Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* ESSL does not allow implicit conversions */
295 if (state->es_shader)
296 return false;
297
298 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
299 *
300 * "There are no implicit array or structure conversions. For
301 * example, an array of int cannot be implicitly converted to an
302 * array of float.
303 */
304 if (!to->is_numeric() || !from->type->is_numeric())
305 return false;
306
307 /* We don't actually want the specific type `to`, we want a type
308 * with the same base type as `to`, but the same vector width as
309 * `from`.
310 */
311 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
312 from->type->matrix_columns);
313
314 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
315 if (op) {
316 from = new(ctx) ir_expression(op, to, from, NULL);
317 return true;
318 } else {
319 return false;
320 }
321 }
322
323
324 static const struct glsl_type *
325 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
326 bool multiply,
327 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
328 {
329 const glsl_type *type_a = value_a->type;
330 const glsl_type *type_b = value_b->type;
331
332 /* From GLSL 1.50 spec, page 56:
333 *
334 * "The arithmetic binary operators add (+), subtract (-),
335 * multiply (*), and divide (/) operate on integer and
336 * floating-point scalars, vectors, and matrices."
337 */
338 if (!type_a->is_numeric() || !type_b->is_numeric()) {
339 _mesa_glsl_error(loc, state,
340 "operands to arithmetic operators must be numeric");
341 return glsl_type::error_type;
342 }
343
344
345 /* "If one operand is floating-point based and the other is
346 * not, then the conversions from Section 4.1.10 "Implicit
347 * Conversions" are applied to the non-floating-point-based operand."
348 */
349 if (!apply_implicit_conversion(type_a, value_b, state)
350 && !apply_implicit_conversion(type_b, value_a, state)) {
351 _mesa_glsl_error(loc, state,
352 "could not implicitly convert operands to "
353 "arithmetic operator");
354 return glsl_type::error_type;
355 }
356 type_a = value_a->type;
357 type_b = value_b->type;
358
359 /* "If the operands are integer types, they must both be signed or
360 * both be unsigned."
361 *
362 * From this rule and the preceeding conversion it can be inferred that
363 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
364 * The is_numeric check above already filtered out the case where either
365 * type is not one of these, so now the base types need only be tested for
366 * equality.
367 */
368 if (type_a->base_type != type_b->base_type) {
369 _mesa_glsl_error(loc, state,
370 "base type mismatch for arithmetic operator");
371 return glsl_type::error_type;
372 }
373
374 /* "All arithmetic binary operators result in the same fundamental type
375 * (signed integer, unsigned integer, or floating-point) as the
376 * operands they operate on, after operand type conversion. After
377 * conversion, the following cases are valid
378 *
379 * * The two operands are scalars. In this case the operation is
380 * applied, resulting in a scalar."
381 */
382 if (type_a->is_scalar() && type_b->is_scalar())
383 return type_a;
384
385 /* "* One operand is a scalar, and the other is a vector or matrix.
386 * In this case, the scalar operation is applied independently to each
387 * component of the vector or matrix, resulting in the same size
388 * vector or matrix."
389 */
390 if (type_a->is_scalar()) {
391 if (!type_b->is_scalar())
392 return type_b;
393 } else if (type_b->is_scalar()) {
394 return type_a;
395 }
396
397 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
398 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
399 * handled.
400 */
401 assert(!type_a->is_scalar());
402 assert(!type_b->is_scalar());
403
404 /* "* The two operands are vectors of the same size. In this case, the
405 * operation is done component-wise resulting in the same size
406 * vector."
407 */
408 if (type_a->is_vector() && type_b->is_vector()) {
409 if (type_a == type_b) {
410 return type_a;
411 } else {
412 _mesa_glsl_error(loc, state,
413 "vector size mismatch for arithmetic operator");
414 return glsl_type::error_type;
415 }
416 }
417
418 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
419 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
420 * <vector, vector> have been handled. At least one of the operands must
421 * be matrix. Further, since there are no integer matrix types, the base
422 * type of both operands must be float.
423 */
424 assert(type_a->is_matrix() || type_b->is_matrix());
425 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
426 type_a->base_type == GLSL_TYPE_DOUBLE);
427 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
428 type_b->base_type == GLSL_TYPE_DOUBLE);
429
430 /* "* The operator is add (+), subtract (-), or divide (/), and the
431 * operands are matrices with the same number of rows and the same
432 * number of columns. In this case, the operation is done component-
433 * wise resulting in the same size matrix."
434 * * The operator is multiply (*), where both operands are matrices or
435 * one operand is a vector and the other a matrix. A right vector
436 * operand is treated as a column vector and a left vector operand as a
437 * row vector. In all these cases, it is required that the number of
438 * columns of the left operand is equal to the number of rows of the
439 * right operand. Then, the multiply (*) operation does a linear
440 * algebraic multiply, yielding an object that has the same number of
441 * rows as the left operand and the same number of columns as the right
442 * operand. Section 5.10 "Vector and Matrix Operations" explains in
443 * more detail how vectors and matrices are operated on."
444 */
445 if (! multiply) {
446 if (type_a == type_b)
447 return type_a;
448 } else {
449 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
450
451 if (type == glsl_type::error_type) {
452 _mesa_glsl_error(loc, state,
453 "size mismatch for matrix multiplication");
454 }
455
456 return type;
457 }
458
459
460 /* "All other cases are illegal."
461 */
462 _mesa_glsl_error(loc, state, "type mismatch");
463 return glsl_type::error_type;
464 }
465
466
467 static const struct glsl_type *
468 unary_arithmetic_result_type(const struct glsl_type *type,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 /* From GLSL 1.50 spec, page 57:
472 *
473 * "The arithmetic unary operators negate (-), post- and pre-increment
474 * and decrement (-- and ++) operate on integer or floating-point
475 * values (including vectors and matrices). All unary operators work
476 * component-wise on their operands. These result with the same type
477 * they operated on."
478 */
479 if (!type->is_numeric()) {
480 _mesa_glsl_error(loc, state,
481 "operands to arithmetic operators must be numeric");
482 return glsl_type::error_type;
483 }
484
485 return type;
486 }
487
488 /**
489 * \brief Return the result type of a bit-logic operation.
490 *
491 * If the given types to the bit-logic operator are invalid, return
492 * glsl_type::error_type.
493 *
494 * \param value_a LHS of bit-logic op
495 * \param value_b RHS of bit-logic op
496 */
497 static const struct glsl_type *
498 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
499 ast_operators op,
500 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
501 {
502 const glsl_type *type_a = value_a->type;
503 const glsl_type *type_b = value_b->type;
504
505 if (!state->check_bitwise_operations_allowed(loc)) {
506 return glsl_type::error_type;
507 }
508
509 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
510 *
511 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
512 * (|). The operands must be of type signed or unsigned integers or
513 * integer vectors."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
517 ast_expression::operator_string(op));
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
522 ast_expression::operator_string(op));
523 return glsl_type::error_type;
524 }
525
526 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
527 * make sense for bitwise operations, as they don't operate on floats.
528 *
529 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
530 * here. It wasn't clear whether or not we should apply them to bitwise
531 * operations. However, Khronos has decided that they should in future
532 * language revisions. Applications also rely on this behavior. We opt
533 * to apply them in general, but issue a portability warning.
534 *
535 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
536 */
537 if (type_a->base_type != type_b->base_type) {
538 if (!apply_implicit_conversion(type_a, value_b, state)
539 && !apply_implicit_conversion(type_b, value_a, state)) {
540 _mesa_glsl_error(loc, state,
541 "could not implicitly convert operands to "
542 "`%s` operator",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 } else {
546 _mesa_glsl_warning(loc, state,
547 "some implementations may not support implicit "
548 "int -> uint conversions for `%s' operators; "
549 "consider casting explicitly for portability",
550 ast_expression::operator_string(op));
551 }
552 type_a = value_a->type;
553 type_b = value_b->type;
554 }
555
556 /* "The fundamental types of the operands (signed or unsigned) must
557 * match,"
558 */
559 if (type_a->base_type != type_b->base_type) {
560 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
561 "base type", ast_expression::operator_string(op));
562 return glsl_type::error_type;
563 }
564
565 /* "The operands cannot be vectors of differing size." */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
570 "different sizes", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If one operand is a scalar and the other a vector, the scalar is
575 * applied component-wise to the vector, resulting in the same type as
576 * the vector. The fundamental types of the operands [...] will be the
577 * resulting fundamental type."
578 */
579 if (type_a->is_scalar())
580 return type_b;
581 else
582 return type_a;
583 }
584
585 static const struct glsl_type *
586 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
587 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
588 {
589 const glsl_type *type_a = value_a->type;
590 const glsl_type *type_b = value_b->type;
591
592 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
593 return glsl_type::error_type;
594 }
595
596 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
597 *
598 * "The operator modulus (%) operates on signed or unsigned integers or
599 * integer vectors."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605 if (!type_b->is_integer()) {
606 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
607 return glsl_type::error_type;
608 }
609
610 /* "If the fundamental types in the operands do not match, then the
611 * conversions from section 4.1.10 "Implicit Conversions" are applied
612 * to create matching types."
613 *
614 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
615 * int -> uint conversion rules. Prior to that, there were no implicit
616 * conversions. So it's harmless to apply them universally - no implicit
617 * conversions will exist. If the types don't match, we'll receive false,
618 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
619 *
620 * "The operand types must both be signed or unsigned."
621 */
622 if (!apply_implicit_conversion(type_a, value_b, state) &&
623 !apply_implicit_conversion(type_b, value_a, state)) {
624 _mesa_glsl_error(loc, state,
625 "could not implicitly convert operands to "
626 "modulus (%%) operator");
627 return glsl_type::error_type;
628 }
629 type_a = value_a->type;
630 type_b = value_b->type;
631
632 /* "The operands cannot be vectors of differing size. If one operand is
633 * a scalar and the other vector, then the scalar is applied component-
634 * wise to the vector, resulting in the same type as the vector. If both
635 * are vectors of the same size, the result is computed component-wise."
636 */
637 if (type_a->is_vector()) {
638 if (!type_b->is_vector()
639 || (type_a->vector_elements == type_b->vector_elements))
640 return type_a;
641 } else
642 return type_b;
643
644 /* "The operator modulus (%) is not defined for any other data types
645 * (non-integer types)."
646 */
647 _mesa_glsl_error(loc, state, "type mismatch");
648 return glsl_type::error_type;
649 }
650
651
652 static const struct glsl_type *
653 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
654 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
655 {
656 const glsl_type *type_a = value_a->type;
657 const glsl_type *type_b = value_b->type;
658
659 /* From GLSL 1.50 spec, page 56:
660 * "The relational operators greater than (>), less than (<), greater
661 * than or equal (>=), and less than or equal (<=) operate only on
662 * scalar integer and scalar floating-point expressions."
663 */
664 if (!type_a->is_numeric()
665 || !type_b->is_numeric()
666 || !type_a->is_scalar()
667 || !type_b->is_scalar()) {
668 _mesa_glsl_error(loc, state,
669 "operands to relational operators must be scalar and "
670 "numeric");
671 return glsl_type::error_type;
672 }
673
674 /* "Either the operands' types must match, or the conversions from
675 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
676 * operand, after which the types must match."
677 */
678 if (!apply_implicit_conversion(type_a, value_b, state)
679 && !apply_implicit_conversion(type_b, value_a, state)) {
680 _mesa_glsl_error(loc, state,
681 "could not implicitly convert operands to "
682 "relational operator");
683 return glsl_type::error_type;
684 }
685 type_a = value_a->type;
686 type_b = value_b->type;
687
688 if (type_a->base_type != type_b->base_type) {
689 _mesa_glsl_error(loc, state, "base type mismatch");
690 return glsl_type::error_type;
691 }
692
693 /* "The result is scalar Boolean."
694 */
695 return glsl_type::bool_type;
696 }
697
698 /**
699 * \brief Return the result type of a bit-shift operation.
700 *
701 * If the given types to the bit-shift operator are invalid, return
702 * glsl_type::error_type.
703 *
704 * \param type_a Type of LHS of bit-shift op
705 * \param type_b Type of RHS of bit-shift op
706 */
707 static const struct glsl_type *
708 shift_result_type(const struct glsl_type *type_a,
709 const struct glsl_type *type_b,
710 ast_operators op,
711 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
712 {
713 if (!state->check_bitwise_operations_allowed(loc)) {
714 return glsl_type::error_type;
715 }
716
717 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
718 *
719 * "The shift operators (<<) and (>>). For both operators, the operands
720 * must be signed or unsigned integers or integer vectors. One operand
721 * can be signed while the other is unsigned."
722 */
723 if (!type_a->is_integer()) {
724 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
725 "integer vector", ast_expression::operator_string(op));
726 return glsl_type::error_type;
727
728 }
729 if (!type_b->is_integer()) {
730 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
731 "integer vector", ast_expression::operator_string(op));
732 return glsl_type::error_type;
733 }
734
735 /* "If the first operand is a scalar, the second operand has to be
736 * a scalar as well."
737 */
738 if (type_a->is_scalar() && !type_b->is_scalar()) {
739 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
740 "second must be scalar as well",
741 ast_expression::operator_string(op));
742 return glsl_type::error_type;
743 }
744
745 /* If both operands are vectors, check that they have same number of
746 * elements.
747 */
748 if (type_a->is_vector() &&
749 type_b->is_vector() &&
750 type_a->vector_elements != type_b->vector_elements) {
751 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
752 "have same number of elements",
753 ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "In all cases, the resulting type will be the same type as the left
758 * operand."
759 */
760 return type_a;
761 }
762
763 /**
764 * Returns the innermost array index expression in an rvalue tree.
765 * This is the largest indexing level -- if an array of blocks, then
766 * it is the block index rather than an indexing expression for an
767 * array-typed member of an array of blocks.
768 */
769 static ir_rvalue *
770 find_innermost_array_index(ir_rvalue *rv)
771 {
772 ir_dereference_array *last = NULL;
773 while (rv) {
774 if (rv->as_dereference_array()) {
775 last = rv->as_dereference_array();
776 rv = last->array;
777 } else if (rv->as_dereference_record())
778 rv = rv->as_dereference_record()->record;
779 else if (rv->as_swizzle())
780 rv = rv->as_swizzle()->val;
781 else
782 rv = NULL;
783 }
784
785 if (last)
786 return last->array_index;
787
788 return NULL;
789 }
790
791 /**
792 * Validates that a value can be assigned to a location with a specified type
793 *
794 * Validates that \c rhs can be assigned to some location. If the types are
795 * not an exact match but an automatic conversion is possible, \c rhs will be
796 * converted.
797 *
798 * \return
799 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
800 * Otherwise the actual RHS to be assigned will be returned. This may be
801 * \c rhs, or it may be \c rhs after some type conversion.
802 *
803 * \note
804 * In addition to being used for assignments, this function is used to
805 * type-check return values.
806 */
807 static ir_rvalue *
808 validate_assignment(struct _mesa_glsl_parse_state *state,
809 YYLTYPE loc, ir_rvalue *lhs,
810 ir_rvalue *rhs, bool is_initializer)
811 {
812 /* If there is already some error in the RHS, just return it. Anything
813 * else will lead to an avalanche of error message back to the user.
814 */
815 if (rhs->type->is_error())
816 return rhs;
817
818 /* In the Tessellation Control Shader:
819 * If a per-vertex output variable is used as an l-value, it is an error
820 * if the expression indicating the vertex number is not the identifier
821 * `gl_InvocationID`.
822 */
823 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
824 ir_variable *var = lhs->variable_referenced();
825 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
826 ir_rvalue *index = find_innermost_array_index(lhs);
827 ir_variable *index_var = index ? index->variable_referenced() : NULL;
828 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
829 _mesa_glsl_error(&loc, state,
830 "Tessellation control shader outputs can only "
831 "be indexed by gl_InvocationID");
832 return NULL;
833 }
834 }
835 }
836
837 /* If the types are identical, the assignment can trivially proceed.
838 */
839 if (rhs->type == lhs->type)
840 return rhs;
841
842 /* If the array element types are the same and the LHS is unsized,
843 * the assignment is okay for initializers embedded in variable
844 * declarations.
845 *
846 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
847 * is handled by ir_dereference::is_lvalue.
848 */
849 const glsl_type *lhs_t = lhs->type;
850 const glsl_type *rhs_t = rhs->type;
851 bool unsized_array = false;
852 while(lhs_t->is_array()) {
853 if (rhs_t == lhs_t)
854 break; /* the rest of the inner arrays match so break out early */
855 if (!rhs_t->is_array()) {
856 unsized_array = false;
857 break; /* number of dimensions mismatch */
858 }
859 if (lhs_t->length == rhs_t->length) {
860 lhs_t = lhs_t->fields.array;
861 rhs_t = rhs_t->fields.array;
862 continue;
863 } else if (lhs_t->is_unsized_array()) {
864 unsized_array = true;
865 } else {
866 unsized_array = false;
867 break; /* sized array mismatch */
868 }
869 lhs_t = lhs_t->fields.array;
870 rhs_t = rhs_t->fields.array;
871 }
872 if (unsized_array) {
873 if (is_initializer) {
874 return rhs;
875 } else {
876 _mesa_glsl_error(&loc, state,
877 "implicitly sized arrays cannot be assigned");
878 return NULL;
879 }
880 }
881
882 /* Check for implicit conversion in GLSL 1.20 */
883 if (apply_implicit_conversion(lhs->type, rhs, state)) {
884 if (rhs->type == lhs->type)
885 return rhs;
886 }
887
888 _mesa_glsl_error(&loc, state,
889 "%s of type %s cannot be assigned to "
890 "variable of type %s",
891 is_initializer ? "initializer" : "value",
892 rhs->type->name, lhs->type->name);
893
894 return NULL;
895 }
896
897 static void
898 mark_whole_array_access(ir_rvalue *access)
899 {
900 ir_dereference_variable *deref = access->as_dereference_variable();
901
902 if (deref && deref->var) {
903 deref->var->data.max_array_access = deref->type->length - 1;
904 }
905 }
906
907 static bool
908 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
909 const char *non_lvalue_description,
910 ir_rvalue *lhs, ir_rvalue *rhs,
911 ir_rvalue **out_rvalue, bool needs_rvalue,
912 bool is_initializer,
913 YYLTYPE lhs_loc)
914 {
915 void *ctx = state;
916 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
917
918 ir_variable *lhs_var = lhs->variable_referenced();
919 if (lhs_var)
920 lhs_var->data.assigned = true;
921
922 if (!error_emitted) {
923 if (non_lvalue_description != NULL) {
924 _mesa_glsl_error(&lhs_loc, state,
925 "assignment to %s",
926 non_lvalue_description);
927 error_emitted = true;
928 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
929 (lhs_var->data.mode == ir_var_shader_storage &&
930 lhs_var->data.image_read_only))) {
931 /* We can have image_read_only set on both images and buffer variables,
932 * but in the former there is a distinction between assignments to
933 * the variable itself (read_only) and to the memory they point to
934 * (image_read_only), while in the case of buffer variables there is
935 * no such distinction, that is why this check here is limited to
936 * buffer variables alone.
937 */
938 _mesa_glsl_error(&lhs_loc, state,
939 "assignment to read-only variable '%s'",
940 lhs_var->name);
941 error_emitted = true;
942 } else if (lhs->type->is_array() &&
943 !state->check_version(120, 300, &lhs_loc,
944 "whole array assignment forbidden")) {
945 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
946 *
947 * "Other binary or unary expressions, non-dereferenced
948 * arrays, function names, swizzles with repeated fields,
949 * and constants cannot be l-values."
950 *
951 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
952 */
953 error_emitted = true;
954 } else if (!lhs->is_lvalue()) {
955 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
956 error_emitted = true;
957 }
958 }
959
960 ir_rvalue *new_rhs =
961 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
962 if (new_rhs != NULL) {
963 rhs = new_rhs;
964
965 /* If the LHS array was not declared with a size, it takes it size from
966 * the RHS. If the LHS is an l-value and a whole array, it must be a
967 * dereference of a variable. Any other case would require that the LHS
968 * is either not an l-value or not a whole array.
969 */
970 if (lhs->type->is_unsized_array()) {
971 ir_dereference *const d = lhs->as_dereference();
972
973 assert(d != NULL);
974
975 ir_variable *const var = d->variable_referenced();
976
977 assert(var != NULL);
978
979 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
980 /* FINISHME: This should actually log the location of the RHS. */
981 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
982 "previous access",
983 var->data.max_array_access);
984 }
985
986 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
987 rhs->type->array_size());
988 d->type = var->type;
989 }
990 if (lhs->type->is_array()) {
991 mark_whole_array_access(rhs);
992 mark_whole_array_access(lhs);
993 }
994 }
995
996 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
997 * but not post_inc) need the converted assigned value as an rvalue
998 * to handle things like:
999 *
1000 * i = j += 1;
1001 */
1002 if (needs_rvalue) {
1003 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1004 ir_var_temporary);
1005 instructions->push_tail(var);
1006 instructions->push_tail(assign(var, rhs));
1007
1008 if (!error_emitted) {
1009 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1010 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1011 }
1012 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1013
1014 *out_rvalue = rvalue;
1015 } else {
1016 if (!error_emitted)
1017 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1018 *out_rvalue = NULL;
1019 }
1020
1021 return error_emitted;
1022 }
1023
1024 static ir_rvalue *
1025 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1026 {
1027 void *ctx = ralloc_parent(lvalue);
1028 ir_variable *var;
1029
1030 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1031 ir_var_temporary);
1032 instructions->push_tail(var);
1033
1034 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1035 lvalue));
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 ir_rvalue *
1042 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1043 {
1044 (void) instructions;
1045 (void) state;
1046
1047 return NULL;
1048 }
1049
1050 bool
1051 ast_node::has_sequence_subexpression() const
1052 {
1053 return false;
1054 }
1055
1056 void
1057 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1058 struct _mesa_glsl_parse_state *state)
1059 {
1060 (void)hir(instructions, state);
1061 }
1062
1063 void
1064 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1065 struct _mesa_glsl_parse_state *state)
1066 {
1067 (void)hir(instructions, state);
1068 }
1069
1070 static ir_rvalue *
1071 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1072 {
1073 int join_op;
1074 ir_rvalue *cmp = NULL;
1075
1076 if (operation == ir_binop_all_equal)
1077 join_op = ir_binop_logic_and;
1078 else
1079 join_op = ir_binop_logic_or;
1080
1081 switch (op0->type->base_type) {
1082 case GLSL_TYPE_FLOAT:
1083 case GLSL_TYPE_UINT:
1084 case GLSL_TYPE_INT:
1085 case GLSL_TYPE_BOOL:
1086 case GLSL_TYPE_DOUBLE:
1087 return new(mem_ctx) ir_expression(operation, op0, op1);
1088
1089 case GLSL_TYPE_ARRAY: {
1090 for (unsigned int i = 0; i < op0->type->length; i++) {
1091 ir_rvalue *e0, *e1, *result;
1092
1093 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1094 new(mem_ctx) ir_constant(i));
1095 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1096 new(mem_ctx) ir_constant(i));
1097 result = do_comparison(mem_ctx, operation, e0, e1);
1098
1099 if (cmp) {
1100 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1101 } else {
1102 cmp = result;
1103 }
1104 }
1105
1106 mark_whole_array_access(op0);
1107 mark_whole_array_access(op1);
1108 break;
1109 }
1110
1111 case GLSL_TYPE_STRUCT: {
1112 for (unsigned int i = 0; i < op0->type->length; i++) {
1113 ir_rvalue *e0, *e1, *result;
1114 const char *field_name = op0->type->fields.structure[i].name;
1115
1116 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1117 field_name);
1118 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1119 field_name);
1120 result = do_comparison(mem_ctx, operation, e0, e1);
1121
1122 if (cmp) {
1123 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1124 } else {
1125 cmp = result;
1126 }
1127 }
1128 break;
1129 }
1130
1131 case GLSL_TYPE_ERROR:
1132 case GLSL_TYPE_VOID:
1133 case GLSL_TYPE_SAMPLER:
1134 case GLSL_TYPE_IMAGE:
1135 case GLSL_TYPE_INTERFACE:
1136 case GLSL_TYPE_ATOMIC_UINT:
1137 case GLSL_TYPE_SUBROUTINE:
1138 case GLSL_TYPE_FUNCTION:
1139 /* I assume a comparison of a struct containing a sampler just
1140 * ignores the sampler present in the type.
1141 */
1142 break;
1143 }
1144
1145 if (cmp == NULL)
1146 cmp = new(mem_ctx) ir_constant(true);
1147
1148 return cmp;
1149 }
1150
1151 /* For logical operations, we want to ensure that the operands are
1152 * scalar booleans. If it isn't, emit an error and return a constant
1153 * boolean to avoid triggering cascading error messages.
1154 */
1155 ir_rvalue *
1156 get_scalar_boolean_operand(exec_list *instructions,
1157 struct _mesa_glsl_parse_state *state,
1158 ast_expression *parent_expr,
1159 int operand,
1160 const char *operand_name,
1161 bool *error_emitted)
1162 {
1163 ast_expression *expr = parent_expr->subexpressions[operand];
1164 void *ctx = state;
1165 ir_rvalue *val = expr->hir(instructions, state);
1166
1167 if (val->type->is_boolean() && val->type->is_scalar())
1168 return val;
1169
1170 if (!*error_emitted) {
1171 YYLTYPE loc = expr->get_location();
1172 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1173 operand_name,
1174 parent_expr->operator_string(parent_expr->oper));
1175 *error_emitted = true;
1176 }
1177
1178 return new(ctx) ir_constant(true);
1179 }
1180
1181 /**
1182 * If name refers to a builtin array whose maximum allowed size is less than
1183 * size, report an error and return true. Otherwise return false.
1184 */
1185 void
1186 check_builtin_array_max_size(const char *name, unsigned size,
1187 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1188 {
1189 if ((strcmp("gl_TexCoord", name) == 0)
1190 && (size > state->Const.MaxTextureCoords)) {
1191 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1192 *
1193 * "The size [of gl_TexCoord] can be at most
1194 * gl_MaxTextureCoords."
1195 */
1196 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1197 "be larger than gl_MaxTextureCoords (%u)",
1198 state->Const.MaxTextureCoords);
1199 } else if (strcmp("gl_ClipDistance", name) == 0
1200 && size > state->Const.MaxClipPlanes) {
1201 /* From section 7.1 (Vertex Shader Special Variables) of the
1202 * GLSL 1.30 spec:
1203 *
1204 * "The gl_ClipDistance array is predeclared as unsized and
1205 * must be sized by the shader either redeclaring it with a
1206 * size or indexing it only with integral constant
1207 * expressions. ... The size can be at most
1208 * gl_MaxClipDistances."
1209 */
1210 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1211 "be larger than gl_MaxClipDistances (%u)",
1212 state->Const.MaxClipPlanes);
1213 }
1214 }
1215
1216 /**
1217 * Create the constant 1, of a which is appropriate for incrementing and
1218 * decrementing values of the given GLSL type. For example, if type is vec4,
1219 * this creates a constant value of 1.0 having type float.
1220 *
1221 * If the given type is invalid for increment and decrement operators, return
1222 * a floating point 1--the error will be detected later.
1223 */
1224 static ir_rvalue *
1225 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1226 {
1227 switch (type->base_type) {
1228 case GLSL_TYPE_UINT:
1229 return new(ctx) ir_constant((unsigned) 1);
1230 case GLSL_TYPE_INT:
1231 return new(ctx) ir_constant(1);
1232 default:
1233 case GLSL_TYPE_FLOAT:
1234 return new(ctx) ir_constant(1.0f);
1235 }
1236 }
1237
1238 ir_rvalue *
1239 ast_expression::hir(exec_list *instructions,
1240 struct _mesa_glsl_parse_state *state)
1241 {
1242 return do_hir(instructions, state, true);
1243 }
1244
1245 void
1246 ast_expression::hir_no_rvalue(exec_list *instructions,
1247 struct _mesa_glsl_parse_state *state)
1248 {
1249 do_hir(instructions, state, false);
1250 }
1251
1252 void
1253 ast_expression::set_is_lhs(bool new_value)
1254 {
1255 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1256 * if we lack a identifier we can just skip it.
1257 */
1258 if (this->primary_expression.identifier == NULL)
1259 return;
1260
1261 this->is_lhs = new_value;
1262
1263 /* We need to go through the subexpressions tree to cover cases like
1264 * ast_field_selection
1265 */
1266 if (this->subexpressions[0] != NULL)
1267 this->subexpressions[0]->set_is_lhs(new_value);
1268 }
1269
1270 ir_rvalue *
1271 ast_expression::do_hir(exec_list *instructions,
1272 struct _mesa_glsl_parse_state *state,
1273 bool needs_rvalue)
1274 {
1275 void *ctx = state;
1276 static const int operations[AST_NUM_OPERATORS] = {
1277 -1, /* ast_assign doesn't convert to ir_expression. */
1278 -1, /* ast_plus doesn't convert to ir_expression. */
1279 ir_unop_neg,
1280 ir_binop_add,
1281 ir_binop_sub,
1282 ir_binop_mul,
1283 ir_binop_div,
1284 ir_binop_mod,
1285 ir_binop_lshift,
1286 ir_binop_rshift,
1287 ir_binop_less,
1288 ir_binop_greater,
1289 ir_binop_lequal,
1290 ir_binop_gequal,
1291 ir_binop_all_equal,
1292 ir_binop_any_nequal,
1293 ir_binop_bit_and,
1294 ir_binop_bit_xor,
1295 ir_binop_bit_or,
1296 ir_unop_bit_not,
1297 ir_binop_logic_and,
1298 ir_binop_logic_xor,
1299 ir_binop_logic_or,
1300 ir_unop_logic_not,
1301
1302 /* Note: The following block of expression types actually convert
1303 * to multiple IR instructions.
