
3237 "at most one depth layout qualifier can be applied to "
3238 "gl_FragDepth");
3239 }
3240 if (qual->flags.q.depth_any)
3241 var->data.depth_layout = ir_depth_layout_any;
3242 else if (qual->flags.q.depth_greater)
3243 var->data.depth_layout = ir_depth_layout_greater;
3244 else if (qual->flags.q.depth_less)
3245 var->data.depth_layout = ir_depth_layout_less;
3246 else if (qual->flags.q.depth_unchanged)
3247 var->data.depth_layout = ir_depth_layout_unchanged;
3248 else
3249 var->data.depth_layout = ir_depth_layout_none;
3250
3251 if (qual->flags.q.std140 ||
3252 qual->flags.q.std430 ||
3253 qual->flags.q.packed ||
3254 qual->flags.q.shared) {
3255 _mesa_glsl_error(loc, state,
3256 "uniform and shader storage block layout qualifiers "
3257 "std140, std430, packed, and shared can only be "
3258 "applied to uniform or shader storage blocks, not "
3259 "members");
3260 }
3261
3262 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3263 validate_matrix_layout_for_type(state, loc, var->type, var);
3264 }
3265
3266 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3267 * Inputs):
3268 *
3269 * "Fragment shaders also allow the following layout qualifier on in only
3270 * (not with variable declarations)
3271 * layout-qualifier-id
3272 * early_fragment_tests
3273 * [...]"
3274 */
3275 if (qual->flags.q.early_fragment_tests) {
3276 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3277 "valid in fragment shader input layout declaration.");
3278 }
3279 }
3280
3281 static void
3282 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3283 ir_variable *var,
3284 struct _mesa_glsl_parse_state *state,
3285 YYLTYPE *loc,
3286 bool is_parameter)
3287 {
3288 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3289
3290 if (qual->flags.q.invariant) {
3291 if (var->data.used) {
3292 _mesa_glsl_error(loc, state,
3293 "variable `%s' may not be redeclared "
3294 "`invariant' after being used",
3295 var->name);
3296 } else {
3297 var->data.invariant = 1;
3298 }
3299 }
3300
3301 if (qual->flags.q.precise) {
3302 if (var->data.used) {
3303 _mesa_glsl_error(loc, state,
3304 "variable `%s' may not be redeclared "
3305 "`precise' after being used",
3306 var->name);
3307 } else {
3308 var->data.precise = 1;
3309 }
3310 }
3311
3312 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3313 _mesa_glsl_error(loc, state,
3314 "`subroutine' may only be applied to uniforms, "
3315 "subroutine type declarations, or function definitions");
3316 }
3317
3318 if (qual->flags.q.constant || qual->flags.q.attribute
3319 || qual->flags.q.uniform
3320 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3321 var->data.read_only = 1;
3322
3323 if (qual->flags.q.centroid)
3324 var->data.centroid = 1;
3325
3326 if (qual->flags.q.sample)
3327 var->data.sample = 1;
3328
3329 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3330 if (state->es_shader) {
3331 var->data.precision =
3332 select_gles_precision(qual->precision, var->type, state, loc);
3333 }
3334
3335 if (qual->flags.q.patch)
3336 var->data.patch = 1;
3337
3338 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3339 var->type = glsl_type::error_type;
3340 _mesa_glsl_error(loc, state,
3341 "`attribute' variables may not be declared in the "
3342 "%s shader",
3343 _mesa_shader_stage_to_string(state->stage));
3344 }
3345
3346 /* Disallow layout qualifiers which may only appear on layout declarations. */
3347 if (qual->flags.q.prim_type) {
3348 _mesa_glsl_error(loc, state,
3349 "Primitive type may only be specified on GS input or output "
3350 "layout declaration, not on variables.");
3351 }
3352
3353 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3354 *
3355 * "However, the const qualifier cannot be used with out or inout."
3356 *
3357 * The same section of the GLSL 4.40 spec further clarifies this saying:
3358 *
3359 * "The const qualifier cannot be used with out or inout, or a
3360 * compile-time error results."
3361 */
3362 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3363 _mesa_glsl_error(loc, state,
3364 "`const' may not be applied to `out' or `inout' "
3365 "function parameters");
3366 }
3367
3368 /* If there is no qualifier that changes the mode of the variable, leave
3369 * the setting alone.
3370 */
3371 assert(var->data.mode != ir_var_temporary);
3372 if (qual->flags.q.in && qual->flags.q.out)
3373 var->data.mode = ir_var_function_inout;
3374 else if (qual->flags.q.in)
3375 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3376 else if (qual->flags.q.attribute
3377 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3378 var->data.mode = ir_var_shader_in;
3379 else if (qual->flags.q.out)
3380 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3381 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3382 var->data.mode = ir_var_shader_out;
3383 else if (qual->flags.q.uniform)
3384 var->data.mode = ir_var_uniform;
3385 else if (qual->flags.q.buffer)
3386 var->data.mode = ir_var_shader_storage;
3387 else if (qual->flags.q.shared_storage)
3388 var->data.mode = ir_var_shader_shared;
3389
3390 if (!is_parameter && is_varying_var(var, state->stage)) {
3391 /* User-defined ins/outs are not permitted in compute shaders. */
3392 if (state->stage == MESA_SHADER_COMPUTE) {
3393 _mesa_glsl_error(loc, state,
3394 "user-defined input and output variables are not "
3395 "permitted in compute shaders");
3396 }
3397
3398 /* This variable is being used to link data between shader stages (in
3399 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3400 * that is allowed for such purposes.
3401 *
3402 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3403 *
3404 * "The varying qualifier can be used only with the data types
3405 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3406 * these."
3407 *
3408 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3409 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3410 *
3411 * "Fragment inputs can only be signed and unsigned integers and
3412 * integer vectors, float, floating-point vectors, matrices, or
3413 * arrays of these. Structures cannot be input.
3414 *
3415 * Similar text exists in the section on vertex shader outputs.
3416 *
3417 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3418 * 3.00 spec allows structs as well. Varying structs are also allowed
3419 * in GLSL 1.50.
3420 */
3421 switch (var->type->get_scalar_type()->base_type) {
3422 case GLSL_TYPE_FLOAT:
3423 /* Ok in all GLSL versions */
3424 break;
3425 case GLSL_TYPE_UINT:
3426 case GLSL_TYPE_INT:
3427 if (state->is_version(130, 300))
3428 break;
3429 _mesa_glsl_error(loc, state,
3430 "varying variables must be of base type float in %s",
3431 state->get_version_string());
3432 break;
3433 case GLSL_TYPE_STRUCT:
3434 if (state->is_version(150, 300))
3435 break;
3436 _mesa_glsl_error(loc, state,
3437 "varying variables may not be of type struct");
3438 break;
3439 case GLSL_TYPE_DOUBLE:
3440 break;
3441 default:
3442 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3443 break;
3444 }
3445 }
3446
3447 if (state->all_invariant && (state->current_function == NULL)) {
3448 switch (state->stage) {
3449 case MESA_SHADER_VERTEX:
3450 if (var->data.mode == ir_var_shader_out)
3451 var->data.invariant = true;
3452 break;
3453 case MESA_SHADER_TESS_CTRL:
3454 case MESA_SHADER_TESS_EVAL:
3455 case MESA_SHADER_GEOMETRY:
3456 if ((var->data.mode == ir_var_shader_in)
3457 || (var->data.mode == ir_var_shader_out))
3458 var->data.invariant = true;
3459 break;
3460 case MESA_SHADER_FRAGMENT:
3461 if (var->data.mode == ir_var_shader_in)
3462 var->data.invariant = true;
3463 break;
3464 case MESA_SHADER_COMPUTE:
3465 /* Invariance isn't meaningful in compute shaders. */
3466 break;
3467 }
3468 }
3469
3470 var->data.interpolation =
3471 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3472 state, loc);
3473
3474 /* Does the declaration use the deprecated 'attribute' or 'varying'
3475 * keywords?
3476 */
3477 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3478 || qual->flags.q.varying;
3479
3480
3481 /* Validate auxiliary storage qualifiers */
3482
3483 /* From section 4.3.4 of the GLSL 1.30 spec:
3484 * "It is an error to use centroid in in a vertex shader."
3485 *
3486 * From section 4.3.4 of the GLSL ES 3.00 spec:
3487 * "It is an error to use centroid in or interpolation qualifiers in
3488 * a vertex shader input."
3489 */
3490
3491 /* Section 4.3.6 of the GLSL 1.30 specification states:
3492 * "It is an error to use centroid out in a fragment shader."
3493 *
3494 * The GL_ARB_shading_language_420pack extension specification states:
3495 * "It is an error to use auxiliary storage qualifiers or interpolation
3496 * qualifiers on an output in a fragment shader."
3497 */
3498 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3499 _mesa_glsl_error(loc, state,
3500 "sample qualifier may only be used on `in` or `out` "
3501 "variables between shader stages");
3502 }
3503 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3504 _mesa_glsl_error(loc, state,
3505 "centroid qualifier may only be used with `in', "
3506 "`out' or `varying' variables between shader stages");
3507 }
3508
3509 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3510 _mesa_glsl_error(loc, state,
3511 "the shared storage qualifiers can only be used with "
3512 "compute shaders");
3513 }
3514
3515 apply_image_qualifier_to_variable(qual, var, state, loc);
3516 }
3517
3518 /**
3519 * Get the variable that is being redeclared by this declaration
3520 *
3521 * Semantic checks to verify the validity of the redeclaration are also
3522 * performed. If semantic checks fail, compilation error will be emitted via
3523 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3524 *
3525 * \returns
3526 * A pointer to an existing variable in the current scope if the declaration
3527 * is a redeclaration, \c NULL otherwise.
3528 */
3529 static ir_variable *
3530 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3531 struct _mesa_glsl_parse_state *state,
3532 bool allow_all_redeclarations)
3533 {
3534 /* Check if this declaration is actually a re-declaration, either to
3535 * resize an array or add qualifiers to an existing variable.
3536 *
3537 * This is allowed for variables in the current scope, or when at
3538 * global scope (for built-ins in the implicit outer scope).
3539 */
3540 ir_variable *earlier = state->symbols->get_variable(var->name);
3541 if (earlier == NULL ||
3542 (state->current_function != NULL &&
3543 !state->symbols->name_declared_this_scope(var->name))) {
3544 return NULL;
3545 }
3546
3547
3548 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3549 *
3550 * "It is legal to declare an array without a size and then
3551 * later re-declare the same name as an array of the same
3552 * type and specify a size."
3553 */
3554 if (earlier->type->is_unsized_array() && var->type->is_array()
3555 && (var->type->fields.array == earlier->type->fields.array)) {
3556 /* FINISHME: This doesn't match the qualifiers on the two
3557 * FINISHME: declarations. It's not 100% clear whether this is
3558 * FINISHME: required or not.
3559 */
3560
3561 const unsigned size = unsigned(var->type->array_size());
3562 check_builtin_array_max_size(var->name, size, loc, state);
3563 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3564 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3565 "previous access",
3566 earlier->data.max_array_access);
3567 }
3568
3569 earlier->type = var->type;
3570 delete var;
3571 var = NULL;
3572 } else if ((state->ARB_fragment_coord_conventions_enable ||
3573 state->is_version(150, 0))
3574 && strcmp(var->name, "gl_FragCoord") == 0
3575 && earlier->type == var->type
3576 && var->data.mode == ir_var_shader_in) {
3577 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3578 * qualifiers.
3579 */
3580 earlier->data.origin_upper_left = var->data.origin_upper_left;
3581 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3582
3583 /* According to section 4.3.7 of the GLSL 1.30 spec,
3584 * the following built-in varaibles can be redeclared with an
3585 * interpolation qualifier:
3586 * * gl_FrontColor
3587 * * gl_BackColor
3588 * * gl_FrontSecondaryColor
3589 * * gl_BackSecondaryColor
3590 * * gl_Color
3591 * * gl_SecondaryColor
3592 */
3593 } else if (state->is_version(130, 0)
3594 && (strcmp(var->name, "gl_FrontColor") == 0
3595 || strcmp(var->name, "gl_BackColor") == 0
3596 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3597 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3598 || strcmp(var->name, "gl_Color") == 0
3599 || strcmp(var->name, "gl_SecondaryColor") == 0)
3600 && earlier->type == var->type
3601 && earlier->data.mode == var->data.mode) {
3602 earlier->data.interpolation = var->data.interpolation;
3603
3604 /* Layout qualifiers for gl_FragDepth. */
3605 } else if ((state->AMD_conservative_depth_enable ||
3606 state->ARB_conservative_depth_enable)
3607 && strcmp(var->name, "gl_FragDepth") == 0
3608 && earlier->type == var->type
3609 && earlier->data.mode == var->data.mode) {
3610
3611 /** From the AMD_conservative_depth spec:
3612 * Within any shader, the first redeclarations of gl_FragDepth
3613 * must appear before any use of gl_FragDepth.
3614 */
3615 if (earlier->data.used) {
3616 _mesa_glsl_error(&loc, state,
3617 "the first redeclaration of gl_FragDepth "
3618 "must appear before any use of gl_FragDepth");
3619 }
3620
3621 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3622 if (earlier->data.depth_layout != ir_depth_layout_none
3623 && earlier->data.depth_layout != var->data.depth_layout) {
3624 _mesa_glsl_error(&loc, state,
3625 "gl_FragDepth: depth layout is declared here "
3626 "as '%s, but it was previously declared as "
3627 "'%s'",
3628 depth_layout_string(var->data.depth_layout),
3629 depth_layout_string(earlier->data.depth_layout));
3630 }
3631
3632 earlier->data.depth_layout = var->data.depth_layout;
3633
3634 } else if (allow_all_redeclarations) {
3635 if (earlier->data.mode != var->data.mode) {
3636 _mesa_glsl_error(&loc, state,
3637 "redeclaration of `%s' with incorrect qualifiers",
3638 var->name);
3639 } else if (earlier->type != var->type) {
3640 _mesa_glsl_error(&loc, state,
3641 "redeclaration of `%s' has incorrect type",
3642 var->name);
3643 }
3644 } else {
3645 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3646 }
3647
3648 return earlier;
3649 }
3650
3651 /**
3652 * Generate the IR for an initializer in a variable declaration
3653 */
3654 ir_rvalue *
3655 process_initializer(ir_variable *var, ast_declaration *decl,
3656 ast_fully_specified_type *type,
3657 exec_list *initializer_instructions,
3658 struct _mesa_glsl_parse_state *state)
3659 {
3660 ir_rvalue *result = NULL;
3661
3662 YYLTYPE initializer_loc = decl->initializer->get_location();
3663
3664 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3665 *
3666 * "All uniform variables are read-only and are initialized either
3667 * directly by an application via API commands, or indirectly by
3668 * OpenGL."
3669 */
3670 if (var->data.mode == ir_var_uniform) {
3671 state->check_version(120, 0, &initializer_loc,
3672 "cannot initialize uniform %s",
3673 var->name);
3674 }
3675
3676 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3677 *
3678 * "Buffer variables cannot have initializers."
3679 */
3680 if (var->data.mode == ir_var_shader_storage) {
3681 _mesa_glsl_error(&initializer_loc, state,
3682 "cannot initialize buffer variable %s",
3683 var->name);
3684 }
3685
3686 /* From section 4.1.7 of the GLSL 4.40 spec:
3687 *
3688 * "Opaque variables [...] are initialized only through the
3689 * OpenGL API; they cannot be declared with an initializer in a
3690 * shader."
3691 */
3692 if (var->type->contains_opaque()) {
3693 _mesa_glsl_error(&initializer_loc, state,
3694 "cannot initialize opaque variable %s",
3695 var->name);
3696 }
3697
3698 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3699 _mesa_glsl_error(&initializer_loc, state,
3700 "cannot initialize %s shader input / %s %s",
3701 _mesa_shader_stage_to_string(state->stage),
3702 (state->stage == MESA_SHADER_VERTEX)
3703 ? "attribute" : "varying",
3704 var->name);
3705 }
3706
3707 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3708 _mesa_glsl_error(&initializer_loc, state,
3709 "cannot initialize %s shader output %s",
3710 _mesa_shader_stage_to_string(state->stage),
3711 var->name);
3712 }
3713
3714 /* If the initializer is an ast_aggregate_initializer, recursively store
3715 * type information from the LHS into it, so that its hir() function can do
3716 * type checking.
3717 */
3718 if (decl->initializer->oper == ast_aggregate)
3719 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3720
3721 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3722 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3723
3724 /* Calculate the constant value if this is a const or uniform
3725 * declaration.
3726 *
3727 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3728 *
3729 * "Declarations of globals without a storage qualifier, or with
3730 * just the const qualifier, may include initializers, in which case
3731 * they will be initialized before the first line of main() is
3732 * executed. Such initializers must be a constant expression."
3733 *
3734 * The same section of the GLSL ES 3.00.4 spec has similar language.
3735 */
3736 if (type->qualifier.flags.q.constant
3737 || type->qualifier.flags.q.uniform
3738 || (state->es_shader && state->current_function == NULL)) {
3739 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3740 lhs, rhs, true);
3741 if (new_rhs != NULL) {
3742 rhs = new_rhs;
3743
3744 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3745 * says:
3746 *
3747 * "A constant expression is one of
3748 *
3749 * ...
3750 *
3751 * - an expression formed by an operator on operands that are
3752 * all constant expressions, including getting an element of
3753 * a constant array, or a field of a constant structure, or
3754 * components of a constant vector. However, the sequence
3755 * operator ( , ) and the assignment operators ( =, +=, ...)
3756 * are not included in the operators that can create a
3757 * constant expression."
3758 *
3759 * Section 12.43 (Sequence operator and constant expressions) says:
3760 *
3761 * "Should the following construct be allowed?
3762 *
3763 * float a[2,3];
3764 *
3765 * The expression within the brackets uses the sequence operator
3766 * (',') and returns the integer 3 so the construct is declaring
3767 * a single-dimensional array of size 3. In some languages, the
3768 * construct declares a two-dimensional array. It would be
3769 * preferable to make this construct illegal to avoid confusion.
