glsl: Drop the ES requirement that VS outputs must be flat qualified.
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 static bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1005 ir_var_temporary);
1006 instructions->push_tail(var);
1007 instructions->push_tail(assign(var, rhs));
1008
1009 if (!error_emitted) {
1010 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1011 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1012 }
1013 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1014
1015 *out_rvalue = rvalue;
1016 } else {
1017 if (!error_emitted)
1018 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1019 *out_rvalue = NULL;
1020 }
1021
1022 return error_emitted;
1023 }
1024
1025 static ir_rvalue *
1026 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1027 {
1028 void *ctx = ralloc_parent(lvalue);
1029 ir_variable *var;
1030
1031 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1032 ir_var_temporary);
1033 instructions->push_tail(var);
1034
1035 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1036 lvalue));
1037
1038 return new(ctx) ir_dereference_variable(var);
1039 }
1040
1041
1042 ir_rvalue *
1043 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1044 {
1045 (void) instructions;
1046 (void) state;
1047
1048 return NULL;
1049 }
1050
1051 bool
1052 ast_node::has_sequence_subexpression() const
1053 {
1054 return false;
1055 }
1056
1057 void
1058 ast_node::set_is_lhs(bool /* new_value */)
1059 {
1060 }
1061
1062 void
1063 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 void
1070 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1071 struct _mesa_glsl_parse_state *state)
1072 {
1073 (void)hir(instructions, state);
1074 }
1075
1076 static ir_rvalue *
1077 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1078 {
1079 int join_op;
1080 ir_rvalue *cmp = NULL;
1081
1082 if (operation == ir_binop_all_equal)
1083 join_op = ir_binop_logic_and;
1084 else
1085 join_op = ir_binop_logic_or;
1086
1087 switch (op0->type->base_type) {
1088 case GLSL_TYPE_FLOAT:
1089 case GLSL_TYPE_UINT:
1090 case GLSL_TYPE_INT:
1091 case GLSL_TYPE_BOOL:
1092 case GLSL_TYPE_DOUBLE:
1093 return new(mem_ctx) ir_expression(operation, op0, op1);
1094
1095 case GLSL_TYPE_ARRAY: {
1096 for (unsigned int i = 0; i < op0->type->length; i++) {
1097 ir_rvalue *e0, *e1, *result;
1098
1099 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1100 new(mem_ctx) ir_constant(i));
1101 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1102 new(mem_ctx) ir_constant(i));
1103 result = do_comparison(mem_ctx, operation, e0, e1);
1104
1105 if (cmp) {
1106 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1107 } else {
1108 cmp = result;
1109 }
1110 }
1111
1112 mark_whole_array_access(op0);
1113 mark_whole_array_access(op1);
1114 break;
1115 }
1116
1117 case GLSL_TYPE_STRUCT: {
1118 for (unsigned int i = 0; i < op0->type->length; i++) {
1119 ir_rvalue *e0, *e1, *result;
1120 const char *field_name = op0->type->fields.structure[i].name;
1121
1122 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1123 field_name);
1124 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1125 field_name);
1126 result = do_comparison(mem_ctx, operation, e0, e1);
1127
1128 if (cmp) {
1129 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1130 } else {
1131 cmp = result;
1132 }
1133 }
1134 break;
1135 }
1136
1137 case GLSL_TYPE_ERROR:
1138 case GLSL_TYPE_VOID:
1139 case GLSL_TYPE_SAMPLER:
1140 case GLSL_TYPE_IMAGE:
1141 case GLSL_TYPE_INTERFACE:
1142 case GLSL_TYPE_ATOMIC_UINT:
1143 case GLSL_TYPE_SUBROUTINE:
1144 case GLSL_TYPE_FUNCTION:
1145 /* I assume a comparison of a struct containing a sampler just
1146 * ignores the sampler present in the type.
1147 */
1148 break;
1149 }
1150
1151 if (cmp == NULL)
1152 cmp = new(mem_ctx) ir_constant(true);
1153
1154 return cmp;
1155 }
1156
1157 /* For logical operations, we want to ensure that the operands are
1158 * scalar booleans. If it isn't, emit an error and return a constant
1159 * boolean to avoid triggering cascading error messages.
1160 */
1161 ir_rvalue *
1162 get_scalar_boolean_operand(exec_list *instructions,
1163 struct _mesa_glsl_parse_state *state,
1164 ast_expression *parent_expr,
1165 int operand,
1166 const char *operand_name,
1167 bool *error_emitted)
1168 {
1169 ast_expression *expr = parent_expr->subexpressions[operand];
1170 void *ctx = state;
1171 ir_rvalue *val = expr->hir(instructions, state);
1172
1173 if (val->type->is_boolean() && val->type->is_scalar())
1174 return val;
1175
1176 if (!*error_emitted) {
1177 YYLTYPE loc = expr->get_location();
1178 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1179 operand_name,
1180 parent_expr->operator_string(parent_expr->oper));
1181 *error_emitted = true;
1182 }
1183
1184 return new(ctx) ir_constant(true);
1185 }
1186
1187 /**
1188 * If name refers to a builtin array whose maximum allowed size is less than
1189 * size, report an error and return true. Otherwise return false.
1190 */
1191 void
1192 check_builtin_array_max_size(const char *name, unsigned size,
1193 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1194 {
1195 if ((strcmp("gl_TexCoord", name) == 0)
1196 && (size > state->Const.MaxTextureCoords)) {
1197 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1198 *
1199 * "The size [of gl_TexCoord] can be at most
1200 * gl_MaxTextureCoords."
1201 */
1202 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1203 "be larger than gl_MaxTextureCoords (%u)",
1204 state->Const.MaxTextureCoords);
1205 } else if (strcmp("gl_ClipDistance", name) == 0) {
1206 state->clip_dist_size = size;
1207 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1208 /* From section 7.1 (Vertex Shader Special Variables) of the
1209 * GLSL 1.30 spec:
1210 *
1211 * "The gl_ClipDistance array is predeclared as unsized and
1212 * must be sized by the shader either redeclaring it with a
1213 * size or indexing it only with integral constant
1214 * expressions. ... The size can be at most
1215 * gl_MaxClipDistances."
1216 */
1217 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1218 "be larger than gl_MaxClipDistances (%u)",
1219 state->Const.MaxClipPlanes);
1220 }
1221 } else if (strcmp("gl_CullDistance", name) == 0) {
1222 state->cull_dist_size = size;
1223 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1224 /* From the ARB_cull_distance spec:
1225 *
1226 * "The gl_CullDistance array is predeclared as unsized and
1227 * must be sized by the shader either redeclaring it with
1228 * a size or indexing it only with integral constant
1229 * expressions. The size determines the number and set of
1230 * enabled cull distances and can be at most
1231 * gl_MaxCullDistances."
1232 */
1233 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1234 "be larger than gl_MaxCullDistances (%u)",
1235 state->Const.MaxClipPlanes);
1236 }
1237 }
1238 }
1239
1240 /**
1241 * Create the constant 1, of a which is appropriate for incrementing and
1242 * decrementing values of the given GLSL type. For example, if type is vec4,
1243 * this creates a constant value of 1.0 having type float.
1244 *
1245 * If the given type is invalid for increment and decrement operators, return
1246 * a floating point 1--the error will be detected later.
1247 */
1248 static ir_rvalue *
1249 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1250 {
1251 switch (type->base_type) {
1252 case GLSL_TYPE_UINT:
1253 return new(ctx) ir_constant((unsigned) 1);
1254 case GLSL_TYPE_INT:
1255 return new(ctx) ir_constant(1);
1256 default:
1257 case GLSL_TYPE_FLOAT:
1258 return new(ctx) ir_constant(1.0f);
1259 }
1260 }
1261
1262 ir_rvalue *
1263 ast_expression::hir(exec_list *instructions,
1264 struct _mesa_glsl_parse_state *state)
1265 {
1266 return do_hir(instructions, state, true);
1267 }
1268
1269 void
1270 ast_expression::hir_no_rvalue(exec_list *instructions,
1271 struct _mesa_glsl_parse_state *state)
1272 {
1273 do_hir(instructions, state, false);
1274 }
1275
1276 void
1277 ast_expression::set_is_lhs(bool new_value)
1278 {
1279 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1280 * if we lack an identifier we can just skip it.
1281 */
1282 if (this->primary_expression.identifier == NULL)
1283 return;
1284
1285 this->is_lhs = new_value;
1286
1287 /* We need to go through the subexpressions tree to cover cases like
1288 * ast_field_selection
1289 */
1290 if (this->subexpressions[0] != NULL)
1291 this->subexpressions[0]->set_is_lhs(new_value);
1292 }
1293
1294 ir_rvalue *
1295 ast_expression::do_hir(exec_list *instructions,
1296 struct _mesa_glsl_parse_state *state,
1297 bool needs_rvalue)
1298 {
1299 void *ctx = state;
1300 static const int operations[AST_NUM_OPERATORS] = {
1301 -1, /* ast_assign doesn't convert to ir_expression. */
1302 -1, /* ast_plus doesn't convert to ir_expression. */
1303 ir_unop_neg,
1304 ir_binop_add,
1305 ir_binop_sub,
1306 ir_binop_mul,
1307 ir_binop_div,
1308 ir_binop_mod,
1309 ir_binop_lshift,
1310 ir_binop_rshift,
1311 ir_binop_less,
1312 ir_binop_greater,
1313 ir_binop_lequal,
1314 ir_binop_gequal,
1315 ir_binop_all_equal,
1316 ir_binop_any_nequal,
1317 ir_binop_bit_and,
1318 ir_binop_bit_xor,
1319 ir_binop_bit_or,
1320 ir_unop_bit_not,
1321 ir_binop_logic_and,
1322 ir_binop_logic_xor,
1323 ir_binop_logic_or,
1324 ir_unop_logic_not,
1325
1326 /* Note: The following block of expression types actually convert
1327 * to multiple IR instructions.
1328 */
1329 ir_binop_mul, /* ast_mul_assign */
1330 ir_binop_div, /* ast_div_assign */
1331 ir_binop_mod, /* ast_mod_assign */
1332 ir_binop_add, /* ast_add_assign */
1333 ir_binop_sub, /* ast_sub_assign */
1334 ir_binop_lshift, /* ast_ls_assign */
1335 ir_binop_rshift, /* ast_rs_assign */
1336 ir_binop_bit_and, /* ast_and_assign */
1337 ir_binop_bit_xor, /* ast_xor_assign */
1338 ir_binop_bit_or, /* ast_or_assign */
1339
1340 -1, /* ast_conditional doesn't convert to ir_expression. */
1341 ir_binop_add, /* ast_pre_inc. */
1342 ir_binop_sub, /* ast_pre_dec. */
1343 ir_binop_add, /* ast_post_inc. */
1344 ir_binop_sub, /* ast_post_dec. */
1345 -1, /* ast_field_selection doesn't conv to ir_expression. */
1346 -1, /* ast_array_index doesn't convert to ir_expression. */
1347 -1, /* ast_function_call doesn't conv to ir_expression. */
1348 -1, /* ast_identifier doesn't convert to ir_expression. */
1349 -1, /* ast_int_constant doesn't convert to ir_expression. */
1350 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1351 -1, /* ast_float_constant doesn't conv to ir_expression. */
1352 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1353 -1, /* ast_sequence doesn't convert to ir_expression. */
1354 -1, /* ast_aggregate shouldn't ever even get here. */
1355 };
1356 ir_rvalue *result = NULL;
1357 ir_rvalue *op[3];
1358 const struct glsl_type *type, *orig_type;
1359 bool error_emitted = false;
1360 YYLTYPE loc;
1361
1362 loc = this->get_location();
1363
1364 switch (this->oper) {
1365 case ast_aggregate:
1366 assert(!"ast_aggregate: Should never get here.");
1367 break;
1368
1369 case ast_assign: {
1370 this->subexpressions[0]->set_is_lhs(true);
1371 op[0] = this->subexpressions[0]->hir(instructions, state);
1372 op[1] = this->subexpressions[1]->hir(instructions, state);
1373
1374 error_emitted =
1375 do_assignment(instructions, state,
1376 this->subexpressions[0]->non_lvalue_description,
1377 op[0], op[1], &result, needs_rvalue, false,
1378 this->subexpressions[0]->get_location());
1379 break;
1380 }
1381
1382 case ast_plus:
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384
1385 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1386
1387 error_emitted = type->is_error();
1388
1389 result = op[0];
1390 break;
1391
1392 case ast_neg:
1393 op[0] = this->subexpressions[0]->hir(instructions, state);
1394
1395 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1396
1397 error_emitted = type->is_error();
1398
1399 result = new(ctx) ir_expression(operations[this->oper], type,
1400 op[0], NULL);
1401 break;
1402
1403 case ast_add:
1404 case ast_sub:
1405 case ast_mul:
1406 case ast_div:
1407 op[0] = this->subexpressions[0]->hir(instructions, state);
1408 op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410 type = arithmetic_result_type(op[0], op[1],
1411 (this->oper == ast_mul),
1412 state, & loc);
1413 error_emitted = type->is_error();
1414
1415 result = new(ctx) ir_expression(operations[this->oper], type,
1416 op[0], op[1]);
1417 break;
1418
1419 case ast_mod:
1420 op[0] = this->subexpressions[0]->hir(instructions, state);
1421 op[1] = this->subexpressions[1]->hir(instructions, state);
1422
1423 type = modulus_result_type(op[0], op[1], state, &loc);
1424
1425 assert(operations[this->oper] == ir_binop_mod);
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], op[1]);
1429 error_emitted = type->is_error();
1430 break;
1431
1432 case ast_lshift:
1433 case ast_rshift:
1434 if (!state->check_bitwise_operations_allowed(&loc)) {
1435 error_emitted = true;
1436 }
1437
1438 op[0] = this->subexpressions[0]->hir(instructions, state);
1439 op[1] = this->subexpressions[1]->hir(instructions, state);
1440 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1441 &loc);
1442 result = new(ctx) ir_expression(operations[this->oper], type,
1443 op[0], op[1]);
1444 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1445 break;
1446
1447 case ast_less:
1448 case ast_greater:
1449 case ast_lequal:
1450 case ast_gequal:
1451 op[0] = this->subexpressions[0]->hir(instructions, state);
1452 op[1] = this->subexpressions[1]->hir(instructions, state);
1453
1454 type = relational_result_type(op[0], op[1], state, & loc);
1455
1456 /* The relational operators must either generate an error or result
1457 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1458 */
1459 assert(type->is_error()
1460 || ((type->base_type == GLSL_TYPE_BOOL)
1461 && type->is_scalar()));
1462
1463 result = new(ctx) ir_expression(operations[this->oper], type,
1464 op[0], op[1]);
1465 error_emitted = type->is_error();
1466 break;
1467
1468 case ast_nequal:
1469 case ast_equal:
1470 op[0] = this->subexpressions[0]->hir(instructions, state);
1471 op[1] = this->subexpressions[1]->hir(instructions, state);
1472
1473 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1474 *
1475 * "The equality operators equal (==), and not equal (!=)
1476 * operate on all types. They result in a scalar Boolean. If
1477 * the operand types do not match, then there must be a
1478 * conversion from Section 4.1.10 "Implicit Conversions"
1479 * applied to one operand that can make them match, in which
1480 * case this conversion is done."
1481 */
1482
1483 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1484 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1485 "no operation `%1$s' exists that takes a left-hand "
1486 "operand of type 'void' or a right operand of type "
1487 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1488 error_emitted = true;
1489 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1490 && !apply_implicit_conversion(op[1]->type, op[0], state))
1491 || (op[0]->type != op[1]->type)) {
1492 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1493 "type", (this->oper == ast_equal) ? "==" : "!=");
1494 error_emitted = true;
1495 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1496 !state->check_version(120, 300, &loc,
1497 "array comparisons forbidden")) {
1498 error_emitted = true;
1499 } else if ((op[0]->type->contains_subroutine() ||
1500 op[1]->type->contains_subroutine())) {
1501 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1502 error_emitted = true;
1503 } else if ((op[0]->type->contains_opaque() ||
1504 op[1]->type->contains_opaque())) {
1505 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1506 error_emitted = true;
1507 }
1508
1509 if (error_emitted) {
1510 result = new(ctx) ir_constant(false);
1511 } else {
1512 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1513 assert(result->type == glsl_type::bool_type);
1514 }
1515 break;
1516
1517 case ast_bit_and:
1518 case ast_bit_xor:
1519 case ast_bit_or:
1520 op[0] = this->subexpressions[0]->hir(instructions, state);
1521 op[1] = this->subexpressions[1]->hir(instructions, state);
1522 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1523 result = new(ctx) ir_expression(operations[this->oper], type,
1524 op[0], op[1]);
1525 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1526 break;
1527
1528 case ast_bit_not:
1529 op[0] = this->subexpressions[0]->hir(instructions, state);
1530
1531 if (!state->check_bitwise_operations_allowed(&loc)) {
1532 error_emitted = true;
1533 }
1534
1535 if (!op[0]->type->is_integer()) {
1536 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1537 error_emitted = true;
1538 }
1539
1540 type = error_emitted ? glsl_type::error_type : op[0]->type;
1541 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1542 break;
1543
1544 case ast_logic_and: {
1545 exec_list rhs_instructions;
1546 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1547 "LHS", &error_emitted);
1548 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1549 "RHS", &error_emitted);
1550
1551 if (rhs_instructions.is_empty()) {
1552 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1553 type = result->type;
1554 } else {
1555 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1556 "and_tmp",
1557 ir_var_temporary);
1558 instructions->push_tail(tmp);
1559
1560 ir_if *const stmt = new(ctx) ir_if(op[0]);
1561 instructions->push_tail(stmt);
1562
1563 stmt->then_instructions.append_list(&rhs_instructions);
1564 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1565 ir_assignment *const then_assign =
1566 new(ctx) ir_assignment(then_deref, op[1]);
1567 stmt->then_instructions.push_tail(then_assign);
1568
1569 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1570 ir_assignment *const else_assign =
1571 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1572 stmt->else_instructions.push_tail(else_assign);
1573
1574 result = new(ctx) ir_dereference_variable(tmp);
1575 type = tmp->type;
1576 }
1577 break;
1578 }
1579
1580 case ast_logic_or: {
1581 exec_list rhs_instructions;
1582 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1583 "LHS", &error_emitted);
1584 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1585 "RHS", &error_emitted);
1586
1587 if (rhs_instructions.is_empty()) {
1588 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1589 type = result->type;
1590 } else {
1591 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1592 "or_tmp",
1593 ir_var_temporary);
1594 instructions->push_tail(tmp);
1595
1596 ir_if *const stmt = new(ctx) ir_if(op[0]);
1597 instructions->push_tail(stmt);
1598
1599 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1600 ir_assignment *const then_assign =
1601 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1602 stmt->then_instructions.push_tail(then_assign);
1603
1604 stmt->else_instructions.append_list(&rhs_instructions);
1605 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1606 ir_assignment *const else_assign =
1607 new(ctx) ir_assignment(else_deref, op[1]);
1608 stmt->else_instructions.push_tail(else_assign);
1609
1610 result = new(ctx) ir_dereference_variable(tmp);
1611 type = tmp->type;
1612 }
1613 break;
1614 }
1615
1616 case ast_logic_xor:
1617 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1618 *
1619 * "The logical binary operators and (&&), or ( | | ), and
1620 * exclusive or (^^). They operate only on two Boolean
1621 * expressions and result in a Boolean expression."
1622 */
1623 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1624 &error_emitted);
1625 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1626 &error_emitted);
1627
1628 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1629 op[0], op[1]);
1630 break;
1631
1632 case ast_logic_not:
1633 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1634 "operand", &error_emitted);
1635
1636 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1637 op[0], NULL);
1638 break;
1639
1640 case ast_mul_assign:
1641 case ast_div_assign:
1642 case ast_add_assign:
1643 case ast_sub_assign: {
1644 this->subexpressions[0]->set_is_lhs(true);
1645 op[0] = this->subexpressions[0]->hir(instructions, state);
1646 op[1] = this->subexpressions[1]->hir(instructions, state);
1647
1648 orig_type = op[0]->type;
1649 type = arithmetic_result_type(op[0], op[1],
1650 (this->oper == ast_mul_assign),
1651 state, & loc);
1652
1653 if (type != orig_type) {
1654 _mesa_glsl_error(& loc, state,
1655 "could not implicitly convert "
1656 "%s to %s", type->name, orig_type->name);
1657 type = glsl_type::error_type;
1658 }
1659
1660 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1661 op[0], op[1]);
1662
1663 error_emitted =
1664 do_assignment(instructions, state,
1665 this->subexpressions[0]->non_lvalue_description,
1666 op[0]->clone(ctx, NULL), temp_rhs,
1667 &result, needs_rvalue, false,
1668 this->subexpressions[0]->get_location());
1669
1670 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1671 * explicitly test for this because none of the binary expression
1672 * operators allow array operands either.
1673 */
1674
1675 break;
1676 }
1677
1678 case ast_mod_assign: {
1679 this->subexpressions[0]->set_is_lhs(true);
1680 op[0] = this->subexpressions[0]->hir(instructions, state);
1681 op[1] = this->subexpressions[1]->hir(instructions, state);
1682
1683 orig_type = op[0]->type;
1684 type = modulus_result_type(op[0], op[1], state, &loc);
1685
1686 if (type != orig_type) {
1687 _mesa_glsl_error(& loc, state,
1688 "could not implicitly convert "
1689 "%s to %s", type->name, orig_type->name);
1690 type = glsl_type::error_type;
1691 }
1692
1693 assert(operations[this->oper] == ir_binop_mod);
1694
1695 ir_rvalue *temp_rhs;
1696 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1697 op[0], op[1]);
1698
1699 error_emitted =
1700 do_assignment(instructions, state,
1701 this->subexpressions[0]->non_lvalue_description,
1702 op[0]->clone(ctx, NULL), temp_rhs,
1703 &result, needs_rvalue, false,
1704 this->subexpressions[0]->get_location());
1705 break;
1706 }
1707
1708 case ast_ls_assign:
1709 case ast_rs_assign: {
1710 this->subexpressions[0]->set_is_lhs(true);
1711 op[0] = this->subexpressions[0]->hir(instructions, state);
1712 op[1] = this->subexpressions[1]->hir(instructions, state);
1713 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1714 &loc);
1715 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1716 type, op[0], op[1]);
1717 error_emitted =
1718 do_assignment(instructions, state,
1719 this->subexpressions[0]->non_lvalue_description,
1720 op[0]->clone(ctx, NULL), temp_rhs,
1721 &result, needs_rvalue, false,
1722 this->subexpressions[0]->get_location());
1723 break;
1724 }
1725
1726 case ast_and_assign:
1727 case ast_xor_assign:
1728 case ast_or_assign: {
1729 this->subexpressions[0]->set_is_lhs(true);
1730 op[0] = this->subexpressions[0]->hir(instructions, state);
1731 op[1] = this->subexpressions[1]->hir(instructions, state);
1732
1733 orig_type = op[0]->type;
1734 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1735
1736 if (type != orig_type) {
1737 _mesa_glsl_error(& loc, state,
1738 "could not implicitly convert "
1739 "%s to %s", type->name, orig_type->name);
1740 type = glsl_type::error_type;
1741 }
1742
1743 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1744 type, op[0], op[1]);
1745 error_emitted =
1746 do_assignment(instructions, state,
1747 this->subexpressions[0]->non_lvalue_description,
1748 op[0]->clone(ctx, NULL), temp_rhs,
1749 &result, needs_rvalue, false,
1750 this->subexpressions[0]->get_location());
1751 break;
1752 }
1753
1754 case ast_conditional: {
1755 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1756 *
1757 * "The ternary selection operator (?:). It operates on three
1758 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1759 * first expression, which must result in a scalar Boolean."
1760 */
1761 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1762 "condition", &error_emitted);
1763
1764 /* The :? operator is implemented by generating an anonymous temporary
1765 * followed by an if-statement. The last instruction in each branch of
1766 * the if-statement assigns a value to the anonymous temporary. This
1767 * temporary is the r-value of the expression.
1768 */
1769 exec_list then_instructions;
1770 exec_list else_instructions;
1771
1772 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1773 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1774
1775 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1776 *
1777 * "The second and third expressions can be any type, as
1778 * long their types match, or there is a conversion in
1779 * Section 4.1.10 "Implicit Conversions" that can be applied
1780 * to one of the expressions to make their types match. This
1781 * resulting matching type is the type of the entire
1782 * expression."
1783 */
1784 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1785 && !apply_implicit_conversion(op[2]->type, op[1], state))
1786 || (op[1]->type != op[2]->type)) {
1787 YYLTYPE loc = this->subexpressions[1]->get_location();
1788
1789 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1790 "operator must have matching types");
1791 error_emitted = true;
1792 type = glsl_type::error_type;
1793 } else {
1794 type = op[1]->type;
1795 }
1796
1797 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1798 *
1799 * "The second and third expressions must be the same type, but can
1800 * be of any type other than an array."
1801 */
1802 if (type->is_array() &&
1803 !state->check_version(120, 300, &loc,
1804 "second and third operands of ?: operator "
1805 "cannot be arrays")) {
1806 error_emitted = true;
1807 }
1808
1809 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1810 *
1811 * "Except for array indexing, structure member selection, and
1812 * parentheses, opaque variables are not allowed to be operands in
1813 * expressions; such use results in a compile-time error."
1814 */
1815 if (type->contains_opaque()) {
1816 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1817 "of the ?: operator");
1818 error_emitted = true;
1819 }
1820
1821 ir_constant *cond_val = op[0]->constant_expression_value();
1822
1823 if (then_instructions.is_empty()
1824 && else_instructions.is_empty()
1825 && cond_val != NULL) {
1826 result = cond_val->value.b[0] ? op[1] : op[2];
1827 } else {
1828 /* The copy to conditional_tmp reads the whole array. */
1829 if (type->is_array()) {
1830 mark_whole_array_access(op[1]);
1831 mark_whole_array_access(op[2]);
1832 }
1833
1834 ir_variable *const tmp =
1835 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1836 instructions->push_tail(tmp);
1837
1838 ir_if *const stmt = new(ctx) ir_if(op[0]);
1839 instructions->push_tail(stmt);
1840
1841 then_instructions.move_nodes_to(& stmt->then_instructions);
1842 ir_dereference *const then_deref =
1843 new(ctx) ir_dereference_variable(tmp);
1844 ir_assignment *const then_assign =
1845 new(ctx) ir_assignment(then_deref, op[1]);
1846 stmt->then_instructions.push_tail(then_assign);
1847
1848 else_instructions.move_nodes_to(& stmt->else_instructions);
1849 ir_dereference *const else_deref =
1850 new(ctx) ir_dereference_variable(tmp);
1851 ir_assignment *const else_assign =
1852 new(ctx) ir_assignment(else_deref, op[2]);
1853 stmt->else_instructions.push_tail(else_assign);
1854
1855 result = new(ctx) ir_dereference_variable(tmp);
1856 }
1857 break;
1858 }
1859
1860 case ast_pre_inc:
1861 case ast_pre_dec: {
1862 this->non_lvalue_description = (this->oper == ast_pre_inc)
1863 ? "pre-increment operation" : "pre-decrement operation";
1864
1865 op[0] = this->subexpressions[0]->hir(instructions, state);
1866 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1867
1868 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1869
1870 ir_rvalue *temp_rhs;
1871 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1872 op[0], op[1]);
1873
1874 error_emitted =
1875 do_assignment(instructions, state,
1876 this->subexpressions[0]->non_lvalue_description,
1877 op[0]->clone(ctx, NULL), temp_rhs,
1878 &result, needs_rvalue, false,
1879 this->subexpressions[0]->get_location());
1880 break;
1881 }
1882
1883 case ast_post_inc:
1884 case ast_post_dec: {
1885 this->non_lvalue_description = (this->oper == ast_post_inc)
1886 ? "post-increment operation" : "post-decrement operation";
1887 op[0] = this->subexpressions[0]->hir(instructions, state);
1888 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1889
1890 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1891
1892 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1893
1894 ir_rvalue *temp_rhs;
1895 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1896 op[0], op[1]);
1897
1898 /* Get a temporary of a copy of the lvalue before it's modified.
1899 * This may get thrown away later.
1900 */
1901 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1902
1903 ir_rvalue *junk_rvalue;
1904 error_emitted =
1905 do_assignment(instructions, state,
1906 this->subexpressions[0]->non_lvalue_description,
1907 op[0]->clone(ctx, NULL), temp_rhs,
1908 &junk_rvalue, false, false,
1909 this->subexpressions[0]->get_location());
1910
1911 break;
1912 }
1913
1914 case ast_field_selection:
1915 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1916 break;
1917
1918 case ast_array_index: {
1919 YYLTYPE index_loc = subexpressions[1]->get_location();
1920
1921 /* Getting if an array is being used uninitialized is beyond what we get
1922 * from ir_value.data.assigned. Setting is_lhs as true would force to
1923 * not raise a uninitialized warning when using an array
1924 */
1925 subexpressions[0]->set_is_lhs(true);
1926 op[0] = subexpressions[0]->hir(instructions, state);
1927 op[1] = subexpressions[1]->hir(instructions, state);
1928
1929 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1930 loc, index_loc);
1931
1932 if (result->type->is_error())
1933 error_emitted = true;
1934
1935 break;
1936 }
1937
1938 case ast_unsized_array_dim:
1939 assert(!"ast_unsized_array_dim: Should never get here.");
1940 break;
1941
1942 case ast_function_call:
1943 /* Should *NEVER* get here. ast_function_call should always be handled
1944 * by ast_function_expression::hir.
