glsl: fix key used for hashing switch statement cases
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 static bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1005 ir_var_temporary);
1006 instructions->push_tail(var);
1007 instructions->push_tail(assign(var, rhs));
1008
1009 if (!error_emitted) {
1010 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1011 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1012 }
1013 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1014
1015 *out_rvalue = rvalue;
1016 } else {
1017 if (!error_emitted)
1018 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1019 *out_rvalue = NULL;
1020 }
1021
1022 return error_emitted;
1023 }
1024
1025 static ir_rvalue *
1026 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1027 {
1028 void *ctx = ralloc_parent(lvalue);
1029 ir_variable *var;
1030
1031 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1032 ir_var_temporary);
1033 instructions->push_tail(var);
1034
1035 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1036 lvalue));
1037
1038 return new(ctx) ir_dereference_variable(var);
1039 }
1040
1041
1042 ir_rvalue *
1043 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1044 {
1045 (void) instructions;
1046 (void) state;
1047
1048 return NULL;
1049 }
1050
1051 bool
1052 ast_node::has_sequence_subexpression() const
1053 {
1054 return false;
1055 }
1056
1057 void
1058 ast_node::set_is_lhs(bool /* new_value */)
1059 {
1060 }
1061
1062 void
1063 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 void
1070 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1071 struct _mesa_glsl_parse_state *state)
1072 {
1073 (void)hir(instructions, state);
1074 }
1075
1076 static ir_rvalue *
1077 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1078 {
1079 int join_op;
1080 ir_rvalue *cmp = NULL;
1081
1082 if (operation == ir_binop_all_equal)
1083 join_op = ir_binop_logic_and;
1084 else
1085 join_op = ir_binop_logic_or;
1086
1087 switch (op0->type->base_type) {
1088 case GLSL_TYPE_FLOAT:
1089 case GLSL_TYPE_UINT:
1090 case GLSL_TYPE_INT:
1091 case GLSL_TYPE_BOOL:
1092 case GLSL_TYPE_DOUBLE:
1093 return new(mem_ctx) ir_expression(operation, op0, op1);
1094
1095 case GLSL_TYPE_ARRAY: {
1096 for (unsigned int i = 0; i < op0->type->length; i++) {
1097 ir_rvalue *e0, *e1, *result;
1098
1099 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1100 new(mem_ctx) ir_constant(i));
1101 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1102 new(mem_ctx) ir_constant(i));
1103 result = do_comparison(mem_ctx, operation, e0, e1);
1104
1105 if (cmp) {
1106 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1107 } else {
1108 cmp = result;
1109 }
1110 }
1111
1112 mark_whole_array_access(op0);
1113 mark_whole_array_access(op1);
1114 break;
1115 }
1116
1117 case GLSL_TYPE_STRUCT: {
1118 for (unsigned int i = 0; i < op0->type->length; i++) {
1119 ir_rvalue *e0, *e1, *result;
1120 const char *field_name = op0->type->fields.structure[i].name;
1121
1122 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1123 field_name);
1124 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1125 field_name);
1126 result = do_comparison(mem_ctx, operation, e0, e1);
1127
1128 if (cmp) {
1129 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1130 } else {
1131 cmp = result;
1132 }
1133 }
1134 break;
1135 }
1136
1137 case GLSL_TYPE_ERROR:
1138 case GLSL_TYPE_VOID:
1139 case GLSL_TYPE_SAMPLER:
1140 case GLSL_TYPE_IMAGE:
1141 case GLSL_TYPE_INTERFACE:
1142 case GLSL_TYPE_ATOMIC_UINT:
1143 case GLSL_TYPE_SUBROUTINE:
1144 case GLSL_TYPE_FUNCTION:
1145 /* I assume a comparison of a struct containing a sampler just
1146 * ignores the sampler present in the type.
1147 */
1148 break;
1149 }
1150
1151 if (cmp == NULL)
1152 cmp = new(mem_ctx) ir_constant(true);
1153
1154 return cmp;
1155 }
1156
1157 /* For logical operations, we want to ensure that the operands are
1158 * scalar booleans. If it isn't, emit an error and return a constant
1159 * boolean to avoid triggering cascading error messages.
1160 */
1161 ir_rvalue *
1162 get_scalar_boolean_operand(exec_list *instructions,
1163 struct _mesa_glsl_parse_state *state,
1164 ast_expression *parent_expr,
1165 int operand,
1166 const char *operand_name,
1167 bool *error_emitted)
1168 {
1169 ast_expression *expr = parent_expr->subexpressions[operand];
1170 void *ctx = state;
1171 ir_rvalue *val = expr->hir(instructions, state);
1172
1173 if (val->type->is_boolean() && val->type->is_scalar())
1174 return val;
1175
1176 if (!*error_emitted) {
1177 YYLTYPE loc = expr->get_location();
1178 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1179 operand_name,
1180 parent_expr->operator_string(parent_expr->oper));
1181 *error_emitted = true;
1182 }
1183
1184 return new(ctx) ir_constant(true);
1185 }
1186
1187 /**
1188 * If name refers to a builtin array whose maximum allowed size is less than
1189 * size, report an error and return true. Otherwise return false.
1190 */
1191 void
1192 check_builtin_array_max_size(const char *name, unsigned size,
1193 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1194 {
1195 if ((strcmp("gl_TexCoord", name) == 0)
1196 && (size > state->Const.MaxTextureCoords)) {
1197 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1198 *
1199 * "The size [of gl_TexCoord] can be at most
1200 * gl_MaxTextureCoords."
1201 */
1202 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1203 "be larger than gl_MaxTextureCoords (%u)",
1204 state->Const.MaxTextureCoords);
1205 } else if (strcmp("gl_ClipDistance", name) == 0) {
1206 state->clip_dist_size = size;
1207 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1208 /* From section 7.1 (Vertex Shader Special Variables) of the
1209 * GLSL 1.30 spec:
1210 *
1211 * "The gl_ClipDistance array is predeclared as unsized and
1212 * must be sized by the shader either redeclaring it with a
1213 * size or indexing it only with integral constant
1214 * expressions. ... The size can be at most
1215 * gl_MaxClipDistances."
1216 */
1217 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1218 "be larger than gl_MaxClipDistances (%u)",
1219 state->Const.MaxClipPlanes);
1220 }
1221 } else if (strcmp("gl_CullDistance", name) == 0) {
1222 state->cull_dist_size = size;
1223 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1224 /* From the ARB_cull_distance spec:
1225 *
1226 * "The gl_CullDistance array is predeclared as unsized and
1227 * must be sized by the shader either redeclaring it with
1228 * a size or indexing it only with integral constant
1229 * expressions. The size determines the number and set of
1230 * enabled cull distances and can be at most
1231 * gl_MaxCullDistances."
1232 */
1233 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1234 "be larger than gl_MaxCullDistances (%u)",
1235 state->Const.MaxClipPlanes);
1236 }
1237 }
1238 }
1239
1240 /**
1241 * Create the constant 1, of a which is appropriate for incrementing and
1242 * decrementing values of the given GLSL type. For example, if type is vec4,
1243 * this creates a constant value of 1.0 having type float.
1244 *
1245 * If the given type is invalid for increment and decrement operators, return
1246 * a floating point 1--the error will be detected later.
1247 */
1248 static ir_rvalue *
1249 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1250 {
1251 switch (type->base_type) {
1252 case GLSL_TYPE_UINT:
1253 return new(ctx) ir_constant((unsigned) 1);
1254 case GLSL_TYPE_INT:
1255 return new(ctx) ir_constant(1);
1256 default:
1257 case GLSL_TYPE_FLOAT:
1258 return new(ctx) ir_constant(1.0f);
1259 }
1260 }
1261
1262 ir_rvalue *
1263 ast_expression::hir(exec_list *instructions,
1264 struct _mesa_glsl_parse_state *state)
1265 {
1266 return do_hir(instructions, state, true);
1267 }
1268
1269 void
1270 ast_expression::hir_no_rvalue(exec_list *instructions,
1271 struct _mesa_glsl_parse_state *state)
1272 {
1273 do_hir(instructions, state, false);
1274 }
1275
1276 void
1277 ast_expression::set_is_lhs(bool new_value)
1278 {
1279 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1280 * if we lack an identifier we can just skip it.
1281 */
1282 if (this->primary_expression.identifier == NULL)
1283 return;
1284
1285 this->is_lhs = new_value;
1286
1287 /* We need to go through the subexpressions tree to cover cases like
1288 * ast_field_selection
1289 */
1290 if (this->subexpressions[0] != NULL)
1291 this->subexpressions[0]->set_is_lhs(new_value);
1292 }
1293
1294 ir_rvalue *
1295 ast_expression::do_hir(exec_list *instructions,
1296 struct _mesa_glsl_parse_state *state,
1297 bool needs_rvalue)
1298 {
1299 void *ctx = state;
1300 static const int operations[AST_NUM_OPERATORS] = {
1301 -1, /* ast_assign doesn't convert to ir_expression. */
1302 -1, /* ast_plus doesn't convert to ir_expression. */
1303 ir_unop_neg,
1304 ir_binop_add,
1305 ir_binop_sub,
1306 ir_binop_mul,
1307 ir_binop_div,
1308 ir_binop_mod,
1309 ir_binop_lshift,
1310 ir_binop_rshift,
1311 ir_binop_less,
1312 ir_binop_greater,
1313 ir_binop_lequal,
1314 ir_binop_gequal,
1315 ir_binop_all_equal,
1316 ir_binop_any_nequal,
1317 ir_binop_bit_and,
1318 ir_binop_bit_xor,
1319 ir_binop_bit_or,
1320 ir_unop_bit_not,
1321 ir_binop_logic_and,
1322 ir_binop_logic_xor,
1323 ir_binop_logic_or,
1324 ir_unop_logic_not,
1325
1326 /* Note: The following block of expression types actually convert
1327 * to multiple IR instructions.
1328 */
1329 ir_binop_mul, /* ast_mul_assign */
1330 ir_binop_div, /* ast_div_assign */
1331 ir_binop_mod, /* ast_mod_assign */
1332 ir_binop_add, /* ast_add_assign */
1333 ir_binop_sub, /* ast_sub_assign */
1334 ir_binop_lshift, /* ast_ls_assign */
1335 ir_binop_rshift, /* ast_rs_assign */
1336 ir_binop_bit_and, /* ast_and_assign */
1337 ir_binop_bit_xor, /* ast_xor_assign */
1338 ir_binop_bit_or, /* ast_or_assign */
1339
1340 -1, /* ast_conditional doesn't convert to ir_expression. */
1341 ir_binop_add, /* ast_pre_inc. */
1342 ir_binop_sub, /* ast_pre_dec. */
1343 ir_binop_add, /* ast_post_inc. */
1344 ir_binop_sub, /* ast_post_dec. */
1345 -1, /* ast_field_selection doesn't conv to ir_expression. */
1346 -1, /* ast_array_index doesn't convert to ir_expression. */
1347 -1, /* ast_function_call doesn't conv to ir_expression. */
1348 -1, /* ast_identifier doesn't convert to ir_expression. */
1349 -1, /* ast_int_constant doesn't convert to ir_expression. */
1350 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1351 -1, /* ast_float_constant doesn't conv to ir_expression. */
1352 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1353 -1, /* ast_sequence doesn't convert to ir_expression. */
1354 -1, /* ast_aggregate shouldn't ever even get here. */
1355 };
1356 ir_rvalue *result = NULL;
1357 ir_rvalue *op[3];
1358 const struct glsl_type *type, *orig_type;
1359 bool error_emitted = false;
1360 YYLTYPE loc;
1361
1362 loc = this->get_location();
1363
1364 switch (this->oper) {
1365 case ast_aggregate:
1366 assert(!"ast_aggregate: Should never get here.");
1367 break;
1368
1369 case ast_assign: {
1370 this->subexpressions[0]->set_is_lhs(true);
1371 op[0] = this->subexpressions[0]->hir(instructions, state);
1372 op[1] = this->subexpressions[1]->hir(instructions, state);
1373
1374 error_emitted =
1375 do_assignment(instructions, state,
1376 this->subexpressions[0]->non_lvalue_description,
1377 op[0], op[1], &result, needs_rvalue, false,
1378 this->subexpressions[0]->get_location());
1379 break;
1380 }
1381
1382 case ast_plus:
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384
1385 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1386
1387 error_emitted = type->is_error();
1388
1389 result = op[0];
1390 break;
1391
1392 case ast_neg:
1393 op[0] = this->subexpressions[0]->hir(instructions, state);
1394
1395 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1396
1397 error_emitted = type->is_error();
1398
1399 result = new(ctx) ir_expression(operations[this->oper], type,
1400 op[0], NULL);
1401 break;
1402
1403 case ast_add:
1404 case ast_sub:
1405 case ast_mul:
1406 case ast_div:
1407 op[0] = this->subexpressions[0]->hir(instructions, state);
1408 op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410 type = arithmetic_result_type(op[0], op[1],
1411 (this->oper == ast_mul),
1412 state, & loc);
1413 error_emitted = type->is_error();
1414
1415 result = new(ctx) ir_expression(operations[this->oper], type,
1416 op[0], op[1]);
1417 break;
1418
1419 case ast_mod:
1420 op[0] = this->subexpressions[0]->hir(instructions, state);
1421 op[1] = this->subexpressions[1]->hir(instructions, state);
1422
1423 type = modulus_result_type(op[0], op[1], state, &loc);
1424
1425 assert(operations[this->oper] == ir_binop_mod);
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], op[1]);
1429 error_emitted = type->is_error();
1430 break;
1431
1432 case ast_lshift:
1433 case ast_rshift:
1434 if (!state->check_bitwise_operations_allowed(&loc)) {
1435 error_emitted = true;
1436 }
1437
1438 op[0] = this->subexpressions[0]->hir(instructions, state);
1439 op[1] = this->subexpressions[1]->hir(instructions, state);
1440 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1441 &loc);
1442 result = new(ctx) ir_expression(operations[this->oper], type,
1443 op[0], op[1]);
1444 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1445 break;
1446
1447 case ast_less:
1448 case ast_greater:
1449 case ast_lequal:
1450 case ast_gequal:
1451 op[0] = this->subexpressions[0]->hir(instructions, state);
1452 op[1] = this->subexpressions[1]->hir(instructions, state);
1453
1454 type = relational_result_type(op[0], op[1], state, & loc);
1455
1456 /* The relational operators must either generate an error or result
1457 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1458 */
1459 assert(type->is_error()
1460 || ((type->base_type == GLSL_TYPE_BOOL)
1461 && type->is_scalar()));
1462
1463 result = new(ctx) ir_expression(operations[this->oper], type,
1464 op[0], op[1]);
1465 error_emitted = type->is_error();
1466 break;
1467
1468 case ast_nequal:
1469 case ast_equal:
1470 op[0] = this->subexpressions[0]->hir(instructions, state);
1471 op[1] = this->subexpressions[1]->hir(instructions, state);
1472
1473 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1474 *
1475 * "The equality operators equal (==), and not equal (!=)
1476 * operate on all types. They result in a scalar Boolean. If
1477 * the operand types do not match, then there must be a
1478 * conversion from Section 4.1.10 "Implicit Conversions"
1479 * applied to one operand that can make them match, in which
1480 * case this conversion is done."
1481 */
1482
1483 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1484 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1485 "no operation `%1$s' exists that takes a left-hand "
1486 "operand of type 'void' or a right operand of type "
1487 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1488 error_emitted = true;
1489 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1490 && !apply_implicit_conversion(op[1]->type, op[0], state))
1491 || (op[0]->type != op[1]->type)) {
1492 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1493 "type", (this->oper == ast_equal) ? "==" : "!=");
1494 error_emitted = true;
1495 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1496 !state->check_version(120, 300, &loc,
1497 "array comparisons forbidden")) {
1498 error_emitted = true;
1499 } else if ((op[0]->type->contains_subroutine() ||
1500 op[1]->type->contains_subroutine())) {
1501 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1502 error_emitted = true;
1503 } else if ((op[0]->type->contains_opaque() ||
1504 op[1]->type->contains_opaque())) {
1505 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1506 error_emitted = true;
1507 }
1508
1509 if (error_emitted) {
1510 result = new(ctx) ir_constant(false);
1511 } else {
1512 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1513 assert(result->type == glsl_type::bool_type);
1514 }
1515 break;
1516
1517 case ast_bit_and:
1518 case ast_bit_xor:
1519 case ast_bit_or:
1520 op[0] = this->subexpressions[0]->hir(instructions, state);
1521 op[1] = this->subexpressions[1]->hir(instructions, state);
1522 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1523 result = new(ctx) ir_expression(operations[this->oper], type,
1524 op[0], op[1]);
1525 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1526 break;
1527
1528 case ast_bit_not:
1529 op[0] = this->subexpressions[0]->hir(instructions, state);
1530
1531 if (!state->check_bitwise_operations_allowed(&loc)) {
1532 error_emitted = true;
1533 }
1534
1535 if (!op[0]->type->is_integer()) {
1536 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1537 error_emitted = true;
1538 }
1539
1540 type = error_emitted ? glsl_type::error_type : op[0]->type;
1541 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1542 break;
1543
1544 case ast_logic_and: {
1545 exec_list rhs_instructions;
1546 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1547 "LHS", &error_emitted);
1548 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1549 "RHS", &error_emitted);
1550
1551 if (rhs_instructions.is_empty()) {
1552 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1553 type = result->type;
1554 } else {
1555 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1556 "and_tmp",
1557 ir_var_temporary);
1558 instructions->push_tail(tmp);
1559
1560 ir_if *const stmt = new(ctx) ir_if(op[0]);
1561 instructions->push_tail(stmt);
1562
1563 stmt->then_instructions.append_list(&rhs_instructions);
1564 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1565 ir_assignment *const then_assign =
1566 new(ctx) ir_assignment(then_deref, op[1]);
1567 stmt->then_instructions.push_tail(then_assign);
1568
1569 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1570 ir_assignment *const else_assign =
1571 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1572 stmt->else_instructions.push_tail(else_assign);
1573
1574 result = new(ctx) ir_dereference_variable(tmp);
1575 type = tmp->type;
1576 }
1577 break;
1578 }
1579
1580 case ast_logic_or: {
1581 exec_list rhs_instructions;
1582 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1583 "LHS", &error_emitted);
1584 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1585 "RHS", &error_emitted);
1586
1587 if (rhs_instructions.is_empty()) {
1588 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1589 type = result->type;
1590 } else {
1591 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1592 "or_tmp",
1593 ir_var_temporary);
1594 instructions->push_tail(tmp);
1595
1596 ir_if *const stmt = new(ctx) ir_if(op[0]);
1597 instructions->push_tail(stmt);
1598
1599 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1600 ir_assignment *const then_assign =
1601 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1602 stmt->then_instructions.push_tail(then_assign);
1603
1604 stmt->else_instructions.append_list(&rhs_instructions);
1605 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1606 ir_assignment *const else_assign =
1607 new(ctx) ir_assignment(else_deref, op[1]);
1608 stmt->else_instructions.push_tail(else_assign);
1609
1610 result = new(ctx) ir_dereference_variable(tmp);
1611 type = tmp->type;
1612 }
1613 break;
1614 }
1615
1616 case ast_logic_xor:
1617 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1618 *
1619 * "The logical binary operators and (&&), or ( | | ), and
1620 * exclusive or (^^). They operate only on two Boolean
1621 * expressions and result in a Boolean expression."
1622 */
1623 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1624 &error_emitted);
1625 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1626 &error_emitted);
1627
1628 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1629 op[0], op[1]);
1630 break;
1631
1632 case ast_logic_not:
1633 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1634 "operand", &error_emitted);
1635
1636 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1637 op[0], NULL);
1638 break;
1639
1640 case ast_mul_assign:
1641 case ast_div_assign:
1642 case ast_add_assign:
1643 case ast_sub_assign: {
1644 this->subexpressions[0]->set_is_lhs(true);
1645 op[0] = this->subexpressions[0]->hir(instructions, state);
1646 op[1] = this->subexpressions[1]->hir(instructions, state);
1647
1648 orig_type = op[0]->type;
1649 type = arithmetic_result_type(op[0], op[1],
1650 (this->oper == ast_mul_assign),
1651 state, & loc);
1652
1653 if (type != orig_type) {
1654 _mesa_glsl_error(& loc, state,
1655 "could not implicitly convert "
1656 "%s to %s", type->name, orig_type->name);
1657 type = glsl_type::error_type;
1658 }
1659
1660 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1661 op[0], op[1]);
1662
1663 error_emitted =
1664 do_assignment(instructions, state,
1665 this->subexpressions[0]->non_lvalue_description,
1666 op[0]->clone(ctx, NULL), temp_rhs,
1667 &result, needs_rvalue, false,
1668 this->subexpressions[0]->get_location());
1669
1670 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1671 * explicitly test for this because none of the binary expression
1672 * operators allow array operands either.
1673 */
1674
1675 break;
1676 }
1677
1678 case ast_mod_assign: {
1679 this->subexpressions[0]->set_is_lhs(true);
1680 op[0] = this->subexpressions[0]->hir(instructions, state);
1681 op[1] = this->subexpressions[1]->hir(instructions, state);
1682
1683 orig_type = op[0]->type;
1684 type = modulus_result_type(op[0], op[1], state, &loc);
1685
1686 if (type != orig_type) {
1687 _mesa_glsl_error(& loc, state,
1688 "could not implicitly convert "
1689 "%s to %s", type->name, orig_type->name);
1690 type = glsl_type::error_type;
1691 }
1692
1693 assert(operations[this->oper] == ir_binop_mod);
1694
1695 ir_rvalue *temp_rhs;
1696 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1697 op[0], op[1]);
1698
1699 error_emitted =
1700 do_assignment(instructions, state,
1701 this->subexpressions[0]->non_lvalue_description,
1702 op[0]->clone(ctx, NULL), temp_rhs,
1703 &result, needs_rvalue, false,
1704 this->subexpressions[0]->get_location());
1705 break;
1706 }
1707
1708 case ast_ls_assign:
1709 case ast_rs_assign: {
1710 this->subexpressions[0]->set_is_lhs(true);
1711 op[0] = this->subexpressions[0]->hir(instructions, state);
1712 op[1] = this->subexpressions[1]->hir(instructions, state);
1713 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1714 &loc);
1715 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1716 type, op[0], op[1]);
1717 error_emitted =
1718 do_assignment(instructions, state,
1719 this->subexpressions[0]->non_lvalue_description,
1720 op[0]->clone(ctx, NULL), temp_rhs,
1721 &result, needs_rvalue, false,
1722 this->subexpressions[0]->get_location());
1723 break;
1724 }
1725
1726 case ast_and_assign:
1727 case ast_xor_assign:
1728 case ast_or_assign: {
1729 this->subexpressions[0]->set_is_lhs(true);
1730 op[0] = this->subexpressions[0]->hir(instructions, state);
1731 op[1] = this->subexpressions[1]->hir(instructions, state);
1732
1733 orig_type = op[0]->type;
1734 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1735
1736 if (type != orig_type) {
1737 _mesa_glsl_error(& loc, state,
1738 "could not implicitly convert "
1739 "%s to %s", type->name, orig_type->name);
1740 type = glsl_type::error_type;
1741 }
1742
1743 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1744 type, op[0], op[1]);
1745 error_emitted =
1746 do_assignment(instructions, state,
1747 this->subexpressions[0]->non_lvalue_description,
1748 op[0]->clone(ctx, NULL), temp_rhs,
1749 &result, needs_rvalue, false,
1750 this->subexpressions[0]->get_location());
1751 break;
1752 }
1753
1754 case ast_conditional: {
1755 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1756 *
1757 * "The ternary selection operator (?:). It operates on three
1758 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1759 * first expression, which must result in a scalar Boolean."
1760 */
1761 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1762 "condition", &error_emitted);
1763
1764 /* The :? operator is implemented by generating an anonymous temporary
1765 * followed by an if-statement. The last instruction in each branch of
1766 * the if-statement assigns a value to the anonymous temporary. This
1767 * temporary is the r-value of the expression.
1768 */
1769 exec_list then_instructions;
1770 exec_list else_instructions;
1771
1772 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1773 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1774
1775 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1776 *
1777 * "The second and third expressions can be any type, as
1778 * long their types match, or there is a conversion in
1779 * Section 4.1.10 "Implicit Conversions" that can be applied
1780 * to one of the expressions to make their types match. This
1781 * resulting matching type is the type of the entire
1782 * expression."
1783 */
1784 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1785 && !apply_implicit_conversion(op[2]->type, op[1], state))
1786 || (op[1]->type != op[2]->type)) {
1787 YYLTYPE loc = this->subexpressions[1]->get_location();
1788
1789 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1790 "operator must have matching types");
1791 error_emitted = true;
1792 type = glsl_type::error_type;
1793 } else {
1794 type = op[1]->type;
1795 }
1796
1797 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1798 *
1799 * "The second and third expressions must be the same type, but can
1800 * be of any type other than an array."
1801 */
1802 if (type->is_array() &&
1803 !state->check_version(120, 300, &loc,
1804 "second and third operands of ?: operator "
1805 "cannot be arrays")) {
1806 error_emitted = true;
1807 }
1808
1809 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1810 *
1811 * "Except for array indexing, structure member selection, and
1812 * parentheses, opaque variables are not allowed to be operands in
1813 * expressions; such use results in a compile-time error."
1814 */
1815 if (type->contains_opaque()) {
1816 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1817 "of the ?: operator");
1818 error_emitted = true;
1819 }
1820
1821 ir_constant *cond_val = op[0]->constant_expression_value();
1822
1823 if (then_instructions.is_empty()
1824 && else_instructions.is_empty()
1825 && cond_val != NULL) {
1826 result = cond_val->value.b[0] ? op[1] : op[2];
1827 } else {
1828 /* The copy to conditional_tmp reads the whole array. */
1829 if (type->is_array()) {
1830 mark_whole_array_access(op[1]);
1831 mark_whole_array_access(op[2]);
1832 }
1833
1834 ir_variable *const tmp =
1835 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1836 instructions->push_tail(tmp);
1837
1838 ir_if *const stmt = new(ctx) ir_if(op[0]);
1839 instructions->push_tail(stmt);
1840
1841 then_instructions.move_nodes_to(& stmt->then_instructions);
1842 ir_dereference *const then_deref =
1843 new(ctx) ir_dereference_variable(tmp);
1844 ir_assignment *const then_assign =
1845 new(ctx) ir_assignment(then_deref, op[1]);
1846 stmt->then_instructions.push_tail(then_assign);
1847
1848 else_instructions.move_nodes_to(& stmt->else_instructions);
1849 ir_dereference *const else_deref =
1850 new(ctx) ir_dereference_variable(tmp);
1851 ir_assignment *const else_assign =
1852 new(ctx) ir_assignment(else_deref, op[2]);
1853 stmt->else_instructions.push_tail(else_assign);
1854
1855 result = new(ctx) ir_dereference_variable(tmp);
1856 }
1857 break;
1858 }
1859
1860 case ast_pre_inc:
1861 case ast_pre_dec: {
1862 this->non_lvalue_description = (this->oper == ast_pre_inc)
1863 ? "pre-increment operation" : "pre-decrement operation";
1864
1865 op[0] = this->subexpressions[0]->hir(instructions, state);
1866 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1867
1868 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1869
1870 ir_rvalue *temp_rhs;
1871 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1872 op[0], op[1]);
1873
1874 error_emitted =
1875 do_assignment(instructions, state,
1876 this->subexpressions[0]->non_lvalue_description,
1877 op[0]->clone(ctx, NULL), temp_rhs,
1878 &result, needs_rvalue, false,
1879 this->subexpressions[0]->get_location());
1880 break;
1881 }
1882
1883 case ast_post_inc:
1884 case ast_post_dec: {
1885 this->non_lvalue_description = (this->oper == ast_post_inc)
1886 ? "post-increment operation" : "post-decrement operation";
1887 op[0] = this->subexpressions[0]->hir(instructions, state);
1888 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1889
1890 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1891
1892 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1893
1894 ir_rvalue *temp_rhs;
1895 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1896 op[0], op[1]);
1897
1898 /* Get a temporary of a copy of the lvalue before it's modified.
1899 * This may get thrown away later.
1900 */
1901 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1902
1903 ir_rvalue *junk_rvalue;
1904 error_emitted =
1905 do_assignment(instructions, state,
1906 this->subexpressions[0]->non_lvalue_description,
1907 op[0]->clone(ctx, NULL), temp_rhs,
1908 &junk_rvalue, false, false,
1909 this->subexpressions[0]->get_location());
1910
1911 break;
1912 }
1913
1914 case ast_field_selection:
1915 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1916 break;
1917
1918 case ast_array_index: {
1919 YYLTYPE index_loc = subexpressions[1]->get_location();
1920
1921 /* Getting if an array is being used uninitialized is beyond what we get
1922 * from ir_value.data.assigned. Setting is_lhs as true would force to
1923 * not raise a uninitialized warning when using an array
1924 */
1925 subexpressions[0]->set_is_lhs(true);
1926 op[0] = subexpressions[0]->hir(instructions, state);
1927 op[1] = subexpressions[1]->hir(instructions, state);
1928
1929 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1930 loc, index_loc);
1931
1932 if (result->type->is_error())
1933 error_emitted = true;
1934
1935 break;
1936 }
1937
1938 case ast_unsized_array_dim:
1939 assert(!"ast_unsized_array_dim: Should never get here.");
1940 break;
1941
1942 case ast_function_call:
1943 /* Should *NEVER* get here. ast_function_call should always be handled
1944 * by ast_function_expression::hir.