3770 *
3771 * One possibility is to change the definition of the sequence
3772 * operator so that it does not return a constant-expression and
3773 * hence cannot be used to declare an array size.
3774 *
3775 * RESOLUTION: The result of a sequence operator is not a
3776 * constant-expression."
3777 *
3778 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3779 * contains language almost identical to the section 4.3.3 in the
3780 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3781 * versions.
3782 */
3783 ir_constant *constant_value = rhs->constant_expression_value();
3784 if (!constant_value ||
3785 (state->is_version(430, 300) &&
3786 decl->initializer->has_sequence_subexpression())) {
3787 const char *const variable_mode =
3788 (type->qualifier.flags.q.constant)
3789 ? "const"
3790 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3791
3792 /* If ARB_shading_language_420pack is enabled, initializers of
3793 * const-qualified local variables do not have to be constant
3794 * expressions. Const-qualified global variables must still be
3795 * initialized with constant expressions.
3796 */
3797 if (!state->has_420pack()
3798 || state->current_function == NULL) {
3799 _mesa_glsl_error(& initializer_loc, state,
3800 "initializer of %s variable `%s' must be a "
3801 "constant expression",
3802 variable_mode,
3803 decl->identifier);
3804 if (var->type->is_numeric()) {
3805 /* Reduce cascading errors. */
3806 var->constant_value = type->qualifier.flags.q.constant
3807 ? ir_constant::zero(state, var->type) : NULL;
3808 }
3809 }
3810 } else {
3811 rhs = constant_value;
3812 var->constant_value = type->qualifier.flags.q.constant
3813 ? constant_value : NULL;
3814 }
3815 } else {
3816 if (var->type->is_numeric()) {
3817 /* Reduce cascading errors. */
3818 var->constant_value = type->qualifier.flags.q.constant
3819 ? ir_constant::zero(state, var->type) : NULL;
3820 }
3821 }
3822 }
3823
3824 if (rhs && !rhs->type->is_error()) {
3825 bool temp = var->data.read_only;
3826 if (type->qualifier.flags.q.constant)
3827 var->data.read_only = false;
3828
3829 /* Never emit code to initialize a uniform.
3830 */
3831 const glsl_type *initializer_type;
3832 if (!type->qualifier.flags.q.uniform) {
3833 do_assignment(initializer_instructions, state,
3834 NULL,
3835 lhs, rhs,
3836 &result, true,
3837 true,
3838 type->get_location());
3839 initializer_type = result->type;
3840 } else
3841 initializer_type = rhs->type;
3842
3843 var->constant_initializer = rhs->constant_expression_value();
3844 var->data.has_initializer = true;
3845
3846 /* If the declared variable is an unsized array, it must inherrit
3847 * its full type from the initializer. A declaration such as
3848 *
3849 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3850 *
3851 * becomes
3852 *
3853 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3854 *
3855 * The assignment generated in the if-statement (below) will also
3856 * automatically handle this case for non-uniforms.
3857 *
3858 * If the declared variable is not an array, the types must
3859 * already match exactly. As a result, the type assignment
3860 * here can be done unconditionally. For non-uniforms the call
3861 * to do_assignment can change the type of the initializer (via
3862 * the implicit conversion rules). For uniforms the initializer
3863 * must be a constant expression, and the type of that expression
3864 * was validated above.
3865 */
3866 var->type = initializer_type;
3867
3868 var->data.read_only = temp;
3869 }
3870
3871 return result;
3872 }
3873
3874 static void
3875 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3876 YYLTYPE loc, ir_variable *var,
3877 unsigned num_vertices,
3878 unsigned *size,
3879 const char *var_category)
3880 {
3881 if (var->type->is_unsized_array()) {
3882 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3883 *
3884 * All geometry shader input unsized array declarations will be
3885 * sized by an earlier input layout qualifier, when present, as per
3886 * the following table.
3887 *
3888 * Followed by a table mapping each allowed input layout qualifier to
3889 * the corresponding input length.
3890 *
3891 * Similarly for tessellation control shader outputs.
3892 */
3893 if (num_vertices != 0)
3894 var->type = glsl_type::get_array_instance(var->type->fields.array,
3895 num_vertices);
3896 } else {
3897 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3898 * includes the following examples of compile-time errors:
3899 *
3900 * // code sequence within one shader...
3901 * in vec4 Color1[]; // size unknown
3902 * ...Color1.length()...// illegal, length() unknown
3903 * in vec4 Color2[2]; // size is 2
3904 * ...Color1.length()...// illegal, Color1 still has no size
3905 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3906 * layout(lines) in; // legal, input size is 2, matching
3907 * in vec4 Color4[3]; // illegal, contradicts layout
3908 * ...
3909 *
3910 * To detect the case illustrated by Color3, we verify that the size of
3911 * an explicitly-sized array matches the size of any previously declared
3912 * explicitly-sized array. To detect the case illustrated by Color4, we
3913 * verify that the size of an explicitly-sized array is consistent with
3914 * any previously declared input layout.
3915 */
3916 if (num_vertices != 0 && var->type->length != num_vertices) {
3917 _mesa_glsl_error(&loc, state,
3918 "%s size contradicts previously declared layout "
3919 "(size is %u, but layout requires a size of %u)",
3920 var_category, var->type->length, num_vertices);
3921 } else if (*size != 0 && var->type->length != *size) {
3922 _mesa_glsl_error(&loc, state,
3923 "%s sizes are inconsistent (size is %u, but a "
3924 "previous declaration has size %u)",
3925 var_category, var->type->length, *size);
3926 } else {
3927 *size = var->type->length;
3928 }
3929 }
3930 }
3931
3932 static void
3933 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3934 YYLTYPE loc, ir_variable *var)
3935 {
3936 unsigned num_vertices = 0;
3937
3938 if (state->tcs_output_vertices_specified) {
3939 if (!state->out_qualifier->vertices->
3940 process_qualifier_constant(state, "vertices",
3941 &num_vertices, false)) {
3942 return;
3943 }
3944
3945 if (num_vertices > state->Const.MaxPatchVertices) {
3946 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3947 "GL_MAX_PATCH_VERTICES", num_vertices);
3948 return;
3949 }
3950 }
3951
3952 if (!var->type->is_array() && !var->data.patch) {
3953 _mesa_glsl_error(&loc, state,
3954 "tessellation control shader outputs must be arrays");
3955
3956 /* To avoid cascading failures, short circuit the checks below. */
3957 return;
3958 }
3959
3960 if (var->data.patch)
3961 return;
3962
3963 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3964 &state->tcs_output_size,
3965 "tessellation control shader output");
3966 }
3967
3968 /**
3969 * Do additional processing necessary for tessellation control/evaluation shader
3970 * input declarations. This covers both interface block arrays and bare input
3971 * variables.
3972 */
3973 static void
3974 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3975 YYLTYPE loc, ir_variable *var)
3976 {
3977 if (!var->type->is_array() && !var->data.patch) {
3978 _mesa_glsl_error(&loc, state,
3979 "per-vertex tessellation shader inputs must be arrays");
3980 /* Avoid cascading failures. */
3981 return;
3982 }
3983
3984 if (var->data.patch)
3985 return;
3986
3987 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3988 if (var->type->is_unsized_array()) {
3989 var->type = glsl_type::get_array_instance(var->type->fields.array,
3990 state->Const.MaxPatchVertices);
3991 }
3992 }
3993
3994
3995 /**
3996 * Do additional processing necessary for geometry shader input declarations
3997 * (this covers both interface blocks arrays and bare input variables).
3998 */
3999 static void
4000 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4001 YYLTYPE loc, ir_variable *var)
4002 {
4003 unsigned num_vertices = 0;
4004
4005 if (state->gs_input_prim_type_specified) {
4006 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4007 }
4008
4009 /* Geometry shader input variables must be arrays. Caller should have
4010 * reported an error for this.
4011 */
4012 if (!var->type->is_array()) {
4013 assert(state->error);
4014
4015 /* To avoid cascading failures, short circuit the checks below. */
4016 return;
4017 }
4018
4019 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4020 &state->gs_input_size,
4021 "geometry shader input");
4022 }
4023
4024 void
4025 validate_identifier(const char *identifier, YYLTYPE loc,
4026 struct _mesa_glsl_parse_state *state)
4027 {
4028 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4029 *
4030 * "Identifiers starting with "gl_" are reserved for use by
4031 * OpenGL, and may not be declared in a shader as either a
4032 * variable or a function."
4033 */
4034 if (is_gl_identifier(identifier)) {
4035 _mesa_glsl_error(&loc, state,
4036 "identifier `%s' uses reserved `gl_' prefix",
4037 identifier);
4038 } else if (strstr(identifier, "__")) {
4039 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4040 * spec:
4041 *
4042 * "In addition, all identifiers containing two
4043 * consecutive underscores (__) are reserved as
4044 * possible future keywords."
4045 *
4046 * The intention is that names containing __ are reserved for internal
4047 * use by the implementation, and names prefixed with GL_ are reserved
4048 * for use by Khronos. Names simply containing __ are dangerous to use,
4049 * but should be allowed.
4050 *
4051 * A future version of the GLSL specification will clarify this.
4052 */
4053 _mesa_glsl_warning(&loc, state,
4054 "identifier `%s' uses reserved `__' string",
4055 identifier);
4056 }
4057 }
4058
4059 ir_rvalue *
4060 ast_declarator_list::hir(exec_list *instructions,
4061 struct _mesa_glsl_parse_state *state)
4062 {
4063 void *ctx = state;
4064 const struct glsl_type *decl_type;
4065 const char *type_name = NULL;
4066 ir_rvalue *result = NULL;
4067 YYLTYPE loc = this->get_location();
4068
4069 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4070 *
4071 * "To ensure that a particular output variable is invariant, it is
4072 * necessary to use the invariant qualifier. It can either be used to
4073 * qualify a previously declared variable as being invariant
4074 *
4075 * invariant gl_Position; // make existing gl_Position be invariant"
4076 *
4077 * In these cases the parser will set the 'invariant' flag in the declarator
4078 * list, and the type will be NULL.
4079 */
4080 if (this->invariant) {
4081 assert(this->type == NULL);
4082
4083 if (state->current_function != NULL) {
4084 _mesa_glsl_error(& loc, state,
4085 "all uses of `invariant' keyword must be at global "
4086 "scope");
4087 }
4088
4089 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4090 assert(decl->array_specifier == NULL);
4091 assert(decl->initializer == NULL);
4092
4093 ir_variable *const earlier =
4094 state->symbols->get_variable(decl->identifier);
4095 if (earlier == NULL) {
4096 _mesa_glsl_error(& loc, state,
4097 "undeclared variable `%s' cannot be marked "
4098 "invariant", decl->identifier);
4099 } else if (!is_varying_var(earlier, state->stage)) {
4100 _mesa_glsl_error(&loc, state,
4101 "`%s' cannot be marked invariant; interfaces between "
4102 "shader stages only.", decl->identifier);
4103 } else if (earlier->data.used) {
4104 _mesa_glsl_error(& loc, state,
4105 "variable `%s' may not be redeclared "
4106 "`invariant' after being used",
4107 earlier->name);
4108 } else {
4109 earlier->data.invariant = true;
4110 }
4111 }
4112
4113 /* Invariant redeclarations do not have r-values.
4114 */
4115 return NULL;
4116 }
4117
4118 if (this->precise) {
4119 assert(this->type == NULL);
4120
4121 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4122 assert(decl->array_specifier == NULL);
4123 assert(decl->initializer == NULL);
4124
4125 ir_variable *const earlier =
4126 state->symbols->get_variable(decl->identifier);
4127 if (earlier == NULL) {
4128 _mesa_glsl_error(& loc, state,
4129 "undeclared variable `%s' cannot be marked "
4130 "precise", decl->identifier);
4131 } else if (state->current_function != NULL &&
4132 !state->symbols->name_declared_this_scope(decl->identifier)) {
4133 /* Note: we have to check if we're in a function, since
4134 * builtins are treated as having come from another scope.
4135 */
4136 _mesa_glsl_error(& loc, state,
4137 "variable `%s' from an outer scope may not be "
4138 "redeclared `precise' in this scope",
4139 earlier->name);
4140 } else if (earlier->data.used) {
4141 _mesa_glsl_error(& loc, state,
4142 "variable `%s' may not be redeclared "
4143 "`precise' after being used",
4144 earlier->name);
4145 } else {
4146 earlier->data.precise = true;
4147 }
4148 }
4149
4150 /* Precise redeclarations do not have r-values either. */
4151 return NULL;
4152 }
4153
4154 assert(this->type != NULL);
4155 assert(!this->invariant);
4156 assert(!this->precise);
4157
4158 /* The type specifier may contain a structure definition. Process that
4159 * before any of the variable declarations.
4160 */
4161 (void) this->type->specifier->hir(instructions, state);
4162
4163 decl_type = this->type->glsl_type(& type_name, state);
4164
4165 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4166 * "Buffer variables may only be declared inside interface blocks
4167 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4168 * shader storage blocks. It is a compile-time error to declare buffer
4169 * variables at global scope (outside a block)."
4170 */
4171 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4172 _mesa_glsl_error(&loc, state,
4173 "buffer variables cannot be declared outside "
4174 "interface blocks");
4175 }
4176
4177 /* An offset-qualified atomic counter declaration sets the default
4178 * offset for the next declaration within the same atomic counter
4179 * buffer.
4180 */
4181 if (decl_type && decl_type->contains_atomic()) {
4182 if (type->qualifier.flags.q.explicit_binding &&
4183 type->qualifier.flags.q.explicit_offset) {
4184 unsigned qual_binding;
4185 unsigned qual_offset;
4186 if (process_qualifier_constant(state, &loc, "binding",
4187 type->qualifier.binding,
4188 &qual_binding)
4189 && process_qualifier_constant(state, &loc, "offset",
4190 type->qualifier.offset,
4191 &qual_offset)) {
4192 state->atomic_counter_offsets[qual_binding] = qual_offset;
4193 }
4194 }
4195 }
4196
4197 if (this->declarations.is_empty()) {
4198 /* If there is no structure involved in the program text, there are two
4199 * possible scenarios:
4200 *
4201 * - The program text contained something like 'vec4;'. This is an
4202 * empty declaration. It is valid but weird. Emit a warning.
4203 *
4204 * - The program text contained something like 'S;' and 'S' is not the
4205 * name of a known structure type. This is both invalid and weird.
4206 * Emit an error.
4207 *
4208 * - The program text contained something like 'mediump float;'
4209 * when the programmer probably meant 'precision mediump
4210 * float;' Emit a warning with a description of what they
4211 * probably meant to do.
4212 *
4213 * Note that if decl_type is NULL and there is a structure involved,
4214 * there must have been some sort of error with the structure. In this
4215 * case we assume that an error was already generated on this line of
4216 * code for the structure. There is no need to generate an additional,
4217 * confusing error.
4218 */
4219 assert(this->type->specifier->structure == NULL || decl_type != NULL
4220 || state->error);
4221
4222 if (decl_type == NULL) {
4223 _mesa_glsl_error(&loc, state,
4224 "invalid type `%s' in empty declaration",
4225 type_name);
4226 } else {
4227 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4228 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4229 * spec:
4230 *
4231 * "... any declaration that leaves the size undefined is
4232 * disallowed as this would add complexity and there are no
4233 * use-cases."
4234 */
4235 if (state->es_shader && decl_type->is_unsized_array()) {
4236 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4237 "or implicitly defined");
4238 }
4239
4240 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4241 *
4242 * "The combinations of types and qualifiers that cause
4243 * compile-time or link-time errors are the same whether or not
4244 * the declaration is empty."
4245 */
4246 validate_array_dimensions(decl_type, state, &loc);
4247 }
4248
4249 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4250 /* Empty atomic counter declarations are allowed and useful
4251 * to set the default offset qualifier.
4252 */
4253 return NULL;
4254 } else if (this->type->qualifier.precision != ast_precision_none) {
4255 if (this->type->specifier->structure != NULL) {
4256 _mesa_glsl_error(&loc, state,
4257 "precision qualifiers can't be applied "
4258 "to structures");
4259 } else {
4260 static const char *const precision_names[] = {
4261 "highp",
4262 "highp",
4263 "mediump",
4264 "lowp"
4265 };
4266
4267 _mesa_glsl_warning(&loc, state,
4268 "empty declaration with precision "
4269 "qualifier, to set the default precision, "
4270 "use `precision %s %s;'",
4271 precision_names[this->type->
4272 qualifier.precision],
4273 type_name);
4274 }
4275 } else if (this->type->specifier->structure == NULL) {
4276 _mesa_glsl_warning(&loc, state, "empty declaration");
4277 }
4278 }
4279 }
4280
4281 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4282 const struct glsl_type *var_type;
4283 ir_variable *var;
4284 const char *identifier = decl->identifier;
4285 /* FINISHME: Emit a warning if a variable declaration shadows a
4286 * FINISHME: declaration at a higher scope.
4287 */
4288
4289 if ((decl_type == NULL) || decl_type->is_void()) {
4290 if (type_name != NULL) {
4291 _mesa_glsl_error(& loc, state,
4292 "invalid type `%s' in declaration of `%s'",
4293 type_name, decl->identifier);
4294 } else {
4295 _mesa_glsl_error(& loc, state,
4296 "invalid type in declaration of `%s'",
4297 decl->identifier);
4298 }
4299 continue;
4300 }
4301
4302 if (this->type->qualifier.flags.q.subroutine) {
4303 const glsl_type *t;
4304 const char *name;
4305
4306 t = state->symbols->get_type(this->type->specifier->type_name);
4307 if (!t)
4308 _mesa_glsl_error(& loc, state,
4309 "invalid type in declaration of `%s'",
4310 decl->identifier);
4311 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4312
4313 identifier = name;
4314
4315 }
4316 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4317 state);
4318
4319 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4320
4321 /* The 'varying in' and 'varying out' qualifiers can only be used with
4322 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4323 * yet.