1945 */
1946 assert(0);
1947 break;
1948
1949 case ast_identifier: {
1950 /* ast_identifier can appear several places in a full abstract syntax
1951 * tree. This particular use must be at location specified in the grammar
1952 * as 'variable_identifier'.
1953 */
1954 ir_variable *var =
1955 state->symbols->get_variable(this->primary_expression.identifier);
1956
1957 if (var == NULL) {
1958 /* the identifier might be a subroutine name */
1959 char *sub_name;
1960 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1961 var = state->symbols->get_variable(sub_name);
1962 ralloc_free(sub_name);
1963 }
1964
1965 if (var != NULL) {
1966 var->data.used = true;
1967 result = new(ctx) ir_dereference_variable(var);
1968
1969 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1970 && !this->is_lhs
1971 && result->variable_referenced()->data.assigned != true
1972 && !is_gl_identifier(var->name)) {
1973 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1974 this->primary_expression.identifier);
1975 }
1976 } else {
1977 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1978 this->primary_expression.identifier);
1979
1980 result = ir_rvalue::error_value(ctx);
1981 error_emitted = true;
1982 }
1983 break;
1984 }
1985
1986 case ast_int_constant:
1987 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1988 break;
1989
1990 case ast_uint_constant:
1991 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1992 break;
1993
1994 case ast_float_constant:
1995 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1996 break;
1997
1998 case ast_bool_constant:
1999 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2000 break;
2001
2002 case ast_double_constant:
2003 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2004 break;
2005
2006 case ast_sequence: {
2007 /* It should not be possible to generate a sequence in the AST without
2008 * any expressions in it.
2009 */
2010 assert(!this->expressions.is_empty());
2011
2012 /* The r-value of a sequence is the last expression in the sequence. If
2013 * the other expressions in the sequence do not have side-effects (and
2014 * therefore add instructions to the instruction list), they get dropped
2015 * on the floor.
2016 */
2017 exec_node *previous_tail = NULL;
2018 YYLTYPE previous_operand_loc = loc;
2019
2020 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2021 /* If one of the operands of comma operator does not generate any
2022 * code, we want to emit a warning. At each pass through the loop
2023 * previous_tail will point to the last instruction in the stream
2024 * *before* processing the previous operand. Naturally,
2025 * instructions->get_tail_raw() will point to the last instruction in
2026 * the stream *after* processing the previous operand. If the two
2027 * pointers match, then the previous operand had no effect.
2028 *
2029 * The warning behavior here differs slightly from GCC. GCC will
2030 * only emit a warning if none of the left-hand operands have an
2031 * effect. However, it will emit a warning for each. I believe that
2032 * there are some cases in C (especially with GCC extensions) where
2033 * it is useful to have an intermediate step in a sequence have no
2034 * effect, but I don't think these cases exist in GLSL. Either way,
2035 * it would be a giant hassle to replicate that behavior.
2036 */
2037 if (previous_tail == instructions->get_tail_raw()) {
2038 _mesa_glsl_warning(&previous_operand_loc, state,
2039 "left-hand operand of comma expression has "
2040 "no effect");
2041 }
2042
2043 /* The tail is directly accessed instead of using the get_tail()
2044 * method for performance reasons. get_tail() has extra code to
2045 * return NULL when the list is empty. We don't care about that
2046 * here, so using get_tail_raw() is fine.
2047 */
2048 previous_tail = instructions->get_tail_raw();
2049 previous_operand_loc = ast->get_location();
2050
2051 result = ast->hir(instructions, state);
2052 }
2053
2054 /* Any errors should have already been emitted in the loop above.
2055 */
2056 error_emitted = true;
2057 break;
2058 }
2059 }
2060 type = NULL; /* use result->type, not type. */
2061 assert(result != NULL || !needs_rvalue);
2062
2063 if (result && result->type->is_error() && !error_emitted)
2064 _mesa_glsl_error(& loc, state, "type mismatch");
2065
2066 return result;
2067 }
2068
2069 bool
2070 ast_expression::has_sequence_subexpression() const
2071 {
2072 switch (this->oper) {
2073 case ast_plus:
2074 case ast_neg:
2075 case ast_bit_not:
2076 case ast_logic_not:
2077 case ast_pre_inc:
2078 case ast_pre_dec:
2079 case ast_post_inc:
2080 case ast_post_dec:
2081 return this->subexpressions[0]->has_sequence_subexpression();
2082
2083 case ast_assign:
2084 case ast_add:
2085 case ast_sub:
2086 case ast_mul:
2087 case ast_div:
2088 case ast_mod:
2089 case ast_lshift:
2090 case ast_rshift:
2091 case ast_less:
2092 case ast_greater:
2093 case ast_lequal:
2094 case ast_gequal:
2095 case ast_nequal:
2096 case ast_equal:
2097 case ast_bit_and:
2098 case ast_bit_xor:
2099 case ast_bit_or:
2100 case ast_logic_and:
2101 case ast_logic_or:
2102 case ast_logic_xor:
2103 case ast_array_index:
2104 case ast_mul_assign:
2105 case ast_div_assign:
2106 case ast_add_assign:
2107 case ast_sub_assign:
2108 case ast_mod_assign:
2109 case ast_ls_assign:
2110 case ast_rs_assign:
2111 case ast_and_assign:
2112 case ast_xor_assign:
2113 case ast_or_assign:
2114 return this->subexpressions[0]->has_sequence_subexpression() ||
2115 this->subexpressions[1]->has_sequence_subexpression();
2116
2117 case ast_conditional:
2118 return this->subexpressions[0]->has_sequence_subexpression() ||
2119 this->subexpressions[1]->has_sequence_subexpression() ||
2120 this->subexpressions[2]->has_sequence_subexpression();
2121
2122 case ast_sequence:
2123 return true;
2124
2125 case ast_field_selection:
2126 case ast_identifier:
2127 case ast_int_constant:
2128 case ast_uint_constant:
2129 case ast_float_constant:
2130 case ast_bool_constant:
2131 case ast_double_constant:
2132 return false;
2133
2134 case ast_aggregate:
2135 return false;
2136
2137 case ast_function_call:
2138 unreachable("should be handled by ast_function_expression::hir");
2139
2140 case ast_unsized_array_dim:
2141 unreachable("ast_unsized_array_dim: Should never get here.");
2142 }
2143
2144 return false;
2145 }
2146
2147 ir_rvalue *
2148 ast_expression_statement::hir(exec_list *instructions,
2149 struct _mesa_glsl_parse_state *state)
2150 {
2151 /* It is possible to have expression statements that don't have an
2152 * expression. This is the solitary semicolon:
2153 *
2154 * for (i = 0; i < 5; i++)
2155 * ;
2156 *
2157 * In this case the expression will be NULL. Test for NULL and don't do
2158 * anything in that case.
2159 */
2160 if (expression != NULL)
2161 expression->hir_no_rvalue(instructions, state);
2162
2163 /* Statements do not have r-values.
2164 */
2165 return NULL;
2166 }
2167
2168
2169 ir_rvalue *
2170 ast_compound_statement::hir(exec_list *instructions,
2171 struct _mesa_glsl_parse_state *state)
2172 {
2173 if (new_scope)
2174 state->symbols->push_scope();
2175
2176 foreach_list_typed (ast_node, ast, link, &this->statements)
2177 ast->hir(instructions, state);
2178
2179 if (new_scope)
2180 state->symbols->pop_scope();
2181
2182 /* Compound statements do not have r-values.
2183 */
2184 return NULL;
2185 }
2186
2187 /**
2188 * Evaluate the given exec_node (which should be an ast_node representing
2189 * a single array dimension) and return its integer value.
2190 */
2191 static unsigned
2192 process_array_size(exec_node *node,
2193 struct _mesa_glsl_parse_state *state)
2194 {
2195 exec_list dummy_instructions;
2196
2197 ast_node *array_size = exec_node_data(ast_node, node, link);
2198
2199 /**
2200 * Dimensions other than the outermost dimension can by unsized if they
2201 * are immediately sized by a constructor or initializer.
2202 */
2203 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2204 return 0;
2205
2206 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2207 YYLTYPE loc = array_size->get_location();
2208
2209 if (ir == NULL) {
2210 _mesa_glsl_error(& loc, state,
2211 "array size could not be resolved");
2212 return 0;
2213 }
2214
2215 if (!ir->type->is_integer()) {
2216 _mesa_glsl_error(& loc, state,
2217 "array size must be integer type");
2218 return 0;
2219 }
2220
2221 if (!ir->type->is_scalar()) {
2222 _mesa_glsl_error(& loc, state,
2223 "array size must be scalar type");
2224 return 0;
2225 }
2226
2227 ir_constant *const size = ir->constant_expression_value();
2228 if (size == NULL ||
2229 (state->is_version(120, 300) &&
2230 array_size->has_sequence_subexpression())) {
2231 _mesa_glsl_error(& loc, state, "array size must be a "
2232 "constant valued expression");
2233 return 0;
2234 }
2235
2236 if (size->value.i[0] <= 0) {
2237 _mesa_glsl_error(& loc, state, "array size must be > 0");
2238 return 0;
2239 }
2240
2241 assert(size->type == ir->type);
2242
2243 /* If the array size is const (and we've verified that
2244 * it is) then no instructions should have been emitted
2245 * when we converted it to HIR. If they were emitted,
2246 * then either the array size isn't const after all, or
2247 * we are emitting unnecessary instructions.
2248 */
2249 assert(dummy_instructions.is_empty());
2250
2251 return size->value.u[0];
2252 }
2253
2254 static const glsl_type *
2255 process_array_type(YYLTYPE *loc, const glsl_type *base,
2256 ast_array_specifier *array_specifier,
2257 struct _mesa_glsl_parse_state *state)
2258 {
2259 const glsl_type *array_type = base;
2260
2261 if (array_specifier != NULL) {
2262 if (base->is_array()) {
2263
2264 /* From page 19 (page 25) of the GLSL 1.20 spec:
2265 *
2266 * "Only one-dimensional arrays may be declared."
2267 */
2268 if (!state->check_arrays_of_arrays_allowed(loc)) {
2269 return glsl_type::error_type;
2270 }
2271 }
2272
2273 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2274 !node->is_head_sentinel(); node = node->prev) {
2275 unsigned array_size = process_array_size(node, state);
2276 array_type = glsl_type::get_array_instance(array_type, array_size);
2277 }
2278 }
2279
2280 return array_type;
2281 }
2282
2283 static bool
2284 precision_qualifier_allowed(const glsl_type *type)
2285 {
2286 /* Precision qualifiers apply to floating point, integer and opaque
2287 * types.
2288 *
2289 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2290 * "Any floating point or any integer declaration can have the type
2291 * preceded by one of these precision qualifiers [...] Literal
2292 * constants do not have precision qualifiers. Neither do Boolean
2293 * variables.
2294 *
2295 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2296 * spec also says:
2297 *
2298 * "Precision qualifiers are added for code portability with OpenGL
2299 * ES, not for functionality. They have the same syntax as in OpenGL
2300 * ES."
2301 *
2302 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2303 *
2304 * "uniform lowp sampler2D sampler;
2305 * highp vec2 coord;
2306 * ...
2307 * lowp vec4 col = texture2D (sampler, coord);
2308 * // texture2D returns lowp"
2309 *
2310 * From this, we infer that GLSL 1.30 (and later) should allow precision
2311 * qualifiers on sampler types just like float and integer types.
2312 */
2313 const glsl_type *const t = type->without_array();
2314
2315 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2316 !t->is_record();
2317 }
2318
2319 const glsl_type *
2320 ast_type_specifier::glsl_type(const char **name,
2321 struct _mesa_glsl_parse_state *state) const
2322 {
2323 const struct glsl_type *type;
2324
2325 type = state->symbols->get_type(this->type_name);
2326 *name = this->type_name;
2327
2328 YYLTYPE loc = this->get_location();
2329 type = process_array_type(&loc, type, this->array_specifier, state);
2330
2331 return type;
2332 }
2333
2334 /**
2335 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2336 *
2337 * "The precision statement
2338 *
2339 * precision precision-qualifier type;
2340 *
2341 * can be used to establish a default precision qualifier. The type field can
2342 * be either int or float or any of the sampler types, (...) If type is float,
2343 * the directive applies to non-precision-qualified floating point type
2344 * (scalar, vector, and matrix) declarations. If type is int, the directive
2345 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2346 * and unsigned) declarations."
2347 *
2348 * We use the symbol table to keep the values of the default precisions for
2349 * each 'type' in each scope and we use the 'type' string from the precision
2350 * statement as key in the symbol table. When we want to retrieve the default
2351 * precision associated with a given glsl_type we need to know the type string
2352 * associated with it. This is what this function returns.
2353 */
2354 static const char *
2355 get_type_name_for_precision_qualifier(const glsl_type *type)
2356 {
2357 switch (type->base_type) {
2358 case GLSL_TYPE_FLOAT:
2359 return "float";
2360 case GLSL_TYPE_UINT:
2361 case GLSL_TYPE_INT:
2362 return "int";
2363 case GLSL_TYPE_ATOMIC_UINT:
2364 return "atomic_uint";
2365 case GLSL_TYPE_IMAGE:
2366 /* fallthrough */
2367 case GLSL_TYPE_SAMPLER: {
2368 const unsigned type_idx =
2369 type->sampler_array + 2 * type->sampler_shadow;
2370 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2371 assert(type_idx < 4);
2372 switch (type->sampled_type) {
2373 case GLSL_TYPE_FLOAT:
2374 switch (type->sampler_dimensionality) {
2375 case GLSL_SAMPLER_DIM_1D: {
2376 assert(type->base_type == GLSL_TYPE_SAMPLER);
2377 static const char *const names[4] = {
2378 "sampler1D", "sampler1DArray",
2379 "sampler1DShadow", "sampler1DArrayShadow"
2380 };
2381 return names[type_idx];
2382 }
2383 case GLSL_SAMPLER_DIM_2D: {
2384 static const char *const names[8] = {
2385 "sampler2D", "sampler2DArray",
2386 "sampler2DShadow", "sampler2DArrayShadow",
2387 "image2D", "image2DArray", NULL, NULL
2388 };
2389 return names[offset + type_idx];
2390 }
2391 case GLSL_SAMPLER_DIM_3D: {
2392 static const char *const names[8] = {
2393 "sampler3D", NULL, NULL, NULL,
2394 "image3D", NULL, NULL, NULL
2395 };
2396 return names[offset + type_idx];
2397 }
2398 case GLSL_SAMPLER_DIM_CUBE: {
2399 static const char *const names[8] = {
2400 "samplerCube", "samplerCubeArray",
2401 "samplerCubeShadow", "samplerCubeArrayShadow",
2402 "imageCube", NULL, NULL, NULL
2403 };
2404 return names[offset + type_idx];
2405 }
2406 case GLSL_SAMPLER_DIM_MS: {
2407 assert(type->base_type == GLSL_TYPE_SAMPLER);
2408 static const char *const names[4] = {
2409 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2410 };
2411 return names[type_idx];
2412 }
2413 case GLSL_SAMPLER_DIM_RECT: {
2414 assert(type->base_type == GLSL_TYPE_SAMPLER);
2415 static const char *const names[4] = {
2416 "samplerRect", NULL, "samplerRectShadow", NULL
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_BUF: {
2421 static const char *const names[8] = {
2422 "samplerBuffer", NULL, NULL, NULL,
2423 "imageBuffer", NULL, NULL, NULL
2424 };
2425 return names[offset + type_idx];
2426 }
2427 case GLSL_SAMPLER_DIM_EXTERNAL: {
2428 assert(type->base_type == GLSL_TYPE_SAMPLER);
2429 static const char *const names[4] = {
2430 "samplerExternalOES", NULL, NULL, NULL
2431 };
2432 return names[type_idx];
2433 }
2434 default:
2435 unreachable("Unsupported sampler/image dimensionality");
2436 } /* sampler/image float dimensionality */
2437 break;
2438 case GLSL_TYPE_INT:
2439 switch (type->sampler_dimensionality) {
2440 case GLSL_SAMPLER_DIM_1D: {
2441 assert(type->base_type == GLSL_TYPE_SAMPLER);
2442 static const char *const names[4] = {
2443 "isampler1D", "isampler1DArray", NULL, NULL
2444 };
2445 return names[type_idx];
2446 }
2447 case GLSL_SAMPLER_DIM_2D: {
2448 static const char *const names[8] = {
2449 "isampler2D", "isampler2DArray", NULL, NULL,
2450 "iimage2D", "iimage2DArray", NULL, NULL
2451 };
2452 return names[offset + type_idx];
2453 }
2454 case GLSL_SAMPLER_DIM_3D: {
2455 static const char *const names[8] = {
2456 "isampler3D", NULL, NULL, NULL,
2457 "iimage3D", NULL, NULL, NULL
2458 };
2459 return names[offset + type_idx];
2460 }
2461 case GLSL_SAMPLER_DIM_CUBE: {
2462 static const char *const names[8] = {
2463 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2464 "iimageCube", NULL, NULL, NULL
2465 };
2466 return names[offset + type_idx];
2467 }
2468 case GLSL_SAMPLER_DIM_MS: {
2469 assert(type->base_type == GLSL_TYPE_SAMPLER);
2470 static const char *const names[4] = {
2471 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2472 };
2473 return names[type_idx];
2474 }
2475 case GLSL_SAMPLER_DIM_RECT: {
2476 assert(type->base_type == GLSL_TYPE_SAMPLER);
2477 static const char *const names[4] = {
2478 "isamplerRect", NULL, "isamplerRectShadow", NULL
2479 };
2480 return names[type_idx];
2481 }
2482 case GLSL_SAMPLER_DIM_BUF: {
2483 static const char *const names[8] = {
2484 "isamplerBuffer", NULL, NULL, NULL,
2485 "iimageBuffer", NULL, NULL, NULL
2486 };
2487 return names[offset + type_idx];
2488 }
2489 default:
2490 unreachable("Unsupported isampler/iimage dimensionality");
2491 } /* sampler/image int dimensionality */
2492 break;
2493 case GLSL_TYPE_UINT:
2494 switch (type->sampler_dimensionality) {
2495 case GLSL_SAMPLER_DIM_1D: {
2496 assert(type->base_type == GLSL_TYPE_SAMPLER);
2497 static const char *const names[4] = {
2498 "usampler1D", "usampler1DArray", NULL, NULL
2499 };
2500 return names[type_idx];
2501 }
2502 case GLSL_SAMPLER_DIM_2D: {
2503 static const char *const names[8] = {
2504 "usampler2D", "usampler2DArray", NULL, NULL,
2505 "uimage2D", "uimage2DArray", NULL, NULL
2506 };
2507 return names[offset + type_idx];
2508 }
2509 case GLSL_SAMPLER_DIM_3D: {
2510 static const char *const names[8] = {
2511 "usampler3D", NULL, NULL, NULL,
2512 "uimage3D", NULL, NULL, NULL
2513 };
2514 return names[offset + type_idx];
2515 }
2516 case GLSL_SAMPLER_DIM_CUBE: {
2517 static const char *const names[8] = {
2518 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2519 "uimageCube", NULL, NULL, NULL
2520 };
2521 return names[offset + type_idx];
2522 }
2523 case GLSL_SAMPLER_DIM_MS: {
2524 assert(type->base_type == GLSL_TYPE_SAMPLER);
2525 static const char *const names[4] = {
2526 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2527 };
2528 return names[type_idx];
2529 }
2530 case GLSL_SAMPLER_DIM_RECT: {
2531 assert(type->base_type == GLSL_TYPE_SAMPLER);
2532 static const char *const names[4] = {
2533 "usamplerRect", NULL, "usamplerRectShadow", NULL
2534 };
2535 return names[type_idx];
2536 }
2537 case GLSL_SAMPLER_DIM_BUF: {
2538 static const char *const names[8] = {
2539 "usamplerBuffer", NULL, NULL, NULL,
2540 "uimageBuffer", NULL, NULL, NULL
2541 };
2542 return names[offset + type_idx];
2543 }
2544 default:
2545 unreachable("Unsupported usampler/uimage dimensionality");
2546 } /* sampler/image uint dimensionality */
2547 break;
2548 default:
2549 unreachable("Unsupported sampler/image type");
2550 } /* sampler/image type */
2551 break;
2552 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2553 break;
2554 default:
2555 unreachable("Unsupported type");
2556 } /* base type */
2557 }
2558
2559 static unsigned
2560 select_gles_precision(unsigned qual_precision,
2561 const glsl_type *type,
2562 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2563 {
2564 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2565 * In GLES we take the precision from the type qualifier if present,
2566 * otherwise, if the type of the variable allows precision qualifiers at
2567 * all, we look for the default precision qualifier for that type in the
2568 * current scope.
2569 */
2570 assert(state->es_shader);
2571
2572 unsigned precision = GLSL_PRECISION_NONE;
2573 if (qual_precision) {
2574 precision = qual_precision;
2575 } else if (precision_qualifier_allowed(type)) {
2576 const char *type_name =
2577 get_type_name_for_precision_qualifier(type->without_array());
2578 assert(type_name != NULL);
2579
2580 precision =
2581 state->symbols->get_default_precision_qualifier(type_name);
2582 if (precision == ast_precision_none) {
2583 _mesa_glsl_error(loc, state,
2584 "No precision specified in this scope for type `%s'",
2585 type->name);
2586 }
2587 }
2588
2589
2590 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2591 *
2592 * "The default precision of all atomic types is highp. It is an error to
2593 * declare an atomic type with a different precision or to specify the
2594 * default precision for an atomic type to be lowp or mediump."
2595 */
2596 if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2597 precision != ast_precision_high) {
2598 _mesa_glsl_error(loc, state,
2599 "atomic_uint can only have highp precision qualifier");
2600 }
2601
2602 return precision;
2603 }
2604
2605 const glsl_type *
2606 ast_fully_specified_type::glsl_type(const char **name,
2607 struct _mesa_glsl_parse_state *state) const
2608 {
2609 return this->specifier->glsl_type(name, state);
2610 }
2611
2612 /**
2613 * Determine whether a toplevel variable declaration declares a varying. This
2614 * function operates by examining the variable's mode and the shader target,
2615 * so it correctly identifies linkage variables regardless of whether they are
2616 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2617 *
2618 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2619 * this function will produce undefined results.
2620 */
2621 static bool
2622 is_varying_var(ir_variable *var, gl_shader_stage target)
2623 {
2624 switch (target) {
2625 case MESA_SHADER_VERTEX:
2626 return var->data.mode == ir_var_shader_out;
2627 case MESA_SHADER_FRAGMENT:
2628 return var->data.mode == ir_var_shader_in;
2629 default:
2630 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2631 }
2632 }
2633
2634
2635 /**
2636 * Matrix layout qualifiers are only allowed on certain types
2637 */
2638 static void
2639 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2640 YYLTYPE *loc,
2641 const glsl_type *type,
2642 ir_variable *var)
2643 {
2644 if (var && !var->is_in_buffer_block()) {
2645 /* Layout qualifiers may only apply to interface blocks and fields in
2646 * them.
2647 */
2648 _mesa_glsl_error(loc, state,
2649 "uniform block layout qualifiers row_major and "
2650 "column_major may not be applied to variables "
2651 "outside of uniform blocks");
2652 } else if (!type->without_array()->is_matrix()) {
2653 /* The OpenGL ES 3.0 conformance tests did not originally allow
2654 * matrix layout qualifiers on non-matrices. However, the OpenGL
2655 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2656 * amended to specifically allow these layouts on all types. Emit
2657 * a warning so that people know their code may not be portable.
2658 */
2659 _mesa_glsl_warning(loc, state,
2660 "uniform block layout qualifiers row_major and "
2661 "column_major applied to non-matrix types may "
2662 "be rejected by older compilers");
2663 }
2664 }
2665
2666 static bool
2667 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2668 struct _mesa_glsl_parse_state *state,
2669 unsigned xfb_buffer) {
2670 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2671 _mesa_glsl_error(loc, state,
2672 "invalid xfb_buffer specified %d is larger than "
2673 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2674 xfb_buffer,
2675 state->Const.MaxTransformFeedbackBuffers - 1);
2676 return false;
2677 }
2678
2679 return true;
2680 }
2681
2682 /* From the ARB_enhanced_layouts spec:
2683 *
2684 * "Variables and block members qualified with *xfb_offset* can be
2685 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2686 * The offset must be a multiple of the size of the first component of
2687 * the first qualified variable or block member, or a compile-time error
2688 * results. Further, if applied to an aggregate containing a double,
2689 * the offset must also be a multiple of 8, and the space taken in the
2690 * buffer will be a multiple of 8.
2691 */
2692 static bool
2693 validate_xfb_offset_qualifier(YYLTYPE *loc,
2694 struct _mesa_glsl_parse_state *state,
2695 int xfb_offset, const glsl_type *type,
2696 unsigned component_size) {
2697 const glsl_type *t_without_array = type->without_array();
2698
2699 if (xfb_offset != -1 && type->is_unsized_array()) {
2700 _mesa_glsl_error(loc, state,
2701 "xfb_offset can't be used with unsized arrays.");
2702 return false;
2703 }
2704
2705 /* Make sure nested structs don't contain unsized arrays, and validate
2706 * any xfb_offsets on interface members.
2707 */
2708 if (t_without_array->is_record() || t_without_array->is_interface())
2709 for (unsigned int i = 0; i < t_without_array->length; i++) {
2710 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2711
2712 /* When the interface block doesn't have an xfb_offset qualifier then
2713 * we apply the component size rules at the member level.
2714 */
2715 if (xfb_offset == -1)
2716 component_size = member_t->contains_double() ? 8 : 4;
2717
2718 int xfb_offset = t_without_array->fields.structure[i].offset;
2719 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2720 component_size);
2721 }
2722
2723 /* Nested structs or interface block without offset may not have had an
2724 * offset applied yet so return.
2725 */
2726 if (xfb_offset == -1) {
2727 return true;
2728 }
2729
2730 if (xfb_offset % component_size) {
2731 _mesa_glsl_error(loc, state,
2732 "invalid qualifier xfb_offset=%d must be a multiple "
2733 "of the first component size of the first qualified "
2734 "variable or block member. Or double if an aggregate "
2735 "that contains a double (%d).",
2736 xfb_offset, component_size);
2737 return false;
2738 }
2739
2740 return true;
2741 }
2742
2743 static bool
2744 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2745 unsigned stream)
2746 {
2747 if (stream >= state->ctx->Const.MaxVertexStreams) {
2748 _mesa_glsl_error(loc, state,
2749 "invalid stream specified %d is larger than "
2750 "MAX_VERTEX_STREAMS - 1 (%d).",
2751 stream, state->ctx->Const.MaxVertexStreams - 1);
2752 return false;
2753 }
2754
2755 return true;
2756 }
2757
2758 static void
2759 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2760 YYLTYPE *loc,
2761 ir_variable *var,
2762 const glsl_type *type,
2763 const ast_type_qualifier *qual)
2764 {
2765 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2766 _mesa_glsl_error(loc, state,
2767 "the \"binding\" qualifier only applies to uniforms and "
2768 "shader storage buffer objects");
2769 return;
2770 }
2771
2772 unsigned qual_binding;
2773 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2774 &qual_binding)) {
2775 return;
2776 }
2777
2778 const struct gl_context *const ctx = state->ctx;
2779 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2780 unsigned max_index = qual_binding + elements - 1;
2781 const glsl_type *base_type = type->without_array();
2782
2783 if (base_type->is_interface()) {
2784 /* UBOs. From page 60 of the GLSL 4.20 specification:
2785 * "If the binding point for any uniform block instance is less than zero,
2786 * or greater than or equal to the implementation-dependent maximum
2787 * number of uniform buffer bindings, a compilation error will occur.
2788 * When the binding identifier is used with a uniform block instanced as
2789 * an array of size N, all elements of the array from binding through
2790 * binding + N – 1 must be within this range."
2791 *
2792 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2793 */
2794 if (qual->flags.q.uniform &&
2795 max_index >= ctx->Const.MaxUniformBufferBindings) {
2796 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2797 "the maximum number of UBO binding points (%d)",
2798 qual_binding, elements,
2799 ctx->Const.MaxUniformBufferBindings);
2800 return;
2801 }
2802
2803 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2804 * "If the binding point for any uniform or shader storage block instance
2805 * is less than zero, or greater than or equal to the
2806 * implementation-dependent maximum number of uniform buffer bindings, a
2807 * compile-time error will occur. When the binding identifier is used
2808 * with a uniform or shader storage block instanced as an array of size
2809 * N, all elements of the array from binding through binding + N – 1 must
2810 * be within this range."
2811 */
2812 if (qual->flags.q.buffer &&
2813 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2814 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2815 "the maximum number of SSBO binding points (%d)",
2816 qual_binding, elements,
2817 ctx->Const.MaxShaderStorageBufferBindings);
2818 return;
2819 }
2820 } else if (base_type->is_sampler()) {
2821 /* Samplers. From page 63 of the GLSL 4.20 specification:
2822 * "If the binding is less than zero, or greater than or equal to the
2823 * implementation-dependent maximum supported number of units, a
2824 * compilation error will occur. When the binding identifier is used
2825 * with an array of size N, all elements of the array from binding
2826 * through binding + N - 1 must be within this range."