1304 */
1305 ir_binop_mul, /* ast_mul_assign */
1306 ir_binop_div, /* ast_div_assign */
1307 ir_binop_mod, /* ast_mod_assign */
1308 ir_binop_add, /* ast_add_assign */
1309 ir_binop_sub, /* ast_sub_assign */
1310 ir_binop_lshift, /* ast_ls_assign */
1311 ir_binop_rshift, /* ast_rs_assign */
1312 ir_binop_bit_and, /* ast_and_assign */
1313 ir_binop_bit_xor, /* ast_xor_assign */
1314 ir_binop_bit_or, /* ast_or_assign */
1315
1316 -1, /* ast_conditional doesn't convert to ir_expression. */
1317 ir_binop_add, /* ast_pre_inc. */
1318 ir_binop_sub, /* ast_pre_dec. */
1319 ir_binop_add, /* ast_post_inc. */
1320 ir_binop_sub, /* ast_post_dec. */
1321 -1, /* ast_field_selection doesn't conv to ir_expression. */
1322 -1, /* ast_array_index doesn't convert to ir_expression. */
1323 -1, /* ast_function_call doesn't conv to ir_expression. */
1324 -1, /* ast_identifier doesn't convert to ir_expression. */
1325 -1, /* ast_int_constant doesn't convert to ir_expression. */
1326 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1327 -1, /* ast_float_constant doesn't conv to ir_expression. */
1328 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1329 -1, /* ast_sequence doesn't convert to ir_expression. */
1330 };
1331 ir_rvalue *result = NULL;
1332 ir_rvalue *op[3];
1333 const struct glsl_type *type; /* a temporary variable for switch cases */
1334 bool error_emitted = false;
1335 YYLTYPE loc;
1336
1337 loc = this->get_location();
1338
1339 switch (this->oper) {
1340 case ast_aggregate:
1341 assert(!"ast_aggregate: Should never get here.");
1342 break;
1343
1344 case ast_assign: {
1345 this->subexpressions[0]->set_is_lhs(true);
1346 op[0] = this->subexpressions[0]->hir(instructions, state);
1347 op[1] = this->subexpressions[1]->hir(instructions, state);
1348
1349 error_emitted =
1350 do_assignment(instructions, state,
1351 this->subexpressions[0]->non_lvalue_description,
1352 op[0], op[1], &result, needs_rvalue, false,
1353 this->subexpressions[0]->get_location());
1354 break;
1355 }
1356
1357 case ast_plus:
1358 op[0] = this->subexpressions[0]->hir(instructions, state);
1359
1360 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1361
1362 error_emitted = type->is_error();
1363
1364 result = op[0];
1365 break;
1366
1367 case ast_neg:
1368 op[0] = this->subexpressions[0]->hir(instructions, state);
1369
1370 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1371
1372 error_emitted = type->is_error();
1373
1374 result = new(ctx) ir_expression(operations[this->oper], type,
1375 op[0], NULL);
1376 break;
1377
1378 case ast_add:
1379 case ast_sub:
1380 case ast_mul:
1381 case ast_div:
1382 op[0] = this->subexpressions[0]->hir(instructions, state);
1383 op[1] = this->subexpressions[1]->hir(instructions, state);
1384
1385 type = arithmetic_result_type(op[0], op[1],
1386 (this->oper == ast_mul),
1387 state, & loc);
1388 error_emitted = type->is_error();
1389
1390 result = new(ctx) ir_expression(operations[this->oper], type,
1391 op[0], op[1]);
1392 break;
1393
1394 case ast_mod:
1395 op[0] = this->subexpressions[0]->hir(instructions, state);
1396 op[1] = this->subexpressions[1]->hir(instructions, state);
1397
1398 type = modulus_result_type(op[0], op[1], state, &loc);
1399
1400 assert(operations[this->oper] == ir_binop_mod);
1401
1402 result = new(ctx) ir_expression(operations[this->oper], type,
1403 op[0], op[1]);
1404 error_emitted = type->is_error();
1405 break;
1406
1407 case ast_lshift:
1408 case ast_rshift:
1409 if (!state->check_bitwise_operations_allowed(&loc)) {
1410 error_emitted = true;
1411 }
1412
1413 op[0] = this->subexpressions[0]->hir(instructions, state);
1414 op[1] = this->subexpressions[1]->hir(instructions, state);
1415 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1416 &loc);
1417 result = new(ctx) ir_expression(operations[this->oper], type,
1418 op[0], op[1]);
1419 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1420 break;
1421
1422 case ast_less:
1423 case ast_greater:
1424 case ast_lequal:
1425 case ast_gequal:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428
1429 type = relational_result_type(op[0], op[1], state, & loc);
1430
1431 /* The relational operators must either generate an error or result
1432 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1433 */
1434 assert(type->is_error()
1435 || ((type->base_type == GLSL_TYPE_BOOL)
1436 && type->is_scalar()));
1437
1438 result = new(ctx) ir_expression(operations[this->oper], type,
1439 op[0], op[1]);
1440 error_emitted = type->is_error();
1441 break;
1442
1443 case ast_nequal:
1444 case ast_equal:
1445 op[0] = this->subexpressions[0]->hir(instructions, state);
1446 op[1] = this->subexpressions[1]->hir(instructions, state);
1447
1448 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1449 *
1450 * "The equality operators equal (==), and not equal (!=)
1451 * operate on all types. They result in a scalar Boolean. If
1452 * the operand types do not match, then there must be a
1453 * conversion from Section 4.1.10 "Implicit Conversions"
1454 * applied to one operand that can make them match, in which
1455 * case this conversion is done."
1456 */
1457
1458 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1459 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1460 "no operation `%1$s' exists that takes a left-hand "
1461 "operand of type 'void' or a right operand of type "
1462 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1463 error_emitted = true;
1464 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1465 && !apply_implicit_conversion(op[1]->type, op[0], state))
1466 || (op[0]->type != op[1]->type)) {
1467 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1468 "type", (this->oper == ast_equal) ? "==" : "!=");
1469 error_emitted = true;
1470 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1471 !state->check_version(120, 300, &loc,
1472 "array comparisons forbidden")) {
1473 error_emitted = true;
1474 } else if ((op[0]->type->contains_opaque() ||
1475 op[1]->type->contains_opaque())) {
1476 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1477 error_emitted = true;
1478 }
1479
1480 if (error_emitted) {
1481 result = new(ctx) ir_constant(false);
1482 } else {
1483 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1484 assert(result->type == glsl_type::bool_type);
1485 }
1486 break;
1487
1488 case ast_bit_and:
1489 case ast_bit_xor:
1490 case ast_bit_or:
1491 op[0] = this->subexpressions[0]->hir(instructions, state);
1492 op[1] = this->subexpressions[1]->hir(instructions, state);
1493 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1494 result = new(ctx) ir_expression(operations[this->oper], type,
1495 op[0], op[1]);
1496 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1497 break;
1498
1499 case ast_bit_not:
1500 op[0] = this->subexpressions[0]->hir(instructions, state);
1501
1502 if (!state->check_bitwise_operations_allowed(&loc)) {
1503 error_emitted = true;
1504 }
1505
1506 if (!op[0]->type->is_integer()) {
1507 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1508 error_emitted = true;
1509 }
1510
1511 type = error_emitted ? glsl_type::error_type : op[0]->type;
1512 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1513 break;
1514
1515 case ast_logic_and: {
1516 exec_list rhs_instructions;
1517 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1518 "LHS", &error_emitted);
1519 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1520 "RHS", &error_emitted);
1521
1522 if (rhs_instructions.is_empty()) {
1523 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1524 type = result->type;
1525 } else {
1526 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1527 "and_tmp",
1528 ir_var_temporary);
1529 instructions->push_tail(tmp);
1530
1531 ir_if *const stmt = new(ctx) ir_if(op[0]);
1532 instructions->push_tail(stmt);
1533
1534 stmt->then_instructions.append_list(&rhs_instructions);
1535 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1536 ir_assignment *const then_assign =
1537 new(ctx) ir_assignment(then_deref, op[1]);
1538 stmt->then_instructions.push_tail(then_assign);
1539
1540 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1541 ir_assignment *const else_assign =
1542 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1543 stmt->else_instructions.push_tail(else_assign);
1544
1545 result = new(ctx) ir_dereference_variable(tmp);
1546 type = tmp->type;
1547 }
1548 break;
1549 }
1550
1551 case ast_logic_or: {
1552 exec_list rhs_instructions;
1553 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1554 "LHS", &error_emitted);
1555 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1556 "RHS", &error_emitted);
1557
1558 if (rhs_instructions.is_empty()) {
1559 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1560 type = result->type;
1561 } else {
1562 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1563 "or_tmp",
1564 ir_var_temporary);
1565 instructions->push_tail(tmp);
1566
1567 ir_if *const stmt = new(ctx) ir_if(op[0]);
1568 instructions->push_tail(stmt);
1569
1570 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1571 ir_assignment *const then_assign =
1572 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1573 stmt->then_instructions.push_tail(then_assign);
1574
1575 stmt->else_instructions.append_list(&rhs_instructions);
1576 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1577 ir_assignment *const else_assign =
1578 new(ctx) ir_assignment(else_deref, op[1]);
1579 stmt->else_instructions.push_tail(else_assign);
1580
1581 result = new(ctx) ir_dereference_variable(tmp);
1582 type = tmp->type;
1583 }
1584 break;
1585 }
1586
1587 case ast_logic_xor:
1588 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1589 *
1590 * "The logical binary operators and (&&), or ( | | ), and
1591 * exclusive or (^^). They operate only on two Boolean
1592 * expressions and result in a Boolean expression."
1593 */
1594 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1595 &error_emitted);
1596 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1597 &error_emitted);
1598
1599 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1600 op[0], op[1]);
1601 break;
1602
1603 case ast_logic_not:
1604 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1605 "operand", &error_emitted);
1606
1607 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1608 op[0], NULL);
1609 break;
1610
1611 case ast_mul_assign:
1612 case ast_div_assign:
1613 case ast_add_assign:
1614 case ast_sub_assign: {
1615 this->subexpressions[0]->set_is_lhs(true);
1616 op[0] = this->subexpressions[0]->hir(instructions, state);
1617 op[1] = this->subexpressions[1]->hir(instructions, state);
1618
1619 type = arithmetic_result_type(op[0], op[1],
1620 (this->oper == ast_mul_assign),
1621 state, & loc);
1622
1623 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1624 op[0], op[1]);
1625
1626 error_emitted =
1627 do_assignment(instructions, state,
1628 this->subexpressions[0]->non_lvalue_description,
1629 op[0]->clone(ctx, NULL), temp_rhs,
1630 &result, needs_rvalue, false,
1631 this->subexpressions[0]->get_location());
1632
1633 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1634 * explicitly test for this because none of the binary expression
1635 * operators allow array operands either.
1636 */
1637
1638 break;
1639 }
1640
1641 case ast_mod_assign: {
1642 this->subexpressions[0]->set_is_lhs(true);
1643 op[0] = this->subexpressions[0]->hir(instructions, state);
1644 op[1] = this->subexpressions[1]->hir(instructions, state);
1645
1646 type = modulus_result_type(op[0], op[1], state, &loc);
1647
1648 assert(operations[this->oper] == ir_binop_mod);
1649
1650 ir_rvalue *temp_rhs;
1651 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1652 op[0], op[1]);
1653
1654 error_emitted =
1655 do_assignment(instructions, state,
1656 this->subexpressions[0]->non_lvalue_description,
1657 op[0]->clone(ctx, NULL), temp_rhs,
1658 &result, needs_rvalue, false,
1659 this->subexpressions[0]->get_location());
1660 break;
1661 }
1662
1663 case ast_ls_assign:
1664 case ast_rs_assign: {
1665 this->subexpressions[0]->set_is_lhs(true);
1666 op[0] = this->subexpressions[0]->hir(instructions, state);
1667 op[1] = this->subexpressions[1]->hir(instructions, state);
1668 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1669 &loc);
1670 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1671 type, op[0], op[1]);
1672 error_emitted =
1673 do_assignment(instructions, state,
1674 this->subexpressions[0]->non_lvalue_description,
1675 op[0]->clone(ctx, NULL), temp_rhs,
1676 &result, needs_rvalue, false,
1677 this->subexpressions[0]->get_location());
1678 break;
1679 }
1680
1681 case ast_and_assign:
1682 case ast_xor_assign:
1683 case ast_or_assign: {
1684 this->subexpressions[0]->set_is_lhs(true);
1685 op[0] = this->subexpressions[0]->hir(instructions, state);
1686 op[1] = this->subexpressions[1]->hir(instructions, state);
1687 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1688 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1689 type, op[0], op[1]);
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696 break;
1697 }
1698
1699 case ast_conditional: {
1700 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1701 *
1702 * "The ternary selection operator (?:). It operates on three
1703 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1704 * first expression, which must result in a scalar Boolean."
1705 */
1706 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1707 "condition", &error_emitted);
1708
1709 /* The :? operator is implemented by generating an anonymous temporary
1710 * followed by an if-statement. The last instruction in each branch of
1711 * the if-statement assigns a value to the anonymous temporary. This
1712 * temporary is the r-value of the expression.
1713 */
1714 exec_list then_instructions;
1715 exec_list else_instructions;
1716
1717 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1718 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1719
1720 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1721 *
1722 * "The second and third expressions can be any type, as
1723 * long their types match, or there is a conversion in
1724 * Section 4.1.10 "Implicit Conversions" that can be applied
1725 * to one of the expressions to make their types match. This
1726 * resulting matching type is the type of the entire
1727 * expression."
1728 */
1729 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1730 && !apply_implicit_conversion(op[2]->type, op[1], state))
1731 || (op[1]->type != op[2]->type)) {
1732 YYLTYPE loc = this->subexpressions[1]->get_location();
1733
1734 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1735 "operator must have matching types");
1736 error_emitted = true;
1737 type = glsl_type::error_type;
1738 } else {
1739 type = op[1]->type;
1740 }
1741
1742 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1743 *
1744 * "The second and third expressions must be the same type, but can
1745 * be of any type other than an array."
1746 */
1747 if (type->is_array() &&
1748 !state->check_version(120, 300, &loc,
1749 "second and third operands of ?: operator "
1750 "cannot be arrays")) {
1751 error_emitted = true;
1752 }
1753
1754 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1755 *
1756 * "Except for array indexing, structure member selection, and
1757 * parentheses, opaque variables are not allowed to be operands in
1758 * expressions; such use results in a compile-time error."
1759 */
1760 if (type->contains_opaque()) {
1761 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1762 "of the ?: operator");
1763 error_emitted = true;
1764 }
1765
1766 ir_constant *cond_val = op[0]->constant_expression_value();
1767
1768 if (then_instructions.is_empty()
1769 && else_instructions.is_empty()
1770 && cond_val != NULL) {
1771 result = cond_val->value.b[0] ? op[1] : op[2];
1772 } else {
1773 /* The copy to conditional_tmp reads the whole array. */
1774 if (type->is_array()) {
1775 mark_whole_array_access(op[1]);
1776 mark_whole_array_access(op[2]);
1777 }
1778
1779 ir_variable *const tmp =
1780 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1781 instructions->push_tail(tmp);
1782
1783 ir_if *const stmt = new(ctx) ir_if(op[0]);
1784 instructions->push_tail(stmt);
1785
1786 then_instructions.move_nodes_to(& stmt->then_instructions);
1787 ir_dereference *const then_deref =
1788 new(ctx) ir_dereference_variable(tmp);
1789 ir_assignment *const then_assign =
1790 new(ctx) ir_assignment(then_deref, op[1]);
1791 stmt->then_instructions.push_tail(then_assign);
1792
1793 else_instructions.move_nodes_to(& stmt->else_instructions);
1794 ir_dereference *const else_deref =
1795 new(ctx) ir_dereference_variable(tmp);
1796 ir_assignment *const else_assign =
1797 new(ctx) ir_assignment(else_deref, op[2]);
1798 stmt->else_instructions.push_tail(else_assign);
1799
1800 result = new(ctx) ir_dereference_variable(tmp);
1801 }
1802 break;
1803 }
1804
1805 case ast_pre_inc:
1806 case ast_pre_dec: {
1807 this->non_lvalue_description = (this->oper == ast_pre_inc)
1808 ? "pre-increment operation" : "pre-decrement operation";
1809
1810 op[0] = this->subexpressions[0]->hir(instructions, state);
1811 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1812
1813 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1814
1815 ir_rvalue *temp_rhs;
1816 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1817 op[0], op[1]);
1818
1819 error_emitted =
1820 do_assignment(instructions, state,
1821 this->subexpressions[0]->non_lvalue_description,
1822 op[0]->clone(ctx, NULL), temp_rhs,
1823 &result, needs_rvalue, false,
1824 this->subexpressions[0]->get_location());
1825 break;
1826 }
1827
1828 case ast_post_inc:
1829 case ast_post_dec: {
1830 this->non_lvalue_description = (this->oper == ast_post_inc)
1831 ? "post-increment operation" : "post-decrement operation";
1832 op[0] = this->subexpressions[0]->hir(instructions, state);
1833 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1834
1835 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1836
1837 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1838
1839 ir_rvalue *temp_rhs;
1840 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1841 op[0], op[1]);
1842
1843 /* Get a temporary of a copy of the lvalue before it's modified.
1844 * This may get thrown away later.
1845 */
1846 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1847
1848 ir_rvalue *junk_rvalue;
1849 error_emitted =
1850 do_assignment(instructions, state,
1851 this->subexpressions[0]->non_lvalue_description,
1852 op[0]->clone(ctx, NULL), temp_rhs,
1853 &junk_rvalue, false, false,
1854 this->subexpressions[0]->get_location());
1855
1856 break;
1857 }
1858
1859 case ast_field_selection:
1860 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1861 break;
1862
1863 case ast_array_index: {
1864 YYLTYPE index_loc = subexpressions[1]->get_location();
1865
1866 /* Getting if an array is being used uninitialized is beyond what we get
1867 * from ir_value.data.assigned. Setting is_lhs as true would force to
1868 * not raise a uninitialized warning when using an array
1869 */
1870 subexpressions[0]->set_is_lhs(true);
1871 op[0] = subexpressions[0]->hir(instructions, state);
1872 op[1] = subexpressions[1]->hir(instructions, state);
1873
1874 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1875 loc, index_loc);
1876
1877 if (result->type->is_error())
1878 error_emitted = true;
1879
1880 break;
1881 }
1882
1883 case ast_unsized_array_dim:
1884 assert(!"ast_unsized_array_dim: Should never get here.");
1885 break;
1886
1887 case ast_function_call:
1888 /* Should *NEVER* get here. ast_function_call should always be handled
1889 * by ast_function_expression::hir.
1890 */
1891 assert(0);
1892 break;
1893
1894 case ast_identifier: {
1895 /* ast_identifier can appear several places in a full abstract syntax
1896 * tree. This particular use must be at location specified in the grammar
1897 * as 'variable_identifier'.
1898 */
1899 ir_variable *var =
1900 state->symbols->get_variable(this->primary_expression.identifier);
1901
1902 if (var != NULL) {
1903 var->data.used = true;
1904 result = new(ctx) ir_dereference_variable(var);
1905
1906 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1907 && !this->is_lhs
1908 && result->variable_referenced()->data.assigned != true
1909 && !is_gl_identifier(var->name)) {
1910 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1911 this->primary_expression.identifier);
1912 }
1913 } else {
1914 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1915 this->primary_expression.identifier);
1916
1917 result = ir_rvalue::error_value(ctx);
1918 error_emitted = true;
1919 }
1920 break;
1921 }
1922
1923 case ast_int_constant:
1924 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1925 break;
1926
1927 case ast_uint_constant:
1928 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1929 break;
1930
1931 case ast_float_constant:
1932 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1933 break;
1934
1935 case ast_bool_constant:
1936 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1937 break;
1938
1939 case ast_double_constant:
1940 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1941 break;
1942
1943 case ast_sequence: {
1944 /* It should not be possible to generate a sequence in the AST without
1945 * any expressions in it.
1946 */
1947 assert(!this->expressions.is_empty());
1948
1949 /* The r-value of a sequence is the last expression in the sequence. If
1950 * the other expressions in the sequence do not have side-effects (and
1951 * therefore add instructions to the instruction list), they get dropped
1952 * on the floor.
1953 */
1954 exec_node *previous_tail_pred = NULL;
1955 YYLTYPE previous_operand_loc = loc;
1956
1957 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1958 /* If one of the operands of comma operator does not generate any
1959 * code, we want to emit a warning. At each pass through the loop
1960 * previous_tail_pred will point to the last instruction in the
1961 * stream *before* processing the previous operand. Naturally,
1962 * instructions->tail_pred will point to the last instruction in the
1963 * stream *after* processing the previous operand. If the two
1964 * pointers match, then the previous operand had no effect.
1965 *
1966 * The warning behavior here differs slightly from GCC. GCC will
1967 * only emit a warning if none of the left-hand operands have an
1968 * effect. However, it will emit a warning for each. I believe that
1969 * there are some cases in C (especially with GCC extensions) where
1970 * it is useful to have an intermediate step in a sequence have no
1971 * effect, but I don't think these cases exist in GLSL. Either way,
1972 * it would be a giant hassle to replicate that behavior.
1973 */
1974 if (previous_tail_pred == instructions->tail_pred) {
1975 _mesa_glsl_warning(&previous_operand_loc, state,
1976 "left-hand operand of comma expression has "
1977 "no effect");
1978 }
1979
1980 /* tail_pred is directly accessed instead of using the get_tail()
1981 * method for performance reasons. get_tail() has extra code to
1982 * return NULL when the list is empty. We don't care about that
1983 * here, so using tail_pred directly is fine.
1984 */
1985 previous_tail_pred = instructions->tail_pred;
1986 previous_operand_loc = ast->get_location();
1987
1988 result = ast->hir(instructions, state);
1989 }
1990
1991 /* Any errors should have already been emitted in the loop above.
1992 */
1993 error_emitted = true;
1994 break;
1995 }
1996 }
1997 type = NULL; /* use result->type, not type. */
1998 assert(result != NULL || !needs_rvalue);
1999
2000 if (result && result->type->is_error() && !error_emitted)
2001 _mesa_glsl_error(& loc, state, "type mismatch");
2002
2003 return result;
2004 }
2005
2006 bool
2007 ast_expression::has_sequence_subexpression() const
2008 {
2009 switch (this->oper) {
2010 case ast_plus:
2011 case ast_neg:
2012 case ast_bit_not:
2013 case ast_logic_not:
2014 case ast_pre_inc:
2015 case ast_pre_dec:
2016 case ast_post_inc:
2017 case ast_post_dec:
2018 return this->subexpressions[0]->has_sequence_subexpression();
2019
2020 case ast_assign:
2021 case ast_add:
2022 case ast_sub:
2023 case ast_mul:
2024 case ast_div:
2025 case ast_mod:
2026 case ast_lshift:
2027 case ast_rshift:
2028 case ast_less:
2029 case ast_greater:
2030 case ast_lequal:
2031 case ast_gequal:
2032 case ast_nequal:
2033 case ast_equal:
2034 case ast_bit_and:
2035 case ast_bit_xor:
2036 case ast_bit_or:
2037 case ast_logic_and:
2038 case ast_logic_or:
2039 case ast_logic_xor:
2040 case ast_array_index:
2041 case ast_mul_assign:
2042 case ast_div_assign:
2043 case ast_add_assign:
2044 case ast_sub_assign:
2045 case ast_mod_assign:
2046 case ast_ls_assign:
2047 case ast_rs_assign:
2048 case ast_and_assign:
2049 case ast_xor_assign:
2050 case ast_or_assign:
2051 return this->subexpressions[0]->has_sequence_subexpression() ||
2052 this->subexpressions[1]->has_sequence_subexpression();
2053
2054 case ast_conditional:
2055 return this->subexpressions[0]->has_sequence_subexpression() ||
2056 this->subexpressions[1]->has_sequence_subexpression() ||
2057 this->subexpressions[2]->has_sequence_subexpression();
2058
2059 case ast_sequence:
2060 return true;
2061
2062 case ast_field_selection:
2063 case ast_identifier:
2064 case ast_int_constant:
2065 case ast_uint_constant:
2066 case ast_float_constant:
2067 case ast_bool_constant:
2068 case ast_double_constant:
2069 return false;
2070
2071 case ast_aggregate:
2072 unreachable("ast_aggregate: Should never get here.");
2073
2074 case ast_function_call:
2075 unreachable("should be handled by ast_function_expression::hir");
2076
2077 case ast_unsized_array_dim:
2078 unreachable("ast_unsized_array_dim: Should never get here.");
2079 }
2080
2081 return false;
2082 }
2083
2084 ir_rvalue *
2085 ast_expression_statement::hir(exec_list *instructions,
2086 struct _mesa_glsl_parse_state *state)
2087 {
2088 /* It is possible to have expression statements that don't have an
2089 * expression. This is the solitary semicolon:
2090 *
2091 * for (i = 0; i < 5; i++)
2092 * ;
2093 *
2094 * In this case the expression will be NULL. Test for NULL and don't do
2095 * anything in that case.
2096 */
2097 if (expression != NULL)
2098 expression->hir_no_rvalue(instructions, state);
2099
2100 /* Statements do not have r-values.
2101 */
2102 return NULL;
2103 }
2104
2105
2106 ir_rvalue *
2107 ast_compound_statement::hir(exec_list *instructions,
2108 struct _mesa_glsl_parse_state *state)
2109 {
2110 if (new_scope)
2111 state->symbols->push_scope();
2112
2113 foreach_list_typed (ast_node, ast, link, &this->statements)
2114 ast->hir(instructions, state);
2115
2116 if (new_scope)
2117 state->symbols->pop_scope();
2118
2119 /* Compound statements do not have r-values.
2120 */
2121 return NULL;
2122 }
2123
2124 /**
2125 * Evaluate the given exec_node (which should be an ast_node representing
2126 * a single array dimension) and return its integer value.
2127 */
2128 static unsigned
2129 process_array_size(exec_node *node,
2130 struct _mesa_glsl_parse_state *state)
2131 {
2132 exec_list dummy_instructions;
2133
2134 ast_node *array_size = exec_node_data(ast_node, node, link);
2135
2136 /**
2137 * Dimensions other than the outermost dimension can by unsized if they
2138 * are immediately sized by a constructor or initializer.
2139 */
2140 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2141 return 0;
2142
2143 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2144 YYLTYPE loc = array_size->get_location();
2145
2146 if (ir == NULL) {
2147 _mesa_glsl_error(& loc, state,
2148 "array size could not be resolved");
2149 return 0;
2150 }
2151
2152 if (!ir->type->is_integer()) {
2153 _mesa_glsl_error(& loc, state,
2154 "array size must be integer type");
2155 return 0;
2156 }
2157
2158 if (!ir->type->is_scalar()) {
2159 _mesa_glsl_error(& loc, state,
2160 "array size must be scalar type");
2161 return 0;
2162 }
2163
2164 ir_constant *const size = ir->constant_expression_value();
2165 if (size == NULL ||
2166 (state->is_version(120, 300) &&
2167 array_size->has_sequence_subexpression())) {
2168 _mesa_glsl_error(& loc, state, "array size must be a "
2169 "constant valued expression");
2170 return 0;
2171 }
2172
2173 if (size->value.i[0] <= 0) {
2174 _mesa_glsl_error(& loc, state, "array size must be > 0");
2175 return 0;
2176 }
2177
2178 assert(size->type == ir->type);
2179
2180 /* If the array size is const (and we've verified that
2181 * it is) then no instructions should have been emitted
2182 * when we converted it to HIR. If they were emitted,
2183 * then either the array size isn't const after all, or
2184 * we are emitting unnecessary instructions.
2185 */
2186 assert(dummy_instructions.is_empty());
2187
2188 return size->value.u[0];
2189 }
2190
2191 static const glsl_type *
2192 process_array_type(YYLTYPE *loc, const glsl_type *base,
2193 ast_array_specifier *array_specifier,
2194 struct _mesa_glsl_parse_state *state)
2195 {
2196 const glsl_type *array_type = base;
2197
2198 if (array_specifier != NULL) {
2199 if (base->is_array()) {
2200
2201 /* From page 19 (page 25) of the GLSL 1.20 spec:
2202 *
2203 * "Only one-dimensional arrays may be declared."