4324 */
4325 if (this->type->qualifier.flags.q.varying) {
4326 if (this->type->qualifier.flags.q.in) {
4327 _mesa_glsl_error(& loc, state,
4328 "`varying in' qualifier in declaration of "
4329 "`%s' only valid for geometry shaders using "
4330 "ARB_geometry_shader4 or EXT_geometry_shader4",
4331 decl->identifier);
4332 } else if (this->type->qualifier.flags.q.out) {
4333 _mesa_glsl_error(& loc, state,
4334 "`varying out' qualifier in declaration of "
4335 "`%s' only valid for geometry shaders using "
4336 "ARB_geometry_shader4 or EXT_geometry_shader4",
4337 decl->identifier);
4338 }
4339 }
4340
4341 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4342 *
4343 * "Global variables can only use the qualifiers const,
4344 * attribute, uniform, or varying. Only one may be
4345 * specified.
4346 *
4347 * Local variables can only use the qualifier const."
4348 *
4349 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4350 * any extension that adds the 'layout' keyword.
4351 */
4352 if (!state->is_version(130, 300)
4353 && !state->has_explicit_attrib_location()
4354 && !state->has_separate_shader_objects()
4355 && !state->ARB_fragment_coord_conventions_enable) {
4356 if (this->type->qualifier.flags.q.out) {
4357 _mesa_glsl_error(& loc, state,
4358 "`out' qualifier in declaration of `%s' "
4359 "only valid for function parameters in %s",
4360 decl->identifier, state->get_version_string());
4361 }
4362 if (this->type->qualifier.flags.q.in) {
4363 _mesa_glsl_error(& loc, state,
4364 "`in' qualifier in declaration of `%s' "
4365 "only valid for function parameters in %s",
4366 decl->identifier, state->get_version_string());
4367 }
4368 /* FINISHME: Test for other invalid qualifiers. */
4369 }
4370
4371 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4372 & loc, false);
4373 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4374 &loc);
4375
4376 if (this->type->qualifier.flags.q.invariant) {
4377 if (!is_varying_var(var, state->stage)) {
4378 _mesa_glsl_error(&loc, state,
4379 "`%s' cannot be marked invariant; interfaces between "
4380 "shader stages only", var->name);
4381 }
4382 }
4383
4384 if (state->current_function != NULL) {
4385 const char *mode = NULL;
4386 const char *extra = "";
4387
4388 /* There is no need to check for 'inout' here because the parser will
4389 * only allow that in function parameter lists.
4390 */
4391 if (this->type->qualifier.flags.q.attribute) {
4392 mode = "attribute";
4393 } else if (this->type->qualifier.flags.q.subroutine) {
4394 mode = "subroutine uniform";
4395 } else if (this->type->qualifier.flags.q.uniform) {
4396 mode = "uniform";
4397 } else if (this->type->qualifier.flags.q.varying) {
4398 mode = "varying";
4399 } else if (this->type->qualifier.flags.q.in) {
4400 mode = "in";
4401 extra = " or in function parameter list";
4402 } else if (this->type->qualifier.flags.q.out) {
4403 mode = "out";
4404 extra = " or in function parameter list";
4405 }
4406
4407 if (mode) {
4408 _mesa_glsl_error(& loc, state,
4409 "%s variable `%s' must be declared at "
4410 "global scope%s",
4411 mode, var->name, extra);
4412 }
4413 } else if (var->data.mode == ir_var_shader_in) {
4414 var->data.read_only = true;
4415
4416 if (state->stage == MESA_SHADER_VERTEX) {
4417 bool error_emitted = false;
4418
4419 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4420 *
4421 * "Vertex shader inputs can only be float, floating-point
4422 * vectors, matrices, signed and unsigned integers and integer
4423 * vectors. Vertex shader inputs can also form arrays of these
4424 * types, but not structures."
4425 *
4426 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4427 *
4428 * "Vertex shader inputs can only be float, floating-point
4429 * vectors, matrices, signed and unsigned integers and integer
4430 * vectors. They cannot be arrays or structures."
4431 *
4432 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4433 *
4434 * "The attribute qualifier can be used only with float,
4435 * floating-point vectors, and matrices. Attribute variables
4436 * cannot be declared as arrays or structures."
4437 *
4438 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4439 *
4440 * "Vertex shader inputs can only be float, floating-point
4441 * vectors, matrices, signed and unsigned integers and integer
4442 * vectors. Vertex shader inputs cannot be arrays or
4443 * structures."
4444 */
4445 const glsl_type *check_type = var->type->without_array();
4446
4447 switch (check_type->base_type) {
4448 case GLSL_TYPE_FLOAT:
4449 break;
4450 case GLSL_TYPE_UINT:
4451 case GLSL_TYPE_INT:
4452 if (state->is_version(120, 300))
4453 break;
4454 case GLSL_TYPE_DOUBLE:
4455 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4456 break;
4457 /* FALLTHROUGH */
4458 default:
4459 _mesa_glsl_error(& loc, state,
4460 "vertex shader input / attribute cannot have "
4461 "type %s`%s'",
4462 var->type->is_array() ? "array of " : "",
4463 check_type->name);
4464 error_emitted = true;
4465 }
4466
4467 if (!error_emitted && var->type->is_array() &&
4468 !state->check_version(150, 0, &loc,
4469 "vertex shader input / attribute "
4470 "cannot have array type")) {
4471 error_emitted = true;
4472 }
4473 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4474 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4475 *
4476 * Geometry shader input variables get the per-vertex values
4477 * written out by vertex shader output variables of the same
4478 * names. Since a geometry shader operates on a set of
4479 * vertices, each input varying variable (or input block, see
4480 * interface blocks below) needs to be declared as an array.
4481 */
4482 if (!var->type->is_array()) {
4483 _mesa_glsl_error(&loc, state,
4484 "geometry shader inputs must be arrays");
4485 }
4486
4487 handle_geometry_shader_input_decl(state, loc, var);
4488 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4489 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4490 *
4491 * It is a compile-time error to declare a fragment shader
4492 * input with, or that contains, any of the following types:
4493 *
4494 * * A boolean type
4495 * * An opaque type
4496 * * An array of arrays
4497 * * An array of structures
4498 * * A structure containing an array
4499 * * A structure containing a structure
4500 */
4501 if (state->es_shader) {
4502 const glsl_type *check_type = var->type->without_array();
4503 if (check_type->is_boolean() ||
4504 check_type->contains_opaque()) {
4505 _mesa_glsl_error(&loc, state,
4506 "fragment shader input cannot have type %s",
4507 check_type->name);
4508 }
4509 if (var->type->is_array() &&
4510 var->type->fields.array->is_array()) {
4511 _mesa_glsl_error(&loc, state,
4512 "%s shader output "
4513 "cannot have an array of arrays",
4514 _mesa_shader_stage_to_string(state->stage));
4515 }
4516 if (var->type->is_array() &&
4517 var->type->fields.array->is_record()) {
4518 _mesa_glsl_error(&loc, state,
4519 "fragment shader input "
4520 "cannot have an array of structs");
4521 }
4522 if (var->type->is_record()) {
4523 for (unsigned i = 0; i < var->type->length; i++) {
4524 if (var->type->fields.structure[i].type->is_array() ||
4525 var->type->fields.structure[i].type->is_record())
4526 _mesa_glsl_error(&loc, state,
4527 "fragement shader input cannot have "
4528 "a struct that contains an "
4529 "array or struct");
4530 }
4531 }
4532 }
4533 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4534 state->stage == MESA_SHADER_TESS_EVAL) {
4535 handle_tess_shader_input_decl(state, loc, var);
4536 }
4537 } else if (var->data.mode == ir_var_shader_out) {
4538 const glsl_type *check_type = var->type->without_array();
4539
4540 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4541 *
4542 * It is a compile-time error to declare a vertex, tessellation
4543 * evaluation, tessellation control, or geometry shader output
4544 * that contains any of the following:
4545 *
4546 * * A Boolean type (bool, bvec2 ...)
4547 * * An opaque type
4548 */
4549 if (check_type->is_boolean() || check_type->contains_opaque())
4550 _mesa_glsl_error(&loc, state,
4551 "%s shader output cannot have type %s",
4552 _mesa_shader_stage_to_string(state->stage),
4553 check_type->name);
4554
4555 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4556 *
4557 * It is a compile-time error to declare a fragment shader output
4558 * that contains any of the following:
4559 *
4560 * * A Boolean type (bool, bvec2 ...)
4561 * * A double-precision scalar or vector (double, dvec2 ...)
4562 * * An opaque type
4563 * * Any matrix type
4564 * * A structure
4565 */
4566 if (state->stage == MESA_SHADER_FRAGMENT) {
4567 if (check_type->is_record() || check_type->is_matrix())
4568 _mesa_glsl_error(&loc, state,
4569 "fragment shader output "
4570 "cannot have struct or matrix type");
4571 switch (check_type->base_type) {
4572 case GLSL_TYPE_UINT:
4573 case GLSL_TYPE_INT:
4574 case GLSL_TYPE_FLOAT:
4575 break;
4576 default:
4577 _mesa_glsl_error(&loc, state,
4578 "fragment shader output cannot have "
4579 "type %s", check_type->name);
4580 }
4581 }
4582
4583 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4584 *
4585 * It is a compile-time error to declare a vertex shader output
4586 * with, or that contains, any of the following types:
4587 *
4588 * * A boolean type
4589 * * An opaque type
4590 * * An array of arrays
4591 * * An array of structures
4592 * * A structure containing an array
4593 * * A structure containing a structure
4594 *
4595 * It is a compile-time error to declare a fragment shader output
4596 * with, or that contains, any of the following types:
4597 *
4598 * * A boolean type
4599 * * An opaque type
4600 * * A matrix
4601 * * A structure
4602 * * An array of array
4603 */
4604 if (state->es_shader) {
4605 if (var->type->is_array() &&
4606 var->type->fields.array->is_array()) {
4607 _mesa_glsl_error(&loc, state,
4608 "%s shader output "
4609 "cannot have an array of arrays",
4610 _mesa_shader_stage_to_string(state->stage));
4611 }
4612 if (state->stage == MESA_SHADER_VERTEX) {
4613 if (var->type->is_array() &&
4614 var->type->fields.array->is_record()) {
4615 _mesa_glsl_error(&loc, state,
4616 "vertex shader output "
4617 "cannot have an array of structs");
4618 }
4619 if (var->type->is_record()) {
4620 for (unsigned i = 0; i < var->type->length; i++) {
4621 if (var->type->fields.structure[i].type->is_array() ||
4622 var->type->fields.structure[i].type->is_record())
4623 _mesa_glsl_error(&loc, state,
4624 "vertex shader output cannot have a "
4625 "struct that contains an "
4626 "array or struct");
4627 }
4628 }
4629 }
4630 }
4631
4632 if (state->stage == MESA_SHADER_TESS_CTRL) {
4633 handle_tess_ctrl_shader_output_decl(state, loc, var);
4634 }
4635 } else if (var->type->contains_subroutine()) {
4636 /* declare subroutine uniforms as hidden */
4637 var->data.how_declared = ir_var_hidden;
4638 }
4639
4640 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4641 * so must integer vertex outputs.
4642 *
4643 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4644 * "Fragment shader inputs that are signed or unsigned integers or
4645 * integer vectors must be qualified with the interpolation qualifier
4646 * flat."
4647 *
4648 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4649 * "Fragment shader inputs that are, or contain, signed or unsigned
4650 * integers or integer vectors must be qualified with the
4651 * interpolation qualifier flat."
4652 *
4653 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4654 * "Vertex shader outputs that are, or contain, signed or unsigned
4655 * integers or integer vectors must be qualified with the
4656 * interpolation qualifier flat."
4657 *
4658 * Note that prior to GLSL 1.50, this requirement applied to vertex
4659 * outputs rather than fragment inputs. That creates problems in the
4660 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4661 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4662 * apply the restriction to both vertex outputs and fragment inputs.
4663 *
4664 * Note also that the desktop GLSL specs are missing the text "or
4665 * contain"; this is presumably an oversight, since there is no
4666 * reasonable way to interpolate a fragment shader input that contains
4667 * an integer.
4668 */
4669 if (state->is_version(130, 300) &&
4670 var->type->contains_integer() &&
4671 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4672 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4673 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4674 && state->es_shader))) {
4675 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4676 "vertex output" : "fragment input";
4677 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4678 "an integer, then it must be qualified with 'flat'",
4679 var_type);
4680 }
4681
4682 /* Double fragment inputs must be qualified with 'flat'. */
4683 if (var->type->contains_double() &&
4684 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4685 state->stage == MESA_SHADER_FRAGMENT &&
4686 var->data.mode == ir_var_shader_in) {
4687 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4688 "a double, then it must be qualified with 'flat'",
4689 var_type);
4690 }
4691
4692 /* Interpolation qualifiers cannot be applied to 'centroid' and
4693 * 'centroid varying'.
4694 *
4695 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4696 * "interpolation qualifiers may only precede the qualifiers in,
4697 * centroid in, out, or centroid out in a declaration. They do not apply
4698 * to the deprecated storage qualifiers varying or centroid varying."
4699 *
4700 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4701 */
4702 if (state->is_version(130, 0)
4703 && this->type->qualifier.has_interpolation()
4704 && this->type->qualifier.flags.q.varying) {
4705
4706 const char *i = interpolation_string(var->data.interpolation);
4707 const char *s;
4708 if (this->type->qualifier.flags.q.centroid)
4709 s = "centroid varying";
4710 else
4711 s = "varying";
4712
4713 _mesa_glsl_error(&loc, state,
4714 "qualifier '%s' cannot be applied to the "
4715 "deprecated storage qualifier '%s'", i, s);
4716 }
4717
4718
4719 /* Interpolation qualifiers can only apply to vertex shader outputs and
4720 * fragment shader inputs.
4721 *
4722 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4723 * "Outputs from a vertex shader (out) and inputs to a fragment
4724 * shader (in) can be further qualified with one or more of these
4725 * interpolation qualifiers"
4726 *
4727 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4728 * "These interpolation qualifiers may only precede the qualifiers
4729 * in, centroid in, out, or centroid out in a declaration. They do
4730 * not apply to inputs into a vertex shader or outputs from a
4731 * fragment shader."
4732 */
4733 if (state->is_version(130, 300)
4734 && this->type->qualifier.has_interpolation()) {
4735
4736 const char *i = interpolation_string(var->data.interpolation);
4737 switch (state->stage) {
4738 case MESA_SHADER_VERTEX:
4739 if (this->type->qualifier.flags.q.in) {
4740 _mesa_glsl_error(&loc, state,
4741 "qualifier '%s' cannot be applied to vertex "
4742 "shader inputs", i);
4743 }
4744 break;
4745 case MESA_SHADER_FRAGMENT:
4746 if (this->type->qualifier.flags.q.out) {
4747 _mesa_glsl_error(&loc, state,
4748 "qualifier '%s' cannot be applied to fragment "
4749 "shader outputs", i);
4750 }
4751 break;
4752 default:
4753 break;
4754 }
4755 }
4756
4757
4758 /* From section 4.3.4 of the GLSL 4.00 spec:
4759 * "Input variables may not be declared using the patch in qualifier
4760 * in tessellation control or geometry shaders."
4761 *
4762 * From section 4.3.6 of the GLSL 4.00 spec:
4763 * "It is an error to use patch out in a vertex, tessellation
4764 * evaluation, or geometry shader."
4765 *
4766 * This doesn't explicitly forbid using them in a fragment shader, but
4767 * that's probably just an oversight.
4768 */
4769 if (state->stage != MESA_SHADER_TESS_EVAL
4770 && this->type->qualifier.flags.q.patch
4771 && this->type->qualifier.flags.q.in) {
4772
4773 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4774 "tessellation evaluation shader");
4775 }
4776
4777 if (state->stage != MESA_SHADER_TESS_CTRL
4778 && this->type->qualifier.flags.q.patch
4779 && this->type->qualifier.flags.q.out) {
4780
4781 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4782 "tessellation control shader");
4783 }
4784
4785 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4786 */
4787 if (this->type->qualifier.precision != ast_precision_none) {
4788 state->check_precision_qualifiers_allowed(&loc);
4789 }
4790
4791
4792 /* If a precision qualifier is allowed on a type, it is allowed on
4793 * an array of that type.
4794 */
4795 if (!(this->type->qualifier.precision == ast_precision_none
4796 || precision_qualifier_allowed(var->type->without_array()))) {
4797
4798 _mesa_glsl_error(&loc, state,
4799 "precision qualifiers apply only to floating point"
4800 ", integer and opaque types");
4801 }
4802
4803 /* From section 4.1.7 of the GLSL 4.40 spec:
4804 *
4805 * "[Opaque types] can only be declared as function
4806 * parameters or uniform-qualified variables."
4807 */
4808 if (var_type->contains_opaque() &&
4809 !this->type->qualifier.flags.q.uniform) {
4810 _mesa_glsl_error(&loc, state,
4811 "opaque variables must be declared uniform");
4812 }
4813
4814 /* Process the initializer and add its instructions to a temporary
4815 * list. This list will be added to the instruction stream (below) after
4816 * the declaration is added. This is done because in some cases (such as
4817 * redeclarations) the declaration may not actually be added to the
4818 * instruction stream.
4819 */
4820 exec_list initializer_instructions;
4821
4822 /* Examine var name here since var may get deleted in the next call */
4823 bool var_is_gl_id = is_gl_identifier(var->name);
4824
4825 ir_variable *earlier =
4826 get_variable_being_redeclared(var, decl->get_location(), state,
4827 false /* allow_all_redeclarations */);
4828 if (earlier != NULL) {
4829 if (var_is_gl_id &&
4830 earlier->data.how_declared == ir_var_declared_in_block) {
4831 _mesa_glsl_error(&loc, state,
4832 "`%s' has already been redeclared using "
4833 "gl_PerVertex", earlier->name);
4834 }
4835 earlier->data.how_declared = ir_var_declared_normally;
4836 }
4837
4838 if (decl->initializer != NULL) {
4839 result = process_initializer((earlier == NULL) ? var : earlier,
4840 decl, this->type,
4841 &initializer_instructions, state);
4842 } else {
4843 validate_array_dimensions(var_type, state, &loc);
4844 }
4845
4846 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4847 *
4848 * "It is an error to write to a const variable outside of
4849 * its declaration, so they must be initialized when
4850 * declared."