2827 */
2828 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2829
2830 if (max_index >= limit) {
2831 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2832 "exceeds the maximum number of texture image units "
2833 "(%u)", qual_binding, elements, limit);
2834
2835 return;
2836 }
2837 } else if (base_type->contains_atomic()) {
2838 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2839 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2840 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2841 " maximum number of atomic counter buffer bindings"
2842 "(%u)", qual_binding,
2843 ctx->Const.MaxAtomicBufferBindings);
2844
2845 return;
2846 }
2847 } else if ((state->is_version(420, 310) ||
2848 state->ARB_shading_language_420pack_enable) &&
2849 base_type->is_image()) {
2850 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2851 if (max_index >= ctx->Const.MaxImageUnits) {
2852 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2853 " maximum number of image units (%d)", max_index,
2854 ctx->Const.MaxImageUnits);
2855 return;
2856 }
2857
2858 } else {
2859 _mesa_glsl_error(loc, state,
2860 "the \"binding\" qualifier only applies to uniform "
2861 "blocks, opaque variables, or arrays thereof");
2862 return;
2863 }
2864
2865 var->data.explicit_binding = true;
2866 var->data.binding = qual_binding;
2867
2868 return;
2869 }
2870
2871
2872 static void
2873 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2874 YYLTYPE *loc,
2875 const glsl_interp_mode interpolation,
2876 const struct ast_type_qualifier *qual,
2877 const struct glsl_type *var_type,
2878 ir_variable_mode mode)
2879 {
2880 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2881 * not to vertex shader inputs nor fragment shader outputs.
2882 *
2883 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2884 * "Outputs from a vertex shader (out) and inputs to a fragment
2885 * shader (in) can be further qualified with one or more of these
2886 * interpolation qualifiers"
2887 * ...
2888 * "These interpolation qualifiers may only precede the qualifiers in,
2889 * centroid in, out, or centroid out in a declaration. They do not apply
2890 * to the deprecated storage qualifiers varying or centroid
2891 * varying. They also do not apply to inputs into a vertex shader or
2892 * outputs from a fragment shader."
2893 *
2894 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2895 * "Outputs from a shader (out) and inputs to a shader (in) can be
2896 * further qualified with one of these interpolation qualifiers."
2897 * ...
2898 * "These interpolation qualifiers may only precede the qualifiers
2899 * in, centroid in, out, or centroid out in a declaration. They do
2900 * not apply to inputs into a vertex shader or outputs from a
2901 * fragment shader."
2902 */
2903 if (state->is_version(130, 300)
2904 && interpolation != INTERP_MODE_NONE) {
2905 const char *i = interpolation_string(interpolation);
2906 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2907 _mesa_glsl_error(loc, state,
2908 "interpolation qualifier `%s' can only be applied to "
2909 "shader inputs or outputs.", i);
2910
2911 switch (state->stage) {
2912 case MESA_SHADER_VERTEX:
2913 if (mode == ir_var_shader_in) {
2914 _mesa_glsl_error(loc, state,
2915 "interpolation qualifier '%s' cannot be applied to "
2916 "vertex shader inputs", i);
2917 }
2918 break;
2919 case MESA_SHADER_FRAGMENT:
2920 if (mode == ir_var_shader_out) {
2921 _mesa_glsl_error(loc, state,
2922 "interpolation qualifier '%s' cannot be applied to "
2923 "fragment shader outputs", i);
2924 }
2925 break;
2926 default:
2927 break;
2928 }
2929 }
2930
2931 /* Interpolation qualifiers cannot be applied to 'centroid' and
2932 * 'centroid varying'.
2933 *
2934 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2935 * "interpolation qualifiers may only precede the qualifiers in,
2936 * centroid in, out, or centroid out in a declaration. They do not apply
2937 * to the deprecated storage qualifiers varying or centroid varying."
2938 *
2939 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2940 */
2941 if (state->is_version(130, 0)
2942 && interpolation != INTERP_MODE_NONE
2943 && qual->flags.q.varying) {
2944
2945 const char *i = interpolation_string(interpolation);
2946 const char *s;
2947 if (qual->flags.q.centroid)
2948 s = "centroid varying";
2949 else
2950 s = "varying";
2951
2952 _mesa_glsl_error(loc, state,
2953 "qualifier '%s' cannot be applied to the "
2954 "deprecated storage qualifier '%s'", i, s);
2955 }
2956
2957 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2958 * so must integer vertex outputs.
2959 *
2960 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2961 * "Fragment shader inputs that are signed or unsigned integers or
2962 * integer vectors must be qualified with the interpolation qualifier
2963 * flat."
2964 *
2965 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2966 * "Fragment shader inputs that are, or contain, signed or unsigned
2967 * integers or integer vectors must be qualified with the
2968 * interpolation qualifier flat."
2969 *
2970 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2971 * "Vertex shader outputs that are, or contain, signed or unsigned
2972 * integers or integer vectors must be qualified with the
2973 * interpolation qualifier flat."
2974 *
2975 * Note that prior to GLSL 1.50, this requirement applied to vertex
2976 * outputs rather than fragment inputs. That creates problems in the
2977 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2978 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2979 * apply the restriction to both vertex outputs and fragment inputs.
2980 *
2981 * Note also that the desktop GLSL specs are missing the text "or
2982 * contain"; this is presumably an oversight, since there is no
2983 * reasonable way to interpolate a fragment shader input that contains
2984 * an integer. See Khronos bug #15671.
2985 */
2986 if (state->is_version(130, 300)
2987 && var_type->contains_integer()
2988 && interpolation != INTERP_MODE_FLAT
2989 && state->stage == MESA_SHADER_FRAGMENT
2990 && mode == ir_var_shader_in) {
2991 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2992 "an integer, then it must be qualified with 'flat'");
2993 }
2994
2995 /* Double fragment inputs must be qualified with 'flat'.
2996 *
2997 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2998 * "This extension does not support interpolation of double-precision
2999 * values; doubles used as fragment shader inputs must be qualified as
3000 * "flat"."
3001 *
3002 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3003 * "Fragment shader inputs that are signed or unsigned integers, integer
3004 * vectors, or any double-precision floating-point type must be
3005 * qualified with the interpolation qualifier flat."
3006 *
3007 * Note that the GLSL specs are missing the text "or contain"; this is
3008 * presumably an oversight. See Khronos bug #15671.
3009 *
3010 * The 'double' type does not exist in GLSL ES so far.
3011 */
3012 if (state->has_double()
3013 && var_type->contains_double()
3014 && interpolation != INTERP_MODE_FLAT
3015 && state->stage == MESA_SHADER_FRAGMENT
3016 && mode == ir_var_shader_in) {
3017 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3018 "a double, then it must be qualified with 'flat'");
3019 }
3020 }
3021
3022 static glsl_interp_mode
3023 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3024 const struct glsl_type *var_type,
3025 ir_variable_mode mode,
3026 struct _mesa_glsl_parse_state *state,
3027 YYLTYPE *loc)
3028 {
3029 glsl_interp_mode interpolation;
3030 if (qual->flags.q.flat)
3031 interpolation = INTERP_MODE_FLAT;
3032 else if (qual->flags.q.noperspective)
3033 interpolation = INTERP_MODE_NOPERSPECTIVE;
3034 else if (qual->flags.q.smooth)
3035 interpolation = INTERP_MODE_SMOOTH;
3036 else if (state->es_shader &&
3037 ((mode == ir_var_shader_in &&
3038 state->stage != MESA_SHADER_VERTEX) ||
3039 (mode == ir_var_shader_out &&
3040 state->stage != MESA_SHADER_FRAGMENT)))
3041 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3042 *
3043 * "When no interpolation qualifier is present, smooth interpolation
3044 * is used."
3045 */
3046 interpolation = INTERP_MODE_SMOOTH;
3047 else
3048 interpolation = INTERP_MODE_NONE;
3049
3050 validate_interpolation_qualifier(state, loc,
3051 interpolation,
3052 qual, var_type, mode);
3053
3054 return interpolation;
3055 }
3056
3057
3058 static void
3059 apply_explicit_location(const struct ast_type_qualifier *qual,
3060 ir_variable *var,
3061 struct _mesa_glsl_parse_state *state,
3062 YYLTYPE *loc)
3063 {
3064 bool fail = false;
3065
3066 unsigned qual_location;
3067 if (!process_qualifier_constant(state, loc, "location", qual->location,
3068 &qual_location)) {
3069 return;
3070 }
3071
3072 /* Checks for GL_ARB_explicit_uniform_location. */
3073 if (qual->flags.q.uniform) {
3074 if (!state->check_explicit_uniform_location_allowed(loc, var))
3075 return;
3076
3077 const struct gl_context *const ctx = state->ctx;
3078 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3079
3080 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3081 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3082 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3083 ctx->Const.MaxUserAssignableUniformLocations);
3084 return;
3085 }
3086
3087 var->data.explicit_location = true;
3088 var->data.location = qual_location;
3089 return;
3090 }
3091
3092 /* Between GL_ARB_explicit_attrib_location an
3093 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3094 * stage can be assigned explicit locations. The checking here associates
3095 * the correct extension with the correct stage's input / output:
3096 *
3097 * input output
3098 * ----- ------
3099 * vertex explicit_loc sso
3100 * tess control sso sso
3101 * tess eval sso sso
3102 * geometry sso sso
3103 * fragment sso explicit_loc
3104 */
3105 switch (state->stage) {
3106 case MESA_SHADER_VERTEX:
3107 if (var->data.mode == ir_var_shader_in) {
3108 if (!state->check_explicit_attrib_location_allowed(loc, var))
3109 return;
3110
3111 break;
3112 }
3113
3114 if (var->data.mode == ir_var_shader_out) {
3115 if (!state->check_separate_shader_objects_allowed(loc, var))
3116 return;
3117
3118 break;
3119 }
3120
3121 fail = true;
3122 break;
3123
3124 case MESA_SHADER_TESS_CTRL:
3125 case MESA_SHADER_TESS_EVAL:
3126 case MESA_SHADER_GEOMETRY:
3127 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3128 if (!state->check_separate_shader_objects_allowed(loc, var))
3129 return;
3130
3131 break;
3132 }
3133
3134 fail = true;
3135 break;
3136
3137 case MESA_SHADER_FRAGMENT:
3138 if (var->data.mode == ir_var_shader_in) {
3139 if (!state->check_separate_shader_objects_allowed(loc, var))
3140 return;
3141
3142 break;
3143 }
3144
3145 if (var->data.mode == ir_var_shader_out) {
3146 if (!state->check_explicit_attrib_location_allowed(loc, var))
3147 return;
3148
3149 break;
3150 }
3151
3152 fail = true;
3153 break;
3154
3155 case MESA_SHADER_COMPUTE:
3156 _mesa_glsl_error(loc, state,
3157 "compute shader variables cannot be given "
3158 "explicit locations");
3159 return;
3160 };
3161
3162 if (fail) {
3163 _mesa_glsl_error(loc, state,
3164 "%s cannot be given an explicit location in %s shader",
3165 mode_string(var),
3166 _mesa_shader_stage_to_string(state->stage));
3167 } else {
3168 var->data.explicit_location = true;
3169
3170 switch (state->stage) {
3171 case MESA_SHADER_VERTEX:
3172 var->data.location = (var->data.mode == ir_var_shader_in)
3173 ? (qual_location + VERT_ATTRIB_GENERIC0)
3174 : (qual_location + VARYING_SLOT_VAR0);
3175 break;
3176
3177 case MESA_SHADER_TESS_CTRL:
3178 case MESA_SHADER_TESS_EVAL:
3179 case MESA_SHADER_GEOMETRY:
3180 if (var->data.patch)
3181 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3182 else
3183 var->data.location = qual_location + VARYING_SLOT_VAR0;
3184 break;
3185
3186 case MESA_SHADER_FRAGMENT:
3187 var->data.location = (var->data.mode == ir_var_shader_out)
3188 ? (qual_location + FRAG_RESULT_DATA0)
3189 : (qual_location + VARYING_SLOT_VAR0);
3190 break;
3191 case MESA_SHADER_COMPUTE:
3192 assert(!"Unexpected shader type");
3193 break;
3194 }
3195
3196 /* Check if index was set for the uniform instead of the function */
3197 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3198 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3199 "used with subroutine functions");
3200 return;
3201 }
3202
3203 unsigned qual_index;
3204 if (qual->flags.q.explicit_index &&
3205 process_qualifier_constant(state, loc, "index", qual->index,
3206 &qual_index)) {
3207 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3208 * Layout Qualifiers):
3209 *
3210 * "It is also a compile-time error if a fragment shader
3211 * sets a layout index to less than 0 or greater than 1."
3212 *
3213 * Older specifications don't mandate a behavior; we take
3214 * this as a clarification and always generate the error.
3215 */
3216 if (qual_index > 1) {
3217 _mesa_glsl_error(loc, state,
3218 "explicit index may only be 0 or 1");
3219 } else {
3220 var->data.explicit_index = true;
3221 var->data.index = qual_index;
3222 }
3223 }
3224 }
3225 }
3226
3227 static void
3228 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3229 ir_variable *var,
3230 struct _mesa_glsl_parse_state *state,
3231 YYLTYPE *loc)
3232 {
3233 const glsl_type *base_type = var->type->without_array();
3234
3235 if (base_type->is_image()) {
3236 if (var->data.mode != ir_var_uniform &&
3237 var->data.mode != ir_var_function_in) {
3238 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3239 "function parameters or uniform-qualified "
3240 "global variables");
3241 }
3242
3243 var->data.image_read_only |= qual->flags.q.read_only;
3244 var->data.image_write_only |= qual->flags.q.write_only;
3245 var->data.image_coherent |= qual->flags.q.coherent;
3246 var->data.image_volatile |= qual->flags.q._volatile;
3247 var->data.image_restrict |= qual->flags.q.restrict_flag;
3248 var->data.read_only = true;
3249
3250 if (qual->flags.q.explicit_image_format) {
3251 if (var->data.mode == ir_var_function_in) {
3252 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3253 "used on image function parameters");
3254 }
3255
3256 if (qual->image_base_type != base_type->sampled_type) {
3257 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3258 "base data type of the image");
3259 }
3260
3261 var->data.image_format = qual->image_format;
3262 } else {
3263 if (var->data.mode == ir_var_uniform) {
3264 if (state->es_shader) {
3265 _mesa_glsl_error(loc, state, "all image uniforms "
3266 "must have a format layout qualifier");
3267
3268 } else if (!qual->flags.q.write_only) {
3269 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3270 "`writeonly' must have a format layout "
3271 "qualifier");
3272 }
3273 }
3274
3275 var->data.image_format = GL_NONE;
3276 }
3277
3278 /* From page 70 of the GLSL ES 3.1 specification:
3279 *
3280 * "Except for image variables qualified with the format qualifiers
3281 * r32f, r32i, and r32ui, image variables must specify either memory
3282 * qualifier readonly or the memory qualifier writeonly."
3283 */
3284 if (state->es_shader &&
3285 var->data.image_format != GL_R32F &&
3286 var->data.image_format != GL_R32I &&
3287 var->data.image_format != GL_R32UI &&
3288 !var->data.image_read_only &&
3289 !var->data.image_write_only) {
3290 _mesa_glsl_error(loc, state, "image variables of format other than "
3291 "r32f, r32i or r32ui must be qualified `readonly' or "
3292 "`writeonly'");
3293 }
3294
3295 } else if (qual->flags.q.read_only ||
3296 qual->flags.q.write_only ||
3297 qual->flags.q.coherent ||
3298 qual->flags.q._volatile ||
3299 qual->flags.q.restrict_flag ||
3300 qual->flags.q.explicit_image_format) {
3301 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3302 "images");
3303 }
3304 }
3305
3306 static inline const char*
3307 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3308 {
3309 if (origin_upper_left && pixel_center_integer)
3310 return "origin_upper_left, pixel_center_integer";
3311 else if (origin_upper_left)
3312 return "origin_upper_left";
3313 else if (pixel_center_integer)
3314 return "pixel_center_integer";
3315 else
3316 return " ";
3317 }
3318
3319 static inline bool
3320 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3321 const struct ast_type_qualifier *qual)
3322 {
3323 /* If gl_FragCoord was previously declared, and the qualifiers were
3324 * different in any way, return true.
3325 */
3326 if (state->fs_redeclares_gl_fragcoord) {
3327 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3328 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3329 }
3330
3331 return false;
3332 }
3333
3334 static inline void
3335 validate_array_dimensions(const glsl_type *t,
3336 struct _mesa_glsl_parse_state *state,
3337 YYLTYPE *loc) {
3338 if (t->is_array()) {
3339 t = t->fields.array;
3340 while (t->is_array()) {
3341 if (t->is_unsized_array()) {
3342 _mesa_glsl_error(loc, state,
3343 "only the outermost array dimension can "
3344 "be unsized",
3345 t->name);
3346 break;
3347 }
3348 t = t->fields.array;
3349 }
3350 }
3351 }
3352
3353 static void
3354 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3355 ir_variable *var,
3356 struct _mesa_glsl_parse_state *state,
3357 YYLTYPE *loc)
3358 {
3359 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3360
3361 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3362 *
3363 * "Within any shader, the first redeclarations of gl_FragCoord
3364 * must appear before any use of gl_FragCoord."
3365 *
3366 * Generate a compiler error if above condition is not met by the
3367 * fragment shader.
3368 */
3369 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3370 if (earlier != NULL &&
3371 earlier->data.used &&
3372 !state->fs_redeclares_gl_fragcoord) {
3373 _mesa_glsl_error(loc, state,
3374 "gl_FragCoord used before its first redeclaration "
3375 "in fragment shader");
3376 }
3377
3378 /* Make sure all gl_FragCoord redeclarations specify the same layout
3379 * qualifiers.
3380 */
3381 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3382 const char *const qual_string =
3383 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3384 qual->flags.q.pixel_center_integer);
3385
3386 const char *const state_string =
3387 get_layout_qualifier_string(state->fs_origin_upper_left,
3388 state->fs_pixel_center_integer);
3389
3390 _mesa_glsl_error(loc, state,
3391 "gl_FragCoord redeclared with different layout "
3392 "qualifiers (%s) and (%s) ",
3393 state_string,
3394 qual_string);
3395 }
3396 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3397 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3398 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3399 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3400 state->fs_redeclares_gl_fragcoord =
3401 state->fs_origin_upper_left ||
3402 state->fs_pixel_center_integer ||
3403 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3404 }
3405
3406 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3407 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3408 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3409 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3410 const char *const qual_string = (qual->flags.q.origin_upper_left)
3411 ? "origin_upper_left" : "pixel_center_integer";
3412
3413 _mesa_glsl_error(loc, state,
3414 "layout qualifier `%s' can only be applied to "
3415 "fragment shader input `gl_FragCoord'",
3416 qual_string);
3417 }
3418
3419 if (qual->flags.q.explicit_location) {
3420 apply_explicit_location(qual, var, state, loc);
3421
3422 if (qual->flags.q.explicit_component) {
3423 unsigned qual_component;
3424 if (process_qualifier_constant(state, loc, "component",
3425 qual->component, &qual_component)) {
3426 const glsl_type *type = var->type->without_array();
3427 unsigned components = type->component_slots();
3428
3429 if (type->is_matrix() || type->is_record()) {
3430 _mesa_glsl_error(loc, state, "component layout qualifier "
3431 "cannot be applied to a matrix, a structure, "
3432 "a block, or an array containing any of "
3433 "these.");
3434 } else if (qual_component != 0 &&
3435 (qual_component + components - 1) > 3) {
3436 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3437 (qual_component + components - 1));
3438 } else if (qual_component == 1 && type->is_64bit()) {
3439 /* We don't bother checking for 3 as it should be caught by the
3440 * overflow check above.
3441 */
3442 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3443 "component 1 or 3");
3444 } else {
3445 var->data.explicit_component = true;
3446 var->data.location_frac = qual_component;
3447 }
3448 }
3449 }
3450 } else if (qual->flags.q.explicit_index) {
3451 if (!qual->flags.q.subroutine_def)
3452 _mesa_glsl_error(loc, state,
3453 "explicit index requires explicit location");
3454 } else if (qual->flags.q.explicit_component) {
3455 _mesa_glsl_error(loc, state,
3456 "explicit component requires explicit location");
3457 }
3458
3459 if (qual->flags.q.explicit_binding) {
3460 apply_explicit_binding(state, loc, var, var->type, qual);
3461 }
3462
3463 if (state->stage == MESA_SHADER_GEOMETRY &&
3464 qual->flags.q.out && qual->flags.q.stream) {
3465 unsigned qual_stream;
3466 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3467 &qual_stream) &&
3468 validate_stream_qualifier(loc, state, qual_stream)) {
3469 var->data.stream = qual_stream;
3470 }
3471 }
3472
3473 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3474 unsigned qual_xfb_buffer;
3475 if (process_qualifier_constant(state, loc, "xfb_buffer",
3476 qual->xfb_buffer, &qual_xfb_buffer) &&
3477 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3478 var->data.xfb_buffer = qual_xfb_buffer;
3479 if (qual->flags.q.explicit_xfb_buffer)
3480 var->data.explicit_xfb_buffer = true;
3481 }
3482 }
3483
3484 if (qual->flags.q.explicit_xfb_offset) {
3485 unsigned qual_xfb_offset;
3486 unsigned component_size = var->type->contains_double() ? 8 : 4;
3487
3488 if (process_qualifier_constant(state, loc, "xfb_offset",
3489 qual->offset, &qual_xfb_offset) &&
3490 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3491 var->type, component_size)) {
3492 var->data.offset = qual_xfb_offset;
3493 var->data.explicit_xfb_offset = true;
3494 }
3495 }
3496
3497 if (qual->flags.q.explicit_xfb_stride) {
3498 unsigned qual_xfb_stride;
3499 if (process_qualifier_constant(state, loc, "xfb_stride",
3500 qual->xfb_stride, &qual_xfb_stride)) {
3501 var->data.xfb_stride = qual_xfb_stride;
3502 var->data.explicit_xfb_stride = true;
3503 }
3504 }
3505
3506 if (var->type->contains_atomic()) {
3507 if (var->data.mode == ir_var_uniform) {
3508 if (var->data.explicit_binding) {
3509 unsigned *offset =
3510 &state->atomic_counter_offsets[var->data.binding];
3511
3512 if (*offset % ATOMIC_COUNTER_SIZE)
3513 _mesa_glsl_error(loc, state,
3514 "misaligned atomic counter offset");
3515
3516 var->data.offset = *offset;
3517 *offset += var->type->atomic_size();
3518
3519 } else {
3520 _mesa_glsl_error(loc, state,
3521 "atomic counters require explicit binding point");
3522 }
3523 } else if (var->data.mode != ir_var_function_in) {
3524 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3525 "function parameters or uniform-qualified "
3526 "global variables");
3527 }
3528 }
3529
3530 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3531 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3532 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3533 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3534 * These extensions and all following extensions that add the 'layout'
3535 * keyword have been modified to require the use of 'in' or 'out'.
3536 *
3537 * The following extension do not allow the deprecated keywords:
3538 *
3539 * GL_AMD_conservative_depth
3540 * GL_ARB_conservative_depth
3541 * GL_ARB_gpu_shader5
3542 * GL_ARB_separate_shader_objects
3543 * GL_ARB_tessellation_shader
3544 * GL_ARB_transform_feedback3
3545 * GL_ARB_uniform_buffer_object
3546 *
3547 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3548 * allow layout with the deprecated keywords.
3549 */
3550 const bool relaxed_layout_qualifier_checking =
3551 state->ARB_fragment_coord_conventions_enable;
3552
3553 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3554 || qual->flags.q.varying;
3555 if (qual->has_layout() && uses_deprecated_qualifier) {
3556 if (relaxed_layout_qualifier_checking) {
3557 _mesa_glsl_warning(loc, state,
3558 "`layout' qualifier may not be used with "
3559 "`attribute' or `varying'");
3560 } else {
3561 _mesa_glsl_error(loc, state,
3562 "`layout' qualifier may not be used with "
3563 "`attribute' or `varying'");
3564 }
3565 }
3566
3567 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3568 * AMD_conservative_depth.
3569 */
3570 int depth_layout_count = qual->flags.q.depth_any
3571 + qual->flags.q.depth_greater
3572 + qual->flags.q.depth_less
3573 + qual->flags.q.depth_unchanged;
3574 if (depth_layout_count > 0
3575 && !state->is_version(420, 0)
3576 && !state->AMD_conservative_depth_enable
3577 && !state->ARB_conservative_depth_enable) {
3578 _mesa_glsl_error(loc, state,
3579 "extension GL_AMD_conservative_depth or "
3580 "GL_ARB_conservative_depth must be enabled "
3581 "to use depth layout qualifiers");
3582 } else if (depth_layout_count > 0
3583 && strcmp(var->name, "gl_FragDepth") != 0) {
3584 _mesa_glsl_error(loc, state,
3585 "depth layout qualifiers can be applied only to "
3586 "gl_FragDepth");
3587 } else if (depth_layout_count > 1
3588 && strcmp(var->name, "gl_FragDepth") == 0) {
3589 _mesa_glsl_error(loc, state,
3590 "at most one depth layout qualifier can be applied to "
3591 "gl_FragDepth");
3592 }
3593 if (qual->flags.q.depth_any)
3594 var->data.depth_layout = ir_depth_layout_any;
3595 else if (qual->flags.q.depth_greater)
3596 var->data.depth_layout = ir_depth_layout_greater;
3597 else if (qual->flags.q.depth_less)
3598 var->data.depth_layout = ir_depth_layout_less;
3599 else if (qual->flags.q.depth_unchanged)
3600 var->data.depth_layout = ir_depth_layout_unchanged;
3601 else
3602 var->data.depth_layout = ir_depth_layout_none;
3603
3604 if (qual->flags.q.std140 ||
3605 qual->flags.q.std430 ||
3606 qual->flags.q.packed ||
3607 qual->flags.q.shared) {
3608 _mesa_glsl_error(loc, state,
3609 "uniform and shader storage block layout qualifiers "
3610 "std140, std430, packed, and shared can only be "
3611 "applied to uniform or shader storage blocks, not "
3612 "members");
3613 }
3614
3615 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3616 validate_matrix_layout_for_type(state, loc, var->type, var);
3617 }
3618
3619 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3620 * Inputs):
3621 *
3622 * "Fragment shaders also allow the following layout qualifier on in only
3623 * (not with variable declarations)
3624 * layout-qualifier-id
3625 * early_fragment_tests
3626 * [...]"
3627 */
3628 if (qual->flags.q.early_fragment_tests) {
3629 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3630 "valid in fragment shader input layout declaration.");
3631 }
3632 }
3633
3634 static void
3635 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3636 ir_variable *var,
3637 struct _mesa_glsl_parse_state *state,
3638 YYLTYPE *loc,
3639 bool is_parameter)
3640 {
3641 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3642
3643 if (qual->flags.q.invariant) {
3644 if (var->data.used) {
3645 _mesa_glsl_error(loc, state,
3646 "variable `%s' may not be redeclared "
3647 "`invariant' after being used",
3648 var->name);
3649 } else {
3650 var->data.invariant = 1;
3651 }
3652 }
3653
3654 if (qual->flags.q.precise) {
3655 if (var->data.used) {
3656 _mesa_glsl_error(loc, state,
3657 "variable `%s' may not be redeclared "
3658 "`precise' after being used",
3659 var->name);
3660 } else {
3661 var->data.precise = 1;
3662 }
3663 }
3664
3665 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3666 _mesa_glsl_error(loc, state,
3667 "`subroutine' may only be applied to uniforms, "
3668 "subroutine type declarations, or function definitions");
3669 }
3670
3671 if (qual->flags.q.constant || qual->flags.q.attribute
3672 || qual->flags.q.uniform
3673 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3674 var->data.read_only = 1;
3675
3676 if (qual->flags.q.centroid)
3677 var->data.centroid = 1;
3678
3679 if (qual->flags.q.sample)
3680 var->data.sample = 1;
3681
3682 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3683 if (state->es_shader) {
3684 var->data.precision =
3685 select_gles_precision(qual->precision, var->type, state, loc);
3686 }
3687
3688 if (qual->flags.q.patch)
3689 var->data.patch = 1;
3690
3691 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3692 var->type = glsl_type::error_type;
3693 _mesa_glsl_error(loc, state,
3694 "`attribute' variables may not be declared in the "
3695 "%s shader",
3696 _mesa_shader_stage_to_string(state->stage));
3697 }
3698
3699 /* Disallow layout qualifiers which may only appear on layout declarations. */
3700 if (qual->flags.q.prim_type) {
3701 _mesa_glsl_error(loc, state,
3702 "Primitive type may only be specified on GS input or output "
3703 "layout declaration, not on variables.");
3704 }
3705
3706 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3707 *
3708 * "However, the const qualifier cannot be used with out or inout."
3709 *
3710 * The same section of the GLSL 4.40 spec further clarifies this saying:
3711 *
3712 * "The const qualifier cannot be used with out or inout, or a
3713 * compile-time error results."
3714 */
3715 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3716 _mesa_glsl_error(loc, state,
3717 "`const' may not be applied to `out' or `inout' "
3718 "function parameters");
3719 }
3720
3721 /* If there is no qualifier that changes the mode of the variable, leave
3722 * the setting alone.