2204 */
2205 if (!state->check_arrays_of_arrays_allowed(loc)) {
2206 return glsl_type::error_type;
2207 }
2208 }
2209
2210 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2211 !node->is_head_sentinel(); node = node->prev) {
2212 unsigned array_size = process_array_size(node, state);
2213 array_type = glsl_type::get_array_instance(array_type, array_size);
2214 }
2215 }
2216
2217 return array_type;
2218 }
2219
2220 static bool
2221 precision_qualifier_allowed(const glsl_type *type)
2222 {
2223 /* Precision qualifiers apply to floating point, integer and opaque
2224 * types.
2225 *
2226 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2227 * "Any floating point or any integer declaration can have the type
2228 * preceded by one of these precision qualifiers [...] Literal
2229 * constants do not have precision qualifiers. Neither do Boolean
2230 * variables.
2231 *
2232 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2233 * spec also says:
2234 *
2235 * "Precision qualifiers are added for code portability with OpenGL
2236 * ES, not for functionality. They have the same syntax as in OpenGL
2237 * ES."
2238 *
2239 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2240 *
2241 * "uniform lowp sampler2D sampler;
2242 * highp vec2 coord;
2243 * ...
2244 * lowp vec4 col = texture2D (sampler, coord);
2245 * // texture2D returns lowp"
2246 *
2247 * From this, we infer that GLSL 1.30 (and later) should allow precision
2248 * qualifiers on sampler types just like float and integer types.
2249 */
2250 return (type->is_float()
2251 || type->is_integer()
2252 || type->contains_opaque())
2253 && !type->without_array()->is_record();
2254 }
2255
2256 const glsl_type *
2257 ast_type_specifier::glsl_type(const char **name,
2258 struct _mesa_glsl_parse_state *state) const
2259 {
2260 const struct glsl_type *type;
2261
2262 type = state->symbols->get_type(this->type_name);
2263 *name = this->type_name;
2264
2265 YYLTYPE loc = this->get_location();
2266 type = process_array_type(&loc, type, this->array_specifier, state);
2267
2268 return type;
2269 }
2270
2271 /**
2272 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2273 *
2274 * "The precision statement
2275 *
2276 * precision precision-qualifier type;
2277 *
2278 * can be used to establish a default precision qualifier. The type field can
2279 * be either int or float or any of the sampler types, (...) If type is float,
2280 * the directive applies to non-precision-qualified floating point type
2281 * (scalar, vector, and matrix) declarations. If type is int, the directive
2282 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2283 * and unsigned) declarations."
2284 *
2285 * We use the symbol table to keep the values of the default precisions for
2286 * each 'type' in each scope and we use the 'type' string from the precision
2287 * statement as key in the symbol table. When we want to retrieve the default
2288 * precision associated with a given glsl_type we need to know the type string
2289 * associated with it. This is what this function returns.
2290 */
2291 static const char *
2292 get_type_name_for_precision_qualifier(const glsl_type *type)
2293 {
2294 switch (type->base_type) {
2295 case GLSL_TYPE_FLOAT:
2296 return "float";
2297 case GLSL_TYPE_UINT:
2298 case GLSL_TYPE_INT:
2299 return "int";
2300 case GLSL_TYPE_ATOMIC_UINT:
2301 return "atomic_uint";
2302 case GLSL_TYPE_IMAGE:
2303 /* fallthrough */
2304 case GLSL_TYPE_SAMPLER: {
2305 const unsigned type_idx =
2306 type->sampler_array + 2 * type->sampler_shadow;
2307 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2308 assert(type_idx < 4);
2309 switch (type->sampled_type) {
2310 case GLSL_TYPE_FLOAT:
2311 switch (type->sampler_dimensionality) {
2312 case GLSL_SAMPLER_DIM_1D: {
2313 assert(type->base_type == GLSL_TYPE_SAMPLER);
2314 static const char *const names[4] = {
2315 "sampler1D", "sampler1DArray",
2316 "sampler1DShadow", "sampler1DArrayShadow"
2317 };
2318 return names[type_idx];
2319 }
2320 case GLSL_SAMPLER_DIM_2D: {
2321 static const char *const names[8] = {
2322 "sampler2D", "sampler2DArray",
2323 "sampler2DShadow", "sampler2DArrayShadow",
2324 "image2D", "image2DArray", NULL, NULL
2325 };
2326 return names[offset + type_idx];
2327 }
2328 case GLSL_SAMPLER_DIM_3D: {
2329 static const char *const names[8] = {
2330 "sampler3D", NULL, NULL, NULL,
2331 "image3D", NULL, NULL, NULL
2332 };
2333 return names[offset + type_idx];
2334 }
2335 case GLSL_SAMPLER_DIM_CUBE: {
2336 static const char *const names[8] = {
2337 "samplerCube", "samplerCubeArray",
2338 "samplerCubeShadow", "samplerCubeArrayShadow",
2339 "imageCube", NULL, NULL, NULL
2340 };
2341 return names[offset + type_idx];
2342 }
2343 case GLSL_SAMPLER_DIM_MS: {
2344 assert(type->base_type == GLSL_TYPE_SAMPLER);
2345 static const char *const names[4] = {
2346 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2347 };
2348 return names[type_idx];
2349 }
2350 case GLSL_SAMPLER_DIM_RECT: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "samplerRect", NULL, "samplerRectShadow", NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_BUF: {
2358 static const char *const names[8] = {
2359 "samplerBuffer", NULL, NULL, NULL,
2360 "imageBuffer", NULL, NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_EXTERNAL: {
2365 assert(type->base_type == GLSL_TYPE_SAMPLER);
2366 static const char *const names[4] = {
2367 "samplerExternalOES", NULL, NULL, NULL
2368 };
2369 return names[type_idx];
2370 }
2371 default:
2372 unreachable("Unsupported sampler/image dimensionality");
2373 } /* sampler/image float dimensionality */
2374 break;
2375 case GLSL_TYPE_INT:
2376 switch (type->sampler_dimensionality) {
2377 case GLSL_SAMPLER_DIM_1D: {
2378 assert(type->base_type == GLSL_TYPE_SAMPLER);
2379 static const char *const names[4] = {
2380 "isampler1D", "isampler1DArray", NULL, NULL
2381 };
2382 return names[type_idx];
2383 }
2384 case GLSL_SAMPLER_DIM_2D: {
2385 static const char *const names[8] = {
2386 "isampler2D", "isampler2DArray", NULL, NULL,
2387 "iimage2D", "iimage2DArray", NULL, NULL
2388 };
2389 return names[offset + type_idx];
2390 }
2391 case GLSL_SAMPLER_DIM_3D: {
2392 static const char *const names[8] = {
2393 "isampler3D", NULL, NULL, NULL,
2394 "iimage3D", NULL, NULL, NULL
2395 };
2396 return names[offset + type_idx];
2397 }
2398 case GLSL_SAMPLER_DIM_CUBE: {
2399 static const char *const names[8] = {
2400 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2401 "iimageCube", NULL, NULL, NULL
2402 };
2403 return names[offset + type_idx];
2404 }
2405 case GLSL_SAMPLER_DIM_MS: {
2406 assert(type->base_type == GLSL_TYPE_SAMPLER);
2407 static const char *const names[4] = {
2408 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2409 };
2410 return names[type_idx];
2411 }
2412 case GLSL_SAMPLER_DIM_RECT: {
2413 assert(type->base_type == GLSL_TYPE_SAMPLER);
2414 static const char *const names[4] = {
2415 "isamplerRect", NULL, "isamplerRectShadow", NULL
2416 };
2417 return names[type_idx];
2418 }
2419 case GLSL_SAMPLER_DIM_BUF: {
2420 static const char *const names[8] = {
2421 "isamplerBuffer", NULL, NULL, NULL,
2422 "iimageBuffer", NULL, NULL, NULL
2423 };
2424 return names[offset + type_idx];
2425 }
2426 default:
2427 unreachable("Unsupported isampler/iimage dimensionality");
2428 } /* sampler/image int dimensionality */
2429 break;
2430 case GLSL_TYPE_UINT:
2431 switch (type->sampler_dimensionality) {
2432 case GLSL_SAMPLER_DIM_1D: {
2433 assert(type->base_type == GLSL_TYPE_SAMPLER);
2434 static const char *const names[4] = {
2435 "usampler1D", "usampler1DArray", NULL, NULL
2436 };
2437 return names[type_idx];
2438 }
2439 case GLSL_SAMPLER_DIM_2D: {
2440 static const char *const names[8] = {
2441 "usampler2D", "usampler2DArray", NULL, NULL,
2442 "uimage2D", "uimage2DArray", NULL, NULL
2443 };
2444 return names[offset + type_idx];
2445 }
2446 case GLSL_SAMPLER_DIM_3D: {
2447 static const char *const names[8] = {
2448 "usampler3D", NULL, NULL, NULL,
2449 "uimage3D", NULL, NULL, NULL
2450 };
2451 return names[offset + type_idx];
2452 }
2453 case GLSL_SAMPLER_DIM_CUBE: {
2454 static const char *const names[8] = {
2455 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2456 "uimageCube", NULL, NULL, NULL
2457 };
2458 return names[offset + type_idx];
2459 }
2460 case GLSL_SAMPLER_DIM_MS: {
2461 assert(type->base_type == GLSL_TYPE_SAMPLER);
2462 static const char *const names[4] = {
2463 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2464 };
2465 return names[type_idx];
2466 }
2467 case GLSL_SAMPLER_DIM_RECT: {
2468 assert(type->base_type == GLSL_TYPE_SAMPLER);
2469 static const char *const names[4] = {
2470 "usamplerRect", NULL, "usamplerRectShadow", NULL
2471 };
2472 return names[type_idx];
2473 }
2474 case GLSL_SAMPLER_DIM_BUF: {
2475 static const char *const names[8] = {
2476 "usamplerBuffer", NULL, NULL, NULL,
2477 "uimageBuffer", NULL, NULL, NULL
2478 };
2479 return names[offset + type_idx];
2480 }
2481 default:
2482 unreachable("Unsupported usampler/uimage dimensionality");
2483 } /* sampler/image uint dimensionality */
2484 break;
2485 default:
2486 unreachable("Unsupported sampler/image type");
2487 } /* sampler/image type */
2488 break;
2489 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2490 break;
2491 default:
2492 unreachable("Unsupported type");
2493 } /* base type */
2494 }
2495
2496 static unsigned
2497 select_gles_precision(unsigned qual_precision,
2498 const glsl_type *type,
2499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2500 {
2501 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2502 * In GLES we take the precision from the type qualifier if present,
2503 * otherwise, if the type of the variable allows precision qualifiers at
2504 * all, we look for the default precision qualifier for that type in the
2505 * current scope.
2506 */
2507 assert(state->es_shader);
2508
2509 unsigned precision = GLSL_PRECISION_NONE;
2510 if (qual_precision) {
2511 precision = qual_precision;
2512 } else if (precision_qualifier_allowed(type)) {
2513 const char *type_name =
2514 get_type_name_for_precision_qualifier(type->without_array());
2515 assert(type_name != NULL);
2516
2517 precision =
2518 state->symbols->get_default_precision_qualifier(type_name);
2519 if (precision == ast_precision_none) {
2520 _mesa_glsl_error(loc, state,
2521 "No precision specified in this scope for type `%s'",
2522 type->name);
2523 }
2524 }
2525 return precision;
2526 }
2527
2528 const glsl_type *
2529 ast_fully_specified_type::glsl_type(const char **name,
2530 struct _mesa_glsl_parse_state *state) const
2531 {
2532 return this->specifier->glsl_type(name, state);
2533 }
2534
2535 /**
2536 * Determine whether a toplevel variable declaration declares a varying. This
2537 * function operates by examining the variable's mode and the shader target,
2538 * so it correctly identifies linkage variables regardless of whether they are
2539 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2540 *
2541 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2542 * this function will produce undefined results.
2543 */
2544 static bool
2545 is_varying_var(ir_variable *var, gl_shader_stage target)
2546 {
2547 switch (target) {
2548 case MESA_SHADER_VERTEX:
2549 return var->data.mode == ir_var_shader_out;
2550 case MESA_SHADER_FRAGMENT:
2551 return var->data.mode == ir_var_shader_in;
2552 default:
2553 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2554 }
2555 }
2556
2557
2558 /**
2559 * Matrix layout qualifiers are only allowed on certain types
2560 */
2561 static void
2562 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2563 YYLTYPE *loc,
2564 const glsl_type *type,
2565 ir_variable *var)
2566 {
2567 if (var && !var->is_in_buffer_block()) {
2568 /* Layout qualifiers may only apply to interface blocks and fields in
2569 * them.
2570 */
2571 _mesa_glsl_error(loc, state,
2572 "uniform block layout qualifiers row_major and "
2573 "column_major may not be applied to variables "
2574 "outside of uniform blocks");
2575 } else if (!type->without_array()->is_matrix()) {
2576 /* The OpenGL ES 3.0 conformance tests did not originally allow
2577 * matrix layout qualifiers on non-matrices. However, the OpenGL
2578 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2579 * amended to specifically allow these layouts on all types. Emit
2580 * a warning so that people know their code may not be portable.
2581 */
2582 _mesa_glsl_warning(loc, state,
2583 "uniform block layout qualifiers row_major and "
2584 "column_major applied to non-matrix types may "
2585 "be rejected by older compilers");
2586 }
2587 }
2588
2589 static bool
2590 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2591 struct _mesa_glsl_parse_state *state,
2592 unsigned xfb_buffer) {
2593 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2594 _mesa_glsl_error(loc, state,
2595 "invalid xfb_buffer specified %d is larger than "
2596 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2597 xfb_buffer,
2598 state->Const.MaxTransformFeedbackBuffers - 1);
2599 return false;
2600 }
2601
2602 return true;
2603 }
2604
2605 /* From the ARB_enhanced_layouts spec:
2606 *
2607 * "Variables and block members qualified with *xfb_offset* can be
2608 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2609 * The offset must be a multiple of the size of the first component of
2610 * the first qualified variable or block member, or a compile-time error
2611 * results. Further, if applied to an aggregate containing a double,
2612 * the offset must also be a multiple of 8, and the space taken in the
2613 * buffer will be a multiple of 8.
2614 */
2615 static bool
2616 validate_xfb_offset_qualifier(YYLTYPE *loc,
2617 struct _mesa_glsl_parse_state *state,
2618 int xfb_offset, const glsl_type *type,
2619 unsigned component_size) {
2620 const glsl_type *t_without_array = type->without_array();
2621
2622 if (xfb_offset != -1 && type->is_unsized_array()) {
2623 _mesa_glsl_error(loc, state,
2624 "xfb_offset can't be used with unsized arrays.");
2625 return false;
2626 }
2627
2628 /* Make sure nested structs don't contain unsized arrays, and validate
2629 * any xfb_offsets on interface members.
2630 */
2631 if (t_without_array->is_record() || t_without_array->is_interface())
2632 for (unsigned int i = 0; i < t_without_array->length; i++) {
2633 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2634
2635 /* When the interface block doesn't have an xfb_offset qualifier then
2636 * we apply the component size rules at the member level.
2637 */
2638 if (xfb_offset == -1)
2639 component_size = member_t->contains_double() ? 8 : 4;
2640
2641 int xfb_offset = t_without_array->fields.structure[i].offset;
2642 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2643 component_size);
2644 }
2645
2646 /* Nested structs or interface block without offset may not have had an
2647 * offset applied yet so return.
2648 */
2649 if (xfb_offset == -1) {
2650 return true;
2651 }
2652
2653 if (xfb_offset % component_size) {
2654 _mesa_glsl_error(loc, state,
2655 "invalid qualifier xfb_offset=%d must be a multiple "
2656 "of the first component size of the first qualified "
2657 "variable or block member. Or double if an aggregate "
2658 "that contains a double (%d).",
2659 xfb_offset, component_size);
2660 return false;
2661 }
2662
2663 return true;
2664 }
2665
2666 static bool
2667 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2668 unsigned stream)
2669 {
2670 if (stream >= state->ctx->Const.MaxVertexStreams) {
2671 _mesa_glsl_error(loc, state,
2672 "invalid stream specified %d is larger than "
2673 "MAX_VERTEX_STREAMS - 1 (%d).",
2674 stream, state->ctx->Const.MaxVertexStreams - 1);
2675 return false;
2676 }
2677
2678 return true;
2679 }
2680
2681 static void
2682 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2683 YYLTYPE *loc,
2684 ir_variable *var,
2685 const glsl_type *type,
2686 const ast_type_qualifier *qual)
2687 {
2688 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2689 _mesa_glsl_error(loc, state,
2690 "the \"binding\" qualifier only applies to uniforms and "
2691 "shader storage buffer objects");
2692 return;
2693 }
2694
2695 unsigned qual_binding;
2696 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2697 &qual_binding)) {
2698 return;
2699 }
2700
2701 const struct gl_context *const ctx = state->ctx;
2702 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2703 unsigned max_index = qual_binding + elements - 1;
2704 const glsl_type *base_type = type->without_array();
2705
2706 if (base_type->is_interface()) {
2707 /* UBOs. From page 60 of the GLSL 4.20 specification:
2708 * "If the binding point for any uniform block instance is less than zero,
2709 * or greater than or equal to the implementation-dependent maximum
2710 * number of uniform buffer bindings, a compilation error will occur.
2711 * When the binding identifier is used with a uniform block instanced as
2712 * an array of size N, all elements of the array from binding through
2713 * binding + N – 1 must be within this range."
2714 *
2715 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2716 */
2717 if (qual->flags.q.uniform &&
2718 max_index >= ctx->Const.MaxUniformBufferBindings) {
2719 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2720 "the maximum number of UBO binding points (%d)",
2721 qual_binding, elements,
2722 ctx->Const.MaxUniformBufferBindings);
2723 return;
2724 }
2725
2726 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2727 * "If the binding point for any uniform or shader storage block instance
2728 * is less than zero, or greater than or equal to the
2729 * implementation-dependent maximum number of uniform buffer bindings, a
2730 * compile-time error will occur. When the binding identifier is used
2731 * with a uniform or shader storage block instanced as an array of size
2732 * N, all elements of the array from binding through binding + N – 1 must
2733 * be within this range."
2734 */
2735 if (qual->flags.q.buffer &&
2736 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2737 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2738 "the maximum number of SSBO binding points (%d)",
2739 qual_binding, elements,
2740 ctx->Const.MaxShaderStorageBufferBindings);
2741 return;
2742 }
2743 } else if (base_type->is_sampler()) {
2744 /* Samplers. From page 63 of the GLSL 4.20 specification:
2745 * "If the binding is less than zero, or greater than or equal to the
2746 * implementation-dependent maximum supported number of units, a
2747 * compilation error will occur. When the binding identifier is used
2748 * with an array of size N, all elements of the array from binding
2749 * through binding + N - 1 must be within this range."
2750 */
2751 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2752
2753 if (max_index >= limit) {
2754 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2755 "exceeds the maximum number of texture image units "
2756 "(%u)", qual_binding, elements, limit);
2757
2758 return;
2759 }
2760 } else if (base_type->contains_atomic()) {
2761 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2762 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2763 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2764 " maximum number of atomic counter buffer bindings"
2765 "(%u)", qual_binding,
2766 ctx->Const.MaxAtomicBufferBindings);
2767
2768 return;
2769 }
2770 } else if ((state->is_version(420, 310) ||
2771 state->ARB_shading_language_420pack_enable) &&
2772 base_type->is_image()) {
2773 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2774 if (max_index >= ctx->Const.MaxImageUnits) {
2775 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2776 " maximum number of image units (%d)", max_index,
2777 ctx->Const.MaxImageUnits);
2778 return;
2779 }
2780
2781 } else {
2782 _mesa_glsl_error(loc, state,
2783 "the \"binding\" qualifier only applies to uniform "
2784 "blocks, opaque variables, or arrays thereof");
2785 return;
2786 }
2787
2788 var->data.explicit_binding = true;
2789 var->data.binding = qual_binding;
2790
2791 return;
2792 }
2793
2794
2795 static glsl_interp_qualifier
2796 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2797 ir_variable_mode mode,
2798 struct _mesa_glsl_parse_state *state,
2799 YYLTYPE *loc)
2800 {
2801 glsl_interp_qualifier interpolation;
2802 if (qual->flags.q.flat)
2803 interpolation = INTERP_QUALIFIER_FLAT;
2804 else if (qual->flags.q.noperspective)
2805 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2806 else if (qual->flags.q.smooth)
2807 interpolation = INTERP_QUALIFIER_SMOOTH;
2808 else
2809 interpolation = INTERP_QUALIFIER_NONE;
2810
2811 if (interpolation != INTERP_QUALIFIER_NONE) {
2812 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2813 _mesa_glsl_error(loc, state,
2814 "interpolation qualifier `%s' can only be applied to "
2815 "shader inputs or outputs.",
2816 interpolation_string(interpolation));
2817
2818 }
2819
2820 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2821 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2822 _mesa_glsl_error(loc, state,
2823 "interpolation qualifier `%s' cannot be applied to "
2824 "vertex shader inputs or fragment shader outputs",
2825 interpolation_string(interpolation));
2826 }
2827 } else if (state->es_shader &&
2828 ((mode == ir_var_shader_in &&
2829 state->stage != MESA_SHADER_VERTEX) ||
2830 (mode == ir_var_shader_out &&
2831 state->stage != MESA_SHADER_FRAGMENT))) {
2832 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2833 *
2834 * "When no interpolation qualifier is present, smooth interpolation
2835 * is used."
2836 */
2837 interpolation = INTERP_QUALIFIER_SMOOTH;
2838 }
2839
2840 return interpolation;
2841 }
2842
2843
2844 static void
2845 apply_explicit_location(const struct ast_type_qualifier *qual,
2846 ir_variable *var,
2847 struct _mesa_glsl_parse_state *state,
2848 YYLTYPE *loc)
2849 {
2850 bool fail = false;
2851
2852 unsigned qual_location;
2853 if (!process_qualifier_constant(state, loc, "location", qual->location,
2854 &qual_location)) {
2855 return;
2856 }
2857
2858 /* Checks for GL_ARB_explicit_uniform_location. */
2859 if (qual->flags.q.uniform) {
2860 if (!state->check_explicit_uniform_location_allowed(loc, var))
2861 return;
2862
2863 const struct gl_context *const ctx = state->ctx;
2864 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2865
2866 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2867 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2868 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2869 ctx->Const.MaxUserAssignableUniformLocations);
2870 return;
2871 }
2872
2873 var->data.explicit_location = true;
2874 var->data.location = qual_location;
2875 return;
2876 }
2877
2878 /* Between GL_ARB_explicit_attrib_location an
2879 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2880 * stage can be assigned explicit locations. The checking here associates
2881 * the correct extension with the correct stage's input / output:
2882 *
2883 * input output
2884 * ----- ------
2885 * vertex explicit_loc sso
2886 * tess control sso sso
2887 * tess eval sso sso
2888 * geometry sso sso
2889 * fragment sso explicit_loc
2890 */
2891 switch (state->stage) {
2892 case MESA_SHADER_VERTEX:
2893 if (var->data.mode == ir_var_shader_in) {
2894 if (!state->check_explicit_attrib_location_allowed(loc, var))
2895 return;
2896
2897 break;
2898 }
2899
2900 if (var->data.mode == ir_var_shader_out) {
2901 if (!state->check_separate_shader_objects_allowed(loc, var))
2902 return;
2903
2904 break;
2905 }
2906
2907 fail = true;
2908 break;
2909
2910 case MESA_SHADER_TESS_CTRL:
2911 case MESA_SHADER_TESS_EVAL:
2912 case MESA_SHADER_GEOMETRY:
2913 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2914 if (!state->check_separate_shader_objects_allowed(loc, var))
2915 return;
2916
2917 break;
2918 }
2919
2920 fail = true;
2921 break;
2922
2923 case MESA_SHADER_FRAGMENT:
2924 if (var->data.mode == ir_var_shader_in) {
2925 if (!state->check_separate_shader_objects_allowed(loc, var))
2926 return;
2927
2928 break;
2929 }
2930
2931 if (var->data.mode == ir_var_shader_out) {
2932 if (!state->check_explicit_attrib_location_allowed(loc, var))
2933 return;
2934
2935 break;
2936 }
2937
2938 fail = true;
2939 break;
2940
2941 case MESA_SHADER_COMPUTE:
2942 _mesa_glsl_error(loc, state,
2943 "compute shader variables cannot be given "
2944 "explicit locations");
2945 return;
2946 };
2947
2948 if (fail) {
2949 _mesa_glsl_error(loc, state,
2950 "%s cannot be given an explicit location in %s shader",
2951 mode_string(var),
2952 _mesa_shader_stage_to_string(state->stage));
2953 } else {
2954 var->data.explicit_location = true;
2955
2956 switch (state->stage) {
2957 case MESA_SHADER_VERTEX:
2958 var->data.location = (var->data.mode == ir_var_shader_in)
2959 ? (qual_location + VERT_ATTRIB_GENERIC0)
2960 : (qual_location + VARYING_SLOT_VAR0);
2961 break;
2962
2963 case MESA_SHADER_TESS_CTRL:
2964 case MESA_SHADER_TESS_EVAL:
2965 case MESA_SHADER_GEOMETRY:
2966 if (var->data.patch)
2967 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2968 else
2969 var->data.location = qual_location + VARYING_SLOT_VAR0;
2970 break;
2971
2972 case MESA_SHADER_FRAGMENT:
2973 var->data.location = (var->data.mode == ir_var_shader_out)
2974 ? (qual_location + FRAG_RESULT_DATA0)
2975 : (qual_location + VARYING_SLOT_VAR0);
2976 break;
2977 case MESA_SHADER_COMPUTE:
2978 assert(!"Unexpected shader type");
2979 break;
2980 }
2981
2982 /* Check if index was set for the uniform instead of the function */
2983 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2984 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2985 "used with subroutine functions");
2986 return;
2987 }
2988
2989 unsigned qual_index;
2990 if (qual->flags.q.explicit_index &&
2991 process_qualifier_constant(state, loc, "index", qual->index,
2992 &qual_index)) {
2993 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2994 * Layout Qualifiers):
2995 *
2996 * "It is also a compile-time error if a fragment shader
2997 * sets a layout index to less than 0 or greater than 1."
2998 *
2999 * Older specifications don't mandate a behavior; we take
3000 * this as a clarification and always generate the error.
3001 */
3002 if (qual_index > 1) {
3003 _mesa_glsl_error(loc, state,
3004 "explicit index may only be 0 or 1");
3005 } else {
3006 var->data.explicit_index = true;
3007 var->data.index = qual_index;
3008 }
3009 }
3010 }
3011 }
3012
3013 static void
3014 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3015 ir_variable *var,
3016 struct _mesa_glsl_parse_state *state,
3017 YYLTYPE *loc)
3018 {
3019 const glsl_type *base_type = var->type->without_array();
3020
3021 if (base_type->is_image()) {
3022 if (var->data.mode != ir_var_uniform &&
3023 var->data.mode != ir_var_function_in) {
3024 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3025 "function parameters or uniform-qualified "
3026 "global variables");
3027 }
3028
3029 var->data.image_read_only |= qual->flags.q.read_only;
3030 var->data.image_write_only |= qual->flags.q.write_only;
3031 var->data.image_coherent |= qual->flags.q.coherent;
3032 var->data.image_volatile |= qual->flags.q._volatile;
3033 var->data.image_restrict |= qual->flags.q.restrict_flag;
3034 var->data.read_only = true;
3035
3036 if (qual->flags.q.explicit_image_format) {
3037 if (var->data.mode == ir_var_function_in) {
3038 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3039 "used on image function parameters");
3040 }
3041
3042 if (qual->image_base_type != base_type->sampled_type) {
3043 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3044 "base data type of the image");
3045 }
3046
3047 var->data.image_format = qual->image_format;
3048 } else {
3049 if (var->data.mode == ir_var_uniform) {
3050 if (state->es_shader) {
3051 _mesa_glsl_error(loc, state, "all image uniforms "
3052 "must have a format layout qualifier");
3053
3054 } else if (!qual->flags.q.write_only) {
3055 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3056 "`writeonly' must have a format layout "
3057 "qualifier");
3058 }
3059 }
3060
3061 var->data.image_format = GL_NONE;
3062 }
3063
3064 /* From page 70 of the GLSL ES 3.1 specification:
3065 *
3066 * "Except for image variables qualified with the format qualifiers
3067 * r32f, r32i, and r32ui, image variables must specify either memory
3068 * qualifier readonly or the memory qualifier writeonly."
3069 */
3070 if (state->es_shader &&
3071 var->data.image_format != GL_R32F &&
3072 var->data.image_format != GL_R32I &&
3073 var->data.image_format != GL_R32UI &&
3074 !var->data.image_read_only &&
3075 !var->data.image_write_only) {
3076 _mesa_glsl_error(loc, state, "image variables of format other than "
3077 "r32f, r32i or r32ui must be qualified `readonly' or "
3078 "`writeonly'");
3079 }
3080
3081 } else if (qual->flags.q.read_only ||
3082 qual->flags.q.write_only ||
3083 qual->flags.q.coherent ||
3084 qual->flags.q._volatile ||
3085 qual->flags.q.restrict_flag ||
3086 qual->flags.q.explicit_image_format) {
3087 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3088 "images");
3089 }
3090 }
3091
3092 static inline const char*
3093 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3094 {
3095 if (origin_upper_left && pixel_center_integer)
3096 return "origin_upper_left, pixel_center_integer";
3097 else if (origin_upper_left)
3098 return "origin_upper_left";
3099 else if (pixel_center_integer)
3100 return "pixel_center_integer";
3101 else
3102 return " ";
3103 }
3104
3105 static inline bool
3106 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3107 const struct ast_type_qualifier *qual)
3108 {
3109 /* If gl_FragCoord was previously declared, and the qualifiers were
3110 * different in any way, return true.