4851 */
4852 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4853 _mesa_glsl_error(& loc, state,
4854 "const declaration of `%s' must be initialized",
4855 decl->identifier);
4856 }
4857
4858 if (state->es_shader) {
4859 const glsl_type *const t = (earlier == NULL)
4860 ? var->type : earlier->type;
4861
4862 if (t->is_unsized_array())
4863 /* Section 10.17 of the GLSL ES 1.00 specification states that
4864 * unsized array declarations have been removed from the language.
4865 * Arrays that are sized using an initializer are still explicitly
4866 * sized. However, GLSL ES 1.00 does not allow array
4867 * initializers. That is only allowed in GLSL ES 3.00.
4868 *
4869 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4870 *
4871 * "An array type can also be formed without specifying a size
4872 * if the definition includes an initializer:
4873 *
4874 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4875 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4876 *
4877 * float a[5];
4878 * float b[] = a;"
4879 */
4880 _mesa_glsl_error(& loc, state,
4881 "unsized array declarations are not allowed in "
4882 "GLSL ES");
4883 }
4884
4885 /* If the declaration is not a redeclaration, there are a few additional
4886 * semantic checks that must be applied. In addition, variable that was
4887 * created for the declaration should be added to the IR stream.
4888 */
4889 if (earlier == NULL) {
4890 validate_identifier(decl->identifier, loc, state);
4891
4892 /* Add the variable to the symbol table. Note that the initializer's
4893 * IR was already processed earlier (though it hasn't been emitted
4894 * yet), without the variable in scope.
4895 *
4896 * This differs from most C-like languages, but it follows the GLSL
4897 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4898 * spec:
4899 *
4900 * "Within a declaration, the scope of a name starts immediately
4901 * after the initializer if present or immediately after the name
4902 * being declared if not."
4903 */
4904 if (!state->symbols->add_variable(var)) {
4905 YYLTYPE loc = this->get_location();
4906 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4907 "current scope", decl->identifier);
4908 continue;
4909 }
4910
4911 /* Push the variable declaration to the top. It means that all the
4912 * variable declarations will appear in a funny last-to-first order,
4913 * but otherwise we run into trouble if a function is prototyped, a
4914 * global var is decled, then the function is defined with usage of
4915 * the global var. See glslparsertest's CorrectModule.frag.
4916 */
4917 instructions->push_head(var);
4918 }
4919
4920 instructions->append_list(&initializer_instructions);
4921 }
4922
4923
4924 /* Generally, variable declarations do not have r-values. However,
4925 * one is used for the declaration in
4926 *
4927 * while (bool b = some_condition()) {
4928 * ...
4929 * }
4930 *
4931 * so we return the rvalue from the last seen declaration here.
4932 */
4933 return result;
4934 }
4935
4936
4937 ir_rvalue *
4938 ast_parameter_declarator::hir(exec_list *instructions,
4939 struct _mesa_glsl_parse_state *state)
4940 {
4941 void *ctx = state;
4942 const struct glsl_type *type;
4943 const char *name = NULL;
4944 YYLTYPE loc = this->get_location();
4945
4946 type = this->type->glsl_type(& name, state);
4947
4948 if (type == NULL) {
4949 if (name != NULL) {
4950 _mesa_glsl_error(& loc, state,
4951 "invalid type `%s' in declaration of `%s'",
4952 name, this->identifier);
4953 } else {
4954 _mesa_glsl_error(& loc, state,
4955 "invalid type in declaration of `%s'",
4956 this->identifier);
4957 }
4958
4959 type = glsl_type::error_type;
4960 }
4961
4962 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4963 *
4964 * "Functions that accept no input arguments need not use void in the
4965 * argument list because prototypes (or definitions) are required and
4966 * therefore there is no ambiguity when an empty argument list "( )" is
4967 * declared. The idiom "(void)" as a parameter list is provided for
4968 * convenience."
4969 *
4970 * Placing this check here prevents a void parameter being set up
4971 * for a function, which avoids tripping up checks for main taking
4972 * parameters and lookups of an unnamed symbol.
4973 */
4974 if (type->is_void()) {
4975 if (this->identifier != NULL)
4976 _mesa_glsl_error(& loc, state,
4977 "named parameter cannot have type `void'");
4978
4979 is_void = true;
4980 return NULL;
4981 }
4982
4983 if (formal_parameter && (this->identifier == NULL)) {
4984 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4985 return NULL;
4986 }
4987
4988 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4989 * call already handled the "vec4[..] foo" case.
4990 */
4991 type = process_array_type(&loc, type, this->array_specifier, state);
4992
4993 if (!type->is_error() && type->is_unsized_array()) {
4994 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4995 "a declared size");
4996 type = glsl_type::error_type;
4997 }
4998
4999 is_void = false;
5000 ir_variable *var = new(ctx)
5001 ir_variable(type, this->identifier, ir_var_function_in);
5002
5003 /* Apply any specified qualifiers to the parameter declaration. Note that
5004 * for function parameters the default mode is 'in'.
5005 */
5006 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5007 true);
5008
5009 /* From section 4.1.7 of the GLSL 4.40 spec:
5010 *
5011 * "Opaque variables cannot be treated as l-values; hence cannot
5012 * be used as out or inout function parameters, nor can they be
5013 * assigned into."
5014 */
5015 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5016 && type->contains_opaque()) {
5017 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5018 "contain opaque variables");
5019 type = glsl_type::error_type;
5020 }
5021
5022 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5023 *
5024 * "When calling a function, expressions that do not evaluate to
5025 * l-values cannot be passed to parameters declared as out or inout."
5026 *
5027 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5028 *
5029 * "Other binary or unary expressions, non-dereferenced arrays,
5030 * function names, swizzles with repeated fields, and constants
5031 * cannot be l-values."
5032 *
5033 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5034 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5035 */
5036 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5037 && type->is_array()
5038 && !state->check_version(120, 100, &loc,
5039 "arrays cannot be out or inout parameters")) {
5040 type = glsl_type::error_type;
5041 }
5042
5043 instructions->push_tail(var);
5044
5045 /* Parameter declarations do not have r-values.
5046 */
5047 return NULL;
5048 }
5049
5050
5051 void
5052 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5053 bool formal,
5054 exec_list *ir_parameters,
5055 _mesa_glsl_parse_state *state)
5056 {
5057 ast_parameter_declarator *void_param = NULL;
5058 unsigned count = 0;
5059
5060 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5061 param->formal_parameter = formal;
5062 param->hir(ir_parameters, state);
5063
5064 if (param->is_void)
5065 void_param = param;
5066
5067 count++;
5068 }
5069
5070 if ((void_param != NULL) && (count > 1)) {
5071 YYLTYPE loc = void_param->get_location();
5072
5073 _mesa_glsl_error(& loc, state,
5074 "`void' parameter must be only parameter");
5075 }
5076 }
5077
5078
5079 void
5080 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5081 {
5082 /* IR invariants disallow function declarations or definitions
5083 * nested within other function definitions. But there is no
5084 * requirement about the relative order of function declarations
5085 * and definitions with respect to one another. So simply insert
5086 * the new ir_function block at the end of the toplevel instruction
5087 * list.
5088 */
5089 state->toplevel_ir->push_tail(f);
5090 }
5091
5092
5093 ir_rvalue *
5094 ast_function::hir(exec_list *instructions,
5095 struct _mesa_glsl_parse_state *state)
5096 {
5097 void *ctx = state;
5098 ir_function *f = NULL;
5099 ir_function_signature *sig = NULL;
5100 exec_list hir_parameters;
5101 YYLTYPE loc = this->get_location();
5102
5103 const char *const name = identifier;
5104
5105 /* New functions are always added to the top-level IR instruction stream,
5106 * so this instruction list pointer is ignored. See also emit_function
5107 * (called below).
5108 */
5109 (void) instructions;
5110
5111 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5112 *
5113 * "Function declarations (prototypes) cannot occur inside of functions;
5114 * they must be at global scope, or for the built-in functions, outside
5115 * the global scope."
5116 *
5117 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5118 *
5119 * "User defined functions may only be defined within the global scope."
5120 *
5121 * Note that this language does not appear in GLSL 1.10.
5122 */
5123 if ((state->current_function != NULL) &&
5124 state->is_version(120, 100)) {
5125 YYLTYPE loc = this->get_location();
5126 _mesa_glsl_error(&loc, state,
5127 "declaration of function `%s' not allowed within "
5128 "function body", name);
5129 }
5130
5131 validate_identifier(name, this->get_location(), state);
5132
5133 /* Convert the list of function parameters to HIR now so that they can be
5134 * used below to compare this function's signature with previously seen
5135 * signatures for functions with the same name.
5136 */
5137 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5138 is_definition,
5139 & hir_parameters, state);
5140
5141 const char *return_type_name;
5142 const glsl_type *return_type =
5143 this->return_type->glsl_type(& return_type_name, state);
5144
5145 if (!return_type) {
5146 YYLTYPE loc = this->get_location();
5147 _mesa_glsl_error(&loc, state,
5148 "function `%s' has undeclared return type `%s'",
5149 name, return_type_name);
5150 return_type = glsl_type::error_type;
5151 }
5152
5153 /* ARB_shader_subroutine states:
5154 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5155 * subroutine(...) to a function declaration."
5156 */
5157 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5158 YYLTYPE loc = this->get_location();
5159 _mesa_glsl_error(&loc, state,
5160 "function declaration `%s' cannot have subroutine prepended",
5161 name);
5162 }
5163
5164 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5165 * "No qualifier is allowed on the return type of a function."
5166 */
5167 if (this->return_type->has_qualifiers(state)) {
5168 YYLTYPE loc = this->get_location();
5169 _mesa_glsl_error(& loc, state,
5170 "function `%s' return type has qualifiers", name);
5171 }
5172
5173 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5174 *
5175 * "Arrays are allowed as arguments and as the return type. In both
5176 * cases, the array must be explicitly sized."
5177 */
5178 if (return_type->is_unsized_array()) {
5179 YYLTYPE loc = this->get_location();
5180 _mesa_glsl_error(& loc, state,
5181 "function `%s' return type array must be explicitly "
5182 "sized", name);
5183 }
5184
5185 /* From section 4.1.7 of the GLSL 4.40 spec:
5186 *
5187 * "[Opaque types] can only be declared as function parameters
5188 * or uniform-qualified variables."
5189 */
5190 if (return_type->contains_opaque()) {
5191 YYLTYPE loc = this->get_location();
5192 _mesa_glsl_error(&loc, state,
5193 "function `%s' return type can't contain an opaque type",
5194 name);
5195 }
5196
5197 /* Create an ir_function if one doesn't already exist. */
5198 f = state->symbols->get_function(name);
5199 if (f == NULL) {
5200 f = new(ctx) ir_function(name);
5201 if (!this->return_type->qualifier.flags.q.subroutine) {
5202 if (!state->symbols->add_function(f)) {
5203 /* This function name shadows a non-function use of the same name. */
5204 YYLTYPE loc = this->get_location();
5205 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5206 "non-function", name);
5207 return NULL;
5208 }
5209 }
5210 emit_function(state, f);
5211 }
5212
5213 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5214 *
5215 * "A shader cannot redefine or overload built-in functions."
5216 *
5217 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5218 *
5219 * "User code can overload the built-in functions but cannot redefine
5220 * them."
5221 */
5222 if (state->es_shader && state->language_version >= 300) {
5223 /* Local shader has no exact candidates; check the built-ins. */
5224 _mesa_glsl_initialize_builtin_functions();
5225 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5226 YYLTYPE loc = this->get_location();
5227 _mesa_glsl_error(& loc, state,
5228 "A shader cannot redefine or overload built-in "
5229 "function `%s' in GLSL ES 3.00", name);
5230 return NULL;
5231 }
5232 }
5233
5234 /* Verify that this function's signature either doesn't match a previously
5235 * seen signature for a function with the same name, or, if a match is found,
5236 * that the previously seen signature does not have an associated definition.
5237 */
5238 if (state->es_shader || f->has_user_signature()) {
5239 sig = f->exact_matching_signature(state, &hir_parameters);
5240 if (sig != NULL) {
5241 const char *badvar = sig->qualifiers_match(&hir_parameters);
5242 if (badvar != NULL) {
5243 YYLTYPE loc = this->get_location();
5244
5245 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5246 "qualifiers don't match prototype", name, badvar);
5247 }
5248
5249 if (sig->return_type != return_type) {
5250 YYLTYPE loc = this->get_location();
5251
5252 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5253 "match prototype", name);
5254 }
5255
5256 if (sig->is_defined) {
5257 if (is_definition) {
5258 YYLTYPE loc = this->get_location();
5259 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5260 } else {
5261 /* We just encountered a prototype that exactly matches a
5262 * function that's already been defined. This is redundant,
5263 * and we should ignore it.
5264 */
5265 return NULL;
5266 }
5267 }
5268 }
5269 }
5270
5271 /* Verify the return type of main() */
5272 if (strcmp(name, "main") == 0) {
5273 if (! return_type->is_void()) {
5274 YYLTYPE loc = this->get_location();
5275
5276 _mesa_glsl_error(& loc, state, "main() must return void");
5277 }
5278
5279 if (!hir_parameters.is_empty()) {
5280 YYLTYPE loc = this->get_location();
5281
5282 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5283 }
5284 }
5285
5286 /* Finish storing the information about this new function in its signature.
5287 */
5288 if (sig == NULL) {
5289 sig = new(ctx) ir_function_signature(return_type);
5290 f->add_signature(sig);
5291 }
5292
5293 sig->replace_parameters(&hir_parameters);
5294 signature = sig;
5295
5296 if (this->return_type->qualifier.flags.q.subroutine_def) {
5297 int idx;
5298
5299 if (this->return_type->qualifier.flags.q.explicit_index) {
5300 unsigned qual_index;
5301 if (process_qualifier_constant(state, &loc, "index",
5302 this->return_type->qualifier.index,
5303 &qual_index)) {
5304 if (!state->has_explicit_uniform_location()) {
5305 _mesa_glsl_error(&loc, state, "subroutine index requires "
5306 "GL_ARB_explicit_uniform_location or "
5307 "GLSL 4.30");
5308 } else if (qual_index >= MAX_SUBROUTINES) {
5309 _mesa_glsl_error(&loc, state,
5310 "invalid subroutine index (%d) index must "
5311 "be a number between 0 and "
5312 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5313 MAX_SUBROUTINES - 1);
5314 } else {
5315 f->subroutine_index = qual_index;
5316 }
5317 }
5318 }
5319
5320 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5321 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5322 f->num_subroutine_types);
5323 idx = 0;
5324 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5325 const struct glsl_type *type;
5326 /* the subroutine type must be already declared */
5327 type = state->symbols->get_type(decl->identifier);
5328 if (!type) {
5329 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5330 }
5331 f->subroutine_types[idx++] = type;
5332 }
5333 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5334 ir_function *,
5335 state->num_subroutines + 1);
5336 state->subroutines[state->num_subroutines] = f;
5337 state->num_subroutines++;
5338
5339 }
5340
5341 if (this->return_type->qualifier.flags.q.subroutine) {
5342 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5343 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5344 return NULL;
5345 }
5346 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5347 ir_function *,
5348 state->num_subroutine_types + 1);
5349 state->subroutine_types[state->num_subroutine_types] = f;
5350 state->num_subroutine_types++;
5351
5352 f->is_subroutine = true;
5353 }
5354
5355 /* Function declarations (prototypes) do not have r-values.
5356 */
5357 return NULL;
5358 }
5359
5360
5361 ir_rvalue *
5362 ast_function_definition::hir(exec_list *instructions,
5363 struct _mesa_glsl_parse_state *state)
5364 {
5365 prototype->is_definition = true;
5366 prototype->hir(instructions, state);
5367
5368 ir_function_signature *signature = prototype->signature;
5369 if (signature == NULL)
5370 return NULL;
5371
5372 assert(state->current_function == NULL);
5373 state->current_function = signature;
5374 state->found_return = false;
5375
5376 /* Duplicate parameters declared in the prototype as concrete variables.
5377 * Add these to the symbol table.
5378 */
5379 state->symbols->push_scope();
5380 foreach_in_list(ir_variable, var, &signature->parameters) {
5381 assert(var->as_variable() != NULL);
5382
5383 /* The only way a parameter would "exist" is if two parameters have
5384 * the same name.
5385 */
5386 if (state->symbols->name_declared_this_scope(var->name)) {
5387 YYLTYPE loc = this->get_location();
5388
5389 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5390 } else {
5391 state->symbols->add_variable(var);
5392 }
5393 }
5394
5395 /* Convert the body of the function to HIR. */
5396 this->body->hir(&signature->body, state);
5397 signature->is_defined = true;
5398
5399 state->symbols->pop_scope();
5400
5401 assert(state->current_function == signature);
5402 state->current_function = NULL;
5403
5404 if (!signature->return_type->is_void() && !state->found_return) {
5405 YYLTYPE loc = this->get_location();
5406 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5407 "%s, but no return statement",
5408 signature->function_name(),
5409 signature->return_type->name);
5410 }
5411
5412 /* Function definitions do not have r-values.
5413 */
5414 return NULL;
5415 }
5416
5417
5418 ir_rvalue *
5419 ast_jump_statement::hir(exec_list *instructions,
5420 struct _mesa_glsl_parse_state *state)
5421 {
5422 void *ctx = state;
5423
5424 switch (mode) {
5425 case ast_return: {
5426 ir_return *inst;
5427 assert(state->current_function);
5428
5429 if (opt_return_value) {
5430 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5431
5432 /* The value of the return type can be NULL if the shader says
5433 * 'return foo();' and foo() is a function that returns void.
5434 *
5435 * NOTE: The GLSL spec doesn't say that this is an error. The type
5436 * of the return value is void. If the return type of the function is
5437 * also void, then this should compile without error. Seriously.
5438 */
5439 const glsl_type *const ret_type =
5440 (ret == NULL) ? glsl_type::void_type : ret->type;
5441
5442 /* Implicit conversions are not allowed for return values prior to
5443 * ARB_shading_language_420pack.