3723 */
3724 assert(var->data.mode != ir_var_temporary);
3725 if (qual->flags.q.in && qual->flags.q.out)
3726 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3727 else if (qual->flags.q.in)
3728 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3729 else if (qual->flags.q.attribute
3730 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3731 var->data.mode = ir_var_shader_in;
3732 else if (qual->flags.q.out)
3733 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3734 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3735 var->data.mode = ir_var_shader_out;
3736 else if (qual->flags.q.uniform)
3737 var->data.mode = ir_var_uniform;
3738 else if (qual->flags.q.buffer)
3739 var->data.mode = ir_var_shader_storage;
3740 else if (qual->flags.q.shared_storage)
3741 var->data.mode = ir_var_shader_shared;
3742
3743 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3744 qual->flags.q.in && qual->flags.q.out;
3745
3746 if (!is_parameter && is_varying_var(var, state->stage)) {
3747 /* User-defined ins/outs are not permitted in compute shaders. */
3748 if (state->stage == MESA_SHADER_COMPUTE) {
3749 _mesa_glsl_error(loc, state,
3750 "user-defined input and output variables are not "
3751 "permitted in compute shaders");
3752 }
3753
3754 /* This variable is being used to link data between shader stages (in
3755 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3756 * that is allowed for such purposes.
3757 *
3758 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3759 *
3760 * "The varying qualifier can be used only with the data types
3761 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3762 * these."
3763 *
3764 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3765 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3766 *
3767 * "Fragment inputs can only be signed and unsigned integers and
3768 * integer vectors, float, floating-point vectors, matrices, or
3769 * arrays of these. Structures cannot be input.
3770 *
3771 * Similar text exists in the section on vertex shader outputs.
3772 *
3773 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3774 * 3.00 spec allows structs as well. Varying structs are also allowed
3775 * in GLSL 1.50.
3776 */
3777 switch (var->type->get_scalar_type()->base_type) {
3778 case GLSL_TYPE_FLOAT:
3779 /* Ok in all GLSL versions */
3780 break;
3781 case GLSL_TYPE_UINT:
3782 case GLSL_TYPE_INT:
3783 if (state->is_version(130, 300))
3784 break;
3785 _mesa_glsl_error(loc, state,
3786 "varying variables must be of base type float in %s",
3787 state->get_version_string());
3788 break;
3789 case GLSL_TYPE_STRUCT:
3790 if (state->is_version(150, 300))
3791 break;
3792 _mesa_glsl_error(loc, state,
3793 "varying variables may not be of type struct");
3794 break;
3795 case GLSL_TYPE_DOUBLE:
3796 break;
3797 default:
3798 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3799 break;
3800 }
3801 }
3802
3803 if (state->all_invariant && (state->current_function == NULL)) {
3804 switch (state->stage) {
3805 case MESA_SHADER_VERTEX:
3806 if (var->data.mode == ir_var_shader_out)
3807 var->data.invariant = true;
3808 break;
3809 case MESA_SHADER_TESS_CTRL:
3810 case MESA_SHADER_TESS_EVAL:
3811 case MESA_SHADER_GEOMETRY:
3812 if ((var->data.mode == ir_var_shader_in)
3813 || (var->data.mode == ir_var_shader_out))
3814 var->data.invariant = true;
3815 break;
3816 case MESA_SHADER_FRAGMENT:
3817 if (var->data.mode == ir_var_shader_in)
3818 var->data.invariant = true;
3819 break;
3820 case MESA_SHADER_COMPUTE:
3821 /* Invariance isn't meaningful in compute shaders. */
3822 break;
3823 }
3824 }
3825
3826 var->data.interpolation =
3827 interpret_interpolation_qualifier(qual, var->type,
3828 (ir_variable_mode) var->data.mode,
3829 state, loc);
3830
3831 /* Does the declaration use the deprecated 'attribute' or 'varying'
3832 * keywords?
3833 */
3834 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3835 || qual->flags.q.varying;
3836
3837
3838 /* Validate auxiliary storage qualifiers */
3839
3840 /* From section 4.3.4 of the GLSL 1.30 spec:
3841 * "It is an error to use centroid in in a vertex shader."
3842 *
3843 * From section 4.3.4 of the GLSL ES 3.00 spec:
3844 * "It is an error to use centroid in or interpolation qualifiers in
3845 * a vertex shader input."
3846 */
3847
3848 /* Section 4.3.6 of the GLSL 1.30 specification states:
3849 * "It is an error to use centroid out in a fragment shader."
3850 *
3851 * The GL_ARB_shading_language_420pack extension specification states:
3852 * "It is an error to use auxiliary storage qualifiers or interpolation
3853 * qualifiers on an output in a fragment shader."
3854 */
3855 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3856 _mesa_glsl_error(loc, state,
3857 "sample qualifier may only be used on `in` or `out` "
3858 "variables between shader stages");
3859 }
3860 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3861 _mesa_glsl_error(loc, state,
3862 "centroid qualifier may only be used with `in', "
3863 "`out' or `varying' variables between shader stages");
3864 }
3865
3866 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3867 _mesa_glsl_error(loc, state,
3868 "the shared storage qualifiers can only be used with "
3869 "compute shaders");
3870 }
3871
3872 apply_image_qualifier_to_variable(qual, var, state, loc);
3873 }
3874
3875 /**
3876 * Get the variable that is being redeclared by this declaration
3877 *
3878 * Semantic checks to verify the validity of the redeclaration are also
3879 * performed. If semantic checks fail, compilation error will be emitted via
3880 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3881 *
3882 * \returns
3883 * A pointer to an existing variable in the current scope if the declaration
3884 * is a redeclaration, \c NULL otherwise.
3885 */
3886 static ir_variable *
3887 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3888 struct _mesa_glsl_parse_state *state,
3889 bool allow_all_redeclarations)
3890 {
3891 /* Check if this declaration is actually a re-declaration, either to
3892 * resize an array or add qualifiers to an existing variable.
3893 *
3894 * This is allowed for variables in the current scope, or when at
3895 * global scope (for built-ins in the implicit outer scope).
3896 */
3897 ir_variable *earlier = state->symbols->get_variable(var->name);
3898 if (earlier == NULL ||
3899 (state->current_function != NULL &&
3900 !state->symbols->name_declared_this_scope(var->name))) {
3901 return NULL;
3902 }
3903
3904
3905 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3906 *
3907 * "It is legal to declare an array without a size and then
3908 * later re-declare the same name as an array of the same
3909 * type and specify a size."
3910 */
3911 if (earlier->type->is_unsized_array() && var->type->is_array()
3912 && (var->type->fields.array == earlier->type->fields.array)) {
3913 /* FINISHME: This doesn't match the qualifiers on the two
3914 * FINISHME: declarations. It's not 100% clear whether this is
3915 * FINISHME: required or not.
3916 */
3917
3918 const int size = var->type->array_size();
3919 check_builtin_array_max_size(var->name, size, loc, state);
3920 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3921 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3922 "previous access",
3923 earlier->data.max_array_access);
3924 }
3925
3926 earlier->type = var->type;
3927 delete var;
3928 var = NULL;
3929 } else if ((state->ARB_fragment_coord_conventions_enable ||
3930 state->is_version(150, 0))
3931 && strcmp(var->name, "gl_FragCoord") == 0
3932 && earlier->type == var->type
3933 && var->data.mode == ir_var_shader_in) {
3934 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3935 * qualifiers.
3936 */
3937 earlier->data.origin_upper_left = var->data.origin_upper_left;
3938 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3939
3940 /* According to section 4.3.7 of the GLSL 1.30 spec,
3941 * the following built-in varaibles can be redeclared with an
3942 * interpolation qualifier:
3943 * * gl_FrontColor
3944 * * gl_BackColor
3945 * * gl_FrontSecondaryColor
3946 * * gl_BackSecondaryColor
3947 * * gl_Color
3948 * * gl_SecondaryColor
3949 */
3950 } else if (state->is_version(130, 0)
3951 && (strcmp(var->name, "gl_FrontColor") == 0
3952 || strcmp(var->name, "gl_BackColor") == 0
3953 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3954 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3955 || strcmp(var->name, "gl_Color") == 0
3956 || strcmp(var->name, "gl_SecondaryColor") == 0)
3957 && earlier->type == var->type
3958 && earlier->data.mode == var->data.mode) {
3959 earlier->data.interpolation = var->data.interpolation;
3960
3961 /* Layout qualifiers for gl_FragDepth. */
3962 } else if ((state->is_version(420, 0) ||
3963 state->AMD_conservative_depth_enable ||
3964 state->ARB_conservative_depth_enable)
3965 && strcmp(var->name, "gl_FragDepth") == 0
3966 && earlier->type == var->type
3967 && earlier->data.mode == var->data.mode) {
3968
3969 /** From the AMD_conservative_depth spec:
3970 * Within any shader, the first redeclarations of gl_FragDepth
3971 * must appear before any use of gl_FragDepth.
3972 */
3973 if (earlier->data.used) {
3974 _mesa_glsl_error(&loc, state,
3975 "the first redeclaration of gl_FragDepth "
3976 "must appear before any use of gl_FragDepth");
3977 }
3978
3979 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3980 if (earlier->data.depth_layout != ir_depth_layout_none
3981 && earlier->data.depth_layout != var->data.depth_layout) {
3982 _mesa_glsl_error(&loc, state,
3983 "gl_FragDepth: depth layout is declared here "
3984 "as '%s, but it was previously declared as "
3985 "'%s'",
3986 depth_layout_string(var->data.depth_layout),
3987 depth_layout_string(earlier->data.depth_layout));
3988 }
3989
3990 earlier->data.depth_layout = var->data.depth_layout;
3991
3992 } else if (state->has_framebuffer_fetch() &&
3993 strcmp(var->name, "gl_LastFragData") == 0 &&
3994 var->type == earlier->type &&
3995 var->data.mode == ir_var_auto) {
3996 /* According to the EXT_shader_framebuffer_fetch spec:
3997 *
3998 * "By default, gl_LastFragData is declared with the mediump precision
3999 * qualifier. This can be changed by redeclaring the corresponding
4000 * variables with the desired precision qualifier."
4001 */
4002 earlier->data.precision = var->data.precision;
4003
4004 } else if (allow_all_redeclarations) {
4005 if (earlier->data.mode != var->data.mode) {
4006 _mesa_glsl_error(&loc, state,
4007 "redeclaration of `%s' with incorrect qualifiers",
4008 var->name);
4009 } else if (earlier->type != var->type) {
4010 _mesa_glsl_error(&loc, state,
4011 "redeclaration of `%s' has incorrect type",
4012 var->name);
4013 }
4014 } else {
4015 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4016 }
4017
4018 return earlier;
4019 }
4020
4021 /**
4022 * Generate the IR for an initializer in a variable declaration
4023 */
4024 ir_rvalue *
4025 process_initializer(ir_variable *var, ast_declaration *decl,
4026 ast_fully_specified_type *type,
4027 exec_list *initializer_instructions,
4028 struct _mesa_glsl_parse_state *state)
4029 {
4030 ir_rvalue *result = NULL;
4031
4032 YYLTYPE initializer_loc = decl->initializer->get_location();
4033
4034 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4035 *
4036 * "All uniform variables are read-only and are initialized either
4037 * directly by an application via API commands, or indirectly by
4038 * OpenGL."
4039 */
4040 if (var->data.mode == ir_var_uniform) {
4041 state->check_version(120, 0, &initializer_loc,
4042 "cannot initialize uniform %s",
4043 var->name);
4044 }
4045
4046 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4047 *
4048 * "Buffer variables cannot have initializers."
4049 */
4050 if (var->data.mode == ir_var_shader_storage) {
4051 _mesa_glsl_error(&initializer_loc, state,
4052 "cannot initialize buffer variable %s",
4053 var->name);
4054 }
4055
4056 /* From section 4.1.7 of the GLSL 4.40 spec:
4057 *
4058 * "Opaque variables [...] are initialized only through the
4059 * OpenGL API; they cannot be declared with an initializer in a
4060 * shader."
4061 */
4062 if (var->type->contains_opaque()) {
4063 _mesa_glsl_error(&initializer_loc, state,
4064 "cannot initialize opaque variable %s",
4065 var->name);
4066 }
4067
4068 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4069 _mesa_glsl_error(&initializer_loc, state,
4070 "cannot initialize %s shader input / %s %s",
4071 _mesa_shader_stage_to_string(state->stage),
4072 (state->stage == MESA_SHADER_VERTEX)
4073 ? "attribute" : "varying",
4074 var->name);
4075 }
4076
4077 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4078 _mesa_glsl_error(&initializer_loc, state,
4079 "cannot initialize %s shader output %s",
4080 _mesa_shader_stage_to_string(state->stage),
4081 var->name);
4082 }
4083
4084 /* If the initializer is an ast_aggregate_initializer, recursively store
4085 * type information from the LHS into it, so that its hir() function can do
4086 * type checking.
4087 */
4088 if (decl->initializer->oper == ast_aggregate)
4089 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4090
4091 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4092 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4093
4094 /* Calculate the constant value if this is a const or uniform
4095 * declaration.
4096 *
4097 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4098 *
4099 * "Declarations of globals without a storage qualifier, or with
4100 * just the const qualifier, may include initializers, in which case
4101 * they will be initialized before the first line of main() is
4102 * executed. Such initializers must be a constant expression."
4103 *
4104 * The same section of the GLSL ES 3.00.4 spec has similar language.
4105 */
4106 if (type->qualifier.flags.q.constant
4107 || type->qualifier.flags.q.uniform
4108 || (state->es_shader && state->current_function == NULL)) {
4109 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4110 lhs, rhs, true);
4111 if (new_rhs != NULL) {
4112 rhs = new_rhs;
4113
4114 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4115 * says:
4116 *
4117 * "A constant expression is one of
4118 *
4119 * ...
4120 *
4121 * - an expression formed by an operator on operands that are
4122 * all constant expressions, including getting an element of
4123 * a constant array, or a field of a constant structure, or
4124 * components of a constant vector. However, the sequence
4125 * operator ( , ) and the assignment operators ( =, +=, ...)
4126 * are not included in the operators that can create a
4127 * constant expression."
4128 *
4129 * Section 12.43 (Sequence operator and constant expressions) says:
4130 *
4131 * "Should the following construct be allowed?
4132 *
4133 * float a[2,3];
4134 *
4135 * The expression within the brackets uses the sequence operator
4136 * (',') and returns the integer 3 so the construct is declaring
4137 * a single-dimensional array of size 3. In some languages, the
4138 * construct declares a two-dimensional array. It would be
4139 * preferable to make this construct illegal to avoid confusion.
4140 *
4141 * One possibility is to change the definition of the sequence
4142 * operator so that it does not return a constant-expression and
4143 * hence cannot be used to declare an array size.
4144 *
4145 * RESOLUTION: The result of a sequence operator is not a
4146 * constant-expression."
4147 *
4148 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4149 * contains language almost identical to the section 4.3.3 in the
4150 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4151 * versions.
4152 */
4153 ir_constant *constant_value = rhs->constant_expression_value();
4154 if (!constant_value ||
4155 (state->is_version(430, 300) &&
4156 decl->initializer->has_sequence_subexpression())) {
4157 const char *const variable_mode =
4158 (type->qualifier.flags.q.constant)
4159 ? "const"
4160 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4161
4162 /* If ARB_shading_language_420pack is enabled, initializers of
4163 * const-qualified local variables do not have to be constant
4164 * expressions. Const-qualified global variables must still be
4165 * initialized with constant expressions.
4166 */
4167 if (!state->has_420pack()
4168 || state->current_function == NULL) {
4169 _mesa_glsl_error(& initializer_loc, state,
4170 "initializer of %s variable `%s' must be a "
4171 "constant expression",
4172 variable_mode,
4173 decl->identifier);
4174 if (var->type->is_numeric()) {
4175 /* Reduce cascading errors. */
4176 var->constant_value = type->qualifier.flags.q.constant
4177 ? ir_constant::zero(state, var->type) : NULL;
4178 }
4179 }
4180 } else {
4181 rhs = constant_value;
4182 var->constant_value = type->qualifier.flags.q.constant
4183 ? constant_value : NULL;
4184 }
4185 } else {
4186 if (var->type->is_numeric()) {
4187 /* Reduce cascading errors. */
4188 var->constant_value = type->qualifier.flags.q.constant
4189 ? ir_constant::zero(state, var->type) : NULL;
4190 }
4191 }
4192 }
4193
4194 if (rhs && !rhs->type->is_error()) {
4195 bool temp = var->data.read_only;
4196 if (type->qualifier.flags.q.constant)
4197 var->data.read_only = false;
4198
4199 /* Never emit code to initialize a uniform.
4200 */
4201 const glsl_type *initializer_type;
4202 if (!type->qualifier.flags.q.uniform) {
4203 do_assignment(initializer_instructions, state,
4204 NULL,
4205 lhs, rhs,
4206 &result, true,
4207 true,
4208 type->get_location());
4209 initializer_type = result->type;
4210 } else
4211 initializer_type = rhs->type;
4212
4213 var->constant_initializer = rhs->constant_expression_value();
4214 var->data.has_initializer = true;
4215
4216 /* If the declared variable is an unsized array, it must inherrit
4217 * its full type from the initializer. A declaration such as
4218 *
4219 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4220 *
4221 * becomes
4222 *
4223 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4224 *
4225 * The assignment generated in the if-statement (below) will also
4226 * automatically handle this case for non-uniforms.
4227 *
4228 * If the declared variable is not an array, the types must
4229 * already match exactly. As a result, the type assignment
4230 * here can be done unconditionally. For non-uniforms the call
4231 * to do_assignment can change the type of the initializer (via
4232 * the implicit conversion rules). For uniforms the initializer
4233 * must be a constant expression, and the type of that expression
4234 * was validated above.
4235 */
4236 var->type = initializer_type;
4237
4238 var->data.read_only = temp;
4239 }
4240
4241 return result;
4242 }
4243
4244 static void
4245 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4246 YYLTYPE loc, ir_variable *var,
4247 unsigned num_vertices,
4248 unsigned *size,
4249 const char *var_category)
4250 {
4251 if (var->type->is_unsized_array()) {
4252 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4253 *
4254 * All geometry shader input unsized array declarations will be
4255 * sized by an earlier input layout qualifier, when present, as per
4256 * the following table.
4257 *
4258 * Followed by a table mapping each allowed input layout qualifier to
4259 * the corresponding input length.
4260 *
4261 * Similarly for tessellation control shader outputs.
4262 */
4263 if (num_vertices != 0)
4264 var->type = glsl_type::get_array_instance(var->type->fields.array,
4265 num_vertices);
4266 } else {
4267 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4268 * includes the following examples of compile-time errors:
4269 *
4270 * // code sequence within one shader...
4271 * in vec4 Color1[]; // size unknown
4272 * ...Color1.length()...// illegal, length() unknown
4273 * in vec4 Color2[2]; // size is 2
4274 * ...Color1.length()...// illegal, Color1 still has no size
4275 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4276 * layout(lines) in; // legal, input size is 2, matching
4277 * in vec4 Color4[3]; // illegal, contradicts layout
4278 * ...
4279 *
4280 * To detect the case illustrated by Color3, we verify that the size of
4281 * an explicitly-sized array matches the size of any previously declared
4282 * explicitly-sized array. To detect the case illustrated by Color4, we
4283 * verify that the size of an explicitly-sized array is consistent with
4284 * any previously declared input layout.
4285 */
4286 if (num_vertices != 0 && var->type->length != num_vertices) {
4287 _mesa_glsl_error(&loc, state,
4288 "%s size contradicts previously declared layout "
4289 "(size is %u, but layout requires a size of %u)",
4290 var_category, var->type->length, num_vertices);
4291 } else if (*size != 0 && var->type->length != *size) {
4292 _mesa_glsl_error(&loc, state,
4293 "%s sizes are inconsistent (size is %u, but a "
4294 "previous declaration has size %u)",
4295 var_category, var->type->length, *size);
4296 } else {
4297 *size = var->type->length;
4298 }
4299 }
4300 }
4301
4302 static void
4303 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4304 YYLTYPE loc, ir_variable *var)
4305 {
4306 unsigned num_vertices = 0;
4307
4308 if (state->tcs_output_vertices_specified) {
4309 if (!state->out_qualifier->vertices->
4310 process_qualifier_constant(state, "vertices",
4311 &num_vertices, false)) {
4312 return;
4313 }
4314
4315 if (num_vertices > state->Const.MaxPatchVertices) {
4316 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4317 "GL_MAX_PATCH_VERTICES", num_vertices);
4318 return;
4319 }
4320 }
4321
4322 if (!var->type->is_array() && !var->data.patch) {
4323 _mesa_glsl_error(&loc, state,
4324 "tessellation control shader outputs must be arrays");
4325
4326 /* To avoid cascading failures, short circuit the checks below. */
4327 return;
4328 }
4329
4330 if (var->data.patch)
4331 return;
4332
4333 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4334 &state->tcs_output_size,
4335 "tessellation control shader output");
4336 }
4337
4338 /**
4339 * Do additional processing necessary for tessellation control/evaluation shader
4340 * input declarations. This covers both interface block arrays and bare input
4341 * variables.
4342 */
4343 static void
4344 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4345 YYLTYPE loc, ir_variable *var)
4346 {
4347 if (!var->type->is_array() && !var->data.patch) {
4348 _mesa_glsl_error(&loc, state,
4349 "per-vertex tessellation shader inputs must be arrays");
4350 /* Avoid cascading failures. */
4351 return;
4352 }
4353
4354 if (var->data.patch)
4355 return;
4356
4357 /* The ARB_tessellation_shader spec says:
4358 *
4359 * "Declaring an array size is optional. If no size is specified, it
4360 * will be taken from the implementation-dependent maximum patch size
4361 * (gl_MaxPatchVertices). If a size is specified, it must match the
4362 * maximum patch size; otherwise, a compile or link error will occur."
4363 *
4364 * This text appears twice, once for TCS inputs, and again for TES inputs.
4365 */
4366 if (var->type->is_unsized_array()) {
4367 var->type = glsl_type::get_array_instance(var->type->fields.array,
4368 state->Const.MaxPatchVertices);
4369 } else if (var->type->length != state->Const.MaxPatchVertices) {
4370 _mesa_glsl_error(&loc, state,
4371 "per-vertex tessellation shader input arrays must be "
4372 "sized to gl_MaxPatchVertices (%d).",
4373 state->Const.MaxPatchVertices);
4374 }
4375 }
4376
4377
4378 /**
4379 * Do additional processing necessary for geometry shader input declarations
4380 * (this covers both interface blocks arrays and bare input variables).
4381 */
4382 static void
4383 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4384 YYLTYPE loc, ir_variable *var)
4385 {
4386 unsigned num_vertices = 0;
4387
4388 if (state->gs_input_prim_type_specified) {
4389 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4390 }
4391
4392 /* Geometry shader input variables must be arrays. Caller should have
4393 * reported an error for this.
4394 */
4395 if (!var->type->is_array()) {
4396 assert(state->error);
4397
4398 /* To avoid cascading failures, short circuit the checks below. */
4399 return;
4400 }
4401
4402 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4403 &state->gs_input_size,
4404 "geometry shader input");
4405 }
4406
4407 void
4408 validate_identifier(const char *identifier, YYLTYPE loc,
4409 struct _mesa_glsl_parse_state *state)
4410 {
4411 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4412 *
4413 * "Identifiers starting with "gl_" are reserved for use by
4414 * OpenGL, and may not be declared in a shader as either a
4415 * variable or a function."
4416 */
4417 if (is_gl_identifier(identifier)) {
4418 _mesa_glsl_error(&loc, state,
4419 "identifier `%s' uses reserved `gl_' prefix",
4420 identifier);
4421 } else if (strstr(identifier, "__")) {
4422 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4423 * spec:
4424 *
4425 * "In addition, all identifiers containing two
4426 * consecutive underscores (__) are reserved as
4427 * possible future keywords."
4428 *
4429 * The intention is that names containing __ are reserved for internal
4430 * use by the implementation, and names prefixed with GL_ are reserved
4431 * for use by Khronos. Names simply containing __ are dangerous to use,
4432 * but should be allowed.
4433 *
4434 * A future version of the GLSL specification will clarify this.
4435 */
4436 _mesa_glsl_warning(&loc, state,
4437 "identifier `%s' uses reserved `__' string",
4438 identifier);
4439 }
4440 }
4441
4442 ir_rvalue *
4443 ast_declarator_list::hir(exec_list *instructions,
4444 struct _mesa_glsl_parse_state *state)
4445 {
4446 void *ctx = state;
4447 const struct glsl_type *decl_type;
4448 const char *type_name = NULL;
4449 ir_rvalue *result = NULL;
4450 YYLTYPE loc = this->get_location();
4451
4452 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4453 *
4454 * "To ensure that a particular output variable is invariant, it is
4455 * necessary to use the invariant qualifier. It can either be used to
4456 * qualify a previously declared variable as being invariant
4457 *
4458 * invariant gl_Position; // make existing gl_Position be invariant"
4459 *
4460 * In these cases the parser will set the 'invariant' flag in the declarator
4461 * list, and the type will be NULL.
4462 */
4463 if (this->invariant) {
4464 assert(this->type == NULL);
4465
4466 if (state->current_function != NULL) {
4467 _mesa_glsl_error(& loc, state,
4468 "all uses of `invariant' keyword must be at global "
4469 "scope");
4470 }
4471
4472 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4473 assert(decl->array_specifier == NULL);
4474 assert(decl->initializer == NULL);
4475
4476 ir_variable *const earlier =
4477 state->symbols->get_variable(decl->identifier);
4478 if (earlier == NULL) {
4479 _mesa_glsl_error(& loc, state,
4480 "undeclared variable `%s' cannot be marked "
4481 "invariant", decl->identifier);
4482 } else if (!is_varying_var(earlier, state->stage)) {
4483 _mesa_glsl_error(&loc, state,
4484 "`%s' cannot be marked invariant; interfaces between "
4485 "shader stages only.", decl->identifier);
4486 } else if (earlier->data.used) {
4487 _mesa_glsl_error(& loc, state,
4488 "variable `%s' may not be redeclared "
4489 "`invariant' after being used",
4490 earlier->name);
4491 } else {
4492 earlier->data.invariant = true;
4493 }
4494 }
4495
4496 /* Invariant redeclarations do not have r-values.
4497 */
4498 return NULL;
4499 }
4500
4501 if (this->precise) {
4502 assert(this->type == NULL);
4503
4504 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4505 assert(decl->array_specifier == NULL);
4506 assert(decl->initializer == NULL);
4507
4508 ir_variable *const earlier =
4509 state->symbols->get_variable(decl->identifier);
4510 if (earlier == NULL) {
4511 _mesa_glsl_error(& loc, state,
4512 "undeclared variable `%s' cannot be marked "
4513 "precise", decl->identifier);
4514 } else if (state->current_function != NULL &&
4515 !state->symbols->name_declared_this_scope(decl->identifier)) {
4516 /* Note: we have to check if we're in a function, since
4517 * builtins are treated as having come from another scope.
4518 */
4519 _mesa_glsl_error(& loc, state,
4520 "variable `%s' from an outer scope may not be "
4521 "redeclared `precise' in this scope",
4522 earlier->name);
4523 } else if (earlier->data.used) {
4524 _mesa_glsl_error(& loc, state,
4525 "variable `%s' may not be redeclared "
4526 "`precise' after being used",
4527 earlier->name);
4528 } else {
4529 earlier->data.precise = true;
4530 }
4531 }
4532
4533 /* Precise redeclarations do not have r-values either. */
4534 return NULL;
4535 }
4536
4537 assert(this->type != NULL);
4538 assert(!this->invariant);
4539 assert(!this->precise);
4540
4541 /* The type specifier may contain a structure definition. Process that
4542 * before any of the variable declarations.
4543 */
4544 (void) this->type->specifier->hir(instructions, state);
4545
4546 decl_type = this->type->glsl_type(& type_name, state);
4547
4548 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4549 * "Buffer variables may only be declared inside interface blocks
4550 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4551 * shader storage blocks. It is a compile-time error to declare buffer
4552 * variables at global scope (outside a block)."
4553 */
4554 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4555 _mesa_glsl_error(&loc, state,
4556 "buffer variables cannot be declared outside "
4557 "interface blocks");
4558 }
4559
4560 /* An offset-qualified atomic counter declaration sets the default
4561 * offset for the next declaration within the same atomic counter
4562 * buffer.
4563 */
4564 if (decl_type && decl_type->contains_atomic()) {
4565 if (type->qualifier.flags.q.explicit_binding &&
4566 type->qualifier.flags.q.explicit_offset) {
4567 unsigned qual_binding;
4568 unsigned qual_offset;
4569 if (process_qualifier_constant(state, &loc, "binding",
4570 type->qualifier.binding,
4571 &qual_binding)
4572 && process_qualifier_constant(state, &loc, "offset",
4573 type->qualifier.offset,
4574 &qual_offset)) {
4575 state->atomic_counter_offsets[qual_binding] = qual_offset;
4576 }
4577 }
4578
4579 ast_type_qualifier allowed_atomic_qual_mask;
4580 allowed_atomic_qual_mask.flags.i = 0;
4581 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4582 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4583 allowed_atomic_qual_mask.flags.q.uniform = 1;
4584
4585 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4586 "invalid layout qualifier for",
4587 "atomic_uint");
4588 }
4589
4590 if (this->declarations.is_empty()) {
4591 /* If there is no structure involved in the program text, there are two
4592 * possible scenarios:
4593 *
4594 * - The program text contained something like 'vec4;'. This is an
4595 * empty declaration. It is valid but weird. Emit a warning.