3111 */
3112 if (state->fs_redeclares_gl_fragcoord) {
3113 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3114 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3115 }
3116
3117 return false;
3118 }
3119
3120 static inline void
3121 validate_array_dimensions(const glsl_type *t,
3122 struct _mesa_glsl_parse_state *state,
3123 YYLTYPE *loc) {
3124 if (t->is_array()) {
3125 t = t->fields.array;
3126 while (t->is_array()) {
3127 if (t->is_unsized_array()) {
3128 _mesa_glsl_error(loc, state,
3129 "only the outermost array dimension can "
3130 "be unsized",
3131 t->name);
3132 break;
3133 }
3134 t = t->fields.array;
3135 }
3136 }
3137 }
3138
3139 static void
3140 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3141 ir_variable *var,
3142 struct _mesa_glsl_parse_state *state,
3143 YYLTYPE *loc)
3144 {
3145 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3146
3147 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3148 *
3149 * "Within any shader, the first redeclarations of gl_FragCoord
3150 * must appear before any use of gl_FragCoord."
3151 *
3152 * Generate a compiler error if above condition is not met by the
3153 * fragment shader.
3154 */
3155 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3156 if (earlier != NULL &&
3157 earlier->data.used &&
3158 !state->fs_redeclares_gl_fragcoord) {
3159 _mesa_glsl_error(loc, state,
3160 "gl_FragCoord used before its first redeclaration "
3161 "in fragment shader");
3162 }
3163
3164 /* Make sure all gl_FragCoord redeclarations specify the same layout
3165 * qualifiers.
3166 */
3167 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3168 const char *const qual_string =
3169 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3170 qual->flags.q.pixel_center_integer);
3171
3172 const char *const state_string =
3173 get_layout_qualifier_string(state->fs_origin_upper_left,
3174 state->fs_pixel_center_integer);
3175
3176 _mesa_glsl_error(loc, state,
3177 "gl_FragCoord redeclared with different layout "
3178 "qualifiers (%s) and (%s) ",
3179 state_string,
3180 qual_string);
3181 }
3182 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3183 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3184 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3185 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3186 state->fs_redeclares_gl_fragcoord =
3187 state->fs_origin_upper_left ||
3188 state->fs_pixel_center_integer ||
3189 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3190 }
3191
3192 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3193 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3194 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3195 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3196 const char *const qual_string = (qual->flags.q.origin_upper_left)
3197 ? "origin_upper_left" : "pixel_center_integer";
3198
3199 _mesa_glsl_error(loc, state,
3200 "layout qualifier `%s' can only be applied to "
3201 "fragment shader input `gl_FragCoord'",
3202 qual_string);
3203 }
3204
3205 if (qual->flags.q.explicit_location) {
3206 apply_explicit_location(qual, var, state, loc);
3207 } else if (qual->flags.q.explicit_index) {
3208 if (!qual->flags.q.subroutine_def)
3209 _mesa_glsl_error(loc, state,
3210 "explicit index requires explicit location");
3211 }
3212
3213 if (qual->flags.q.explicit_binding) {
3214 apply_explicit_binding(state, loc, var, var->type, qual);
3215 }
3216
3217 if (state->stage == MESA_SHADER_GEOMETRY &&
3218 qual->flags.q.out && qual->flags.q.stream) {
3219 unsigned qual_stream;
3220 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3221 &qual_stream) &&
3222 validate_stream_qualifier(loc, state, qual_stream)) {
3223 var->data.stream = qual_stream;
3224 }
3225 }
3226
3227 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3228 unsigned qual_xfb_buffer;
3229 if (process_qualifier_constant(state, loc, "xfb_buffer",
3230 qual->xfb_buffer, &qual_xfb_buffer) &&
3231 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3232 var->data.xfb_buffer = qual_xfb_buffer;
3233 if (qual->flags.q.explicit_xfb_buffer)
3234 var->data.explicit_xfb_buffer = true;
3235 }
3236 }
3237
3238 if (qual->flags.q.explicit_xfb_offset) {
3239 unsigned qual_xfb_offset;
3240 unsigned component_size = var->type->contains_double() ? 8 : 4;
3241
3242 if (process_qualifier_constant(state, loc, "xfb_offset",
3243 qual->offset, &qual_xfb_offset) &&
3244 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3245 var->type, component_size)) {
3246 var->data.offset = qual_xfb_offset;
3247 var->data.explicit_xfb_offset = true;
3248 }
3249 }
3250
3251 if (qual->flags.q.explicit_xfb_stride) {
3252 unsigned qual_xfb_stride;
3253 if (process_qualifier_constant(state, loc, "xfb_stride",
3254 qual->xfb_stride, &qual_xfb_stride)) {
3255 var->data.xfb_stride = qual_xfb_stride;
3256 var->data.explicit_xfb_stride = true;
3257 }
3258 }
3259
3260 if (var->type->contains_atomic()) {
3261 if (var->data.mode == ir_var_uniform) {
3262 if (var->data.explicit_binding) {
3263 unsigned *offset =
3264 &state->atomic_counter_offsets[var->data.binding];
3265
3266 if (*offset % ATOMIC_COUNTER_SIZE)
3267 _mesa_glsl_error(loc, state,
3268 "misaligned atomic counter offset");
3269
3270 var->data.offset = *offset;
3271 *offset += var->type->atomic_size();
3272
3273 } else {
3274 _mesa_glsl_error(loc, state,
3275 "atomic counters require explicit binding point");
3276 }
3277 } else if (var->data.mode != ir_var_function_in) {
3278 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3279 "function parameters or uniform-qualified "
3280 "global variables");
3281 }
3282 }
3283
3284 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3285 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3286 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3287 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3288 * These extensions and all following extensions that add the 'layout'
3289 * keyword have been modified to require the use of 'in' or 'out'.
3290 *
3291 * The following extension do not allow the deprecated keywords:
3292 *
3293 * GL_AMD_conservative_depth
3294 * GL_ARB_conservative_depth
3295 * GL_ARB_gpu_shader5
3296 * GL_ARB_separate_shader_objects
3297 * GL_ARB_tessellation_shader
3298 * GL_ARB_transform_feedback3
3299 * GL_ARB_uniform_buffer_object
3300 *
3301 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3302 * allow layout with the deprecated keywords.
3303 */
3304 const bool relaxed_layout_qualifier_checking =
3305 state->ARB_fragment_coord_conventions_enable;
3306
3307 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3308 || qual->flags.q.varying;
3309 if (qual->has_layout() && uses_deprecated_qualifier) {
3310 if (relaxed_layout_qualifier_checking) {
3311 _mesa_glsl_warning(loc, state,
3312 "`layout' qualifier may not be used with "
3313 "`attribute' or `varying'");
3314 } else {
3315 _mesa_glsl_error(loc, state,
3316 "`layout' qualifier may not be used with "
3317 "`attribute' or `varying'");
3318 }
3319 }
3320
3321 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3322 * AMD_conservative_depth.
3323 */
3324 int depth_layout_count = qual->flags.q.depth_any
3325 + qual->flags.q.depth_greater
3326 + qual->flags.q.depth_less
3327 + qual->flags.q.depth_unchanged;
3328 if (depth_layout_count > 0
3329 && !state->is_version(420, 0)
3330 && !state->AMD_conservative_depth_enable
3331 && !state->ARB_conservative_depth_enable) {
3332 _mesa_glsl_error(loc, state,
3333 "extension GL_AMD_conservative_depth or "
3334 "GL_ARB_conservative_depth must be enabled "
3335 "to use depth layout qualifiers");
3336 } else if (depth_layout_count > 0
3337 && strcmp(var->name, "gl_FragDepth") != 0) {
3338 _mesa_glsl_error(loc, state,
3339 "depth layout qualifiers can be applied only to "
3340 "gl_FragDepth");
3341 } else if (depth_layout_count > 1
3342 && strcmp(var->name, "gl_FragDepth") == 0) {
3343 _mesa_glsl_error(loc, state,
3344 "at most one depth layout qualifier can be applied to "
3345 "gl_FragDepth");
3346 }
3347 if (qual->flags.q.depth_any)
3348 var->data.depth_layout = ir_depth_layout_any;
3349 else if (qual->flags.q.depth_greater)
3350 var->data.depth_layout = ir_depth_layout_greater;
3351 else if (qual->flags.q.depth_less)
3352 var->data.depth_layout = ir_depth_layout_less;
3353 else if (qual->flags.q.depth_unchanged)
3354 var->data.depth_layout = ir_depth_layout_unchanged;
3355 else
3356 var->data.depth_layout = ir_depth_layout_none;
3357
3358 if (qual->flags.q.std140 ||
3359 qual->flags.q.std430 ||
3360 qual->flags.q.packed ||
3361 qual->flags.q.shared) {
3362 _mesa_glsl_error(loc, state,
3363 "uniform and shader storage block layout qualifiers "
3364 "std140, std430, packed, and shared can only be "
3365 "applied to uniform or shader storage blocks, not "
3366 "members");
3367 }
3368
3369 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3370 validate_matrix_layout_for_type(state, loc, var->type, var);
3371 }
3372
3373 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3374 * Inputs):
3375 *
3376 * "Fragment shaders also allow the following layout qualifier on in only
3377 * (not with variable declarations)
3378 * layout-qualifier-id
3379 * early_fragment_tests
3380 * [...]"
3381 */
3382 if (qual->flags.q.early_fragment_tests) {
3383 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3384 "valid in fragment shader input layout declaration.");
3385 }
3386 }
3387
3388 static void
3389 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3390 ir_variable *var,
3391 struct _mesa_glsl_parse_state *state,
3392 YYLTYPE *loc,
3393 bool is_parameter)
3394 {
3395 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3396
3397 if (qual->flags.q.invariant) {
3398 if (var->data.used) {
3399 _mesa_glsl_error(loc, state,
3400 "variable `%s' may not be redeclared "
3401 "`invariant' after being used",
3402 var->name);
3403 } else {
3404 var->data.invariant = 1;
3405 }
3406 }
3407
3408 if (qual->flags.q.precise) {
3409 if (var->data.used) {
3410 _mesa_glsl_error(loc, state,
3411 "variable `%s' may not be redeclared "
3412 "`precise' after being used",
3413 var->name);
3414 } else {
3415 var->data.precise = 1;
3416 }
3417 }
3418
3419 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3420 _mesa_glsl_error(loc, state,
3421 "`subroutine' may only be applied to uniforms, "
3422 "subroutine type declarations, or function definitions");
3423 }
3424
3425 if (qual->flags.q.constant || qual->flags.q.attribute
3426 || qual->flags.q.uniform
3427 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3428 var->data.read_only = 1;
3429
3430 if (qual->flags.q.centroid)
3431 var->data.centroid = 1;
3432
3433 if (qual->flags.q.sample)
3434 var->data.sample = 1;
3435
3436 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3437 if (state->es_shader) {
3438 var->data.precision =
3439 select_gles_precision(qual->precision, var->type, state, loc);
3440 }
3441
3442 if (qual->flags.q.patch)
3443 var->data.patch = 1;
3444
3445 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3446 var->type = glsl_type::error_type;
3447 _mesa_glsl_error(loc, state,
3448 "`attribute' variables may not be declared in the "
3449 "%s shader",
3450 _mesa_shader_stage_to_string(state->stage));
3451 }
3452
3453 /* Disallow layout qualifiers which may only appear on layout declarations. */
3454 if (qual->flags.q.prim_type) {
3455 _mesa_glsl_error(loc, state,
3456 "Primitive type may only be specified on GS input or output "
3457 "layout declaration, not on variables.");
3458 }
3459
3460 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3461 *
3462 * "However, the const qualifier cannot be used with out or inout."
3463 *
3464 * The same section of the GLSL 4.40 spec further clarifies this saying:
3465 *
3466 * "The const qualifier cannot be used with out or inout, or a
3467 * compile-time error results."
3468 */
3469 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3470 _mesa_glsl_error(loc, state,
3471 "`const' may not be applied to `out' or `inout' "
3472 "function parameters");
3473 }
3474
3475 /* If there is no qualifier that changes the mode of the variable, leave
3476 * the setting alone.
3477 */
3478 assert(var->data.mode != ir_var_temporary);
3479 if (qual->flags.q.in && qual->flags.q.out)
3480 var->data.mode = ir_var_function_inout;
3481 else if (qual->flags.q.in)
3482 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3483 else if (qual->flags.q.attribute
3484 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3485 var->data.mode = ir_var_shader_in;
3486 else if (qual->flags.q.out)
3487 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3488 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3489 var->data.mode = ir_var_shader_out;
3490 else if (qual->flags.q.uniform)
3491 var->data.mode = ir_var_uniform;
3492 else if (qual->flags.q.buffer)
3493 var->data.mode = ir_var_shader_storage;
3494 else if (qual->flags.q.shared_storage)
3495 var->data.mode = ir_var_shader_shared;
3496
3497 if (!is_parameter && is_varying_var(var, state->stage)) {
3498 /* User-defined ins/outs are not permitted in compute shaders. */
3499 if (state->stage == MESA_SHADER_COMPUTE) {
3500 _mesa_glsl_error(loc, state,
3501 "user-defined input and output variables are not "
3502 "permitted in compute shaders");
3503 }
3504
3505 /* This variable is being used to link data between shader stages (in
3506 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3507 * that is allowed for such purposes.
3508 *
3509 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3510 *
3511 * "The varying qualifier can be used only with the data types
3512 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3513 * these."
3514 *
3515 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3516 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3517 *
3518 * "Fragment inputs can only be signed and unsigned integers and
3519 * integer vectors, float, floating-point vectors, matrices, or
3520 * arrays of these. Structures cannot be input.
3521 *
3522 * Similar text exists in the section on vertex shader outputs.
3523 *
3524 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3525 * 3.00 spec allows structs as well. Varying structs are also allowed
3526 * in GLSL 1.50.
3527 */
3528 switch (var->type->get_scalar_type()->base_type) {
3529 case GLSL_TYPE_FLOAT:
3530 /* Ok in all GLSL versions */
3531 break;
3532 case GLSL_TYPE_UINT:
3533 case GLSL_TYPE_INT:
3534 if (state->is_version(130, 300))
3535 break;
3536 _mesa_glsl_error(loc, state,
3537 "varying variables must be of base type float in %s",
3538 state->get_version_string());
3539 break;
3540 case GLSL_TYPE_STRUCT:
3541 if (state->is_version(150, 300))
3542 break;
3543 _mesa_glsl_error(loc, state,
3544 "varying variables may not be of type struct");
3545 break;
3546 case GLSL_TYPE_DOUBLE:
3547 break;
3548 default:
3549 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3550 break;
3551 }
3552 }
3553
3554 if (state->all_invariant && (state->current_function == NULL)) {
3555 switch (state->stage) {
3556 case MESA_SHADER_VERTEX:
3557 if (var->data.mode == ir_var_shader_out)
3558 var->data.invariant = true;
3559 break;
3560 case MESA_SHADER_TESS_CTRL:
3561 case MESA_SHADER_TESS_EVAL:
3562 case MESA_SHADER_GEOMETRY:
3563 if ((var->data.mode == ir_var_shader_in)
3564 || (var->data.mode == ir_var_shader_out))
3565 var->data.invariant = true;
3566 break;
3567 case MESA_SHADER_FRAGMENT:
3568 if (var->data.mode == ir_var_shader_in)
3569 var->data.invariant = true;
3570 break;
3571 case MESA_SHADER_COMPUTE:
3572 /* Invariance isn't meaningful in compute shaders. */
3573 break;
3574 }
3575 }
3576
3577 var->data.interpolation =
3578 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3579 state, loc);
3580
3581 /* Does the declaration use the deprecated 'attribute' or 'varying'
3582 * keywords?
3583 */
3584 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3585 || qual->flags.q.varying;
3586
3587
3588 /* Validate auxiliary storage qualifiers */
3589
3590 /* From section 4.3.4 of the GLSL 1.30 spec:
3591 * "It is an error to use centroid in in a vertex shader."
3592 *
3593 * From section 4.3.4 of the GLSL ES 3.00 spec:
3594 * "It is an error to use centroid in or interpolation qualifiers in
3595 * a vertex shader input."
3596 */
3597
3598 /* Section 4.3.6 of the GLSL 1.30 specification states:
3599 * "It is an error to use centroid out in a fragment shader."
3600 *
3601 * The GL_ARB_shading_language_420pack extension specification states:
3602 * "It is an error to use auxiliary storage qualifiers or interpolation
3603 * qualifiers on an output in a fragment shader."
3604 */
3605 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3606 _mesa_glsl_error(loc, state,
3607 "sample qualifier may only be used on `in` or `out` "
3608 "variables between shader stages");
3609 }
3610 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3611 _mesa_glsl_error(loc, state,
3612 "centroid qualifier may only be used with `in', "
3613 "`out' or `varying' variables between shader stages");
3614 }
3615
3616 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3617 _mesa_glsl_error(loc, state,
3618 "the shared storage qualifiers can only be used with "
3619 "compute shaders");
3620 }
3621
3622 apply_image_qualifier_to_variable(qual, var, state, loc);
3623 }
3624
3625 /**
3626 * Get the variable that is being redeclared by this declaration
3627 *
3628 * Semantic checks to verify the validity of the redeclaration are also
3629 * performed. If semantic checks fail, compilation error will be emitted via
3630 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3631 *
3632 * \returns
3633 * A pointer to an existing variable in the current scope if the declaration
3634 * is a redeclaration, \c NULL otherwise.
3635 */
3636 static ir_variable *
3637 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3638 struct _mesa_glsl_parse_state *state,
3639 bool allow_all_redeclarations)
3640 {
3641 /* Check if this declaration is actually a re-declaration, either to
3642 * resize an array or add qualifiers to an existing variable.
3643 *
3644 * This is allowed for variables in the current scope, or when at
3645 * global scope (for built-ins in the implicit outer scope).
3646 */
3647 ir_variable *earlier = state->symbols->get_variable(var->name);
3648 if (earlier == NULL ||
3649 (state->current_function != NULL &&
3650 !state->symbols->name_declared_this_scope(var->name))) {
3651 return NULL;
3652 }
3653
3654
3655 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3656 *
3657 * "It is legal to declare an array without a size and then
3658 * later re-declare the same name as an array of the same
3659 * type and specify a size."
3660 */
3661 if (earlier->type->is_unsized_array() && var->type->is_array()
3662 && (var->type->fields.array == earlier->type->fields.array)) {
3663 /* FINISHME: This doesn't match the qualifiers on the two
3664 * FINISHME: declarations. It's not 100% clear whether this is
3665 * FINISHME: required or not.
3666 */
3667
3668 const unsigned size = unsigned(var->type->array_size());
3669 check_builtin_array_max_size(var->name, size, loc, state);
3670 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3671 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3672 "previous access",
3673 earlier->data.max_array_access);
3674 }
3675
3676 earlier->type = var->type;
3677 delete var;
3678 var = NULL;
3679 } else if ((state->ARB_fragment_coord_conventions_enable ||
3680 state->is_version(150, 0))
3681 && strcmp(var->name, "gl_FragCoord") == 0
3682 && earlier->type == var->type
3683 && var->data.mode == ir_var_shader_in) {
3684 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3685 * qualifiers.
3686 */
3687 earlier->data.origin_upper_left = var->data.origin_upper_left;
3688 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3689
3690 /* According to section 4.3.7 of the GLSL 1.30 spec,
3691 * the following built-in varaibles can be redeclared with an
3692 * interpolation qualifier:
3693 * * gl_FrontColor
3694 * * gl_BackColor
3695 * * gl_FrontSecondaryColor
3696 * * gl_BackSecondaryColor
3697 * * gl_Color
3698 * * gl_SecondaryColor
3699 */
3700 } else if (state->is_version(130, 0)
3701 && (strcmp(var->name, "gl_FrontColor") == 0
3702 || strcmp(var->name, "gl_BackColor") == 0
3703 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3704 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3705 || strcmp(var->name, "gl_Color") == 0
3706 || strcmp(var->name, "gl_SecondaryColor") == 0)
3707 && earlier->type == var->type
3708 && earlier->data.mode == var->data.mode) {
3709 earlier->data.interpolation = var->data.interpolation;
3710
3711 /* Layout qualifiers for gl_FragDepth. */
3712 } else if ((state->is_version(420, 0) ||
3713 state->AMD_conservative_depth_enable ||
3714 state->ARB_conservative_depth_enable)
3715 && strcmp(var->name, "gl_FragDepth") == 0
3716 && earlier->type == var->type
3717 && earlier->data.mode == var->data.mode) {
3718
3719 /** From the AMD_conservative_depth spec:
3720 * Within any shader, the first redeclarations of gl_FragDepth
3721 * must appear before any use of gl_FragDepth.
3722 */
3723 if (earlier->data.used) {
3724 _mesa_glsl_error(&loc, state,
3725 "the first redeclaration of gl_FragDepth "
3726 "must appear before any use of gl_FragDepth");
3727 }
3728
3729 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3730 if (earlier->data.depth_layout != ir_depth_layout_none
3731 && earlier->data.depth_layout != var->data.depth_layout) {
3732 _mesa_glsl_error(&loc, state,
3733 "gl_FragDepth: depth layout is declared here "
3734 "as '%s, but it was previously declared as "
3735 "'%s'",
3736 depth_layout_string(var->data.depth_layout),
3737 depth_layout_string(earlier->data.depth_layout));
3738 }
3739
3740 earlier->data.depth_layout = var->data.depth_layout;
3741
3742 } else if (allow_all_redeclarations) {
3743 if (earlier->data.mode != var->data.mode) {
3744 _mesa_glsl_error(&loc, state,
3745 "redeclaration of `%s' with incorrect qualifiers",
3746 var->name);
3747 } else if (earlier->type != var->type) {
3748 _mesa_glsl_error(&loc, state,
3749 "redeclaration of `%s' has incorrect type",
3750 var->name);
3751 }
3752 } else {
3753 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3754 }
3755
3756 return earlier;
3757 }
3758
3759 /**
3760 * Generate the IR for an initializer in a variable declaration
3761 */
3762 ir_rvalue *
3763 process_initializer(ir_variable *var, ast_declaration *decl,
3764 ast_fully_specified_type *type,
3765 exec_list *initializer_instructions,
3766 struct _mesa_glsl_parse_state *state)
3767 {
3768 ir_rvalue *result = NULL;
3769
3770 YYLTYPE initializer_loc = decl->initializer->get_location();
3771
3772 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3773 *
3774 * "All uniform variables are read-only and are initialized either
3775 * directly by an application via API commands, or indirectly by
3776 * OpenGL."
3777 */
3778 if (var->data.mode == ir_var_uniform) {
3779 state->check_version(120, 0, &initializer_loc,
3780 "cannot initialize uniform %s",
3781 var->name);
3782 }
3783
3784 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3785 *
3786 * "Buffer variables cannot have initializers."
3787 */
3788 if (var->data.mode == ir_var_shader_storage) {
3789 _mesa_glsl_error(&initializer_loc, state,
3790 "cannot initialize buffer variable %s",
3791 var->name);
3792 }
3793
3794 /* From section 4.1.7 of the GLSL 4.40 spec:
3795 *
3796 * "Opaque variables [...] are initialized only through the
3797 * OpenGL API; they cannot be declared with an initializer in a
3798 * shader."
3799 */
3800 if (var->type->contains_opaque()) {
3801 _mesa_glsl_error(&initializer_loc, state,
3802 "cannot initialize opaque variable %s",
3803 var->name);
3804 }
3805
3806 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3807 _mesa_glsl_error(&initializer_loc, state,
3808 "cannot initialize %s shader input / %s %s",
3809 _mesa_shader_stage_to_string(state->stage),
3810 (state->stage == MESA_SHADER_VERTEX)
3811 ? "attribute" : "varying",
3812 var->name);
3813 }
3814
3815 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3816 _mesa_glsl_error(&initializer_loc, state,
3817 "cannot initialize %s shader output %s",
3818 _mesa_shader_stage_to_string(state->stage),
3819 var->name);
3820 }
3821
3822 /* If the initializer is an ast_aggregate_initializer, recursively store
3823 * type information from the LHS into it, so that its hir() function can do
3824 * type checking.
3825 */
3826 if (decl->initializer->oper == ast_aggregate)
3827 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3828
3829 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3830 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3831
3832 /* Calculate the constant value if this is a const or uniform
3833 * declaration.
3834 *
3835 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3836 *
3837 * "Declarations of globals without a storage qualifier, or with
3838 * just the const qualifier, may include initializers, in which case
3839 * they will be initialized before the first line of main() is
3840 * executed. Such initializers must be a constant expression."
3841 *
3842 * The same section of the GLSL ES 3.00.4 spec has similar language.
3843 */
3844 if (type->qualifier.flags.q.constant
3845 || type->qualifier.flags.q.uniform
3846 || (state->es_shader && state->current_function == NULL)) {
3847 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3848 lhs, rhs, true);
3849 if (new_rhs != NULL) {
3850 rhs = new_rhs;
3851
3852 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3853 * says:
3854 *
3855 * "A constant expression is one of
3856 *
3857 * ...
3858 *
3859 * - an expression formed by an operator on operands that are
3860 * all constant expressions, including getting an element of
3861 * a constant array, or a field of a constant structure, or
3862 * components of a constant vector. However, the sequence
3863 * operator ( , ) and the assignment operators ( =, +=, ...)
3864 * are not included in the operators that can create a
3865 * constant expression."
3866 *
3867 * Section 12.43 (Sequence operator and constant expressions) says:
3868 *
3869 * "Should the following construct be allowed?
3870 *
3871 * float a[2,3];
3872 *
3873 * The expression within the brackets uses the sequence operator
3874 * (',') and returns the integer 3 so the construct is declaring
3875 * a single-dimensional array of size 3. In some languages, the
3876 * construct declares a two-dimensional array. It would be
3877 * preferable to make this construct illegal to avoid confusion.
3878 *
3879 * One possibility is to change the definition of the sequence
3880 * operator so that it does not return a constant-expression and
3881 * hence cannot be used to declare an array size.
3882 *
3883 * RESOLUTION: The result of a sequence operator is not a
3884 * constant-expression."
3885 *
3886 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3887 * contains language almost identical to the section 4.3.3 in the
3888 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3889 * versions.
3890 */
3891 ir_constant *constant_value = rhs->constant_expression_value();
3892 if (!constant_value ||
3893 (state->is_version(430, 300) &&
3894 decl->initializer->has_sequence_subexpression())) {
3895 const char *const variable_mode =
3896 (type->qualifier.flags.q.constant)
3897 ? "const"
3898 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3899
3900 /* If ARB_shading_language_420pack is enabled, initializers of
3901 * const-qualified local variables do not have to be constant
3902 * expressions. Const-qualified global variables must still be
3903 * initialized with constant expressions.
3904 */
3905 if (!state->has_420pack()
3906 || state->current_function == NULL) {
3907 _mesa_glsl_error(& initializer_loc, state,
3908 "initializer of %s variable `%s' must be a "
3909 "constant expression",
3910 variable_mode,
3911 decl->identifier);
3912 if (var->type->is_numeric()) {
3913 /* Reduce cascading errors. */
3914 var->constant_value = type->qualifier.flags.q.constant
3915 ? ir_constant::zero(state, var->type) : NULL;
3916 }
3917 }
3918 } else {
3919 rhs = constant_value;
3920 var->constant_value = type->qualifier.flags.q.constant
3921 ? constant_value : NULL;
3922 }
3923 } else {
3924 if (var->type->is_numeric()) {
3925 /* Reduce cascading errors. */
3926 var->constant_value = type->qualifier.flags.q.constant
3927 ? ir_constant::zero(state, var->type) : NULL;
3928 }
3929 }
3930 }
3931
3932 if (rhs && !rhs->type->is_error()) {
3933 bool temp = var->data.read_only;
3934 if (type->qualifier.flags.q.constant)
3935 var->data.read_only = false;
3936
3937 /* Never emit code to initialize a uniform.
3938 */
3939 const glsl_type *initializer_type;
3940 if (!type->qualifier.flags.q.uniform) {
3941 do_assignment(initializer_instructions, state,
3942 NULL,
3943 lhs, rhs,
3944 &result, true,
3945 true,
3946 type->get_location());
3947 initializer_type = result->type;
3948 } else
3949 initializer_type = rhs->type;
3950
3951 var->constant_initializer = rhs->constant_expression_value();
3952 var->data.has_initializer = true;
3953
3954 /* If the declared variable is an unsized array, it must inherrit
3955 * its full type from the initializer. A declaration such as
3956 *
3957 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3958 *
3959 * becomes
3960 *
3961 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3962 *
3963 * The assignment generated in the if-statement (below) will also
3964 * automatically handle this case for non-uniforms.