1945 */
1946 assert(0);
1947 break;
1948
1949 case ast_identifier: {
1950 /* ast_identifier can appear several places in a full abstract syntax
1951 * tree. This particular use must be at location specified in the grammar
1952 * as 'variable_identifier'.
1953 */
1954 ir_variable *var =
1955 state->symbols->get_variable(this->primary_expression.identifier);
1956
1957 if (var == NULL) {
1958 /* the identifier might be a subroutine name */
1959 char *sub_name;
1960 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1961 var = state->symbols->get_variable(sub_name);
1962 ralloc_free(sub_name);
1963 }
1964
1965 if (var != NULL) {
1966 var->data.used = true;
1967 result = new(ctx) ir_dereference_variable(var);
1968
1969 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1970 && !this->is_lhs
1971 && result->variable_referenced()->data.assigned != true
1972 && !is_gl_identifier(var->name)) {
1973 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1974 this->primary_expression.identifier);
1975 }
1976 } else {
1977 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1978 this->primary_expression.identifier);
1979
1980 result = ir_rvalue::error_value(ctx);
1981 error_emitted = true;
1982 }
1983 break;
1984 }
1985
1986 case ast_int_constant:
1987 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1988 break;
1989
1990 case ast_uint_constant:
1991 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1992 break;
1993
1994 case ast_float_constant:
1995 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1996 break;
1997
1998 case ast_bool_constant:
1999 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2000 break;
2001
2002 case ast_double_constant:
2003 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2004 break;
2005
2006 case ast_sequence: {
2007 /* It should not be possible to generate a sequence in the AST without
2008 * any expressions in it.
2009 */
2010 assert(!this->expressions.is_empty());
2011
2012 /* The r-value of a sequence is the last expression in the sequence. If
2013 * the other expressions in the sequence do not have side-effects (and
2014 * therefore add instructions to the instruction list), they get dropped
2015 * on the floor.
2016 */
2017 exec_node *previous_tail = NULL;
2018 YYLTYPE previous_operand_loc = loc;
2019
2020 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2021 /* If one of the operands of comma operator does not generate any
2022 * code, we want to emit a warning. At each pass through the loop
2023 * previous_tail will point to the last instruction in the stream
2024 * *before* processing the previous operand. Naturally,
2025 * instructions->get_tail_raw() will point to the last instruction in
2026 * the stream *after* processing the previous operand. If the two
2027 * pointers match, then the previous operand had no effect.
2028 *
2029 * The warning behavior here differs slightly from GCC. GCC will
2030 * only emit a warning if none of the left-hand operands have an
2031 * effect. However, it will emit a warning for each. I believe that
2032 * there are some cases in C (especially with GCC extensions) where
2033 * it is useful to have an intermediate step in a sequence have no
2034 * effect, but I don't think these cases exist in GLSL. Either way,
2035 * it would be a giant hassle to replicate that behavior.
2036 */
2037 if (previous_tail == instructions->get_tail_raw()) {
2038 _mesa_glsl_warning(&previous_operand_loc, state,
2039 "left-hand operand of comma expression has "
2040 "no effect");
2041 }
2042
2043 /* The tail is directly accessed instead of using the get_tail()
2044 * method for performance reasons. get_tail() has extra code to
2045 * return NULL when the list is empty. We don't care about that
2046 * here, so using get_tail_raw() is fine.
2047 */
2048 previous_tail = instructions->get_tail_raw();
2049 previous_operand_loc = ast->get_location();
2050
2051 result = ast->hir(instructions, state);
2052 }
2053
2054 /* Any errors should have already been emitted in the loop above.
2055 */
2056 error_emitted = true;
2057 break;
2058 }
2059 }
2060 type = NULL; /* use result->type, not type. */
2061 assert(result != NULL || !needs_rvalue);
2062
2063 if (result && result->type->is_error() && !error_emitted)
2064 _mesa_glsl_error(& loc, state, "type mismatch");
2065
2066 return result;
2067 }
2068
2069 bool
2070 ast_expression::has_sequence_subexpression() const
2071 {
2072 switch (this->oper) {
2073 case ast_plus:
2074 case ast_neg:
2075 case ast_bit_not:
2076 case ast_logic_not:
2077 case ast_pre_inc:
2078 case ast_pre_dec:
2079 case ast_post_inc:
2080 case ast_post_dec:
2081 return this->subexpressions[0]->has_sequence_subexpression();
2082
2083 case ast_assign:
2084 case ast_add:
2085 case ast_sub:
2086 case ast_mul:
2087 case ast_div:
2088 case ast_mod:
2089 case ast_lshift:
2090 case ast_rshift:
2091 case ast_less:
2092 case ast_greater:
2093 case ast_lequal:
2094 case ast_gequal:
2095 case ast_nequal:
2096 case ast_equal:
2097 case ast_bit_and:
2098 case ast_bit_xor:
2099 case ast_bit_or:
2100 case ast_logic_and:
2101 case ast_logic_or:
2102 case ast_logic_xor:
2103 case ast_array_index:
2104 case ast_mul_assign:
2105 case ast_div_assign:
2106 case ast_add_assign:
2107 case ast_sub_assign:
2108 case ast_mod_assign:
2109 case ast_ls_assign:
2110 case ast_rs_assign:
2111 case ast_and_assign:
2112 case ast_xor_assign:
2113 case ast_or_assign:
2114 return this->subexpressions[0]->has_sequence_subexpression() ||
2115 this->subexpressions[1]->has_sequence_subexpression();
2116
2117 case ast_conditional:
2118 return this->subexpressions[0]->has_sequence_subexpression() ||
2119 this->subexpressions[1]->has_sequence_subexpression() ||
2120 this->subexpressions[2]->has_sequence_subexpression();
2121
2122 case ast_sequence:
2123 return true;
2124
2125 case ast_field_selection:
2126 case ast_identifier:
2127 case ast_int_constant:
2128 case ast_uint_constant:
2129 case ast_float_constant:
2130 case ast_bool_constant:
2131 case ast_double_constant:
2132 return false;
2133
2134 case ast_aggregate:
2135 return false;
2136
2137 case ast_function_call:
2138 unreachable("should be handled by ast_function_expression::hir");
2139
2140 case ast_unsized_array_dim:
2141 unreachable("ast_unsized_array_dim: Should never get here.");
2142 }
2143
2144 return false;
2145 }
2146
2147 ir_rvalue *
2148 ast_expression_statement::hir(exec_list *instructions,
2149 struct _mesa_glsl_parse_state *state)
2150 {
2151 /* It is possible to have expression statements that don't have an
2152 * expression. This is the solitary semicolon:
2153 *
2154 * for (i = 0; i < 5; i++)
2155 * ;
2156 *
2157 * In this case the expression will be NULL. Test for NULL and don't do
2158 * anything in that case.
2159 */
2160 if (expression != NULL)
2161 expression->hir_no_rvalue(instructions, state);
2162
2163 /* Statements do not have r-values.
2164 */
2165 return NULL;
2166 }
2167
2168
2169 ir_rvalue *
2170 ast_compound_statement::hir(exec_list *instructions,
2171 struct _mesa_glsl_parse_state *state)
2172 {
2173 if (new_scope)
2174 state->symbols->push_scope();
2175
2176 foreach_list_typed (ast_node, ast, link, &this->statements)
2177 ast->hir(instructions, state);
2178
2179 if (new_scope)
2180 state->symbols->pop_scope();
2181
2182 /* Compound statements do not have r-values.
2183 */
2184 return NULL;
2185 }
2186
2187 /**
2188 * Evaluate the given exec_node (which should be an ast_node representing
2189 * a single array dimension) and return its integer value.
2190 */
2191 static unsigned
2192 process_array_size(exec_node *node,
2193 struct _mesa_glsl_parse_state *state)
2194 {
2195 exec_list dummy_instructions;
2196
2197 ast_node *array_size = exec_node_data(ast_node, node, link);
2198
2199 /**
2200 * Dimensions other than the outermost dimension can by unsized if they
2201 * are immediately sized by a constructor or initializer.
2202 */
2203 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2204 return 0;
2205
2206 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2207 YYLTYPE loc = array_size->get_location();
2208
2209 if (ir == NULL) {
2210 _mesa_glsl_error(& loc, state,
2211 "array size could not be resolved");
2212 return 0;
2213 }
2214
2215 if (!ir->type->is_integer()) {
2216 _mesa_glsl_error(& loc, state,
2217 "array size must be integer type");
2218 return 0;
2219 }
2220
2221 if (!ir->type->is_scalar()) {
2222 _mesa_glsl_error(& loc, state,
2223 "array size must be scalar type");
2224 return 0;
2225 }
2226
2227 ir_constant *const size = ir->constant_expression_value();
2228 if (size == NULL ||
2229 (state->is_version(120, 300) &&
2230 array_size->has_sequence_subexpression())) {
2231 _mesa_glsl_error(& loc, state, "array size must be a "
2232 "constant valued expression");
2233 return 0;
2234 }
2235
2236 if (size->value.i[0] <= 0) {
2237 _mesa_glsl_error(& loc, state, "array size must be > 0");
2238 return 0;
2239 }
2240
2241 assert(size->type == ir->type);
2242
2243 /* If the array size is const (and we've verified that
2244 * it is) then no instructions should have been emitted
2245 * when we converted it to HIR. If they were emitted,
2246 * then either the array size isn't const after all, or
2247 * we are emitting unnecessary instructions.
2248 */
2249 assert(dummy_instructions.is_empty());
2250
2251 return size->value.u[0];
2252 }
2253
2254 static const glsl_type *
2255 process_array_type(YYLTYPE *loc, const glsl_type *base,
2256 ast_array_specifier *array_specifier,
2257 struct _mesa_glsl_parse_state *state)
2258 {
2259 const glsl_type *array_type = base;
2260
2261 if (array_specifier != NULL) {
2262 if (base->is_array()) {
2263
2264 /* From page 19 (page 25) of the GLSL 1.20 spec:
2265 *
2266 * "Only one-dimensional arrays may be declared."
2267 */
2268 if (!state->check_arrays_of_arrays_allowed(loc)) {
2269 return glsl_type::error_type;
2270 }
2271 }
2272
2273 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2274 !node->is_head_sentinel(); node = node->prev) {
2275 unsigned array_size = process_array_size(node, state);
2276 array_type = glsl_type::get_array_instance(array_type, array_size);
2277 }
2278 }
2279
2280 return array_type;
2281 }
2282
2283 static bool
2284 precision_qualifier_allowed(const glsl_type *type)
2285 {
2286 /* Precision qualifiers apply to floating point, integer and opaque
2287 * types.
2288 *
2289 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2290 * "Any floating point or any integer declaration can have the type
2291 * preceded by one of these precision qualifiers [...] Literal
2292 * constants do not have precision qualifiers. Neither do Boolean
2293 * variables.
2294 *
2295 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2296 * spec also says:
2297 *
2298 * "Precision qualifiers are added for code portability with OpenGL
2299 * ES, not for functionality. They have the same syntax as in OpenGL
2300 * ES."
2301 *
2302 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2303 *
2304 * "uniform lowp sampler2D sampler;
2305 * highp vec2 coord;
2306 * ...
2307 * lowp vec4 col = texture2D (sampler, coord);
2308 * // texture2D returns lowp"
2309 *
2310 * From this, we infer that GLSL 1.30 (and later) should allow precision
2311 * qualifiers on sampler types just like float and integer types.
2312 */
2313 const glsl_type *const t = type->without_array();
2314
2315 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2316 !t->is_record();
2317 }
2318
2319 const glsl_type *
2320 ast_type_specifier::glsl_type(const char **name,
2321 struct _mesa_glsl_parse_state *state) const
2322 {
2323 const struct glsl_type *type;
2324
2325 type = state->symbols->get_type(this->type_name);
2326 *name = this->type_name;
2327
2328 YYLTYPE loc = this->get_location();
2329 type = process_array_type(&loc, type, this->array_specifier, state);
2330
2331 return type;
2332 }
2333
2334 /**
2335 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2336 *
2337 * "The precision statement
2338 *
2339 * precision precision-qualifier type;
2340 *
2341 * can be used to establish a default precision qualifier. The type field can
2342 * be either int or float or any of the sampler types, (...) If type is float,
2343 * the directive applies to non-precision-qualified floating point type
2344 * (scalar, vector, and matrix) declarations. If type is int, the directive
2345 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2346 * and unsigned) declarations."
2347 *
2348 * We use the symbol table to keep the values of the default precisions for
2349 * each 'type' in each scope and we use the 'type' string from the precision
2350 * statement as key in the symbol table. When we want to retrieve the default
2351 * precision associated with a given glsl_type we need to know the type string
2352 * associated with it. This is what this function returns.
2353 */
2354 static const char *
2355 get_type_name_for_precision_qualifier(const glsl_type *type)
2356 {
2357 switch (type->base_type) {
2358 case GLSL_TYPE_FLOAT:
2359 return "float";
2360 case GLSL_TYPE_UINT:
2361 case GLSL_TYPE_INT:
2362 return "int";
2363 case GLSL_TYPE_ATOMIC_UINT:
2364 return "atomic_uint";
2365 case GLSL_TYPE_IMAGE:
2366 /* fallthrough */
2367 case GLSL_TYPE_SAMPLER: {
2368 const unsigned type_idx =
2369 type->sampler_array + 2 * type->sampler_shadow;
2370 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2371 assert(type_idx < 4);
2372 switch (type->sampled_type) {
2373 case GLSL_TYPE_FLOAT:
2374 switch (type->sampler_dimensionality) {
2375 case GLSL_SAMPLER_DIM_1D: {
2376 assert(type->base_type == GLSL_TYPE_SAMPLER);
2377 static const char *const names[4] = {
2378 "sampler1D", "sampler1DArray",
2379 "sampler1DShadow", "sampler1DArrayShadow"
2380 };
2381 return names[type_idx];
2382 }
2383 case GLSL_SAMPLER_DIM_2D: {
2384 static const char *const names[8] = {
2385 "sampler2D", "sampler2DArray",
2386 "sampler2DShadow", "sampler2DArrayShadow",
2387 "image2D", "image2DArray", NULL, NULL
2388 };
2389 return names[offset + type_idx];
2390 }
2391 case GLSL_SAMPLER_DIM_3D: {
2392 static const char *const names[8] = {
2393 "sampler3D", NULL, NULL, NULL,
2394 "image3D", NULL, NULL, NULL
2395 };
2396 return names[offset + type_idx];
2397 }
2398 case GLSL_SAMPLER_DIM_CUBE: {
2399 static const char *const names[8] = {
2400 "samplerCube", "samplerCubeArray",
2401 "samplerCubeShadow", "samplerCubeArrayShadow",
2402 "imageCube", NULL, NULL, NULL
2403 };
2404 return names[offset + type_idx];
2405 }
2406 case GLSL_SAMPLER_DIM_MS: {
2407 assert(type->base_type == GLSL_TYPE_SAMPLER);
2408 static const char *const names[4] = {
2409 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2410 };
2411 return names[type_idx];
2412 }
2413 case GLSL_SAMPLER_DIM_RECT: {
2414 assert(type->base_type == GLSL_TYPE_SAMPLER);
2415 static const char *const names[4] = {
2416 "samplerRect", NULL, "samplerRectShadow", NULL
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_BUF: {
2421 static const char *const names[8] = {
2422 "samplerBuffer", NULL, NULL, NULL,
2423 "imageBuffer", NULL, NULL, NULL
2424 };
2425 return names[offset + type_idx];
2426 }
2427 case GLSL_SAMPLER_DIM_EXTERNAL: {
2428 assert(type->base_type == GLSL_TYPE_SAMPLER);
2429 static const char *const names[4] = {
2430 "samplerExternalOES", NULL, NULL, NULL
2431 };
2432 return names[type_idx];
2433 }
2434 default:
2435 unreachable("Unsupported sampler/image dimensionality");
2436 } /* sampler/image float dimensionality */
2437 break;
2438 case GLSL_TYPE_INT:
2439 switch (type->sampler_dimensionality) {
2440 case GLSL_SAMPLER_DIM_1D: {
2441 assert(type->base_type == GLSL_TYPE_SAMPLER);
2442 static const char *const names[4] = {
2443 "isampler1D", "isampler1DArray", NULL, NULL
2444 };
2445 return names[type_idx];
2446 }
2447 case GLSL_SAMPLER_DIM_2D: {
2448 static const char *const names[8] = {
2449 "isampler2D", "isampler2DArray", NULL, NULL,
2450 "iimage2D", "iimage2DArray", NULL, NULL
2451 };
2452 return names[offset + type_idx];
2453 }
2454 case GLSL_SAMPLER_DIM_3D: {
2455 static const char *const names[8] = {
2456 "isampler3D", NULL, NULL, NULL,
2457 "iimage3D", NULL, NULL, NULL
2458 };
2459 return names[offset + type_idx];
2460 }
2461 case GLSL_SAMPLER_DIM_CUBE: {
2462 static const char *const names[8] = {
2463 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2464 "iimageCube", NULL, NULL, NULL
2465 };
2466 return names[offset + type_idx];
2467 }
2468 case GLSL_SAMPLER_DIM_MS: {
2469 assert(type->base_type == GLSL_TYPE_SAMPLER);
2470 static const char *const names[4] = {
2471 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2472 };
2473 return names[type_idx];
2474 }
2475 case GLSL_SAMPLER_DIM_RECT: {
2476 assert(type->base_type == GLSL_TYPE_SAMPLER);
2477 static const char *const names[4] = {
2478 "isamplerRect", NULL, "isamplerRectShadow", NULL
2479 };
2480 return names[type_idx];
2481 }
2482 case GLSL_SAMPLER_DIM_BUF: {
2483 static const char *const names[8] = {
2484 "isamplerBuffer", NULL, NULL, NULL,
2485 "iimageBuffer", NULL, NULL, NULL
2486 };
2487 return names[offset + type_idx];
2488 }
2489 default:
2490 unreachable("Unsupported isampler/iimage dimensionality");
2491 } /* sampler/image int dimensionality */
2492 break;
2493 case GLSL_TYPE_UINT:
2494 switch (type->sampler_dimensionality) {
2495 case GLSL_SAMPLER_DIM_1D: {
2496 assert(type->base_type == GLSL_TYPE_SAMPLER);
2497 static const char *const names[4] = {
2498 "usampler1D", "usampler1DArray", NULL, NULL
2499 };
2500 return names[type_idx];
2501 }
2502 case GLSL_SAMPLER_DIM_2D: {
2503 static const char *const names[8] = {
2504 "usampler2D", "usampler2DArray", NULL, NULL,
2505 "uimage2D", "uimage2DArray", NULL, NULL
2506 };
2507 return names[offset + type_idx];
2508 }
2509 case GLSL_SAMPLER_DIM_3D: {
2510 static const char *const names[8] = {
2511 "usampler3D", NULL, NULL, NULL,
2512 "uimage3D", NULL, NULL, NULL
2513 };
2514 return names[offset + type_idx];
2515 }
2516 case GLSL_SAMPLER_DIM_CUBE: {
2517 static const char *const names[8] = {
2518 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2519 "uimageCube", NULL, NULL, NULL
2520 };
2521 return names[offset + type_idx];
2522 }
2523 case GLSL_SAMPLER_DIM_MS: {
2524 assert(type->base_type == GLSL_TYPE_SAMPLER);
2525 static const char *const names[4] = {
2526 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2527 };
2528 return names[type_idx];
2529 }
2530 case GLSL_SAMPLER_DIM_RECT: {
2531 assert(type->base_type == GLSL_TYPE_SAMPLER);
2532 static const char *const names[4] = {
2533 "usamplerRect", NULL, "usamplerRectShadow", NULL
2534 };
2535 return names[type_idx];
2536 }
2537 case GLSL_SAMPLER_DIM_BUF: {
2538 static const char *const names[8] = {
2539 "usamplerBuffer", NULL, NULL, NULL,
2540 "uimageBuffer", NULL, NULL, NULL
2541 };
2542 return names[offset + type_idx];
2543 }
2544 default:
2545 unreachable("Unsupported usampler/uimage dimensionality");
2546 } /* sampler/image uint dimensionality */
2547 break;
2548 default:
2549 unreachable("Unsupported sampler/image type");
2550 } /* sampler/image type */
2551 break;
2552 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2553 break;
2554 default:
2555 unreachable("Unsupported type");
2556 } /* base type */
2557 }
2558
2559 static unsigned
2560 select_gles_precision(unsigned qual_precision,
2561 const glsl_type *type,
2562 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2563 {
2564 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2565 * In GLES we take the precision from the type qualifier if present,
2566 * otherwise, if the type of the variable allows precision qualifiers at
2567 * all, we look for the default precision qualifier for that type in the
2568 * current scope.
2569 */
2570 assert(state->es_shader);
2571
2572 unsigned precision = GLSL_PRECISION_NONE;
2573 if (qual_precision) {
2574 precision = qual_precision;
2575 } else if (precision_qualifier_allowed(type)) {
2576 const char *type_name =
2577 get_type_name_for_precision_qualifier(type->without_array());
2578 assert(type_name != NULL);
2579
2580 precision =
2581 state->symbols->get_default_precision_qualifier(type_name);
2582 if (precision == ast_precision_none) {
2583 _mesa_glsl_error(loc, state,
2584 "No precision specified in this scope for type `%s'",
2585 type->name);
2586 }
2587 }
2588 return precision;
2589 }
2590
2591 const glsl_type *
2592 ast_fully_specified_type::glsl_type(const char **name,
2593 struct _mesa_glsl_parse_state *state) const
2594 {
2595 return this->specifier->glsl_type(name, state);
2596 }
2597
2598 /**
2599 * Determine whether a toplevel variable declaration declares a varying. This
2600 * function operates by examining the variable's mode and the shader target,
2601 * so it correctly identifies linkage variables regardless of whether they are
2602 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2603 *
2604 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2605 * this function will produce undefined results.
2606 */
2607 static bool
2608 is_varying_var(ir_variable *var, gl_shader_stage target)
2609 {
2610 switch (target) {
2611 case MESA_SHADER_VERTEX:
2612 return var->data.mode == ir_var_shader_out;
2613 case MESA_SHADER_FRAGMENT:
2614 return var->data.mode == ir_var_shader_in;
2615 default:
2616 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2617 }
2618 }
2619
2620
2621 /**
2622 * Matrix layout qualifiers are only allowed on certain types
2623 */
2624 static void
2625 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2626 YYLTYPE *loc,
2627 const glsl_type *type,
2628 ir_variable *var)
2629 {
2630 if (var && !var->is_in_buffer_block()) {
2631 /* Layout qualifiers may only apply to interface blocks and fields in
2632 * them.
2633 */
2634 _mesa_glsl_error(loc, state,
2635 "uniform block layout qualifiers row_major and "
2636 "column_major may not be applied to variables "
2637 "outside of uniform blocks");
2638 } else if (!type->without_array()->is_matrix()) {
2639 /* The OpenGL ES 3.0 conformance tests did not originally allow
2640 * matrix layout qualifiers on non-matrices. However, the OpenGL
2641 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2642 * amended to specifically allow these layouts on all types. Emit
2643 * a warning so that people know their code may not be portable.
2644 */
2645 _mesa_glsl_warning(loc, state,
2646 "uniform block layout qualifiers row_major and "
2647 "column_major applied to non-matrix types may "
2648 "be rejected by older compilers");
2649 }
2650 }
2651
2652 static bool
2653 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2654 struct _mesa_glsl_parse_state *state,
2655 unsigned xfb_buffer) {
2656 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2657 _mesa_glsl_error(loc, state,
2658 "invalid xfb_buffer specified %d is larger than "
2659 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2660 xfb_buffer,
2661 state->Const.MaxTransformFeedbackBuffers - 1);
2662 return false;
2663 }
2664
2665 return true;
2666 }
2667
2668 /* From the ARB_enhanced_layouts spec:
2669 *
2670 * "Variables and block members qualified with *xfb_offset* can be
2671 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2672 * The offset must be a multiple of the size of the first component of
2673 * the first qualified variable or block member, or a compile-time error
2674 * results. Further, if applied to an aggregate containing a double,
2675 * the offset must also be a multiple of 8, and the space taken in the
2676 * buffer will be a multiple of 8.
2677 */
2678 static bool
2679 validate_xfb_offset_qualifier(YYLTYPE *loc,
2680 struct _mesa_glsl_parse_state *state,
2681 int xfb_offset, const glsl_type *type,
2682 unsigned component_size) {
2683 const glsl_type *t_without_array = type->without_array();
2684
2685 if (xfb_offset != -1 && type->is_unsized_array()) {
2686 _mesa_glsl_error(loc, state,
2687 "xfb_offset can't be used with unsized arrays.");
2688 return false;
2689 }
2690
2691 /* Make sure nested structs don't contain unsized arrays, and validate
2692 * any xfb_offsets on interface members.
2693 */
2694 if (t_without_array->is_record() || t_without_array->is_interface())
2695 for (unsigned int i = 0; i < t_without_array->length; i++) {
2696 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2697
2698 /* When the interface block doesn't have an xfb_offset qualifier then
2699 * we apply the component size rules at the member level.
2700 */
2701 if (xfb_offset == -1)
2702 component_size = member_t->contains_double() ? 8 : 4;
2703
2704 int xfb_offset = t_without_array->fields.structure[i].offset;
2705 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2706 component_size);
2707 }
2708
2709 /* Nested structs or interface block without offset may not have had an
2710 * offset applied yet so return.
2711 */
2712 if (xfb_offset == -1) {
2713 return true;
2714 }
2715
2716 if (xfb_offset % component_size) {
2717 _mesa_glsl_error(loc, state,
2718 "invalid qualifier xfb_offset=%d must be a multiple "
2719 "of the first component size of the first qualified "
2720 "variable or block member. Or double if an aggregate "
2721 "that contains a double (%d).",
2722 xfb_offset, component_size);
2723 return false;
2724 }
2725
2726 return true;
2727 }
2728
2729 static bool
2730 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2731 unsigned stream)
2732 {
2733 if (stream >= state->ctx->Const.MaxVertexStreams) {
2734 _mesa_glsl_error(loc, state,
2735 "invalid stream specified %d is larger than "
2736 "MAX_VERTEX_STREAMS - 1 (%d).",
2737 stream, state->ctx->Const.MaxVertexStreams - 1);
2738 return false;
2739 }
2740
2741 return true;
2742 }
2743
2744 static void
2745 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2746 YYLTYPE *loc,
2747 ir_variable *var,
2748 const glsl_type *type,
2749 const ast_type_qualifier *qual)
2750 {
2751 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2752 _mesa_glsl_error(loc, state,
2753 "the \"binding\" qualifier only applies to uniforms and "
2754 "shader storage buffer objects");
2755 return;
2756 }
2757
2758 unsigned qual_binding;
2759 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2760 &qual_binding)) {
2761 return;
2762 }
2763
2764 const struct gl_context *const ctx = state->ctx;
2765 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2766 unsigned max_index = qual_binding + elements - 1;
2767 const glsl_type *base_type = type->without_array();
2768
2769 if (base_type->is_interface()) {
2770 /* UBOs. From page 60 of the GLSL 4.20 specification:
2771 * "If the binding point for any uniform block instance is less than zero,
2772 * or greater than or equal to the implementation-dependent maximum
2773 * number of uniform buffer bindings, a compilation error will occur.
2774 * When the binding identifier is used with a uniform block instanced as
2775 * an array of size N, all elements of the array from binding through
2776 * binding + N – 1 must be within this range."
2777 *
2778 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2779 */
2780 if (qual->flags.q.uniform &&
2781 max_index >= ctx->Const.MaxUniformBufferBindings) {
2782 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2783 "the maximum number of UBO binding points (%d)",
2784 qual_binding, elements,
2785 ctx->Const.MaxUniformBufferBindings);
2786 return;
2787 }
2788
2789 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2790 * "If the binding point for any uniform or shader storage block instance
2791 * is less than zero, or greater than or equal to the
2792 * implementation-dependent maximum number of uniform buffer bindings, a
2793 * compile-time error will occur. When the binding identifier is used
2794 * with a uniform or shader storage block instanced as an array of size
2795 * N, all elements of the array from binding through binding + N – 1 must
2796 * be within this range."