4596 *
4597 * - The program text contained something like 'S;' and 'S' is not the
4598 * name of a known structure type. This is both invalid and weird.
4599 * Emit an error.
4600 *
4601 * - The program text contained something like 'mediump float;'
4602 * when the programmer probably meant 'precision mediump
4603 * float;' Emit a warning with a description of what they
4604 * probably meant to do.
4605 *
4606 * Note that if decl_type is NULL and there is a structure involved,
4607 * there must have been some sort of error with the structure. In this
4608 * case we assume that an error was already generated on this line of
4609 * code for the structure. There is no need to generate an additional,
4610 * confusing error.
4611 */
4612 assert(this->type->specifier->structure == NULL || decl_type != NULL
4613 || state->error);
4614
4615 if (decl_type == NULL) {
4616 _mesa_glsl_error(&loc, state,
4617 "invalid type `%s' in empty declaration",
4618 type_name);
4619 } else {
4620 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4621 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4622 * spec:
4623 *
4624 * "... any declaration that leaves the size undefined is
4625 * disallowed as this would add complexity and there are no
4626 * use-cases."
4627 */
4628 if (state->es_shader && decl_type->is_unsized_array()) {
4629 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4630 "or implicitly defined");
4631 }
4632
4633 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4634 *
4635 * "The combinations of types and qualifiers that cause
4636 * compile-time or link-time errors are the same whether or not
4637 * the declaration is empty."
4638 */
4639 validate_array_dimensions(decl_type, state, &loc);
4640 }
4641
4642 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4643 /* Empty atomic counter declarations are allowed and useful
4644 * to set the default offset qualifier.
4645 */
4646 return NULL;
4647 } else if (this->type->qualifier.precision != ast_precision_none) {
4648 if (this->type->specifier->structure != NULL) {
4649 _mesa_glsl_error(&loc, state,
4650 "precision qualifiers can't be applied "
4651 "to structures");
4652 } else {
4653 static const char *const precision_names[] = {
4654 "highp",
4655 "highp",
4656 "mediump",
4657 "lowp"
4658 };
4659
4660 _mesa_glsl_warning(&loc, state,
4661 "empty declaration with precision "
4662 "qualifier, to set the default precision, "
4663 "use `precision %s %s;'",
4664 precision_names[this->type->
4665 qualifier.precision],
4666 type_name);
4667 }
4668 } else if (this->type->specifier->structure == NULL) {
4669 _mesa_glsl_warning(&loc, state, "empty declaration");
4670 }
4671 }
4672 }
4673
4674 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4675 const struct glsl_type *var_type;
4676 ir_variable *var;
4677 const char *identifier = decl->identifier;
4678 /* FINISHME: Emit a warning if a variable declaration shadows a
4679 * FINISHME: declaration at a higher scope.
4680 */
4681
4682 if ((decl_type == NULL) || decl_type->is_void()) {
4683 if (type_name != NULL) {
4684 _mesa_glsl_error(& loc, state,
4685 "invalid type `%s' in declaration of `%s'",
4686 type_name, decl->identifier);
4687 } else {
4688 _mesa_glsl_error(& loc, state,
4689 "invalid type in declaration of `%s'",
4690 decl->identifier);
4691 }
4692 continue;
4693 }
4694
4695 if (this->type->qualifier.flags.q.subroutine) {
4696 const glsl_type *t;
4697 const char *name;
4698
4699 t = state->symbols->get_type(this->type->specifier->type_name);
4700 if (!t)
4701 _mesa_glsl_error(& loc, state,
4702 "invalid type in declaration of `%s'",
4703 decl->identifier);
4704 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4705
4706 identifier = name;
4707
4708 }
4709 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4710 state);
4711
4712 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4713
4714 /* The 'varying in' and 'varying out' qualifiers can only be used with
4715 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4716 * yet.
4717 */
4718 if (this->type->qualifier.flags.q.varying) {
4719 if (this->type->qualifier.flags.q.in) {
4720 _mesa_glsl_error(& loc, state,
4721 "`varying in' qualifier in declaration of "
4722 "`%s' only valid for geometry shaders using "
4723 "ARB_geometry_shader4 or EXT_geometry_shader4",
4724 decl->identifier);
4725 } else if (this->type->qualifier.flags.q.out) {
4726 _mesa_glsl_error(& loc, state,
4727 "`varying out' qualifier in declaration of "
4728 "`%s' only valid for geometry shaders using "
4729 "ARB_geometry_shader4 or EXT_geometry_shader4",
4730 decl->identifier);
4731 }
4732 }
4733
4734 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4735 *
4736 * "Global variables can only use the qualifiers const,
4737 * attribute, uniform, or varying. Only one may be
4738 * specified.
4739 *
4740 * Local variables can only use the qualifier const."
4741 *
4742 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4743 * any extension that adds the 'layout' keyword.
4744 */
4745 if (!state->is_version(130, 300)
4746 && !state->has_explicit_attrib_location()
4747 && !state->has_separate_shader_objects()
4748 && !state->ARB_fragment_coord_conventions_enable) {
4749 if (this->type->qualifier.flags.q.out) {
4750 _mesa_glsl_error(& loc, state,
4751 "`out' qualifier in declaration of `%s' "
4752 "only valid for function parameters in %s",
4753 decl->identifier, state->get_version_string());
4754 }
4755 if (this->type->qualifier.flags.q.in) {
4756 _mesa_glsl_error(& loc, state,
4757 "`in' qualifier in declaration of `%s' "
4758 "only valid for function parameters in %s",
4759 decl->identifier, state->get_version_string());
4760 }
4761 /* FINISHME: Test for other invalid qualifiers. */
4762 }
4763
4764 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4765 & loc, false);
4766 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4767 &loc);
4768
4769 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4770 && (var->type->is_numeric() || var->type->is_boolean())
4771 && state->zero_init) {
4772 const ir_constant_data data = {0};
4773 var->data.has_initializer = true;
4774 var->constant_initializer = new(var) ir_constant(var->type, &data);
4775 }
4776
4777 if (this->type->qualifier.flags.q.invariant) {
4778 if (!is_varying_var(var, state->stage)) {
4779 _mesa_glsl_error(&loc, state,
4780 "`%s' cannot be marked invariant; interfaces between "
4781 "shader stages only", var->name);
4782 }
4783 }
4784
4785 if (state->current_function != NULL) {
4786 const char *mode = NULL;
4787 const char *extra = "";
4788
4789 /* There is no need to check for 'inout' here because the parser will
4790 * only allow that in function parameter lists.
4791 */
4792 if (this->type->qualifier.flags.q.attribute) {
4793 mode = "attribute";
4794 } else if (this->type->qualifier.flags.q.subroutine) {
4795 mode = "subroutine uniform";
4796 } else if (this->type->qualifier.flags.q.uniform) {
4797 mode = "uniform";
4798 } else if (this->type->qualifier.flags.q.varying) {
4799 mode = "varying";
4800 } else if (this->type->qualifier.flags.q.in) {
4801 mode = "in";
4802 extra = " or in function parameter list";
4803 } else if (this->type->qualifier.flags.q.out) {
4804 mode = "out";
4805 extra = " or in function parameter list";
4806 }
4807
4808 if (mode) {
4809 _mesa_glsl_error(& loc, state,
4810 "%s variable `%s' must be declared at "
4811 "global scope%s",
4812 mode, var->name, extra);
4813 }
4814 } else if (var->data.mode == ir_var_shader_in) {
4815 var->data.read_only = true;
4816
4817 if (state->stage == MESA_SHADER_VERTEX) {
4818 bool error_emitted = false;
4819
4820 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4821 *
4822 * "Vertex shader inputs can only be float, floating-point
4823 * vectors, matrices, signed and unsigned integers and integer
4824 * vectors. Vertex shader inputs can also form arrays of these
4825 * types, but not structures."
4826 *
4827 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4828 *
4829 * "Vertex shader inputs can only be float, floating-point
4830 * vectors, matrices, signed and unsigned integers and integer
4831 * vectors. They cannot be arrays or structures."
4832 *
4833 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4834 *
4835 * "The attribute qualifier can be used only with float,
4836 * floating-point vectors, and matrices. Attribute variables
4837 * cannot be declared as arrays or structures."
4838 *
4839 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4840 *
4841 * "Vertex shader inputs can only be float, floating-point
4842 * vectors, matrices, signed and unsigned integers and integer
4843 * vectors. Vertex shader inputs cannot be arrays or
4844 * structures."
4845 */
4846 const glsl_type *check_type = var->type->without_array();
4847
4848 switch (check_type->base_type) {
4849 case GLSL_TYPE_FLOAT:
4850 break;
4851 case GLSL_TYPE_UINT:
4852 case GLSL_TYPE_INT:
4853 if (state->is_version(120, 300))
4854 break;
4855 case GLSL_TYPE_DOUBLE:
4856 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4857 break;
4858 /* FALLTHROUGH */
4859 default:
4860 _mesa_glsl_error(& loc, state,
4861 "vertex shader input / attribute cannot have "
4862 "type %s`%s'",
4863 var->type->is_array() ? "array of " : "",
4864 check_type->name);
4865 error_emitted = true;
4866 }
4867
4868 if (!error_emitted && var->type->is_array() &&
4869 !state->check_version(150, 0, &loc,
4870 "vertex shader input / attribute "
4871 "cannot have array type")) {
4872 error_emitted = true;
4873 }
4874 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4875 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4876 *
4877 * Geometry shader input variables get the per-vertex values
4878 * written out by vertex shader output variables of the same
4879 * names. Since a geometry shader operates on a set of
4880 * vertices, each input varying variable (or input block, see
4881 * interface blocks below) needs to be declared as an array.
4882 */
4883 if (!var->type->is_array()) {
4884 _mesa_glsl_error(&loc, state,
4885 "geometry shader inputs must be arrays");
4886 }
4887
4888 handle_geometry_shader_input_decl(state, loc, var);
4889 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4890 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4891 *
4892 * It is a compile-time error to declare a fragment shader
4893 * input with, or that contains, any of the following types:
4894 *
4895 * * A boolean type
4896 * * An opaque type
4897 * * An array of arrays
4898 * * An array of structures
4899 * * A structure containing an array
4900 * * A structure containing a structure
4901 */
4902 if (state->es_shader) {
4903 const glsl_type *check_type = var->type->without_array();
4904 if (check_type->is_boolean() ||
4905 check_type->contains_opaque()) {
4906 _mesa_glsl_error(&loc, state,
4907 "fragment shader input cannot have type %s",
4908 check_type->name);
4909 }
4910 if (var->type->is_array() &&
4911 var->type->fields.array->is_array()) {
4912 _mesa_glsl_error(&loc, state,
4913 "%s shader output "
4914 "cannot have an array of arrays",
4915 _mesa_shader_stage_to_string(state->stage));
4916 }
4917 if (var->type->is_array() &&
4918 var->type->fields.array->is_record()) {
4919 _mesa_glsl_error(&loc, state,
4920 "fragment shader input "
4921 "cannot have an array of structs");
4922 }
4923 if (var->type->is_record()) {
4924 for (unsigned i = 0; i < var->type->length; i++) {
4925 if (var->type->fields.structure[i].type->is_array() ||
4926 var->type->fields.structure[i].type->is_record())
4927 _mesa_glsl_error(&loc, state,
4928 "fragement shader input cannot have "
4929 "a struct that contains an "
4930 "array or struct");
4931 }
4932 }
4933 }
4934 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4935 state->stage == MESA_SHADER_TESS_EVAL) {
4936 handle_tess_shader_input_decl(state, loc, var);
4937 }
4938 } else if (var->data.mode == ir_var_shader_out) {
4939 const glsl_type *check_type = var->type->without_array();
4940
4941 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4942 *
4943 * It is a compile-time error to declare a vertex, tessellation
4944 * evaluation, tessellation control, or geometry shader output
4945 * that contains any of the following:
4946 *
4947 * * A Boolean type (bool, bvec2 ...)
4948 * * An opaque type
4949 */
4950 if (check_type->is_boolean() || check_type->contains_opaque())
4951 _mesa_glsl_error(&loc, state,
4952 "%s shader output cannot have type %s",
4953 _mesa_shader_stage_to_string(state->stage),
4954 check_type->name);
4955
4956 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4957 *
4958 * It is a compile-time error to declare a fragment shader output
4959 * that contains any of the following:
4960 *
4961 * * A Boolean type (bool, bvec2 ...)
4962 * * A double-precision scalar or vector (double, dvec2 ...)
4963 * * An opaque type
4964 * * Any matrix type
4965 * * A structure
4966 */
4967 if (state->stage == MESA_SHADER_FRAGMENT) {
4968 if (check_type->is_record() || check_type->is_matrix())
4969 _mesa_glsl_error(&loc, state,
4970 "fragment shader output "
4971 "cannot have struct or matrix type");
4972 switch (check_type->base_type) {
4973 case GLSL_TYPE_UINT:
4974 case GLSL_TYPE_INT:
4975 case GLSL_TYPE_FLOAT:
4976 break;
4977 default:
4978 _mesa_glsl_error(&loc, state,
4979 "fragment shader output cannot have "
4980 "type %s", check_type->name);
4981 }
4982 }
4983
4984 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4985 *
4986 * It is a compile-time error to declare a vertex shader output
4987 * with, or that contains, any of the following types:
4988 *
4989 * * A boolean type
4990 * * An opaque type
4991 * * An array of arrays
4992 * * An array of structures
4993 * * A structure containing an array
4994 * * A structure containing a structure
4995 *
4996 * It is a compile-time error to declare a fragment shader output
4997 * with, or that contains, any of the following types:
4998 *
4999 * * A boolean type
5000 * * An opaque type
5001 * * A matrix
5002 * * A structure
5003 * * An array of array
5004 */
5005 if (state->es_shader) {
5006 if (var->type->is_array() &&
5007 var->type->fields.array->is_array()) {
5008 _mesa_glsl_error(&loc, state,
5009 "%s shader output "
5010 "cannot have an array of arrays",
5011 _mesa_shader_stage_to_string(state->stage));
5012 }
5013 if (state->stage == MESA_SHADER_VERTEX) {
5014 if (var->type->is_array() &&
5015 var->type->fields.array->is_record()) {
5016 _mesa_glsl_error(&loc, state,
5017 "vertex shader output "
5018 "cannot have an array of structs");
5019 }
5020 if (var->type->is_record()) {
5021 for (unsigned i = 0; i < var->type->length; i++) {
5022 if (var->type->fields.structure[i].type->is_array() ||
5023 var->type->fields.structure[i].type->is_record())
5024 _mesa_glsl_error(&loc, state,
5025 "vertex shader output cannot have a "
5026 "struct that contains an "
5027 "array or struct");
5028 }
5029 }
5030 }
5031 }
5032
5033 if (state->stage == MESA_SHADER_TESS_CTRL) {
5034 handle_tess_ctrl_shader_output_decl(state, loc, var);
5035 }
5036 } else if (var->type->contains_subroutine()) {
5037 /* declare subroutine uniforms as hidden */
5038 var->data.how_declared = ir_var_hidden;
5039 }
5040
5041 /* From section 4.3.4 of the GLSL 4.00 spec:
5042 * "Input variables may not be declared using the patch in qualifier
5043 * in tessellation control or geometry shaders."
5044 *
5045 * From section 4.3.6 of the GLSL 4.00 spec:
5046 * "It is an error to use patch out in a vertex, tessellation
5047 * evaluation, or geometry shader."
5048 *
5049 * This doesn't explicitly forbid using them in a fragment shader, but
5050 * that's probably just an oversight.
5051 */
5052 if (state->stage != MESA_SHADER_TESS_EVAL
5053 && this->type->qualifier.flags.q.patch
5054 && this->type->qualifier.flags.q.in) {
5055
5056 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5057 "tessellation evaluation shader");
5058 }
5059
5060 if (state->stage != MESA_SHADER_TESS_CTRL
5061 && this->type->qualifier.flags.q.patch
5062 && this->type->qualifier.flags.q.out) {
5063
5064 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5065 "tessellation control shader");
5066 }
5067
5068 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5069 */
5070 if (this->type->qualifier.precision != ast_precision_none) {
5071 state->check_precision_qualifiers_allowed(&loc);
5072 }
5073
5074 if (this->type->qualifier.precision != ast_precision_none &&
5075 !precision_qualifier_allowed(var->type)) {
5076 _mesa_glsl_error(&loc, state,
5077 "precision qualifiers apply only to floating point"
5078 ", integer and opaque types");
5079 }
5080
5081 /* From section 4.1.7 of the GLSL 4.40 spec:
5082 *
5083 * "[Opaque types] can only be declared as function
5084 * parameters or uniform-qualified variables."
5085 */
5086 if (var_type->contains_opaque() &&
5087 !this->type->qualifier.flags.q.uniform) {
5088 _mesa_glsl_error(&loc, state,
5089 "opaque variables must be declared uniform");
5090 }
5091
5092 /* Process the initializer and add its instructions to a temporary
5093 * list. This list will be added to the instruction stream (below) after
5094 * the declaration is added. This is done because in some cases (such as
5095 * redeclarations) the declaration may not actually be added to the
5096 * instruction stream.
5097 */
5098 exec_list initializer_instructions;
5099
5100 /* Examine var name here since var may get deleted in the next call */
5101 bool var_is_gl_id = is_gl_identifier(var->name);
5102
5103 ir_variable *earlier =
5104 get_variable_being_redeclared(var, decl->get_location(), state,
5105 false /* allow_all_redeclarations */);
5106 if (earlier != NULL) {
5107 if (var_is_gl_id &&
5108 earlier->data.how_declared == ir_var_declared_in_block) {
5109 _mesa_glsl_error(&loc, state,
5110 "`%s' has already been redeclared using "
5111 "gl_PerVertex", earlier->name);
5112 }
5113 earlier->data.how_declared = ir_var_declared_normally;
5114 }
5115
5116 if (decl->initializer != NULL) {
5117 result = process_initializer((earlier == NULL) ? var : earlier,
5118 decl, this->type,
5119 &initializer_instructions, state);
5120 } else {
5121 validate_array_dimensions(var_type, state, &loc);
5122 }
5123
5124 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5125 *
5126 * "It is an error to write to a const variable outside of
5127 * its declaration, so they must be initialized when
5128 * declared."
5129 */
5130 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5131 _mesa_glsl_error(& loc, state,
5132 "const declaration of `%s' must be initialized",
5133 decl->identifier);
5134 }
5135
5136 if (state->es_shader) {
5137 const glsl_type *const t = (earlier == NULL)
5138 ? var->type : earlier->type;
5139
5140 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5141 *
5142 * The GL_OES_tessellation_shader spec says about inputs:
5143 *
5144 * "Declaring an array size is optional. If no size is specified,
5145 * it will be taken from the implementation-dependent maximum
5146 * patch size (gl_MaxPatchVertices)."
5147 *
5148 * and about TCS outputs:
5149 *
5150 * "If no size is specified, it will be taken from output patch
5151 * size declared in the shader."
5152 *
5153 * The GL_OES_geometry_shader spec says:
5154 *
5155 * "All geometry shader input unsized array declarations will be
5156 * sized by an earlier input primitive layout qualifier, when
5157 * present, as per the following table."
5158 */
5159 const bool implicitly_sized =
5160 (var->data.mode == ir_var_shader_in &&
5161 state->stage >= MESA_SHADER_TESS_CTRL &&
5162 state->stage <= MESA_SHADER_GEOMETRY) ||
5163 (var->data.mode == ir_var_shader_out &&
5164 state->stage == MESA_SHADER_TESS_CTRL);
5165
5166 if (t->is_unsized_array() && !implicitly_sized)
5167 /* Section 10.17 of the GLSL ES 1.00 specification states that
5168 * unsized array declarations have been removed from the language.
5169 * Arrays that are sized using an initializer are still explicitly
5170 * sized. However, GLSL ES 1.00 does not allow array
5171 * initializers. That is only allowed in GLSL ES 3.00.
5172 *
5173 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5174 *
5175 * "An array type can also be formed without specifying a size
5176 * if the definition includes an initializer:
5177 *
5178 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5179 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5180 *
5181 * float a[5];
5182 * float b[] = a;"
5183 */
5184 _mesa_glsl_error(& loc, state,
5185 "unsized array declarations are not allowed in "
5186 "GLSL ES");
5187 }
5188
5189 /* If the declaration is not a redeclaration, there are a few additional
5190 * semantic checks that must be applied. In addition, variable that was
5191 * created for the declaration should be added to the IR stream.
5192 */
5193 if (earlier == NULL) {
5194 validate_identifier(decl->identifier, loc, state);
5195
5196 /* Add the variable to the symbol table. Note that the initializer's
5197 * IR was already processed earlier (though it hasn't been emitted
5198 * yet), without the variable in scope.
5199 *
5200 * This differs from most C-like languages, but it follows the GLSL
5201 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5202 * spec:
5203 *
5204 * "Within a declaration, the scope of a name starts immediately
5205 * after the initializer if present or immediately after the name
5206 * being declared if not."
5207 */
5208 if (!state->symbols->add_variable(var)) {
5209 YYLTYPE loc = this->get_location();
5210 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5211 "current scope", decl->identifier);
5212 continue;
5213 }
5214
5215 /* Push the variable declaration to the top. It means that all the
5216 * variable declarations will appear in a funny last-to-first order,
5217 * but otherwise we run into trouble if a function is prototyped, a
5218 * global var is decled, then the function is defined with usage of
5219 * the global var. See glslparsertest's CorrectModule.frag.
5220 */
5221 instructions->push_head(var);
5222 }
5223
5224 instructions->append_list(&initializer_instructions);
5225 }
5226
5227
5228 /* Generally, variable declarations do not have r-values. However,
5229 * one is used for the declaration in
5230 *
5231 * while (bool b = some_condition()) {
5232 * ...
5233 * }
5234 *
5235 * so we return the rvalue from the last seen declaration here.
5236 */
5237 return result;
5238 }
5239
5240
5241 ir_rvalue *
5242 ast_parameter_declarator::hir(exec_list *instructions,
5243 struct _mesa_glsl_parse_state *state)
5244 {
5245 void *ctx = state;
5246 const struct glsl_type *type;
5247 const char *name = NULL;
5248 YYLTYPE loc = this->get_location();
5249
5250 type = this->type->glsl_type(& name, state);
5251
5252 if (type == NULL) {
5253 if (name != NULL) {
5254 _mesa_glsl_error(& loc, state,
5255 "invalid type `%s' in declaration of `%s'",
5256 name, this->identifier);
5257 } else {
5258 _mesa_glsl_error(& loc, state,
5259 "invalid type in declaration of `%s'",
5260 this->identifier);
5261 }
5262
5263 type = glsl_type::error_type;
5264 }
5265
5266 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5267 *
5268 * "Functions that accept no input arguments need not use void in the
5269 * argument list because prototypes (or definitions) are required and
5270 * therefore there is no ambiguity when an empty argument list "( )" is
5271 * declared. The idiom "(void)" as a parameter list is provided for
5272 * convenience."
5273 *
5274 * Placing this check here prevents a void parameter being set up
5275 * for a function, which avoids tripping up checks for main taking
5276 * parameters and lookups of an unnamed symbol.
5277 */
5278 if (type->is_void()) {
5279 if (this->identifier != NULL)
5280 _mesa_glsl_error(& loc, state,
5281 "named parameter cannot have type `void'");
5282
5283 is_void = true;
5284 return NULL;
5285 }
5286
5287 if (formal_parameter && (this->identifier == NULL)) {
5288 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5289 return NULL;
5290 }
5291
5292 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5293 * call already handled the "vec4[..] foo" case.
5294 */
5295 type = process_array_type(&loc, type, this->array_specifier, state);
5296
5297 if (!type->is_error() && type->is_unsized_array()) {
5298 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5299 "a declared size");
5300 type = glsl_type::error_type;
5301 }
5302
5303 is_void = false;
5304 ir_variable *var = new(ctx)
5305 ir_variable(type, this->identifier, ir_var_function_in);
5306
5307 /* Apply any specified qualifiers to the parameter declaration. Note that
5308 * for function parameters the default mode is 'in'.
5309 */
5310 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5311 true);
5312
5313 /* From section 4.1.7 of the GLSL 4.40 spec:
5314 *
5315 * "Opaque variables cannot be treated as l-values; hence cannot
5316 * be used as out or inout function parameters, nor can they be
5317 * assigned into."
5318 */
5319 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5320 && type->contains_opaque()) {
5321 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5322 "contain opaque variables");
5323 type = glsl_type::error_type;
5324 }
5325
5326 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5327 *
5328 * "When calling a function, expressions that do not evaluate to
5329 * l-values cannot be passed to parameters declared as out or inout."
5330 *
5331 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5332 *
5333 * "Other binary or unary expressions, non-dereferenced arrays,
5334 * function names, swizzles with repeated fields, and constants
5335 * cannot be l-values."
5336 *
5337 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5338 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5339 */
5340 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5341 && type->is_array()
5342 && !state->check_version(120, 100, &loc,
5343 "arrays cannot be out or inout parameters")) {
5344 type = glsl_type::error_type;
5345 }
5346
5347 instructions->push_tail(var);
5348
5349 /* Parameter declarations do not have r-values.
5350 */
5351 return NULL;
5352 }
5353
5354
5355 void
5356 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5357 bool formal,
5358 exec_list *ir_parameters,
5359 _mesa_glsl_parse_state *state)
5360 {
5361 ast_parameter_declarator *void_param = NULL;
5362 unsigned count = 0;
5363
5364 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5365 param->formal_parameter = formal;
5366 param->hir(ir_parameters, state);
5367
5368 if (param->is_void)
5369 void_param = param;
5370
5371 count++;
5372 }
5373
5374 if ((void_param != NULL) && (count > 1)) {
5375 YYLTYPE loc = void_param->get_location();
5376
5377 _mesa_glsl_error(& loc, state,
5378 "`void' parameter must be only parameter");
5379 }
5380 }
5381
5382
5383 void
5384 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5385 {
5386 /* IR invariants disallow function declarations or definitions
5387 * nested within other function definitions. But there is no
5388 * requirement about the relative order of function declarations
5389 * and definitions with respect to one another. So simply insert
5390 * the new ir_function block at the end of the toplevel instruction
5391 * list.
5392 */
5393 state->toplevel_ir->push_tail(f);
5394 }
5395
5396
5397 ir_rvalue *
5398 ast_function::hir(exec_list *instructions,
5399 struct _mesa_glsl_parse_state *state)
5400 {
5401 void *ctx = state;
5402 ir_function *f = NULL;
5403 ir_function_signature *sig = NULL;
5404 exec_list hir_parameters;
5405 YYLTYPE loc = this->get_location();
5406
5407 const char *const name = identifier;
5408
5409 /* New functions are always added to the top-level IR instruction stream,
5410 * so this instruction list pointer is ignored. See also emit_function
5411 * (called below).
5412 */
5413 (void) instructions;
5414
5415 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5416 *
5417 * "Function declarations (prototypes) cannot occur inside of functions;
5418 * they must be at global scope, or for the built-in functions, outside
5419 * the global scope."
5420 *
5421 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5422 *
5423 * "User defined functions may only be defined within the global scope."
5424 *
5425 * Note that this language does not appear in GLSL 1.10.
5426 */
5427 if ((state->current_function != NULL) &&
5428 state->is_version(120, 100)) {
5429 YYLTYPE loc = this->get_location();
5430 _mesa_glsl_error(&loc, state,
5431 "declaration of function `%s' not allowed within "
5432 "function body", name);
5433 }
5434
5435 validate_identifier(name, this->get_location(), state);
5436
5437 /* Convert the list of function parameters to HIR now so that they can be
5438 * used below to compare this function's signature with previously seen
5439 * signatures for functions with the same name.
5440 */
5441 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5442 is_definition,
5443 & hir_parameters, state);
5444
5445 const char *return_type_name;
5446 const glsl_type *return_type =
5447 this->return_type->glsl_type(& return_type_name, state);
5448
5449 if (!return_type) {
5450 YYLTYPE loc = this->get_location();
5451 _mesa_glsl_error(&loc, state,
5452 "function `%s' has undeclared return type `%s'",
5453 name, return_type_name);
5454 return_type = glsl_type::error_type;
5455 }
5456
5457 /* ARB_shader_subroutine states:
5458 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5459 * subroutine(...) to a function declaration."
5460 */
5461 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5462 YYLTYPE loc = this->get_location();
5463 _mesa_glsl_error(&loc, state,
5464 "function declaration `%s' cannot have subroutine prepended",
5465 name);
5466 }
5467
5468 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5469 * "No qualifier is allowed on the return type of a function."
5470 */
5471 if (this->return_type->has_qualifiers(state)) {
5472 YYLTYPE loc = this->get_location();
5473 _mesa_glsl_error(& loc, state,
5474 "function `%s' return type has qualifiers", name);
5475 }
5476
5477 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5478 *
5479 * "Arrays are allowed as arguments and as the return type. In both
5480 * cases, the array must be explicitly sized."
5481 */
5482 if (return_type->is_unsized_array()) {
5483 YYLTYPE loc = this->get_location();
5484 _mesa_glsl_error(& loc, state,
5485 "function `%s' return type array must be explicitly "
5486 "sized", name);
5487 }
5488
5489 /* From section 4.1.7 of the GLSL 4.40 spec:
5490 *
5491 * "[Opaque types] can only be declared as function parameters
5492 * or uniform-qualified variables."