5444 */
5445 if (state->current_function->return_type != ret_type) {
5446 YYLTYPE loc = this->get_location();
5447
5448 if (state->has_420pack()) {
5449 if (!apply_implicit_conversion(state->current_function->return_type,
5450 ret, state)) {
5451 _mesa_glsl_error(& loc, state,
5452 "could not implicitly convert return value "
5453 "to %s, in function `%s'",
5454 state->current_function->return_type->name,
5455 state->current_function->function_name());
5456 }
5457 } else {
5458 _mesa_glsl_error(& loc, state,
5459 "`return' with wrong type %s, in function `%s' "
5460 "returning %s",
5461 ret_type->name,
5462 state->current_function->function_name(),
5463 state->current_function->return_type->name);
5464 }
5465 } else if (state->current_function->return_type->base_type ==
5466 GLSL_TYPE_VOID) {
5467 YYLTYPE loc = this->get_location();
5468
5469 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5470 * specs add a clarification:
5471 *
5472 * "A void function can only use return without a return argument, even if
5473 * the return argument has void type. Return statements only accept values:
5474 *
5475 * void func1() { }
5476 * void func2() { return func1(); } // illegal return statement"
5477 */
5478 _mesa_glsl_error(& loc, state,
5479 "void functions can only use `return' without a "
5480 "return argument");
5481 }
5482
5483 inst = new(ctx) ir_return(ret);
5484 } else {
5485 if (state->current_function->return_type->base_type !=
5486 GLSL_TYPE_VOID) {
5487 YYLTYPE loc = this->get_location();
5488
5489 _mesa_glsl_error(& loc, state,
5490 "`return' with no value, in function %s returning "
5491 "non-void",
5492 state->current_function->function_name());
5493 }
5494 inst = new(ctx) ir_return;
5495 }
5496
5497 state->found_return = true;
5498 instructions->push_tail(inst);
5499 break;
5500 }
5501
5502 case ast_discard:
5503 if (state->stage != MESA_SHADER_FRAGMENT) {
5504 YYLTYPE loc = this->get_location();
5505
5506 _mesa_glsl_error(& loc, state,
5507 "`discard' may only appear in a fragment shader");
5508 }
5509 instructions->push_tail(new(ctx) ir_discard);
5510 break;
5511
5512 case ast_break:
5513 case ast_continue:
5514 if (mode == ast_continue &&
5515 state->loop_nesting_ast == NULL) {
5516 YYLTYPE loc = this->get_location();
5517
5518 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5519 } else if (mode == ast_break &&
5520 state->loop_nesting_ast == NULL &&
5521 state->switch_state.switch_nesting_ast == NULL) {
5522 YYLTYPE loc = this->get_location();
5523
5524 _mesa_glsl_error(& loc, state,
5525 "break may only appear in a loop or a switch");
5526 } else {
5527 /* For a loop, inline the for loop expression again, since we don't
5528 * know where near the end of the loop body the normal copy of it is
5529 * going to be placed. Same goes for the condition for a do-while
5530 * loop.
5531 */
5532 if (state->loop_nesting_ast != NULL &&
5533 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5534 if (state->loop_nesting_ast->rest_expression) {
5535 state->loop_nesting_ast->rest_expression->hir(instructions,
5536 state);
5537 }
5538 if (state->loop_nesting_ast->mode ==
5539 ast_iteration_statement::ast_do_while) {
5540 state->loop_nesting_ast->condition_to_hir(instructions, state);
5541 }
5542 }
5543
5544 if (state->switch_state.is_switch_innermost &&
5545 mode == ast_continue) {
5546 /* Set 'continue_inside' to true. */
5547 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5548 ir_dereference_variable *deref_continue_inside_var =
5549 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5550 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5551 true_val));
5552
5553 /* Break out from the switch, continue for the loop will
5554 * be called right after switch. */
5555 ir_loop_jump *const jump =
5556 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5557 instructions->push_tail(jump);
5558
5559 } else if (state->switch_state.is_switch_innermost &&
5560 mode == ast_break) {
5561 /* Force break out of switch by inserting a break. */
5562 ir_loop_jump *const jump =
5563 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5564 instructions->push_tail(jump);
5565 } else {
5566 ir_loop_jump *const jump =
5567 new(ctx) ir_loop_jump((mode == ast_break)
5568 ? ir_loop_jump::jump_break
5569 : ir_loop_jump::jump_continue);
5570 instructions->push_tail(jump);
5571 }
5572 }
5573
5574 break;
5575 }
5576
5577 /* Jump instructions do not have r-values.
5578 */
5579 return NULL;
5580 }
5581
5582
5583 ir_rvalue *
5584 ast_selection_statement::hir(exec_list *instructions,
5585 struct _mesa_glsl_parse_state *state)
5586 {
5587 void *ctx = state;
5588
5589 ir_rvalue *const condition = this->condition->hir(instructions, state);
5590
5591 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5592 *
5593 * "Any expression whose type evaluates to a Boolean can be used as the
5594 * conditional expression bool-expression. Vector types are not accepted
5595 * as the expression to if."
5596 *
5597 * The checks are separated so that higher quality diagnostics can be
5598 * generated for cases where both rules are violated.
5599 */
5600 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5601 YYLTYPE loc = this->condition->get_location();
5602
5603 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5604 "boolean");
5605 }
5606
5607 ir_if *const stmt = new(ctx) ir_if(condition);
5608
5609 if (then_statement != NULL) {
5610 state->symbols->push_scope();
5611 then_statement->hir(& stmt->then_instructions, state);
5612 state->symbols->pop_scope();
5613 }
5614
5615 if (else_statement != NULL) {
5616 state->symbols->push_scope();
5617 else_statement->hir(& stmt->else_instructions, state);
5618 state->symbols->pop_scope();
5619 }
5620
5621 instructions->push_tail(stmt);
5622
5623 /* if-statements do not have r-values.
5624 */
5625 return NULL;
5626 }
5627
5628
5629 ir_rvalue *
5630 ast_switch_statement::hir(exec_list *instructions,
5631 struct _mesa_glsl_parse_state *state)
5632 {
5633 void *ctx = state;
5634
5635 ir_rvalue *const test_expression =
5636 this->test_expression->hir(instructions, state);
5637
5638 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5639 *
5640 * "The type of init-expression in a switch statement must be a
5641 * scalar integer."
5642 */
5643 if (!test_expression->type->is_scalar() ||
5644 !test_expression->type->is_integer()) {
5645 YYLTYPE loc = this->test_expression->get_location();
5646
5647 _mesa_glsl_error(& loc,
5648 state,
5649 "switch-statement expression must be scalar "
5650 "integer");
5651 }
5652
5653 /* Track the switch-statement nesting in a stack-like manner.
5654 */
5655 struct glsl_switch_state saved = state->switch_state;
5656
5657 state->switch_state.is_switch_innermost = true;
5658 state->switch_state.switch_nesting_ast = this;
5659 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5660 hash_table_pointer_compare);
5661 state->switch_state.previous_default = NULL;
5662
5663 /* Initalize is_fallthru state to false.
5664 */
5665 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5666 state->switch_state.is_fallthru_var =
5667 new(ctx) ir_variable(glsl_type::bool_type,
5668 "switch_is_fallthru_tmp",
5669 ir_var_temporary);
5670 instructions->push_tail(state->switch_state.is_fallthru_var);
5671
5672 ir_dereference_variable *deref_is_fallthru_var =
5673 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5674 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5675 is_fallthru_val));
5676
5677 /* Initialize continue_inside state to false.
5678 */
5679 state->switch_state.continue_inside =
5680 new(ctx) ir_variable(glsl_type::bool_type,
5681 "continue_inside_tmp",
5682 ir_var_temporary);
5683 instructions->push_tail(state->switch_state.continue_inside);
5684
5685 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5686 ir_dereference_variable *deref_continue_inside_var =
5687 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5688 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5689 false_val));
5690
5691 state->switch_state.run_default =
5692 new(ctx) ir_variable(glsl_type::bool_type,
5693 "run_default_tmp",
5694 ir_var_temporary);
5695 instructions->push_tail(state->switch_state.run_default);
5696
5697 /* Loop around the switch is used for flow control. */
5698 ir_loop * loop = new(ctx) ir_loop();
5699 instructions->push_tail(loop);
5700
5701 /* Cache test expression.
5702 */
5703 test_to_hir(&loop->body_instructions, state);
5704
5705 /* Emit code for body of switch stmt.
5706 */
5707 body->hir(&loop->body_instructions, state);
5708
5709 /* Insert a break at the end to exit loop. */
5710 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5711 loop->body_instructions.push_tail(jump);
5712
5713 /* If we are inside loop, check if continue got called inside switch. */
5714 if (state->loop_nesting_ast != NULL) {
5715 ir_dereference_variable *deref_continue_inside =
5716 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5717 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5718 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5719
5720 if (state->loop_nesting_ast != NULL) {
5721 if (state->loop_nesting_ast->rest_expression) {
5722 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5723 state);
5724 }
5725 if (state->loop_nesting_ast->mode ==
5726 ast_iteration_statement::ast_do_while) {
5727 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5728 }
5729 }
5730 irif->then_instructions.push_tail(jump);
5731 instructions->push_tail(irif);
5732 }
5733
5734 hash_table_dtor(state->switch_state.labels_ht);
5735
5736 state->switch_state = saved;
5737
5738 /* Switch statements do not have r-values. */
5739 return NULL;
5740 }
5741
5742
5743 void
5744 ast_switch_statement::test_to_hir(exec_list *instructions,
5745 struct _mesa_glsl_parse_state *state)
5746 {
5747 void *ctx = state;
5748
5749 /* Cache value of test expression. */
5750 ir_rvalue *const test_val =
5751 test_expression->hir(instructions,
5752 state);
5753
5754 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5755 "switch_test_tmp",
5756 ir_var_temporary);
5757 ir_dereference_variable *deref_test_var =
5758 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5759
5760 instructions->push_tail(state->switch_state.test_var);
5761 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5762 }
5763
5764
5765 ir_rvalue *
5766 ast_switch_body::hir(exec_list *instructions,
5767 struct _mesa_glsl_parse_state *state)
5768 {
5769 if (stmts != NULL)
5770 stmts->hir(instructions, state);
5771
5772 /* Switch bodies do not have r-values. */
5773 return NULL;
5774 }
5775
5776 ir_rvalue *
5777 ast_case_statement_list::hir(exec_list *instructions,
5778 struct _mesa_glsl_parse_state *state)
5779 {
5780 exec_list default_case, after_default, tmp;
5781
5782 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5783 case_stmt->hir(&tmp, state);
5784
5785 /* Default case. */
5786 if (state->switch_state.previous_default && default_case.is_empty()) {
5787 default_case.append_list(&tmp);
5788 continue;
5789 }
5790
5791 /* If default case found, append 'after_default' list. */
5792 if (!default_case.is_empty())
5793 after_default.append_list(&tmp);
5794 else
5795 instructions->append_list(&tmp);
5796 }
5797
5798 /* Handle the default case. This is done here because default might not be
5799 * the last case. We need to add checks against following cases first to see
5800 * if default should be chosen or not.
5801 */
5802 if (!default_case.is_empty()) {
5803
5804 ir_rvalue *const true_val = new (state) ir_constant(true);
5805 ir_dereference_variable *deref_run_default_var =
5806 new(state) ir_dereference_variable(state->switch_state.run_default);
5807
5808 /* Choose to run default case initially, following conditional
5809 * assignments might change this.
5810 */
5811 ir_assignment *const init_var =
5812 new(state) ir_assignment(deref_run_default_var, true_val);
5813 instructions->push_tail(init_var);
5814
5815 /* Default case was the last one, no checks required. */
5816 if (after_default.is_empty()) {
5817 instructions->append_list(&default_case);
5818 return NULL;
5819 }
5820
5821 foreach_in_list(ir_instruction, ir, &after_default) {
5822 ir_assignment *assign = ir->as_assignment();
5823
5824 if (!assign)
5825 continue;
5826
5827 /* Clone the check between case label and init expression. */
5828 ir_expression *exp = (ir_expression*) assign->condition;
5829 ir_expression *clone = exp->clone(state, NULL);
5830
5831 ir_dereference_variable *deref_var =
5832 new(state) ir_dereference_variable(state->switch_state.run_default);
5833 ir_rvalue *const false_val = new (state) ir_constant(false);
5834
5835 ir_assignment *const set_false =
5836 new(state) ir_assignment(deref_var, false_val, clone);
5837
5838 instructions->push_tail(set_false);
5839 }
5840
5841 /* Append default case and all cases after it. */
5842 instructions->append_list(&default_case);
5843 instructions->append_list(&after_default);
5844 }
5845
5846 /* Case statements do not have r-values. */
5847 return NULL;
5848 }
5849
5850 ir_rvalue *
5851 ast_case_statement::hir(exec_list *instructions,
5852 struct _mesa_glsl_parse_state *state)
5853 {
5854 labels->hir(instructions, state);
5855
5856 /* Guard case statements depending on fallthru state. */
5857 ir_dereference_variable *const deref_fallthru_guard =
5858 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5859 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5860
5861 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5862 stmt->hir(& test_fallthru->then_instructions, state);
5863
5864 instructions->push_tail(test_fallthru);
5865
5866 /* Case statements do not have r-values. */
5867 return NULL;
5868 }
5869
5870
5871 ir_rvalue *
5872 ast_case_label_list::hir(exec_list *instructions,
5873 struct _mesa_glsl_parse_state *state)
5874 {
5875 foreach_list_typed (ast_case_label, label, link, & this->labels)
5876 label->hir(instructions, state);
5877
5878 /* Case labels do not have r-values. */
5879 return NULL;
5880 }
5881
5882 ir_rvalue *
5883 ast_case_label::hir(exec_list *instructions,
5884 struct _mesa_glsl_parse_state *state)
5885 {
5886 void *ctx = state;
5887
5888 ir_dereference_variable *deref_fallthru_var =
5889 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5890
5891 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5892
5893 /* If not default case, ... */
5894 if (this->test_value != NULL) {
5895 /* Conditionally set fallthru state based on
5896 * comparison of cached test expression value to case label.
5897 */
5898 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5899 ir_constant *label_const = label_rval->constant_expression_value();
5900
5901 if (!label_const) {
5902 YYLTYPE loc = this->test_value->get_location();
5903
5904 _mesa_glsl_error(& loc, state,
5905 "switch statement case label must be a "
5906 "constant expression");
5907
5908 /* Stuff a dummy value in to allow processing to continue. */
5909 label_const = new(ctx) ir_constant(0);
5910 } else {
5911 ast_expression *previous_label = (ast_expression *)
5912 hash_table_find(state->switch_state.labels_ht,
5913 (void *)(uintptr_t)label_const->value.u[0]);
5914
5915 if (previous_label) {
5916 YYLTYPE loc = this->test_value->get_location();
5917 _mesa_glsl_error(& loc, state, "duplicate case value");
5918
5919 loc = previous_label->get_location();
5920 _mesa_glsl_error(& loc, state, "this is the previous case label");
5921 } else {
5922 hash_table_insert(state->switch_state.labels_ht,
5923 this->test_value,
5924 (void *)(uintptr_t)label_const->value.u[0]);
5925 }
5926 }
5927
5928 ir_dereference_variable *deref_test_var =
5929 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5930
5931 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5932 label_const,
5933 deref_test_var);
5934
5935 /*
5936 * From GLSL 4.40 specification section 6.2 ("Selection"):
5937 *
5938 * "The type of the init-expression value in a switch statement must
5939 * be a scalar int or uint. The type of the constant-expression value
5940 * in a case label also must be a scalar int or uint. When any pair
5941 * of these values is tested for "equal value" and the types do not
5942 * match, an implicit conversion will be done to convert the int to a
5943 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5944 * is done."
5945 */
5946 if (label_const->type != state->switch_state.test_var->type) {
5947 YYLTYPE loc = this->test_value->get_location();
5948
5949 const glsl_type *type_a = label_const->type;
5950 const glsl_type *type_b = state->switch_state.test_var->type;
5951
5952 /* Check if int->uint implicit conversion is supported. */
5953 bool integer_conversion_supported =
5954 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5955 state);
5956
5957 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5958 !integer_conversion_supported) {
5959 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5960 "init-expression and case label (%s != %s)",
5961 type_a->name, type_b->name);
5962 } else {
5963 /* Conversion of the case label. */
5964 if (type_a->base_type == GLSL_TYPE_INT) {
5965 if (!apply_implicit_conversion(glsl_type::uint_type,
5966 test_cond->operands[0], state))
5967 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5968 } else {
5969 /* Conversion of the init-expression value. */
5970 if (!apply_implicit_conversion(glsl_type::uint_type,
5971 test_cond->operands[1], state))
5972 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5973 }
5974 }
5975 }
5976
5977 ir_assignment *set_fallthru_on_test =
5978 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5979
5980 instructions->push_tail(set_fallthru_on_test);
5981 } else { /* default case */
5982 if (state->switch_state.previous_default) {
5983 YYLTYPE loc = this->get_location();
5984 _mesa_glsl_error(& loc, state,
5985 "multiple default labels in one switch");
5986
5987 loc = state->switch_state.previous_default->get_location();
5988 _mesa_glsl_error(& loc, state, "this is the first default label");
5989 }
5990 state->switch_state.previous_default = this;
5991
5992 /* Set fallthru condition on 'run_default' bool. */
5993 ir_dereference_variable *deref_run_default =
5994 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5995 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5996 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5997 cond_true,
5998 deref_run_default);
5999
6000 /* Set falltrhu state. */
6001 ir_assignment *set_fallthru =
6002 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6003
6004 instructions->push_tail(set_fallthru);
6005 }
6006
6007 /* Case statements do not have r-values. */
6008 return NULL;
6009 }
6010
6011 void
6012 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6013 struct _mesa_glsl_parse_state *state)
6014 {
6015 void *ctx = state;
6016
6017 if (condition != NULL) {
6018 ir_rvalue *const cond =
6019 condition->hir(instructions, state);
6020
6021 if ((cond == NULL)
6022 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6023 YYLTYPE loc = condition->get_location();
6024
6025 _mesa_glsl_error(& loc, state,
6026 "loop condition must be scalar boolean");
6027 } else {
6028 /* As the first code in the loop body, generate a block that looks
6029 * like 'if (!condition) break;' as the loop termination condition.