2797 */
2798 if (qual->flags.q.buffer &&
2799 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2800 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2801 "the maximum number of SSBO binding points (%d)",
2802 qual_binding, elements,
2803 ctx->Const.MaxShaderStorageBufferBindings);
2804 return;
2805 }
2806 } else if (base_type->is_sampler()) {
2807 /* Samplers. From page 63 of the GLSL 4.20 specification:
2808 * "If the binding is less than zero, or greater than or equal to the
2809 * implementation-dependent maximum supported number of units, a
2810 * compilation error will occur. When the binding identifier is used
2811 * with an array of size N, all elements of the array from binding
2812 * through binding + N - 1 must be within this range."
2813 */
2814 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2815
2816 if (max_index >= limit) {
2817 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2818 "exceeds the maximum number of texture image units "
2819 "(%u)", qual_binding, elements, limit);
2820
2821 return;
2822 }
2823 } else if (base_type->contains_atomic()) {
2824 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2825 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2826 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2827 " maximum number of atomic counter buffer bindings"
2828 "(%u)", qual_binding,
2829 ctx->Const.MaxAtomicBufferBindings);
2830
2831 return;
2832 }
2833 } else if ((state->is_version(420, 310) ||
2834 state->ARB_shading_language_420pack_enable) &&
2835 base_type->is_image()) {
2836 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2837 if (max_index >= ctx->Const.MaxImageUnits) {
2838 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2839 " maximum number of image units (%d)", max_index,
2840 ctx->Const.MaxImageUnits);
2841 return;
2842 }
2843
2844 } else {
2845 _mesa_glsl_error(loc, state,
2846 "the \"binding\" qualifier only applies to uniform "
2847 "blocks, opaque variables, or arrays thereof");
2848 return;
2849 }
2850
2851 var->data.explicit_binding = true;
2852 var->data.binding = qual_binding;
2853
2854 return;
2855 }
2856
2857
2858 static void
2859 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2860 YYLTYPE *loc,
2861 const glsl_interp_mode interpolation,
2862 const struct ast_type_qualifier *qual,
2863 const struct glsl_type *var_type,
2864 ir_variable_mode mode)
2865 {
2866 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2867 * not to vertex shader inputs nor fragment shader outputs.
2868 *
2869 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2870 * "Outputs from a vertex shader (out) and inputs to a fragment
2871 * shader (in) can be further qualified with one or more of these
2872 * interpolation qualifiers"
2873 * ...
2874 * "These interpolation qualifiers may only precede the qualifiers in,
2875 * centroid in, out, or centroid out in a declaration. They do not apply
2876 * to the deprecated storage qualifiers varying or centroid
2877 * varying. They also do not apply to inputs into a vertex shader or
2878 * outputs from a fragment shader."
2879 *
2880 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2881 * "Outputs from a shader (out) and inputs to a shader (in) can be
2882 * further qualified with one of these interpolation qualifiers."
2883 * ...
2884 * "These interpolation qualifiers may only precede the qualifiers
2885 * in, centroid in, out, or centroid out in a declaration. They do
2886 * not apply to inputs into a vertex shader or outputs from a
2887 * fragment shader."
2888 */
2889 if (state->is_version(130, 300)
2890 && interpolation != INTERP_MODE_NONE) {
2891 const char *i = interpolation_string(interpolation);
2892 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2893 _mesa_glsl_error(loc, state,
2894 "interpolation qualifier `%s' can only be applied to "
2895 "shader inputs or outputs.", i);
2896
2897 switch (state->stage) {
2898 case MESA_SHADER_VERTEX:
2899 if (mode == ir_var_shader_in) {
2900 _mesa_glsl_error(loc, state,
2901 "interpolation qualifier '%s' cannot be applied to "
2902 "vertex shader inputs", i);
2903 }
2904 break;
2905 case MESA_SHADER_FRAGMENT:
2906 if (mode == ir_var_shader_out) {
2907 _mesa_glsl_error(loc, state,
2908 "interpolation qualifier '%s' cannot be applied to "
2909 "fragment shader outputs", i);
2910 }
2911 break;
2912 default:
2913 break;
2914 }
2915 }
2916
2917 /* Interpolation qualifiers cannot be applied to 'centroid' and
2918 * 'centroid varying'.
2919 *
2920 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2921 * "interpolation qualifiers may only precede the qualifiers in,
2922 * centroid in, out, or centroid out in a declaration. They do not apply
2923 * to the deprecated storage qualifiers varying or centroid varying."
2924 *
2925 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2926 */
2927 if (state->is_version(130, 0)
2928 && interpolation != INTERP_MODE_NONE
2929 && qual->flags.q.varying) {
2930
2931 const char *i = interpolation_string(interpolation);
2932 const char *s;
2933 if (qual->flags.q.centroid)
2934 s = "centroid varying";
2935 else
2936 s = "varying";
2937
2938 _mesa_glsl_error(loc, state,
2939 "qualifier '%s' cannot be applied to the "
2940 "deprecated storage qualifier '%s'", i, s);
2941 }
2942
2943 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2944 * so must integer vertex outputs.
2945 *
2946 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2947 * "Fragment shader inputs that are signed or unsigned integers or
2948 * integer vectors must be qualified with the interpolation qualifier
2949 * flat."
2950 *
2951 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2952 * "Fragment shader inputs that are, or contain, signed or unsigned
2953 * integers or integer vectors must be qualified with the
2954 * interpolation qualifier flat."
2955 *
2956 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2957 * "Vertex shader outputs that are, or contain, signed or unsigned
2958 * integers or integer vectors must be qualified with the
2959 * interpolation qualifier flat."
2960 *
2961 * Note that prior to GLSL 1.50, this requirement applied to vertex
2962 * outputs rather than fragment inputs. That creates problems in the
2963 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2964 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2965 * apply the restriction to both vertex outputs and fragment inputs.
2966 *
2967 * Note also that the desktop GLSL specs are missing the text "or
2968 * contain"; this is presumably an oversight, since there is no
2969 * reasonable way to interpolate a fragment shader input that contains
2970 * an integer. See Khronos bug #15671.
2971 */
2972 if (state->is_version(130, 300)
2973 && var_type->contains_integer()
2974 && interpolation != INTERP_MODE_FLAT
2975 && ((state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_in)
2976 || (state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_out
2977 && state->es_shader))) {
2978 const char *shader_var_type = (state->stage == MESA_SHADER_VERTEX) ?
2979 "vertex output" : "fragment input";
2980 _mesa_glsl_error(loc, state, "if a %s is (or contains) "
2981 "an integer, then it must be qualified with 'flat'",
2982 shader_var_type);
2983 }
2984
2985 /* Double fragment inputs must be qualified with 'flat'.
2986 *
2987 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2988 * "This extension does not support interpolation of double-precision
2989 * values; doubles used as fragment shader inputs must be qualified as
2990 * "flat"."
2991 *
2992 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2993 * "Fragment shader inputs that are signed or unsigned integers, integer
2994 * vectors, or any double-precision floating-point type must be
2995 * qualified with the interpolation qualifier flat."
2996 *
2997 * Note that the GLSL specs are missing the text "or contain"; this is
2998 * presumably an oversight. See Khronos bug #15671.
2999 *
3000 * The 'double' type does not exist in GLSL ES so far.
3001 */
3002 if (state->has_double()
3003 && var_type->contains_double()
3004 && interpolation != INTERP_MODE_FLAT
3005 && state->stage == MESA_SHADER_FRAGMENT
3006 && mode == ir_var_shader_in) {
3007 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3008 "a double, then it must be qualified with 'flat'");
3009 }
3010 }
3011
3012 static glsl_interp_mode
3013 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3014 const struct glsl_type *var_type,
3015 ir_variable_mode mode,
3016 struct _mesa_glsl_parse_state *state,
3017 YYLTYPE *loc)
3018 {
3019 glsl_interp_mode interpolation;
3020 if (qual->flags.q.flat)
3021 interpolation = INTERP_MODE_FLAT;
3022 else if (qual->flags.q.noperspective)
3023 interpolation = INTERP_MODE_NOPERSPECTIVE;
3024 else if (qual->flags.q.smooth)
3025 interpolation = INTERP_MODE_SMOOTH;
3026 else if (state->es_shader &&
3027 ((mode == ir_var_shader_in &&
3028 state->stage != MESA_SHADER_VERTEX) ||
3029 (mode == ir_var_shader_out &&
3030 state->stage != MESA_SHADER_FRAGMENT)))
3031 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3032 *
3033 * "When no interpolation qualifier is present, smooth interpolation
3034 * is used."
3035 */
3036 interpolation = INTERP_MODE_SMOOTH;
3037 else
3038 interpolation = INTERP_MODE_NONE;
3039
3040 validate_interpolation_qualifier(state, loc,
3041 interpolation,
3042 qual, var_type, mode);
3043
3044 return interpolation;
3045 }
3046
3047
3048 static void
3049 apply_explicit_location(const struct ast_type_qualifier *qual,
3050 ir_variable *var,
3051 struct _mesa_glsl_parse_state *state,
3052 YYLTYPE *loc)
3053 {
3054 bool fail = false;
3055
3056 unsigned qual_location;
3057 if (!process_qualifier_constant(state, loc, "location", qual->location,
3058 &qual_location)) {
3059 return;
3060 }
3061
3062 /* Checks for GL_ARB_explicit_uniform_location. */
3063 if (qual->flags.q.uniform) {
3064 if (!state->check_explicit_uniform_location_allowed(loc, var))
3065 return;
3066
3067 const struct gl_context *const ctx = state->ctx;
3068 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3069
3070 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3071 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3072 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3073 ctx->Const.MaxUserAssignableUniformLocations);
3074 return;
3075 }
3076
3077 var->data.explicit_location = true;
3078 var->data.location = qual_location;
3079 return;
3080 }
3081
3082 /* Between GL_ARB_explicit_attrib_location an
3083 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3084 * stage can be assigned explicit locations. The checking here associates
3085 * the correct extension with the correct stage's input / output:
3086 *
3087 * input output
3088 * ----- ------
3089 * vertex explicit_loc sso
3090 * tess control sso sso
3091 * tess eval sso sso
3092 * geometry sso sso
3093 * fragment sso explicit_loc
3094 */
3095 switch (state->stage) {
3096 case MESA_SHADER_VERTEX:
3097 if (var->data.mode == ir_var_shader_in) {
3098 if (!state->check_explicit_attrib_location_allowed(loc, var))
3099 return;
3100
3101 break;
3102 }
3103
3104 if (var->data.mode == ir_var_shader_out) {
3105 if (!state->check_separate_shader_objects_allowed(loc, var))
3106 return;
3107
3108 break;
3109 }
3110
3111 fail = true;
3112 break;
3113
3114 case MESA_SHADER_TESS_CTRL:
3115 case MESA_SHADER_TESS_EVAL:
3116 case MESA_SHADER_GEOMETRY:
3117 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3118 if (!state->check_separate_shader_objects_allowed(loc, var))
3119 return;
3120
3121 break;
3122 }
3123
3124 fail = true;
3125 break;
3126
3127 case MESA_SHADER_FRAGMENT:
3128 if (var->data.mode == ir_var_shader_in) {
3129 if (!state->check_separate_shader_objects_allowed(loc, var))
3130 return;
3131
3132 break;
3133 }
3134
3135 if (var->data.mode == ir_var_shader_out) {
3136 if (!state->check_explicit_attrib_location_allowed(loc, var))
3137 return;
3138
3139 break;
3140 }
3141
3142 fail = true;
3143 break;
3144
3145 case MESA_SHADER_COMPUTE:
3146 _mesa_glsl_error(loc, state,
3147 "compute shader variables cannot be given "
3148 "explicit locations");
3149 return;
3150 };
3151
3152 if (fail) {
3153 _mesa_glsl_error(loc, state,
3154 "%s cannot be given an explicit location in %s shader",
3155 mode_string(var),
3156 _mesa_shader_stage_to_string(state->stage));
3157 } else {
3158 var->data.explicit_location = true;
3159
3160 switch (state->stage) {
3161 case MESA_SHADER_VERTEX:
3162 var->data.location = (var->data.mode == ir_var_shader_in)
3163 ? (qual_location + VERT_ATTRIB_GENERIC0)
3164 : (qual_location + VARYING_SLOT_VAR0);
3165 break;
3166
3167 case MESA_SHADER_TESS_CTRL:
3168 case MESA_SHADER_TESS_EVAL:
3169 case MESA_SHADER_GEOMETRY:
3170 if (var->data.patch)
3171 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3172 else
3173 var->data.location = qual_location + VARYING_SLOT_VAR0;
3174 break;
3175
3176 case MESA_SHADER_FRAGMENT:
3177 var->data.location = (var->data.mode == ir_var_shader_out)
3178 ? (qual_location + FRAG_RESULT_DATA0)
3179 : (qual_location + VARYING_SLOT_VAR0);
3180 break;
3181 case MESA_SHADER_COMPUTE:
3182 assert(!"Unexpected shader type");
3183 break;
3184 }
3185
3186 /* Check if index was set for the uniform instead of the function */
3187 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3188 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3189 "used with subroutine functions");
3190 return;
3191 }
3192
3193 unsigned qual_index;
3194 if (qual->flags.q.explicit_index &&
3195 process_qualifier_constant(state, loc, "index", qual->index,
3196 &qual_index)) {
3197 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3198 * Layout Qualifiers):
3199 *
3200 * "It is also a compile-time error if a fragment shader
3201 * sets a layout index to less than 0 or greater than 1."
3202 *
3203 * Older specifications don't mandate a behavior; we take
3204 * this as a clarification and always generate the error.
3205 */
3206 if (qual_index > 1) {
3207 _mesa_glsl_error(loc, state,
3208 "explicit index may only be 0 or 1");
3209 } else {
3210 var->data.explicit_index = true;
3211 var->data.index = qual_index;
3212 }
3213 }
3214 }
3215 }
3216
3217 static void
3218 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3219 ir_variable *var,
3220 struct _mesa_glsl_parse_state *state,
3221 YYLTYPE *loc)
3222 {
3223 const glsl_type *base_type = var->type->without_array();
3224
3225 if (base_type->is_image()) {
3226 if (var->data.mode != ir_var_uniform &&
3227 var->data.mode != ir_var_function_in) {
3228 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3229 "function parameters or uniform-qualified "
3230 "global variables");
3231 }
3232
3233 var->data.image_read_only |= qual->flags.q.read_only;
3234 var->data.image_write_only |= qual->flags.q.write_only;
3235 var->data.image_coherent |= qual->flags.q.coherent;
3236 var->data.image_volatile |= qual->flags.q._volatile;
3237 var->data.image_restrict |= qual->flags.q.restrict_flag;
3238 var->data.read_only = true;
3239
3240 if (qual->flags.q.explicit_image_format) {
3241 if (var->data.mode == ir_var_function_in) {
3242 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3243 "used on image function parameters");
3244 }
3245
3246 if (qual->image_base_type != base_type->sampled_type) {
3247 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3248 "base data type of the image");
3249 }
3250
3251 var->data.image_format = qual->image_format;
3252 } else {
3253 if (var->data.mode == ir_var_uniform) {
3254 if (state->es_shader) {
3255 _mesa_glsl_error(loc, state, "all image uniforms "
3256 "must have a format layout qualifier");
3257
3258 } else if (!qual->flags.q.write_only) {
3259 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3260 "`writeonly' must have a format layout "
3261 "qualifier");
3262 }
3263 }
3264
3265 var->data.image_format = GL_NONE;
3266 }
3267
3268 /* From page 70 of the GLSL ES 3.1 specification:
3269 *
3270 * "Except for image variables qualified with the format qualifiers
3271 * r32f, r32i, and r32ui, image variables must specify either memory
3272 * qualifier readonly or the memory qualifier writeonly."
3273 */
3274 if (state->es_shader &&
3275 var->data.image_format != GL_R32F &&
3276 var->data.image_format != GL_R32I &&
3277 var->data.image_format != GL_R32UI &&
3278 !var->data.image_read_only &&
3279 !var->data.image_write_only) {
3280 _mesa_glsl_error(loc, state, "image variables of format other than "
3281 "r32f, r32i or r32ui must be qualified `readonly' or "
3282 "`writeonly'");
3283 }
3284
3285 } else if (qual->flags.q.read_only ||
3286 qual->flags.q.write_only ||
3287 qual->flags.q.coherent ||
3288 qual->flags.q._volatile ||
3289 qual->flags.q.restrict_flag ||
3290 qual->flags.q.explicit_image_format) {
3291 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3292 "images");
3293 }
3294 }
3295
3296 static inline const char*
3297 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3298 {
3299 if (origin_upper_left && pixel_center_integer)
3300 return "origin_upper_left, pixel_center_integer";
3301 else if (origin_upper_left)
3302 return "origin_upper_left";
3303 else if (pixel_center_integer)
3304 return "pixel_center_integer";
3305 else
3306 return " ";
3307 }
3308
3309 static inline bool
3310 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3311 const struct ast_type_qualifier *qual)
3312 {
3313 /* If gl_FragCoord was previously declared, and the qualifiers were
3314 * different in any way, return true.
3315 */
3316 if (state->fs_redeclares_gl_fragcoord) {
3317 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3318 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3319 }
3320
3321 return false;
3322 }
3323
3324 static inline void
3325 validate_array_dimensions(const glsl_type *t,
3326 struct _mesa_glsl_parse_state *state,
3327 YYLTYPE *loc) {
3328 if (t->is_array()) {
3329 t = t->fields.array;
3330 while (t->is_array()) {
3331 if (t->is_unsized_array()) {
3332 _mesa_glsl_error(loc, state,
3333 "only the outermost array dimension can "
3334 "be unsized",
3335 t->name);
3336 break;
3337 }
3338 t = t->fields.array;
3339 }
3340 }
3341 }
3342
3343 static void
3344 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3345 ir_variable *var,
3346 struct _mesa_glsl_parse_state *state,
3347 YYLTYPE *loc)
3348 {
3349 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3350
3351 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3352 *
3353 * "Within any shader, the first redeclarations of gl_FragCoord
3354 * must appear before any use of gl_FragCoord."
3355 *
3356 * Generate a compiler error if above condition is not met by the
3357 * fragment shader.
3358 */
3359 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3360 if (earlier != NULL &&
3361 earlier->data.used &&
3362 !state->fs_redeclares_gl_fragcoord) {
3363 _mesa_glsl_error(loc, state,
3364 "gl_FragCoord used before its first redeclaration "
3365 "in fragment shader");
3366 }
3367
3368 /* Make sure all gl_FragCoord redeclarations specify the same layout
3369 * qualifiers.
3370 */
3371 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3372 const char *const qual_string =
3373 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3374 qual->flags.q.pixel_center_integer);
3375
3376 const char *const state_string =
3377 get_layout_qualifier_string(state->fs_origin_upper_left,
3378 state->fs_pixel_center_integer);
3379
3380 _mesa_glsl_error(loc, state,
3381 "gl_FragCoord redeclared with different layout "
3382 "qualifiers (%s) and (%s) ",
3383 state_string,
3384 qual_string);
3385 }
3386 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3387 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3388 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3389 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3390 state->fs_redeclares_gl_fragcoord =
3391 state->fs_origin_upper_left ||
3392 state->fs_pixel_center_integer ||
3393 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3394 }
3395
3396 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3397 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3398 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3399 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3400 const char *const qual_string = (qual->flags.q.origin_upper_left)
3401 ? "origin_upper_left" : "pixel_center_integer";
3402
3403 _mesa_glsl_error(loc, state,
3404 "layout qualifier `%s' can only be applied to "
3405 "fragment shader input `gl_FragCoord'",
3406 qual_string);
3407 }
3408
3409 if (qual->flags.q.explicit_location) {
3410 apply_explicit_location(qual, var, state, loc);
3411
3412 if (qual->flags.q.explicit_component) {
3413 unsigned qual_component;
3414 if (process_qualifier_constant(state, loc, "component",
3415 qual->component, &qual_component)) {
3416 const glsl_type *type = var->type->without_array();
3417 unsigned components = type->component_slots();
3418
3419 if (type->is_matrix() || type->is_record()) {
3420 _mesa_glsl_error(loc, state, "component layout qualifier "
3421 "cannot be applied to a matrix, a structure, "
3422 "a block, or an array containing any of "
3423 "these.");
3424 } else if (qual_component != 0 &&
3425 (qual_component + components - 1) > 3) {
3426 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3427 (qual_component + components - 1));
3428 } else if (qual_component == 1 && type->is_64bit()) {
3429 /* We don't bother checking for 3 as it should be caught by the
3430 * overflow check above.
3431 */
3432 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3433 "component 1 or 3");
3434 } else {
3435 var->data.explicit_component = true;
3436 var->data.location_frac = qual_component;
3437 }
3438 }
3439 }
3440 } else if (qual->flags.q.explicit_index) {
3441 if (!qual->flags.q.subroutine_def)
3442 _mesa_glsl_error(loc, state,
3443 "explicit index requires explicit location");
3444 } else if (qual->flags.q.explicit_component) {
3445 _mesa_glsl_error(loc, state,
3446 "explicit component requires explicit location");
3447 }
3448
3449 if (qual->flags.q.explicit_binding) {
3450 apply_explicit_binding(state, loc, var, var->type, qual);
3451 }
3452
3453 if (state->stage == MESA_SHADER_GEOMETRY &&
3454 qual->flags.q.out && qual->flags.q.stream) {
3455 unsigned qual_stream;
3456 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3457 &qual_stream) &&
3458 validate_stream_qualifier(loc, state, qual_stream)) {
3459 var->data.stream = qual_stream;
3460 }
3461 }
3462
3463 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3464 unsigned qual_xfb_buffer;
3465 if (process_qualifier_constant(state, loc, "xfb_buffer",
3466 qual->xfb_buffer, &qual_xfb_buffer) &&
3467 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3468 var->data.xfb_buffer = qual_xfb_buffer;
3469 if (qual->flags.q.explicit_xfb_buffer)
3470 var->data.explicit_xfb_buffer = true;
3471 }
3472 }
3473
3474 if (qual->flags.q.explicit_xfb_offset) {
3475 unsigned qual_xfb_offset;
3476 unsigned component_size = var->type->contains_double() ? 8 : 4;
3477
3478 if (process_qualifier_constant(state, loc, "xfb_offset",
3479 qual->offset, &qual_xfb_offset) &&
3480 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3481 var->type, component_size)) {
3482 var->data.offset = qual_xfb_offset;
3483 var->data.explicit_xfb_offset = true;
3484 }
3485 }
3486
3487 if (qual->flags.q.explicit_xfb_stride) {
3488 unsigned qual_xfb_stride;
3489 if (process_qualifier_constant(state, loc, "xfb_stride",
3490 qual->xfb_stride, &qual_xfb_stride)) {
3491 var->data.xfb_stride = qual_xfb_stride;
3492 var->data.explicit_xfb_stride = true;
3493 }
3494 }
3495
3496 if (var->type->contains_atomic()) {
3497 if (var->data.mode == ir_var_uniform) {
3498 if (var->data.explicit_binding) {
3499 unsigned *offset =
3500 &state->atomic_counter_offsets[var->data.binding];
3501
3502 if (*offset % ATOMIC_COUNTER_SIZE)
3503 _mesa_glsl_error(loc, state,
3504 "misaligned atomic counter offset");
3505
3506 var->data.offset = *offset;
3507 *offset += var->type->atomic_size();
3508
3509 } else {
3510 _mesa_glsl_error(loc, state,
3511 "atomic counters require explicit binding point");
3512 }
3513 } else if (var->data.mode != ir_var_function_in) {
3514 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3515 "function parameters or uniform-qualified "
3516 "global variables");
3517 }
3518 }
3519
3520 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3521 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3522 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3523 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3524 * These extensions and all following extensions that add the 'layout'
3525 * keyword have been modified to require the use of 'in' or 'out'.
3526 *
3527 * The following extension do not allow the deprecated keywords:
3528 *
3529 * GL_AMD_conservative_depth
3530 * GL_ARB_conservative_depth
3531 * GL_ARB_gpu_shader5
3532 * GL_ARB_separate_shader_objects
3533 * GL_ARB_tessellation_shader
3534 * GL_ARB_transform_feedback3
3535 * GL_ARB_uniform_buffer_object
3536 *
3537 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3538 * allow layout with the deprecated keywords.
3539 */
3540 const bool relaxed_layout_qualifier_checking =
3541 state->ARB_fragment_coord_conventions_enable;
3542
3543 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3544 || qual->flags.q.varying;
3545 if (qual->has_layout() && uses_deprecated_qualifier) {
3546 if (relaxed_layout_qualifier_checking) {
3547 _mesa_glsl_warning(loc, state,
3548 "`layout' qualifier may not be used with "
3549 "`attribute' or `varying'");
3550 } else {
3551 _mesa_glsl_error(loc, state,
3552 "`layout' qualifier may not be used with "
3553 "`attribute' or `varying'");
3554 }
3555 }
3556
3557 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3558 * AMD_conservative_depth.
3559 */
3560 int depth_layout_count = qual->flags.q.depth_any
3561 + qual->flags.q.depth_greater
3562 + qual->flags.q.depth_less
3563 + qual->flags.q.depth_unchanged;
3564 if (depth_layout_count > 0
3565 && !state->is_version(420, 0)
3566 && !state->AMD_conservative_depth_enable
3567 && !state->ARB_conservative_depth_enable) {
3568 _mesa_glsl_error(loc, state,
3569 "extension GL_AMD_conservative_depth or "
3570 "GL_ARB_conservative_depth must be enabled "
3571 "to use depth layout qualifiers");
3572 } else if (depth_layout_count > 0
3573 && strcmp(var->name, "gl_FragDepth") != 0) {
3574 _mesa_glsl_error(loc, state,
3575 "depth layout qualifiers can be applied only to "
3576 "gl_FragDepth");
3577 } else if (depth_layout_count > 1
3578 && strcmp(var->name, "gl_FragDepth") == 0) {
3579 _mesa_glsl_error(loc, state,
3580 "at most one depth layout qualifier can be applied to "
3581 "gl_FragDepth");
3582 }
3583 if (qual->flags.q.depth_any)
3584 var->data.depth_layout = ir_depth_layout_any;
3585 else if (qual->flags.q.depth_greater)
3586 var->data.depth_layout = ir_depth_layout_greater;
3587 else if (qual->flags.q.depth_less)
3588 var->data.depth_layout = ir_depth_layout_less;
3589 else if (qual->flags.q.depth_unchanged)
3590 var->data.depth_layout = ir_depth_layout_unchanged;
3591 else
3592 var->data.depth_layout = ir_depth_layout_none;
3593
3594 if (qual->flags.q.std140 ||
3595 qual->flags.q.std430 ||
3596 qual->flags.q.packed ||
3597 qual->flags.q.shared) {
3598 _mesa_glsl_error(loc, state,
3599 "uniform and shader storage block layout qualifiers "
3600 "std140, std430, packed, and shared can only be "
3601 "applied to uniform or shader storage blocks, not "
3602 "members");
3603 }
3604
3605 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3606 validate_matrix_layout_for_type(state, loc, var->type, var);
3607 }
3608
3609 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3610 * Inputs):
3611 *
3612 * "Fragment shaders also allow the following layout qualifier on in only
3613 * (not with variable declarations)
3614 * layout-qualifier-id
3615 * early_fragment_tests
3616 * [...]"
3617 */
3618 if (qual->flags.q.early_fragment_tests) {
3619 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3620 "valid in fragment shader input layout declaration.");
3621 }
3622 }
3623
3624 static void
3625 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3626 ir_variable *var,
3627 struct _mesa_glsl_parse_state *state,
3628 YYLTYPE *loc,
3629 bool is_parameter)
3630 {
3631 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3632
3633 if (qual->flags.q.invariant) {
3634 if (var->data.used) {
3635 _mesa_glsl_error(loc, state,
3636 "variable `%s' may not be redeclared "
3637 "`invariant' after being used",
3638 var->name);
3639 } else {
3640 var->data.invariant = 1;
3641 }
3642 }
3643
3644 if (qual->flags.q.precise) {
3645 if (var->data.used) {
3646 _mesa_glsl_error(loc, state,
3647 "variable `%s' may not be redeclared "
3648 "`precise' after being used",
3649 var->name);
3650 } else {
3651 var->data.precise = 1;
3652 }
3653 }
3654
3655 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3656 _mesa_glsl_error(loc, state,
3657 "`subroutine' may only be applied to uniforms, "
3658 "subroutine type declarations, or function definitions");
3659 }
3660
3661 if (qual->flags.q.constant || qual->flags.q.attribute
3662 || qual->flags.q.uniform
3663 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3664 var->data.read_only = 1;
3665
3666 if (qual->flags.q.centroid)
3667 var->data.centroid = 1;
3668
3669 if (qual->flags.q.sample)
3670 var->data.sample = 1;
3671
3672 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3673 if (state->es_shader) {
3674 var->data.precision =
3675 select_gles_precision(qual->precision, var->type, state, loc);
3676 }
3677
3678 if (qual->flags.q.patch)
3679 var->data.patch = 1;
3680
3681 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3682 var->type = glsl_type::error_type;
3683 _mesa_glsl_error(loc, state,
3684 "`attribute' variables may not be declared in the "
3685 "%s shader",
3686 _mesa_shader_stage_to_string(state->stage));
3687 }
3688
3689 /* Disallow layout qualifiers which may only appear on layout declarations. */
3690 if (qual->flags.q.prim_type) {
3691 _mesa_glsl_error(loc, state,
3692 "Primitive type may only be specified on GS input or output "
3693 "layout declaration, not on variables.");
3694 }
3695
3696 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3697 *
3698 * "However, the const qualifier cannot be used with out or inout."