3965 *
3966 * If the declared variable is not an array, the types must
3967 * already match exactly. As a result, the type assignment
3968 * here can be done unconditionally. For non-uniforms the call
3969 * to do_assignment can change the type of the initializer (via
3970 * the implicit conversion rules). For uniforms the initializer
3971 * must be a constant expression, and the type of that expression
3972 * was validated above.
3973 */
3974 var->type = initializer_type;
3975
3976 var->data.read_only = temp;
3977 }
3978
3979 return result;
3980 }
3981
3982 static void
3983 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3984 YYLTYPE loc, ir_variable *var,
3985 unsigned num_vertices,
3986 unsigned *size,
3987 const char *var_category)
3988 {
3989 if (var->type->is_unsized_array()) {
3990 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3991 *
3992 * All geometry shader input unsized array declarations will be
3993 * sized by an earlier input layout qualifier, when present, as per
3994 * the following table.
3995 *
3996 * Followed by a table mapping each allowed input layout qualifier to
3997 * the corresponding input length.
3998 *
3999 * Similarly for tessellation control shader outputs.
4000 */
4001 if (num_vertices != 0)
4002 var->type = glsl_type::get_array_instance(var->type->fields.array,
4003 num_vertices);
4004 } else {
4005 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4006 * includes the following examples of compile-time errors:
4007 *
4008 * // code sequence within one shader...
4009 * in vec4 Color1[]; // size unknown
4010 * ...Color1.length()...// illegal, length() unknown
4011 * in vec4 Color2[2]; // size is 2
4012 * ...Color1.length()...// illegal, Color1 still has no size
4013 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4014 * layout(lines) in; // legal, input size is 2, matching
4015 * in vec4 Color4[3]; // illegal, contradicts layout
4016 * ...
4017 *
4018 * To detect the case illustrated by Color3, we verify that the size of
4019 * an explicitly-sized array matches the size of any previously declared
4020 * explicitly-sized array. To detect the case illustrated by Color4, we
4021 * verify that the size of an explicitly-sized array is consistent with
4022 * any previously declared input layout.
4023 */
4024 if (num_vertices != 0 && var->type->length != num_vertices) {
4025 _mesa_glsl_error(&loc, state,
4026 "%s size contradicts previously declared layout "
4027 "(size is %u, but layout requires a size of %u)",
4028 var_category, var->type->length, num_vertices);
4029 } else if (*size != 0 && var->type->length != *size) {
4030 _mesa_glsl_error(&loc, state,
4031 "%s sizes are inconsistent (size is %u, but a "
4032 "previous declaration has size %u)",
4033 var_category, var->type->length, *size);
4034 } else {
4035 *size = var->type->length;
4036 }
4037 }
4038 }
4039
4040 static void
4041 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4042 YYLTYPE loc, ir_variable *var)
4043 {
4044 unsigned num_vertices = 0;
4045
4046 if (state->tcs_output_vertices_specified) {
4047 if (!state->out_qualifier->vertices->
4048 process_qualifier_constant(state, "vertices",
4049 &num_vertices, false)) {
4050 return;
4051 }
4052
4053 if (num_vertices > state->Const.MaxPatchVertices) {
4054 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4055 "GL_MAX_PATCH_VERTICES", num_vertices);
4056 return;
4057 }
4058 }
4059
4060 if (!var->type->is_array() && !var->data.patch) {
4061 _mesa_glsl_error(&loc, state,
4062 "tessellation control shader outputs must be arrays");
4063
4064 /* To avoid cascading failures, short circuit the checks below. */
4065 return;
4066 }
4067
4068 if (var->data.patch)
4069 return;
4070
4071 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4072 &state->tcs_output_size,
4073 "tessellation control shader output");
4074 }
4075
4076 /**
4077 * Do additional processing necessary for tessellation control/evaluation shader
4078 * input declarations. This covers both interface block arrays and bare input
4079 * variables.
4080 */
4081 static void
4082 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4083 YYLTYPE loc, ir_variable *var)
4084 {
4085 if (!var->type->is_array() && !var->data.patch) {
4086 _mesa_glsl_error(&loc, state,
4087 "per-vertex tessellation shader inputs must be arrays");
4088 /* Avoid cascading failures. */
4089 return;
4090 }
4091
4092 if (var->data.patch)
4093 return;
4094
4095 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4096 if (var->type->is_unsized_array()) {
4097 var->type = glsl_type::get_array_instance(var->type->fields.array,
4098 state->Const.MaxPatchVertices);
4099 }
4100 }
4101
4102
4103 /**
4104 * Do additional processing necessary for geometry shader input declarations
4105 * (this covers both interface blocks arrays and bare input variables).
4106 */
4107 static void
4108 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4109 YYLTYPE loc, ir_variable *var)
4110 {
4111 unsigned num_vertices = 0;
4112
4113 if (state->gs_input_prim_type_specified) {
4114 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4115 }
4116
4117 /* Geometry shader input variables must be arrays. Caller should have
4118 * reported an error for this.
4119 */
4120 if (!var->type->is_array()) {
4121 assert(state->error);
4122
4123 /* To avoid cascading failures, short circuit the checks below. */
4124 return;
4125 }
4126
4127 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4128 &state->gs_input_size,
4129 "geometry shader input");
4130 }
4131
4132 void
4133 validate_identifier(const char *identifier, YYLTYPE loc,
4134 struct _mesa_glsl_parse_state *state)
4135 {
4136 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4137 *
4138 * "Identifiers starting with "gl_" are reserved for use by
4139 * OpenGL, and may not be declared in a shader as either a
4140 * variable or a function."
4141 */
4142 if (is_gl_identifier(identifier)) {
4143 _mesa_glsl_error(&loc, state,
4144 "identifier `%s' uses reserved `gl_' prefix",
4145 identifier);
4146 } else if (strstr(identifier, "__")) {
4147 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4148 * spec:
4149 *
4150 * "In addition, all identifiers containing two
4151 * consecutive underscores (__) are reserved as
4152 * possible future keywords."
4153 *
4154 * The intention is that names containing __ are reserved for internal
4155 * use by the implementation, and names prefixed with GL_ are reserved
4156 * for use by Khronos. Names simply containing __ are dangerous to use,
4157 * but should be allowed.
4158 *
4159 * A future version of the GLSL specification will clarify this.
4160 */
4161 _mesa_glsl_warning(&loc, state,
4162 "identifier `%s' uses reserved `__' string",
4163 identifier);
4164 }
4165 }
4166
4167 ir_rvalue *
4168 ast_declarator_list::hir(exec_list *instructions,
4169 struct _mesa_glsl_parse_state *state)
4170 {
4171 void *ctx = state;
4172 const struct glsl_type *decl_type;
4173 const char *type_name = NULL;
4174 ir_rvalue *result = NULL;
4175 YYLTYPE loc = this->get_location();
4176
4177 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4178 *
4179 * "To ensure that a particular output variable is invariant, it is
4180 * necessary to use the invariant qualifier. It can either be used to
4181 * qualify a previously declared variable as being invariant
4182 *
4183 * invariant gl_Position; // make existing gl_Position be invariant"
4184 *
4185 * In these cases the parser will set the 'invariant' flag in the declarator
4186 * list, and the type will be NULL.
4187 */
4188 if (this->invariant) {
4189 assert(this->type == NULL);
4190
4191 if (state->current_function != NULL) {
4192 _mesa_glsl_error(& loc, state,
4193 "all uses of `invariant' keyword must be at global "
4194 "scope");
4195 }
4196
4197 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4198 assert(decl->array_specifier == NULL);
4199 assert(decl->initializer == NULL);
4200
4201 ir_variable *const earlier =
4202 state->symbols->get_variable(decl->identifier);
4203 if (earlier == NULL) {
4204 _mesa_glsl_error(& loc, state,
4205 "undeclared variable `%s' cannot be marked "
4206 "invariant", decl->identifier);
4207 } else if (!is_varying_var(earlier, state->stage)) {
4208 _mesa_glsl_error(&loc, state,
4209 "`%s' cannot be marked invariant; interfaces between "
4210 "shader stages only.", decl->identifier);
4211 } else if (earlier->data.used) {
4212 _mesa_glsl_error(& loc, state,
4213 "variable `%s' may not be redeclared "
4214 "`invariant' after being used",
4215 earlier->name);
4216 } else {
4217 earlier->data.invariant = true;
4218 }
4219 }
4220
4221 /* Invariant redeclarations do not have r-values.
4222 */
4223 return NULL;
4224 }
4225
4226 if (this->precise) {
4227 assert(this->type == NULL);
4228
4229 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4230 assert(decl->array_specifier == NULL);
4231 assert(decl->initializer == NULL);
4232
4233 ir_variable *const earlier =
4234 state->symbols->get_variable(decl->identifier);
4235 if (earlier == NULL) {
4236 _mesa_glsl_error(& loc, state,
4237 "undeclared variable `%s' cannot be marked "
4238 "precise", decl->identifier);
4239 } else if (state->current_function != NULL &&
4240 !state->symbols->name_declared_this_scope(decl->identifier)) {
4241 /* Note: we have to check if we're in a function, since
4242 * builtins are treated as having come from another scope.
4243 */
4244 _mesa_glsl_error(& loc, state,
4245 "variable `%s' from an outer scope may not be "
4246 "redeclared `precise' in this scope",
4247 earlier->name);
4248 } else if (earlier->data.used) {
4249 _mesa_glsl_error(& loc, state,
4250 "variable `%s' may not be redeclared "
4251 "`precise' after being used",
4252 earlier->name);
4253 } else {
4254 earlier->data.precise = true;
4255 }
4256 }
4257
4258 /* Precise redeclarations do not have r-values either. */
4259 return NULL;
4260 }
4261
4262 assert(this->type != NULL);
4263 assert(!this->invariant);
4264 assert(!this->precise);
4265
4266 /* The type specifier may contain a structure definition. Process that
4267 * before any of the variable declarations.
4268 */
4269 (void) this->type->specifier->hir(instructions, state);
4270
4271 decl_type = this->type->glsl_type(& type_name, state);
4272
4273 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4274 * "Buffer variables may only be declared inside interface blocks
4275 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4276 * shader storage blocks. It is a compile-time error to declare buffer
4277 * variables at global scope (outside a block)."
4278 */
4279 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4280 _mesa_glsl_error(&loc, state,
4281 "buffer variables cannot be declared outside "
4282 "interface blocks");
4283 }
4284
4285 /* An offset-qualified atomic counter declaration sets the default
4286 * offset for the next declaration within the same atomic counter
4287 * buffer.
4288 */
4289 if (decl_type && decl_type->contains_atomic()) {
4290 if (type->qualifier.flags.q.explicit_binding &&
4291 type->qualifier.flags.q.explicit_offset) {
4292 unsigned qual_binding;
4293 unsigned qual_offset;
4294 if (process_qualifier_constant(state, &loc, "binding",
4295 type->qualifier.binding,
4296 &qual_binding)
4297 && process_qualifier_constant(state, &loc, "offset",
4298 type->qualifier.offset,
4299 &qual_offset)) {
4300 state->atomic_counter_offsets[qual_binding] = qual_offset;
4301 }
4302 }
4303 }
4304
4305 if (this->declarations.is_empty()) {
4306 /* If there is no structure involved in the program text, there are two
4307 * possible scenarios:
4308 *
4309 * - The program text contained something like 'vec4;'. This is an
4310 * empty declaration. It is valid but weird. Emit a warning.
4311 *
4312 * - The program text contained something like 'S;' and 'S' is not the
4313 * name of a known structure type. This is both invalid and weird.
4314 * Emit an error.
4315 *
4316 * - The program text contained something like 'mediump float;'
4317 * when the programmer probably meant 'precision mediump
4318 * float;' Emit a warning with a description of what they
4319 * probably meant to do.
4320 *
4321 * Note that if decl_type is NULL and there is a structure involved,
4322 * there must have been some sort of error with the structure. In this
4323 * case we assume that an error was already generated on this line of
4324 * code for the structure. There is no need to generate an additional,
4325 * confusing error.
4326 */
4327 assert(this->type->specifier->structure == NULL || decl_type != NULL
4328 || state->error);
4329
4330 if (decl_type == NULL) {
4331 _mesa_glsl_error(&loc, state,
4332 "invalid type `%s' in empty declaration",
4333 type_name);
4334 } else {
4335 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4336 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4337 * spec:
4338 *
4339 * "... any declaration that leaves the size undefined is
4340 * disallowed as this would add complexity and there are no
4341 * use-cases."
4342 */
4343 if (state->es_shader && decl_type->is_unsized_array()) {
4344 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4345 "or implicitly defined");
4346 }
4347
4348 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4349 *
4350 * "The combinations of types and qualifiers that cause
4351 * compile-time or link-time errors are the same whether or not
4352 * the declaration is empty."
4353 */
4354 validate_array_dimensions(decl_type, state, &loc);
4355 }
4356
4357 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4358 /* Empty atomic counter declarations are allowed and useful
4359 * to set the default offset qualifier.
4360 */
4361 return NULL;
4362 } else if (this->type->qualifier.precision != ast_precision_none) {
4363 if (this->type->specifier->structure != NULL) {
4364 _mesa_glsl_error(&loc, state,
4365 "precision qualifiers can't be applied "
4366 "to structures");
4367 } else {
4368 static const char *const precision_names[] = {
4369 "highp",
4370 "highp",
4371 "mediump",
4372 "lowp"
4373 };
4374
4375 _mesa_glsl_warning(&loc, state,
4376 "empty declaration with precision "
4377 "qualifier, to set the default precision, "
4378 "use `precision %s %s;'",
4379 precision_names[this->type->
4380 qualifier.precision],
4381 type_name);
4382 }
4383 } else if (this->type->specifier->structure == NULL) {
4384 _mesa_glsl_warning(&loc, state, "empty declaration");
4385 }
4386 }
4387 }
4388
4389 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4390 const struct glsl_type *var_type;
4391 ir_variable *var;
4392 const char *identifier = decl->identifier;
4393 /* FINISHME: Emit a warning if a variable declaration shadows a
4394 * FINISHME: declaration at a higher scope.
4395 */
4396
4397 if ((decl_type == NULL) || decl_type->is_void()) {
4398 if (type_name != NULL) {
4399 _mesa_glsl_error(& loc, state,
4400 "invalid type `%s' in declaration of `%s'",
4401 type_name, decl->identifier);
4402 } else {
4403 _mesa_glsl_error(& loc, state,
4404 "invalid type in declaration of `%s'",
4405 decl->identifier);
4406 }
4407 continue;
4408 }
4409
4410 if (this->type->qualifier.flags.q.subroutine) {
4411 const glsl_type *t;
4412 const char *name;
4413
4414 t = state->symbols->get_type(this->type->specifier->type_name);
4415 if (!t)
4416 _mesa_glsl_error(& loc, state,
4417 "invalid type in declaration of `%s'",
4418 decl->identifier);
4419 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4420
4421 identifier = name;
4422
4423 }
4424 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4425 state);
4426
4427 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4428
4429 /* The 'varying in' and 'varying out' qualifiers can only be used with
4430 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4431 * yet.
4432 */
4433 if (this->type->qualifier.flags.q.varying) {
4434 if (this->type->qualifier.flags.q.in) {
4435 _mesa_glsl_error(& loc, state,
4436 "`varying in' qualifier in declaration of "
4437 "`%s' only valid for geometry shaders using "
4438 "ARB_geometry_shader4 or EXT_geometry_shader4",
4439 decl->identifier);
4440 } else if (this->type->qualifier.flags.q.out) {
4441 _mesa_glsl_error(& loc, state,
4442 "`varying out' qualifier in declaration of "
4443 "`%s' only valid for geometry shaders using "
4444 "ARB_geometry_shader4 or EXT_geometry_shader4",
4445 decl->identifier);
4446 }
4447 }
4448
4449 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4450 *
4451 * "Global variables can only use the qualifiers const,
4452 * attribute, uniform, or varying. Only one may be
4453 * specified.
4454 *
4455 * Local variables can only use the qualifier const."
4456 *
4457 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4458 * any extension that adds the 'layout' keyword.
4459 */
4460 if (!state->is_version(130, 300)
4461 && !state->has_explicit_attrib_location()
4462 && !state->has_separate_shader_objects()
4463 && !state->ARB_fragment_coord_conventions_enable) {
4464 if (this->type->qualifier.flags.q.out) {
4465 _mesa_glsl_error(& loc, state,
4466 "`out' qualifier in declaration of `%s' "
4467 "only valid for function parameters in %s",
4468 decl->identifier, state->get_version_string());
4469 }
4470 if (this->type->qualifier.flags.q.in) {
4471 _mesa_glsl_error(& loc, state,
4472 "`in' qualifier in declaration of `%s' "
4473 "only valid for function parameters in %s",
4474 decl->identifier, state->get_version_string());
4475 }
4476 /* FINISHME: Test for other invalid qualifiers. */
4477 }
4478
4479 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4480 & loc, false);
4481 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4482 &loc);
4483
4484 if (this->type->qualifier.flags.q.invariant) {
4485 if (!is_varying_var(var, state->stage)) {
4486 _mesa_glsl_error(&loc, state,
4487 "`%s' cannot be marked invariant; interfaces between "
4488 "shader stages only", var->name);
4489 }
4490 }
4491
4492 if (state->current_function != NULL) {
4493 const char *mode = NULL;
4494 const char *extra = "";
4495
4496 /* There is no need to check for 'inout' here because the parser will
4497 * only allow that in function parameter lists.
4498 */
4499 if (this->type->qualifier.flags.q.attribute) {
4500 mode = "attribute";
4501 } else if (this->type->qualifier.flags.q.subroutine) {
4502 mode = "subroutine uniform";
4503 } else if (this->type->qualifier.flags.q.uniform) {
4504 mode = "uniform";
4505 } else if (this->type->qualifier.flags.q.varying) {
4506 mode = "varying";
4507 } else if (this->type->qualifier.flags.q.in) {
4508 mode = "in";
4509 extra = " or in function parameter list";
4510 } else if (this->type->qualifier.flags.q.out) {
4511 mode = "out";
4512 extra = " or in function parameter list";
4513 }
4514
4515 if (mode) {
4516 _mesa_glsl_error(& loc, state,
4517 "%s variable `%s' must be declared at "
4518 "global scope%s",
4519 mode, var->name, extra);
4520 }
4521 } else if (var->data.mode == ir_var_shader_in) {
4522 var->data.read_only = true;
4523
4524 if (state->stage == MESA_SHADER_VERTEX) {
4525 bool error_emitted = false;
4526
4527 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4528 *
4529 * "Vertex shader inputs can only be float, floating-point
4530 * vectors, matrices, signed and unsigned integers and integer
4531 * vectors. Vertex shader inputs can also form arrays of these
4532 * types, but not structures."
4533 *
4534 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4535 *
4536 * "Vertex shader inputs can only be float, floating-point
4537 * vectors, matrices, signed and unsigned integers and integer
4538 * vectors. They cannot be arrays or structures."
4539 *
4540 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4541 *
4542 * "The attribute qualifier can be used only with float,
4543 * floating-point vectors, and matrices. Attribute variables
4544 * cannot be declared as arrays or structures."
4545 *
4546 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4547 *
4548 * "Vertex shader inputs can only be float, floating-point
4549 * vectors, matrices, signed and unsigned integers and integer
4550 * vectors. Vertex shader inputs cannot be arrays or
4551 * structures."
4552 */
4553 const glsl_type *check_type = var->type->without_array();
4554
4555 switch (check_type->base_type) {
4556 case GLSL_TYPE_FLOAT:
4557 break;
4558 case GLSL_TYPE_UINT:
4559 case GLSL_TYPE_INT:
4560 if (state->is_version(120, 300))
4561 break;
4562 case GLSL_TYPE_DOUBLE:
4563 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4564 break;
4565 /* FALLTHROUGH */
4566 default:
4567 _mesa_glsl_error(& loc, state,
4568 "vertex shader input / attribute cannot have "
4569 "type %s`%s'",
4570 var->type->is_array() ? "array of " : "",
4571 check_type->name);
4572 error_emitted = true;
4573 }
4574
4575 if (!error_emitted && var->type->is_array() &&
4576 !state->check_version(150, 0, &loc,
4577 "vertex shader input / attribute "
4578 "cannot have array type")) {
4579 error_emitted = true;
4580 }
4581 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4582 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4583 *
4584 * Geometry shader input variables get the per-vertex values
4585 * written out by vertex shader output variables of the same
4586 * names. Since a geometry shader operates on a set of
4587 * vertices, each input varying variable (or input block, see
4588 * interface blocks below) needs to be declared as an array.
4589 */
4590 if (!var->type->is_array()) {
4591 _mesa_glsl_error(&loc, state,
4592 "geometry shader inputs must be arrays");
4593 }
4594
4595 handle_geometry_shader_input_decl(state, loc, var);
4596 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4597 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4598 *
4599 * It is a compile-time error to declare a fragment shader
4600 * input with, or that contains, any of the following types:
4601 *
4602 * * A boolean type
4603 * * An opaque type
4604 * * An array of arrays
4605 * * An array of structures
4606 * * A structure containing an array
4607 * * A structure containing a structure
4608 */
4609 if (state->es_shader) {
4610 const glsl_type *check_type = var->type->without_array();
4611 if (check_type->is_boolean() ||
4612 check_type->contains_opaque()) {
4613 _mesa_glsl_error(&loc, state,
4614 "fragment shader input cannot have type %s",
4615 check_type->name);
4616 }
4617 if (var->type->is_array() &&
4618 var->type->fields.array->is_array()) {
4619 _mesa_glsl_error(&loc, state,
4620 "%s shader output "
4621 "cannot have an array of arrays",
4622 _mesa_shader_stage_to_string(state->stage));
4623 }
4624 if (var->type->is_array() &&
4625 var->type->fields.array->is_record()) {
4626 _mesa_glsl_error(&loc, state,
4627 "fragment shader input "
4628 "cannot have an array of structs");
4629 }
4630 if (var->type->is_record()) {
4631 for (unsigned i = 0; i < var->type->length; i++) {
4632 if (var->type->fields.structure[i].type->is_array() ||
4633 var->type->fields.structure[i].type->is_record())
4634 _mesa_glsl_error(&loc, state,
4635 "fragement shader input cannot have "
4636 "a struct that contains an "
4637 "array or struct");
4638 }
4639 }
4640 }
4641 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4642 state->stage == MESA_SHADER_TESS_EVAL) {
4643 handle_tess_shader_input_decl(state, loc, var);
4644 }
4645 } else if (var->data.mode == ir_var_shader_out) {
4646 const glsl_type *check_type = var->type->without_array();
4647
4648 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4649 *
4650 * It is a compile-time error to declare a vertex, tessellation
4651 * evaluation, tessellation control, or geometry shader output
4652 * that contains any of the following:
4653 *
4654 * * A Boolean type (bool, bvec2 ...)
4655 * * An opaque type
4656 */
4657 if (check_type->is_boolean() || check_type->contains_opaque())
4658 _mesa_glsl_error(&loc, state,
4659 "%s shader output cannot have type %s",
4660 _mesa_shader_stage_to_string(state->stage),
4661 check_type->name);
4662
4663 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4664 *
4665 * It is a compile-time error to declare a fragment shader output
4666 * that contains any of the following:
4667 *
4668 * * A Boolean type (bool, bvec2 ...)
4669 * * A double-precision scalar or vector (double, dvec2 ...)
4670 * * An opaque type
4671 * * Any matrix type
4672 * * A structure
4673 */
4674 if (state->stage == MESA_SHADER_FRAGMENT) {
4675 if (check_type->is_record() || check_type->is_matrix())
4676 _mesa_glsl_error(&loc, state,
4677 "fragment shader output "
4678 "cannot have struct or matrix type");
4679 switch (check_type->base_type) {
4680 case GLSL_TYPE_UINT:
4681 case GLSL_TYPE_INT:
4682 case GLSL_TYPE_FLOAT:
4683 break;
4684 default:
4685 _mesa_glsl_error(&loc, state,
4686 "fragment shader output cannot have "
4687 "type %s", check_type->name);
4688 }
4689 }
4690
4691 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4692 *
4693 * It is a compile-time error to declare a vertex shader output
4694 * with, or that contains, any of the following types:
4695 *
4696 * * A boolean type
4697 * * An opaque type
4698 * * An array of arrays
4699 * * An array of structures
4700 * * A structure containing an array
4701 * * A structure containing a structure
4702 *
4703 * It is a compile-time error to declare a fragment shader output
4704 * with, or that contains, any of the following types:
4705 *
4706 * * A boolean type
4707 * * An opaque type
4708 * * A matrix
4709 * * A structure
4710 * * An array of array
4711 */
4712 if (state->es_shader) {
4713 if (var->type->is_array() &&
4714 var->type->fields.array->is_array()) {
4715 _mesa_glsl_error(&loc, state,
4716 "%s shader output "
4717 "cannot have an array of arrays",
4718 _mesa_shader_stage_to_string(state->stage));
4719 }
4720 if (state->stage == MESA_SHADER_VERTEX) {
4721 if (var->type->is_array() &&
4722 var->type->fields.array->is_record()) {
4723 _mesa_glsl_error(&loc, state,
4724 "vertex shader output "
4725 "cannot have an array of structs");
4726 }
4727 if (var->type->is_record()) {
4728 for (unsigned i = 0; i < var->type->length; i++) {
4729 if (var->type->fields.structure[i].type->is_array() ||
4730 var->type->fields.structure[i].type->is_record())
4731 _mesa_glsl_error(&loc, state,
4732 "vertex shader output cannot have a "
4733 "struct that contains an "
4734 "array or struct");
4735 }
4736 }
4737 }
4738 }
4739
4740 if (state->stage == MESA_SHADER_TESS_CTRL) {
4741 handle_tess_ctrl_shader_output_decl(state, loc, var);
4742 }
4743 } else if (var->type->contains_subroutine()) {
4744 /* declare subroutine uniforms as hidden */
4745 var->data.how_declared = ir_var_hidden;
4746 }
4747
4748 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4749 * so must integer vertex outputs.
4750 *
4751 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4752 * "Fragment shader inputs that are signed or unsigned integers or
4753 * integer vectors must be qualified with the interpolation qualifier
4754 * flat."
4755 *
4756 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4757 * "Fragment shader inputs that are, or contain, signed or unsigned
4758 * integers or integer vectors must be qualified with the
4759 * interpolation qualifier flat."
4760 *
4761 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4762 * "Vertex shader outputs that are, or contain, signed or unsigned
4763 * integers or integer vectors must be qualified with the
4764 * interpolation qualifier flat."
4765 *
4766 * Note that prior to GLSL 1.50, this requirement applied to vertex
4767 * outputs rather than fragment inputs. That creates problems in the
4768 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4769 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4770 * apply the restriction to both vertex outputs and fragment inputs.
4771 *
4772 * Note also that the desktop GLSL specs are missing the text "or
4773 * contain"; this is presumably an oversight, since there is no
4774 * reasonable way to interpolate a fragment shader input that contains
4775 * an integer.
4776 */
4777 if (state->is_version(130, 300) &&
4778 var->type->contains_integer() &&
4779 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4780 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4781 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4782 && state->es_shader))) {
4783 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4784 "vertex output" : "fragment input";
4785 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4786 "an integer, then it must be qualified with 'flat'",
4787 var_type);
4788 }
4789
4790 /* Double fragment inputs must be qualified with 'flat'. */
4791 if (var->type->contains_double() &&
4792 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4793 state->stage == MESA_SHADER_FRAGMENT &&
4794 var->data.mode == ir_var_shader_in) {
4795 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4796 "a double, then it must be qualified with 'flat'",
4797 var_type);
4798 }
4799
4800 /* Interpolation qualifiers cannot be applied to 'centroid' and
4801 * 'centroid varying'.
4802 *
4803 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4804 * "interpolation qualifiers may only precede the qualifiers in,
4805 * centroid in, out, or centroid out in a declaration. They do not apply
4806 * to the deprecated storage qualifiers varying or centroid varying."
4807 *
4808 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4809 */
4810 if (state->is_version(130, 0)
4811 && this->type->qualifier.has_interpolation()
4812 && this->type->qualifier.flags.q.varying) {
4813
4814 const char *i = interpolation_string(var->data.interpolation);
4815 const char *s;
4816 if (this->type->qualifier.flags.q.centroid)
4817 s = "centroid varying";
4818 else
4819 s = "varying";
4820
4821 _mesa_glsl_error(&loc, state,
4822 "qualifier '%s' cannot be applied to the "
4823 "deprecated storage qualifier '%s'", i, s);
4824 }
4825
4826
4827 /* Interpolation qualifiers can only apply to vertex shader outputs and
4828 * fragment shader inputs.
4829 *
4830 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4831 * "Outputs from a vertex shader (out) and inputs to a fragment
4832 * shader (in) can be further qualified with one or more of these
4833 * interpolation qualifiers"
4834 *
4835 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4836 * "These interpolation qualifiers may only precede the qualifiers
4837 * in, centroid in, out, or centroid out in a declaration. They do
4838 * not apply to inputs into a vertex shader or outputs from a
4839 * fragment shader."