5493 */
5494 if (return_type->contains_opaque()) {
5495 YYLTYPE loc = this->get_location();
5496 _mesa_glsl_error(&loc, state,
5497 "function `%s' return type can't contain an opaque type",
5498 name);
5499 }
5500
5501 /**/
5502 if (return_type->is_subroutine()) {
5503 YYLTYPE loc = this->get_location();
5504 _mesa_glsl_error(&loc, state,
5505 "function `%s' return type can't be a subroutine type",
5506 name);
5507 }
5508
5509
5510 /* Create an ir_function if one doesn't already exist. */
5511 f = state->symbols->get_function(name);
5512 if (f == NULL) {
5513 f = new(ctx) ir_function(name);
5514 if (!this->return_type->qualifier.flags.q.subroutine) {
5515 if (!state->symbols->add_function(f)) {
5516 /* This function name shadows a non-function use of the same name. */
5517 YYLTYPE loc = this->get_location();
5518 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5519 "non-function", name);
5520 return NULL;
5521 }
5522 }
5523 emit_function(state, f);
5524 }
5525
5526 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5527 *
5528 * "A shader cannot redefine or overload built-in functions."
5529 *
5530 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5531 *
5532 * "User code can overload the built-in functions but cannot redefine
5533 * them."
5534 */
5535 if (state->es_shader && state->language_version >= 300) {
5536 /* Local shader has no exact candidates; check the built-ins. */
5537 _mesa_glsl_initialize_builtin_functions();
5538 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5539 YYLTYPE loc = this->get_location();
5540 _mesa_glsl_error(& loc, state,
5541 "A shader cannot redefine or overload built-in "
5542 "function `%s' in GLSL ES 3.00", name);
5543 return NULL;
5544 }
5545 }
5546
5547 /* Verify that this function's signature either doesn't match a previously
5548 * seen signature for a function with the same name, or, if a match is found,
5549 * that the previously seen signature does not have an associated definition.
5550 */
5551 if (state->es_shader || f->has_user_signature()) {
5552 sig = f->exact_matching_signature(state, &hir_parameters);
5553 if (sig != NULL) {
5554 const char *badvar = sig->qualifiers_match(&hir_parameters);
5555 if (badvar != NULL) {
5556 YYLTYPE loc = this->get_location();
5557
5558 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5559 "qualifiers don't match prototype", name, badvar);
5560 }
5561
5562 if (sig->return_type != return_type) {
5563 YYLTYPE loc = this->get_location();
5564
5565 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5566 "match prototype", name);
5567 }
5568
5569 if (sig->is_defined) {
5570 if (is_definition) {
5571 YYLTYPE loc = this->get_location();
5572 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5573 } else {
5574 /* We just encountered a prototype that exactly matches a
5575 * function that's already been defined. This is redundant,
5576 * and we should ignore it.
5577 */
5578 return NULL;
5579 }
5580 }
5581 }
5582 }
5583
5584 /* Verify the return type of main() */
5585 if (strcmp(name, "main") == 0) {
5586 if (! return_type->is_void()) {
5587 YYLTYPE loc = this->get_location();
5588
5589 _mesa_glsl_error(& loc, state, "main() must return void");
5590 }
5591
5592 if (!hir_parameters.is_empty()) {
5593 YYLTYPE loc = this->get_location();
5594
5595 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5596 }
5597 }
5598
5599 /* Finish storing the information about this new function in its signature.
5600 */
5601 if (sig == NULL) {
5602 sig = new(ctx) ir_function_signature(return_type);
5603 f->add_signature(sig);
5604 }
5605
5606 sig->replace_parameters(&hir_parameters);
5607 signature = sig;
5608
5609 if (this->return_type->qualifier.flags.q.subroutine_def) {
5610 int idx;
5611
5612 if (this->return_type->qualifier.flags.q.explicit_index) {
5613 unsigned qual_index;
5614 if (process_qualifier_constant(state, &loc, "index",
5615 this->return_type->qualifier.index,
5616 &qual_index)) {
5617 if (!state->has_explicit_uniform_location()) {
5618 _mesa_glsl_error(&loc, state, "subroutine index requires "
5619 "GL_ARB_explicit_uniform_location or "
5620 "GLSL 4.30");
5621 } else if (qual_index >= MAX_SUBROUTINES) {
5622 _mesa_glsl_error(&loc, state,
5623 "invalid subroutine index (%d) index must "
5624 "be a number between 0 and "
5625 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5626 MAX_SUBROUTINES - 1);
5627 } else {
5628 f->subroutine_index = qual_index;
5629 }
5630 }
5631 }
5632
5633 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5634 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5635 f->num_subroutine_types);
5636 idx = 0;
5637 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5638 const struct glsl_type *type;
5639 /* the subroutine type must be already declared */
5640 type = state->symbols->get_type(decl->identifier);
5641 if (!type) {
5642 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5643 }
5644
5645 for (int i = 0; i < state->num_subroutine_types; i++) {
5646 ir_function *fn = state->subroutine_types[i];
5647 ir_function_signature *tsig = NULL;
5648
5649 if (strcmp(fn->name, decl->identifier))
5650 continue;
5651
5652 tsig = fn->matching_signature(state, &sig->parameters,
5653 false);
5654 if (!tsig) {
5655 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5656 } else {
5657 if (tsig->return_type != sig->return_type) {
5658 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5659 }
5660 }
5661 }
5662 f->subroutine_types[idx++] = type;
5663 }
5664 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5665 ir_function *,
5666 state->num_subroutines + 1);
5667 state->subroutines[state->num_subroutines] = f;
5668 state->num_subroutines++;
5669
5670 }
5671
5672 if (this->return_type->qualifier.flags.q.subroutine) {
5673 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5674 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5675 return NULL;
5676 }
5677 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5678 ir_function *,
5679 state->num_subroutine_types + 1);
5680 state->subroutine_types[state->num_subroutine_types] = f;
5681 state->num_subroutine_types++;
5682
5683 f->is_subroutine = true;
5684 }
5685
5686 /* Function declarations (prototypes) do not have r-values.
5687 */
5688 return NULL;
5689 }
5690
5691
5692 ir_rvalue *
5693 ast_function_definition::hir(exec_list *instructions,
5694 struct _mesa_glsl_parse_state *state)
5695 {
5696 prototype->is_definition = true;
5697 prototype->hir(instructions, state);
5698
5699 ir_function_signature *signature = prototype->signature;
5700 if (signature == NULL)
5701 return NULL;
5702
5703 assert(state->current_function == NULL);
5704 state->current_function = signature;
5705 state->found_return = false;
5706
5707 /* Duplicate parameters declared in the prototype as concrete variables.
5708 * Add these to the symbol table.
5709 */
5710 state->symbols->push_scope();
5711 foreach_in_list(ir_variable, var, &signature->parameters) {
5712 assert(var->as_variable() != NULL);
5713
5714 /* The only way a parameter would "exist" is if two parameters have
5715 * the same name.
5716 */
5717 if (state->symbols->name_declared_this_scope(var->name)) {
5718 YYLTYPE loc = this->get_location();
5719
5720 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5721 } else {
5722 state->symbols->add_variable(var);
5723 }
5724 }
5725
5726 /* Convert the body of the function to HIR. */
5727 this->body->hir(&signature->body, state);
5728 signature->is_defined = true;
5729
5730 state->symbols->pop_scope();
5731
5732 assert(state->current_function == signature);
5733 state->current_function = NULL;
5734
5735 if (!signature->return_type->is_void() && !state->found_return) {
5736 YYLTYPE loc = this->get_location();
5737 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5738 "%s, but no return statement",
5739 signature->function_name(),
5740 signature->return_type->name);
5741 }
5742
5743 /* Function definitions do not have r-values.
5744 */
5745 return NULL;
5746 }
5747
5748
5749 ir_rvalue *
5750 ast_jump_statement::hir(exec_list *instructions,
5751 struct _mesa_glsl_parse_state *state)
5752 {
5753 void *ctx = state;
5754
5755 switch (mode) {
5756 case ast_return: {
5757 ir_return *inst;
5758 assert(state->current_function);
5759
5760 if (opt_return_value) {
5761 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5762
5763 /* The value of the return type can be NULL if the shader says
5764 * 'return foo();' and foo() is a function that returns void.
5765 *
5766 * NOTE: The GLSL spec doesn't say that this is an error. The type
5767 * of the return value is void. If the return type of the function is
5768 * also void, then this should compile without error. Seriously.
5769 */
5770 const glsl_type *const ret_type =
5771 (ret == NULL) ? glsl_type::void_type : ret->type;
5772
5773 /* Implicit conversions are not allowed for return values prior to
5774 * ARB_shading_language_420pack.
5775 */
5776 if (state->current_function->return_type != ret_type) {
5777 YYLTYPE loc = this->get_location();
5778
5779 if (state->has_420pack()) {
5780 if (!apply_implicit_conversion(state->current_function->return_type,
5781 ret, state)) {
5782 _mesa_glsl_error(& loc, state,
5783 "could not implicitly convert return value "
5784 "to %s, in function `%s'",
5785 state->current_function->return_type->name,
5786 state->current_function->function_name());
5787 }
5788 } else {
5789 _mesa_glsl_error(& loc, state,
5790 "`return' with wrong type %s, in function `%s' "
5791 "returning %s",
5792 ret_type->name,
5793 state->current_function->function_name(),
5794 state->current_function->return_type->name);
5795 }
5796 } else if (state->current_function->return_type->base_type ==
5797 GLSL_TYPE_VOID) {
5798 YYLTYPE loc = this->get_location();
5799
5800 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5801 * specs add a clarification:
5802 *
5803 * "A void function can only use return without a return argument, even if
5804 * the return argument has void type. Return statements only accept values:
5805 *
5806 * void func1() { }
5807 * void func2() { return func1(); } // illegal return statement"
5808 */
5809 _mesa_glsl_error(& loc, state,
5810 "void functions can only use `return' without a "
5811 "return argument");
5812 }
5813
5814 inst = new(ctx) ir_return(ret);
5815 } else {
5816 if (state->current_function->return_type->base_type !=
5817 GLSL_TYPE_VOID) {
5818 YYLTYPE loc = this->get_location();
5819
5820 _mesa_glsl_error(& loc, state,
5821 "`return' with no value, in function %s returning "
5822 "non-void",
5823 state->current_function->function_name());
5824 }
5825 inst = new(ctx) ir_return;
5826 }
5827
5828 state->found_return = true;
5829 instructions->push_tail(inst);
5830 break;
5831 }
5832
5833 case ast_discard:
5834 if (state->stage != MESA_SHADER_FRAGMENT) {
5835 YYLTYPE loc = this->get_location();
5836
5837 _mesa_glsl_error(& loc, state,
5838 "`discard' may only appear in a fragment shader");
5839 }
5840 instructions->push_tail(new(ctx) ir_discard);
5841 break;
5842
5843 case ast_break:
5844 case ast_continue:
5845 if (mode == ast_continue &&
5846 state->loop_nesting_ast == NULL) {
5847 YYLTYPE loc = this->get_location();
5848
5849 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5850 } else if (mode == ast_break &&
5851 state->loop_nesting_ast == NULL &&
5852 state->switch_state.switch_nesting_ast == NULL) {
5853 YYLTYPE loc = this->get_location();
5854
5855 _mesa_glsl_error(& loc, state,
5856 "break may only appear in a loop or a switch");
5857 } else {
5858 /* For a loop, inline the for loop expression again, since we don't
5859 * know where near the end of the loop body the normal copy of it is
5860 * going to be placed. Same goes for the condition for a do-while
5861 * loop.
5862 */
5863 if (state->loop_nesting_ast != NULL &&
5864 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5865 if (state->loop_nesting_ast->rest_expression) {
5866 state->loop_nesting_ast->rest_expression->hir(instructions,
5867 state);
5868 }
5869 if (state->loop_nesting_ast->mode ==
5870 ast_iteration_statement::ast_do_while) {
5871 state->loop_nesting_ast->condition_to_hir(instructions, state);
5872 }
5873 }
5874
5875 if (state->switch_state.is_switch_innermost &&
5876 mode == ast_continue) {
5877 /* Set 'continue_inside' to true. */
5878 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5879 ir_dereference_variable *deref_continue_inside_var =
5880 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5881 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5882 true_val));
5883
5884 /* Break out from the switch, continue for the loop will
5885 * be called right after switch. */
5886 ir_loop_jump *const jump =
5887 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5888 instructions->push_tail(jump);
5889
5890 } else if (state->switch_state.is_switch_innermost &&
5891 mode == ast_break) {
5892 /* Force break out of switch by inserting a break. */
5893 ir_loop_jump *const jump =
5894 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5895 instructions->push_tail(jump);
5896 } else {
5897 ir_loop_jump *const jump =
5898 new(ctx) ir_loop_jump((mode == ast_break)
5899 ? ir_loop_jump::jump_break
5900 : ir_loop_jump::jump_continue);
5901 instructions->push_tail(jump);
5902 }
5903 }
5904
5905 break;
5906 }
5907
5908 /* Jump instructions do not have r-values.
5909 */
5910 return NULL;
5911 }
5912
5913
5914 ir_rvalue *
5915 ast_selection_statement::hir(exec_list *instructions,
5916 struct _mesa_glsl_parse_state *state)
5917 {
5918 void *ctx = state;
5919
5920 ir_rvalue *const condition = this->condition->hir(instructions, state);
5921
5922 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5923 *
5924 * "Any expression whose type evaluates to a Boolean can be used as the
5925 * conditional expression bool-expression. Vector types are not accepted
5926 * as the expression to if."
5927 *
5928 * The checks are separated so that higher quality diagnostics can be
5929 * generated for cases where both rules are violated.
5930 */
5931 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5932 YYLTYPE loc = this->condition->get_location();
5933
5934 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5935 "boolean");
5936 }
5937
5938 ir_if *const stmt = new(ctx) ir_if(condition);
5939
5940 if (then_statement != NULL) {
5941 state->symbols->push_scope();
5942 then_statement->hir(& stmt->then_instructions, state);
5943 state->symbols->pop_scope();
5944 }
5945
5946 if (else_statement != NULL) {
5947 state->symbols->push_scope();
5948 else_statement->hir(& stmt->else_instructions, state);
5949 state->symbols->pop_scope();
5950 }
5951
5952 instructions->push_tail(stmt);
5953
5954 /* if-statements do not have r-values.
5955 */
5956 return NULL;
5957 }
5958
5959
5960 /* Used for detection of duplicate case values, compare
5961 * given contents directly.
5962 */
5963 static bool
5964 compare_case_value(const void *a, const void *b)
5965 {
5966 return *(unsigned *) a == *(unsigned *) b;
5967 }
5968
5969
5970 /* Used for detection of duplicate case values, just
5971 * returns key contents as is.
5972 */
5973 static unsigned
5974 key_contents(const void *key)
5975 {
5976 return *(unsigned *) key;
5977 }
5978
5979
5980 ir_rvalue *
5981 ast_switch_statement::hir(exec_list *instructions,
5982 struct _mesa_glsl_parse_state *state)
5983 {
5984 void *ctx = state;
5985
5986 ir_rvalue *const test_expression =
5987 this->test_expression->hir(instructions, state);
5988
5989 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5990 *
5991 * "The type of init-expression in a switch statement must be a
5992 * scalar integer."
5993 */
5994 if (!test_expression->type->is_scalar() ||
5995 !test_expression->type->is_integer()) {
5996 YYLTYPE loc = this->test_expression->get_location();
5997
5998 _mesa_glsl_error(& loc,
5999 state,
6000 "switch-statement expression must be scalar "
6001 "integer");
6002 }
6003
6004 /* Track the switch-statement nesting in a stack-like manner.
6005 */
6006 struct glsl_switch_state saved = state->switch_state;
6007
6008 state->switch_state.is_switch_innermost = true;
6009 state->switch_state.switch_nesting_ast = this;
6010 state->switch_state.labels_ht =
6011 _mesa_hash_table_create(NULL, key_contents,
6012 compare_case_value);
6013 state->switch_state.previous_default = NULL;
6014
6015 /* Initalize is_fallthru state to false.
6016 */
6017 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6018 state->switch_state.is_fallthru_var =
6019 new(ctx) ir_variable(glsl_type::bool_type,
6020 "switch_is_fallthru_tmp",
6021 ir_var_temporary);
6022 instructions->push_tail(state->switch_state.is_fallthru_var);
6023
6024 ir_dereference_variable *deref_is_fallthru_var =
6025 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6026 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6027 is_fallthru_val));
6028
6029 /* Initialize continue_inside state to false.
6030 */
6031 state->switch_state.continue_inside =
6032 new(ctx) ir_variable(glsl_type::bool_type,
6033 "continue_inside_tmp",
6034 ir_var_temporary);
6035 instructions->push_tail(state->switch_state.continue_inside);
6036
6037 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6038 ir_dereference_variable *deref_continue_inside_var =
6039 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6040 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6041 false_val));
6042
6043 state->switch_state.run_default =
6044 new(ctx) ir_variable(glsl_type::bool_type,
6045 "run_default_tmp",
6046 ir_var_temporary);
6047 instructions->push_tail(state->switch_state.run_default);
6048
6049 /* Loop around the switch is used for flow control. */
6050 ir_loop * loop = new(ctx) ir_loop();
6051 instructions->push_tail(loop);
6052
6053 /* Cache test expression.
6054 */
6055 test_to_hir(&loop->body_instructions, state);
6056
6057 /* Emit code for body of switch stmt.
6058 */
6059 body->hir(&loop->body_instructions, state);
6060
6061 /* Insert a break at the end to exit loop. */
6062 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6063 loop->body_instructions.push_tail(jump);
6064
6065 /* If we are inside loop, check if continue got called inside switch. */
6066 if (state->loop_nesting_ast != NULL) {
6067 ir_dereference_variable *deref_continue_inside =
6068 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6069 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6070 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6071
6072 if (state->loop_nesting_ast != NULL) {
6073 if (state->loop_nesting_ast->rest_expression) {
6074 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6075 state);
6076 }
6077 if (state->loop_nesting_ast->mode ==
6078 ast_iteration_statement::ast_do_while) {
6079 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6080 }
6081 }
6082 irif->then_instructions.push_tail(jump);
6083 instructions->push_tail(irif);
6084 }
6085
6086 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6087
6088 state->switch_state = saved;
6089
6090 /* Switch statements do not have r-values. */
6091 return NULL;
6092 }
6093
6094
6095 void
6096 ast_switch_statement::test_to_hir(exec_list *instructions,
6097 struct _mesa_glsl_parse_state *state)
6098 {
6099 void *ctx = state;
6100
6101 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6102 * on the switch test case. The first one would be already raised when
6103 * getting the test_expression at ast_switch_statement::hir
6104 */
6105 test_expression->set_is_lhs(true);
6106 /* Cache value of test expression. */
6107 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6108
6109 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6110 "switch_test_tmp",
6111 ir_var_temporary);
6112 ir_dereference_variable *deref_test_var =
6113 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6114
6115 instructions->push_tail(state->switch_state.test_var);
6116 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6117 }
6118
6119
6120 ir_rvalue *
6121 ast_switch_body::hir(exec_list *instructions,
6122 struct _mesa_glsl_parse_state *state)
6123 {
6124 if (stmts != NULL)
6125 stmts->hir(instructions, state);
6126
6127 /* Switch bodies do not have r-values. */
6128 return NULL;
6129 }
6130
6131 ir_rvalue *
6132 ast_case_statement_list::hir(exec_list *instructions,
6133 struct _mesa_glsl_parse_state *state)
6134 {
6135 exec_list default_case, after_default, tmp;
6136
6137 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6138 case_stmt->hir(&tmp, state);
6139
6140 /* Default case. */
6141 if (state->switch_state.previous_default && default_case.is_empty()) {
6142 default_case.append_list(&tmp);
6143 continue;
6144 }
6145
6146 /* If default case found, append 'after_default' list. */
6147 if (!default_case.is_empty())
6148 after_default.append_list(&tmp);
6149 else
6150 instructions->append_list(&tmp);
6151 }
6152
6153 /* Handle the default case. This is done here because default might not be
6154 * the last case. We need to add checks against following cases first to see
6155 * if default should be chosen or not.
6156 */
6157 if (!default_case.is_empty()) {
6158
6159 ir_rvalue *const true_val = new (state) ir_constant(true);
6160 ir_dereference_variable *deref_run_default_var =
6161 new(state) ir_dereference_variable(state->switch_state.run_default);
6162
6163 /* Choose to run default case initially, following conditional
6164 * assignments might change this.
6165 */
6166 ir_assignment *const init_var =
6167 new(state) ir_assignment(deref_run_default_var, true_val);
6168 instructions->push_tail(init_var);
6169
6170 /* Default case was the last one, no checks required. */
6171 if (after_default.is_empty()) {
6172 instructions->append_list(&default_case);
6173 return NULL;
6174 }
6175
6176 foreach_in_list(ir_instruction, ir, &after_default) {
6177 ir_assignment *assign = ir->as_assignment();
6178
6179 if (!assign)
6180 continue;
6181
6182 /* Clone the check between case label and init expression. */
6183 ir_expression *exp = (ir_expression*) assign->condition;
6184 ir_expression *clone = exp->clone(state, NULL);
6185
6186 ir_dereference_variable *deref_var =
6187 new(state) ir_dereference_variable(state->switch_state.run_default);
6188 ir_rvalue *const false_val = new (state) ir_constant(false);
6189
6190 ir_assignment *const set_false =
6191 new(state) ir_assignment(deref_var, false_val, clone);
6192
6193 instructions->push_tail(set_false);
6194 }
6195
6196 /* Append default case and all cases after it. */
6197 instructions->append_list(&default_case);
6198 instructions->append_list(&after_default);
6199 }
6200
6201 /* Case statements do not have r-values. */
6202 return NULL;
6203 }
6204
6205 ir_rvalue *
6206 ast_case_statement::hir(exec_list *instructions,
6207 struct _mesa_glsl_parse_state *state)
6208 {
6209 labels->hir(instructions, state);
6210
6211 /* Guard case statements depending on fallthru state. */
6212 ir_dereference_variable *const deref_fallthru_guard =
6213 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6214 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6215
6216 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6217 stmt->hir(& test_fallthru->then_instructions, state);
6218
6219 instructions->push_tail(test_fallthru);
6220
6221 /* Case statements do not have r-values. */
6222 return NULL;
6223 }
6224
6225
6226 ir_rvalue *
6227 ast_case_label_list::hir(exec_list *instructions,
6228 struct _mesa_glsl_parse_state *state)
6229 {
6230 foreach_list_typed (ast_case_label, label, link, & this->labels)
6231 label->hir(instructions, state);
6232
6233 /* Case labels do not have r-values. */
6234 return NULL;
6235 }
6236
6237 ir_rvalue *
6238 ast_case_label::hir(exec_list *instructions,
6239 struct _mesa_glsl_parse_state *state)
6240 {
6241 void *ctx = state;
6242
6243 ir_dereference_variable *deref_fallthru_var =
6244 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6245
6246 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6247
6248 /* If not default case, ... */
6249 if (this->test_value != NULL) {
6250 /* Conditionally set fallthru state based on
6251 * comparison of cached test expression value to case label.
6252 */
6253 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6254 ir_constant *label_const = label_rval->constant_expression_value();
6255
6256 if (!label_const) {
6257 YYLTYPE loc = this->test_value->get_location();
6258
6259 _mesa_glsl_error(& loc, state,
6260 "switch statement case label must be a "
6261 "constant expression");
6262
6263 /* Stuff a dummy value in to allow processing to continue. */
6264 label_const = new(ctx) ir_constant(0);
6265 } else {
6266 hash_entry *entry =
6267 _mesa_hash_table_search(state->switch_state.labels_ht,
6268 (void *)(uintptr_t)&label_const->value.u[0]);
6269
6270 if (entry) {
6271 ast_expression *previous_label = (ast_expression *) entry->data;
6272 YYLTYPE loc = this->test_value->get_location();
6273 _mesa_glsl_error(& loc, state, "duplicate case value");
6274
6275 loc = previous_label->get_location();
6276 _mesa_glsl_error(& loc, state, "this is the previous case label");
6277 } else {
6278 _mesa_hash_table_insert(state->switch_state.labels_ht,
6279 (void *)(uintptr_t)&label_const->value.u[0],
6280 this->test_value);
6281 }
6282 }
6283
6284 ir_dereference_variable *deref_test_var =
6285 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6286
6287 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6288 label_const,
6289 deref_test_var);
6290
6291 /*
6292 * From GLSL 4.40 specification section 6.2 ("Selection"):
6293 *
6294 * "The type of the init-expression value in a switch statement must
6295 * be a scalar int or uint. The type of the constant-expression value
6296 * in a case label also must be a scalar int or uint. When any pair
6297 * of these values is tested for "equal value" and the types do not
6298 * match, an implicit conversion will be done to convert the int to a
6299 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6300 * is done."
6301 */
6302 if (label_const->type != state->switch_state.test_var->type) {
6303 YYLTYPE loc = this->test_value->get_location();
6304
6305 const glsl_type *type_a = label_const->type;
6306 const glsl_type *type_b = state->switch_state.test_var->type;
6307
6308 /* Check if int->uint implicit conversion is supported. */
6309 bool integer_conversion_supported =
6310 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6311 state);
6312
6313 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6314 !integer_conversion_supported) {
6315 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6316 "init-expression and case label (%s != %s)",
6317 type_a->name, type_b->name);
6318 } else {
6319 /* Conversion of the case label. */
6320 if (type_a->base_type == GLSL_TYPE_INT) {
6321 if (!apply_implicit_conversion(glsl_type::uint_type,
6322 test_cond->operands[0], state))
6323 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6324 } else {
6325 /* Conversion of the init-expression value. */
6326 if (!apply_implicit_conversion(glsl_type::uint_type,
6327 test_cond->operands[1], state))
6328 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6329 }
6330 }
6331 }
6332
6333 ir_assignment *set_fallthru_on_test =
6334 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6335
6336 instructions->push_tail(set_fallthru_on_test);
6337 } else { /* default case */
6338 if (state->switch_state.previous_default) {
6339 YYLTYPE loc = this->get_location();
6340 _mesa_glsl_error(& loc, state,
6341 "multiple default labels in one switch");
6342
6343 loc = state->switch_state.previous_default->get_location();
6344 _mesa_glsl_error(& loc, state, "this is the first default label");
6345 }
6346 state->switch_state.previous_default = this;
6347
6348 /* Set fallthru condition on 'run_default' bool. */
6349 ir_dereference_variable *deref_run_default =
6350 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6351 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6352 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6353 cond_true,
6354 deref_run_default);
6355
6356 /* Set falltrhu state. */
6357 ir_assignment *set_fallthru =
6358 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6359
6360 instructions->push_tail(set_fallthru);
6361 }
6362
6363 /* Case statements do not have r-values. */
6364 return NULL;
6365 }
6366
6367 void
6368 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6369 struct _mesa_glsl_parse_state *state)
6370 {
6371 void *ctx = state;
6372
6373 if (condition != NULL) {
6374 ir_rvalue *const cond =
6375 condition->hir(instructions, state);
6376
6377 if ((cond == NULL)
6378 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6379 YYLTYPE loc = condition->get_location();
6380
6381 _mesa_glsl_error(& loc, state,
6382 "loop condition must be scalar boolean");
6383 } else {
6384 /* As the first code in the loop body, generate a block that looks
6385 * like 'if (!condition) break;' as the loop termination condition.
6386 */
6387 ir_rvalue *const not_cond =
6388 new(ctx) ir_expression(ir_unop_logic_not, cond);
6389
6390 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6391
6392 ir_jump *const break_stmt =
6393 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6394
6395 if_stmt->then_instructions.push_tail(break_stmt);
6396 instructions->push_tail(if_stmt);
6397 }
6398 }
6399 }
6400
6401
6402 ir_rvalue *
6403 ast_iteration_statement::hir(exec_list *instructions,
6404 struct _mesa_glsl_parse_state *state)
6405 {
6406 void *ctx = state;
6407
6408 /* For-loops and while-loops start a new scope, but do-while loops do not.
6409 */
6410 if (mode != ast_do_while)
6411 state->symbols->push_scope();
6412
6413 if (init_statement != NULL)
6414 init_statement->hir(instructions, state);
6415
6416 ir_loop *const stmt = new(ctx) ir_loop();
6417 instructions->push_tail(stmt);
6418
6419 /* Track the current loop nesting. */
6420 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6421
6422 state->loop_nesting_ast = this;
6423
6424 /* Likewise, indicate that following code is closest to a loop,
6425 * NOT closest to a switch.
6426 */
6427 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6428 state->switch_state.is_switch_innermost = false;
6429
6430 if (mode != ast_do_while)
6431 condition_to_hir(&stmt->body_instructions, state);
6432
6433 if (body != NULL)
6434 body->hir(& stmt->body_instructions, state);
6435
6436 if (rest_expression != NULL)
6437 rest_expression->hir(& stmt->body_instructions, state);
6438
6439 if (mode == ast_do_while)
6440 condition_to_hir(&stmt->body_instructions, state);
6441
6442 if (mode != ast_do_while)
6443 state->symbols->pop_scope();
6444
6445 /* Restore previous nesting before returning. */
6446 state->loop_nesting_ast = nesting_ast;
6447 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6448
6449 /* Loops do not have r-values.