3699 *
3700 * The same section of the GLSL 4.40 spec further clarifies this saying:
3701 *
3702 * "The const qualifier cannot be used with out or inout, or a
3703 * compile-time error results."
3704 */
3705 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3706 _mesa_glsl_error(loc, state,
3707 "`const' may not be applied to `out' or `inout' "
3708 "function parameters");
3709 }
3710
3711 /* If there is no qualifier that changes the mode of the variable, leave
3712 * the setting alone.
3713 */
3714 assert(var->data.mode != ir_var_temporary);
3715 if (qual->flags.q.in && qual->flags.q.out)
3716 var->data.mode = ir_var_function_inout;
3717 else if (qual->flags.q.in)
3718 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3719 else if (qual->flags.q.attribute
3720 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3721 var->data.mode = ir_var_shader_in;
3722 else if (qual->flags.q.out)
3723 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3724 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3725 var->data.mode = ir_var_shader_out;
3726 else if (qual->flags.q.uniform)
3727 var->data.mode = ir_var_uniform;
3728 else if (qual->flags.q.buffer)
3729 var->data.mode = ir_var_shader_storage;
3730 else if (qual->flags.q.shared_storage)
3731 var->data.mode = ir_var_shader_shared;
3732
3733 if (!is_parameter && is_varying_var(var, state->stage)) {
3734 /* User-defined ins/outs are not permitted in compute shaders. */
3735 if (state->stage == MESA_SHADER_COMPUTE) {
3736 _mesa_glsl_error(loc, state,
3737 "user-defined input and output variables are not "
3738 "permitted in compute shaders");
3739 }
3740
3741 /* This variable is being used to link data between shader stages (in
3742 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3743 * that is allowed for such purposes.
3744 *
3745 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3746 *
3747 * "The varying qualifier can be used only with the data types
3748 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3749 * these."
3750 *
3751 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3752 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3753 *
3754 * "Fragment inputs can only be signed and unsigned integers and
3755 * integer vectors, float, floating-point vectors, matrices, or
3756 * arrays of these. Structures cannot be input.
3757 *
3758 * Similar text exists in the section on vertex shader outputs.
3759 *
3760 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3761 * 3.00 spec allows structs as well. Varying structs are also allowed
3762 * in GLSL 1.50.
3763 */
3764 switch (var->type->get_scalar_type()->base_type) {
3765 case GLSL_TYPE_FLOAT:
3766 /* Ok in all GLSL versions */
3767 break;
3768 case GLSL_TYPE_UINT:
3769 case GLSL_TYPE_INT:
3770 if (state->is_version(130, 300))
3771 break;
3772 _mesa_glsl_error(loc, state,
3773 "varying variables must be of base type float in %s",
3774 state->get_version_string());
3775 break;
3776 case GLSL_TYPE_STRUCT:
3777 if (state->is_version(150, 300))
3778 break;
3779 _mesa_glsl_error(loc, state,
3780 "varying variables may not be of type struct");
3781 break;
3782 case GLSL_TYPE_DOUBLE:
3783 break;
3784 default:
3785 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3786 break;
3787 }
3788 }
3789
3790 if (state->all_invariant && (state->current_function == NULL)) {
3791 switch (state->stage) {
3792 case MESA_SHADER_VERTEX:
3793 if (var->data.mode == ir_var_shader_out)
3794 var->data.invariant = true;
3795 break;
3796 case MESA_SHADER_TESS_CTRL:
3797 case MESA_SHADER_TESS_EVAL:
3798 case MESA_SHADER_GEOMETRY:
3799 if ((var->data.mode == ir_var_shader_in)
3800 || (var->data.mode == ir_var_shader_out))
3801 var->data.invariant = true;
3802 break;
3803 case MESA_SHADER_FRAGMENT:
3804 if (var->data.mode == ir_var_shader_in)
3805 var->data.invariant = true;
3806 break;
3807 case MESA_SHADER_COMPUTE:
3808 /* Invariance isn't meaningful in compute shaders. */
3809 break;
3810 }
3811 }
3812
3813 var->data.interpolation =
3814 interpret_interpolation_qualifier(qual, var->type,
3815 (ir_variable_mode) var->data.mode,
3816 state, loc);
3817
3818 /* Does the declaration use the deprecated 'attribute' or 'varying'
3819 * keywords?
3820 */
3821 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3822 || qual->flags.q.varying;
3823
3824
3825 /* Validate auxiliary storage qualifiers */
3826
3827 /* From section 4.3.4 of the GLSL 1.30 spec:
3828 * "It is an error to use centroid in in a vertex shader."
3829 *
3830 * From section 4.3.4 of the GLSL ES 3.00 spec:
3831 * "It is an error to use centroid in or interpolation qualifiers in
3832 * a vertex shader input."
3833 */
3834
3835 /* Section 4.3.6 of the GLSL 1.30 specification states:
3836 * "It is an error to use centroid out in a fragment shader."
3837 *
3838 * The GL_ARB_shading_language_420pack extension specification states:
3839 * "It is an error to use auxiliary storage qualifiers or interpolation
3840 * qualifiers on an output in a fragment shader."
3841 */
3842 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3843 _mesa_glsl_error(loc, state,
3844 "sample qualifier may only be used on `in` or `out` "
3845 "variables between shader stages");
3846 }
3847 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3848 _mesa_glsl_error(loc, state,
3849 "centroid qualifier may only be used with `in', "
3850 "`out' or `varying' variables between shader stages");
3851 }
3852
3853 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3854 _mesa_glsl_error(loc, state,
3855 "the shared storage qualifiers can only be used with "
3856 "compute shaders");
3857 }
3858
3859 apply_image_qualifier_to_variable(qual, var, state, loc);
3860 }
3861
3862 /**
3863 * Get the variable that is being redeclared by this declaration
3864 *
3865 * Semantic checks to verify the validity of the redeclaration are also
3866 * performed. If semantic checks fail, compilation error will be emitted via
3867 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3868 *
3869 * \returns
3870 * A pointer to an existing variable in the current scope if the declaration
3871 * is a redeclaration, \c NULL otherwise.
3872 */
3873 static ir_variable *
3874 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3875 struct _mesa_glsl_parse_state *state,
3876 bool allow_all_redeclarations)
3877 {
3878 /* Check if this declaration is actually a re-declaration, either to
3879 * resize an array or add qualifiers to an existing variable.
3880 *
3881 * This is allowed for variables in the current scope, or when at
3882 * global scope (for built-ins in the implicit outer scope).
3883 */
3884 ir_variable *earlier = state->symbols->get_variable(var->name);
3885 if (earlier == NULL ||
3886 (state->current_function != NULL &&
3887 !state->symbols->name_declared_this_scope(var->name))) {
3888 return NULL;
3889 }
3890
3891
3892 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3893 *
3894 * "It is legal to declare an array without a size and then
3895 * later re-declare the same name as an array of the same
3896 * type and specify a size."
3897 */
3898 if (earlier->type->is_unsized_array() && var->type->is_array()
3899 && (var->type->fields.array == earlier->type->fields.array)) {
3900 /* FINISHME: This doesn't match the qualifiers on the two
3901 * FINISHME: declarations. It's not 100% clear whether this is
3902 * FINISHME: required or not.
3903 */
3904
3905 const int size = var->type->array_size();
3906 check_builtin_array_max_size(var->name, size, loc, state);
3907 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3908 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3909 "previous access",
3910 earlier->data.max_array_access);
3911 }
3912
3913 earlier->type = var->type;
3914 delete var;
3915 var = NULL;
3916 } else if ((state->ARB_fragment_coord_conventions_enable ||
3917 state->is_version(150, 0))
3918 && strcmp(var->name, "gl_FragCoord") == 0
3919 && earlier->type == var->type
3920 && var->data.mode == ir_var_shader_in) {
3921 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3922 * qualifiers.
3923 */
3924 earlier->data.origin_upper_left = var->data.origin_upper_left;
3925 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3926
3927 /* According to section 4.3.7 of the GLSL 1.30 spec,
3928 * the following built-in varaibles can be redeclared with an
3929 * interpolation qualifier:
3930 * * gl_FrontColor
3931 * * gl_BackColor
3932 * * gl_FrontSecondaryColor
3933 * * gl_BackSecondaryColor
3934 * * gl_Color
3935 * * gl_SecondaryColor
3936 */
3937 } else if (state->is_version(130, 0)
3938 && (strcmp(var->name, "gl_FrontColor") == 0
3939 || strcmp(var->name, "gl_BackColor") == 0
3940 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3941 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3942 || strcmp(var->name, "gl_Color") == 0
3943 || strcmp(var->name, "gl_SecondaryColor") == 0)
3944 && earlier->type == var->type
3945 && earlier->data.mode == var->data.mode) {
3946 earlier->data.interpolation = var->data.interpolation;
3947
3948 /* Layout qualifiers for gl_FragDepth. */
3949 } else if ((state->is_version(420, 0) ||
3950 state->AMD_conservative_depth_enable ||
3951 state->ARB_conservative_depth_enable)
3952 && strcmp(var->name, "gl_FragDepth") == 0
3953 && earlier->type == var->type
3954 && earlier->data.mode == var->data.mode) {
3955
3956 /** From the AMD_conservative_depth spec:
3957 * Within any shader, the first redeclarations of gl_FragDepth
3958 * must appear before any use of gl_FragDepth.
3959 */
3960 if (earlier->data.used) {
3961 _mesa_glsl_error(&loc, state,
3962 "the first redeclaration of gl_FragDepth "
3963 "must appear before any use of gl_FragDepth");
3964 }
3965
3966 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3967 if (earlier->data.depth_layout != ir_depth_layout_none
3968 && earlier->data.depth_layout != var->data.depth_layout) {
3969 _mesa_glsl_error(&loc, state,
3970 "gl_FragDepth: depth layout is declared here "
3971 "as '%s, but it was previously declared as "
3972 "'%s'",
3973 depth_layout_string(var->data.depth_layout),
3974 depth_layout_string(earlier->data.depth_layout));
3975 }
3976
3977 earlier->data.depth_layout = var->data.depth_layout;
3978
3979 } else if (allow_all_redeclarations) {
3980 if (earlier->data.mode != var->data.mode) {
3981 _mesa_glsl_error(&loc, state,
3982 "redeclaration of `%s' with incorrect qualifiers",
3983 var->name);
3984 } else if (earlier->type != var->type) {
3985 _mesa_glsl_error(&loc, state,
3986 "redeclaration of `%s' has incorrect type",
3987 var->name);
3988 }
3989 } else {
3990 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3991 }
3992
3993 return earlier;
3994 }
3995
3996 /**
3997 * Generate the IR for an initializer in a variable declaration
3998 */
3999 ir_rvalue *
4000 process_initializer(ir_variable *var, ast_declaration *decl,
4001 ast_fully_specified_type *type,
4002 exec_list *initializer_instructions,
4003 struct _mesa_glsl_parse_state *state)
4004 {
4005 ir_rvalue *result = NULL;
4006
4007 YYLTYPE initializer_loc = decl->initializer->get_location();
4008
4009 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4010 *
4011 * "All uniform variables are read-only and are initialized either
4012 * directly by an application via API commands, or indirectly by
4013 * OpenGL."
4014 */
4015 if (var->data.mode == ir_var_uniform) {
4016 state->check_version(120, 0, &initializer_loc,
4017 "cannot initialize uniform %s",
4018 var->name);
4019 }
4020
4021 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4022 *
4023 * "Buffer variables cannot have initializers."
4024 */
4025 if (var->data.mode == ir_var_shader_storage) {
4026 _mesa_glsl_error(&initializer_loc, state,
4027 "cannot initialize buffer variable %s",
4028 var->name);
4029 }
4030
4031 /* From section 4.1.7 of the GLSL 4.40 spec:
4032 *
4033 * "Opaque variables [...] are initialized only through the
4034 * OpenGL API; they cannot be declared with an initializer in a
4035 * shader."
4036 */
4037 if (var->type->contains_opaque()) {
4038 _mesa_glsl_error(&initializer_loc, state,
4039 "cannot initialize opaque variable %s",
4040 var->name);
4041 }
4042
4043 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4044 _mesa_glsl_error(&initializer_loc, state,
4045 "cannot initialize %s shader input / %s %s",
4046 _mesa_shader_stage_to_string(state->stage),
4047 (state->stage == MESA_SHADER_VERTEX)
4048 ? "attribute" : "varying",
4049 var->name);
4050 }
4051
4052 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4053 _mesa_glsl_error(&initializer_loc, state,
4054 "cannot initialize %s shader output %s",
4055 _mesa_shader_stage_to_string(state->stage),
4056 var->name);
4057 }
4058
4059 /* If the initializer is an ast_aggregate_initializer, recursively store
4060 * type information from the LHS into it, so that its hir() function can do
4061 * type checking.
4062 */
4063 if (decl->initializer->oper == ast_aggregate)
4064 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4065
4066 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4067 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4068
4069 /* Calculate the constant value if this is a const or uniform
4070 * declaration.
4071 *
4072 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4073 *
4074 * "Declarations of globals without a storage qualifier, or with
4075 * just the const qualifier, may include initializers, in which case
4076 * they will be initialized before the first line of main() is
4077 * executed. Such initializers must be a constant expression."
4078 *
4079 * The same section of the GLSL ES 3.00.4 spec has similar language.
4080 */
4081 if (type->qualifier.flags.q.constant
4082 || type->qualifier.flags.q.uniform
4083 || (state->es_shader && state->current_function == NULL)) {
4084 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4085 lhs, rhs, true);
4086 if (new_rhs != NULL) {
4087 rhs = new_rhs;
4088
4089 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4090 * says:
4091 *
4092 * "A constant expression is one of
4093 *
4094 * ...
4095 *
4096 * - an expression formed by an operator on operands that are
4097 * all constant expressions, including getting an element of
4098 * a constant array, or a field of a constant structure, or
4099 * components of a constant vector. However, the sequence
4100 * operator ( , ) and the assignment operators ( =, +=, ...)
4101 * are not included in the operators that can create a
4102 * constant expression."
4103 *
4104 * Section 12.43 (Sequence operator and constant expressions) says:
4105 *
4106 * "Should the following construct be allowed?
4107 *
4108 * float a[2,3];
4109 *
4110 * The expression within the brackets uses the sequence operator
4111 * (',') and returns the integer 3 so the construct is declaring
4112 * a single-dimensional array of size 3. In some languages, the
4113 * construct declares a two-dimensional array. It would be
4114 * preferable to make this construct illegal to avoid confusion.
4115 *
4116 * One possibility is to change the definition of the sequence
4117 * operator so that it does not return a constant-expression and
4118 * hence cannot be used to declare an array size.
4119 *
4120 * RESOLUTION: The result of a sequence operator is not a
4121 * constant-expression."
4122 *
4123 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4124 * contains language almost identical to the section 4.3.3 in the
4125 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4126 * versions.
4127 */
4128 ir_constant *constant_value = rhs->constant_expression_value();
4129 if (!constant_value ||
4130 (state->is_version(430, 300) &&
4131 decl->initializer->has_sequence_subexpression())) {
4132 const char *const variable_mode =
4133 (type->qualifier.flags.q.constant)
4134 ? "const"
4135 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4136
4137 /* If ARB_shading_language_420pack is enabled, initializers of
4138 * const-qualified local variables do not have to be constant
4139 * expressions. Const-qualified global variables must still be
4140 * initialized with constant expressions.
4141 */
4142 if (!state->has_420pack()
4143 || state->current_function == NULL) {
4144 _mesa_glsl_error(& initializer_loc, state,
4145 "initializer of %s variable `%s' must be a "
4146 "constant expression",
4147 variable_mode,
4148 decl->identifier);
4149 if (var->type->is_numeric()) {
4150 /* Reduce cascading errors. */
4151 var->constant_value = type->qualifier.flags.q.constant
4152 ? ir_constant::zero(state, var->type) : NULL;
4153 }
4154 }
4155 } else {
4156 rhs = constant_value;
4157 var->constant_value = type->qualifier.flags.q.constant
4158 ? constant_value : NULL;
4159 }
4160 } else {
4161 if (var->type->is_numeric()) {
4162 /* Reduce cascading errors. */
4163 var->constant_value = type->qualifier.flags.q.constant
4164 ? ir_constant::zero(state, var->type) : NULL;
4165 }
4166 }
4167 }
4168
4169 if (rhs && !rhs->type->is_error()) {
4170 bool temp = var->data.read_only;
4171 if (type->qualifier.flags.q.constant)
4172 var->data.read_only = false;
4173
4174 /* Never emit code to initialize a uniform.
4175 */
4176 const glsl_type *initializer_type;
4177 if (!type->qualifier.flags.q.uniform) {
4178 do_assignment(initializer_instructions, state,
4179 NULL,
4180 lhs, rhs,
4181 &result, true,
4182 true,
4183 type->get_location());
4184 initializer_type = result->type;
4185 } else
4186 initializer_type = rhs->type;
4187
4188 var->constant_initializer = rhs->constant_expression_value();
4189 var->data.has_initializer = true;
4190
4191 /* If the declared variable is an unsized array, it must inherrit
4192 * its full type from the initializer. A declaration such as
4193 *
4194 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4195 *
4196 * becomes
4197 *
4198 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4199 *
4200 * The assignment generated in the if-statement (below) will also
4201 * automatically handle this case for non-uniforms.
4202 *
4203 * If the declared variable is not an array, the types must
4204 * already match exactly. As a result, the type assignment
4205 * here can be done unconditionally. For non-uniforms the call
4206 * to do_assignment can change the type of the initializer (via
4207 * the implicit conversion rules). For uniforms the initializer
4208 * must be a constant expression, and the type of that expression
4209 * was validated above.
4210 */
4211 var->type = initializer_type;
4212
4213 var->data.read_only = temp;
4214 }
4215
4216 return result;
4217 }
4218
4219 static void
4220 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4221 YYLTYPE loc, ir_variable *var,
4222 unsigned num_vertices,
4223 unsigned *size,
4224 const char *var_category)
4225 {
4226 if (var->type->is_unsized_array()) {
4227 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4228 *
4229 * All geometry shader input unsized array declarations will be
4230 * sized by an earlier input layout qualifier, when present, as per
4231 * the following table.
4232 *
4233 * Followed by a table mapping each allowed input layout qualifier to
4234 * the corresponding input length.
4235 *
4236 * Similarly for tessellation control shader outputs.
4237 */
4238 if (num_vertices != 0)
4239 var->type = glsl_type::get_array_instance(var->type->fields.array,
4240 num_vertices);
4241 } else {
4242 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4243 * includes the following examples of compile-time errors:
4244 *
4245 * // code sequence within one shader...
4246 * in vec4 Color1[]; // size unknown
4247 * ...Color1.length()...// illegal, length() unknown
4248 * in vec4 Color2[2]; // size is 2
4249 * ...Color1.length()...// illegal, Color1 still has no size
4250 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4251 * layout(lines) in; // legal, input size is 2, matching
4252 * in vec4 Color4[3]; // illegal, contradicts layout
4253 * ...
4254 *
4255 * To detect the case illustrated by Color3, we verify that the size of
4256 * an explicitly-sized array matches the size of any previously declared
4257 * explicitly-sized array. To detect the case illustrated by Color4, we
4258 * verify that the size of an explicitly-sized array is consistent with
4259 * any previously declared input layout.
4260 */
4261 if (num_vertices != 0 && var->type->length != num_vertices) {
4262 _mesa_glsl_error(&loc, state,
4263 "%s size contradicts previously declared layout "
4264 "(size is %u, but layout requires a size of %u)",
4265 var_category, var->type->length, num_vertices);
4266 } else if (*size != 0 && var->type->length != *size) {
4267 _mesa_glsl_error(&loc, state,
4268 "%s sizes are inconsistent (size is %u, but a "
4269 "previous declaration has size %u)",
4270 var_category, var->type->length, *size);
4271 } else {
4272 *size = var->type->length;
4273 }
4274 }
4275 }
4276
4277 static void
4278 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4279 YYLTYPE loc, ir_variable *var)
4280 {
4281 unsigned num_vertices = 0;
4282
4283 if (state->tcs_output_vertices_specified) {
4284 if (!state->out_qualifier->vertices->
4285 process_qualifier_constant(state, "vertices",
4286 &num_vertices, false)) {
4287 return;
4288 }
4289
4290 if (num_vertices > state->Const.MaxPatchVertices) {
4291 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4292 "GL_MAX_PATCH_VERTICES", num_vertices);
4293 return;
4294 }
4295 }
4296
4297 if (!var->type->is_array() && !var->data.patch) {
4298 _mesa_glsl_error(&loc, state,
4299 "tessellation control shader outputs must be arrays");
4300
4301 /* To avoid cascading failures, short circuit the checks below. */
4302 return;
4303 }
4304
4305 if (var->data.patch)
4306 return;
4307
4308 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4309 &state->tcs_output_size,
4310 "tessellation control shader output");
4311 }
4312
4313 /**
4314 * Do additional processing necessary for tessellation control/evaluation shader
4315 * input declarations. This covers both interface block arrays and bare input
4316 * variables.
4317 */
4318 static void
4319 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4320 YYLTYPE loc, ir_variable *var)
4321 {
4322 if (!var->type->is_array() && !var->data.patch) {
4323 _mesa_glsl_error(&loc, state,
4324 "per-vertex tessellation shader inputs must be arrays");
4325 /* Avoid cascading failures. */
4326 return;
4327 }
4328
4329 if (var->data.patch)
4330 return;
4331
4332 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4333 if (var->type->is_unsized_array()) {
4334 var->type = glsl_type::get_array_instance(var->type->fields.array,
4335 state->Const.MaxPatchVertices);
4336 }
4337 }
4338
4339
4340 /**
4341 * Do additional processing necessary for geometry shader input declarations
4342 * (this covers both interface blocks arrays and bare input variables).
4343 */
4344 static void
4345 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4346 YYLTYPE loc, ir_variable *var)
4347 {
4348 unsigned num_vertices = 0;
4349
4350 if (state->gs_input_prim_type_specified) {
4351 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4352 }
4353
4354 /* Geometry shader input variables must be arrays. Caller should have
4355 * reported an error for this.
4356 */
4357 if (!var->type->is_array()) {
4358 assert(state->error);
4359
4360 /* To avoid cascading failures, short circuit the checks below. */
4361 return;
4362 }
4363
4364 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4365 &state->gs_input_size,
4366 "geometry shader input");
4367 }
4368
4369 void
4370 validate_identifier(const char *identifier, YYLTYPE loc,
4371 struct _mesa_glsl_parse_state *state)
4372 {
4373 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4374 *
4375 * "Identifiers starting with "gl_" are reserved for use by
4376 * OpenGL, and may not be declared in a shader as either a
4377 * variable or a function."
4378 */
4379 if (is_gl_identifier(identifier)) {
4380 _mesa_glsl_error(&loc, state,
4381 "identifier `%s' uses reserved `gl_' prefix",
4382 identifier);
4383 } else if (strstr(identifier, "__")) {
4384 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4385 * spec:
4386 *
4387 * "In addition, all identifiers containing two
4388 * consecutive underscores (__) are reserved as
4389 * possible future keywords."
4390 *
4391 * The intention is that names containing __ are reserved for internal
4392 * use by the implementation, and names prefixed with GL_ are reserved
4393 * for use by Khronos. Names simply containing __ are dangerous to use,
4394 * but should be allowed.
4395 *
4396 * A future version of the GLSL specification will clarify this.
4397 */
4398 _mesa_glsl_warning(&loc, state,
4399 "identifier `%s' uses reserved `__' string",
4400 identifier);
4401 }
4402 }
4403
4404 ir_rvalue *
4405 ast_declarator_list::hir(exec_list *instructions,
4406 struct _mesa_glsl_parse_state *state)
4407 {
4408 void *ctx = state;
4409 const struct glsl_type *decl_type;
4410 const char *type_name = NULL;
4411 ir_rvalue *result = NULL;
4412 YYLTYPE loc = this->get_location();
4413
4414 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4415 *
4416 * "To ensure that a particular output variable is invariant, it is
4417 * necessary to use the invariant qualifier. It can either be used to
4418 * qualify a previously declared variable as being invariant
4419 *
4420 * invariant gl_Position; // make existing gl_Position be invariant"
4421 *
4422 * In these cases the parser will set the 'invariant' flag in the declarator
4423 * list, and the type will be NULL.
4424 */
4425 if (this->invariant) {
4426 assert(this->type == NULL);
4427
4428 if (state->current_function != NULL) {
4429 _mesa_glsl_error(& loc, state,
4430 "all uses of `invariant' keyword must be at global "
4431 "scope");
4432 }
4433
4434 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4435 assert(decl->array_specifier == NULL);
4436 assert(decl->initializer == NULL);
4437
4438 ir_variable *const earlier =
4439 state->symbols->get_variable(decl->identifier);
4440 if (earlier == NULL) {
4441 _mesa_glsl_error(& loc, state,
4442 "undeclared variable `%s' cannot be marked "
4443 "invariant", decl->identifier);
4444 } else if (!is_varying_var(earlier, state->stage)) {
4445 _mesa_glsl_error(&loc, state,
4446 "`%s' cannot be marked invariant; interfaces between "
4447 "shader stages only.", decl->identifier);
4448 } else if (earlier->data.used) {
4449 _mesa_glsl_error(& loc, state,
4450 "variable `%s' may not be redeclared "
4451 "`invariant' after being used",
4452 earlier->name);
4453 } else {
4454 earlier->data.invariant = true;
4455 }
4456 }
4457
4458 /* Invariant redeclarations do not have r-values.
4459 */
4460 return NULL;
4461 }
4462
4463 if (this->precise) {
4464 assert(this->type == NULL);
4465
4466 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4467 assert(decl->array_specifier == NULL);
4468 assert(decl->initializer == NULL);
4469
4470 ir_variable *const earlier =
4471 state->symbols->get_variable(decl->identifier);
4472 if (earlier == NULL) {
4473 _mesa_glsl_error(& loc, state,
4474 "undeclared variable `%s' cannot be marked "
4475 "precise", decl->identifier);
4476 } else if (state->current_function != NULL &&
4477 !state->symbols->name_declared_this_scope(decl->identifier)) {
4478 /* Note: we have to check if we're in a function, since
4479 * builtins are treated as having come from another scope.
4480 */
4481 _mesa_glsl_error(& loc, state,
4482 "variable `%s' from an outer scope may not be "
4483 "redeclared `precise' in this scope",
4484 earlier->name);
4485 } else if (earlier->data.used) {
4486 _mesa_glsl_error(& loc, state,
4487 "variable `%s' may not be redeclared "
4488 "`precise' after being used",
4489 earlier->name);
4490 } else {
4491 earlier->data.precise = true;
4492 }
4493 }
4494
4495 /* Precise redeclarations do not have r-values either. */
4496 return NULL;
4497 }
4498
4499 assert(this->type != NULL);
4500 assert(!this->invariant);
4501 assert(!this->precise);
4502
4503 /* The type specifier may contain a structure definition. Process that
4504 * before any of the variable declarations.
4505 */
4506 (void) this->type->specifier->hir(instructions, state);
4507
4508 decl_type = this->type->glsl_type(& type_name, state);
4509
4510 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4511 * "Buffer variables may only be declared inside interface blocks
4512 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4513 * shader storage blocks. It is a compile-time error to declare buffer
4514 * variables at global scope (outside a block)."
4515 */
4516 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4517 _mesa_glsl_error(&loc, state,
4518 "buffer variables cannot be declared outside "
4519 "interface blocks");
4520 }
4521
4522 /* An offset-qualified atomic counter declaration sets the default
4523 * offset for the next declaration within the same atomic counter
4524 * buffer.
4525 */
4526 if (decl_type && decl_type->contains_atomic()) {
4527 if (type->qualifier.flags.q.explicit_binding &&
4528 type->qualifier.flags.q.explicit_offset) {
4529 unsigned qual_binding;
4530 unsigned qual_offset;
4531 if (process_qualifier_constant(state, &loc, "binding",
4532 type->qualifier.binding,
4533 &qual_binding)
4534 && process_qualifier_constant(state, &loc, "offset",
4535 type->qualifier.offset,
4536 &qual_offset)) {
4537 state->atomic_counter_offsets[qual_binding] = qual_offset;
4538 }
4539 }
4540
4541 ast_type_qualifier allowed_atomic_qual_mask;
4542 allowed_atomic_qual_mask.flags.i = 0;
4543 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4544 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4545 allowed_atomic_qual_mask.flags.q.uniform = 1;
4546
4547 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4548 "invalid layout qualifier for",
4549 "atomic_uint");
4550 }
4551
4552 if (this->declarations.is_empty()) {
4553 /* If there is no structure involved in the program text, there are two
4554 * possible scenarios:
4555 *
4556 * - The program text contained something like 'vec4;'. This is an
4557 * empty declaration. It is valid but weird. Emit a warning.