4840 */
4841 if (state->is_version(130, 300)
4842 && this->type->qualifier.has_interpolation()) {
4843
4844 const char *i = interpolation_string(var->data.interpolation);
4845 switch (state->stage) {
4846 case MESA_SHADER_VERTEX:
4847 if (this->type->qualifier.flags.q.in) {
4848 _mesa_glsl_error(&loc, state,
4849 "qualifier '%s' cannot be applied to vertex "
4850 "shader inputs", i);
4851 }
4852 break;
4853 case MESA_SHADER_FRAGMENT:
4854 if (this->type->qualifier.flags.q.out) {
4855 _mesa_glsl_error(&loc, state,
4856 "qualifier '%s' cannot be applied to fragment "
4857 "shader outputs", i);
4858 }
4859 break;
4860 default:
4861 break;
4862 }
4863 }
4864
4865
4866 /* From section 4.3.4 of the GLSL 4.00 spec:
4867 * "Input variables may not be declared using the patch in qualifier
4868 * in tessellation control or geometry shaders."
4869 *
4870 * From section 4.3.6 of the GLSL 4.00 spec:
4871 * "It is an error to use patch out in a vertex, tessellation
4872 * evaluation, or geometry shader."
4873 *
4874 * This doesn't explicitly forbid using them in a fragment shader, but
4875 * that's probably just an oversight.
4876 */
4877 if (state->stage != MESA_SHADER_TESS_EVAL
4878 && this->type->qualifier.flags.q.patch
4879 && this->type->qualifier.flags.q.in) {
4880
4881 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4882 "tessellation evaluation shader");
4883 }
4884
4885 if (state->stage != MESA_SHADER_TESS_CTRL
4886 && this->type->qualifier.flags.q.patch
4887 && this->type->qualifier.flags.q.out) {
4888
4889 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4890 "tessellation control shader");
4891 }
4892
4893 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4894 */
4895 if (this->type->qualifier.precision != ast_precision_none) {
4896 state->check_precision_qualifiers_allowed(&loc);
4897 }
4898
4899
4900 /* If a precision qualifier is allowed on a type, it is allowed on
4901 * an array of that type.
4902 */
4903 if (!(this->type->qualifier.precision == ast_precision_none
4904 || precision_qualifier_allowed(var->type->without_array()))) {
4905
4906 _mesa_glsl_error(&loc, state,
4907 "precision qualifiers apply only to floating point"
4908 ", integer and opaque types");
4909 }
4910
4911 /* From section 4.1.7 of the GLSL 4.40 spec:
4912 *
4913 * "[Opaque types] can only be declared as function
4914 * parameters or uniform-qualified variables."
4915 */
4916 if (var_type->contains_opaque() &&
4917 !this->type->qualifier.flags.q.uniform) {
4918 _mesa_glsl_error(&loc, state,
4919 "opaque variables must be declared uniform");
4920 }
4921
4922 /* Process the initializer and add its instructions to a temporary
4923 * list. This list will be added to the instruction stream (below) after
4924 * the declaration is added. This is done because in some cases (such as
4925 * redeclarations) the declaration may not actually be added to the
4926 * instruction stream.
4927 */
4928 exec_list initializer_instructions;
4929
4930 /* Examine var name here since var may get deleted in the next call */
4931 bool var_is_gl_id = is_gl_identifier(var->name);
4932
4933 ir_variable *earlier =
4934 get_variable_being_redeclared(var, decl->get_location(), state,
4935 false /* allow_all_redeclarations */);
4936 if (earlier != NULL) {
4937 if (var_is_gl_id &&
4938 earlier->data.how_declared == ir_var_declared_in_block) {
4939 _mesa_glsl_error(&loc, state,
4940 "`%s' has already been redeclared using "
4941 "gl_PerVertex", earlier->name);
4942 }
4943 earlier->data.how_declared = ir_var_declared_normally;
4944 }
4945
4946 if (decl->initializer != NULL) {
4947 result = process_initializer((earlier == NULL) ? var : earlier,
4948 decl, this->type,
4949 &initializer_instructions, state);
4950 } else {
4951 validate_array_dimensions(var_type, state, &loc);
4952 }
4953
4954 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4955 *
4956 * "It is an error to write to a const variable outside of
4957 * its declaration, so they must be initialized when
4958 * declared."
4959 */
4960 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4961 _mesa_glsl_error(& loc, state,
4962 "const declaration of `%s' must be initialized",
4963 decl->identifier);
4964 }
4965
4966 if (state->es_shader) {
4967 const glsl_type *const t = (earlier == NULL)
4968 ? var->type : earlier->type;
4969
4970 if (t->is_unsized_array())
4971 /* Section 10.17 of the GLSL ES 1.00 specification states that
4972 * unsized array declarations have been removed from the language.
4973 * Arrays that are sized using an initializer are still explicitly
4974 * sized. However, GLSL ES 1.00 does not allow array
4975 * initializers. That is only allowed in GLSL ES 3.00.
4976 *
4977 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4978 *
4979 * "An array type can also be formed without specifying a size
4980 * if the definition includes an initializer:
4981 *
4982 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4983 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4984 *
4985 * float a[5];
4986 * float b[] = a;"
4987 */
4988 _mesa_glsl_error(& loc, state,
4989 "unsized array declarations are not allowed in "
4990 "GLSL ES");
4991 }
4992
4993 /* If the declaration is not a redeclaration, there are a few additional
4994 * semantic checks that must be applied. In addition, variable that was
4995 * created for the declaration should be added to the IR stream.
4996 */
4997 if (earlier == NULL) {
4998 validate_identifier(decl->identifier, loc, state);
4999
5000 /* Add the variable to the symbol table. Note that the initializer's
5001 * IR was already processed earlier (though it hasn't been emitted
5002 * yet), without the variable in scope.
5003 *
5004 * This differs from most C-like languages, but it follows the GLSL
5005 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5006 * spec:
5007 *
5008 * "Within a declaration, the scope of a name starts immediately
5009 * after the initializer if present or immediately after the name
5010 * being declared if not."
5011 */
5012 if (!state->symbols->add_variable(var)) {
5013 YYLTYPE loc = this->get_location();
5014 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5015 "current scope", decl->identifier);
5016 continue;
5017 }
5018
5019 /* Push the variable declaration to the top. It means that all the
5020 * variable declarations will appear in a funny last-to-first order,
5021 * but otherwise we run into trouble if a function is prototyped, a
5022 * global var is decled, then the function is defined with usage of
5023 * the global var. See glslparsertest's CorrectModule.frag.
5024 */
5025 instructions->push_head(var);
5026 }
5027
5028 instructions->append_list(&initializer_instructions);
5029 }
5030
5031
5032 /* Generally, variable declarations do not have r-values. However,
5033 * one is used for the declaration in
5034 *
5035 * while (bool b = some_condition()) {
5036 * ...
5037 * }
5038 *
5039 * so we return the rvalue from the last seen declaration here.
5040 */
5041 return result;
5042 }
5043
5044
5045 ir_rvalue *
5046 ast_parameter_declarator::hir(exec_list *instructions,
5047 struct _mesa_glsl_parse_state *state)
5048 {
5049 void *ctx = state;
5050 const struct glsl_type *type;
5051 const char *name = NULL;
5052 YYLTYPE loc = this->get_location();
5053
5054 type = this->type->glsl_type(& name, state);
5055
5056 if (type == NULL) {
5057 if (name != NULL) {
5058 _mesa_glsl_error(& loc, state,
5059 "invalid type `%s' in declaration of `%s'",
5060 name, this->identifier);
5061 } else {
5062 _mesa_glsl_error(& loc, state,
5063 "invalid type in declaration of `%s'",
5064 this->identifier);
5065 }
5066
5067 type = glsl_type::error_type;
5068 }
5069
5070 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5071 *
5072 * "Functions that accept no input arguments need not use void in the
5073 * argument list because prototypes (or definitions) are required and
5074 * therefore there is no ambiguity when an empty argument list "( )" is
5075 * declared. The idiom "(void)" as a parameter list is provided for
5076 * convenience."
5077 *
5078 * Placing this check here prevents a void parameter being set up
5079 * for a function, which avoids tripping up checks for main taking
5080 * parameters and lookups of an unnamed symbol.
5081 */
5082 if (type->is_void()) {
5083 if (this->identifier != NULL)
5084 _mesa_glsl_error(& loc, state,
5085 "named parameter cannot have type `void'");
5086
5087 is_void = true;
5088 return NULL;
5089 }
5090
5091 if (formal_parameter && (this->identifier == NULL)) {
5092 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5093 return NULL;
5094 }
5095
5096 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5097 * call already handled the "vec4[..] foo" case.
5098 */
5099 type = process_array_type(&loc, type, this->array_specifier, state);
5100
5101 if (!type->is_error() && type->is_unsized_array()) {
5102 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5103 "a declared size");
5104 type = glsl_type::error_type;
5105 }
5106
5107 is_void = false;
5108 ir_variable *var = new(ctx)
5109 ir_variable(type, this->identifier, ir_var_function_in);
5110
5111 /* Apply any specified qualifiers to the parameter declaration. Note that
5112 * for function parameters the default mode is 'in'.
5113 */
5114 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5115 true);
5116
5117 /* From section 4.1.7 of the GLSL 4.40 spec:
5118 *
5119 * "Opaque variables cannot be treated as l-values; hence cannot
5120 * be used as out or inout function parameters, nor can they be
5121 * assigned into."
5122 */
5123 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5124 && type->contains_opaque()) {
5125 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5126 "contain opaque variables");
5127 type = glsl_type::error_type;
5128 }
5129
5130 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5131 *
5132 * "When calling a function, expressions that do not evaluate to
5133 * l-values cannot be passed to parameters declared as out or inout."
5134 *
5135 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5136 *
5137 * "Other binary or unary expressions, non-dereferenced arrays,
5138 * function names, swizzles with repeated fields, and constants
5139 * cannot be l-values."
5140 *
5141 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5142 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5143 */
5144 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5145 && type->is_array()
5146 && !state->check_version(120, 100, &loc,
5147 "arrays cannot be out or inout parameters")) {
5148 type = glsl_type::error_type;
5149 }
5150
5151 instructions->push_tail(var);
5152
5153 /* Parameter declarations do not have r-values.
5154 */
5155 return NULL;
5156 }
5157
5158
5159 void
5160 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5161 bool formal,
5162 exec_list *ir_parameters,
5163 _mesa_glsl_parse_state *state)
5164 {
5165 ast_parameter_declarator *void_param = NULL;
5166 unsigned count = 0;
5167
5168 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5169 param->formal_parameter = formal;
5170 param->hir(ir_parameters, state);
5171
5172 if (param->is_void)
5173 void_param = param;
5174
5175 count++;
5176 }
5177
5178 if ((void_param != NULL) && (count > 1)) {
5179 YYLTYPE loc = void_param->get_location();
5180
5181 _mesa_glsl_error(& loc, state,
5182 "`void' parameter must be only parameter");
5183 }
5184 }
5185
5186
5187 void
5188 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5189 {
5190 /* IR invariants disallow function declarations or definitions
5191 * nested within other function definitions. But there is no
5192 * requirement about the relative order of function declarations
5193 * and definitions with respect to one another. So simply insert
5194 * the new ir_function block at the end of the toplevel instruction
5195 * list.
5196 */
5197 state->toplevel_ir->push_tail(f);
5198 }
5199
5200
5201 ir_rvalue *
5202 ast_function::hir(exec_list *instructions,
5203 struct _mesa_glsl_parse_state *state)
5204 {
5205 void *ctx = state;
5206 ir_function *f = NULL;
5207 ir_function_signature *sig = NULL;
5208 exec_list hir_parameters;
5209 YYLTYPE loc = this->get_location();
5210
5211 const char *const name = identifier;
5212
5213 /* New functions are always added to the top-level IR instruction stream,
5214 * so this instruction list pointer is ignored. See also emit_function
5215 * (called below).
5216 */
5217 (void) instructions;
5218
5219 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5220 *
5221 * "Function declarations (prototypes) cannot occur inside of functions;
5222 * they must be at global scope, or for the built-in functions, outside
5223 * the global scope."
5224 *
5225 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5226 *
5227 * "User defined functions may only be defined within the global scope."
5228 *
5229 * Note that this language does not appear in GLSL 1.10.
5230 */
5231 if ((state->current_function != NULL) &&
5232 state->is_version(120, 100)) {
5233 YYLTYPE loc = this->get_location();
5234 _mesa_glsl_error(&loc, state,
5235 "declaration of function `%s' not allowed within "
5236 "function body", name);
5237 }
5238
5239 validate_identifier(name, this->get_location(), state);
5240
5241 /* Convert the list of function parameters to HIR now so that they can be
5242 * used below to compare this function's signature with previously seen
5243 * signatures for functions with the same name.
5244 */
5245 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5246 is_definition,
5247 & hir_parameters, state);
5248
5249 const char *return_type_name;
5250 const glsl_type *return_type =
5251 this->return_type->glsl_type(& return_type_name, state);
5252
5253 if (!return_type) {
5254 YYLTYPE loc = this->get_location();
5255 _mesa_glsl_error(&loc, state,
5256 "function `%s' has undeclared return type `%s'",
5257 name, return_type_name);
5258 return_type = glsl_type::error_type;
5259 }
5260
5261 /* ARB_shader_subroutine states:
5262 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5263 * subroutine(...) to a function declaration."
5264 */
5265 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5266 YYLTYPE loc = this->get_location();
5267 _mesa_glsl_error(&loc, state,
5268 "function declaration `%s' cannot have subroutine prepended",
5269 name);
5270 }
5271
5272 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5273 * "No qualifier is allowed on the return type of a function."
5274 */
5275 if (this->return_type->has_qualifiers(state)) {
5276 YYLTYPE loc = this->get_location();
5277 _mesa_glsl_error(& loc, state,
5278 "function `%s' return type has qualifiers", name);
5279 }
5280
5281 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5282 *
5283 * "Arrays are allowed as arguments and as the return type. In both
5284 * cases, the array must be explicitly sized."
5285 */
5286 if (return_type->is_unsized_array()) {
5287 YYLTYPE loc = this->get_location();
5288 _mesa_glsl_error(& loc, state,
5289 "function `%s' return type array must be explicitly "
5290 "sized", name);
5291 }
5292
5293 /* From section 4.1.7 of the GLSL 4.40 spec:
5294 *
5295 * "[Opaque types] can only be declared as function parameters
5296 * or uniform-qualified variables."
5297 */
5298 if (return_type->contains_opaque()) {
5299 YYLTYPE loc = this->get_location();
5300 _mesa_glsl_error(&loc, state,
5301 "function `%s' return type can't contain an opaque type",
5302 name);
5303 }
5304
5305 /* Create an ir_function if one doesn't already exist. */
5306 f = state->symbols->get_function(name);
5307 if (f == NULL) {
5308 f = new(ctx) ir_function(name);
5309 if (!this->return_type->qualifier.flags.q.subroutine) {
5310 if (!state->symbols->add_function(f)) {
5311 /* This function name shadows a non-function use of the same name. */
5312 YYLTYPE loc = this->get_location();
5313 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5314 "non-function", name);
5315 return NULL;
5316 }
5317 }
5318 emit_function(state, f);
5319 }
5320
5321 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5322 *
5323 * "A shader cannot redefine or overload built-in functions."
5324 *
5325 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5326 *
5327 * "User code can overload the built-in functions but cannot redefine
5328 * them."
5329 */
5330 if (state->es_shader && state->language_version >= 300) {
5331 /* Local shader has no exact candidates; check the built-ins. */
5332 _mesa_glsl_initialize_builtin_functions();
5333 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5334 YYLTYPE loc = this->get_location();
5335 _mesa_glsl_error(& loc, state,
5336 "A shader cannot redefine or overload built-in "
5337 "function `%s' in GLSL ES 3.00", name);
5338 return NULL;
5339 }
5340 }
5341
5342 /* Verify that this function's signature either doesn't match a previously
5343 * seen signature for a function with the same name, or, if a match is found,
5344 * that the previously seen signature does not have an associated definition.
5345 */
5346 if (state->es_shader || f->has_user_signature()) {
5347 sig = f->exact_matching_signature(state, &hir_parameters);
5348 if (sig != NULL) {
5349 const char *badvar = sig->qualifiers_match(&hir_parameters);
5350 if (badvar != NULL) {
5351 YYLTYPE loc = this->get_location();
5352
5353 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5354 "qualifiers don't match prototype", name, badvar);
5355 }
5356
5357 if (sig->return_type != return_type) {
5358 YYLTYPE loc = this->get_location();
5359
5360 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5361 "match prototype", name);
5362 }
5363
5364 if (sig->is_defined) {
5365 if (is_definition) {
5366 YYLTYPE loc = this->get_location();
5367 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5368 } else {
5369 /* We just encountered a prototype that exactly matches a
5370 * function that's already been defined. This is redundant,
5371 * and we should ignore it.
5372 */
5373 return NULL;
5374 }
5375 }
5376 }
5377 }
5378
5379 /* Verify the return type of main() */
5380 if (strcmp(name, "main") == 0) {
5381 if (! return_type->is_void()) {
5382 YYLTYPE loc = this->get_location();
5383
5384 _mesa_glsl_error(& loc, state, "main() must return void");
5385 }
5386
5387 if (!hir_parameters.is_empty()) {
5388 YYLTYPE loc = this->get_location();
5389
5390 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5391 }
5392 }
5393
5394 /* Finish storing the information about this new function in its signature.
5395 */
5396 if (sig == NULL) {
5397 sig = new(ctx) ir_function_signature(return_type);
5398 f->add_signature(sig);
5399 }
5400
5401 sig->replace_parameters(&hir_parameters);
5402 signature = sig;
5403
5404 if (this->return_type->qualifier.flags.q.subroutine_def) {
5405 int idx;
5406
5407 if (this->return_type->qualifier.flags.q.explicit_index) {
5408 unsigned qual_index;
5409 if (process_qualifier_constant(state, &loc, "index",
5410 this->return_type->qualifier.index,
5411 &qual_index)) {
5412 if (!state->has_explicit_uniform_location()) {
5413 _mesa_glsl_error(&loc, state, "subroutine index requires "
5414 "GL_ARB_explicit_uniform_location or "
5415 "GLSL 4.30");
5416 } else if (qual_index >= MAX_SUBROUTINES) {
5417 _mesa_glsl_error(&loc, state,
5418 "invalid subroutine index (%d) index must "
5419 "be a number between 0 and "
5420 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5421 MAX_SUBROUTINES - 1);
5422 } else {
5423 f->subroutine_index = qual_index;
5424 }
5425 }
5426 }
5427
5428 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5429 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5430 f->num_subroutine_types);
5431 idx = 0;
5432 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5433 const struct glsl_type *type;
5434 /* the subroutine type must be already declared */
5435 type = state->symbols->get_type(decl->identifier);
5436 if (!type) {
5437 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5438 }
5439 f->subroutine_types[idx++] = type;
5440 }
5441 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5442 ir_function *,
5443 state->num_subroutines + 1);
5444 state->subroutines[state->num_subroutines] = f;
5445 state->num_subroutines++;
5446
5447 }
5448
5449 if (this->return_type->qualifier.flags.q.subroutine) {
5450 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5451 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5452 return NULL;
5453 }
5454 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5455 ir_function *,
5456 state->num_subroutine_types + 1);
5457 state->subroutine_types[state->num_subroutine_types] = f;
5458 state->num_subroutine_types++;
5459
5460 f->is_subroutine = true;
5461 }
5462
5463 /* Function declarations (prototypes) do not have r-values.
5464 */
5465 return NULL;
5466 }
5467
5468
5469 ir_rvalue *
5470 ast_function_definition::hir(exec_list *instructions,
5471 struct _mesa_glsl_parse_state *state)
5472 {
5473 prototype->is_definition = true;
5474 prototype->hir(instructions, state);
5475
5476 ir_function_signature *signature = prototype->signature;
5477 if (signature == NULL)
5478 return NULL;
5479
5480 assert(state->current_function == NULL);
5481 state->current_function = signature;
5482 state->found_return = false;
5483
5484 /* Duplicate parameters declared in the prototype as concrete variables.
5485 * Add these to the symbol table.
5486 */
5487 state->symbols->push_scope();
5488 foreach_in_list(ir_variable, var, &signature->parameters) {
5489 assert(var->as_variable() != NULL);
5490
5491 /* The only way a parameter would "exist" is if two parameters have
5492 * the same name.
5493 */
5494 if (state->symbols->name_declared_this_scope(var->name)) {
5495 YYLTYPE loc = this->get_location();
5496
5497 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5498 } else {
5499 state->symbols->add_variable(var);
5500 }
5501 }
5502
5503 /* Convert the body of the function to HIR. */
5504 this->body->hir(&signature->body, state);
5505 signature->is_defined = true;
5506
5507 state->symbols->pop_scope();
5508
5509 assert(state->current_function == signature);
5510 state->current_function = NULL;
5511
5512 if (!signature->return_type->is_void() && !state->found_return) {
5513 YYLTYPE loc = this->get_location();
5514 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5515 "%s, but no return statement",
5516 signature->function_name(),
5517 signature->return_type->name);
5518 }
5519
5520 /* Function definitions do not have r-values.
5521 */
5522 return NULL;
5523 }
5524
5525
5526 ir_rvalue *
5527 ast_jump_statement::hir(exec_list *instructions,
5528 struct _mesa_glsl_parse_state *state)
5529 {
5530 void *ctx = state;
5531
5532 switch (mode) {
5533 case ast_return: {
5534 ir_return *inst;
5535 assert(state->current_function);
5536
5537 if (opt_return_value) {
5538 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5539
5540 /* The value of the return type can be NULL if the shader says
5541 * 'return foo();' and foo() is a function that returns void.
5542 *
5543 * NOTE: The GLSL spec doesn't say that this is an error. The type
5544 * of the return value is void. If the return type of the function is
5545 * also void, then this should compile without error. Seriously.
5546 */
5547 const glsl_type *const ret_type =
5548 (ret == NULL) ? glsl_type::void_type : ret->type;
5549
5550 /* Implicit conversions are not allowed for return values prior to
5551 * ARB_shading_language_420pack.
5552 */
5553 if (state->current_function->return_type != ret_type) {
5554 YYLTYPE loc = this->get_location();
5555
5556 if (state->has_420pack()) {
5557 if (!apply_implicit_conversion(state->current_function->return_type,
5558 ret, state)) {
5559 _mesa_glsl_error(& loc, state,
5560 "could not implicitly convert return value "
5561 "to %s, in function `%s'",
5562 state->current_function->return_type->name,
5563 state->current_function->function_name());
5564 }
5565 } else {
5566 _mesa_glsl_error(& loc, state,
5567 "`return' with wrong type %s, in function `%s' "
5568 "returning %s",
5569 ret_type->name,
5570 state->current_function->function_name(),
5571 state->current_function->return_type->name);
5572 }
5573 } else if (state->current_function->return_type->base_type ==
5574 GLSL_TYPE_VOID) {
5575 YYLTYPE loc = this->get_location();
5576
5577 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5578 * specs add a clarification:
5579 *
5580 * "A void function can only use return without a return argument, even if
5581 * the return argument has void type. Return statements only accept values:
5582 *
5583 * void func1() { }
5584 * void func2() { return func1(); } // illegal return statement"
5585 */
5586 _mesa_glsl_error(& loc, state,
5587 "void functions can only use `return' without a "
5588 "return argument");
5589 }
5590
5591 inst = new(ctx) ir_return(ret);
5592 } else {
5593 if (state->current_function->return_type->base_type !=
5594 GLSL_TYPE_VOID) {
5595 YYLTYPE loc = this->get_location();
5596
5597 _mesa_glsl_error(& loc, state,
5598 "`return' with no value, in function %s returning "
5599 "non-void",
5600 state->current_function->function_name());
5601 }
5602 inst = new(ctx) ir_return;
5603 }
5604
5605 state->found_return = true;
5606 instructions->push_tail(inst);
5607 break;
5608 }
5609
5610 case ast_discard:
5611 if (state->stage != MESA_SHADER_FRAGMENT) {
5612 YYLTYPE loc = this->get_location();
5613
5614 _mesa_glsl_error(& loc, state,
5615 "`discard' may only appear in a fragment shader");
5616 }
5617 instructions->push_tail(new(ctx) ir_discard);
5618 break;
5619
5620 case ast_break:
5621 case ast_continue:
5622 if (mode == ast_continue &&
5623 state->loop_nesting_ast == NULL) {
5624 YYLTYPE loc = this->get_location();
5625
5626 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5627 } else if (mode == ast_break &&
5628 state->loop_nesting_ast == NULL &&
5629 state->switch_state.switch_nesting_ast == NULL) {
5630 YYLTYPE loc = this->get_location();
5631
5632 _mesa_glsl_error(& loc, state,
5633 "break may only appear in a loop or a switch");
5634 } else {
5635 /* For a loop, inline the for loop expression again, since we don't
5636 * know where near the end of the loop body the normal copy of it is
5637 * going to be placed. Same goes for the condition for a do-while
5638 * loop.
5639 */
5640 if (state->loop_nesting_ast != NULL &&
5641 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5642 if (state->loop_nesting_ast->rest_expression) {
5643 state->loop_nesting_ast->rest_expression->hir(instructions,
5644 state);
5645 }
5646 if (state->loop_nesting_ast->mode ==
5647 ast_iteration_statement::ast_do_while) {
5648 state->loop_nesting_ast->condition_to_hir(instructions, state);
5649 }
5650 }
5651
5652 if (state->switch_state.is_switch_innermost &&
5653 mode == ast_continue) {
5654 /* Set 'continue_inside' to true. */
5655 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5656 ir_dereference_variable *deref_continue_inside_var =
5657 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5658 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5659 true_val));
5660
5661 /* Break out from the switch, continue for the loop will
5662 * be called right after switch. */
5663 ir_loop_jump *const jump =
5664 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5665 instructions->push_tail(jump);
5666
5667 } else if (state->switch_state.is_switch_innermost &&
5668 mode == ast_break) {
5669 /* Force break out of switch by inserting a break. */
5670 ir_loop_jump *const jump =
5671 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5672 instructions->push_tail(jump);
5673 } else {
5674 ir_loop_jump *const jump =
5675 new(ctx) ir_loop_jump((mode == ast_break)
5676 ? ir_loop_jump::jump_break
5677 : ir_loop_jump::jump_continue);
5678 instructions->push_tail(jump);
5679 }
5680 }
5681
5682 break;
5683 }
5684
5685 /* Jump instructions do not have r-values.
5686 */
5687 return NULL;
5688 }
5689
5690
5691 ir_rvalue *
5692 ast_selection_statement::hir(exec_list *instructions,
5693 struct _mesa_glsl_parse_state *state)
5694 {
5695 void *ctx = state;
5696
5697 ir_rvalue *const condition = this->condition->hir(instructions, state);
5698
5699 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5700 *
5701 * "Any expression whose type evaluates to a Boolean can be used as the
5702 * conditional expression bool-expression. Vector types are not accepted
5703 * as the expression to if."
5704 *
5705 * The checks are separated so that higher quality diagnostics can be
5706 * generated for cases where both rules are violated.
5707 */
5708 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5709 YYLTYPE loc = this->condition->get_location();
5710
5711 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5712 "boolean");
5713 }
5714
5715 ir_if *const stmt = new(ctx) ir_if(condition);
5716
5717 if (then_statement != NULL) {
5718 state->symbols->push_scope();
5719 then_statement->hir(& stmt->then_instructions, state);
5720 state->symbols->pop_scope();
5721 }
5722
5723 if (else_statement != NULL) {
5724 state->symbols->push_scope();
5725 else_statement->hir(& stmt->else_instructions, state);
5726 state->symbols->pop_scope();
5727 }
5728
5729 instructions->push_tail(stmt);
5730
5731 /* if-statements do not have r-values.
5732 */
5733 return NULL;
5734 }
5735
5736
5737 ir_rvalue *
5738 ast_switch_statement::hir(exec_list *instructions,
5739 struct _mesa_glsl_parse_state *state)
5740 {
5741 void *ctx = state;
5742
5743 ir_rvalue *const test_expression =
5744 this->test_expression->hir(instructions, state);
5745
5746 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5747 *
5748 * "The type of init-expression in a switch statement must be a
5749 * scalar integer."
5750 */
5751 if (!test_expression->type->is_scalar() ||
5752 !test_expression->type->is_integer()) {
5753 YYLTYPE loc = this->test_expression->get_location();
5754
5755 _mesa_glsl_error(& loc,
5756 state,
5757 "switch-statement expression must be scalar "
5758 "integer");
5759 }
5760
5761 /* Track the switch-statement nesting in a stack-like manner.
5762 */
5763 struct glsl_switch_state saved = state->switch_state;
5764
5765 state->switch_state.is_switch_innermost = true;
5766 state->switch_state.switch_nesting_ast = this;
5767 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5768 hash_table_pointer_compare);
5769 state->switch_state.previous_default = NULL;
5770
5771 /* Initalize is_fallthru state to false.