6450 */
6451 return NULL;
6452 }
6453
6454
6455 /**
6456 * Determine if the given type is valid for establishing a default precision
6457 * qualifier.
6458 *
6459 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6460 *
6461 * "The precision statement
6462 *
6463 * precision precision-qualifier type;
6464 *
6465 * can be used to establish a default precision qualifier. The type field
6466 * can be either int or float or any of the sampler types, and the
6467 * precision-qualifier can be lowp, mediump, or highp."
6468 *
6469 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6470 * qualifiers on sampler types, but this seems like an oversight (since the
6471 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6472 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6473 * version.
6474 */
6475 static bool
6476 is_valid_default_precision_type(const struct glsl_type *const type)
6477 {
6478 if (type == NULL)
6479 return false;
6480
6481 switch (type->base_type) {
6482 case GLSL_TYPE_INT:
6483 case GLSL_TYPE_FLOAT:
6484 /* "int" and "float" are valid, but vectors and matrices are not. */
6485 return type->vector_elements == 1 && type->matrix_columns == 1;
6486 case GLSL_TYPE_SAMPLER:
6487 case GLSL_TYPE_IMAGE:
6488 case GLSL_TYPE_ATOMIC_UINT:
6489 return true;
6490 default:
6491 return false;
6492 }
6493 }
6494
6495
6496 ir_rvalue *
6497 ast_type_specifier::hir(exec_list *instructions,
6498 struct _mesa_glsl_parse_state *state)
6499 {
6500 if (this->default_precision == ast_precision_none && this->structure == NULL)
6501 return NULL;
6502
6503 YYLTYPE loc = this->get_location();
6504
6505 /* If this is a precision statement, check that the type to which it is
6506 * applied is either float or int.
6507 *
6508 * From section 4.5.3 of the GLSL 1.30 spec:
6509 * "The precision statement
6510 * precision precision-qualifier type;
6511 * can be used to establish a default precision qualifier. The type
6512 * field can be either int or float [...]. Any other types or
6513 * qualifiers will result in an error.
6514 */
6515 if (this->default_precision != ast_precision_none) {
6516 if (!state->check_precision_qualifiers_allowed(&loc))
6517 return NULL;
6518
6519 if (this->structure != NULL) {
6520 _mesa_glsl_error(&loc, state,
6521 "precision qualifiers do not apply to structures");
6522 return NULL;
6523 }
6524
6525 if (this->array_specifier != NULL) {
6526 _mesa_glsl_error(&loc, state,
6527 "default precision statements do not apply to "
6528 "arrays");
6529 return NULL;
6530 }
6531
6532 const struct glsl_type *const type =
6533 state->symbols->get_type(this->type_name);
6534 if (!is_valid_default_precision_type(type)) {
6535 _mesa_glsl_error(&loc, state,
6536 "default precision statements apply only to "
6537 "float, int, and opaque types");
6538 return NULL;
6539 }
6540
6541 if (state->es_shader) {
6542 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6543 * spec says:
6544 *
6545 * "Non-precision qualified declarations will use the precision
6546 * qualifier specified in the most recent precision statement
6547 * that is still in scope. The precision statement has the same
6548 * scoping rules as variable declarations. If it is declared
6549 * inside a compound statement, its effect stops at the end of
6550 * the innermost statement it was declared in. Precision
6551 * statements in nested scopes override precision statements in
6552 * outer scopes. Multiple precision statements for the same basic
6553 * type can appear inside the same scope, with later statements
6554 * overriding earlier statements within that scope."
6555 *
6556 * Default precision specifications follow the same scope rules as
6557 * variables. So, we can track the state of the default precision
6558 * qualifiers in the symbol table, and the rules will just work. This
6559 * is a slight abuse of the symbol table, but it has the semantics
6560 * that we want.
6561 */
6562 state->symbols->add_default_precision_qualifier(this->type_name,
6563 this->default_precision);
6564 }
6565
6566 /* FINISHME: Translate precision statements into IR. */
6567 return NULL;
6568 }
6569
6570 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6571 * process_record_constructor() can do type-checking on C-style initializer
6572 * expressions of structs, but ast_struct_specifier should only be translated
6573 * to HIR if it is declaring the type of a structure.
6574 *
6575 * The ->is_declaration field is false for initializers of variables
6576 * declared separately from the struct's type definition.
6577 *
6578 * struct S { ... }; (is_declaration = true)
6579 * struct T { ... } t = { ... }; (is_declaration = true)
6580 * S s = { ... }; (is_declaration = false)
6581 */
6582 if (this->structure != NULL && this->structure->is_declaration)
6583 return this->structure->hir(instructions, state);
6584
6585 return NULL;
6586 }
6587
6588
6589 /**
6590 * Process a structure or interface block tree into an array of structure fields
6591 *
6592 * After parsing, where there are some syntax differnces, structures and
6593 * interface blocks are almost identical. They are similar enough that the
6594 * AST for each can be processed the same way into a set of
6595 * \c glsl_struct_field to describe the members.
6596 *
6597 * If we're processing an interface block, var_mode should be the type of the
6598 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6599 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6600 * ir_var_auto.
6601 *
6602 * \return
6603 * The number of fields processed. A pointer to the array structure fields is
6604 * stored in \c *fields_ret.
6605 */
6606 static unsigned
6607 ast_process_struct_or_iface_block_members(exec_list *instructions,
6608 struct _mesa_glsl_parse_state *state,
6609 exec_list *declarations,
6610 glsl_struct_field **fields_ret,
6611 bool is_interface,
6612 enum glsl_matrix_layout matrix_layout,
6613 bool allow_reserved_names,
6614 ir_variable_mode var_mode,
6615 ast_type_qualifier *layout,
6616 unsigned block_stream,
6617 unsigned block_xfb_buffer,
6618 unsigned block_xfb_offset,
6619 unsigned expl_location,
6620 unsigned expl_align)
6621 {
6622 unsigned decl_count = 0;
6623 unsigned next_offset = 0;
6624
6625 /* Make an initial pass over the list of fields to determine how
6626 * many there are. Each element in this list is an ast_declarator_list.
6627 * This means that we actually need to count the number of elements in the
6628 * 'declarations' list in each of the elements.
6629 */
6630 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6631 decl_count += decl_list->declarations.length();
6632 }
6633
6634 /* Allocate storage for the fields and process the field
6635 * declarations. As the declarations are processed, try to also convert
6636 * the types to HIR. This ensures that structure definitions embedded in
6637 * other structure definitions or in interface blocks are processed.
6638 */
6639 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6640 decl_count);
6641
6642 bool first_member = true;
6643 bool first_member_has_explicit_location = false;
6644
6645 unsigned i = 0;
6646 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6647 const char *type_name;
6648 YYLTYPE loc = decl_list->get_location();
6649
6650 decl_list->type->specifier->hir(instructions, state);
6651
6652 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6653 *
6654 * "Anonymous structures are not supported; so embedded structures
6655 * must have a declarator. A name given to an embedded struct is
6656 * scoped at the same level as the struct it is embedded in."
6657 *
6658 * The same section of the GLSL 1.20 spec says:
6659 *
6660 * "Anonymous structures are not supported. Embedded structures are
6661 * not supported."
6662 *
6663 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6664 * embedded structures in 1.10 only.
6665 */
6666 if (state->language_version != 110 &&
6667 decl_list->type->specifier->structure != NULL)
6668 _mesa_glsl_error(&loc, state,
6669 "embedded structure declarations are not allowed");
6670
6671 const glsl_type *decl_type =
6672 decl_list->type->glsl_type(& type_name, state);
6673
6674 const struct ast_type_qualifier *const qual =
6675 &decl_list->type->qualifier;
6676
6677 /* From section 4.3.9 of the GLSL 4.40 spec:
6678 *
6679 * "[In interface blocks] opaque types are not allowed."
6680 *
6681 * It should be impossible for decl_type to be NULL here. Cases that
6682 * might naturally lead to decl_type being NULL, especially for the
6683 * is_interface case, will have resulted in compilation having
6684 * already halted due to a syntax error.
6685 */
6686 assert(decl_type);
6687
6688 if (is_interface) {
6689 if (decl_type->contains_opaque()) {
6690 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6691 "interface block contains opaque variable");
6692 }
6693 } else {
6694 if (decl_type->contains_atomic()) {
6695 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6696 *
6697 * "Members of structures cannot be declared as atomic counter
6698 * types."
6699 */
6700 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6701 }
6702
6703 if (decl_type->contains_image()) {
6704 /* FINISHME: Same problem as with atomic counters.
6705 * FINISHME: Request clarification from Khronos and add
6706 * FINISHME: spec quotation here.
6707 */
6708 _mesa_glsl_error(&loc, state, "image in structure");
6709 }
6710 }
6711
6712 if (qual->flags.q.explicit_binding) {
6713 _mesa_glsl_error(&loc, state,
6714 "binding layout qualifier cannot be applied "
6715 "to struct or interface block members");
6716 }
6717
6718 if (is_interface) {
6719 if (!first_member) {
6720 if (!layout->flags.q.explicit_location &&
6721 ((first_member_has_explicit_location &&
6722 !qual->flags.q.explicit_location) ||
6723 (!first_member_has_explicit_location &&
6724 qual->flags.q.explicit_location))) {
6725 _mesa_glsl_error(&loc, state,
6726 "when block-level location layout qualifier "
6727 "is not supplied either all members must "
6728 "have a location layout qualifier or all "
6729 "members must not have a location layout "
6730 "qualifier");
6731 }
6732 } else {
6733 first_member = false;
6734 first_member_has_explicit_location =
6735 qual->flags.q.explicit_location;
6736 }
6737 }
6738
6739 if (qual->flags.q.std140 ||
6740 qual->flags.q.std430 ||
6741 qual->flags.q.packed ||
6742 qual->flags.q.shared) {
6743 _mesa_glsl_error(&loc, state,
6744 "uniform/shader storage block layout qualifiers "
6745 "std140, std430, packed, and shared can only be "
6746 "applied to uniform/shader storage blocks, not "
6747 "members");
6748 }
6749
6750 if (qual->flags.q.constant) {
6751 _mesa_glsl_error(&loc, state,
6752 "const storage qualifier cannot be applied "
6753 "to struct or interface block members");
6754 }
6755
6756 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6757 *
6758 * "A block member may be declared with a stream identifier, but
6759 * the specified stream must match the stream associated with the
6760 * containing block."
6761 */
6762 if (qual->flags.q.explicit_stream) {
6763 unsigned qual_stream;
6764 if (process_qualifier_constant(state, &loc, "stream",
6765 qual->stream, &qual_stream) &&
6766 qual_stream != block_stream) {
6767 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6768 "interface block member does not match "
6769 "the interface block (%u vs %u)", qual_stream,
6770 block_stream);
6771 }
6772 }
6773
6774 int xfb_buffer;
6775 unsigned explicit_xfb_buffer = 0;
6776 if (qual->flags.q.explicit_xfb_buffer) {
6777 unsigned qual_xfb_buffer;
6778 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6779 qual->xfb_buffer, &qual_xfb_buffer)) {
6780 explicit_xfb_buffer = 1;
6781 if (qual_xfb_buffer != block_xfb_buffer)
6782 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6783 "interface block member does not match "
6784 "the interface block (%u vs %u)",
6785 qual_xfb_buffer, block_xfb_buffer);
6786 }
6787 xfb_buffer = (int) qual_xfb_buffer;
6788 } else {
6789 if (layout)
6790 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6791 xfb_buffer = (int) block_xfb_buffer;
6792 }
6793
6794 int xfb_stride = -1;
6795 if (qual->flags.q.explicit_xfb_stride) {
6796 unsigned qual_xfb_stride;
6797 if (process_qualifier_constant(state, &loc, "xfb_stride",
6798 qual->xfb_stride, &qual_xfb_stride)) {
6799 xfb_stride = (int) qual_xfb_stride;
6800 }
6801 }
6802
6803 if (qual->flags.q.uniform && qual->has_interpolation()) {
6804 _mesa_glsl_error(&loc, state,
6805 "interpolation qualifiers cannot be used "
6806 "with uniform interface blocks");
6807 }
6808
6809 if ((qual->flags.q.uniform || !is_interface) &&
6810 qual->has_auxiliary_storage()) {
6811 _mesa_glsl_error(&loc, state,
6812 "auxiliary storage qualifiers cannot be used "
6813 "in uniform blocks or structures.");
6814 }
6815
6816 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6817 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6818 _mesa_glsl_error(&loc, state,
6819 "row_major and column_major can only be "
6820 "applied to interface blocks");
6821 } else
6822 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6823 }
6824
6825 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6826 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6827 "readonly and writeonly.");
6828 }
6829
6830 foreach_list_typed (ast_declaration, decl, link,
6831 &decl_list->declarations) {
6832 YYLTYPE loc = decl->get_location();
6833
6834 if (!allow_reserved_names)
6835 validate_identifier(decl->identifier, loc, state);
6836
6837 const struct glsl_type *field_type =
6838 process_array_type(&loc, decl_type, decl->array_specifier, state);
6839 validate_array_dimensions(field_type, state, &loc);
6840 fields[i].type = field_type;
6841 fields[i].name = decl->identifier;
6842 fields[i].interpolation =
6843 interpret_interpolation_qualifier(qual, field_type,
6844 var_mode, state, &loc);
6845 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6846 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6847 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6848 fields[i].precision = qual->precision;
6849 fields[i].offset = -1;
6850 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6851 fields[i].xfb_buffer = xfb_buffer;
6852 fields[i].xfb_stride = xfb_stride;
6853
6854 if (qual->flags.q.explicit_location) {
6855 unsigned qual_location;
6856 if (process_qualifier_constant(state, &loc, "location",
6857 qual->location, &qual_location)) {
6858 fields[i].location = qual_location +
6859 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6860 expl_location = fields[i].location +
6861 fields[i].type->count_attribute_slots(false);
6862 }
6863 } else {
6864 if (layout && layout->flags.q.explicit_location) {
6865 fields[i].location = expl_location;
6866 expl_location += fields[i].type->count_attribute_slots(false);
6867 } else {
6868 fields[i].location = -1;
6869 }
6870 }
6871
6872 /* Offset can only be used with std430 and std140 layouts an initial
6873 * value of 0 is used for error detection.
6874 */
6875 unsigned align = 0;
6876 unsigned size = 0;
6877 if (layout) {
6878 bool row_major;
6879 if (qual->flags.q.row_major ||
6880 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6881 row_major = true;
6882 } else {
6883 row_major = false;
6884 }
6885
6886 if(layout->flags.q.std140) {
6887 align = field_type->std140_base_alignment(row_major);
6888 size = field_type->std140_size(row_major);
6889 } else if (layout->flags.q.std430) {
6890 align = field_type->std430_base_alignment(row_major);
6891 size = field_type->std430_size(row_major);
6892 }
6893 }
6894
6895 if (qual->flags.q.explicit_offset) {
6896 unsigned qual_offset;
6897 if (process_qualifier_constant(state, &loc, "offset",
6898 qual->offset, &qual_offset)) {
6899 if (align != 0 && size != 0) {
6900 if (next_offset > qual_offset)
6901 _mesa_glsl_error(&loc, state, "layout qualifier "
6902 "offset overlaps previous member");
6903
6904 if (qual_offset % align) {
6905 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6906 "must be a multiple of the base "
6907 "alignment of %s", field_type->name);
6908 }
6909 fields[i].offset = qual_offset;
6910 next_offset = glsl_align(qual_offset + size, align);
6911 } else {
6912 _mesa_glsl_error(&loc, state, "offset can only be used "
6913 "with std430 and std140 layouts");
6914 }
6915 }
6916 }
6917
6918 if (qual->flags.q.explicit_align || expl_align != 0) {
6919 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6920 next_offset;
6921 if (align == 0 || size == 0) {
6922 _mesa_glsl_error(&loc, state, "align can only be used with "
6923 "std430 and std140 layouts");
6924 } else if (qual->flags.q.explicit_align) {
6925 unsigned member_align;
6926 if (process_qualifier_constant(state, &loc, "align",
6927 qual->align, &member_align)) {
6928 if (member_align == 0 ||
6929 member_align & (member_align - 1)) {
6930 _mesa_glsl_error(&loc, state, "align layout qualifier "
6931 "in not a power of 2");
6932 } else {
6933 fields[i].offset = glsl_align(offset, member_align);
6934 next_offset = glsl_align(fields[i].offset + size, align);
6935 }
6936 }
6937 } else {
6938 fields[i].offset = glsl_align(offset, expl_align);
6939 next_offset = glsl_align(fields[i].offset + size, align);
6940 }
6941 } else if (!qual->flags.q.explicit_offset) {
6942 if (align != 0 && size != 0)
6943 next_offset = glsl_align(next_offset + size, align);
6944 }
6945
6946 /* From the ARB_enhanced_layouts spec:
6947 *
6948 * "The given offset applies to the first component of the first
6949 * member of the qualified entity. Then, within the qualified
6950 * entity, subsequent components are each assigned, in order, to
6951 * the next available offset aligned to a multiple of that
6952 * component's size. Aggregate types are flattened down to the
6953 * component level to get this sequence of components."
6954 */
6955 if (qual->flags.q.explicit_xfb_offset) {
6956 unsigned xfb_offset;
6957 if (process_qualifier_constant(state, &loc, "xfb_offset",
6958 qual->offset, &xfb_offset)) {
6959 fields[i].offset = xfb_offset;
6960 block_xfb_offset = fields[i].offset +
6961 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6962 }
6963 } else {
6964 if (layout && layout->flags.q.explicit_xfb_offset) {
6965 unsigned align = field_type->is_64bit() ? 8 : 4;
6966 fields[i].offset = glsl_align(block_xfb_offset, align);
6967 block_xfb_offset +=
6968 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6969 }
6970 }
6971
6972 /* Propogate row- / column-major information down the fields of the
6973 * structure or interface block. Structures need this data because
6974 * the structure may contain a structure that contains ... a matrix
6975 * that need the proper layout.
6976 */
6977 if (is_interface && layout &&
6978 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6979 (field_type->without_array()->is_matrix()
6980 || field_type->without_array()->is_record())) {
6981 /* If no layout is specified for the field, inherit the layout
6982 * from the block.
6983 */
6984 fields[i].matrix_layout = matrix_layout;
6985
6986 if (qual->flags.q.row_major)
6987 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6988 else if (qual->flags.q.column_major)
6989 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6990
6991 /* If we're processing an uniform or buffer block, the matrix
6992 * layout must be decided by this point.
6993 */
6994 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6995 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6996 }
6997
6998 /* Image qualifiers are allowed on buffer variables, which can only
6999 * be defined inside shader storage buffer objects
7000 */
7001 if (layout && var_mode == ir_var_shader_storage) {
7002 /* For readonly and writeonly qualifiers the field definition,
7003 * if set, overwrites the layout qualifier.
7004 */
7005 if (qual->flags.q.read_only) {
7006 fields[i].image_read_only = true;
7007 fields[i].image_write_only = false;
7008 } else if (qual->flags.q.write_only) {
7009 fields[i].image_read_only = false;
7010 fields[i].image_write_only = true;
7011 } else {
7012 fields[i].image_read_only = layout->flags.q.read_only;
7013 fields[i].image_write_only = layout->flags.q.write_only;
7014 }
7015
7016 /* For other qualifiers, we set the flag if either the layout
7017 * qualifier or the field qualifier are set
7018 */
7019 fields[i].image_coherent = qual->flags.q.coherent ||
7020 layout->flags.q.coherent;
7021 fields[i].image_volatile = qual->flags.q._volatile ||
7022 layout->flags.q._volatile;
7023 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7024 layout->flags.q.restrict_flag;
7025 }
7026
7027 i++;
7028 }
7029 }
7030
7031 assert(i == decl_count);
7032
7033 *fields_ret = fields;
7034 return decl_count;
7035 }
7036
7037
7038 ir_rvalue *
7039 ast_struct_specifier::hir(exec_list *instructions,
7040 struct _mesa_glsl_parse_state *state)
7041 {
7042 YYLTYPE loc = this->get_location();
7043
7044 unsigned expl_location = 0;
7045 if (layout && layout->flags.q.explicit_location) {
7046 if (!process_qualifier_constant(state, &loc, "location",
7047 layout->location, &expl_location)) {
7048 return NULL;
7049 } else {
7050 expl_location = VARYING_SLOT_VAR0 + expl_location;
7051 }
7052 }
7053
7054 glsl_struct_field *fields;
7055 unsigned decl_count =
7056 ast_process_struct_or_iface_block_members(instructions,
7057 state,
7058 &this->declarations,
7059 &fields,
7060 false,
7061 GLSL_MATRIX_LAYOUT_INHERITED,
7062 false /* allow_reserved_names */,
7063 ir_var_auto,
7064 layout,
7065 0, /* for interface only */
7066 0, /* for interface only */
7067 0, /* for interface only */
7068 expl_location,
7069 0 /* for interface only */);
7070
7071 validate_identifier(this->name, loc, state);
7072
7073 const glsl_type *t =
7074 glsl_type::get_record_instance(fields, decl_count, this->name);
7075
7076 if (!state->symbols->add_type(name, t)) {
7077 const glsl_type *match = state->symbols->get_type(name);
7078 /* allow struct matching for desktop GL - older UE4 does this */
7079 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7080 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7081 else
7082 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7083 } else {
7084 const glsl_type **s = reralloc(state, state->user_structures,
7085 const glsl_type *,
7086 state->num_user_structures + 1);
7087 if (s != NULL) {
7088 s[state->num_user_structures] = t;
7089 state->user_structures = s;
7090 state->num_user_structures++;
7091 }
7092 }
7093
7094 /* Structure type definitions do not have r-values.
7095 */
7096 return NULL;
7097 }
7098
7099
7100 /**
7101 * Visitor class which detects whether a given interface block has been used.
7102 */
7103 class interface_block_usage_visitor : public ir_hierarchical_visitor
7104 {
7105 public:
7106 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7107 : mode(mode), block(block), found(false)
7108 {
7109 }
7110
7111 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7112 {
7113 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7114 found = true;
7115 return visit_stop;
7116 }
7117 return visit_continue;
7118 }
7119
7120 bool usage_found() const
7121 {
7122 return this->found;
7123 }
7124
7125 private:
7126 ir_variable_mode mode;
7127 const glsl_type *block;
7128 bool found;
7129 };
7130
7131 static bool
7132 is_unsized_array_last_element(ir_variable *v)
7133 {
7134 const glsl_type *interface_type = v->get_interface_type();
7135 int length = interface_type->length;
7136
7137 assert(v->type->is_unsized_array());
7138
7139 /* Check if it is the last element of the interface */
7140 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7141 return true;
7142 return false;
7143 }
7144
7145 static void
7146 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7147 {
7148 var->data.image_read_only = field.image_read_only;
7149 var->data.image_write_only = field.image_write_only;
7150 var->data.image_coherent = field.image_coherent;
7151 var->data.image_volatile = field.image_volatile;
7152 var->data.image_restrict = field.image_restrict;
7153 }
7154
7155 ir_rvalue *
7156 ast_interface_block::hir(exec_list *instructions,
7157 struct _mesa_glsl_parse_state *state)
7158 {
7159 YYLTYPE loc = this->get_location();
7160
7161 /* Interface blocks must be declared at global scope */
7162 if (state->current_function != NULL) {
7163 _mesa_glsl_error(&loc, state,
7164 "Interface block `%s' must be declared "
7165 "at global scope",
7166 this->block_name);
7167 }
7168
7169 /* Validate qualifiers:
7170 *
7171 * - Layout Qualifiers as per the table in Section 4.4
7172 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7173 *
7174 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7175 * GLSL 4.50 spec:
7176 *
7177 * "Additionally, memory qualifiers may also be used in the declaration
7178 * of shader storage blocks"
7179 *
7180 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7181 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7182 * Layout Qualifiers) of the GLSL 4.50 spec says:
7183 *
7184 * "The std430 qualifier is supported only for shader storage blocks;
7185 * using std430 on a uniform block will result in a compile-time error."
7186 */
7187 ast_type_qualifier allowed_blk_qualifiers;
7188 allowed_blk_qualifiers.flags.i = 0;
7189 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7190 allowed_blk_qualifiers.flags.q.shared = 1;
7191 allowed_blk_qualifiers.flags.q.packed = 1;
7192 allowed_blk_qualifiers.flags.q.std140 = 1;
7193 allowed_blk_qualifiers.flags.q.row_major = 1;
7194 allowed_blk_qualifiers.flags.q.column_major = 1;
7195 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7196 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7197 if (this->layout.flags.q.buffer) {
7198 allowed_blk_qualifiers.flags.q.buffer = 1;
7199 allowed_blk_qualifiers.flags.q.std430 = 1;
7200 allowed_blk_qualifiers.flags.q.coherent = 1;
7201 allowed_blk_qualifiers.flags.q._volatile = 1;
7202 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7203 allowed_blk_qualifiers.flags.q.read_only = 1;
7204 allowed_blk_qualifiers.flags.q.write_only = 1;
7205 } else {
7206 allowed_blk_qualifiers.flags.q.uniform = 1;
7207 }
7208 } else {
7209 /* Interface block */
7210 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7211
7212 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7213 if (this->layout.flags.q.out) {
7214 allowed_blk_qualifiers.flags.q.out = 1;
7215 if (state->stage == MESA_SHADER_GEOMETRY ||
7216 state->stage == MESA_SHADER_TESS_CTRL ||
7217 state->stage == MESA_SHADER_TESS_EVAL ||
7218 state->stage == MESA_SHADER_VERTEX ) {
7219 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7220 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7221 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7222 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7223 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7224 if (state->stage == MESA_SHADER_GEOMETRY) {
7225 allowed_blk_qualifiers.flags.q.stream = 1;
7226 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7227 }
7228 if (state->stage == MESA_SHADER_TESS_CTRL) {
7229 allowed_blk_qualifiers.flags.q.patch = 1;
7230 }
7231 }
7232 } else {
7233 allowed_blk_qualifiers.flags.q.in = 1;
7234 if (state->stage == MESA_SHADER_TESS_EVAL) {
7235 allowed_blk_qualifiers.flags.q.patch = 1;
7236 }
7237 }
7238 }
7239
7240 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7241 "invalid qualifier for block",
7242 this->block_name);
7243
7244 /* The ast_interface_block has a list of ast_declarator_lists. We
7245 * need to turn those into ir_variables with an association
7246 * with this uniform block.
7247 */
7248 enum glsl_interface_packing packing;
7249 if (this->layout.flags.q.shared) {
7250 packing = GLSL_INTERFACE_PACKING_SHARED;
7251 } else if (this->layout.flags.q.packed) {
7252 packing = GLSL_INTERFACE_PACKING_PACKED;
7253 } else if (this->layout.flags.q.std430) {
7254 packing = GLSL_INTERFACE_PACKING_STD430;
7255 } else {
7256 /* The default layout is std140.
7257 */
7258 packing = GLSL_INTERFACE_PACKING_STD140;
7259 }
7260
7261 ir_variable_mode var_mode;
7262 const char *iface_type_name;
7263 if (this->layout.flags.q.in) {
7264 var_mode = ir_var_shader_in;
7265 iface_type_name = "in";
7266 } else if (this->layout.flags.q.out) {
7267 var_mode = ir_var_shader_out;
7268 iface_type_name = "out";
7269 } else if (this->layout.flags.q.uniform) {
7270 var_mode = ir_var_uniform;
7271 iface_type_name = "uniform";
7272 } else if (this->layout.flags.q.buffer) {
7273 var_mode = ir_var_shader_storage;
7274 iface_type_name = "buffer";
7275 } else {
7276 var_mode = ir_var_auto;
7277 iface_type_name = "UNKNOWN";
7278 assert(!"interface block layout qualifier not found!");
7279 }
7280
7281 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7282 if (this->layout.flags.q.row_major)
7283 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7284 else if (this->layout.flags.q.column_major)
7285 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7286
7287 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7288 exec_list declared_variables;
7289 glsl_struct_field *fields;
7290
7291 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7292 * that we don't have incompatible qualifiers
7293 */
7294 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7295 _mesa_glsl_error(&loc, state,
7296 "Interface block sets both readonly and writeonly");
7297 }
7298
7299 unsigned qual_stream;
7300 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7301 &qual_stream) ||
7302 !validate_stream_qualifier(&loc, state, qual_stream)) {
7303 /* If the stream qualifier is invalid it doesn't make sense to continue
7304 * on and try to compare stream layouts on member variables against it
7305 * so just return early.