4558 *
4559 * - The program text contained something like 'S;' and 'S' is not the
4560 * name of a known structure type. This is both invalid and weird.
4561 * Emit an error.
4562 *
4563 * - The program text contained something like 'mediump float;'
4564 * when the programmer probably meant 'precision mediump
4565 * float;' Emit a warning with a description of what they
4566 * probably meant to do.
4567 *
4568 * Note that if decl_type is NULL and there is a structure involved,
4569 * there must have been some sort of error with the structure. In this
4570 * case we assume that an error was already generated on this line of
4571 * code for the structure. There is no need to generate an additional,
4572 * confusing error.
4573 */
4574 assert(this->type->specifier->structure == NULL || decl_type != NULL
4575 || state->error);
4576
4577 if (decl_type == NULL) {
4578 _mesa_glsl_error(&loc, state,
4579 "invalid type `%s' in empty declaration",
4580 type_name);
4581 } else {
4582 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4583 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4584 * spec:
4585 *
4586 * "... any declaration that leaves the size undefined is
4587 * disallowed as this would add complexity and there are no
4588 * use-cases."
4589 */
4590 if (state->es_shader && decl_type->is_unsized_array()) {
4591 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4592 "or implicitly defined");
4593 }
4594
4595 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4596 *
4597 * "The combinations of types and qualifiers that cause
4598 * compile-time or link-time errors are the same whether or not
4599 * the declaration is empty."
4600 */
4601 validate_array_dimensions(decl_type, state, &loc);
4602 }
4603
4604 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4605 /* Empty atomic counter declarations are allowed and useful
4606 * to set the default offset qualifier.
4607 */
4608 return NULL;
4609 } else if (this->type->qualifier.precision != ast_precision_none) {
4610 if (this->type->specifier->structure != NULL) {
4611 _mesa_glsl_error(&loc, state,
4612 "precision qualifiers can't be applied "
4613 "to structures");
4614 } else {
4615 static const char *const precision_names[] = {
4616 "highp",
4617 "highp",
4618 "mediump",
4619 "lowp"
4620 };
4621
4622 _mesa_glsl_warning(&loc, state,
4623 "empty declaration with precision "
4624 "qualifier, to set the default precision, "
4625 "use `precision %s %s;'",
4626 precision_names[this->type->
4627 qualifier.precision],
4628 type_name);
4629 }
4630 } else if (this->type->specifier->structure == NULL) {
4631 _mesa_glsl_warning(&loc, state, "empty declaration");
4632 }
4633 }
4634 }
4635
4636 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4637 const struct glsl_type *var_type;
4638 ir_variable *var;
4639 const char *identifier = decl->identifier;
4640 /* FINISHME: Emit a warning if a variable declaration shadows a
4641 * FINISHME: declaration at a higher scope.
4642 */
4643
4644 if ((decl_type == NULL) || decl_type->is_void()) {
4645 if (type_name != NULL) {
4646 _mesa_glsl_error(& loc, state,
4647 "invalid type `%s' in declaration of `%s'",
4648 type_name, decl->identifier);
4649 } else {
4650 _mesa_glsl_error(& loc, state,
4651 "invalid type in declaration of `%s'",
4652 decl->identifier);
4653 }
4654 continue;
4655 }
4656
4657 if (this->type->qualifier.flags.q.subroutine) {
4658 const glsl_type *t;
4659 const char *name;
4660
4661 t = state->symbols->get_type(this->type->specifier->type_name);
4662 if (!t)
4663 _mesa_glsl_error(& loc, state,
4664 "invalid type in declaration of `%s'",
4665 decl->identifier);
4666 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4667
4668 identifier = name;
4669
4670 }
4671 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4672 state);
4673
4674 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4675
4676 /* The 'varying in' and 'varying out' qualifiers can only be used with
4677 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4678 * yet.
4679 */
4680 if (this->type->qualifier.flags.q.varying) {
4681 if (this->type->qualifier.flags.q.in) {
4682 _mesa_glsl_error(& loc, state,
4683 "`varying in' qualifier in declaration of "
4684 "`%s' only valid for geometry shaders using "
4685 "ARB_geometry_shader4 or EXT_geometry_shader4",
4686 decl->identifier);
4687 } else if (this->type->qualifier.flags.q.out) {
4688 _mesa_glsl_error(& loc, state,
4689 "`varying out' qualifier in declaration of "
4690 "`%s' only valid for geometry shaders using "
4691 "ARB_geometry_shader4 or EXT_geometry_shader4",
4692 decl->identifier);
4693 }
4694 }
4695
4696 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4697 *
4698 * "Global variables can only use the qualifiers const,
4699 * attribute, uniform, or varying. Only one may be
4700 * specified.
4701 *
4702 * Local variables can only use the qualifier const."
4703 *
4704 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4705 * any extension that adds the 'layout' keyword.
4706 */
4707 if (!state->is_version(130, 300)
4708 && !state->has_explicit_attrib_location()
4709 && !state->has_separate_shader_objects()
4710 && !state->ARB_fragment_coord_conventions_enable) {
4711 if (this->type->qualifier.flags.q.out) {
4712 _mesa_glsl_error(& loc, state,
4713 "`out' qualifier in declaration of `%s' "
4714 "only valid for function parameters in %s",
4715 decl->identifier, state->get_version_string());
4716 }
4717 if (this->type->qualifier.flags.q.in) {
4718 _mesa_glsl_error(& loc, state,
4719 "`in' qualifier in declaration of `%s' "
4720 "only valid for function parameters in %s",
4721 decl->identifier, state->get_version_string());
4722 }
4723 /* FINISHME: Test for other invalid qualifiers. */
4724 }
4725
4726 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4727 & loc, false);
4728 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4729 &loc);
4730
4731 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4732 && (var->type->is_numeric() || var->type->is_boolean())
4733 && state->zero_init) {
4734 const ir_constant_data data = {0};
4735 var->data.has_initializer = true;
4736 var->constant_initializer = new(var) ir_constant(var->type, &data);
4737 }
4738
4739 if (this->type->qualifier.flags.q.invariant) {
4740 if (!is_varying_var(var, state->stage)) {
4741 _mesa_glsl_error(&loc, state,
4742 "`%s' cannot be marked invariant; interfaces between "
4743 "shader stages only", var->name);
4744 }
4745 }
4746
4747 if (state->current_function != NULL) {
4748 const char *mode = NULL;
4749 const char *extra = "";
4750
4751 /* There is no need to check for 'inout' here because the parser will
4752 * only allow that in function parameter lists.
4753 */
4754 if (this->type->qualifier.flags.q.attribute) {
4755 mode = "attribute";
4756 } else if (this->type->qualifier.flags.q.subroutine) {
4757 mode = "subroutine uniform";
4758 } else if (this->type->qualifier.flags.q.uniform) {
4759 mode = "uniform";
4760 } else if (this->type->qualifier.flags.q.varying) {
4761 mode = "varying";
4762 } else if (this->type->qualifier.flags.q.in) {
4763 mode = "in";
4764 extra = " or in function parameter list";
4765 } else if (this->type->qualifier.flags.q.out) {
4766 mode = "out";
4767 extra = " or in function parameter list";
4768 }
4769
4770 if (mode) {
4771 _mesa_glsl_error(& loc, state,
4772 "%s variable `%s' must be declared at "
4773 "global scope%s",
4774 mode, var->name, extra);
4775 }
4776 } else if (var->data.mode == ir_var_shader_in) {
4777 var->data.read_only = true;
4778
4779 if (state->stage == MESA_SHADER_VERTEX) {
4780 bool error_emitted = false;
4781
4782 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4783 *
4784 * "Vertex shader inputs can only be float, floating-point
4785 * vectors, matrices, signed and unsigned integers and integer
4786 * vectors. Vertex shader inputs can also form arrays of these
4787 * types, but not structures."
4788 *
4789 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4790 *
4791 * "Vertex shader inputs can only be float, floating-point
4792 * vectors, matrices, signed and unsigned integers and integer
4793 * vectors. They cannot be arrays or structures."
4794 *
4795 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4796 *
4797 * "The attribute qualifier can be used only with float,
4798 * floating-point vectors, and matrices. Attribute variables
4799 * cannot be declared as arrays or structures."
4800 *
4801 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4802 *
4803 * "Vertex shader inputs can only be float, floating-point
4804 * vectors, matrices, signed and unsigned integers and integer
4805 * vectors. Vertex shader inputs cannot be arrays or
4806 * structures."
4807 */
4808 const glsl_type *check_type = var->type->without_array();
4809
4810 switch (check_type->base_type) {
4811 case GLSL_TYPE_FLOAT:
4812 break;
4813 case GLSL_TYPE_UINT:
4814 case GLSL_TYPE_INT:
4815 if (state->is_version(120, 300))
4816 break;
4817 case GLSL_TYPE_DOUBLE:
4818 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4819 break;
4820 /* FALLTHROUGH */
4821 default:
4822 _mesa_glsl_error(& loc, state,
4823 "vertex shader input / attribute cannot have "
4824 "type %s`%s'",
4825 var->type->is_array() ? "array of " : "",
4826 check_type->name);
4827 error_emitted = true;
4828 }
4829
4830 if (!error_emitted && var->type->is_array() &&
4831 !state->check_version(150, 0, &loc,
4832 "vertex shader input / attribute "
4833 "cannot have array type")) {
4834 error_emitted = true;
4835 }
4836 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4837 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4838 *
4839 * Geometry shader input variables get the per-vertex values
4840 * written out by vertex shader output variables of the same
4841 * names. Since a geometry shader operates on a set of
4842 * vertices, each input varying variable (or input block, see
4843 * interface blocks below) needs to be declared as an array.
4844 */
4845 if (!var->type->is_array()) {
4846 _mesa_glsl_error(&loc, state,
4847 "geometry shader inputs must be arrays");
4848 }
4849
4850 handle_geometry_shader_input_decl(state, loc, var);
4851 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4852 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4853 *
4854 * It is a compile-time error to declare a fragment shader
4855 * input with, or that contains, any of the following types:
4856 *
4857 * * A boolean type
4858 * * An opaque type
4859 * * An array of arrays
4860 * * An array of structures
4861 * * A structure containing an array
4862 * * A structure containing a structure
4863 */
4864 if (state->es_shader) {
4865 const glsl_type *check_type = var->type->without_array();
4866 if (check_type->is_boolean() ||
4867 check_type->contains_opaque()) {
4868 _mesa_glsl_error(&loc, state,
4869 "fragment shader input cannot have type %s",
4870 check_type->name);
4871 }
4872 if (var->type->is_array() &&
4873 var->type->fields.array->is_array()) {
4874 _mesa_glsl_error(&loc, state,
4875 "%s shader output "
4876 "cannot have an array of arrays",
4877 _mesa_shader_stage_to_string(state->stage));
4878 }
4879 if (var->type->is_array() &&
4880 var->type->fields.array->is_record()) {
4881 _mesa_glsl_error(&loc, state,
4882 "fragment shader input "
4883 "cannot have an array of structs");
4884 }
4885 if (var->type->is_record()) {
4886 for (unsigned i = 0; i < var->type->length; i++) {
4887 if (var->type->fields.structure[i].type->is_array() ||
4888 var->type->fields.structure[i].type->is_record())
4889 _mesa_glsl_error(&loc, state,
4890 "fragement shader input cannot have "
4891 "a struct that contains an "
4892 "array or struct");
4893 }
4894 }
4895 }
4896 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4897 state->stage == MESA_SHADER_TESS_EVAL) {
4898 handle_tess_shader_input_decl(state, loc, var);
4899 }
4900 } else if (var->data.mode == ir_var_shader_out) {
4901 const glsl_type *check_type = var->type->without_array();
4902
4903 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4904 *
4905 * It is a compile-time error to declare a vertex, tessellation
4906 * evaluation, tessellation control, or geometry shader output
4907 * that contains any of the following:
4908 *
4909 * * A Boolean type (bool, bvec2 ...)
4910 * * An opaque type
4911 */
4912 if (check_type->is_boolean() || check_type->contains_opaque())
4913 _mesa_glsl_error(&loc, state,
4914 "%s shader output cannot have type %s",
4915 _mesa_shader_stage_to_string(state->stage),
4916 check_type->name);
4917
4918 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4919 *
4920 * It is a compile-time error to declare a fragment shader output
4921 * that contains any of the following:
4922 *
4923 * * A Boolean type (bool, bvec2 ...)
4924 * * A double-precision scalar or vector (double, dvec2 ...)
4925 * * An opaque type
4926 * * Any matrix type
4927 * * A structure
4928 */
4929 if (state->stage == MESA_SHADER_FRAGMENT) {
4930 if (check_type->is_record() || check_type->is_matrix())
4931 _mesa_glsl_error(&loc, state,
4932 "fragment shader output "
4933 "cannot have struct or matrix type");
4934 switch (check_type->base_type) {
4935 case GLSL_TYPE_UINT:
4936 case GLSL_TYPE_INT:
4937 case GLSL_TYPE_FLOAT:
4938 break;
4939 default:
4940 _mesa_glsl_error(&loc, state,
4941 "fragment shader output cannot have "
4942 "type %s", check_type->name);
4943 }
4944 }
4945
4946 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4947 *
4948 * It is a compile-time error to declare a vertex shader output
4949 * with, or that contains, any of the following types:
4950 *
4951 * * A boolean type
4952 * * An opaque type
4953 * * An array of arrays
4954 * * An array of structures
4955 * * A structure containing an array
4956 * * A structure containing a structure
4957 *
4958 * It is a compile-time error to declare a fragment shader output
4959 * with, or that contains, any of the following types:
4960 *
4961 * * A boolean type
4962 * * An opaque type
4963 * * A matrix
4964 * * A structure
4965 * * An array of array
4966 */
4967 if (state->es_shader) {
4968 if (var->type->is_array() &&
4969 var->type->fields.array->is_array()) {
4970 _mesa_glsl_error(&loc, state,
4971 "%s shader output "
4972 "cannot have an array of arrays",
4973 _mesa_shader_stage_to_string(state->stage));
4974 }
4975 if (state->stage == MESA_SHADER_VERTEX) {
4976 if (var->type->is_array() &&
4977 var->type->fields.array->is_record()) {
4978 _mesa_glsl_error(&loc, state,
4979 "vertex shader output "
4980 "cannot have an array of structs");
4981 }
4982 if (var->type->is_record()) {
4983 for (unsigned i = 0; i < var->type->length; i++) {
4984 if (var->type->fields.structure[i].type->is_array() ||
4985 var->type->fields.structure[i].type->is_record())
4986 _mesa_glsl_error(&loc, state,
4987 "vertex shader output cannot have a "
4988 "struct that contains an "
4989 "array or struct");
4990 }
4991 }
4992 }
4993 }
4994
4995 if (state->stage == MESA_SHADER_TESS_CTRL) {
4996 handle_tess_ctrl_shader_output_decl(state, loc, var);
4997 }
4998 } else if (var->type->contains_subroutine()) {
4999 /* declare subroutine uniforms as hidden */
5000 var->data.how_declared = ir_var_hidden;
5001 }
5002
5003 /* From section 4.3.4 of the GLSL 4.00 spec:
5004 * "Input variables may not be declared using the patch in qualifier
5005 * in tessellation control or geometry shaders."
5006 *
5007 * From section 4.3.6 of the GLSL 4.00 spec:
5008 * "It is an error to use patch out in a vertex, tessellation
5009 * evaluation, or geometry shader."
5010 *
5011 * This doesn't explicitly forbid using them in a fragment shader, but
5012 * that's probably just an oversight.
5013 */
5014 if (state->stage != MESA_SHADER_TESS_EVAL
5015 && this->type->qualifier.flags.q.patch
5016 && this->type->qualifier.flags.q.in) {
5017
5018 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5019 "tessellation evaluation shader");
5020 }
5021
5022 if (state->stage != MESA_SHADER_TESS_CTRL
5023 && this->type->qualifier.flags.q.patch
5024 && this->type->qualifier.flags.q.out) {
5025
5026 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5027 "tessellation control shader");
5028 }
5029
5030 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5031 */
5032 if (this->type->qualifier.precision != ast_precision_none) {
5033 state->check_precision_qualifiers_allowed(&loc);
5034 }
5035
5036 if (this->type->qualifier.precision != ast_precision_none &&
5037 !precision_qualifier_allowed(var->type)) {
5038 _mesa_glsl_error(&loc, state,
5039 "precision qualifiers apply only to floating point"
5040 ", integer and opaque types");
5041 }
5042
5043 /* From section 4.1.7 of the GLSL 4.40 spec:
5044 *
5045 * "[Opaque types] can only be declared as function
5046 * parameters or uniform-qualified variables."
5047 */
5048 if (var_type->contains_opaque() &&
5049 !this->type->qualifier.flags.q.uniform) {
5050 _mesa_glsl_error(&loc, state,
5051 "opaque variables must be declared uniform");
5052 }
5053
5054 /* Process the initializer and add its instructions to a temporary
5055 * list. This list will be added to the instruction stream (below) after
5056 * the declaration is added. This is done because in some cases (such as
5057 * redeclarations) the declaration may not actually be added to the
5058 * instruction stream.
5059 */
5060 exec_list initializer_instructions;
5061
5062 /* Examine var name here since var may get deleted in the next call */
5063 bool var_is_gl_id = is_gl_identifier(var->name);
5064
5065 ir_variable *earlier =
5066 get_variable_being_redeclared(var, decl->get_location(), state,
5067 false /* allow_all_redeclarations */);
5068 if (earlier != NULL) {
5069 if (var_is_gl_id &&
5070 earlier->data.how_declared == ir_var_declared_in_block) {
5071 _mesa_glsl_error(&loc, state,
5072 "`%s' has already been redeclared using "
5073 "gl_PerVertex", earlier->name);
5074 }
5075 earlier->data.how_declared = ir_var_declared_normally;
5076 }
5077
5078 if (decl->initializer != NULL) {
5079 result = process_initializer((earlier == NULL) ? var : earlier,
5080 decl, this->type,
5081 &initializer_instructions, state);
5082 } else {
5083 validate_array_dimensions(var_type, state, &loc);
5084 }
5085
5086 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5087 *
5088 * "It is an error to write to a const variable outside of
5089 * its declaration, so they must be initialized when
5090 * declared."
5091 */
5092 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5093 _mesa_glsl_error(& loc, state,
5094 "const declaration of `%s' must be initialized",
5095 decl->identifier);
5096 }
5097
5098 if (state->es_shader) {
5099 const glsl_type *const t = (earlier == NULL)
5100 ? var->type : earlier->type;
5101
5102 if (t->is_unsized_array())
5103 /* Section 10.17 of the GLSL ES 1.00 specification states that
5104 * unsized array declarations have been removed from the language.
5105 * Arrays that are sized using an initializer are still explicitly
5106 * sized. However, GLSL ES 1.00 does not allow array
5107 * initializers. That is only allowed in GLSL ES 3.00.
5108 *
5109 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5110 *
5111 * "An array type can also be formed without specifying a size
5112 * if the definition includes an initializer:
5113 *
5114 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5115 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5116 *
5117 * float a[5];
5118 * float b[] = a;"
5119 */
5120 _mesa_glsl_error(& loc, state,
5121 "unsized array declarations are not allowed in "
5122 "GLSL ES");
5123 }
5124
5125 /* If the declaration is not a redeclaration, there are a few additional
5126 * semantic checks that must be applied. In addition, variable that was
5127 * created for the declaration should be added to the IR stream.
5128 */
5129 if (earlier == NULL) {
5130 validate_identifier(decl->identifier, loc, state);
5131
5132 /* Add the variable to the symbol table. Note that the initializer's
5133 * IR was already processed earlier (though it hasn't been emitted
5134 * yet), without the variable in scope.
5135 *
5136 * This differs from most C-like languages, but it follows the GLSL
5137 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5138 * spec:
5139 *
5140 * "Within a declaration, the scope of a name starts immediately
5141 * after the initializer if present or immediately after the name
5142 * being declared if not."
5143 */
5144 if (!state->symbols->add_variable(var)) {
5145 YYLTYPE loc = this->get_location();
5146 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5147 "current scope", decl->identifier);
5148 continue;
5149 }
5150
5151 /* Push the variable declaration to the top. It means that all the
5152 * variable declarations will appear in a funny last-to-first order,
5153 * but otherwise we run into trouble if a function is prototyped, a
5154 * global var is decled, then the function is defined with usage of
5155 * the global var. See glslparsertest's CorrectModule.frag.
5156 */
5157 instructions->push_head(var);
5158 }
5159
5160 instructions->append_list(&initializer_instructions);
5161 }
5162
5163
5164 /* Generally, variable declarations do not have r-values. However,
5165 * one is used for the declaration in
5166 *
5167 * while (bool b = some_condition()) {
5168 * ...
5169 * }
5170 *
5171 * so we return the rvalue from the last seen declaration here.
5172 */
5173 return result;
5174 }
5175
5176
5177 ir_rvalue *
5178 ast_parameter_declarator::hir(exec_list *instructions,
5179 struct _mesa_glsl_parse_state *state)
5180 {
5181 void *ctx = state;
5182 const struct glsl_type *type;
5183 const char *name = NULL;
5184 YYLTYPE loc = this->get_location();
5185
5186 type = this->type->glsl_type(& name, state);
5187
5188 if (type == NULL) {
5189 if (name != NULL) {
5190 _mesa_glsl_error(& loc, state,
5191 "invalid type `%s' in declaration of `%s'",
5192 name, this->identifier);
5193 } else {
5194 _mesa_glsl_error(& loc, state,
5195 "invalid type in declaration of `%s'",
5196 this->identifier);
5197 }
5198
5199 type = glsl_type::error_type;
5200 }
5201
5202 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5203 *
5204 * "Functions that accept no input arguments need not use void in the
5205 * argument list because prototypes (or definitions) are required and
5206 * therefore there is no ambiguity when an empty argument list "( )" is
5207 * declared. The idiom "(void)" as a parameter list is provided for
5208 * convenience."
5209 *
5210 * Placing this check here prevents a void parameter being set up
5211 * for a function, which avoids tripping up checks for main taking
5212 * parameters and lookups of an unnamed symbol.
5213 */
5214 if (type->is_void()) {
5215 if (this->identifier != NULL)
5216 _mesa_glsl_error(& loc, state,
5217 "named parameter cannot have type `void'");
5218
5219 is_void = true;
5220 return NULL;
5221 }
5222
5223 if (formal_parameter && (this->identifier == NULL)) {
5224 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5225 return NULL;
5226 }
5227
5228 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5229 * call already handled the "vec4[..] foo" case.
5230 */
5231 type = process_array_type(&loc, type, this->array_specifier, state);
5232
5233 if (!type->is_error() && type->is_unsized_array()) {
5234 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5235 "a declared size");
5236 type = glsl_type::error_type;
5237 }
5238
5239 is_void = false;
5240 ir_variable *var = new(ctx)
5241 ir_variable(type, this->identifier, ir_var_function_in);
5242
5243 /* Apply any specified qualifiers to the parameter declaration. Note that
5244 * for function parameters the default mode is 'in'.
5245 */
5246 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5247 true);
5248
5249 /* From section 4.1.7 of the GLSL 4.40 spec:
5250 *
5251 * "Opaque variables cannot be treated as l-values; hence cannot
5252 * be used as out or inout function parameters, nor can they be
5253 * assigned into."
5254 */
5255 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5256 && type->contains_opaque()) {
5257 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5258 "contain opaque variables");
5259 type = glsl_type::error_type;
5260 }
5261
5262 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5263 *
5264 * "When calling a function, expressions that do not evaluate to
5265 * l-values cannot be passed to parameters declared as out or inout."
5266 *
5267 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5268 *
5269 * "Other binary or unary expressions, non-dereferenced arrays,
5270 * function names, swizzles with repeated fields, and constants
5271 * cannot be l-values."
5272 *
5273 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5274 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5275 */
5276 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5277 && type->is_array()
5278 && !state->check_version(120, 100, &loc,
5279 "arrays cannot be out or inout parameters")) {
5280 type = glsl_type::error_type;
5281 }
5282
5283 instructions->push_tail(var);
5284
5285 /* Parameter declarations do not have r-values.
5286 */
5287 return NULL;
5288 }
5289
5290
5291 void
5292 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5293 bool formal,
5294 exec_list *ir_parameters,
5295 _mesa_glsl_parse_state *state)
5296 {
5297 ast_parameter_declarator *void_param = NULL;
5298 unsigned count = 0;
5299
5300 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5301 param->formal_parameter = formal;
5302 param->hir(ir_parameters, state);
5303
5304 if (param->is_void)
5305 void_param = param;
5306
5307 count++;
5308 }
5309
5310 if ((void_param != NULL) && (count > 1)) {
5311 YYLTYPE loc = void_param->get_location();
5312
5313 _mesa_glsl_error(& loc, state,
5314 "`void' parameter must be only parameter");
5315 }
5316 }
5317
5318
5319 void
5320 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5321 {
5322 /* IR invariants disallow function declarations or definitions
5323 * nested within other function definitions. But there is no
5324 * requirement about the relative order of function declarations
5325 * and definitions with respect to one another. So simply insert
5326 * the new ir_function block at the end of the toplevel instruction
5327 * list.
5328 */
5329 state->toplevel_ir->push_tail(f);
5330 }
5331
5332
5333 ir_rvalue *
5334 ast_function::hir(exec_list *instructions,
5335 struct _mesa_glsl_parse_state *state)
5336 {
5337 void *ctx = state;
5338 ir_function *f = NULL;
5339 ir_function_signature *sig = NULL;
5340 exec_list hir_parameters;
5341 YYLTYPE loc = this->get_location();
5342
5343 const char *const name = identifier;
5344
5345 /* New functions are always added to the top-level IR instruction stream,
5346 * so this instruction list pointer is ignored. See also emit_function
5347 * (called below).
5348 */
5349 (void) instructions;
5350
5351 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5352 *
5353 * "Function declarations (prototypes) cannot occur inside of functions;
5354 * they must be at global scope, or for the built-in functions, outside
5355 * the global scope."
5356 *
5357 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5358 *
5359 * "User defined functions may only be defined within the global scope."
5360 *
5361 * Note that this language does not appear in GLSL 1.10.
5362 */
5363 if ((state->current_function != NULL) &&
5364 state->is_version(120, 100)) {
5365 YYLTYPE loc = this->get_location();
5366 _mesa_glsl_error(&loc, state,
5367 "declaration of function `%s' not allowed within "
5368 "function body", name);
5369 }
5370
5371 validate_identifier(name, this->get_location(), state);
5372
5373 /* Convert the list of function parameters to HIR now so that they can be
5374 * used below to compare this function's signature with previously seen
5375 * signatures for functions with the same name.
5376 */
5377 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5378 is_definition,
5379 & hir_parameters, state);
5380
5381 const char *return_type_name;
5382 const glsl_type *return_type =
5383 this->return_type->glsl_type(& return_type_name, state);
5384
5385 if (!return_type) {
5386 YYLTYPE loc = this->get_location();
5387 _mesa_glsl_error(&loc, state,
5388 "function `%s' has undeclared return type `%s'",
5389 name, return_type_name);
5390 return_type = glsl_type::error_type;
5391 }
5392
5393 /* ARB_shader_subroutine states:
5394 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5395 * subroutine(...) to a function declaration."
5396 */
5397 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5398 YYLTYPE loc = this->get_location();
5399 _mesa_glsl_error(&loc, state,
5400 "function declaration `%s' cannot have subroutine prepended",
5401 name);
5402 }
5403
5404 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5405 * "No qualifier is allowed on the return type of a function."
5406 */
5407 if (this->return_type->has_qualifiers(state)) {
5408 YYLTYPE loc = this->get_location();
5409 _mesa_glsl_error(& loc, state,
5410 "function `%s' return type has qualifiers", name);
5411 }
5412
5413 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5414 *
5415 * "Arrays are allowed as arguments and as the return type. In both
5416 * cases, the array must be explicitly sized."
5417 */
5418 if (return_type->is_unsized_array()) {
5419 YYLTYPE loc = this->get_location();
5420 _mesa_glsl_error(& loc, state,
5421 "function `%s' return type array must be explicitly "
5422 "sized", name);
5423 }
5424
5425 /* From section 4.1.7 of the GLSL 4.40 spec:
5426 *
5427 * "[Opaque types] can only be declared as function parameters
5428 * or uniform-qualified variables."