5772 */
5773 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5774 state->switch_state.is_fallthru_var =
5775 new(ctx) ir_variable(glsl_type::bool_type,
5776 "switch_is_fallthru_tmp",
5777 ir_var_temporary);
5778 instructions->push_tail(state->switch_state.is_fallthru_var);
5779
5780 ir_dereference_variable *deref_is_fallthru_var =
5781 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5782 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5783 is_fallthru_val));
5784
5785 /* Initialize continue_inside state to false.
5786 */
5787 state->switch_state.continue_inside =
5788 new(ctx) ir_variable(glsl_type::bool_type,
5789 "continue_inside_tmp",
5790 ir_var_temporary);
5791 instructions->push_tail(state->switch_state.continue_inside);
5792
5793 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5794 ir_dereference_variable *deref_continue_inside_var =
5795 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5796 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5797 false_val));
5798
5799 state->switch_state.run_default =
5800 new(ctx) ir_variable(glsl_type::bool_type,
5801 "run_default_tmp",
5802 ir_var_temporary);
5803 instructions->push_tail(state->switch_state.run_default);
5804
5805 /* Loop around the switch is used for flow control. */
5806 ir_loop * loop = new(ctx) ir_loop();
5807 instructions->push_tail(loop);
5808
5809 /* Cache test expression.
5810 */
5811 test_to_hir(&loop->body_instructions, state);
5812
5813 /* Emit code for body of switch stmt.
5814 */
5815 body->hir(&loop->body_instructions, state);
5816
5817 /* Insert a break at the end to exit loop. */
5818 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5819 loop->body_instructions.push_tail(jump);
5820
5821 /* If we are inside loop, check if continue got called inside switch. */
5822 if (state->loop_nesting_ast != NULL) {
5823 ir_dereference_variable *deref_continue_inside =
5824 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5825 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5826 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5827
5828 if (state->loop_nesting_ast != NULL) {
5829 if (state->loop_nesting_ast->rest_expression) {
5830 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5831 state);
5832 }
5833 if (state->loop_nesting_ast->mode ==
5834 ast_iteration_statement::ast_do_while) {
5835 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5836 }
5837 }
5838 irif->then_instructions.push_tail(jump);
5839 instructions->push_tail(irif);
5840 }
5841
5842 hash_table_dtor(state->switch_state.labels_ht);
5843
5844 state->switch_state = saved;
5845
5846 /* Switch statements do not have r-values. */
5847 return NULL;
5848 }
5849
5850
5851 void
5852 ast_switch_statement::test_to_hir(exec_list *instructions,
5853 struct _mesa_glsl_parse_state *state)
5854 {
5855 void *ctx = state;
5856
5857 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5858 * on the switch test case. The first one would be already raised when
5859 * getting the test_expression at ast_switch_statement::hir
5860 */
5861 test_expression->set_is_lhs(true);
5862 /* Cache value of test expression. */
5863 ir_rvalue *const test_val =
5864 test_expression->hir(instructions,
5865 state);
5866
5867 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5868 "switch_test_tmp",
5869 ir_var_temporary);
5870 ir_dereference_variable *deref_test_var =
5871 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5872
5873 instructions->push_tail(state->switch_state.test_var);
5874 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5875 }
5876
5877
5878 ir_rvalue *
5879 ast_switch_body::hir(exec_list *instructions,
5880 struct _mesa_glsl_parse_state *state)
5881 {
5882 if (stmts != NULL)
5883 stmts->hir(instructions, state);
5884
5885 /* Switch bodies do not have r-values. */
5886 return NULL;
5887 }
5888
5889 ir_rvalue *
5890 ast_case_statement_list::hir(exec_list *instructions,
5891 struct _mesa_glsl_parse_state *state)
5892 {
5893 exec_list default_case, after_default, tmp;
5894
5895 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5896 case_stmt->hir(&tmp, state);
5897
5898 /* Default case. */
5899 if (state->switch_state.previous_default && default_case.is_empty()) {
5900 default_case.append_list(&tmp);
5901 continue;
5902 }
5903
5904 /* If default case found, append 'after_default' list. */
5905 if (!default_case.is_empty())
5906 after_default.append_list(&tmp);
5907 else
5908 instructions->append_list(&tmp);
5909 }
5910
5911 /* Handle the default case. This is done here because default might not be
5912 * the last case. We need to add checks against following cases first to see
5913 * if default should be chosen or not.
5914 */
5915 if (!default_case.is_empty()) {
5916
5917 ir_rvalue *const true_val = new (state) ir_constant(true);
5918 ir_dereference_variable *deref_run_default_var =
5919 new(state) ir_dereference_variable(state->switch_state.run_default);
5920
5921 /* Choose to run default case initially, following conditional
5922 * assignments might change this.
5923 */
5924 ir_assignment *const init_var =
5925 new(state) ir_assignment(deref_run_default_var, true_val);
5926 instructions->push_tail(init_var);
5927
5928 /* Default case was the last one, no checks required. */
5929 if (after_default.is_empty()) {
5930 instructions->append_list(&default_case);
5931 return NULL;
5932 }
5933
5934 foreach_in_list(ir_instruction, ir, &after_default) {
5935 ir_assignment *assign = ir->as_assignment();
5936
5937 if (!assign)
5938 continue;
5939
5940 /* Clone the check between case label and init expression. */
5941 ir_expression *exp = (ir_expression*) assign->condition;
5942 ir_expression *clone = exp->clone(state, NULL);
5943
5944 ir_dereference_variable *deref_var =
5945 new(state) ir_dereference_variable(state->switch_state.run_default);
5946 ir_rvalue *const false_val = new (state) ir_constant(false);
5947
5948 ir_assignment *const set_false =
5949 new(state) ir_assignment(deref_var, false_val, clone);
5950
5951 instructions->push_tail(set_false);
5952 }
5953
5954 /* Append default case and all cases after it. */
5955 instructions->append_list(&default_case);
5956 instructions->append_list(&after_default);
5957 }
5958
5959 /* Case statements do not have r-values. */
5960 return NULL;
5961 }
5962
5963 ir_rvalue *
5964 ast_case_statement::hir(exec_list *instructions,
5965 struct _mesa_glsl_parse_state *state)
5966 {
5967 labels->hir(instructions, state);
5968
5969 /* Guard case statements depending on fallthru state. */
5970 ir_dereference_variable *const deref_fallthru_guard =
5971 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5972 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5973
5974 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5975 stmt->hir(& test_fallthru->then_instructions, state);
5976
5977 instructions->push_tail(test_fallthru);
5978
5979 /* Case statements do not have r-values. */
5980 return NULL;
5981 }
5982
5983
5984 ir_rvalue *
5985 ast_case_label_list::hir(exec_list *instructions,
5986 struct _mesa_glsl_parse_state *state)
5987 {
5988 foreach_list_typed (ast_case_label, label, link, & this->labels)
5989 label->hir(instructions, state);
5990
5991 /* Case labels do not have r-values. */
5992 return NULL;
5993 }
5994
5995 ir_rvalue *
5996 ast_case_label::hir(exec_list *instructions,
5997 struct _mesa_glsl_parse_state *state)
5998 {
5999 void *ctx = state;
6000
6001 ir_dereference_variable *deref_fallthru_var =
6002 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6003
6004 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6005
6006 /* If not default case, ... */
6007 if (this->test_value != NULL) {
6008 /* Conditionally set fallthru state based on
6009 * comparison of cached test expression value to case label.
6010 */
6011 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6012 ir_constant *label_const = label_rval->constant_expression_value();
6013
6014 if (!label_const) {
6015 YYLTYPE loc = this->test_value->get_location();
6016
6017 _mesa_glsl_error(& loc, state,
6018 "switch statement case label must be a "
6019 "constant expression");
6020
6021 /* Stuff a dummy value in to allow processing to continue. */
6022 label_const = new(ctx) ir_constant(0);
6023 } else {
6024 ast_expression *previous_label = (ast_expression *)
6025 hash_table_find(state->switch_state.labels_ht,
6026 (void *)(uintptr_t)label_const->value.u[0]);
6027
6028 if (previous_label) {
6029 YYLTYPE loc = this->test_value->get_location();
6030 _mesa_glsl_error(& loc, state, "duplicate case value");
6031
6032 loc = previous_label->get_location();
6033 _mesa_glsl_error(& loc, state, "this is the previous case label");
6034 } else {
6035 hash_table_insert(state->switch_state.labels_ht,
6036 this->test_value,
6037 (void *)(uintptr_t)label_const->value.u[0]);
6038 }
6039 }
6040
6041 ir_dereference_variable *deref_test_var =
6042 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6043
6044 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6045 label_const,
6046 deref_test_var);
6047
6048 /*
6049 * From GLSL 4.40 specification section 6.2 ("Selection"):
6050 *
6051 * "The type of the init-expression value in a switch statement must
6052 * be a scalar int or uint. The type of the constant-expression value
6053 * in a case label also must be a scalar int or uint. When any pair
6054 * of these values is tested for "equal value" and the types do not
6055 * match, an implicit conversion will be done to convert the int to a
6056 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6057 * is done."
6058 */
6059 if (label_const->type != state->switch_state.test_var->type) {
6060 YYLTYPE loc = this->test_value->get_location();
6061
6062 const glsl_type *type_a = label_const->type;
6063 const glsl_type *type_b = state->switch_state.test_var->type;
6064
6065 /* Check if int->uint implicit conversion is supported. */
6066 bool integer_conversion_supported =
6067 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6068 state);
6069
6070 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6071 !integer_conversion_supported) {
6072 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6073 "init-expression and case label (%s != %s)",
6074 type_a->name, type_b->name);
6075 } else {
6076 /* Conversion of the case label. */
6077 if (type_a->base_type == GLSL_TYPE_INT) {
6078 if (!apply_implicit_conversion(glsl_type::uint_type,
6079 test_cond->operands[0], state))
6080 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6081 } else {
6082 /* Conversion of the init-expression value. */
6083 if (!apply_implicit_conversion(glsl_type::uint_type,
6084 test_cond->operands[1], state))
6085 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6086 }
6087 }
6088 }
6089
6090 ir_assignment *set_fallthru_on_test =
6091 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6092
6093 instructions->push_tail(set_fallthru_on_test);
6094 } else { /* default case */
6095 if (state->switch_state.previous_default) {
6096 YYLTYPE loc = this->get_location();
6097 _mesa_glsl_error(& loc, state,
6098 "multiple default labels in one switch");
6099
6100 loc = state->switch_state.previous_default->get_location();
6101 _mesa_glsl_error(& loc, state, "this is the first default label");
6102 }
6103 state->switch_state.previous_default = this;
6104
6105 /* Set fallthru condition on 'run_default' bool. */
6106 ir_dereference_variable *deref_run_default =
6107 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6108 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6109 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6110 cond_true,
6111 deref_run_default);
6112
6113 /* Set falltrhu state. */
6114 ir_assignment *set_fallthru =
6115 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6116
6117 instructions->push_tail(set_fallthru);
6118 }
6119
6120 /* Case statements do not have r-values. */
6121 return NULL;
6122 }
6123
6124 void
6125 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6126 struct _mesa_glsl_parse_state *state)
6127 {
6128 void *ctx = state;
6129
6130 if (condition != NULL) {
6131 ir_rvalue *const cond =
6132 condition->hir(instructions, state);
6133
6134 if ((cond == NULL)
6135 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6136 YYLTYPE loc = condition->get_location();
6137
6138 _mesa_glsl_error(& loc, state,
6139 "loop condition must be scalar boolean");
6140 } else {
6141 /* As the first code in the loop body, generate a block that looks
6142 * like 'if (!condition) break;' as the loop termination condition.
6143 */
6144 ir_rvalue *const not_cond =
6145 new(ctx) ir_expression(ir_unop_logic_not, cond);
6146
6147 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6148
6149 ir_jump *const break_stmt =
6150 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6151
6152 if_stmt->then_instructions.push_tail(break_stmt);
6153 instructions->push_tail(if_stmt);
6154 }
6155 }
6156 }
6157
6158
6159 ir_rvalue *
6160 ast_iteration_statement::hir(exec_list *instructions,
6161 struct _mesa_glsl_parse_state *state)
6162 {
6163 void *ctx = state;
6164
6165 /* For-loops and while-loops start a new scope, but do-while loops do not.
6166 */
6167 if (mode != ast_do_while)
6168 state->symbols->push_scope();
6169
6170 if (init_statement != NULL)
6171 init_statement->hir(instructions, state);
6172
6173 ir_loop *const stmt = new(ctx) ir_loop();
6174 instructions->push_tail(stmt);
6175
6176 /* Track the current loop nesting. */
6177 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6178
6179 state->loop_nesting_ast = this;
6180
6181 /* Likewise, indicate that following code is closest to a loop,
6182 * NOT closest to a switch.
6183 */
6184 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6185 state->switch_state.is_switch_innermost = false;
6186
6187 if (mode != ast_do_while)
6188 condition_to_hir(&stmt->body_instructions, state);
6189
6190 if (body != NULL)
6191 body->hir(& stmt->body_instructions, state);
6192
6193 if (rest_expression != NULL)
6194 rest_expression->hir(& stmt->body_instructions, state);
6195
6196 if (mode == ast_do_while)
6197 condition_to_hir(&stmt->body_instructions, state);
6198
6199 if (mode != ast_do_while)
6200 state->symbols->pop_scope();
6201
6202 /* Restore previous nesting before returning. */
6203 state->loop_nesting_ast = nesting_ast;
6204 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6205
6206 /* Loops do not have r-values.
6207 */
6208 return NULL;
6209 }
6210
6211
6212 /**
6213 * Determine if the given type is valid for establishing a default precision
6214 * qualifier.
6215 *
6216 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6217 *
6218 * "The precision statement
6219 *
6220 * precision precision-qualifier type;
6221 *
6222 * can be used to establish a default precision qualifier. The type field
6223 * can be either int or float or any of the sampler types, and the
6224 * precision-qualifier can be lowp, mediump, or highp."
6225 *
6226 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6227 * qualifiers on sampler types, but this seems like an oversight (since the
6228 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6229 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6230 * version.
6231 */
6232 static bool
6233 is_valid_default_precision_type(const struct glsl_type *const type)
6234 {
6235 if (type == NULL)
6236 return false;
6237
6238 switch (type->base_type) {
6239 case GLSL_TYPE_INT:
6240 case GLSL_TYPE_FLOAT:
6241 /* "int" and "float" are valid, but vectors and matrices are not. */
6242 return type->vector_elements == 1 && type->matrix_columns == 1;
6243 case GLSL_TYPE_SAMPLER:
6244 case GLSL_TYPE_IMAGE:
6245 case GLSL_TYPE_ATOMIC_UINT:
6246 return true;
6247 default:
6248 return false;
6249 }
6250 }
6251
6252
6253 ir_rvalue *
6254 ast_type_specifier::hir(exec_list *instructions,
6255 struct _mesa_glsl_parse_state *state)
6256 {
6257 if (this->default_precision == ast_precision_none && this->structure == NULL)
6258 return NULL;
6259
6260 YYLTYPE loc = this->get_location();
6261
6262 /* If this is a precision statement, check that the type to which it is
6263 * applied is either float or int.
6264 *
6265 * From section 4.5.3 of the GLSL 1.30 spec:
6266 * "The precision statement
6267 * precision precision-qualifier type;
6268 * can be used to establish a default precision qualifier. The type
6269 * field can be either int or float [...]. Any other types or
6270 * qualifiers will result in an error.
6271 */
6272 if (this->default_precision != ast_precision_none) {
6273 if (!state->check_precision_qualifiers_allowed(&loc))
6274 return NULL;
6275
6276 if (this->structure != NULL) {
6277 _mesa_glsl_error(&loc, state,
6278 "precision qualifiers do not apply to structures");
6279 return NULL;
6280 }
6281
6282 if (this->array_specifier != NULL) {
6283 _mesa_glsl_error(&loc, state,
6284 "default precision statements do not apply to "
6285 "arrays");
6286 return NULL;
6287 }
6288
6289 const struct glsl_type *const type =
6290 state->symbols->get_type(this->type_name);
6291 if (!is_valid_default_precision_type(type)) {
6292 _mesa_glsl_error(&loc, state,
6293 "default precision statements apply only to "
6294 "float, int, and opaque types");
6295 return NULL;
6296 }
6297
6298 if (state->es_shader) {
6299 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6300 * spec says:
6301 *
6302 * "Non-precision qualified declarations will use the precision
6303 * qualifier specified in the most recent precision statement
6304 * that is still in scope. The precision statement has the same
6305 * scoping rules as variable declarations. If it is declared
6306 * inside a compound statement, its effect stops at the end of
6307 * the innermost statement it was declared in. Precision
6308 * statements in nested scopes override precision statements in
6309 * outer scopes. Multiple precision statements for the same basic
6310 * type can appear inside the same scope, with later statements
6311 * overriding earlier statements within that scope."
6312 *
6313 * Default precision specifications follow the same scope rules as
6314 * variables. So, we can track the state of the default precision
6315 * qualifiers in the symbol table, and the rules will just work. This
6316 * is a slight abuse of the symbol table, but it has the semantics
6317 * that we want.
6318 */
6319 state->symbols->add_default_precision_qualifier(this->type_name,
6320 this->default_precision);
6321 }
6322
6323 /* FINISHME: Translate precision statements into IR. */
6324 return NULL;
6325 }
6326
6327 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6328 * process_record_constructor() can do type-checking on C-style initializer
6329 * expressions of structs, but ast_struct_specifier should only be translated
6330 * to HIR if it is declaring the type of a structure.
6331 *
6332 * The ->is_declaration field is false for initializers of variables
6333 * declared separately from the struct's type definition.
6334 *
6335 * struct S { ... }; (is_declaration = true)
6336 * struct T { ... } t = { ... }; (is_declaration = true)
6337 * S s = { ... }; (is_declaration = false)
6338 */
6339 if (this->structure != NULL && this->structure->is_declaration)
6340 return this->structure->hir(instructions, state);
6341
6342 return NULL;
6343 }
6344
6345
6346 /**
6347 * Process a structure or interface block tree into an array of structure fields
6348 *
6349 * After parsing, where there are some syntax differnces, structures and
6350 * interface blocks are almost identical. They are similar enough that the
6351 * AST for each can be processed the same way into a set of
6352 * \c glsl_struct_field to describe the members.
6353 *
6354 * If we're processing an interface block, var_mode should be the type of the
6355 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6356 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6357 * ir_var_auto.
6358 *
6359 * \return
6360 * The number of fields processed. A pointer to the array structure fields is
6361 * stored in \c *fields_ret.
6362 */
6363 static unsigned
6364 ast_process_struct_or_iface_block_members(exec_list *instructions,
6365 struct _mesa_glsl_parse_state *state,
6366 exec_list *declarations,
6367 glsl_struct_field **fields_ret,
6368 bool is_interface,
6369 enum glsl_matrix_layout matrix_layout,
6370 bool allow_reserved_names,
6371 ir_variable_mode var_mode,
6372 ast_type_qualifier *layout,
6373 unsigned block_stream,
6374 unsigned block_xfb_buffer,
6375 unsigned block_xfb_offset,
6376 unsigned expl_location,
6377 unsigned expl_align)
6378 {
6379 unsigned decl_count = 0;
6380 unsigned next_offset = 0;
6381
6382 /* Make an initial pass over the list of fields to determine how
6383 * many there are. Each element in this list is an ast_declarator_list.
6384 * This means that we actually need to count the number of elements in the
6385 * 'declarations' list in each of the elements.
6386 */
6387 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6388 decl_count += decl_list->declarations.length();
6389 }
6390
6391 /* Allocate storage for the fields and process the field
6392 * declarations. As the declarations are processed, try to also convert
6393 * the types to HIR. This ensures that structure definitions embedded in
6394 * other structure definitions or in interface blocks are processed.
6395 */
6396 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6397 decl_count);
6398
6399 bool first_member = true;
6400 bool first_member_has_explicit_location = false;
6401
6402 unsigned i = 0;
6403 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6404 const char *type_name;
6405 YYLTYPE loc = decl_list->get_location();
6406
6407 decl_list->type->specifier->hir(instructions, state);
6408
6409 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6410 *
6411 * "Anonymous structures are not supported; so embedded structures
6412 * must have a declarator. A name given to an embedded struct is
6413 * scoped at the same level as the struct it is embedded in."
6414 *
6415 * The same section of the GLSL 1.20 spec says:
6416 *
6417 * "Anonymous structures are not supported. Embedded structures are
6418 * not supported."
6419 *
6420 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6421 * embedded structures in 1.10 only.
6422 */
6423 if (state->language_version != 110 &&
6424 decl_list->type->specifier->structure != NULL)
6425 _mesa_glsl_error(&loc, state,
6426 "embedded structure declarations are not allowed");
6427
6428 const glsl_type *decl_type =
6429 decl_list->type->glsl_type(& type_name, state);
6430
6431 const struct ast_type_qualifier *const qual =
6432 &decl_list->type->qualifier;
6433
6434 /* From section 4.3.9 of the GLSL 4.40 spec:
6435 *
6436 * "[In interface blocks] opaque types are not allowed."
6437 *
6438 * It should be impossible for decl_type to be NULL here. Cases that
6439 * might naturally lead to decl_type being NULL, especially for the
6440 * is_interface case, will have resulted in compilation having
6441 * already halted due to a syntax error.
6442 */
6443 assert(decl_type);
6444
6445 if (is_interface) {
6446 if (decl_type->contains_opaque()) {
6447 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6448 "interface block contains opaque variable");
6449 }
6450 } else {
6451 if (decl_type->contains_atomic()) {
6452 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6453 *
6454 * "Members of structures cannot be declared as atomic counter
6455 * types."
6456 */
6457 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6458 }
6459
6460 if (decl_type->contains_image()) {
6461 /* FINISHME: Same problem as with atomic counters.
6462 * FINISHME: Request clarification from Khronos and add
6463 * FINISHME: spec quotation here.
6464 */
6465 _mesa_glsl_error(&loc, state, "image in structure");
6466 }
6467 }
6468
6469 if (qual->flags.q.explicit_binding) {
6470 _mesa_glsl_error(&loc, state,
6471 "binding layout qualifier cannot be applied "
6472 "to struct or interface block members");
6473 }
6474
6475 if (is_interface) {
6476 if (!first_member) {
6477 if (!layout->flags.q.explicit_location &&
6478 ((first_member_has_explicit_location &&
6479 !qual->flags.q.explicit_location) ||
6480 (!first_member_has_explicit_location &&
6481 qual->flags.q.explicit_location))) {
6482 _mesa_glsl_error(&loc, state,
6483 "when block-level location layout qualifier "
6484 "is not supplied either all members must "
6485 "have a location layout qualifier or all "
6486 "members must not have a location layout "
6487 "qualifier");
6488 }
6489 } else {
6490 first_member = false;
6491 first_member_has_explicit_location =
6492 qual->flags.q.explicit_location;
6493 }
6494 }
6495
6496 if (qual->flags.q.std140 ||
6497 qual->flags.q.std430 ||
6498 qual->flags.q.packed ||
6499 qual->flags.q.shared) {
6500 _mesa_glsl_error(&loc, state,
6501 "uniform/shader storage block layout qualifiers "
6502 "std140, std430, packed, and shared can only be "
6503 "applied to uniform/shader storage blocks, not "
6504 "members");
6505 }
6506
6507 if (qual->flags.q.constant) {
6508 _mesa_glsl_error(&loc, state,
6509 "const storage qualifier cannot be applied "
6510 "to struct or interface block members");
6511 }
6512
6513 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6514 *
6515 * "A block member may be declared with a stream identifier, but
6516 * the specified stream must match the stream associated with the
6517 * containing block."
6518 */
6519 if (qual->flags.q.explicit_stream) {
6520 unsigned qual_stream;
6521 if (process_qualifier_constant(state, &loc, "stream",
6522 qual->stream, &qual_stream) &&
6523 qual_stream != block_stream) {
6524 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6525 "interface block member does not match "
6526 "the interface block (%u vs %u)", qual_stream,
6527 block_stream);
6528 }
6529 }
6530
6531 int xfb_buffer;
6532 unsigned explicit_xfb_buffer = 0;
6533 if (qual->flags.q.explicit_xfb_buffer) {
6534 unsigned qual_xfb_buffer;
6535 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6536 qual->xfb_buffer, &qual_xfb_buffer)) {
6537 explicit_xfb_buffer = 1;
6538 if (qual_xfb_buffer != block_xfb_buffer)
6539 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6540 "interface block member does not match "
6541 "the interface block (%u vs %u)",
6542 qual_xfb_buffer, block_xfb_buffer);
6543 }
6544 xfb_buffer = (int) qual_xfb_buffer;
6545 } else {
6546 if (layout)
6547 explicit_xfb_buffer = layout->flags.q.xfb_buffer;
6548 xfb_buffer = (int) block_xfb_buffer;
6549 }
6550
6551 int xfb_stride = -1;
6552 if (qual->flags.q.explicit_xfb_stride) {
6553 unsigned qual_xfb_stride;
6554 if (process_qualifier_constant(state, &loc, "xfb_stride",
6555 qual->xfb_stride, &qual_xfb_stride)) {
6556 xfb_stride = (int) qual_xfb_stride;
6557 }
6558 }
6559
6560 if (qual->flags.q.uniform && qual->has_interpolation()) {
6561 _mesa_glsl_error(&loc, state,
6562 "interpolation qualifiers cannot be used "
6563 "with uniform interface blocks");
6564 }
6565
6566 if ((qual->flags.q.uniform || !is_interface) &&
6567 qual->has_auxiliary_storage()) {
6568 _mesa_glsl_error(&loc, state,
6569 "auxiliary storage qualifiers cannot be used "
6570 "in uniform blocks or structures.");
6571 }
6572
6573 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6574 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6575 _mesa_glsl_error(&loc, state,
6576 "row_major and column_major can only be "
6577 "applied to interface blocks");
6578 } else
6579 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6580 }
6581
6582 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6583 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6584 "readonly and writeonly.");
6585 }
6586
6587 foreach_list_typed (ast_declaration, decl, link,
6588 &decl_list->declarations) {
6589 YYLTYPE loc = decl->get_location();
6590
6591 if (!allow_reserved_names)
6592 validate_identifier(decl->identifier, loc, state);
6593
6594 const struct glsl_type *field_type =
6595 process_array_type(&loc, decl_type, decl->array_specifier, state);
6596 validate_array_dimensions(field_type, state, &loc);
6597 fields[i].type = field_type;
6598 fields[i].name = decl->identifier;
6599 fields[i].interpolation =
6600 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6601 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6602 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6603 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6604 fields[i].precision = qual->precision;
6605 fields[i].offset = -1;
6606 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6607 fields[i].xfb_buffer = xfb_buffer;
6608 fields[i].xfb_stride = xfb_stride;
6609
6610 if (qual->flags.q.explicit_location) {
6611 unsigned qual_location;
6612 if (process_qualifier_constant(state, &loc, "location",
6613 qual->location, &qual_location)) {
6614 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6615 expl_location = fields[i].location +
6616 fields[i].type->count_attribute_slots(false);
6617 }
6618 } else {
6619 if (layout && layout->flags.q.explicit_location) {
6620 fields[i].location = expl_location;
6621 expl_location += fields[i].type->count_attribute_slots(false);
6622 } else {
6623 fields[i].location = -1;
6624 }
6625 }
6626
6627 /* Offset can only be used with std430 and std140 layouts an initial
6628 * value of 0 is used for error detection.
6629 */
6630 unsigned align = 0;
6631 unsigned size = 0;
6632 if (layout) {
6633 bool row_major;
6634 if (qual->flags.q.row_major ||
6635 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6636 row_major = true;
6637 } else {
6638 row_major = false;
6639 }
6640
6641 if(layout->flags.q.std140) {
6642 align = field_type->std140_base_alignment(row_major);
6643 size = field_type->std140_size(row_major);
6644 } else if (layout->flags.q.std430) {
6645 align = field_type->std430_base_alignment(row_major);
6646 size = field_type->std430_size(row_major);
6647 }
6648 }
6649
6650 if (qual->flags.q.explicit_offset) {
6651 unsigned qual_offset;
6652 if (process_qualifier_constant(state, &loc, "offset",
6653 qual->offset, &qual_offset)) {
6654 if (align != 0 && size != 0) {
6655 if (next_offset > qual_offset)
6656 _mesa_glsl_error(&loc, state, "layout qualifier "
6657 "offset overlaps previous member");
6658
6659 if (qual_offset % align) {
6660 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6661 "must be a multiple of the base "
6662 "alignment of %s", field_type->name);
6663 }
6664 fields[i].offset = qual_offset;
6665 next_offset = glsl_align(qual_offset + size, align);
6666 } else {
6667 _mesa_glsl_error(&loc, state, "offset can only be used "
6668 "with std430 and std140 layouts");
6669 }
6670 }
6671 }
6672
6673 if (qual->flags.q.explicit_align || expl_align != 0) {
6674 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6675 next_offset;
6676 if (align == 0 || size == 0) {
6677 _mesa_glsl_error(&loc, state, "align can only be used with "
6678 "std430 and std140 layouts");
6679 } else if (qual->flags.q.explicit_align) {
6680 unsigned member_align;
6681 if (process_qualifier_constant(state, &loc, "align",
6682 qual->align, &member_align)) {
6683 if (member_align == 0 ||
6684 member_align & (member_align - 1)) {
6685 _mesa_glsl_error(&loc, state, "align layout qualifier "
6686 "in not a power of 2");
6687 } else {
6688 fields[i].offset = glsl_align(offset, member_align);
6689 next_offset = glsl_align(fields[i].offset + size, align);
6690 }
6691 }
6692 } else {
6693 fields[i].offset = glsl_align(offset, expl_align);
6694 next_offset = glsl_align(fields[i].offset + size, align);
6695 }
6696 }
6697
6698 if (!qual->flags.q.explicit_offset) {
6699 if (align != 0 && size != 0)
6700 next_offset = glsl_align(next_offset + size, align);
6701 }
6702
6703 /* From the ARB_enhanced_layouts spec:
6704 *
6705 * "The given offset applies to the first component of the first
6706 * member of the qualified entity. Then, within the qualified
6707 * entity, subsequent components are each assigned, in order, to
6708 * the next available offset aligned to a multiple of that
6709 * component's size. Aggregate types are flattened down to the
6710 * component level to get this sequence of components."