6030 */
6031 ir_rvalue *const not_cond =
6032 new(ctx) ir_expression(ir_unop_logic_not, cond);
6033
6034 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6035
6036 ir_jump *const break_stmt =
6037 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6038
6039 if_stmt->then_instructions.push_tail(break_stmt);
6040 instructions->push_tail(if_stmt);
6041 }
6042 }
6043 }
6044
6045
6046 ir_rvalue *
6047 ast_iteration_statement::hir(exec_list *instructions,
6048 struct _mesa_glsl_parse_state *state)
6049 {
6050 void *ctx = state;
6051
6052 /* For-loops and while-loops start a new scope, but do-while loops do not.
6053 */
6054 if (mode != ast_do_while)
6055 state->symbols->push_scope();
6056
6057 if (init_statement != NULL)
6058 init_statement->hir(instructions, state);
6059
6060 ir_loop *const stmt = new(ctx) ir_loop();
6061 instructions->push_tail(stmt);
6062
6063 /* Track the current loop nesting. */
6064 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6065
6066 state->loop_nesting_ast = this;
6067
6068 /* Likewise, indicate that following code is closest to a loop,
6069 * NOT closest to a switch.
6070 */
6071 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6072 state->switch_state.is_switch_innermost = false;
6073
6074 if (mode != ast_do_while)
6075 condition_to_hir(&stmt->body_instructions, state);
6076
6077 if (body != NULL)
6078 body->hir(& stmt->body_instructions, state);
6079
6080 if (rest_expression != NULL)
6081 rest_expression->hir(& stmt->body_instructions, state);
6082
6083 if (mode == ast_do_while)
6084 condition_to_hir(&stmt->body_instructions, state);
6085
6086 if (mode != ast_do_while)
6087 state->symbols->pop_scope();
6088
6089 /* Restore previous nesting before returning. */
6090 state->loop_nesting_ast = nesting_ast;
6091 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6092
6093 /* Loops do not have r-values.
6094 */
6095 return NULL;
6096 }
6097
6098
6099 /**
6100 * Determine if the given type is valid for establishing a default precision
6101 * qualifier.
6102 *
6103 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6104 *
6105 * "The precision statement
6106 *
6107 * precision precision-qualifier type;
6108 *
6109 * can be used to establish a default precision qualifier. The type field
6110 * can be either int or float or any of the sampler types, and the
6111 * precision-qualifier can be lowp, mediump, or highp."
6112 *
6113 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6114 * qualifiers on sampler types, but this seems like an oversight (since the
6115 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6116 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6117 * version.
6118 */
6119 static bool
6120 is_valid_default_precision_type(const struct glsl_type *const type)
6121 {
6122 if (type == NULL)
6123 return false;
6124
6125 switch (type->base_type) {
6126 case GLSL_TYPE_INT:
6127 case GLSL_TYPE_FLOAT:
6128 /* "int" and "float" are valid, but vectors and matrices are not. */
6129 return type->vector_elements == 1 && type->matrix_columns == 1;
6130 case GLSL_TYPE_SAMPLER:
6131 case GLSL_TYPE_IMAGE:
6132 case GLSL_TYPE_ATOMIC_UINT:
6133 return true;
6134 default:
6135 return false;
6136 }
6137 }
6138
6139
6140 ir_rvalue *
6141 ast_type_specifier::hir(exec_list *instructions,
6142 struct _mesa_glsl_parse_state *state)
6143 {
6144 if (this->default_precision == ast_precision_none && this->structure == NULL)
6145 return NULL;
6146
6147 YYLTYPE loc = this->get_location();
6148
6149 /* If this is a precision statement, check that the type to which it is
6150 * applied is either float or int.
6151 *
6152 * From section 4.5.3 of the GLSL 1.30 spec:
6153 * "The precision statement
6154 * precision precision-qualifier type;
6155 * can be used to establish a default precision qualifier. The type
6156 * field can be either int or float [...]. Any other types or
6157 * qualifiers will result in an error.
6158 */
6159 if (this->default_precision != ast_precision_none) {
6160 if (!state->check_precision_qualifiers_allowed(&loc))
6161 return NULL;
6162
6163 if (this->structure != NULL) {
6164 _mesa_glsl_error(&loc, state,
6165 "precision qualifiers do not apply to structures");
6166 return NULL;
6167 }
6168
6169 if (this->array_specifier != NULL) {
6170 _mesa_glsl_error(&loc, state,
6171 "default precision statements do not apply to "
6172 "arrays");
6173 return NULL;
6174 }
6175
6176 const struct glsl_type *const type =
6177 state->symbols->get_type(this->type_name);
6178 if (!is_valid_default_precision_type(type)) {
6179 _mesa_glsl_error(&loc, state,
6180 "default precision statements apply only to "
6181 "float, int, and opaque types");
6182 return NULL;
6183 }
6184
6185 if (state->es_shader) {
6186 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6187 * spec says:
6188 *
6189 * "Non-precision qualified declarations will use the precision
6190 * qualifier specified in the most recent precision statement
6191 * that is still in scope. The precision statement has the same
6192 * scoping rules as variable declarations. If it is declared
6193 * inside a compound statement, its effect stops at the end of
6194 * the innermost statement it was declared in. Precision
6195 * statements in nested scopes override precision statements in
6196 * outer scopes. Multiple precision statements for the same basic
6197 * type can appear inside the same scope, with later statements
6198 * overriding earlier statements within that scope."
6199 *
6200 * Default precision specifications follow the same scope rules as
6201 * variables. So, we can track the state of the default precision
6202 * qualifiers in the symbol table, and the rules will just work. This
6203 * is a slight abuse of the symbol table, but it has the semantics
6204 * that we want.
6205 */
6206 state->symbols->add_default_precision_qualifier(this->type_name,
6207 this->default_precision);
6208 }
6209
6210 /* FINISHME: Translate precision statements into IR. */
6211 return NULL;
6212 }
6213
6214 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6215 * process_record_constructor() can do type-checking on C-style initializer
6216 * expressions of structs, but ast_struct_specifier should only be translated
6217 * to HIR if it is declaring the type of a structure.
6218 *
6219 * The ->is_declaration field is false for initializers of variables
6220 * declared separately from the struct's type definition.
6221 *
6222 * struct S { ... }; (is_declaration = true)
6223 * struct T { ... } t = { ... }; (is_declaration = true)
6224 * S s = { ... }; (is_declaration = false)
6225 */
6226 if (this->structure != NULL && this->structure->is_declaration)
6227 return this->structure->hir(instructions, state);
6228
6229 return NULL;
6230 }
6231
6232
6233 /**
6234 * Process a structure or interface block tree into an array of structure fields
6235 *
6236 * After parsing, where there are some syntax differnces, structures and
6237 * interface blocks are almost identical. They are similar enough that the
6238 * AST for each can be processed the same way into a set of
6239 * \c glsl_struct_field to describe the members.
6240 *
6241 * If we're processing an interface block, var_mode should be the type of the
6242 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6243 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6244 * ir_var_auto.
6245 *
6246 * \return
6247 * The number of fields processed. A pointer to the array structure fields is
6248 * stored in \c *fields_ret.
6249 */
6250 static unsigned
6251 ast_process_struct_or_iface_block_members(exec_list *instructions,
6252 struct _mesa_glsl_parse_state *state,
6253 exec_list *declarations,
6254 glsl_struct_field **fields_ret,
6255 bool is_interface,
6256 enum glsl_matrix_layout matrix_layout,
6257 bool allow_reserved_names,
6258 ir_variable_mode var_mode,
6259 ast_type_qualifier *layout,
6260 unsigned block_stream,
6261 unsigned expl_location,
6262 unsigned expl_align)
6263 {
6264 unsigned decl_count = 0;
6265 unsigned next_offset = 0;
6266
6267 /* Make an initial pass over the list of fields to determine how
6268 * many there are. Each element in this list is an ast_declarator_list.
6269 * This means that we actually need to count the number of elements in the
6270 * 'declarations' list in each of the elements.
6271 */
6272 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6273 decl_count += decl_list->declarations.length();
6274 }
6275
6276 /* Allocate storage for the fields and process the field
6277 * declarations. As the declarations are processed, try to also convert
6278 * the types to HIR. This ensures that structure definitions embedded in
6279 * other structure definitions or in interface blocks are processed.
6280 */
6281 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6282 decl_count);
6283
6284 bool first_member = true;
6285 bool first_member_has_explicit_location = false;
6286
6287 unsigned i = 0;
6288 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6289 const char *type_name;
6290 YYLTYPE loc = decl_list->get_location();
6291
6292 decl_list->type->specifier->hir(instructions, state);
6293
6294 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6295 *
6296 * "Anonymous structures are not supported; so embedded structures
6297 * must have a declarator. A name given to an embedded struct is
6298 * scoped at the same level as the struct it is embedded in."
6299 *
6300 * The same section of the GLSL 1.20 spec says:
6301 *
6302 * "Anonymous structures are not supported. Embedded structures are
6303 * not supported."
6304 *
6305 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6306 * embedded structures in 1.10 only.
6307 */
6308 if (state->language_version != 110 &&
6309 decl_list->type->specifier->structure != NULL)
6310 _mesa_glsl_error(&loc, state,
6311 "embedded structure declarations are not allowed");
6312
6313 const glsl_type *decl_type =
6314 decl_list->type->glsl_type(& type_name, state);
6315
6316 const struct ast_type_qualifier *const qual =
6317 &decl_list->type->qualifier;
6318
6319 /* From section 4.3.9 of the GLSL 4.40 spec:
6320 *
6321 * "[In interface blocks] opaque types are not allowed."
6322 *
6323 * It should be impossible for decl_type to be NULL here. Cases that
6324 * might naturally lead to decl_type being NULL, especially for the
6325 * is_interface case, will have resulted in compilation having
6326 * already halted due to a syntax error.
6327 */
6328 assert(decl_type);
6329
6330 if (is_interface) {
6331 if (decl_type->contains_opaque()) {
6332 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6333 "interface block contains opaque variable");
6334 }
6335 } else {
6336 if (decl_type->contains_atomic()) {
6337 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6338 *
6339 * "Members of structures cannot be declared as atomic counter
6340 * types."
6341 */
6342 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6343 }
6344
6345 if (decl_type->contains_image()) {
6346 /* FINISHME: Same problem as with atomic counters.
6347 * FINISHME: Request clarification from Khronos and add
6348 * FINISHME: spec quotation here.
6349 */
6350 _mesa_glsl_error(&loc, state, "image in structure");
6351 }
6352 }
6353
6354 if (qual->flags.q.explicit_binding) {
6355 _mesa_glsl_error(&loc, state,
6356 "binding layout qualifier cannot be applied "
6357 "to struct or interface block members");
6358 }
6359
6360 if (is_interface) {
6361 if (!first_member) {
6362 if (!layout->flags.q.explicit_location &&
6363 ((first_member_has_explicit_location &&
6364 !qual->flags.q.explicit_location) ||
6365 (!first_member_has_explicit_location &&
6366 qual->flags.q.explicit_location))) {
6367 _mesa_glsl_error(&loc, state,
6368 "when block-level location layout qualifier "
6369 "is not supplied either all members must "
6370 "have a location layout qualifier or all "
6371 "members must not have a location layout "
6372 "qualifier");
6373 }
6374 } else {
6375 first_member = false;
6376 first_member_has_explicit_location =
6377 qual->flags.q.explicit_location;
6378 }
6379 }
6380
6381 if (qual->flags.q.std140 ||
6382 qual->flags.q.std430 ||
6383 qual->flags.q.packed ||
6384 qual->flags.q.shared) {
6385 _mesa_glsl_error(&loc, state,
6386 "uniform/shader storage block layout qualifiers "
6387 "std140, std430, packed, and shared can only be "
6388 "applied to uniform/shader storage blocks, not "
6389 "members");
6390 }
6391
6392 if (qual->flags.q.constant) {
6393 _mesa_glsl_error(&loc, state,
6394 "const storage qualifier cannot be applied "
6395 "to struct or interface block members");
6396 }
6397
6398 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6399 *
6400 * "A block member may be declared with a stream identifier, but
6401 * the specified stream must match the stream associated with the
6402 * containing block."
6403 */
6404 if (qual->flags.q.explicit_stream) {
6405 unsigned qual_stream;
6406 if (process_qualifier_constant(state, &loc, "stream",
6407 qual->stream, &qual_stream) &&
6408 qual_stream != block_stream) {
6409 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6410 "interface block member does not match "
6411 "the interface block (%u vs %u)", qual_stream,
6412 block_stream);
6413 }
6414 }
6415
6416 if (qual->flags.q.uniform && qual->has_interpolation()) {
6417 _mesa_glsl_error(&loc, state,
6418 "interpolation qualifiers cannot be used "
6419 "with uniform interface blocks");
6420 }
6421
6422 if ((qual->flags.q.uniform || !is_interface) &&
6423 qual->has_auxiliary_storage()) {
6424 _mesa_glsl_error(&loc, state,
6425 "auxiliary storage qualifiers cannot be used "
6426 "in uniform blocks or structures.");
6427 }
6428
6429 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6430 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6431 _mesa_glsl_error(&loc, state,
6432 "row_major and column_major can only be "
6433 "applied to interface blocks");
6434 } else
6435 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6436 }
6437
6438 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6439 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6440 "readonly and writeonly.");
6441 }
6442
6443 foreach_list_typed (ast_declaration, decl, link,
6444 &decl_list->declarations) {
6445 YYLTYPE loc = decl->get_location();
6446
6447 if (!allow_reserved_names)
6448 validate_identifier(decl->identifier, loc, state);
6449
6450 const struct glsl_type *field_type =
6451 process_array_type(&loc, decl_type, decl->array_specifier, state);
6452 validate_array_dimensions(field_type, state, &loc);
6453 fields[i].type = field_type;
6454 fields[i].name = decl->identifier;
6455 fields[i].interpolation =
6456 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6457 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6458 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6459 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6460 fields[i].precision = qual->precision;
6461
6462 if (qual->flags.q.explicit_location) {
6463 unsigned qual_location;
6464 if (process_qualifier_constant(state, &loc, "location",
6465 qual->location, &qual_location)) {
6466 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6467 expl_location = fields[i].location +
6468 fields[i].type->count_attribute_slots(false);
6469 }
6470 } else {
6471 if (layout && layout->flags.q.explicit_location) {
6472 fields[i].location = expl_location;
6473 expl_location += fields[i].type->count_attribute_slots(false);
6474 } else {
6475 fields[i].location = -1;
6476 }
6477 }
6478
6479 /* Offset can only be used with std430 and std140 layouts an initial
6480 * value of 0 is used for error detection.
6481 */
6482 unsigned align = 0;
6483 unsigned size = 0;
6484 if (layout) {
6485 bool row_major;
6486 if (qual->flags.q.row_major ||
6487 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6488 row_major = true;
6489 } else {
6490 row_major = false;
6491 }
6492
6493 if(layout->flags.q.std140) {
6494 align = field_type->std140_base_alignment(row_major);
6495 size = field_type->std140_size(row_major);
6496 } else if (layout->flags.q.std430) {
6497 align = field_type->std430_base_alignment(row_major);
6498 size = field_type->std430_size(row_major);
6499 }
6500 }
6501
6502 if (qual->flags.q.explicit_offset) {
6503 unsigned qual_offset;
6504 if (process_qualifier_constant(state, &loc, "offset",
6505 qual->offset, &qual_offset)) {
6506 if (align != 0 && size != 0) {
6507 if (next_offset > qual_offset)
6508 _mesa_glsl_error(&loc, state, "layout qualifier "
6509 "offset overlaps previous member");
6510
6511 if (qual_offset % align) {
6512 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6513 "must be a multiple of the base "
6514 "alignment of %s", field_type->name);
6515 }
6516 fields[i].offset = qual_offset;
6517 next_offset = glsl_align(qual_offset + size, align);
6518 } else {
6519 _mesa_glsl_error(&loc, state, "offset can only be used "
6520 "with std430 and std140 layouts");
6521 }
6522 }
6523 } else {
6524 fields[i].offset = -1;
6525 }
6526
6527 if (qual->flags.q.explicit_align || expl_align != 0) {
6528 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6529 next_offset;
6530 if (align == 0 || size == 0) {
6531 _mesa_glsl_error(&loc, state, "align can only be used with "
6532 "std430 and std140 layouts");
6533 } else if (qual->flags.q.explicit_align) {
6534 unsigned member_align;
6535 if (process_qualifier_constant(state, &loc, "align",
6536 qual->align, &member_align)) {
6537 if (member_align == 0 ||
6538 member_align & (member_align - 1)) {
6539 _mesa_glsl_error(&loc, state, "align layout qualifier "
6540 "in not a power of 2");
6541 } else {
6542 fields[i].offset = glsl_align(offset, member_align);
6543 next_offset = glsl_align(fields[i].offset + size, align);
6544 }
6545 }
6546 } else {
6547 fields[i].offset = glsl_align(offset, expl_align);
6548 next_offset = glsl_align(fields[i].offset + size, align);
6549 }
6550 }
6551
6552 if (!qual->flags.q.explicit_offset) {
6553 if (align != 0 && size != 0)
6554 next_offset = glsl_align(next_offset + size, align);
6555 }
6556
6557 /* Propogate row- / column-major information down the fields of the
6558 * structure or interface block. Structures need this data because
6559 * the structure may contain a structure that contains ... a matrix
6560 * that need the proper layout.
6561 */
6562 if (is_interface &&
6563 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6564 (field_type->without_array()->is_matrix()
6565 || field_type->without_array()->is_record())) {
6566 /* If no layout is specified for the field, inherit the layout
6567 * from the block.
6568 */
6569 fields[i].matrix_layout = matrix_layout;
6570
6571 if (qual->flags.q.row_major)
6572 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6573 else if (qual->flags.q.column_major)
6574 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6575
6576 /* If we're processing an uniform or buffer block, the matrix
6577 * layout must be decided by this point.