5429 */
5430 if (return_type->contains_opaque()) {
5431 YYLTYPE loc = this->get_location();
5432 _mesa_glsl_error(&loc, state,
5433 "function `%s' return type can't contain an opaque type",
5434 name);
5435 }
5436
5437 /**/
5438 if (return_type->is_subroutine()) {
5439 YYLTYPE loc = this->get_location();
5440 _mesa_glsl_error(&loc, state,
5441 "function `%s' return type can't be a subroutine type",
5442 name);
5443 }
5444
5445
5446 /* Create an ir_function if one doesn't already exist. */
5447 f = state->symbols->get_function(name);
5448 if (f == NULL) {
5449 f = new(ctx) ir_function(name);
5450 if (!this->return_type->qualifier.flags.q.subroutine) {
5451 if (!state->symbols->add_function(f)) {
5452 /* This function name shadows a non-function use of the same name. */
5453 YYLTYPE loc = this->get_location();
5454 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5455 "non-function", name);
5456 return NULL;
5457 }
5458 }
5459 emit_function(state, f);
5460 }
5461
5462 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5463 *
5464 * "A shader cannot redefine or overload built-in functions."
5465 *
5466 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5467 *
5468 * "User code can overload the built-in functions but cannot redefine
5469 * them."
5470 */
5471 if (state->es_shader && state->language_version >= 300) {
5472 /* Local shader has no exact candidates; check the built-ins. */
5473 _mesa_glsl_initialize_builtin_functions();
5474 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5475 YYLTYPE loc = this->get_location();
5476 _mesa_glsl_error(& loc, state,
5477 "A shader cannot redefine or overload built-in "
5478 "function `%s' in GLSL ES 3.00", name);
5479 return NULL;
5480 }
5481 }
5482
5483 /* Verify that this function's signature either doesn't match a previously
5484 * seen signature for a function with the same name, or, if a match is found,
5485 * that the previously seen signature does not have an associated definition.
5486 */
5487 if (state->es_shader || f->has_user_signature()) {
5488 sig = f->exact_matching_signature(state, &hir_parameters);
5489 if (sig != NULL) {
5490 const char *badvar = sig->qualifiers_match(&hir_parameters);
5491 if (badvar != NULL) {
5492 YYLTYPE loc = this->get_location();
5493
5494 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5495 "qualifiers don't match prototype", name, badvar);
5496 }
5497
5498 if (sig->return_type != return_type) {
5499 YYLTYPE loc = this->get_location();
5500
5501 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5502 "match prototype", name);
5503 }
5504
5505 if (sig->is_defined) {
5506 if (is_definition) {
5507 YYLTYPE loc = this->get_location();
5508 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5509 } else {
5510 /* We just encountered a prototype that exactly matches a
5511 * function that's already been defined. This is redundant,
5512 * and we should ignore it.
5513 */
5514 return NULL;
5515 }
5516 }
5517 }
5518 }
5519
5520 /* Verify the return type of main() */
5521 if (strcmp(name, "main") == 0) {
5522 if (! return_type->is_void()) {
5523 YYLTYPE loc = this->get_location();
5524
5525 _mesa_glsl_error(& loc, state, "main() must return void");
5526 }
5527
5528 if (!hir_parameters.is_empty()) {
5529 YYLTYPE loc = this->get_location();
5530
5531 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5532 }
5533 }
5534
5535 /* Finish storing the information about this new function in its signature.
5536 */
5537 if (sig == NULL) {
5538 sig = new(ctx) ir_function_signature(return_type);
5539 f->add_signature(sig);
5540 }
5541
5542 sig->replace_parameters(&hir_parameters);
5543 signature = sig;
5544
5545 if (this->return_type->qualifier.flags.q.subroutine_def) {
5546 int idx;
5547
5548 if (this->return_type->qualifier.flags.q.explicit_index) {
5549 unsigned qual_index;
5550 if (process_qualifier_constant(state, &loc, "index",
5551 this->return_type->qualifier.index,
5552 &qual_index)) {
5553 if (!state->has_explicit_uniform_location()) {
5554 _mesa_glsl_error(&loc, state, "subroutine index requires "
5555 "GL_ARB_explicit_uniform_location or "
5556 "GLSL 4.30");
5557 } else if (qual_index >= MAX_SUBROUTINES) {
5558 _mesa_glsl_error(&loc, state,
5559 "invalid subroutine index (%d) index must "
5560 "be a number between 0 and "
5561 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5562 MAX_SUBROUTINES - 1);
5563 } else {
5564 f->subroutine_index = qual_index;
5565 }
5566 }
5567 }
5568
5569 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5570 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5571 f->num_subroutine_types);
5572 idx = 0;
5573 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5574 const struct glsl_type *type;
5575 /* the subroutine type must be already declared */
5576 type = state->symbols->get_type(decl->identifier);
5577 if (!type) {
5578 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5579 }
5580
5581 for (int i = 0; i < state->num_subroutine_types; i++) {
5582 ir_function *fn = state->subroutine_types[i];
5583 ir_function_signature *tsig = NULL;
5584
5585 if (strcmp(fn->name, decl->identifier))
5586 continue;
5587
5588 tsig = fn->matching_signature(state, &sig->parameters,
5589 false);
5590 if (!tsig) {
5591 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5592 } else {
5593 if (tsig->return_type != sig->return_type) {
5594 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5595 }
5596 }
5597 }
5598 f->subroutine_types[idx++] = type;
5599 }
5600 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5601 ir_function *,
5602 state->num_subroutines + 1);
5603 state->subroutines[state->num_subroutines] = f;
5604 state->num_subroutines++;
5605
5606 }
5607
5608 if (this->return_type->qualifier.flags.q.subroutine) {
5609 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5610 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5611 return NULL;
5612 }
5613 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5614 ir_function *,
5615 state->num_subroutine_types + 1);
5616 state->subroutine_types[state->num_subroutine_types] = f;
5617 state->num_subroutine_types++;
5618
5619 f->is_subroutine = true;
5620 }
5621
5622 /* Function declarations (prototypes) do not have r-values.
5623 */
5624 return NULL;
5625 }
5626
5627
5628 ir_rvalue *
5629 ast_function_definition::hir(exec_list *instructions,
5630 struct _mesa_glsl_parse_state *state)
5631 {
5632 prototype->is_definition = true;
5633 prototype->hir(instructions, state);
5634
5635 ir_function_signature *signature = prototype->signature;
5636 if (signature == NULL)
5637 return NULL;
5638
5639 assert(state->current_function == NULL);
5640 state->current_function = signature;
5641 state->found_return = false;
5642
5643 /* Duplicate parameters declared in the prototype as concrete variables.
5644 * Add these to the symbol table.
5645 */
5646 state->symbols->push_scope();
5647 foreach_in_list(ir_variable, var, &signature->parameters) {
5648 assert(var->as_variable() != NULL);
5649
5650 /* The only way a parameter would "exist" is if two parameters have
5651 * the same name.
5652 */
5653 if (state->symbols->name_declared_this_scope(var->name)) {
5654 YYLTYPE loc = this->get_location();
5655
5656 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5657 } else {
5658 state->symbols->add_variable(var);
5659 }
5660 }
5661
5662 /* Convert the body of the function to HIR. */
5663 this->body->hir(&signature->body, state);
5664 signature->is_defined = true;
5665
5666 state->symbols->pop_scope();
5667
5668 assert(state->current_function == signature);
5669 state->current_function = NULL;
5670
5671 if (!signature->return_type->is_void() && !state->found_return) {
5672 YYLTYPE loc = this->get_location();
5673 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5674 "%s, but no return statement",
5675 signature->function_name(),
5676 signature->return_type->name);
5677 }
5678
5679 /* Function definitions do not have r-values.
5680 */
5681 return NULL;
5682 }
5683
5684
5685 ir_rvalue *
5686 ast_jump_statement::hir(exec_list *instructions,
5687 struct _mesa_glsl_parse_state *state)
5688 {
5689 void *ctx = state;
5690
5691 switch (mode) {
5692 case ast_return: {
5693 ir_return *inst;
5694 assert(state->current_function);
5695
5696 if (opt_return_value) {
5697 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5698
5699 /* The value of the return type can be NULL if the shader says
5700 * 'return foo();' and foo() is a function that returns void.
5701 *
5702 * NOTE: The GLSL spec doesn't say that this is an error. The type
5703 * of the return value is void. If the return type of the function is
5704 * also void, then this should compile without error. Seriously.
5705 */
5706 const glsl_type *const ret_type =
5707 (ret == NULL) ? glsl_type::void_type : ret->type;
5708
5709 /* Implicit conversions are not allowed for return values prior to
5710 * ARB_shading_language_420pack.
5711 */
5712 if (state->current_function->return_type != ret_type) {
5713 YYLTYPE loc = this->get_location();
5714
5715 if (state->has_420pack()) {
5716 if (!apply_implicit_conversion(state->current_function->return_type,
5717 ret, state)) {
5718 _mesa_glsl_error(& loc, state,
5719 "could not implicitly convert return value "
5720 "to %s, in function `%s'",
5721 state->current_function->return_type->name,
5722 state->current_function->function_name());
5723 }
5724 } else {
5725 _mesa_glsl_error(& loc, state,
5726 "`return' with wrong type %s, in function `%s' "
5727 "returning %s",
5728 ret_type->name,
5729 state->current_function->function_name(),
5730 state->current_function->return_type->name);
5731 }
5732 } else if (state->current_function->return_type->base_type ==
5733 GLSL_TYPE_VOID) {
5734 YYLTYPE loc = this->get_location();
5735
5736 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5737 * specs add a clarification:
5738 *
5739 * "A void function can only use return without a return argument, even if
5740 * the return argument has void type. Return statements only accept values:
5741 *
5742 * void func1() { }
5743 * void func2() { return func1(); } // illegal return statement"
5744 */
5745 _mesa_glsl_error(& loc, state,
5746 "void functions can only use `return' without a "
5747 "return argument");
5748 }
5749
5750 inst = new(ctx) ir_return(ret);
5751 } else {
5752 if (state->current_function->return_type->base_type !=
5753 GLSL_TYPE_VOID) {
5754 YYLTYPE loc = this->get_location();
5755
5756 _mesa_glsl_error(& loc, state,
5757 "`return' with no value, in function %s returning "
5758 "non-void",
5759 state->current_function->function_name());
5760 }
5761 inst = new(ctx) ir_return;
5762 }
5763
5764 state->found_return = true;
5765 instructions->push_tail(inst);
5766 break;
5767 }
5768
5769 case ast_discard:
5770 if (state->stage != MESA_SHADER_FRAGMENT) {
5771 YYLTYPE loc = this->get_location();
5772
5773 _mesa_glsl_error(& loc, state,
5774 "`discard' may only appear in a fragment shader");
5775 }
5776 instructions->push_tail(new(ctx) ir_discard);
5777 break;
5778
5779 case ast_break:
5780 case ast_continue:
5781 if (mode == ast_continue &&
5782 state->loop_nesting_ast == NULL) {
5783 YYLTYPE loc = this->get_location();
5784
5785 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5786 } else if (mode == ast_break &&
5787 state->loop_nesting_ast == NULL &&
5788 state->switch_state.switch_nesting_ast == NULL) {
5789 YYLTYPE loc = this->get_location();
5790
5791 _mesa_glsl_error(& loc, state,
5792 "break may only appear in a loop or a switch");
5793 } else {
5794 /* For a loop, inline the for loop expression again, since we don't
5795 * know where near the end of the loop body the normal copy of it is
5796 * going to be placed. Same goes for the condition for a do-while
5797 * loop.
5798 */
5799 if (state->loop_nesting_ast != NULL &&
5800 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5801 if (state->loop_nesting_ast->rest_expression) {
5802 state->loop_nesting_ast->rest_expression->hir(instructions,
5803 state);
5804 }
5805 if (state->loop_nesting_ast->mode ==
5806 ast_iteration_statement::ast_do_while) {
5807 state->loop_nesting_ast->condition_to_hir(instructions, state);
5808 }
5809 }
5810
5811 if (state->switch_state.is_switch_innermost &&
5812 mode == ast_continue) {
5813 /* Set 'continue_inside' to true. */
5814 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5815 ir_dereference_variable *deref_continue_inside_var =
5816 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5817 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5818 true_val));
5819
5820 /* Break out from the switch, continue for the loop will
5821 * be called right after switch. */
5822 ir_loop_jump *const jump =
5823 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5824 instructions->push_tail(jump);
5825
5826 } else if (state->switch_state.is_switch_innermost &&
5827 mode == ast_break) {
5828 /* Force break out of switch by inserting a break. */
5829 ir_loop_jump *const jump =
5830 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5831 instructions->push_tail(jump);
5832 } else {
5833 ir_loop_jump *const jump =
5834 new(ctx) ir_loop_jump((mode == ast_break)
5835 ? ir_loop_jump::jump_break
5836 : ir_loop_jump::jump_continue);
5837 instructions->push_tail(jump);
5838 }
5839 }
5840
5841 break;
5842 }
5843
5844 /* Jump instructions do not have r-values.
5845 */
5846 return NULL;
5847 }
5848
5849
5850 ir_rvalue *
5851 ast_selection_statement::hir(exec_list *instructions,
5852 struct _mesa_glsl_parse_state *state)
5853 {
5854 void *ctx = state;
5855
5856 ir_rvalue *const condition = this->condition->hir(instructions, state);
5857
5858 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5859 *
5860 * "Any expression whose type evaluates to a Boolean can be used as the
5861 * conditional expression bool-expression. Vector types are not accepted
5862 * as the expression to if."
5863 *
5864 * The checks are separated so that higher quality diagnostics can be
5865 * generated for cases where both rules are violated.
5866 */
5867 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5868 YYLTYPE loc = this->condition->get_location();
5869
5870 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5871 "boolean");
5872 }
5873
5874 ir_if *const stmt = new(ctx) ir_if(condition);
5875
5876 if (then_statement != NULL) {
5877 state->symbols->push_scope();
5878 then_statement->hir(& stmt->then_instructions, state);
5879 state->symbols->pop_scope();
5880 }
5881
5882 if (else_statement != NULL) {
5883 state->symbols->push_scope();
5884 else_statement->hir(& stmt->else_instructions, state);
5885 state->symbols->pop_scope();
5886 }
5887
5888 instructions->push_tail(stmt);
5889
5890 /* if-statements do not have r-values.
5891 */
5892 return NULL;
5893 }
5894
5895
5896 /* Used for detection of duplicate case values, compare
5897 * given contents directly.
5898 */
5899 static bool
5900 compare_case_value(const void *a, const void *b)
5901 {
5902 return *(unsigned *) a == *(unsigned *) b;
5903 }
5904
5905
5906 /* Used for detection of duplicate case values, just
5907 * returns key contents as is.
5908 */
5909 static unsigned
5910 key_contents(const void *key)
5911 {
5912 return *(unsigned *) key;
5913 }
5914
5915
5916 ir_rvalue *
5917 ast_switch_statement::hir(exec_list *instructions,
5918 struct _mesa_glsl_parse_state *state)
5919 {
5920 void *ctx = state;
5921
5922 ir_rvalue *const test_expression =
5923 this->test_expression->hir(instructions, state);
5924
5925 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5926 *
5927 * "The type of init-expression in a switch statement must be a
5928 * scalar integer."
5929 */
5930 if (!test_expression->type->is_scalar() ||
5931 !test_expression->type->is_integer()) {
5932 YYLTYPE loc = this->test_expression->get_location();
5933
5934 _mesa_glsl_error(& loc,
5935 state,
5936 "switch-statement expression must be scalar "
5937 "integer");
5938 }
5939
5940 /* Track the switch-statement nesting in a stack-like manner.
5941 */
5942 struct glsl_switch_state saved = state->switch_state;
5943
5944 state->switch_state.is_switch_innermost = true;
5945 state->switch_state.switch_nesting_ast = this;
5946 state->switch_state.labels_ht = hash_table_ctor(0, key_contents,
5947 compare_case_value);
5948 state->switch_state.previous_default = NULL;
5949
5950 /* Initalize is_fallthru state to false.
5951 */
5952 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5953 state->switch_state.is_fallthru_var =
5954 new(ctx) ir_variable(glsl_type::bool_type,
5955 "switch_is_fallthru_tmp",
5956 ir_var_temporary);
5957 instructions->push_tail(state->switch_state.is_fallthru_var);
5958
5959 ir_dereference_variable *deref_is_fallthru_var =
5960 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5961 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5962 is_fallthru_val));
5963
5964 /* Initialize continue_inside state to false.
5965 */
5966 state->switch_state.continue_inside =
5967 new(ctx) ir_variable(glsl_type::bool_type,
5968 "continue_inside_tmp",
5969 ir_var_temporary);
5970 instructions->push_tail(state->switch_state.continue_inside);
5971
5972 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5973 ir_dereference_variable *deref_continue_inside_var =
5974 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5975 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5976 false_val));
5977
5978 state->switch_state.run_default =
5979 new(ctx) ir_variable(glsl_type::bool_type,
5980 "run_default_tmp",
5981 ir_var_temporary);
5982 instructions->push_tail(state->switch_state.run_default);
5983
5984 /* Loop around the switch is used for flow control. */
5985 ir_loop * loop = new(ctx) ir_loop();
5986 instructions->push_tail(loop);
5987
5988 /* Cache test expression.
5989 */
5990 test_to_hir(&loop->body_instructions, state);
5991
5992 /* Emit code for body of switch stmt.
5993 */
5994 body->hir(&loop->body_instructions, state);
5995
5996 /* Insert a break at the end to exit loop. */
5997 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5998 loop->body_instructions.push_tail(jump);
5999
6000 /* If we are inside loop, check if continue got called inside switch. */
6001 if (state->loop_nesting_ast != NULL) {
6002 ir_dereference_variable *deref_continue_inside =
6003 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6004 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6005 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6006
6007 if (state->loop_nesting_ast != NULL) {
6008 if (state->loop_nesting_ast->rest_expression) {
6009 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6010 state);
6011 }
6012 if (state->loop_nesting_ast->mode ==
6013 ast_iteration_statement::ast_do_while) {
6014 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6015 }
6016 }
6017 irif->then_instructions.push_tail(jump);
6018 instructions->push_tail(irif);
6019 }
6020
6021 hash_table_dtor(state->switch_state.labels_ht);
6022
6023 state->switch_state = saved;
6024
6025 /* Switch statements do not have r-values. */
6026 return NULL;
6027 }
6028
6029
6030 void
6031 ast_switch_statement::test_to_hir(exec_list *instructions,
6032 struct _mesa_glsl_parse_state *state)
6033 {
6034 void *ctx = state;
6035
6036 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6037 * on the switch test case. The first one would be already raised when
6038 * getting the test_expression at ast_switch_statement::hir
6039 */
6040 test_expression->set_is_lhs(true);
6041 /* Cache value of test expression. */
6042 ir_rvalue *const test_val =
6043 test_expression->hir(instructions,
6044 state);
6045
6046 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6047 "switch_test_tmp",
6048 ir_var_temporary);
6049 ir_dereference_variable *deref_test_var =
6050 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6051
6052 instructions->push_tail(state->switch_state.test_var);
6053 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6054 }
6055
6056
6057 ir_rvalue *
6058 ast_switch_body::hir(exec_list *instructions,
6059 struct _mesa_glsl_parse_state *state)
6060 {
6061 if (stmts != NULL)
6062 stmts->hir(instructions, state);
6063
6064 /* Switch bodies do not have r-values. */
6065 return NULL;
6066 }
6067
6068 ir_rvalue *
6069 ast_case_statement_list::hir(exec_list *instructions,
6070 struct _mesa_glsl_parse_state *state)
6071 {
6072 exec_list default_case, after_default, tmp;
6073
6074 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6075 case_stmt->hir(&tmp, state);
6076
6077 /* Default case. */
6078 if (state->switch_state.previous_default && default_case.is_empty()) {
6079 default_case.append_list(&tmp);
6080 continue;
6081 }
6082
6083 /* If default case found, append 'after_default' list. */
6084 if (!default_case.is_empty())
6085 after_default.append_list(&tmp);
6086 else
6087 instructions->append_list(&tmp);
6088 }
6089
6090 /* Handle the default case. This is done here because default might not be
6091 * the last case. We need to add checks against following cases first to see
6092 * if default should be chosen or not.
6093 */
6094 if (!default_case.is_empty()) {
6095
6096 ir_rvalue *const true_val = new (state) ir_constant(true);
6097 ir_dereference_variable *deref_run_default_var =
6098 new(state) ir_dereference_variable(state->switch_state.run_default);
6099
6100 /* Choose to run default case initially, following conditional
6101 * assignments might change this.
6102 */
6103 ir_assignment *const init_var =
6104 new(state) ir_assignment(deref_run_default_var, true_val);
6105 instructions->push_tail(init_var);
6106
6107 /* Default case was the last one, no checks required. */
6108 if (after_default.is_empty()) {
6109 instructions->append_list(&default_case);
6110 return NULL;
6111 }
6112
6113 foreach_in_list(ir_instruction, ir, &after_default) {
6114 ir_assignment *assign = ir->as_assignment();
6115
6116 if (!assign)
6117 continue;
6118
6119 /* Clone the check between case label and init expression. */
6120 ir_expression *exp = (ir_expression*) assign->condition;
6121 ir_expression *clone = exp->clone(state, NULL);
6122
6123 ir_dereference_variable *deref_var =
6124 new(state) ir_dereference_variable(state->switch_state.run_default);
6125 ir_rvalue *const false_val = new (state) ir_constant(false);
6126
6127 ir_assignment *const set_false =
6128 new(state) ir_assignment(deref_var, false_val, clone);
6129
6130 instructions->push_tail(set_false);
6131 }
6132
6133 /* Append default case and all cases after it. */
6134 instructions->append_list(&default_case);
6135 instructions->append_list(&after_default);
6136 }
6137
6138 /* Case statements do not have r-values. */
6139 return NULL;
6140 }
6141
6142 ir_rvalue *
6143 ast_case_statement::hir(exec_list *instructions,
6144 struct _mesa_glsl_parse_state *state)
6145 {
6146 labels->hir(instructions, state);
6147
6148 /* Guard case statements depending on fallthru state. */
6149 ir_dereference_variable *const deref_fallthru_guard =
6150 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6151 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6152
6153 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6154 stmt->hir(& test_fallthru->then_instructions, state);
6155
6156 instructions->push_tail(test_fallthru);
6157
6158 /* Case statements do not have r-values. */
6159 return NULL;
6160 }
6161
6162
6163 ir_rvalue *
6164 ast_case_label_list::hir(exec_list *instructions,
6165 struct _mesa_glsl_parse_state *state)
6166 {
6167 foreach_list_typed (ast_case_label, label, link, & this->labels)
6168 label->hir(instructions, state);
6169
6170 /* Case labels do not have r-values. */
6171 return NULL;
6172 }
6173
6174 ir_rvalue *
6175 ast_case_label::hir(exec_list *instructions,
6176 struct _mesa_glsl_parse_state *state)
6177 {
6178 void *ctx = state;
6179
6180 ir_dereference_variable *deref_fallthru_var =
6181 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6182
6183 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6184
6185 /* If not default case, ... */
6186 if (this->test_value != NULL) {
6187 /* Conditionally set fallthru state based on
6188 * comparison of cached test expression value to case label.
6189 */
6190 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6191 ir_constant *label_const = label_rval->constant_expression_value();
6192
6193 if (!label_const) {
6194 YYLTYPE loc = this->test_value->get_location();
6195
6196 _mesa_glsl_error(& loc, state,
6197 "switch statement case label must be a "
6198 "constant expression");
6199
6200 /* Stuff a dummy value in to allow processing to continue. */
6201 label_const = new(ctx) ir_constant(0);
6202 } else {
6203 ast_expression *previous_label = (ast_expression *)
6204 hash_table_find(state->switch_state.labels_ht,
6205 (void *)(uintptr_t)&label_const->value.u[0]);
6206
6207 if (previous_label) {
6208 YYLTYPE loc = this->test_value->get_location();
6209 _mesa_glsl_error(& loc, state, "duplicate case value");
6210
6211 loc = previous_label->get_location();
6212 _mesa_glsl_error(& loc, state, "this is the previous case label");
6213 } else {
6214 hash_table_insert(state->switch_state.labels_ht,
6215 this->test_value,
6216 (void *)(uintptr_t)&label_const->value.u[0]);
6217 }
6218 }
6219
6220 ir_dereference_variable *deref_test_var =
6221 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6222
6223 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6224 label_const,
6225 deref_test_var);
6226
6227 /*
6228 * From GLSL 4.40 specification section 6.2 ("Selection"):
6229 *
6230 * "The type of the init-expression value in a switch statement must
6231 * be a scalar int or uint. The type of the constant-expression value
6232 * in a case label also must be a scalar int or uint. When any pair
6233 * of these values is tested for "equal value" and the types do not
6234 * match, an implicit conversion will be done to convert the int to a
6235 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6236 * is done."
6237 */
6238 if (label_const->type != state->switch_state.test_var->type) {
6239 YYLTYPE loc = this->test_value->get_location();
6240
6241 const glsl_type *type_a = label_const->type;
6242 const glsl_type *type_b = state->switch_state.test_var->type;
6243
6244 /* Check if int->uint implicit conversion is supported. */
6245 bool integer_conversion_supported =
6246 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6247 state);
6248
6249 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6250 !integer_conversion_supported) {
6251 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6252 "init-expression and case label (%s != %s)",
6253 type_a->name, type_b->name);
6254 } else {
6255 /* Conversion of the case label. */
6256 if (type_a->base_type == GLSL_TYPE_INT) {
6257 if (!apply_implicit_conversion(glsl_type::uint_type,
6258 test_cond->operands[0], state))
6259 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6260 } else {
6261 /* Conversion of the init-expression value. */
6262 if (!apply_implicit_conversion(glsl_type::uint_type,
6263 test_cond->operands[1], state))
6264 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6265 }
6266 }
6267 }
6268
6269 ir_assignment *set_fallthru_on_test =
6270 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6271
6272 instructions->push_tail(set_fallthru_on_test);
6273 } else { /* default case */
6274 if (state->switch_state.previous_default) {
6275 YYLTYPE loc = this->get_location();
6276 _mesa_glsl_error(& loc, state,
6277 "multiple default labels in one switch");
6278
6279 loc = state->switch_state.previous_default->get_location();
6280 _mesa_glsl_error(& loc, state, "this is the first default label");
6281 }
6282 state->switch_state.previous_default = this;
6283
6284 /* Set fallthru condition on 'run_default' bool. */
6285 ir_dereference_variable *deref_run_default =
6286 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6287 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6288 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6289 cond_true,
6290 deref_run_default);
6291
6292 /* Set falltrhu state. */
6293 ir_assignment *set_fallthru =
6294 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6295
6296 instructions->push_tail(set_fallthru);
6297 }
6298
6299 /* Case statements do not have r-values. */
6300 return NULL;
6301 }
6302
6303 void
6304 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6305 struct _mesa_glsl_parse_state *state)
6306 {
6307 void *ctx = state;
6308
6309 if (condition != NULL) {
6310 ir_rvalue *const cond =
6311 condition->hir(instructions, state);
6312
6313 if ((cond == NULL)
6314 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6315 YYLTYPE loc = condition->get_location();
6316
6317 _mesa_glsl_error(& loc, state,
6318 "loop condition must be scalar boolean");
6319 } else {
6320 /* As the first code in the loop body, generate a block that looks
6321 * like 'if (!condition) break;' as the loop termination condition.
6322 */
6323 ir_rvalue *const not_cond =
6324 new(ctx) ir_expression(ir_unop_logic_not, cond);
6325
6326 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6327
6328 ir_jump *const break_stmt =
6329 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6330
6331 if_stmt->then_instructions.push_tail(break_stmt);
6332 instructions->push_tail(if_stmt);
6333 }
6334 }
6335 }
6336
6337
6338 ir_rvalue *
6339 ast_iteration_statement::hir(exec_list *instructions,
6340 struct _mesa_glsl_parse_state *state)
6341 {
6342 void *ctx = state;
6343
6344 /* For-loops and while-loops start a new scope, but do-while loops do not.
6345 */
6346 if (mode != ast_do_while)
6347 state->symbols->push_scope();
6348
6349 if (init_statement != NULL)
6350 init_statement->hir(instructions, state);
6351
6352 ir_loop *const stmt = new(ctx) ir_loop();
6353 instructions->push_tail(stmt);
6354
6355 /* Track the current loop nesting. */
6356 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6357
6358 state->loop_nesting_ast = this;
6359
6360 /* Likewise, indicate that following code is closest to a loop,
6361 * NOT closest to a switch.
6362 */
6363 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6364 state->switch_state.is_switch_innermost = false;
6365
6366 if (mode != ast_do_while)
6367 condition_to_hir(&stmt->body_instructions, state);
6368
6369 if (body != NULL)
6370 body->hir(& stmt->body_instructions, state);
6371
6372 if (rest_expression != NULL)
6373 rest_expression->hir(& stmt->body_instructions, state);
6374
6375 if (mode == ast_do_while)
6376 condition_to_hir(&stmt->body_instructions, state);
6377
6378 if (mode != ast_do_while)
6379 state->symbols->pop_scope();
6380
6381 /* Restore previous nesting before returning. */
6382 state->loop_nesting_ast = nesting_ast;
6383 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6384
6385 /* Loops do not have r-values.