7306 */
7307 return NULL;
7308 }
7309
7310 unsigned qual_xfb_buffer;
7311 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7312 layout.xfb_buffer, &qual_xfb_buffer) ||
7313 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7314 return NULL;
7315 }
7316
7317 unsigned qual_xfb_offset;
7318 if (layout.flags.q.explicit_xfb_offset) {
7319 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7320 layout.offset, &qual_xfb_offset)) {
7321 return NULL;
7322 }
7323 }
7324
7325 unsigned qual_xfb_stride;
7326 if (layout.flags.q.explicit_xfb_stride) {
7327 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7328 layout.xfb_stride, &qual_xfb_stride)) {
7329 return NULL;
7330 }
7331 }
7332
7333 unsigned expl_location = 0;
7334 if (layout.flags.q.explicit_location) {
7335 if (!process_qualifier_constant(state, &loc, "location",
7336 layout.location, &expl_location)) {
7337 return NULL;
7338 } else {
7339 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7340 : VARYING_SLOT_VAR0;
7341 }
7342 }
7343
7344 unsigned expl_align = 0;
7345 if (layout.flags.q.explicit_align) {
7346 if (!process_qualifier_constant(state, &loc, "align",
7347 layout.align, &expl_align)) {
7348 return NULL;
7349 } else {
7350 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7351 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7352 "power of 2.");
7353 return NULL;
7354 }
7355 }
7356 }
7357
7358 unsigned int num_variables =
7359 ast_process_struct_or_iface_block_members(&declared_variables,
7360 state,
7361 &this->declarations,
7362 &fields,
7363 true,
7364 matrix_layout,
7365 redeclaring_per_vertex,
7366 var_mode,
7367 &this->layout,
7368 qual_stream,
7369 qual_xfb_buffer,
7370 qual_xfb_offset,
7371 expl_location,
7372 expl_align);
7373
7374 if (!redeclaring_per_vertex) {
7375 validate_identifier(this->block_name, loc, state);
7376
7377 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7378 *
7379 * "Block names have no other use within a shader beyond interface
7380 * matching; it is a compile-time error to use a block name at global
7381 * scope for anything other than as a block name."
7382 */
7383 ir_variable *var = state->symbols->get_variable(this->block_name);
7384 if (var && !var->type->is_interface()) {
7385 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7386 "already used in the scope.",
7387 this->block_name);
7388 }
7389 }
7390
7391 const glsl_type *earlier_per_vertex = NULL;
7392 if (redeclaring_per_vertex) {
7393 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7394 * the named interface block gl_in, we can find it by looking at the
7395 * previous declaration of gl_in. Otherwise we can find it by looking
7396 * at the previous decalartion of any of the built-in outputs,
7397 * e.g. gl_Position.
7398 *
7399 * Also check that the instance name and array-ness of the redeclaration
7400 * are correct.
7401 */
7402 switch (var_mode) {
7403 case ir_var_shader_in:
7404 if (ir_variable *earlier_gl_in =
7405 state->symbols->get_variable("gl_in")) {
7406 earlier_per_vertex = earlier_gl_in->get_interface_type();
7407 } else {
7408 _mesa_glsl_error(&loc, state,
7409 "redeclaration of gl_PerVertex input not allowed "
7410 "in the %s shader",
7411 _mesa_shader_stage_to_string(state->stage));
7412 }
7413 if (this->instance_name == NULL ||
7414 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7415 !this->array_specifier->is_single_dimension()) {
7416 _mesa_glsl_error(&loc, state,
7417 "gl_PerVertex input must be redeclared as "
7418 "gl_in[]");
7419 }
7420 break;
7421 case ir_var_shader_out:
7422 if (ir_variable *earlier_gl_Position =
7423 state->symbols->get_variable("gl_Position")) {
7424 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7425 } else if (ir_variable *earlier_gl_out =
7426 state->symbols->get_variable("gl_out")) {
7427 earlier_per_vertex = earlier_gl_out->get_interface_type();
7428 } else {
7429 _mesa_glsl_error(&loc, state,
7430 "redeclaration of gl_PerVertex output not "
7431 "allowed in the %s shader",
7432 _mesa_shader_stage_to_string(state->stage));
7433 }
7434 if (state->stage == MESA_SHADER_TESS_CTRL) {
7435 if (this->instance_name == NULL ||
7436 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7437 _mesa_glsl_error(&loc, state,
7438 "gl_PerVertex output must be redeclared as "
7439 "gl_out[]");
7440 }
7441 } else {
7442 if (this->instance_name != NULL) {
7443 _mesa_glsl_error(&loc, state,
7444 "gl_PerVertex output may not be redeclared with "
7445 "an instance name");
7446 }
7447 }
7448 break;
7449 default:
7450 _mesa_glsl_error(&loc, state,
7451 "gl_PerVertex must be declared as an input or an "
7452 "output");
7453 break;
7454 }
7455
7456 if (earlier_per_vertex == NULL) {
7457 /* An error has already been reported. Bail out to avoid null
7458 * dereferences later in this function.
7459 */
7460 return NULL;
7461 }
7462
7463 /* Copy locations from the old gl_PerVertex interface block. */
7464 for (unsigned i = 0; i < num_variables; i++) {
7465 int j = earlier_per_vertex->field_index(fields[i].name);
7466 if (j == -1) {
7467 _mesa_glsl_error(&loc, state,
7468 "redeclaration of gl_PerVertex must be a subset "
7469 "of the built-in members of gl_PerVertex");
7470 } else {
7471 fields[i].location =
7472 earlier_per_vertex->fields.structure[j].location;
7473 fields[i].offset =
7474 earlier_per_vertex->fields.structure[j].offset;
7475 fields[i].interpolation =
7476 earlier_per_vertex->fields.structure[j].interpolation;
7477 fields[i].centroid =
7478 earlier_per_vertex->fields.structure[j].centroid;
7479 fields[i].sample =
7480 earlier_per_vertex->fields.structure[j].sample;
7481 fields[i].patch =
7482 earlier_per_vertex->fields.structure[j].patch;
7483 fields[i].precision =
7484 earlier_per_vertex->fields.structure[j].precision;
7485 fields[i].explicit_xfb_buffer =
7486 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7487 fields[i].xfb_buffer =
7488 earlier_per_vertex->fields.structure[j].xfb_buffer;
7489 fields[i].xfb_stride =
7490 earlier_per_vertex->fields.structure[j].xfb_stride;
7491 }
7492 }
7493
7494 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7495 * spec:
7496 *
7497 * If a built-in interface block is redeclared, it must appear in
7498 * the shader before any use of any member included in the built-in
7499 * declaration, or a compilation error will result.
7500 *
7501 * This appears to be a clarification to the behaviour established for
7502 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7503 * regardless of GLSL version.
7504 */
7505 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7506 v.run(instructions);
7507 if (v.usage_found()) {
7508 _mesa_glsl_error(&loc, state,
7509 "redeclaration of a built-in interface block must "
7510 "appear before any use of any member of the "
7511 "interface block");
7512 }
7513 }
7514
7515 const glsl_type *block_type =
7516 glsl_type::get_interface_instance(fields,
7517 num_variables,
7518 packing,
7519 this->block_name);
7520
7521 unsigned component_size = block_type->contains_double() ? 8 : 4;
7522 int xfb_offset =
7523 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7524 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7525 component_size);
7526
7527 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7528 YYLTYPE loc = this->get_location();
7529 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7530 "already taken in the current scope",
7531 this->block_name, iface_type_name);
7532 }
7533
7534 /* Since interface blocks cannot contain statements, it should be
7535 * impossible for the block to generate any instructions.
7536 */
7537 assert(declared_variables.is_empty());
7538
7539 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7540 *
7541 * Geometry shader input variables get the per-vertex values written
7542 * out by vertex shader output variables of the same names. Since a
7543 * geometry shader operates on a set of vertices, each input varying
7544 * variable (or input block, see interface blocks below) needs to be
7545 * declared as an array.
7546 */
7547 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7548 var_mode == ir_var_shader_in) {
7549 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7550 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7551 state->stage == MESA_SHADER_TESS_EVAL) &&
7552 !this->layout.flags.q.patch &&
7553 this->array_specifier == NULL &&
7554 var_mode == ir_var_shader_in) {
7555 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7556 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7557 !this->layout.flags.q.patch &&
7558 this->array_specifier == NULL &&
7559 var_mode == ir_var_shader_out) {
7560 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7561 }
7562
7563
7564 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7565 * says:
7566 *
7567 * "If an instance name (instance-name) is used, then it puts all the
7568 * members inside a scope within its own name space, accessed with the
7569 * field selector ( . ) operator (analogously to structures)."
7570 */
7571 if (this->instance_name) {
7572 if (redeclaring_per_vertex) {
7573 /* When a built-in in an unnamed interface block is redeclared,
7574 * get_variable_being_redeclared() calls
7575 * check_builtin_array_max_size() to make sure that built-in array
7576 * variables aren't redeclared to illegal sizes. But we're looking
7577 * at a redeclaration of a named built-in interface block. So we
7578 * have to manually call check_builtin_array_max_size() for all parts
7579 * of the interface that are arrays.
7580 */
7581 for (unsigned i = 0; i < num_variables; i++) {
7582 if (fields[i].type->is_array()) {
7583 const unsigned size = fields[i].type->array_size();
7584 check_builtin_array_max_size(fields[i].name, size, loc, state);
7585 }
7586 }
7587 } else {
7588 validate_identifier(this->instance_name, loc, state);
7589 }
7590
7591 ir_variable *var;
7592
7593 if (this->array_specifier != NULL) {
7594 const glsl_type *block_array_type =
7595 process_array_type(&loc, block_type, this->array_specifier, state);
7596
7597 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7598 *
7599 * For uniform blocks declared an array, each individual array
7600 * element corresponds to a separate buffer object backing one
7601 * instance of the block. As the array size indicates the number
7602 * of buffer objects needed, uniform block array declarations
7603 * must specify an array size.
7604 *
7605 * And a few paragraphs later:
7606 *
7607 * Geometry shader input blocks must be declared as arrays and
7608 * follow the array declaration and linking rules for all
7609 * geometry shader inputs. All other input and output block
7610 * arrays must specify an array size.
7611 *
7612 * The same applies to tessellation shaders.
7613 *
7614 * The upshot of this is that the only circumstance where an
7615 * interface array size *doesn't* need to be specified is on a
7616 * geometry shader input, tessellation control shader input,
7617 * tessellation control shader output, and tessellation evaluation
7618 * shader input.
7619 */
7620 if (block_array_type->is_unsized_array()) {
7621 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7622 state->stage == MESA_SHADER_TESS_CTRL ||
7623 state->stage == MESA_SHADER_TESS_EVAL;
7624 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7625
7626 if (this->layout.flags.q.in) {
7627 if (!allow_inputs)
7628 _mesa_glsl_error(&loc, state,
7629 "unsized input block arrays not allowed in "
7630 "%s shader",
7631 _mesa_shader_stage_to_string(state->stage));
7632 } else if (this->layout.flags.q.out) {
7633 if (!allow_outputs)
7634 _mesa_glsl_error(&loc, state,
7635 "unsized output block arrays not allowed in "
7636 "%s shader",
7637 _mesa_shader_stage_to_string(state->stage));
7638 } else {
7639 /* by elimination, this is a uniform block array */
7640 _mesa_glsl_error(&loc, state,
7641 "unsized uniform block arrays not allowed in "
7642 "%s shader",
7643 _mesa_shader_stage_to_string(state->stage));
7644 }
7645 }
7646
7647 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7648 *
7649 * * Arrays of arrays of blocks are not allowed
7650 */
7651 if (state->es_shader && block_array_type->is_array() &&
7652 block_array_type->fields.array->is_array()) {
7653 _mesa_glsl_error(&loc, state,
7654 "arrays of arrays interface blocks are "
7655 "not allowed");
7656 }
7657
7658 var = new(state) ir_variable(block_array_type,
7659 this->instance_name,
7660 var_mode);
7661 } else {
7662 var = new(state) ir_variable(block_type,
7663 this->instance_name,
7664 var_mode);
7665 }
7666
7667 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7668 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7669
7670 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7671 var->data.read_only = true;
7672
7673 var->data.patch = this->layout.flags.q.patch;
7674
7675 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7676 handle_geometry_shader_input_decl(state, loc, var);
7677 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7678 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7679 handle_tess_shader_input_decl(state, loc, var);
7680 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7681 handle_tess_ctrl_shader_output_decl(state, loc, var);
7682
7683 for (unsigned i = 0; i < num_variables; i++) {
7684 if (var->data.mode == ir_var_shader_storage)
7685 apply_memory_qualifiers(var, fields[i]);
7686 }
7687
7688 if (ir_variable *earlier =
7689 state->symbols->get_variable(this->instance_name)) {
7690 if (!redeclaring_per_vertex) {
7691 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7692 this->instance_name);
7693 }
7694 earlier->data.how_declared = ir_var_declared_normally;
7695 earlier->type = var->type;
7696 earlier->reinit_interface_type(block_type);
7697 delete var;
7698 } else {
7699 if (this->layout.flags.q.explicit_binding) {
7700 apply_explicit_binding(state, &loc, var, var->type,
7701 &this->layout);
7702 }
7703
7704 var->data.stream = qual_stream;
7705 if (layout.flags.q.explicit_location) {
7706 var->data.location = expl_location;
7707 var->data.explicit_location = true;
7708 }
7709
7710 state->symbols->add_variable(var);
7711 instructions->push_tail(var);
7712 }
7713 } else {
7714 /* In order to have an array size, the block must also be declared with
7715 * an instance name.
7716 */
7717 assert(this->array_specifier == NULL);
7718
7719 for (unsigned i = 0; i < num_variables; i++) {
7720 ir_variable *var =
7721 new(state) ir_variable(fields[i].type,
7722 ralloc_strdup(state, fields[i].name),
7723 var_mode);
7724 var->data.interpolation = fields[i].interpolation;
7725 var->data.centroid = fields[i].centroid;
7726 var->data.sample = fields[i].sample;
7727 var->data.patch = fields[i].patch;
7728 var->data.stream = qual_stream;
7729 var->data.location = fields[i].location;
7730
7731 if (fields[i].location != -1)
7732 var->data.explicit_location = true;
7733
7734 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7735 var->data.xfb_buffer = fields[i].xfb_buffer;
7736
7737 if (fields[i].offset != -1)
7738 var->data.explicit_xfb_offset = true;
7739 var->data.offset = fields[i].offset;
7740
7741 var->init_interface_type(block_type);
7742
7743 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7744 var->data.read_only = true;
7745
7746 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7747 if (state->es_shader) {
7748 var->data.precision =
7749 select_gles_precision(fields[i].precision, fields[i].type,
7750 state, &loc);
7751 }
7752
7753 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7754 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7755 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7756 } else {
7757 var->data.matrix_layout = fields[i].matrix_layout;
7758 }
7759
7760 if (var->data.mode == ir_var_shader_storage)
7761 apply_memory_qualifiers(var, fields[i]);
7762
7763 /* Examine var name here since var may get deleted in the next call */
7764 bool var_is_gl_id = is_gl_identifier(var->name);
7765
7766 if (redeclaring_per_vertex) {
7767 ir_variable *earlier =
7768 get_variable_being_redeclared(var, loc, state,
7769 true /* allow_all_redeclarations */);
7770 if (!var_is_gl_id || earlier == NULL) {
7771 _mesa_glsl_error(&loc, state,
7772 "redeclaration of gl_PerVertex can only "
7773 "include built-in variables");
7774 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7775 _mesa_glsl_error(&loc, state,
7776 "`%s' has already been redeclared",
7777 earlier->name);
7778 } else {
7779 earlier->data.how_declared = ir_var_declared_in_block;
7780 earlier->reinit_interface_type(block_type);
7781 }
7782 continue;
7783 }
7784
7785 if (state->symbols->get_variable(var->name) != NULL)
7786 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7787
7788 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7789 * The UBO declaration itself doesn't get an ir_variable unless it
7790 * has an instance name. This is ugly.
7791 */
7792 if (this->layout.flags.q.explicit_binding) {
7793 apply_explicit_binding(state, &loc, var,
7794 var->get_interface_type(), &this->layout);
7795 }
7796
7797 if (var->type->is_unsized_array()) {
7798 if (var->is_in_shader_storage_block()) {
7799 if (is_unsized_array_last_element(var)) {
7800 var->data.from_ssbo_unsized_array = true;
7801 }
7802 } else {
7803 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7804 *
7805 * "If an array is declared as the last member of a shader storage
7806 * block and the size is not specified at compile-time, it is
7807 * sized at run-time. In all other cases, arrays are sized only
7808 * at compile-time."
7809 */
7810 if (state->es_shader) {
7811 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7812 "definition: only last member of a shader "
7813 "storage block can be defined as unsized "
7814 "array", fields[i].name);
7815 }
7816 }
7817 }
7818
7819 state->symbols->add_variable(var);
7820 instructions->push_tail(var);
7821 }
7822
7823 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7824 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7825 *
7826 * It is also a compilation error ... to redeclare a built-in
7827 * block and then use a member from that built-in block that was
7828 * not included in the redeclaration.
7829 *
7830 * This appears to be a clarification to the behaviour established
7831 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7832 * behaviour regardless of GLSL version.
7833 *
7834 * To prevent the shader from using a member that was not included in
7835 * the redeclaration, we disable any ir_variables that are still
7836 * associated with the old declaration of gl_PerVertex (since we've
7837 * already updated all of the variables contained in the new
7838 * gl_PerVertex to point to it).
7839 *
7840 * As a side effect this will prevent
7841 * validate_intrastage_interface_blocks() from getting confused and
7842 * thinking there are conflicting definitions of gl_PerVertex in the
7843 * shader.
7844 */
7845 foreach_in_list_safe(ir_instruction, node, instructions) {
7846 ir_variable *const var = node->as_variable();
7847 if (var != NULL &&
7848 var->get_interface_type() == earlier_per_vertex &&
7849 var->data.mode == var_mode) {
7850 if (var->data.how_declared == ir_var_declared_normally) {
7851 _mesa_glsl_error(&loc, state,
7852 "redeclaration of gl_PerVertex cannot "
7853 "follow a redeclaration of `%s'",
7854 var->name);
7855 }
7856 state->symbols->disable_variable(var->name);
7857 var->remove();
7858 }
7859 }
7860 }
7861 }
7862
7863 return NULL;
7864 }
7865
7866
7867 ir_rvalue *
7868 ast_tcs_output_layout::hir(exec_list *instructions,
7869 struct _mesa_glsl_parse_state *state)
7870 {
7871 YYLTYPE loc = this->get_location();
7872
7873 unsigned num_vertices;
7874 if (!state->out_qualifier->vertices->
7875 process_qualifier_constant(state, "vertices", &num_vertices,
7876 false)) {
7877 /* return here to stop cascading incorrect error messages */
7878 return NULL;
7879 }
7880
7881 /* If any shader outputs occurred before this declaration and specified an
7882 * array size, make sure the size they specified is consistent with the
7883 * primitive type.
7884 */
7885 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7886 _mesa_glsl_error(&loc, state,
7887 "this tessellation control shader output layout "
7888 "specifies %u vertices, but a previous output "
7889 "is declared with size %u",
7890 num_vertices, state->tcs_output_size);
7891 return NULL;
7892 }
7893
7894 state->tcs_output_vertices_specified = true;
7895
7896 /* If any shader outputs occurred before this declaration and did not
7897 * specify an array size, their size is determined now.
7898 */
7899 foreach_in_list (ir_instruction, node, instructions) {
7900 ir_variable *var = node->as_variable();
7901 if (var == NULL || var->data.mode != ir_var_shader_out)
7902 continue;
7903
7904 /* Note: Not all tessellation control shader output are arrays. */
7905 if (!var->type->is_unsized_array() || var->data.patch)
7906 continue;
7907
7908 if (var->data.max_array_access >= (int)num_vertices) {
7909 _mesa_glsl_error(&loc, state,
7910 "this tessellation control shader output layout "
7911 "specifies %u vertices, but an access to element "
7912 "%u of output `%s' already exists", num_vertices,
7913 var->data.max_array_access, var->name);
7914 } else {
7915 var->type = glsl_type::get_array_instance(var->type->fields.array,
7916 num_vertices);
7917 }
7918 }
7919
7920 return NULL;
7921 }
7922
7923
7924 ir_rvalue *
7925 ast_gs_input_layout::hir(exec_list *instructions,
7926 struct _mesa_glsl_parse_state *state)
7927 {
7928 YYLTYPE loc = this->get_location();
7929
7930 /* If any geometry input layout declaration preceded this one, make sure it
7931 * was consistent with this one.
7932 */
7933 if (state->gs_input_prim_type_specified &&
7934 state->in_qualifier->prim_type != this->prim_type) {
7935 _mesa_glsl_error(&loc, state,
7936 "geometry shader input layout does not match"
7937 " previous declaration");
7938 return NULL;
7939 }
7940
7941 /* If any shader inputs occurred before this declaration and specified an
7942 * array size, make sure the size they specified is consistent with the
7943 * primitive type.
7944 */
7945 unsigned num_vertices = vertices_per_prim(this->prim_type);
7946 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7947 _mesa_glsl_error(&loc, state,
7948 "this geometry shader input layout implies %u vertices"
7949 " per primitive, but a previous input is declared"
7950 " with size %u", num_vertices, state->gs_input_size);
7951 return NULL;
7952 }
7953
7954 state->gs_input_prim_type_specified = true;
7955
7956 /* If any shader inputs occurred before this declaration and did not
7957 * specify an array size, their size is determined now.
7958 */
7959 foreach_in_list(ir_instruction, node, instructions) {
7960 ir_variable *var = node->as_variable();
7961 if (var == NULL || var->data.mode != ir_var_shader_in)
7962 continue;
7963
7964 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7965 * array; skip it.
7966 */
7967
7968 if (var->type->is_unsized_array()) {
7969 if (var->data.max_array_access >= (int)num_vertices) {
7970 _mesa_glsl_error(&loc, state,
7971 "this geometry shader input layout implies %u"
7972 " vertices, but an access to element %u of input"
7973 " `%s' already exists", num_vertices,
7974 var->data.max_array_access, var->name);
7975 } else {
7976 var->type = glsl_type::get_array_instance(var->type->fields.array,
7977 num_vertices);
7978 }
7979 }
7980 }
7981
7982 return NULL;
7983 }
7984
7985
7986 ir_rvalue *
7987 ast_cs_input_layout::hir(exec_list *instructions,
7988 struct _mesa_glsl_parse_state *state)
7989 {
7990 YYLTYPE loc = this->get_location();
7991
7992 /* From the ARB_compute_shader specification:
7993 *
7994 * If the local size of the shader in any dimension is greater
7995 * than the maximum size supported by the implementation for that
7996 * dimension, a compile-time error results.
7997 *
7998 * It is not clear from the spec how the error should be reported if
7999 * the total size of the work group exceeds
8000 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8001 * report it at compile time as well.
8002 */
8003 GLuint64 total_invocations = 1;
8004 unsigned qual_local_size[3];
8005 for (int i = 0; i < 3; i++) {
8006
8007 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8008 'x' + i);
8009 /* Infer a local_size of 1 for unspecified dimensions */
8010 if (this->local_size[i] == NULL) {
8011 qual_local_size[i] = 1;
8012 } else if (!this->local_size[i]->
8013 process_qualifier_constant(state, local_size_str,
8014 &qual_local_size[i], false)) {
8015 ralloc_free(local_size_str);
8016 return NULL;
8017 }
8018 ralloc_free(local_size_str);
8019
8020 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8021 _mesa_glsl_error(&loc, state,
8022 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8023 " (%d)", 'x' + i,
8024 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8025 break;
8026 }
8027 total_invocations *= qual_local_size[i];
8028 if (total_invocations >
8029 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8030 _mesa_glsl_error(&loc, state,
8031 "product of local_sizes exceeds "
8032 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8033 state->ctx->Const.MaxComputeWorkGroupInvocations);
8034 break;
8035 }
8036 }
8037
8038 /* If any compute input layout declaration preceded this one, make sure it
8039 * was consistent with this one.
8040 */
8041 if (state->cs_input_local_size_specified) {
8042 for (int i = 0; i < 3; i++) {
8043 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8044 _mesa_glsl_error(&loc, state,
8045 "compute shader input layout does not match"
8046 " previous declaration");
8047 return NULL;
8048 }
8049 }
8050 }
8051
8052 /* The ARB_compute_variable_group_size spec says:
8053 *
8054 * If a compute shader including a *local_size_variable* qualifier also
8055 * declares a fixed local group size using the *local_size_x*,
8056 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8057 * results
8058 */
8059 if (state->cs_input_local_size_variable_specified) {
8060 _mesa_glsl_error(&loc, state,
8061 "compute shader can't include both a variable and a "
8062 "fixed local group size");
8063 return NULL;
8064 }
8065
8066 state->cs_input_local_size_specified = true;
8067 for (int i = 0; i < 3; i++)
8068 state->cs_input_local_size[i] = qual_local_size[i];
8069
8070 /* We may now declare the built-in constant gl_WorkGroupSize (see
8071 * builtin_variable_generator::generate_constants() for why we didn't
8072 * declare it earlier).
8073 */
8074 ir_variable *var = new(state->symbols)
8075 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8076 var->data.how_declared = ir_var_declared_implicitly;
8077 var->data.read_only = true;
8078 instructions->push_tail(var);
8079 state->symbols->add_variable(var);
8080 ir_constant_data data;
8081 memset(&data, 0, sizeof(data));
8082 for (int i = 0; i < 3; i++)
8083 data.u[i] = qual_local_size[i];
8084 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8085 var->constant_initializer =
8086 new(var) ir_constant(glsl_type::uvec3_type, &data);
8087 var->data.has_initializer = true;
8088
8089 return NULL;
8090 }
8091
8092
8093 static void
8094 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8095 exec_list *instructions)
8096 {
8097 bool gl_FragColor_assigned = false;
8098 bool gl_FragData_assigned = false;
8099 bool gl_FragSecondaryColor_assigned = false;
8100 bool gl_FragSecondaryData_assigned = false;
8101 bool user_defined_fs_output_assigned = false;
8102 ir_variable *user_defined_fs_output = NULL;
8103
8104 /* It would be nice to have proper location information. */
8105 YYLTYPE loc;
8106 memset(&loc, 0, sizeof(loc));
8107
8108 foreach_in_list(ir_instruction, node, instructions) {
8109 ir_variable *var = node->as_variable();
8110
8111 if (!var || !var->data.assigned)
8112 continue;
8113
8114 if (strcmp(var->name, "gl_FragColor") == 0)
8115 gl_FragColor_assigned = true;
8116 else if (strcmp(var->name, "gl_FragData") == 0)
8117 gl_FragData_assigned = true;
8118 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8119 gl_FragSecondaryColor_assigned = true;
8120 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8121 gl_FragSecondaryData_assigned = true;
8122 else if (!is_gl_identifier(var->name)) {
8123 if (state->stage == MESA_SHADER_FRAGMENT &&
8124 var->data.mode == ir_var_shader_out) {
8125 user_defined_fs_output_assigned = true;
8126 user_defined_fs_output = var;
8127 }
8128 }
8129 }
8130
8131 /* From the GLSL 1.30 spec:
8132 *
8133 * "If a shader statically assigns a value to gl_FragColor, it
8134 * may not assign a value to any element of gl_FragData. If a
8135 * shader statically writes a value to any element of
8136 * gl_FragData, it may not assign a value to
8137 * gl_FragColor. That is, a shader may assign values to either
8138 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8139 * linked together must also consistently write just one of
8140 * these variables. Similarly, if user declared output
8141 * variables are in use (statically assigned to), then the
8142 * built-in variables gl_FragColor and gl_FragData may not be
8143 * assigned to. These incorrect usages all generate compile
8144 * time errors."
8145 */
8146 if (gl_FragColor_assigned && gl_FragData_assigned) {
8147 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8148 "`gl_FragColor' and `gl_FragData'");
8149 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8150 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8151 "`gl_FragColor' and `%s'",
8152 user_defined_fs_output->name);
8153 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8154 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8155 "`gl_FragSecondaryColorEXT' and"
8156 " `gl_FragSecondaryDataEXT'");
8157 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8158 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8159 "`gl_FragColor' and"
8160 " `gl_FragSecondaryDataEXT'");
8161 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8162 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8163 "`gl_FragData' and"
8164 " `gl_FragSecondaryColorEXT'");
8165 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8166 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8167 "`gl_FragData' and `%s'",
8168 user_defined_fs_output->name);
8169 }
8170
8171 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8172 !state->EXT_blend_func_extended_enable) {
8173 _mesa_glsl_error(&loc, state,
8174 "Dual source blending requires EXT_blend_func_extended");
8175 }
8176 }
8177
8178
8179 static void
8180 remove_per_vertex_blocks(exec_list *instructions,
8181 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8182 {
8183 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8184 * if it exists in this shader type.
8185 */
8186 const glsl_type *per_vertex = NULL;
8187 switch (mode) {
8188 case ir_var_shader_in:
8189 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8190 per_vertex = gl_in->get_interface_type();
8191 break;
8192 case ir_var_shader_out:
8193 if (ir_variable *gl_Position =
8194 state->symbols->get_variable("gl_Position")) {
8195 per_vertex = gl_Position->get_interface_type();
8196 }
8197 break;
8198 default:
8199 assert(!"Unexpected mode");
8200 break;
8201 }
8202
8203 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8204 * need to do anything.
8205 */
8206 if (per_vertex == NULL)
8207 return;
8208
8209 /* If the interface block is used by the shader, then we don't need to do
8210 * anything.
8211 */
8212 interface_block_usage_visitor v(mode, per_vertex);
8213 v.run(instructions);
8214 if (v.usage_found())
8215 return;
8216
8217 /* Remove any ir_variable declarations that refer to the interface block
8218 * we're removing.
8219 */
8220 foreach_in_list_safe(ir_instruction, node, instructions) {
8221 ir_variable *const var = node->as_variable();
8222 if (var != NULL && var->get_interface_type() == per_vertex &&
8223 var->data.mode == mode) {
8224 state->symbols->disable_variable(var->name);
8225 var->remove();
8226 }
8227 }
8228 }