6578 */
6579 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6580 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6581 }
6582
6583 /* Image qualifiers are allowed on buffer variables, which can only
6584 * be defined inside shader storage buffer objects
6585 */
6586 if (layout && var_mode == ir_var_shader_storage) {
6587 /* For readonly and writeonly qualifiers the field definition,
6588 * if set, overwrites the layout qualifier.
6589 */
6590 if (qual->flags.q.read_only) {
6591 fields[i].image_read_only = true;
6592 fields[i].image_write_only = false;
6593 } else if (qual->flags.q.write_only) {
6594 fields[i].image_read_only = false;
6595 fields[i].image_write_only = true;
6596 } else {
6597 fields[i].image_read_only = layout->flags.q.read_only;
6598 fields[i].image_write_only = layout->flags.q.write_only;
6599 }
6600
6601 /* For other qualifiers, we set the flag if either the layout
6602 * qualifier or the field qualifier are set
6603 */
6604 fields[i].image_coherent = qual->flags.q.coherent ||
6605 layout->flags.q.coherent;
6606 fields[i].image_volatile = qual->flags.q._volatile ||
6607 layout->flags.q._volatile;
6608 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6609 layout->flags.q.restrict_flag;
6610 }
6611
6612 i++;
6613 }
6614 }
6615
6616 assert(i == decl_count);
6617
6618 *fields_ret = fields;
6619 return decl_count;
6620 }
6621
6622
6623 ir_rvalue *
6624 ast_struct_specifier::hir(exec_list *instructions,
6625 struct _mesa_glsl_parse_state *state)
6626 {
6627 YYLTYPE loc = this->get_location();
6628
6629 unsigned expl_location = 0;
6630 if (layout && layout->flags.q.explicit_location) {
6631 if (!process_qualifier_constant(state, &loc, "location",
6632 layout->location, &expl_location)) {
6633 return NULL;
6634 } else {
6635 expl_location = VARYING_SLOT_VAR0 + expl_location;
6636 }
6637 }
6638
6639 glsl_struct_field *fields;
6640 unsigned decl_count =
6641 ast_process_struct_or_iface_block_members(instructions,
6642 state,
6643 &this->declarations,
6644 &fields,
6645 false,
6646 GLSL_MATRIX_LAYOUT_INHERITED,
6647 false /* allow_reserved_names */,
6648 ir_var_auto,
6649 layout,
6650 0, /* for interface only */
6651 expl_location,
6652 0 /* for interface only */);
6653
6654 validate_identifier(this->name, loc, state);
6655
6656 const glsl_type *t =
6657 glsl_type::get_record_instance(fields, decl_count, this->name);
6658
6659 if (!state->symbols->add_type(name, t)) {
6660 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6661 } else {
6662 const glsl_type **s = reralloc(state, state->user_structures,
6663 const glsl_type *,
6664 state->num_user_structures + 1);
6665 if (s != NULL) {
6666 s[state->num_user_structures] = t;
6667 state->user_structures = s;
6668 state->num_user_structures++;
6669 }
6670 }
6671
6672 /* Structure type definitions do not have r-values.
6673 */
6674 return NULL;
6675 }
6676
6677
6678 /**
6679 * Visitor class which detects whether a given interface block has been used.
6680 */
6681 class interface_block_usage_visitor : public ir_hierarchical_visitor
6682 {
6683 public:
6684 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6685 : mode(mode), block(block), found(false)
6686 {
6687 }
6688
6689 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6690 {
6691 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6692 found = true;
6693 return visit_stop;
6694 }
6695 return visit_continue;
6696 }
6697
6698 bool usage_found() const
6699 {
6700 return this->found;
6701 }
6702
6703 private:
6704 ir_variable_mode mode;
6705 const glsl_type *block;
6706 bool found;
6707 };
6708
6709 static bool
6710 is_unsized_array_last_element(ir_variable *v)
6711 {
6712 const glsl_type *interface_type = v->get_interface_type();
6713 int length = interface_type->length;
6714
6715 assert(v->type->is_unsized_array());
6716
6717 /* Check if it is the last element of the interface */
6718 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6719 return true;
6720 return false;
6721 }
6722
6723 ir_rvalue *
6724 ast_interface_block::hir(exec_list *instructions,
6725 struct _mesa_glsl_parse_state *state)
6726 {
6727 YYLTYPE loc = this->get_location();
6728
6729 /* Interface blocks must be declared at global scope */
6730 if (state->current_function != NULL) {
6731 _mesa_glsl_error(&loc, state,
6732 "Interface block `%s' must be declared "
6733 "at global scope",
6734 this->block_name);
6735 }
6736
6737 if (!this->layout.flags.q.buffer &&
6738 this->layout.flags.q.std430) {
6739 _mesa_glsl_error(&loc, state,
6740 "std430 storage block layout qualifier is supported "
6741 "only for shader storage blocks");
6742 }
6743
6744 /* The ast_interface_block has a list of ast_declarator_lists. We
6745 * need to turn those into ir_variables with an association
6746 * with this uniform block.
6747 */
6748 enum glsl_interface_packing packing;
6749 if (this->layout.flags.q.shared) {
6750 packing = GLSL_INTERFACE_PACKING_SHARED;
6751 } else if (this->layout.flags.q.packed) {
6752 packing = GLSL_INTERFACE_PACKING_PACKED;
6753 } else if (this->layout.flags.q.std430) {
6754 packing = GLSL_INTERFACE_PACKING_STD430;
6755 } else {
6756 /* The default layout is std140.
6757 */
6758 packing = GLSL_INTERFACE_PACKING_STD140;
6759 }
6760
6761 ir_variable_mode var_mode;
6762 const char *iface_type_name;
6763 if (this->layout.flags.q.in) {
6764 var_mode = ir_var_shader_in;
6765 iface_type_name = "in";
6766 } else if (this->layout.flags.q.out) {
6767 var_mode = ir_var_shader_out;
6768 iface_type_name = "out";
6769 } else if (this->layout.flags.q.uniform) {
6770 var_mode = ir_var_uniform;
6771 iface_type_name = "uniform";
6772 } else if (this->layout.flags.q.buffer) {
6773 var_mode = ir_var_shader_storage;
6774 iface_type_name = "buffer";
6775 } else {
6776 var_mode = ir_var_auto;
6777 iface_type_name = "UNKNOWN";
6778 assert(!"interface block layout qualifier not found!");
6779 }
6780
6781 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6782 if (this->layout.flags.q.row_major)
6783 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6784 else if (this->layout.flags.q.column_major)
6785 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6786
6787 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6788 exec_list declared_variables;
6789 glsl_struct_field *fields;
6790
6791 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6792 * that we don't have incompatible qualifiers
6793 */
6794 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6795 _mesa_glsl_error(&loc, state,
6796 "Interface block sets both readonly and writeonly");
6797 }
6798
6799 unsigned qual_stream;
6800 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6801 &qual_stream) ||
6802 !validate_stream_qualifier(&loc, state, qual_stream)) {
6803 /* If the stream qualifier is invalid it doesn't make sense to continue
6804 * on and try to compare stream layouts on member variables against it
6805 * so just return early.
6806 */
6807 return NULL;
6808 }
6809
6810 unsigned expl_location = 0;
6811 if (layout.flags.q.explicit_location) {
6812 if (!process_qualifier_constant(state, &loc, "location",
6813 layout.location, &expl_location)) {
6814 return NULL;
6815 } else {
6816 expl_location = VARYING_SLOT_VAR0 + expl_location;
6817 }
6818 }
6819
6820 unsigned expl_align = 0;
6821 if (layout.flags.q.explicit_align) {
6822 if (!process_qualifier_constant(state, &loc, "align",
6823 layout.align, &expl_align)) {
6824 return NULL;
6825 } else {
6826 if (expl_align == 0 || expl_align & (expl_align - 1)) {
6827 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
6828 "power of 2.");
6829 return NULL;
6830 }
6831 }
6832 }
6833
6834 unsigned int num_variables =
6835 ast_process_struct_or_iface_block_members(&declared_variables,
6836 state,
6837 &this->declarations,
6838 &fields,
6839 true,
6840 matrix_layout,
6841 redeclaring_per_vertex,
6842 var_mode,
6843 &this->layout,
6844 qual_stream,
6845 expl_location,
6846 expl_align);
6847
6848 if (!redeclaring_per_vertex) {
6849 validate_identifier(this->block_name, loc, state);
6850
6851 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6852 *
6853 * "Block names have no other use within a shader beyond interface
6854 * matching; it is a compile-time error to use a block name at global
6855 * scope for anything other than as a block name."
6856 */
6857 ir_variable *var = state->symbols->get_variable(this->block_name);
6858 if (var && !var->type->is_interface()) {
6859 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6860 "already used in the scope.",
6861 this->block_name);
6862 }
6863 }
6864
6865 const glsl_type *earlier_per_vertex = NULL;
6866 if (redeclaring_per_vertex) {
6867 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6868 * the named interface block gl_in, we can find it by looking at the
6869 * previous declaration of gl_in. Otherwise we can find it by looking
6870 * at the previous decalartion of any of the built-in outputs,
6871 * e.g. gl_Position.
6872 *
6873 * Also check that the instance name and array-ness of the redeclaration
6874 * are correct.
6875 */
6876 switch (var_mode) {
6877 case ir_var_shader_in:
6878 if (ir_variable *earlier_gl_in =
6879 state->symbols->get_variable("gl_in")) {
6880 earlier_per_vertex = earlier_gl_in->get_interface_type();
6881 } else {
6882 _mesa_glsl_error(&loc, state,
6883 "redeclaration of gl_PerVertex input not allowed "
6884 "in the %s shader",
6885 _mesa_shader_stage_to_string(state->stage));
6886 }
6887 if (this->instance_name == NULL ||
6888 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6889 !this->array_specifier->is_single_dimension()) {
6890 _mesa_glsl_error(&loc, state,
6891 "gl_PerVertex input must be redeclared as "
6892 "gl_in[]");
6893 }
6894 break;
6895 case ir_var_shader_out:
6896 if (ir_variable *earlier_gl_Position =
6897 state->symbols->get_variable("gl_Position")) {
6898 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6899 } else if (ir_variable *earlier_gl_out =
6900 state->symbols->get_variable("gl_out")) {
6901 earlier_per_vertex = earlier_gl_out->get_interface_type();
6902 } else {
6903 _mesa_glsl_error(&loc, state,
6904 "redeclaration of gl_PerVertex output not "
6905 "allowed in the %s shader",
6906 _mesa_shader_stage_to_string(state->stage));
6907 }
6908 if (state->stage == MESA_SHADER_TESS_CTRL) {
6909 if (this->instance_name == NULL ||
6910 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6911 _mesa_glsl_error(&loc, state,
6912 "gl_PerVertex output must be redeclared as "
6913 "gl_out[]");
6914 }
6915 } else {
6916 if (this->instance_name != NULL) {
6917 _mesa_glsl_error(&loc, state,
6918 "gl_PerVertex output may not be redeclared with "
6919 "an instance name");
6920 }
6921 }
6922 break;
6923 default:
6924 _mesa_glsl_error(&loc, state,
6925 "gl_PerVertex must be declared as an input or an "
6926 "output");
6927 break;
6928 }
6929
6930 if (earlier_per_vertex == NULL) {
6931 /* An error has already been reported. Bail out to avoid null
6932 * dereferences later in this function.
6933 */
6934 return NULL;
6935 }
6936
6937 /* Copy locations from the old gl_PerVertex interface block. */
6938 for (unsigned i = 0; i < num_variables; i++) {
6939 int j = earlier_per_vertex->field_index(fields[i].name);
6940 if (j == -1) {
6941 _mesa_glsl_error(&loc, state,
6942 "redeclaration of gl_PerVertex must be a subset "
6943 "of the built-in members of gl_PerVertex");
6944 } else {
6945 fields[i].location =
6946 earlier_per_vertex->fields.structure[j].location;
6947 fields[i].offset =
6948 earlier_per_vertex->fields.structure[j].offset;
6949 fields[i].interpolation =
6950 earlier_per_vertex->fields.structure[j].interpolation;
6951 fields[i].centroid =
6952 earlier_per_vertex->fields.structure[j].centroid;
6953 fields[i].sample =
6954 earlier_per_vertex->fields.structure[j].sample;
6955 fields[i].patch =
6956 earlier_per_vertex->fields.structure[j].patch;
6957 fields[i].precision =
6958 earlier_per_vertex->fields.structure[j].precision;
6959 }
6960 }
6961
6962 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6963 * spec:
6964 *
6965 * If a built-in interface block is redeclared, it must appear in
6966 * the shader before any use of any member included in the built-in
6967 * declaration, or a compilation error will result.
6968 *
6969 * This appears to be a clarification to the behaviour established for
6970 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6971 * regardless of GLSL version.
6972 */
6973 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6974 v.run(instructions);
6975 if (v.usage_found()) {
6976 _mesa_glsl_error(&loc, state,
6977 "redeclaration of a built-in interface block must "
6978 "appear before any use of any member of the "
6979 "interface block");
6980 }
6981 }
6982
6983 const glsl_type *block_type =
6984 glsl_type::get_interface_instance(fields,
6985 num_variables,
6986 packing,
6987 this->block_name);
6988
6989 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6990 YYLTYPE loc = this->get_location();
6991 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6992 "already taken in the current scope",
6993 this->block_name, iface_type_name);
6994 }
6995
6996 /* Since interface blocks cannot contain statements, it should be
6997 * impossible for the block to generate any instructions.
6998 */
6999 assert(declared_variables.is_empty());
7000
7001 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7002 *
7003 * Geometry shader input variables get the per-vertex values written
7004 * out by vertex shader output variables of the same names. Since a
7005 * geometry shader operates on a set of vertices, each input varying
7006 * variable (or input block, see interface blocks below) needs to be
7007 * declared as an array.
7008 */
7009 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7010 var_mode == ir_var_shader_in) {
7011 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7012 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7013 state->stage == MESA_SHADER_TESS_EVAL) &&
7014 this->array_specifier == NULL &&
7015 var_mode == ir_var_shader_in) {
7016 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7017 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7018 this->array_specifier == NULL &&
7019 var_mode == ir_var_shader_out) {
7020 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7021 }
7022
7023
7024 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7025 * says:
7026 *
7027 * "If an instance name (instance-name) is used, then it puts all the
7028 * members inside a scope within its own name space, accessed with the
7029 * field selector ( . ) operator (analogously to structures)."
7030 */
7031 if (this->instance_name) {
7032 if (redeclaring_per_vertex) {
7033 /* When a built-in in an unnamed interface block is redeclared,
7034 * get_variable_being_redeclared() calls
7035 * check_builtin_array_max_size() to make sure that built-in array
7036 * variables aren't redeclared to illegal sizes. But we're looking
7037 * at a redeclaration of a named built-in interface block. So we
7038 * have to manually call check_builtin_array_max_size() for all parts
7039 * of the interface that are arrays.
7040 */
7041 for (unsigned i = 0; i < num_variables; i++) {
7042 if (fields[i].type->is_array()) {
7043 const unsigned size = fields[i].type->array_size();
7044 check_builtin_array_max_size(fields[i].name, size, loc, state);
7045 }
7046 }
7047 } else {
7048 validate_identifier(this->instance_name, loc, state);
7049 }
7050
7051 ir_variable *var;
7052
7053 if (this->array_specifier != NULL) {
7054 const glsl_type *block_array_type =
7055 process_array_type(&loc, block_type, this->array_specifier, state);
7056
7057 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7058 *
7059 * For uniform blocks declared an array, each individual array
7060 * element corresponds to a separate buffer object backing one
7061 * instance of the block. As the array size indicates the number
7062 * of buffer objects needed, uniform block array declarations
7063 * must specify an array size.
7064 *
7065 * And a few paragraphs later:
7066 *
7067 * Geometry shader input blocks must be declared as arrays and
7068 * follow the array declaration and linking rules for all
7069 * geometry shader inputs. All other input and output block
7070 * arrays must specify an array size.
7071 *
7072 * The same applies to tessellation shaders.
7073 *
7074 * The upshot of this is that the only circumstance where an
7075 * interface array size *doesn't* need to be specified is on a
7076 * geometry shader input, tessellation control shader input,
7077 * tessellation control shader output, and tessellation evaluation
7078 * shader input.
7079 */
7080 if (block_array_type->is_unsized_array()) {
7081 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7082 state->stage == MESA_SHADER_TESS_CTRL ||
7083 state->stage == MESA_SHADER_TESS_EVAL;
7084 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7085
7086 if (this->layout.flags.q.in) {
7087 if (!allow_inputs)
7088 _mesa_glsl_error(&loc, state,
7089 "unsized input block arrays not allowed in "
7090 "%s shader",
7091 _mesa_shader_stage_to_string(state->stage));
7092 } else if (this->layout.flags.q.out) {
7093 if (!allow_outputs)
7094 _mesa_glsl_error(&loc, state,
7095 "unsized output block arrays not allowed in "
7096 "%s shader",
7097 _mesa_shader_stage_to_string(state->stage));
7098 } else {
7099 /* by elimination, this is a uniform block array */
7100 _mesa_glsl_error(&loc, state,
7101 "unsized uniform block arrays not allowed in "
7102 "%s shader",
7103 _mesa_shader_stage_to_string(state->stage));
7104 }
7105 }
7106
7107 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7108 *
7109 * * Arrays of arrays of blocks are not allowed
7110 */
7111 if (state->es_shader && block_array_type->is_array() &&
7112 block_array_type->fields.array->is_array()) {
7113 _mesa_glsl_error(&loc, state,
7114 "arrays of arrays interface blocks are "
7115 "not allowed");
7116 }
7117
7118 var = new(state) ir_variable(block_array_type,
7119 this->instance_name,
7120 var_mode);
7121 } else {
7122 var = new(state) ir_variable(block_type,
7123 this->instance_name,
7124 var_mode);
7125 }
7126
7127 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7128 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7129
7130 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7131 var->data.read_only = true;
7132
7133 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7134 handle_geometry_shader_input_decl(state, loc, var);
7135 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7136 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7137 handle_tess_shader_input_decl(state, loc, var);
7138 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7139 handle_tess_ctrl_shader_output_decl(state, loc, var);
7140
7141 for (unsigned i = 0; i < num_variables; i++) {
7142 if (fields[i].type->is_unsized_array()) {
7143 if (var_mode == ir_var_shader_storage) {
7144 if (i != (num_variables - 1)) {
7145 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7146 "only last member of a shader storage block "
7147 "can be defined as unsized array",
7148 fields[i].name);
7149 }
7150 } else {
7151 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7152 *
7153 * "If an array is declared as the last member of a shader storage
7154 * block and the size is not specified at compile-time, it is
7155 * sized at run-time. In all other cases, arrays are sized only
7156 * at compile-time."