6386 */
6387 return NULL;
6388 }
6389
6390
6391 /**
6392 * Determine if the given type is valid for establishing a default precision
6393 * qualifier.
6394 *
6395 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6396 *
6397 * "The precision statement
6398 *
6399 * precision precision-qualifier type;
6400 *
6401 * can be used to establish a default precision qualifier. The type field
6402 * can be either int or float or any of the sampler types, and the
6403 * precision-qualifier can be lowp, mediump, or highp."
6404 *
6405 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6406 * qualifiers on sampler types, but this seems like an oversight (since the
6407 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6408 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6409 * version.
6410 */
6411 static bool
6412 is_valid_default_precision_type(const struct glsl_type *const type)
6413 {
6414 if (type == NULL)
6415 return false;
6416
6417 switch (type->base_type) {
6418 case GLSL_TYPE_INT:
6419 case GLSL_TYPE_FLOAT:
6420 /* "int" and "float" are valid, but vectors and matrices are not. */
6421 return type->vector_elements == 1 && type->matrix_columns == 1;
6422 case GLSL_TYPE_SAMPLER:
6423 case GLSL_TYPE_IMAGE:
6424 case GLSL_TYPE_ATOMIC_UINT:
6425 return true;
6426 default:
6427 return false;
6428 }
6429 }
6430
6431
6432 ir_rvalue *
6433 ast_type_specifier::hir(exec_list *instructions,
6434 struct _mesa_glsl_parse_state *state)
6435 {
6436 if (this->default_precision == ast_precision_none && this->structure == NULL)
6437 return NULL;
6438
6439 YYLTYPE loc = this->get_location();
6440
6441 /* If this is a precision statement, check that the type to which it is
6442 * applied is either float or int.
6443 *
6444 * From section 4.5.3 of the GLSL 1.30 spec:
6445 * "The precision statement
6446 * precision precision-qualifier type;
6447 * can be used to establish a default precision qualifier. The type
6448 * field can be either int or float [...]. Any other types or
6449 * qualifiers will result in an error.
6450 */
6451 if (this->default_precision != ast_precision_none) {
6452 if (!state->check_precision_qualifiers_allowed(&loc))
6453 return NULL;
6454
6455 if (this->structure != NULL) {
6456 _mesa_glsl_error(&loc, state,
6457 "precision qualifiers do not apply to structures");
6458 return NULL;
6459 }
6460
6461 if (this->array_specifier != NULL) {
6462 _mesa_glsl_error(&loc, state,
6463 "default precision statements do not apply to "
6464 "arrays");
6465 return NULL;
6466 }
6467
6468 const struct glsl_type *const type =
6469 state->symbols->get_type(this->type_name);
6470 if (!is_valid_default_precision_type(type)) {
6471 _mesa_glsl_error(&loc, state,
6472 "default precision statements apply only to "
6473 "float, int, and opaque types");
6474 return NULL;
6475 }
6476
6477 if (state->es_shader) {
6478 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6479 * spec says:
6480 *
6481 * "Non-precision qualified declarations will use the precision
6482 * qualifier specified in the most recent precision statement
6483 * that is still in scope. The precision statement has the same
6484 * scoping rules as variable declarations. If it is declared
6485 * inside a compound statement, its effect stops at the end of
6486 * the innermost statement it was declared in. Precision
6487 * statements in nested scopes override precision statements in
6488 * outer scopes. Multiple precision statements for the same basic
6489 * type can appear inside the same scope, with later statements
6490 * overriding earlier statements within that scope."
6491 *
6492 * Default precision specifications follow the same scope rules as
6493 * variables. So, we can track the state of the default precision
6494 * qualifiers in the symbol table, and the rules will just work. This
6495 * is a slight abuse of the symbol table, but it has the semantics
6496 * that we want.
6497 */
6498 state->symbols->add_default_precision_qualifier(this->type_name,
6499 this->default_precision);
6500 }
6501
6502 /* FINISHME: Translate precision statements into IR. */
6503 return NULL;
6504 }
6505
6506 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6507 * process_record_constructor() can do type-checking on C-style initializer
6508 * expressions of structs, but ast_struct_specifier should only be translated
6509 * to HIR if it is declaring the type of a structure.
6510 *
6511 * The ->is_declaration field is false for initializers of variables
6512 * declared separately from the struct's type definition.
6513 *
6514 * struct S { ... }; (is_declaration = true)
6515 * struct T { ... } t = { ... }; (is_declaration = true)
6516 * S s = { ... }; (is_declaration = false)
6517 */
6518 if (this->structure != NULL && this->structure->is_declaration)
6519 return this->structure->hir(instructions, state);
6520
6521 return NULL;
6522 }
6523
6524
6525 /**
6526 * Process a structure or interface block tree into an array of structure fields
6527 *
6528 * After parsing, where there are some syntax differnces, structures and
6529 * interface blocks are almost identical. They are similar enough that the
6530 * AST for each can be processed the same way into a set of
6531 * \c glsl_struct_field to describe the members.
6532 *
6533 * If we're processing an interface block, var_mode should be the type of the
6534 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6535 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6536 * ir_var_auto.
6537 *
6538 * \return
6539 * The number of fields processed. A pointer to the array structure fields is
6540 * stored in \c *fields_ret.
6541 */
6542 static unsigned
6543 ast_process_struct_or_iface_block_members(exec_list *instructions,
6544 struct _mesa_glsl_parse_state *state,
6545 exec_list *declarations,
6546 glsl_struct_field **fields_ret,
6547 bool is_interface,
6548 enum glsl_matrix_layout matrix_layout,
6549 bool allow_reserved_names,
6550 ir_variable_mode var_mode,
6551 ast_type_qualifier *layout,
6552 unsigned block_stream,
6553 unsigned block_xfb_buffer,
6554 unsigned block_xfb_offset,
6555 unsigned expl_location,
6556 unsigned expl_align)
6557 {
6558 unsigned decl_count = 0;
6559 unsigned next_offset = 0;
6560
6561 /* Make an initial pass over the list of fields to determine how
6562 * many there are. Each element in this list is an ast_declarator_list.
6563 * This means that we actually need to count the number of elements in the
6564 * 'declarations' list in each of the elements.
6565 */
6566 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6567 decl_count += decl_list->declarations.length();
6568 }
6569
6570 /* Allocate storage for the fields and process the field
6571 * declarations. As the declarations are processed, try to also convert
6572 * the types to HIR. This ensures that structure definitions embedded in
6573 * other structure definitions or in interface blocks are processed.
6574 */
6575 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6576 decl_count);
6577
6578 bool first_member = true;
6579 bool first_member_has_explicit_location = false;
6580
6581 unsigned i = 0;
6582 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6583 const char *type_name;
6584 YYLTYPE loc = decl_list->get_location();
6585
6586 decl_list->type->specifier->hir(instructions, state);
6587
6588 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6589 *
6590 * "Anonymous structures are not supported; so embedded structures
6591 * must have a declarator. A name given to an embedded struct is
6592 * scoped at the same level as the struct it is embedded in."
6593 *
6594 * The same section of the GLSL 1.20 spec says:
6595 *
6596 * "Anonymous structures are not supported. Embedded structures are
6597 * not supported."
6598 *
6599 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6600 * embedded structures in 1.10 only.
6601 */
6602 if (state->language_version != 110 &&
6603 decl_list->type->specifier->structure != NULL)
6604 _mesa_glsl_error(&loc, state,
6605 "embedded structure declarations are not allowed");
6606
6607 const glsl_type *decl_type =
6608 decl_list->type->glsl_type(& type_name, state);
6609
6610 const struct ast_type_qualifier *const qual =
6611 &decl_list->type->qualifier;
6612
6613 /* From section 4.3.9 of the GLSL 4.40 spec:
6614 *
6615 * "[In interface blocks] opaque types are not allowed."
6616 *
6617 * It should be impossible for decl_type to be NULL here. Cases that
6618 * might naturally lead to decl_type being NULL, especially for the
6619 * is_interface case, will have resulted in compilation having
6620 * already halted due to a syntax error.
6621 */
6622 assert(decl_type);
6623
6624 if (is_interface) {
6625 if (decl_type->contains_opaque()) {
6626 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6627 "interface block contains opaque variable");
6628 }
6629 } else {
6630 if (decl_type->contains_atomic()) {
6631 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6632 *
6633 * "Members of structures cannot be declared as atomic counter
6634 * types."
6635 */
6636 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6637 }
6638
6639 if (decl_type->contains_image()) {
6640 /* FINISHME: Same problem as with atomic counters.
6641 * FINISHME: Request clarification from Khronos and add
6642 * FINISHME: spec quotation here.
6643 */
6644 _mesa_glsl_error(&loc, state, "image in structure");
6645 }
6646 }
6647
6648 if (qual->flags.q.explicit_binding) {
6649 _mesa_glsl_error(&loc, state,
6650 "binding layout qualifier cannot be applied "
6651 "to struct or interface block members");
6652 }
6653
6654 if (is_interface) {
6655 if (!first_member) {
6656 if (!layout->flags.q.explicit_location &&
6657 ((first_member_has_explicit_location &&
6658 !qual->flags.q.explicit_location) ||
6659 (!first_member_has_explicit_location &&
6660 qual->flags.q.explicit_location))) {
6661 _mesa_glsl_error(&loc, state,
6662 "when block-level location layout qualifier "
6663 "is not supplied either all members must "
6664 "have a location layout qualifier or all "
6665 "members must not have a location layout "
6666 "qualifier");
6667 }
6668 } else {
6669 first_member = false;
6670 first_member_has_explicit_location =
6671 qual->flags.q.explicit_location;
6672 }
6673 }
6674
6675 if (qual->flags.q.std140 ||
6676 qual->flags.q.std430 ||
6677 qual->flags.q.packed ||
6678 qual->flags.q.shared) {
6679 _mesa_glsl_error(&loc, state,
6680 "uniform/shader storage block layout qualifiers "
6681 "std140, std430, packed, and shared can only be "
6682 "applied to uniform/shader storage blocks, not "
6683 "members");
6684 }
6685
6686 if (qual->flags.q.constant) {
6687 _mesa_glsl_error(&loc, state,
6688 "const storage qualifier cannot be applied "
6689 "to struct or interface block members");
6690 }
6691
6692 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6693 *
6694 * "A block member may be declared with a stream identifier, but
6695 * the specified stream must match the stream associated with the
6696 * containing block."
6697 */
6698 if (qual->flags.q.explicit_stream) {
6699 unsigned qual_stream;
6700 if (process_qualifier_constant(state, &loc, "stream",
6701 qual->stream, &qual_stream) &&
6702 qual_stream != block_stream) {
6703 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6704 "interface block member does not match "
6705 "the interface block (%u vs %u)", qual_stream,
6706 block_stream);
6707 }
6708 }
6709
6710 int xfb_buffer;
6711 unsigned explicit_xfb_buffer = 0;
6712 if (qual->flags.q.explicit_xfb_buffer) {
6713 unsigned qual_xfb_buffer;
6714 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6715 qual->xfb_buffer, &qual_xfb_buffer)) {
6716 explicit_xfb_buffer = 1;
6717 if (qual_xfb_buffer != block_xfb_buffer)
6718 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6719 "interface block member does not match "
6720 "the interface block (%u vs %u)",
6721 qual_xfb_buffer, block_xfb_buffer);
6722 }
6723 xfb_buffer = (int) qual_xfb_buffer;
6724 } else {
6725 if (layout)
6726 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6727 xfb_buffer = (int) block_xfb_buffer;
6728 }
6729
6730 int xfb_stride = -1;
6731 if (qual->flags.q.explicit_xfb_stride) {
6732 unsigned qual_xfb_stride;
6733 if (process_qualifier_constant(state, &loc, "xfb_stride",
6734 qual->xfb_stride, &qual_xfb_stride)) {
6735 xfb_stride = (int) qual_xfb_stride;
6736 }
6737 }
6738
6739 if (qual->flags.q.uniform && qual->has_interpolation()) {
6740 _mesa_glsl_error(&loc, state,
6741 "interpolation qualifiers cannot be used "
6742 "with uniform interface blocks");
6743 }
6744
6745 if ((qual->flags.q.uniform || !is_interface) &&
6746 qual->has_auxiliary_storage()) {
6747 _mesa_glsl_error(&loc, state,
6748 "auxiliary storage qualifiers cannot be used "
6749 "in uniform blocks or structures.");
6750 }
6751
6752 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6753 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6754 _mesa_glsl_error(&loc, state,
6755 "row_major and column_major can only be "
6756 "applied to interface blocks");
6757 } else
6758 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6759 }
6760
6761 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6762 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6763 "readonly and writeonly.");
6764 }
6765
6766 foreach_list_typed (ast_declaration, decl, link,
6767 &decl_list->declarations) {
6768 YYLTYPE loc = decl->get_location();
6769
6770 if (!allow_reserved_names)
6771 validate_identifier(decl->identifier, loc, state);
6772
6773 const struct glsl_type *field_type =
6774 process_array_type(&loc, decl_type, decl->array_specifier, state);
6775 validate_array_dimensions(field_type, state, &loc);
6776 fields[i].type = field_type;
6777 fields[i].name = decl->identifier;
6778 fields[i].interpolation =
6779 interpret_interpolation_qualifier(qual, field_type,
6780 var_mode, state, &loc);
6781 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6782 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6783 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6784 fields[i].precision = qual->precision;
6785 fields[i].offset = -1;
6786 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6787 fields[i].xfb_buffer = xfb_buffer;
6788 fields[i].xfb_stride = xfb_stride;
6789
6790 if (qual->flags.q.explicit_location) {
6791 unsigned qual_location;
6792 if (process_qualifier_constant(state, &loc, "location",
6793 qual->location, &qual_location)) {
6794 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6795 expl_location = fields[i].location +
6796 fields[i].type->count_attribute_slots(false);
6797 }
6798 } else {
6799 if (layout && layout->flags.q.explicit_location) {
6800 fields[i].location = expl_location;
6801 expl_location += fields[i].type->count_attribute_slots(false);
6802 } else {
6803 fields[i].location = -1;
6804 }
6805 }
6806
6807 /* Offset can only be used with std430 and std140 layouts an initial
6808 * value of 0 is used for error detection.
6809 */
6810 unsigned align = 0;
6811 unsigned size = 0;
6812 if (layout) {
6813 bool row_major;
6814 if (qual->flags.q.row_major ||
6815 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6816 row_major = true;
6817 } else {
6818 row_major = false;
6819 }
6820
6821 if(layout->flags.q.std140) {
6822 align = field_type->std140_base_alignment(row_major);
6823 size = field_type->std140_size(row_major);
6824 } else if (layout->flags.q.std430) {
6825 align = field_type->std430_base_alignment(row_major);
6826 size = field_type->std430_size(row_major);
6827 }
6828 }
6829
6830 if (qual->flags.q.explicit_offset) {
6831 unsigned qual_offset;
6832 if (process_qualifier_constant(state, &loc, "offset",
6833 qual->offset, &qual_offset)) {
6834 if (align != 0 && size != 0) {
6835 if (next_offset > qual_offset)
6836 _mesa_glsl_error(&loc, state, "layout qualifier "
6837 "offset overlaps previous member");
6838
6839 if (qual_offset % align) {
6840 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6841 "must be a multiple of the base "
6842 "alignment of %s", field_type->name);
6843 }
6844 fields[i].offset = qual_offset;
6845 next_offset = glsl_align(qual_offset + size, align);
6846 } else {
6847 _mesa_glsl_error(&loc, state, "offset can only be used "
6848 "with std430 and std140 layouts");
6849 }
6850 }
6851 }
6852
6853 if (qual->flags.q.explicit_align || expl_align != 0) {
6854 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6855 next_offset;
6856 if (align == 0 || size == 0) {
6857 _mesa_glsl_error(&loc, state, "align can only be used with "
6858 "std430 and std140 layouts");
6859 } else if (qual->flags.q.explicit_align) {
6860 unsigned member_align;
6861 if (process_qualifier_constant(state, &loc, "align",
6862 qual->align, &member_align)) {
6863 if (member_align == 0 ||
6864 member_align & (member_align - 1)) {
6865 _mesa_glsl_error(&loc, state, "align layout qualifier "
6866 "in not a power of 2");
6867 } else {
6868 fields[i].offset = glsl_align(offset, member_align);
6869 next_offset = glsl_align(fields[i].offset + size, align);
6870 }
6871 }
6872 } else {
6873 fields[i].offset = glsl_align(offset, expl_align);
6874 next_offset = glsl_align(fields[i].offset + size, align);
6875 }
6876 } else if (!qual->flags.q.explicit_offset) {
6877 if (align != 0 && size != 0)
6878 next_offset = glsl_align(next_offset + size, align);
6879 }
6880
6881 /* From the ARB_enhanced_layouts spec:
6882 *
6883 * "The given offset applies to the first component of the first
6884 * member of the qualified entity. Then, within the qualified
6885 * entity, subsequent components are each assigned, in order, to
6886 * the next available offset aligned to a multiple of that
6887 * component's size. Aggregate types are flattened down to the
6888 * component level to get this sequence of components."
6889 */
6890 if (qual->flags.q.explicit_xfb_offset) {
6891 unsigned xfb_offset;
6892 if (process_qualifier_constant(state, &loc, "xfb_offset",
6893 qual->offset, &xfb_offset)) {
6894 fields[i].offset = xfb_offset;
6895 block_xfb_offset = fields[i].offset +
6896 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6897 }
6898 } else {
6899 if (layout && layout->flags.q.explicit_xfb_offset) {
6900 unsigned align = field_type->is_64bit() ? 8 : 4;
6901 fields[i].offset = glsl_align(block_xfb_offset, align);
6902 block_xfb_offset +=
6903 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6904 }
6905 }
6906
6907 /* Propogate row- / column-major information down the fields of the
6908 * structure or interface block. Structures need this data because
6909 * the structure may contain a structure that contains ... a matrix
6910 * that need the proper layout.
6911 */
6912 if (is_interface && layout &&
6913 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6914 (field_type->without_array()->is_matrix()
6915 || field_type->without_array()->is_record())) {
6916 /* If no layout is specified for the field, inherit the layout
6917 * from the block.
6918 */
6919 fields[i].matrix_layout = matrix_layout;
6920
6921 if (qual->flags.q.row_major)
6922 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6923 else if (qual->flags.q.column_major)
6924 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6925
6926 /* If we're processing an uniform or buffer block, the matrix
6927 * layout must be decided by this point.
6928 */
6929 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6930 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6931 }
6932
6933 /* Image qualifiers are allowed on buffer variables, which can only
6934 * be defined inside shader storage buffer objects
6935 */
6936 if (layout && var_mode == ir_var_shader_storage) {
6937 /* For readonly and writeonly qualifiers the field definition,
6938 * if set, overwrites the layout qualifier.
6939 */
6940 if (qual->flags.q.read_only) {
6941 fields[i].image_read_only = true;
6942 fields[i].image_write_only = false;
6943 } else if (qual->flags.q.write_only) {
6944 fields[i].image_read_only = false;
6945 fields[i].image_write_only = true;
6946 } else {
6947 fields[i].image_read_only = layout->flags.q.read_only;
6948 fields[i].image_write_only = layout->flags.q.write_only;
6949 }
6950
6951 /* For other qualifiers, we set the flag if either the layout
6952 * qualifier or the field qualifier are set
6953 */
6954 fields[i].image_coherent = qual->flags.q.coherent ||
6955 layout->flags.q.coherent;
6956 fields[i].image_volatile = qual->flags.q._volatile ||
6957 layout->flags.q._volatile;
6958 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6959 layout->flags.q.restrict_flag;
6960 }
6961
6962 i++;
6963 }
6964 }
6965
6966 assert(i == decl_count);
6967
6968 *fields_ret = fields;
6969 return decl_count;
6970 }
6971
6972
6973 ir_rvalue *
6974 ast_struct_specifier::hir(exec_list *instructions,
6975 struct _mesa_glsl_parse_state *state)
6976 {
6977 YYLTYPE loc = this->get_location();
6978
6979 unsigned expl_location = 0;
6980 if (layout && layout->flags.q.explicit_location) {
6981 if (!process_qualifier_constant(state, &loc, "location",
6982 layout->location, &expl_location)) {
6983 return NULL;
6984 } else {
6985 expl_location = VARYING_SLOT_VAR0 + expl_location;
6986 }
6987 }
6988
6989 glsl_struct_field *fields;
6990 unsigned decl_count =
6991 ast_process_struct_or_iface_block_members(instructions,
6992 state,
6993 &this->declarations,
6994 &fields,
6995 false,
6996 GLSL_MATRIX_LAYOUT_INHERITED,
6997 false /* allow_reserved_names */,
6998 ir_var_auto,
6999 layout,
7000 0, /* for interface only */
7001 0, /* for interface only */
7002 0, /* for interface only */
7003 expl_location,
7004 0 /* for interface only */);
7005
7006 validate_identifier(this->name, loc, state);
7007
7008 const glsl_type *t =
7009 glsl_type::get_record_instance(fields, decl_count, this->name);
7010
7011 if (!state->symbols->add_type(name, t)) {
7012 const glsl_type *match = state->symbols->get_type(name);
7013 /* allow struct matching for desktop GL - older UE4 does this */
7014 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7015 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7016 else
7017 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7018 } else {
7019 const glsl_type **s = reralloc(state, state->user_structures,
7020 const glsl_type *,
7021 state->num_user_structures + 1);
7022 if (s != NULL) {
7023 s[state->num_user_structures] = t;
7024 state->user_structures = s;
7025 state->num_user_structures++;
7026 }
7027 }
7028
7029 /* Structure type definitions do not have r-values.
7030 */
7031 return NULL;
7032 }
7033
7034
7035 /**
7036 * Visitor class which detects whether a given interface block has been used.
7037 */
7038 class interface_block_usage_visitor : public ir_hierarchical_visitor
7039 {
7040 public:
7041 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7042 : mode(mode), block(block), found(false)
7043 {
7044 }
7045
7046 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7047 {
7048 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7049 found = true;
7050 return visit_stop;
7051 }
7052 return visit_continue;
7053 }
7054
7055 bool usage_found() const
7056 {
7057 return this->found;
7058 }
7059
7060 private:
7061 ir_variable_mode mode;
7062 const glsl_type *block;
7063 bool found;
7064 };
7065
7066 static bool
7067 is_unsized_array_last_element(ir_variable *v)
7068 {
7069 const glsl_type *interface_type = v->get_interface_type();
7070 int length = interface_type->length;
7071
7072 assert(v->type->is_unsized_array());
7073
7074 /* Check if it is the last element of the interface */
7075 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7076 return true;
7077 return false;
7078 }
7079
7080 static void
7081 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7082 {
7083 var->data.image_read_only = field.image_read_only;
7084 var->data.image_write_only = field.image_write_only;
7085 var->data.image_coherent = field.image_coherent;
7086 var->data.image_volatile = field.image_volatile;
7087 var->data.image_restrict = field.image_restrict;
7088 }
7089
7090 ir_rvalue *
7091 ast_interface_block::hir(exec_list *instructions,
7092 struct _mesa_glsl_parse_state *state)
7093 {
7094 YYLTYPE loc = this->get_location();
7095
7096 /* Interface blocks must be declared at global scope */
7097 if (state->current_function != NULL) {
7098 _mesa_glsl_error(&loc, state,
7099 "Interface block `%s' must be declared "
7100 "at global scope",
7101 this->block_name);
7102 }
7103
7104 /* Validate qualifiers:
7105 *
7106 * - Layout Qualifiers as per the table in Section 4.4
7107 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7108 *
7109 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7110 * GLSL 4.50 spec:
7111 *
7112 * "Additionally, memory qualifiers may also be used in the declaration
7113 * of shader storage blocks"
7114 *
7115 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7116 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7117 * Layout Qualifiers) of the GLSL 4.50 spec says:
7118 *
7119 * "The std430 qualifier is supported only for shader storage blocks;
7120 * using std430 on a uniform block will result in a compile-time error."
7121 */
7122 ast_type_qualifier allowed_blk_qualifiers;
7123 allowed_blk_qualifiers.flags.i = 0;
7124 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7125 allowed_blk_qualifiers.flags.q.shared = 1;
7126 allowed_blk_qualifiers.flags.q.packed = 1;
7127 allowed_blk_qualifiers.flags.q.std140 = 1;
7128 allowed_blk_qualifiers.flags.q.row_major = 1;
7129 allowed_blk_qualifiers.flags.q.column_major = 1;
7130 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7131 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7132 if (this->layout.flags.q.buffer) {
7133 allowed_blk_qualifiers.flags.q.buffer = 1;
7134 allowed_blk_qualifiers.flags.q.std430 = 1;
7135 allowed_blk_qualifiers.flags.q.coherent = 1;
7136 allowed_blk_qualifiers.flags.q._volatile = 1;
7137 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7138 allowed_blk_qualifiers.flags.q.read_only = 1;
7139 allowed_blk_qualifiers.flags.q.write_only = 1;
7140 } else {
7141 allowed_blk_qualifiers.flags.q.uniform = 1;
7142 }
7143 } else {
7144 /* Interface block */
7145 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7146
7147 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7148 if (this->layout.flags.q.out) {
7149 allowed_blk_qualifiers.flags.q.out = 1;
7150 if (state->stage == MESA_SHADER_GEOMETRY ||
7151 state->stage == MESA_SHADER_TESS_CTRL ||
7152 state->stage == MESA_SHADER_TESS_EVAL ||
7153 state->stage == MESA_SHADER_VERTEX ) {
7154 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7155 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7156 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7157 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7158 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7159 if (state->stage == MESA_SHADER_GEOMETRY) {
7160 allowed_blk_qualifiers.flags.q.stream = 1;
7161 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7162 }
7163 if (state->stage == MESA_SHADER_TESS_CTRL) {
7164 allowed_blk_qualifiers.flags.q.patch = 1;
7165 }
7166 }
7167 } else {
7168 allowed_blk_qualifiers.flags.q.in = 1;
7169 if (state->stage == MESA_SHADER_TESS_EVAL) {
7170 allowed_blk_qualifiers.flags.q.patch = 1;
7171 }
7172 }
7173 }
7174
7175 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7176 "invalid qualifier for block",
7177 this->block_name);
7178
7179 /* The ast_interface_block has a list of ast_declarator_lists. We
7180 * need to turn those into ir_variables with an association
7181 * with this uniform block.
7182 */
7183 enum glsl_interface_packing packing;
7184 if (this->layout.flags.q.shared) {
7185 packing = GLSL_INTERFACE_PACKING_SHARED;
7186 } else if (this->layout.flags.q.packed) {
7187 packing = GLSL_INTERFACE_PACKING_PACKED;
7188 } else if (this->layout.flags.q.std430) {
7189 packing = GLSL_INTERFACE_PACKING_STD430;
7190 } else {
7191 /* The default layout is std140.
7192 */
7193 packing = GLSL_INTERFACE_PACKING_STD140;
7194 }
7195
7196 ir_variable_mode var_mode;
7197 const char *iface_type_name;
7198 if (this->layout.flags.q.in) {
7199 var_mode = ir_var_shader_in;
7200 iface_type_name = "in";
7201 } else if (this->layout.flags.q.out) {
7202 var_mode = ir_var_shader_out;
7203 iface_type_name = "out";
7204 } else if (this->layout.flags.q.uniform) {
7205 var_mode = ir_var_uniform;
7206 iface_type_name = "uniform";
7207 } else if (this->layout.flags.q.buffer) {
7208 var_mode = ir_var_shader_storage;
7209 iface_type_name = "buffer";
7210 } else {
7211 var_mode = ir_var_auto;
7212 iface_type_name = "UNKNOWN";
7213 assert(!"interface block layout qualifier not found!");
7214 }
7215
7216 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7217 if (this->layout.flags.q.row_major)
7218 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7219 else if (this->layout.flags.q.column_major)
7220 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7221
7222 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7223 exec_list declared_variables;
7224 glsl_struct_field *fields;
7225
7226 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7227 * that we don't have incompatible qualifiers
7228 */
7229 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7230 _mesa_glsl_error(&loc, state,
7231 "Interface block sets both readonly and writeonly");
7232 }
7233
7234 unsigned qual_stream;
7235 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7236 &qual_stream) ||
7237 !validate_stream_qualifier(&loc, state, qual_stream)) {
7238 /* If the stream qualifier is invalid it doesn't make sense to continue
7239 * on and try to compare stream layouts on member variables against it
7240 * so just return early.
7241 */
7242 return NULL;
7243 }
7244
7245 unsigned qual_xfb_buffer;
7246 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7247 layout.xfb_buffer, &qual_xfb_buffer) ||
7248 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7249 return NULL;
7250 }
7251
7252 unsigned qual_xfb_offset;
7253 if (layout.flags.q.explicit_xfb_offset) {
7254 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7255 layout.offset, &qual_xfb_offset)) {
7256 return NULL;
7257 }
7258 }
7259
7260 unsigned qual_xfb_stride;
7261 if (layout.flags.q.explicit_xfb_stride) {
7262 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7263 layout.xfb_stride, &qual_xfb_stride)) {
7264 return NULL;
7265 }
7266 }
7267
7268 unsigned expl_location = 0;
7269 if (layout.flags.q.explicit_location) {
7270 if (!process_qualifier_constant(state, &loc, "location",
7271 layout.location, &expl_location)) {
7272 return NULL;
7273 } else {
7274 expl_location = VARYING_SLOT_VAR0 + expl_location;
7275 }
7276 }
7277
7278 unsigned expl_align = 0;
7279 if (layout.flags.q.explicit_align) {
7280 if (!process_qualifier_constant(state, &loc, "align",
7281 layout.align, &expl_align)) {
7282 return NULL;
7283 } else {
7284 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7285 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7286 "power of 2.");
7287 return NULL;
7288 }
7289 }
7290 }
7291
7292 unsigned int num_variables =
7293 ast_process_struct_or_iface_block_members(&declared_variables,
7294 state,
7295 &this->declarations,
7296 &fields,
7297 true,
7298 matrix_layout,
7299 redeclaring_per_vertex,
7300 var_mode,
7301 &this->layout,
7302 qual_stream,
7303 qual_xfb_buffer,
7304 qual_xfb_offset,
7305 expl_location,
7306 expl_align);
7307
7308 if (!redeclaring_per_vertex) {
7309 validate_identifier(this->block_name, loc, state);
7310
7311 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7312 *
7313 * "Block names have no other use within a shader beyond interface
7314 * matching; it is a compile-time error to use a block name at global
7315 * scope for anything other than as a block name."
7316 */
7317 ir_variable *var = state->symbols->get_variable(this->block_name);
7318 if (var && !var->type->is_interface()) {
7319 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7320 "already used in the scope.",
7321 this->block_name);
7322 }
7323 }
7324
7325 const glsl_type *earlier_per_vertex = NULL;
7326 if (redeclaring_per_vertex) {
7327 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7328 * the named interface block gl_in, we can find it by looking at the
7329 * previous declaration of gl_in. Otherwise we can find it by looking
7330 * at the previous decalartion of any of the built-in outputs,
7331 * e.g. gl_Position.
7332 *
7333 * Also check that the instance name and array-ness of the redeclaration
7334 * are correct.
7335 */
7336 switch (var_mode) {
7337 case ir_var_shader_in:
7338 if (ir_variable *earlier_gl_in =
7339 state->symbols->get_variable("gl_in")) {
7340 earlier_per_vertex = earlier_gl_in->get_interface_type();
7341 } else {
7342 _mesa_glsl_error(&loc, state,
7343 "redeclaration of gl_PerVertex input not allowed "
7344 "in the %s shader",
7345 _mesa_shader_stage_to_string(state->stage));
7346 }
7347 if (this->instance_name == NULL ||
7348 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7349 !this->array_specifier->is_single_dimension()) {
7350 _mesa_glsl_error(&loc, state,
7351 "gl_PerVertex input must be redeclared as "
7352 "gl_in[]");
7353 }
7354 break;
7355 case ir_var_shader_out:
7356 if (ir_variable *earlier_gl_Position =
7357 state->symbols->get_variable("gl_Position")) {
7358 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7359 } else if (ir_variable *earlier_gl_out =
7360 state->symbols->get_variable("gl_out")) {
7361 earlier_per_vertex = earlier_gl_out->get_interface_type();
7362 } else {
7363 _mesa_glsl_error(&loc, state,
7364 "redeclaration of gl_PerVertex output not "
7365 "allowed in the %s shader",
7366 _mesa_shader_stage_to_string(state->stage));
7367 }
7368 if (state->stage == MESA_SHADER_TESS_CTRL) {
7369 if (this->instance_name == NULL ||
7370 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7371 _mesa_glsl_error(&loc, state,
7372 "gl_PerVertex output must be redeclared as "
7373 "gl_out[]");
7374 }
7375 } else {
7376 if (this->instance_name != NULL) {
7377 _mesa_glsl_error(&loc, state,
7378 "gl_PerVertex output may not be redeclared with "
7379 "an instance name");
7380 }
7381 }
7382 break;
7383 default:
7384 _mesa_glsl_error(&loc, state,
7385 "gl_PerVertex must be declared as an input or an "
7386 "output");
7387 break;
7388 }
7389
7390 if (earlier_per_vertex == NULL) {
7391 /* An error has already been reported. Bail out to avoid null
7392 * dereferences later in this function.
7393 */
7394 return NULL;
7395 }
7396
7397 /* Copy locations from the old gl_PerVertex interface block. */
7398 for (unsigned i = 0; i < num_variables; i++) {
7399 int j = earlier_per_vertex->field_index(fields[i].name);
7400 if (j == -1) {
7401 _mesa_glsl_error(&loc, state,
7402 "redeclaration of gl_PerVertex must be a subset "
7403 "of the built-in members of gl_PerVertex");
7404 } else {
7405 fields[i].location =
7406 earlier_per_vertex->fields.structure[j].location;
7407 fields[i].offset =
7408 earlier_per_vertex->fields.structure[j].offset;
7409 fields[i].interpolation =
7410 earlier_per_vertex->fields.structure[j].interpolation;
7411 fields[i].centroid =
7412 earlier_per_vertex->fields.structure[j].centroid;
7413 fields[i].sample =
7414 earlier_per_vertex->fields.structure[j].sample;
7415 fields[i].patch =
7416 earlier_per_vertex->fields.structure[j].patch;
7417 fields[i].precision =
7418 earlier_per_vertex->fields.structure[j].precision;
7419 fields[i].explicit_xfb_buffer =
7420 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7421 fields[i].xfb_buffer =
7422 earlier_per_vertex->fields.structure[j].xfb_buffer;
7423 fields[i].xfb_stride =
7424 earlier_per_vertex->fields.structure[j].xfb_stride;
7425 }
7426 }
7427
7428 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7429 * spec:
7430 *
7431 * If a built-in interface block is redeclared, it must appear in
7432 * the shader before any use of any member included in the built-in
7433 * declaration, or a compilation error will result.
7434 *
7435 * This appears to be a clarification to the behaviour established for
7436 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7437 * regardless of GLSL version.
7438 */
7439 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7440 v.run(instructions);
7441 if (v.usage_found()) {
7442 _mesa_glsl_error(&loc, state,
7443 "redeclaration of a built-in interface block must "
7444 "appear before any use of any member of the "
7445 "interface block");
7446 }
7447 }
7448
7449 const glsl_type *block_type =
7450 glsl_type::get_interface_instance(fields,
7451 num_variables,
7452 packing,
7453 this->block_name);
7454
7455 unsigned component_size = block_type->contains_double() ? 8 : 4;
7456 int xfb_offset =
7457 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7458 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7459 component_size);
7460
7461 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7462 YYLTYPE loc = this->get_location();
7463 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7464 "already taken in the current scope",
7465 this->block_name, iface_type_name);
7466 }
7467
7468 /* Since interface blocks cannot contain statements, it should be
7469 * impossible for the block to generate any instructions.
7470 */
7471 assert(declared_variables.is_empty());
7472
7473 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7474 *
7475 * Geometry shader input variables get the per-vertex values written
7476 * out by vertex shader output variables of the same names. Since a
7477 * geometry shader operates on a set of vertices, each input varying
7478 * variable (or input block, see interface blocks below) needs to be
7479 * declared as an array.
7480 */
7481 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7482 var_mode == ir_var_shader_in) {
7483 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7484 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7485 state->stage == MESA_SHADER_TESS_EVAL) &&
7486 this->array_specifier == NULL &&
7487 var_mode == ir_var_shader_in) {
7488 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7489 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7490 this->array_specifier == NULL &&
7491 var_mode == ir_var_shader_out) {
7492 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7493 }
7494
7495
7496 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7497 * says:
7498 *
7499 * "If an instance name (instance-name) is used, then it puts all the
7500 * members inside a scope within its own name space, accessed with the
7501 * field selector ( . ) operator (analogously to structures)."
7502 */
7503 if (this->instance_name) {
7504 if (redeclaring_per_vertex) {
7505 /* When a built-in in an unnamed interface block is redeclared,
7506 * get_variable_being_redeclared() calls
7507 * check_builtin_array_max_size() to make sure that built-in array
7508 * variables aren't redeclared to illegal sizes. But we're looking
7509 * at a redeclaration of a named built-in interface block. So we
7510 * have to manually call check_builtin_array_max_size() for all parts
7511 * of the interface that are arrays.
7512 */
7513 for (unsigned i = 0; i < num_variables; i++) {
7514 if (fields[i].type->is_array()) {
7515 const unsigned size = fields[i].type->array_size();
7516 check_builtin_array_max_size(fields[i].name, size, loc, state);
7517 }
7518 }
7519 } else {
7520 validate_identifier(this->instance_name, loc, state);
7521 }
7522
7523 ir_variable *var;
7524
7525 if (this->array_specifier != NULL) {
7526 const glsl_type *block_array_type =
7527 process_array_type(&loc, block_type, this->array_specifier, state);
7528
7529 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7530 *
7531 * For uniform blocks declared an array, each individual array
7532 * element corresponds to a separate buffer object backing one
7533 * instance of the block. As the array size indicates the number
7534 * of buffer objects needed, uniform block array declarations
7535 * must specify an array size.
7536 *
7537 * And a few paragraphs later:
7538 *
7539 * Geometry shader input blocks must be declared as arrays and
7540 * follow the array declaration and linking rules for all
7541 * geometry shader inputs. All other input and output block
7542 * arrays must specify an array size.
7543 *
7544 * The same applies to tessellation shaders.
7545 *
7546 * The upshot of this is that the only circumstance where an
7547 * interface array size *doesn't* need to be specified is on a
7548 * geometry shader input, tessellation control shader input,
7549 * tessellation control shader output, and tessellation evaluation
7550 * shader input.
7551 */
7552 if (block_array_type->is_unsized_array()) {
7553 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7554 state->stage == MESA_SHADER_TESS_CTRL ||
7555 state->stage == MESA_SHADER_TESS_EVAL;
7556 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7557
7558 if (this->layout.flags.q.in) {
7559 if (!allow_inputs)
7560 _mesa_glsl_error(&loc, state,
7561 "unsized input block arrays not allowed in "
7562 "%s shader",
7563 _mesa_shader_stage_to_string(state->stage));
7564 } else if (this->layout.flags.q.out) {
7565 if (!allow_outputs)
7566 _mesa_glsl_error(&loc, state,
7567 "unsized output block arrays not allowed in "
7568 "%s shader",
7569 _mesa_shader_stage_to_string(state->stage));
7570 } else {
7571 /* by elimination, this is a uniform block array */
7572 _mesa_glsl_error(&loc, state,
7573 "unsized uniform block arrays not allowed in "
7574 "%s shader",
7575 _mesa_shader_stage_to_string(state->stage));
7576 }
7577 }
7578
7579 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7580 *
7581 * * Arrays of arrays of blocks are not allowed
7582 */
7583 if (state->es_shader && block_array_type->is_array() &&
7584 block_array_type->fields.array->is_array()) {
7585 _mesa_glsl_error(&loc, state,
7586 "arrays of arrays interface blocks are "
7587 "not allowed");
7588 }
7589
7590 var = new(state) ir_variable(block_array_type,
7591 this->instance_name,
7592 var_mode);
7593 } else {
7594 var = new(state) ir_variable(block_type,
7595 this->instance_name,
7596 var_mode);
7597 }
7598
7599 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7600 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7601
7602 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7603 var->data.read_only = true;
7604
7605 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7606 handle_geometry_shader_input_decl(state, loc, var);
7607 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7608 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7609 handle_tess_shader_input_decl(state, loc, var);
7610 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7611 handle_tess_ctrl_shader_output_decl(state, loc, var);
7612
7613 for (unsigned i = 0; i < num_variables; i++) {
7614 if (var->data.mode == ir_var_shader_storage)
7615 apply_memory_qualifiers(var, fields[i]);
7616 }
7617
7618 if (ir_variable *earlier =
7619 state->symbols->get_variable(this->instance_name)) {
7620 if (!redeclaring_per_vertex) {
7621 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7622 this->instance_name);
7623 }
7624 earlier->data.how_declared = ir_var_declared_normally;
7625 earlier->type = var->type;
7626 earlier->reinit_interface_type(block_type);
7627 delete var;
7628 } else {
7629 if (this->layout.flags.q.explicit_binding) {
7630 apply_explicit_binding(state, &loc, var, var->type,
7631 &this->layout);
7632 }
7633
7634 var->data.stream = qual_stream;
7635 if (layout.flags.q.explicit_location) {
7636 var->data.location = expl_location;
7637 var->data.explicit_location = true;
7638 }
7639
7640 state->symbols->add_variable(var);
7641 instructions->push_tail(var);
7642 }
7643 } else {
7644 /* In order to have an array size, the block must also be declared with
7645 * an instance name.
7646 */
7647 assert(this->array_specifier == NULL);
7648
7649 for (unsigned i = 0; i < num_variables; i++) {
7650 ir_variable *var =
7651 new(state) ir_variable(fields[i].type,
7652 ralloc_strdup(state, fields[i].name),
7653 var_mode);
7654 var->data.interpolation = fields[i].interpolation;
7655 var->data.centroid = fields[i].centroid;
7656 var->data.sample = fields[i].sample;
7657 var->data.patch = fields[i].patch;
7658 var->data.stream = qual_stream;
7659 var->data.location = fields[i].location;
7660
7661 if (fields[i].location != -1)
7662 var->data.explicit_location = true;
7663
7664 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7665 var->data.xfb_buffer = fields[i].xfb_buffer;
7666
7667 if (fields[i].offset != -1)
7668 var->data.explicit_xfb_offset = true;
7669 var->data.offset = fields[i].offset;
7670
7671 var->init_interface_type(block_type);
7672
7673 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7674 var->data.read_only = true;
7675
7676 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7677 if (state->es_shader) {
7678 var->data.precision =
7679 select_gles_precision(fields[i].precision, fields[i].type,
7680 state, &loc);
7681 }
7682
7683 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7684 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7685 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7686 } else {
7687 var->data.matrix_layout = fields[i].matrix_layout;
7688 }
7689
7690 if (var->data.mode == ir_var_shader_storage)
7691 apply_memory_qualifiers(var, fields[i]);
7692
7693 /* Examine var name here since var may get deleted in the next call */
7694 bool var_is_gl_id = is_gl_identifier(var->name);
7695
7696 if (redeclaring_per_vertex) {
7697 ir_variable *earlier =
7698 get_variable_being_redeclared(var, loc, state,
7699 true /* allow_all_redeclarations */);
7700 if (!var_is_gl_id || earlier == NULL) {
7701 _mesa_glsl_error(&loc, state,
7702 "redeclaration of gl_PerVertex can only "
7703 "include built-in variables");
7704 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7705 _mesa_glsl_error(&loc, state,
7706 "`%s' has already been redeclared",
7707 earlier->name);
7708 } else {
7709 earlier->data.how_declared = ir_var_declared_in_block;
7710 earlier->reinit_interface_type(block_type);
7711 }
7712 continue;
7713 }
7714
7715 if (state->symbols->get_variable(var->name) != NULL)
7716 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7717
7718 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7719 * The UBO declaration itself doesn't get an ir_variable unless it
7720 * has an instance name. This is ugly.
7721 */
7722 if (this->layout.flags.q.explicit_binding) {
7723 apply_explicit_binding(state, &loc, var,
7724 var->get_interface_type(), &this->layout);
7725 }
7726
7727 if (var->type->is_unsized_array()) {
7728 if (var->is_in_shader_storage_block()) {
7729 if (is_unsized_array_last_element(var)) {
7730 var->data.from_ssbo_unsized_array = true;
7731 }
7732 } else {
7733 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7734 *
7735 * "If an array is declared as the last member of a shader storage
7736 * block and the size is not specified at compile-time, it is
7737 * sized at run-time. In all other cases, arrays are sized only
7738 * at compile-time."
7739 */
7740 if (state->es_shader) {
7741 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7742 "definition: only last member of a shader "
7743 "storage block can be defined as unsized "
7744 "array", fields[i].name);
7745 }
7746 }
7747 }
7748
7749 state->symbols->add_variable(var);
7750 instructions->push_tail(var);
7751 }
7752
7753 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7754 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7755 *
7756 * It is also a compilation error ... to redeclare a built-in
7757 * block and then use a member from that built-in block that was
7758 * not included in the redeclaration.
7759 *
7760 * This appears to be a clarification to the behaviour established
7761 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7762 * behaviour regardless of GLSL version.
7763 *
7764 * To prevent the shader from using a member that was not included in
7765 * the redeclaration, we disable any ir_variables that are still
7766 * associated with the old declaration of gl_PerVertex (since we've
7767 * already updated all of the variables contained in the new
7768 * gl_PerVertex to point to it).
7769 *
7770 * As a side effect this will prevent
7771 * validate_intrastage_interface_blocks() from getting confused and
7772 * thinking there are conflicting definitions of gl_PerVertex in the
7773 * shader.
7774 */
7775 foreach_in_list_safe(ir_instruction, node, instructions) {
7776 ir_variable *const var = node->as_variable();
7777 if (var != NULL &&
7778 var->get_interface_type() == earlier_per_vertex &&
7779 var->data.mode == var_mode) {
7780 if (var->data.how_declared == ir_var_declared_normally) {
7781 _mesa_glsl_error(&loc, state,
7782 "redeclaration of gl_PerVertex cannot "
7783 "follow a redeclaration of `%s'",
7784 var->name);
7785 }
7786 state->symbols->disable_variable(var->name);
7787 var->remove();
7788 }
7789 }
7790 }
7791 }
7792
7793 return NULL;
7794 }
7795
7796
7797 ir_rvalue *
7798 ast_tcs_output_layout::hir(exec_list *instructions,
7799 struct _mesa_glsl_parse_state *state)
7800 {
7801 YYLTYPE loc = this->get_location();
7802
7803 unsigned num_vertices;
7804 if (!state->out_qualifier->vertices->
7805 process_qualifier_constant(state, "vertices", &num_vertices,
7806 false)) {
7807 /* return here to stop cascading incorrect error messages */
7808 return NULL;
7809 }
7810
7811 /* If any shader outputs occurred before this declaration and specified an
7812 * array size, make sure the size they specified is consistent with the
7813 * primitive type.
7814 */
7815 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7816 _mesa_glsl_error(&loc, state,
7817 "this tessellation control shader output layout "
7818 "specifies %u vertices, but a previous output "
7819 "is declared with size %u",
7820 num_vertices, state->tcs_output_size);
7821 return NULL;
7822 }
7823
7824 state->tcs_output_vertices_specified = true;
7825
7826 /* If any shader outputs occurred before this declaration and did not
7827 * specify an array size, their size is determined now.
7828 */
7829 foreach_in_list (ir_instruction, node, instructions) {
7830 ir_variable *var = node->as_variable();
7831 if (var == NULL || var->data.mode != ir_var_shader_out)
7832 continue;
7833
7834 /* Note: Not all tessellation control shader output are arrays. */
7835 if (!var->type->is_unsized_array() || var->data.patch)
7836 continue;
7837
7838 if (var->data.max_array_access >= (int)num_vertices) {
7839 _mesa_glsl_error(&loc, state,
7840 "this tessellation control shader output layout "
7841 "specifies %u vertices, but an access to element "
7842 "%u of output `%s' already exists", num_vertices,
7843 var->data.max_array_access, var->name);
7844 } else {
7845 var->type = glsl_type::get_array_instance(var->type->fields.array,
7846 num_vertices);
7847 }
7848 }
7849
7850 return NULL;
7851 }
7852
7853
7854 ir_rvalue *
7855 ast_gs_input_layout::hir(exec_list *instructions,
7856 struct _mesa_glsl_parse_state *state)
7857 {
7858 YYLTYPE loc = this->get_location();
7859
7860 /* If any geometry input layout declaration preceded this one, make sure it
7861 * was consistent with this one.
7862 */
7863 if (state->gs_input_prim_type_specified &&
7864 state->in_qualifier->prim_type != this->prim_type) {
7865 _mesa_glsl_error(&loc, state,
7866 "geometry shader input layout does not match"
7867 " previous declaration");
7868 return NULL;
7869 }
7870
7871 /* If any shader inputs occurred before this declaration and specified an
7872 * array size, make sure the size they specified is consistent with the
7873 * primitive type.
7874 */
7875 unsigned num_vertices = vertices_per_prim(this->prim_type);
7876 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7877 _mesa_glsl_error(&loc, state,
7878 "this geometry shader input layout implies %u vertices"
7879 " per primitive, but a previous input is declared"
7880 " with size %u", num_vertices, state->gs_input_size);
7881 return NULL;
7882 }
7883
7884 state->gs_input_prim_type_specified = true;
7885
7886 /* If any shader inputs occurred before this declaration and did not
7887 * specify an array size, their size is determined now.
7888 */
7889 foreach_in_list(ir_instruction, node, instructions) {
7890 ir_variable *var = node->as_variable();
7891 if (var == NULL || var->data.mode != ir_var_shader_in)
7892 continue;
7893
7894 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7895 * array; skip it.
7896 */
7897
7898 if (var->type->is_unsized_array()) {
7899 if (var->data.max_array_access >= (int)num_vertices) {
7900 _mesa_glsl_error(&loc, state,
7901 "this geometry shader input layout implies %u"
7902 " vertices, but an access to element %u of input"
7903 " `%s' already exists", num_vertices,
7904 var->data.max_array_access, var->name);
7905 } else {
7906 var->type = glsl_type::get_array_instance(var->type->fields.array,
7907 num_vertices);
7908 }
7909 }
7910 }
7911
7912 return NULL;
7913 }
7914
7915
7916 ir_rvalue *
7917 ast_cs_input_layout::hir(exec_list *instructions,
7918 struct _mesa_glsl_parse_state *state)
7919 {
7920 YYLTYPE loc = this->get_location();
7921
7922 /* From the ARB_compute_shader specification:
7923 *
7924 * If the local size of the shader in any dimension is greater
7925 * than the maximum size supported by the implementation for that
7926 * dimension, a compile-time error results.
7927 *
7928 * It is not clear from the spec how the error should be reported if
7929 * the total size of the work group exceeds
7930 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7931 * report it at compile time as well.
7932 */
7933 GLuint64 total_invocations = 1;
7934 unsigned qual_local_size[3];
7935 for (int i = 0; i < 3; i++) {
7936
7937 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7938 'x' + i);
7939 /* Infer a local_size of 1 for unspecified dimensions */
7940 if (this->local_size[i] == NULL) {
7941 qual_local_size[i] = 1;
7942 } else if (!this->local_size[i]->
7943 process_qualifier_constant(state, local_size_str,
7944 &qual_local_size[i], false)) {
7945 ralloc_free(local_size_str);
7946 return NULL;
7947 }
7948 ralloc_free(local_size_str);
7949
7950 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7951 _mesa_glsl_error(&loc, state,
7952 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7953 " (%d)", 'x' + i,
7954 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7955 break;
7956 }
7957 total_invocations *= qual_local_size[i];
7958 if (total_invocations >
7959 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7960 _mesa_glsl_error(&loc, state,
7961 "product of local_sizes exceeds "
7962 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7963 state->ctx->Const.MaxComputeWorkGroupInvocations);
7964 break;
7965 }
7966 }
7967
7968 /* If any compute input layout declaration preceded this one, make sure it
7969 * was consistent with this one.
7970 */
7971 if (state->cs_input_local_size_specified) {
7972 for (int i = 0; i < 3; i++) {
7973 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7974 _mesa_glsl_error(&loc, state,
7975 "compute shader input layout does not match"
7976 " previous declaration");
7977 return NULL;
7978 }
7979 }
7980 }
7981
7982 state->cs_input_local_size_specified = true;
7983 for (int i = 0; i < 3; i++)
7984 state->cs_input_local_size[i] = qual_local_size[i];
7985
7986 /* We may now declare the built-in constant gl_WorkGroupSize (see
7987 * builtin_variable_generator::generate_constants() for why we didn't
7988 * declare it earlier).
7989 */
7990 ir_variable *var = new(state->symbols)
7991 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7992 var->data.how_declared = ir_var_declared_implicitly;
7993 var->data.read_only = true;
7994 instructions->push_tail(var);
7995 state->symbols->add_variable(var);
7996 ir_constant_data data;
7997 memset(&data, 0, sizeof(data));
7998 for (int i = 0; i < 3; i++)
7999 data.u[i] = qual_local_size[i];
8000 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8001 var->constant_initializer =
8002 new(var) ir_constant(glsl_type::uvec3_type, &data);
8003 var->data.has_initializer = true;
8004
8005 return NULL;
8006 }
8007
8008
8009 static void
8010 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8011 exec_list *instructions)
8012 {
8013 bool gl_FragColor_assigned = false;
8014 bool gl_FragData_assigned = false;
8015 bool gl_FragSecondaryColor_assigned = false;
8016 bool gl_FragSecondaryData_assigned = false;
8017 bool user_defined_fs_output_assigned = false;
8018 ir_variable *user_defined_fs_output = NULL;
8019
8020 /* It would be nice to have proper location information. */
8021 YYLTYPE loc;
8022 memset(&loc, 0, sizeof(loc));
8023
8024 foreach_in_list(ir_instruction, node, instructions) {
8025 ir_variable *var = node->as_variable();
8026
8027 if (!var || !var->data.assigned)
8028 continue;
8029
8030 if (strcmp(var->name, "gl_FragColor") == 0)
8031 gl_FragColor_assigned = true;
8032 else if (strcmp(var->name, "gl_FragData") == 0)
8033 gl_FragData_assigned = true;
8034 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8035 gl_FragSecondaryColor_assigned = true;
8036 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8037 gl_FragSecondaryData_assigned = true;
8038 else if (!is_gl_identifier(var->name)) {
8039 if (state->stage == MESA_SHADER_FRAGMENT &&
8040 var->data.mode == ir_var_shader_out) {
8041 user_defined_fs_output_assigned = true;
8042 user_defined_fs_output = var;
8043 }
8044 }
8045 }
8046
8047 /* From the GLSL 1.30 spec:
8048 *
8049 * "If a shader statically assigns a value to gl_FragColor, it
8050 * may not assign a value to any element of gl_FragData. If a
8051 * shader statically writes a value to any element of
8052 * gl_FragData, it may not assign a value to
8053 * gl_FragColor. That is, a shader may assign values to either
8054 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8055 * linked together must also consistently write just one of
8056 * these variables. Similarly, if user declared output
8057 * variables are in use (statically assigned to), then the
8058 * built-in variables gl_FragColor and gl_FragData may not be
8059 * assigned to. These incorrect usages all generate compile
8060 * time errors."
8061 */
8062 if (gl_FragColor_assigned && gl_FragData_assigned) {
8063 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8064 "`gl_FragColor' and `gl_FragData'");
8065 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8066 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8067 "`gl_FragColor' and `%s'",
8068 user_defined_fs_output->name);
8069 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8070 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8071 "`gl_FragSecondaryColorEXT' and"
8072 " `gl_FragSecondaryDataEXT'");
8073 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8074 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8075 "`gl_FragColor' and"
8076 " `gl_FragSecondaryDataEXT'");
8077 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8078 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8079 "`gl_FragData' and"
8080 " `gl_FragSecondaryColorEXT'");
8081 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8082 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8083 "`gl_FragData' and `%s'",
8084 user_defined_fs_output->name);
8085 }
8086
8087 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8088 !state->EXT_blend_func_extended_enable) {
8089 _mesa_glsl_error(&loc, state,
8090 "Dual source blending requires EXT_blend_func_extended");
8091 }
8092 }
8093
8094
8095 static void
8096 remove_per_vertex_blocks(exec_list *instructions,
8097 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8098 {
8099 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8100 * if it exists in this shader type.
8101 */
8102 const glsl_type *per_vertex = NULL;
8103 switch (mode) {
8104 case ir_var_shader_in:
8105 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8106 per_vertex = gl_in->get_interface_type();
8107 break;
8108 case ir_var_shader_out:
8109 if (ir_variable *gl_Position =
8110 state->symbols->get_variable("gl_Position")) {
8111 per_vertex = gl_Position->get_interface_type();
8112 }
8113 break;
8114 default:
8115 assert(!"Unexpected mode");
8116 break;
8117 }
8118
8119 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8120 * need to do anything.
8121 */
8122 if (per_vertex == NULL)
8123 return;
8124
8125 /* If the interface block is used by the shader, then we don't need to do
8126 * anything.
8127 */
8128 interface_block_usage_visitor v(mode, per_vertex);
8129 v.run(instructions);
8130 if (v.usage_found())
8131 return;
8132
8133 /* Remove any ir_variable declarations that refer to the interface block
8134 * we're removing.
8135 */
8136 foreach_in_list_safe(ir_instruction, node, instructions) {
8137 ir_variable *const var = node->as_variable();
8138 if (var != NULL && var->get_interface_type() == per_vertex &&
8139 var->data.mode == mode) {
8140 state->symbols->disable_variable(var->name);
8141 var->remove();
8142 }
8143 }
8144 }