7157 */
7158 if (state->es_shader) {
7159 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7160 "only last member of a shader storage block "
7161 "can be defined as unsized array",
7162 fields[i].name);
7163 }
7164 }
7165 }
7166 }
7167
7168 if (ir_variable *earlier =
7169 state->symbols->get_variable(this->instance_name)) {
7170 if (!redeclaring_per_vertex) {
7171 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7172 this->instance_name);
7173 }
7174 earlier->data.how_declared = ir_var_declared_normally;
7175 earlier->type = var->type;
7176 earlier->reinit_interface_type(block_type);
7177 delete var;
7178 } else {
7179 if (this->layout.flags.q.explicit_binding) {
7180 apply_explicit_binding(state, &loc, var, var->type,
7181 &this->layout);
7182 }
7183
7184 var->data.stream = qual_stream;
7185 if (layout.flags.q.explicit_location) {
7186 var->data.location = expl_location;
7187 var->data.explicit_location = true;
7188 }
7189
7190 state->symbols->add_variable(var);
7191 instructions->push_tail(var);
7192 }
7193 } else {
7194 /* In order to have an array size, the block must also be declared with
7195 * an instance name.
7196 */
7197 assert(this->array_specifier == NULL);
7198
7199 for (unsigned i = 0; i < num_variables; i++) {
7200 ir_variable *var =
7201 new(state) ir_variable(fields[i].type,
7202 ralloc_strdup(state, fields[i].name),
7203 var_mode);
7204 var->data.interpolation = fields[i].interpolation;
7205 var->data.centroid = fields[i].centroid;
7206 var->data.sample = fields[i].sample;
7207 var->data.patch = fields[i].patch;
7208 var->data.stream = qual_stream;
7209 var->data.location = fields[i].location;
7210 if (fields[i].location != -1)
7211 var->data.explicit_location = true;
7212 var->init_interface_type(block_type);
7213
7214 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7215 var->data.read_only = true;
7216
7217 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7218 if (state->es_shader) {
7219 var->data.precision =
7220 select_gles_precision(fields[i].precision, fields[i].type,
7221 state, &loc);
7222 }
7223
7224 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7225 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7226 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7227 } else {
7228 var->data.matrix_layout = fields[i].matrix_layout;
7229 }
7230
7231 if (var->data.mode == ir_var_shader_storage) {
7232 var->data.image_read_only = fields[i].image_read_only;
7233 var->data.image_write_only = fields[i].image_write_only;
7234 var->data.image_coherent = fields[i].image_coherent;
7235 var->data.image_volatile = fields[i].image_volatile;
7236 var->data.image_restrict = fields[i].image_restrict;
7237 }
7238
7239 /* Examine var name here since var may get deleted in the next call */
7240 bool var_is_gl_id = is_gl_identifier(var->name);
7241
7242 if (redeclaring_per_vertex) {
7243 ir_variable *earlier =
7244 get_variable_being_redeclared(var, loc, state,
7245 true /* allow_all_redeclarations */);
7246 if (!var_is_gl_id || earlier == NULL) {
7247 _mesa_glsl_error(&loc, state,
7248 "redeclaration of gl_PerVertex can only "
7249 "include built-in variables");
7250 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7251 _mesa_glsl_error(&loc, state,
7252 "`%s' has already been redeclared",
7253 earlier->name);
7254 } else {
7255 earlier->data.how_declared = ir_var_declared_in_block;
7256 earlier->reinit_interface_type(block_type);
7257 }
7258 continue;
7259 }
7260
7261 if (state->symbols->get_variable(var->name) != NULL)
7262 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7263
7264 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7265 * The UBO declaration itself doesn't get an ir_variable unless it
7266 * has an instance name. This is ugly.
7267 */
7268 if (this->layout.flags.q.explicit_binding) {
7269 apply_explicit_binding(state, &loc, var,
7270 var->get_interface_type(), &this->layout);
7271 }
7272
7273 if (var->type->is_unsized_array()) {
7274 if (var->is_in_shader_storage_block()) {
7275 if (!is_unsized_array_last_element(var)) {
7276 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7277 "only last member of a shader storage block "
7278 "can be defined as unsized array",
7279 var->name);
7280 }
7281 var->data.from_ssbo_unsized_array = true;
7282 } else {
7283 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7284 *
7285 * "If an array is declared as the last member of a shader storage
7286 * block and the size is not specified at compile-time, it is
7287 * sized at run-time. In all other cases, arrays are sized only
7288 * at compile-time."
7289 */
7290 if (state->es_shader) {
7291 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7292 "only last member of a shader storage block "
7293 "can be defined as unsized array",
7294 var->name);
7295 }
7296 }
7297 }
7298
7299 state->symbols->add_variable(var);
7300 instructions->push_tail(var);
7301 }
7302
7303 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7304 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7305 *
7306 * It is also a compilation error ... to redeclare a built-in
7307 * block and then use a member from that built-in block that was
7308 * not included in the redeclaration.
7309 *
7310 * This appears to be a clarification to the behaviour established
7311 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7312 * behaviour regardless of GLSL version.
7313 *
7314 * To prevent the shader from using a member that was not included in
7315 * the redeclaration, we disable any ir_variables that are still
7316 * associated with the old declaration of gl_PerVertex (since we've
7317 * already updated all of the variables contained in the new
7318 * gl_PerVertex to point to it).
7319 *
7320 * As a side effect this will prevent
7321 * validate_intrastage_interface_blocks() from getting confused and
7322 * thinking there are conflicting definitions of gl_PerVertex in the
7323 * shader.
7324 */
7325 foreach_in_list_safe(ir_instruction, node, instructions) {
7326 ir_variable *const var = node->as_variable();
7327 if (var != NULL &&
7328 var->get_interface_type() == earlier_per_vertex &&
7329 var->data.mode == var_mode) {
7330 if (var->data.how_declared == ir_var_declared_normally) {
7331 _mesa_glsl_error(&loc, state,
7332 "redeclaration of gl_PerVertex cannot "
7333 "follow a redeclaration of `%s'",
7334 var->name);
7335 }
7336 state->symbols->disable_variable(var->name);
7337 var->remove();
7338 }
7339 }
7340 }
7341 }
7342
7343 return NULL;
7344 }
7345
7346
7347 ir_rvalue *
7348 ast_tcs_output_layout::hir(exec_list *instructions,
7349 struct _mesa_glsl_parse_state *state)
7350 {
7351 YYLTYPE loc = this->get_location();
7352
7353 unsigned num_vertices;
7354 if (!state->out_qualifier->vertices->
7355 process_qualifier_constant(state, "vertices", &num_vertices,
7356 false)) {
7357 /* return here to stop cascading incorrect error messages */
7358 return NULL;
7359 }
7360
7361 /* If any shader outputs occurred before this declaration and specified an
7362 * array size, make sure the size they specified is consistent with the
7363 * primitive type.
7364 */
7365 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7366 _mesa_glsl_error(&loc, state,
7367 "this tessellation control shader output layout "
7368 "specifies %u vertices, but a previous output "
7369 "is declared with size %u",
7370 num_vertices, state->tcs_output_size);
7371 return NULL;
7372 }
7373
7374 state->tcs_output_vertices_specified = true;
7375
7376 /* If any shader outputs occurred before this declaration and did not
7377 * specify an array size, their size is determined now.
7378 */
7379 foreach_in_list (ir_instruction, node, instructions) {
7380 ir_variable *var = node->as_variable();
7381 if (var == NULL || var->data.mode != ir_var_shader_out)
7382 continue;
7383
7384 /* Note: Not all tessellation control shader output are arrays. */
7385 if (!var->type->is_unsized_array() || var->data.patch)
7386 continue;
7387
7388 if (var->data.max_array_access >= num_vertices) {
7389 _mesa_glsl_error(&loc, state,
7390 "this tessellation control shader output layout "
7391 "specifies %u vertices, but an access to element "
7392 "%u of output `%s' already exists", num_vertices,
7393 var->data.max_array_access, var->name);
7394 } else {
7395 var->type = glsl_type::get_array_instance(var->type->fields.array,
7396 num_vertices);
7397 }
7398 }
7399
7400 return NULL;
7401 }
7402
7403
7404 ir_rvalue *
7405 ast_gs_input_layout::hir(exec_list *instructions,
7406 struct _mesa_glsl_parse_state *state)
7407 {
7408 YYLTYPE loc = this->get_location();
7409
7410 /* If any geometry input layout declaration preceded this one, make sure it
7411 * was consistent with this one.
7412 */
7413 if (state->gs_input_prim_type_specified &&
7414 state->in_qualifier->prim_type != this->prim_type) {
7415 _mesa_glsl_error(&loc, state,
7416 "geometry shader input layout does not match"
7417 " previous declaration");
7418 return NULL;
7419 }
7420
7421 /* If any shader inputs occurred before this declaration and specified an
7422 * array size, make sure the size they specified is consistent with the
7423 * primitive type.
7424 */
7425 unsigned num_vertices = vertices_per_prim(this->prim_type);
7426 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7427 _mesa_glsl_error(&loc, state,
7428 "this geometry shader input layout implies %u vertices"
7429 " per primitive, but a previous input is declared"
7430 " with size %u", num_vertices, state->gs_input_size);
7431 return NULL;
7432 }
7433
7434 state->gs_input_prim_type_specified = true;
7435
7436 /* If any shader inputs occurred before this declaration and did not
7437 * specify an array size, their size is determined now.
7438 */
7439 foreach_in_list(ir_instruction, node, instructions) {
7440 ir_variable *var = node->as_variable();
7441 if (var == NULL || var->data.mode != ir_var_shader_in)
7442 continue;
7443
7444 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7445 * array; skip it.
7446 */
7447
7448 if (var->type->is_unsized_array()) {
7449 if (var->data.max_array_access >= num_vertices) {
7450 _mesa_glsl_error(&loc, state,
7451 "this geometry shader input layout implies %u"
7452 " vertices, but an access to element %u of input"
7453 " `%s' already exists", num_vertices,
7454 var->data.max_array_access, var->name);
7455 } else {
7456 var->type = glsl_type::get_array_instance(var->type->fields.array,
7457 num_vertices);
7458 }
7459 }
7460 }
7461
7462 return NULL;
7463 }
7464
7465
7466 ir_rvalue *
7467 ast_cs_input_layout::hir(exec_list *instructions,
7468 struct _mesa_glsl_parse_state *state)
7469 {
7470 YYLTYPE loc = this->get_location();
7471
7472 /* From the ARB_compute_shader specification:
7473 *
7474 * If the local size of the shader in any dimension is greater
7475 * than the maximum size supported by the implementation for that
7476 * dimension, a compile-time error results.
7477 *
7478 * It is not clear from the spec how the error should be reported if
7479 * the total size of the work group exceeds
7480 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7481 * report it at compile time as well.
7482 */
7483 GLuint64 total_invocations = 1;
7484 unsigned qual_local_size[3];
7485 for (int i = 0; i < 3; i++) {
7486
7487 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7488 'x' + i);
7489 /* Infer a local_size of 1 for unspecified dimensions */
7490 if (this->local_size[i] == NULL) {
7491 qual_local_size[i] = 1;
7492 } else if (!this->local_size[i]->
7493 process_qualifier_constant(state, local_size_str,
7494 &qual_local_size[i], false)) {
7495 ralloc_free(local_size_str);
7496 return NULL;
7497 }
7498 ralloc_free(local_size_str);
7499
7500 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7501 _mesa_glsl_error(&loc, state,
7502 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7503 " (%d)", 'x' + i,
7504 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7505 break;
7506 }
7507 total_invocations *= qual_local_size[i];
7508 if (total_invocations >
7509 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7510 _mesa_glsl_error(&loc, state,
7511 "product of local_sizes exceeds "
7512 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7513 state->ctx->Const.MaxComputeWorkGroupInvocations);
7514 break;
7515 }
7516 }
7517
7518 /* If any compute input layout declaration preceded this one, make sure it
7519 * was consistent with this one.
7520 */
7521 if (state->cs_input_local_size_specified) {
7522 for (int i = 0; i < 3; i++) {
7523 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7524 _mesa_glsl_error(&loc, state,
7525 "compute shader input layout does not match"
7526 " previous declaration");
7527 return NULL;
7528 }
7529 }
7530 }
7531
7532 state->cs_input_local_size_specified = true;
7533 for (int i = 0; i < 3; i++)
7534 state->cs_input_local_size[i] = qual_local_size[i];
7535
7536 /* We may now declare the built-in constant gl_WorkGroupSize (see
7537 * builtin_variable_generator::generate_constants() for why we didn't
7538 * declare it earlier).
7539 */
7540 ir_variable *var = new(state->symbols)
7541 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7542 var->data.how_declared = ir_var_declared_implicitly;
7543 var->data.read_only = true;
7544 instructions->push_tail(var);
7545 state->symbols->add_variable(var);
7546 ir_constant_data data;
7547 memset(&data, 0, sizeof(data));
7548 for (int i = 0; i < 3; i++)
7549 data.u[i] = qual_local_size[i];
7550 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7551 var->constant_initializer =
7552 new(var) ir_constant(glsl_type::uvec3_type, &data);
7553 var->data.has_initializer = true;
7554
7555 return NULL;
7556 }
7557
7558
7559 static void
7560 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7561 exec_list *instructions)
7562 {
7563 bool gl_FragColor_assigned = false;
7564 bool gl_FragData_assigned = false;
7565 bool gl_FragSecondaryColor_assigned = false;
7566 bool gl_FragSecondaryData_assigned = false;
7567 bool user_defined_fs_output_assigned = false;
7568 ir_variable *user_defined_fs_output = NULL;
7569
7570 /* It would be nice to have proper location information. */
7571 YYLTYPE loc;
7572 memset(&loc, 0, sizeof(loc));
7573
7574 foreach_in_list(ir_instruction, node, instructions) {
7575 ir_variable *var = node->as_variable();
7576
7577 if (!var || !var->data.assigned)
7578 continue;
7579
7580 if (strcmp(var->name, "gl_FragColor") == 0)
7581 gl_FragColor_assigned = true;
7582 else if (strcmp(var->name, "gl_FragData") == 0)
7583 gl_FragData_assigned = true;
7584 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7585 gl_FragSecondaryColor_assigned = true;
7586 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7587 gl_FragSecondaryData_assigned = true;
7588 else if (!is_gl_identifier(var->name)) {
7589 if (state->stage == MESA_SHADER_FRAGMENT &&
7590 var->data.mode == ir_var_shader_out) {
7591 user_defined_fs_output_assigned = true;
7592 user_defined_fs_output = var;
7593 }
7594 }
7595 }
7596
7597 /* From the GLSL 1.30 spec:
7598 *
7599 * "If a shader statically assigns a value to gl_FragColor, it
7600 * may not assign a value to any element of gl_FragData. If a
7601 * shader statically writes a value to any element of
7602 * gl_FragData, it may not assign a value to
7603 * gl_FragColor. That is, a shader may assign values to either
7604 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7605 * linked together must also consistently write just one of
7606 * these variables. Similarly, if user declared output
7607 * variables are in use (statically assigned to), then the
7608 * built-in variables gl_FragColor and gl_FragData may not be
7609 * assigned to. These incorrect usages all generate compile
7610 * time errors."
7611 */
7612 if (gl_FragColor_assigned && gl_FragData_assigned) {
7613 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7614 "`gl_FragColor' and `gl_FragData'");
7615 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7616 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7617 "`gl_FragColor' and `%s'",
7618 user_defined_fs_output->name);
7619 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7620 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7621 "`gl_FragSecondaryColorEXT' and"
7622 " `gl_FragSecondaryDataEXT'");
7623 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7624 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7625 "`gl_FragColor' and"
7626 " `gl_FragSecondaryDataEXT'");
7627 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7628 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7629 "`gl_FragData' and"
7630 " `gl_FragSecondaryColorEXT'");
7631 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7632 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7633 "`gl_FragData' and `%s'",
7634 user_defined_fs_output->name);
7635 }
7636
7637 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7638 !state->EXT_blend_func_extended_enable) {
7639 _mesa_glsl_error(&loc, state,
7640 "Dual source blending requires EXT_blend_func_extended");
7641 }
7642 }
7643
7644
7645 static void
7646 remove_per_vertex_blocks(exec_list *instructions,
7647 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7648 {
7649 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7650 * if it exists in this shader type.
7651 */
7652 const glsl_type *per_vertex = NULL;
7653 switch (mode) {
7654 case ir_var_shader_in:
7655 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7656 per_vertex = gl_in->get_interface_type();
7657 break;
7658 case ir_var_shader_out:
7659 if (ir_variable *gl_Position =
7660 state->symbols->get_variable("gl_Position")) {
7661 per_vertex = gl_Position->get_interface_type();
7662 }
7663 break;
7664 default:
7665 assert(!"Unexpected mode");
7666 break;
7667 }
7668
7669 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7670 * need to do anything.
7671 */
7672 if (per_vertex == NULL)
7673 return;
7674
7675 /* If the interface block is used by the shader, then we don't need to do
7676 * anything.
7677 */
7678 interface_block_usage_visitor v(mode, per_vertex);
7679 v.run(instructions);
7680 if (v.usage_found())
7681 return;
7682
7683 /* Remove any ir_variable declarations that refer to the interface block
7684 * we're removing.
7685 */
7686 foreach_in_list_safe(ir_instruction, node, instructions) {
7687 ir_variable *const var = node->as_variable();
7688 if (var != NULL && var->get_interface_type() == per_vertex &&
7689 var->data.mode == mode) {
7690 state->symbols->disable_variable(var->name);
7691 var->remove();
7692 }
7693 }
7694 }