6711 */
6712 if (qual->flags.q.explicit_xfb_offset) {
6713 unsigned xfb_offset;
6714 if (process_qualifier_constant(state, &loc, "xfb_offset",
6715 qual->offset, &xfb_offset)) {
6716 fields[i].offset = xfb_offset;
6717 block_xfb_offset = fields[i].offset +
6718 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6719 }
6720 } else {
6721 if (layout && layout->flags.q.explicit_xfb_offset) {
6722 unsigned align = field_type->is_double() ? 8 : 4;
6723 fields[i].offset = glsl_align(block_xfb_offset, align);
6724 block_xfb_offset +=
6725 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6726 }
6727 }
6728
6729 /* Propogate row- / column-major information down the fields of the
6730 * structure or interface block. Structures need this data because
6731 * the structure may contain a structure that contains ... a matrix
6732 * that need the proper layout.
6733 */
6734 if (is_interface &&
6735 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6736 (field_type->without_array()->is_matrix()
6737 || field_type->without_array()->is_record())) {
6738 /* If no layout is specified for the field, inherit the layout
6739 * from the block.
6740 */
6741 fields[i].matrix_layout = matrix_layout;
6742
6743 if (qual->flags.q.row_major)
6744 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6745 else if (qual->flags.q.column_major)
6746 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6747
6748 /* If we're processing an uniform or buffer block, the matrix
6749 * layout must be decided by this point.
6750 */
6751 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6752 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6753 }
6754
6755 /* Image qualifiers are allowed on buffer variables, which can only
6756 * be defined inside shader storage buffer objects
6757 */
6758 if (layout && var_mode == ir_var_shader_storage) {
6759 /* For readonly and writeonly qualifiers the field definition,
6760 * if set, overwrites the layout qualifier.
6761 */
6762 if (qual->flags.q.read_only) {
6763 fields[i].image_read_only = true;
6764 fields[i].image_write_only = false;
6765 } else if (qual->flags.q.write_only) {
6766 fields[i].image_read_only = false;
6767 fields[i].image_write_only = true;
6768 } else {
6769 fields[i].image_read_only = layout->flags.q.read_only;
6770 fields[i].image_write_only = layout->flags.q.write_only;
6771 }
6772
6773 /* For other qualifiers, we set the flag if either the layout
6774 * qualifier or the field qualifier are set
6775 */
6776 fields[i].image_coherent = qual->flags.q.coherent ||
6777 layout->flags.q.coherent;
6778 fields[i].image_volatile = qual->flags.q._volatile ||
6779 layout->flags.q._volatile;
6780 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6781 layout->flags.q.restrict_flag;
6782 }
6783
6784 i++;
6785 }
6786 }
6787
6788 assert(i == decl_count);
6789
6790 *fields_ret = fields;
6791 return decl_count;
6792 }
6793
6794
6795 ir_rvalue *
6796 ast_struct_specifier::hir(exec_list *instructions,
6797 struct _mesa_glsl_parse_state *state)
6798 {
6799 YYLTYPE loc = this->get_location();
6800
6801 unsigned expl_location = 0;
6802 if (layout && layout->flags.q.explicit_location) {
6803 if (!process_qualifier_constant(state, &loc, "location",
6804 layout->location, &expl_location)) {
6805 return NULL;
6806 } else {
6807 expl_location = VARYING_SLOT_VAR0 + expl_location;
6808 }
6809 }
6810
6811 glsl_struct_field *fields;
6812 unsigned decl_count =
6813 ast_process_struct_or_iface_block_members(instructions,
6814 state,
6815 &this->declarations,
6816 &fields,
6817 false,
6818 GLSL_MATRIX_LAYOUT_INHERITED,
6819 false /* allow_reserved_names */,
6820 ir_var_auto,
6821 layout,
6822 0, /* for interface only */
6823 0, /* for interface only */
6824 0, /* for interface only */
6825 expl_location,
6826 0 /* for interface only */);
6827
6828 validate_identifier(this->name, loc, state);
6829
6830 const glsl_type *t =
6831 glsl_type::get_record_instance(fields, decl_count, this->name);
6832
6833 if (!state->symbols->add_type(name, t)) {
6834 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6835 } else {
6836 const glsl_type **s = reralloc(state, state->user_structures,
6837 const glsl_type *,
6838 state->num_user_structures + 1);
6839 if (s != NULL) {
6840 s[state->num_user_structures] = t;
6841 state->user_structures = s;
6842 state->num_user_structures++;
6843 }
6844 }
6845
6846 /* Structure type definitions do not have r-values.
6847 */
6848 return NULL;
6849 }
6850
6851
6852 /**
6853 * Visitor class which detects whether a given interface block has been used.
6854 */
6855 class interface_block_usage_visitor : public ir_hierarchical_visitor
6856 {
6857 public:
6858 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6859 : mode(mode), block(block), found(false)
6860 {
6861 }
6862
6863 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6864 {
6865 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6866 found = true;
6867 return visit_stop;
6868 }
6869 return visit_continue;
6870 }
6871
6872 bool usage_found() const
6873 {
6874 return this->found;
6875 }
6876
6877 private:
6878 ir_variable_mode mode;
6879 const glsl_type *block;
6880 bool found;
6881 };
6882
6883 static bool
6884 is_unsized_array_last_element(ir_variable *v)
6885 {
6886 const glsl_type *interface_type = v->get_interface_type();
6887 int length = interface_type->length;
6888
6889 assert(v->type->is_unsized_array());
6890
6891 /* Check if it is the last element of the interface */
6892 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6893 return true;
6894 return false;
6895 }
6896
6897 ir_rvalue *
6898 ast_interface_block::hir(exec_list *instructions,
6899 struct _mesa_glsl_parse_state *state)
6900 {
6901 YYLTYPE loc = this->get_location();
6902
6903 /* Interface blocks must be declared at global scope */
6904 if (state->current_function != NULL) {
6905 _mesa_glsl_error(&loc, state,
6906 "Interface block `%s' must be declared "
6907 "at global scope",
6908 this->block_name);
6909 }
6910
6911 if (!this->layout.flags.q.buffer &&
6912 this->layout.flags.q.std430) {
6913 _mesa_glsl_error(&loc, state,
6914 "std430 storage block layout qualifier is supported "
6915 "only for shader storage blocks");
6916 }
6917
6918 /* The ast_interface_block has a list of ast_declarator_lists. We
6919 * need to turn those into ir_variables with an association
6920 * with this uniform block.
6921 */
6922 enum glsl_interface_packing packing;
6923 if (this->layout.flags.q.shared) {
6924 packing = GLSL_INTERFACE_PACKING_SHARED;
6925 } else if (this->layout.flags.q.packed) {
6926 packing = GLSL_INTERFACE_PACKING_PACKED;
6927 } else if (this->layout.flags.q.std430) {
6928 packing = GLSL_INTERFACE_PACKING_STD430;
6929 } else {
6930 /* The default layout is std140.
6931 */
6932 packing = GLSL_INTERFACE_PACKING_STD140;
6933 }
6934
6935 ir_variable_mode var_mode;
6936 const char *iface_type_name;
6937 if (this->layout.flags.q.in) {
6938 var_mode = ir_var_shader_in;
6939 iface_type_name = "in";
6940 } else if (this->layout.flags.q.out) {
6941 var_mode = ir_var_shader_out;
6942 iface_type_name = "out";
6943 } else if (this->layout.flags.q.uniform) {
6944 var_mode = ir_var_uniform;
6945 iface_type_name = "uniform";
6946 } else if (this->layout.flags.q.buffer) {
6947 var_mode = ir_var_shader_storage;
6948 iface_type_name = "buffer";
6949 } else {
6950 var_mode = ir_var_auto;
6951 iface_type_name = "UNKNOWN";
6952 assert(!"interface block layout qualifier not found!");
6953 }
6954
6955 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6956 if (this->layout.flags.q.row_major)
6957 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6958 else if (this->layout.flags.q.column_major)
6959 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6960
6961 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6962 exec_list declared_variables;
6963 glsl_struct_field *fields;
6964
6965 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6966 * that we don't have incompatible qualifiers
6967 */
6968 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6969 _mesa_glsl_error(&loc, state,
6970 "Interface block sets both readonly and writeonly");
6971 }
6972
6973 unsigned qual_stream;
6974 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6975 &qual_stream) ||
6976 !validate_stream_qualifier(&loc, state, qual_stream)) {
6977 /* If the stream qualifier is invalid it doesn't make sense to continue
6978 * on and try to compare stream layouts on member variables against it
6979 * so just return early.
6980 */
6981 return NULL;
6982 }
6983
6984 unsigned qual_xfb_buffer;
6985 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
6986 layout.xfb_buffer, &qual_xfb_buffer) ||
6987 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
6988 return NULL;
6989 }
6990
6991 unsigned qual_xfb_offset;
6992 if (layout.flags.q.explicit_xfb_offset) {
6993 if (!process_qualifier_constant(state, &loc, "xfb_offset",
6994 layout.offset, &qual_xfb_offset)) {
6995 return NULL;
6996 }
6997 }
6998
6999 unsigned qual_xfb_stride;
7000 if (layout.flags.q.explicit_xfb_stride) {
7001 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7002 layout.xfb_stride, &qual_xfb_stride)) {
7003 return NULL;
7004 }
7005 }
7006
7007 unsigned expl_location = 0;
7008 if (layout.flags.q.explicit_location) {
7009 if (!process_qualifier_constant(state, &loc, "location",
7010 layout.location, &expl_location)) {
7011 return NULL;
7012 } else {
7013 expl_location = VARYING_SLOT_VAR0 + expl_location;
7014 }
7015 }
7016
7017 unsigned expl_align = 0;
7018 if (layout.flags.q.explicit_align) {
7019 if (!process_qualifier_constant(state, &loc, "align",
7020 layout.align, &expl_align)) {
7021 return NULL;
7022 } else {
7023 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7024 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7025 "power of 2.");
7026 return NULL;
7027 }
7028 }
7029 }
7030
7031 unsigned int num_variables =
7032 ast_process_struct_or_iface_block_members(&declared_variables,
7033 state,
7034 &this->declarations,
7035 &fields,
7036 true,
7037 matrix_layout,
7038 redeclaring_per_vertex,
7039 var_mode,
7040 &this->layout,
7041 qual_stream,
7042 qual_xfb_buffer,
7043 qual_xfb_offset,
7044 expl_location,
7045 expl_align);
7046
7047 if (!redeclaring_per_vertex) {
7048 validate_identifier(this->block_name, loc, state);
7049
7050 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7051 *
7052 * "Block names have no other use within a shader beyond interface
7053 * matching; it is a compile-time error to use a block name at global
7054 * scope for anything other than as a block name."
7055 */
7056 ir_variable *var = state->symbols->get_variable(this->block_name);
7057 if (var && !var->type->is_interface()) {
7058 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7059 "already used in the scope.",
7060 this->block_name);
7061 }
7062 }
7063
7064 const glsl_type *earlier_per_vertex = NULL;
7065 if (redeclaring_per_vertex) {
7066 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7067 * the named interface block gl_in, we can find it by looking at the
7068 * previous declaration of gl_in. Otherwise we can find it by looking
7069 * at the previous decalartion of any of the built-in outputs,
7070 * e.g. gl_Position.
7071 *
7072 * Also check that the instance name and array-ness of the redeclaration
7073 * are correct.
7074 */
7075 switch (var_mode) {
7076 case ir_var_shader_in:
7077 if (ir_variable *earlier_gl_in =
7078 state->symbols->get_variable("gl_in")) {
7079 earlier_per_vertex = earlier_gl_in->get_interface_type();
7080 } else {
7081 _mesa_glsl_error(&loc, state,
7082 "redeclaration of gl_PerVertex input not allowed "
7083 "in the %s shader",
7084 _mesa_shader_stage_to_string(state->stage));
7085 }
7086 if (this->instance_name == NULL ||
7087 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7088 !this->array_specifier->is_single_dimension()) {
7089 _mesa_glsl_error(&loc, state,
7090 "gl_PerVertex input must be redeclared as "
7091 "gl_in[]");
7092 }
7093 break;
7094 case ir_var_shader_out:
7095 if (ir_variable *earlier_gl_Position =
7096 state->symbols->get_variable("gl_Position")) {
7097 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7098 } else if (ir_variable *earlier_gl_out =
7099 state->symbols->get_variable("gl_out")) {
7100 earlier_per_vertex = earlier_gl_out->get_interface_type();
7101 } else {
7102 _mesa_glsl_error(&loc, state,
7103 "redeclaration of gl_PerVertex output not "
7104 "allowed in the %s shader",
7105 _mesa_shader_stage_to_string(state->stage));
7106 }
7107 if (state->stage == MESA_SHADER_TESS_CTRL) {
7108 if (this->instance_name == NULL ||
7109 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7110 _mesa_glsl_error(&loc, state,
7111 "gl_PerVertex output must be redeclared as "
7112 "gl_out[]");
7113 }
7114 } else {
7115 if (this->instance_name != NULL) {
7116 _mesa_glsl_error(&loc, state,
7117 "gl_PerVertex output may not be redeclared with "
7118 "an instance name");
7119 }
7120 }
7121 break;
7122 default:
7123 _mesa_glsl_error(&loc, state,
7124 "gl_PerVertex must be declared as an input or an "
7125 "output");
7126 break;
7127 }
7128
7129 if (earlier_per_vertex == NULL) {
7130 /* An error has already been reported. Bail out to avoid null
7131 * dereferences later in this function.
7132 */
7133 return NULL;
7134 }
7135
7136 /* Copy locations from the old gl_PerVertex interface block. */
7137 for (unsigned i = 0; i < num_variables; i++) {
7138 int j = earlier_per_vertex->field_index(fields[i].name);
7139 if (j == -1) {
7140 _mesa_glsl_error(&loc, state,
7141 "redeclaration of gl_PerVertex must be a subset "
7142 "of the built-in members of gl_PerVertex");
7143 } else {
7144 fields[i].location =
7145 earlier_per_vertex->fields.structure[j].location;
7146 fields[i].offset =
7147 earlier_per_vertex->fields.structure[j].offset;
7148 fields[i].interpolation =
7149 earlier_per_vertex->fields.structure[j].interpolation;
7150 fields[i].centroid =
7151 earlier_per_vertex->fields.structure[j].centroid;
7152 fields[i].sample =
7153 earlier_per_vertex->fields.structure[j].sample;
7154 fields[i].patch =
7155 earlier_per_vertex->fields.structure[j].patch;
7156 fields[i].precision =
7157 earlier_per_vertex->fields.structure[j].precision;
7158 fields[i].explicit_xfb_buffer =
7159 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7160 fields[i].xfb_buffer =
7161 earlier_per_vertex->fields.structure[j].xfb_buffer;
7162 fields[i].xfb_stride =
7163 earlier_per_vertex->fields.structure[j].xfb_stride;
7164 }
7165 }
7166
7167 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7168 * spec:
7169 *
7170 * If a built-in interface block is redeclared, it must appear in
7171 * the shader before any use of any member included in the built-in
7172 * declaration, or a compilation error will result.
7173 *
7174 * This appears to be a clarification to the behaviour established for
7175 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7176 * regardless of GLSL version.
7177 */
7178 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7179 v.run(instructions);
7180 if (v.usage_found()) {
7181 _mesa_glsl_error(&loc, state,
7182 "redeclaration of a built-in interface block must "
7183 "appear before any use of any member of the "
7184 "interface block");
7185 }
7186 }
7187
7188 const glsl_type *block_type =
7189 glsl_type::get_interface_instance(fields,
7190 num_variables,
7191 packing,
7192 this->block_name);
7193
7194 unsigned component_size = block_type->contains_double() ? 8 : 4;
7195 int xfb_offset =
7196 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7197 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7198 component_size);
7199
7200 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7201 YYLTYPE loc = this->get_location();
7202 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7203 "already taken in the current scope",
7204 this->block_name, iface_type_name);
7205 }
7206
7207 /* Since interface blocks cannot contain statements, it should be
7208 * impossible for the block to generate any instructions.
7209 */
7210 assert(declared_variables.is_empty());
7211
7212 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7213 *
7214 * Geometry shader input variables get the per-vertex values written
7215 * out by vertex shader output variables of the same names. Since a
7216 * geometry shader operates on a set of vertices, each input varying
7217 * variable (or input block, see interface blocks below) needs to be
7218 * declared as an array.
7219 */
7220 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7221 var_mode == ir_var_shader_in) {
7222 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7223 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7224 state->stage == MESA_SHADER_TESS_EVAL) &&
7225 this->array_specifier == NULL &&
7226 var_mode == ir_var_shader_in) {
7227 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7228 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7229 this->array_specifier == NULL &&
7230 var_mode == ir_var_shader_out) {
7231 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7232 }
7233
7234
7235 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7236 * says:
7237 *
7238 * "If an instance name (instance-name) is used, then it puts all the
7239 * members inside a scope within its own name space, accessed with the
7240 * field selector ( . ) operator (analogously to structures)."
7241 */
7242 if (this->instance_name) {
7243 if (redeclaring_per_vertex) {
7244 /* When a built-in in an unnamed interface block is redeclared,
7245 * get_variable_being_redeclared() calls
7246 * check_builtin_array_max_size() to make sure that built-in array
7247 * variables aren't redeclared to illegal sizes. But we're looking
7248 * at a redeclaration of a named built-in interface block. So we
7249 * have to manually call check_builtin_array_max_size() for all parts
7250 * of the interface that are arrays.
7251 */
7252 for (unsigned i = 0; i < num_variables; i++) {
7253 if (fields[i].type->is_array()) {
7254 const unsigned size = fields[i].type->array_size();
7255 check_builtin_array_max_size(fields[i].name, size, loc, state);
7256 }
7257 }
7258 } else {
7259 validate_identifier(this->instance_name, loc, state);
7260 }
7261
7262 ir_variable *var;
7263
7264 if (this->array_specifier != NULL) {
7265 const glsl_type *block_array_type =
7266 process_array_type(&loc, block_type, this->array_specifier, state);
7267
7268 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7269 *
7270 * For uniform blocks declared an array, each individual array
7271 * element corresponds to a separate buffer object backing one
7272 * instance of the block. As the array size indicates the number
7273 * of buffer objects needed, uniform block array declarations
7274 * must specify an array size.
7275 *
7276 * And a few paragraphs later:
7277 *
7278 * Geometry shader input blocks must be declared as arrays and
7279 * follow the array declaration and linking rules for all
7280 * geometry shader inputs. All other input and output block
7281 * arrays must specify an array size.
7282 *
7283 * The same applies to tessellation shaders.
7284 *
7285 * The upshot of this is that the only circumstance where an
7286 * interface array size *doesn't* need to be specified is on a
7287 * geometry shader input, tessellation control shader input,
7288 * tessellation control shader output, and tessellation evaluation
7289 * shader input.
7290 */
7291 if (block_array_type->is_unsized_array()) {
7292 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7293 state->stage == MESA_SHADER_TESS_CTRL ||
7294 state->stage == MESA_SHADER_TESS_EVAL;
7295 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7296
7297 if (this->layout.flags.q.in) {
7298 if (!allow_inputs)
7299 _mesa_glsl_error(&loc, state,
7300 "unsized input block arrays not allowed in "
7301 "%s shader",
7302 _mesa_shader_stage_to_string(state->stage));
7303 } else if (this->layout.flags.q.out) {
7304 if (!allow_outputs)
7305 _mesa_glsl_error(&loc, state,
7306 "unsized output block arrays not allowed in "
7307 "%s shader",
7308 _mesa_shader_stage_to_string(state->stage));
7309 } else {
7310 /* by elimination, this is a uniform block array */
7311 _mesa_glsl_error(&loc, state,
7312 "unsized uniform block arrays not allowed in "
7313 "%s shader",
7314 _mesa_shader_stage_to_string(state->stage));
7315 }
7316 }
7317
7318 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7319 *
7320 * * Arrays of arrays of blocks are not allowed
7321 */
7322 if (state->es_shader && block_array_type->is_array() &&
7323 block_array_type->fields.array->is_array()) {
7324 _mesa_glsl_error(&loc, state,
7325 "arrays of arrays interface blocks are "
7326 "not allowed");
7327 }
7328
7329 var = new(state) ir_variable(block_array_type,
7330 this->instance_name,
7331 var_mode);
7332 } else {
7333 var = new(state) ir_variable(block_type,
7334 this->instance_name,
7335 var_mode);
7336 }
7337
7338 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7339 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7340
7341 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7342 var->data.read_only = true;
7343
7344 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7345 handle_geometry_shader_input_decl(state, loc, var);
7346 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7347 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7348 handle_tess_shader_input_decl(state, loc, var);
7349 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7350 handle_tess_ctrl_shader_output_decl(state, loc, var);
7351
7352 for (unsigned i = 0; i < num_variables; i++) {
7353 if (fields[i].type->is_unsized_array()) {
7354 if (var_mode == ir_var_shader_storage) {
7355 if (i != (num_variables - 1)) {
7356 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7357 "only last member of a shader storage block "
7358 "can be defined as unsized array",
7359 fields[i].name);
7360 }
7361 } else {
7362 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7363 *
7364 * "If an array is declared as the last member of a shader storage
7365 * block and the size is not specified at compile-time, it is
7366 * sized at run-time. In all other cases, arrays are sized only
7367 * at compile-time."
7368 */
7369 if (state->es_shader) {
7370 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7371 "only last member of a shader storage block "
7372 "can be defined as unsized array",
7373 fields[i].name);
7374 }
7375 }
7376 }
7377 }
7378
7379 if (ir_variable *earlier =
7380 state->symbols->get_variable(this->instance_name)) {
7381 if (!redeclaring_per_vertex) {
7382 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7383 this->instance_name);
7384 }
7385 earlier->data.how_declared = ir_var_declared_normally;
7386 earlier->type = var->type;
7387 earlier->reinit_interface_type(block_type);
7388 delete var;
7389 } else {
7390 if (this->layout.flags.q.explicit_binding) {
7391 apply_explicit_binding(state, &loc, var, var->type,
7392 &this->layout);
7393 }
7394
7395 var->data.stream = qual_stream;
7396 if (layout.flags.q.explicit_location) {
7397 var->data.location = expl_location;
7398 var->data.explicit_location = true;
7399 }
7400
7401 state->symbols->add_variable(var);
7402 instructions->push_tail(var);
7403 }
7404 } else {
7405 /* In order to have an array size, the block must also be declared with
7406 * an instance name.
7407 */
7408 assert(this->array_specifier == NULL);
7409
7410 for (unsigned i = 0; i < num_variables; i++) {
7411 ir_variable *var =
7412 new(state) ir_variable(fields[i].type,
7413 ralloc_strdup(state, fields[i].name),
7414 var_mode);
7415 var->data.interpolation = fields[i].interpolation;
7416 var->data.centroid = fields[i].centroid;
7417 var->data.sample = fields[i].sample;
7418 var->data.patch = fields[i].patch;
7419 var->data.stream = qual_stream;
7420 var->data.location = fields[i].location;
7421
7422 if (fields[i].location != -1)
7423 var->data.explicit_location = true;
7424
7425 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7426 var->data.xfb_buffer = fields[i].xfb_buffer;
7427
7428 if (fields[i].offset != -1)
7429 var->data.explicit_xfb_offset = true;
7430 var->data.offset = fields[i].offset;
7431
7432 var->init_interface_type(block_type);
7433
7434 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7435 var->data.read_only = true;
7436
7437 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7438 if (state->es_shader) {
7439 var->data.precision =
7440 select_gles_precision(fields[i].precision, fields[i].type,
7441 state, &loc);
7442 }
7443
7444 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7445 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7446 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7447 } else {
7448 var->data.matrix_layout = fields[i].matrix_layout;
7449 }
7450
7451 if (var->data.mode == ir_var_shader_storage) {
7452 var->data.image_read_only = fields[i].image_read_only;
7453 var->data.image_write_only = fields[i].image_write_only;
7454 var->data.image_coherent = fields[i].image_coherent;
7455 var->data.image_volatile = fields[i].image_volatile;
7456 var->data.image_restrict = fields[i].image_restrict;
7457 }
7458
7459 /* Examine var name here since var may get deleted in the next call */
7460 bool var_is_gl_id = is_gl_identifier(var->name);
7461
7462 if (redeclaring_per_vertex) {
7463 ir_variable *earlier =
7464 get_variable_being_redeclared(var, loc, state,
7465 true /* allow_all_redeclarations */);
7466 if (!var_is_gl_id || earlier == NULL) {
7467 _mesa_glsl_error(&loc, state,
7468 "redeclaration of gl_PerVertex can only "
7469 "include built-in variables");
7470 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7471 _mesa_glsl_error(&loc, state,
7472 "`%s' has already been redeclared",
7473 earlier->name);
7474 } else {
7475 earlier->data.how_declared = ir_var_declared_in_block;
7476 earlier->reinit_interface_type(block_type);
7477 }
7478 continue;
7479 }
7480
7481 if (state->symbols->get_variable(var->name) != NULL)
7482 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7483
7484 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7485 * The UBO declaration itself doesn't get an ir_variable unless it
7486 * has an instance name. This is ugly.
7487 */
7488 if (this->layout.flags.q.explicit_binding) {
7489 apply_explicit_binding(state, &loc, var,
7490 var->get_interface_type(), &this->layout);
7491 }
7492
7493 if (var->type->is_unsized_array()) {
7494 if (var->is_in_shader_storage_block()) {
7495 if (!is_unsized_array_last_element(var)) {
7496 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7497 "only last member of a shader storage block "
7498 "can be defined as unsized array",
7499 var->name);
7500 }
7501 var->data.from_ssbo_unsized_array = true;
7502 } else {
7503 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7504 *
7505 * "If an array is declared as the last member of a shader storage
7506 * block and the size is not specified at compile-time, it is
7507 * sized at run-time. In all other cases, arrays are sized only
7508 * at compile-time."
7509 */
7510 if (state->es_shader) {
7511 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7512 "only last member of a shader storage block "
7513 "can be defined as unsized array",
7514 var->name);
7515 }
7516 }
7517 }
7518
7519 state->symbols->add_variable(var);
7520 instructions->push_tail(var);
7521 }
7522
7523 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7524 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7525 *
7526 * It is also a compilation error ... to redeclare a built-in
7527 * block and then use a member from that built-in block that was
7528 * not included in the redeclaration.
7529 *
7530 * This appears to be a clarification to the behaviour established
7531 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7532 * behaviour regardless of GLSL version.
7533 *
7534 * To prevent the shader from using a member that was not included in
7535 * the redeclaration, we disable any ir_variables that are still
7536 * associated with the old declaration of gl_PerVertex (since we've
7537 * already updated all of the variables contained in the new
7538 * gl_PerVertex to point to it).
7539 *
7540 * As a side effect this will prevent
7541 * validate_intrastage_interface_blocks() from getting confused and
7542 * thinking there are conflicting definitions of gl_PerVertex in the
7543 * shader.
7544 */
7545 foreach_in_list_safe(ir_instruction, node, instructions) {
7546 ir_variable *const var = node->as_variable();
7547 if (var != NULL &&
7548 var->get_interface_type() == earlier_per_vertex &&
7549 var->data.mode == var_mode) {
7550 if (var->data.how_declared == ir_var_declared_normally) {
7551 _mesa_glsl_error(&loc, state,
7552 "redeclaration of gl_PerVertex cannot "
7553 "follow a redeclaration of `%s'",
7554 var->name);
7555 }
7556 state->symbols->disable_variable(var->name);
7557 var->remove();
7558 }
7559 }
7560 }
7561 }
7562
7563 return NULL;
7564 }
7565
7566
7567 ir_rvalue *
7568 ast_tcs_output_layout::hir(exec_list *instructions,
7569 struct _mesa_glsl_parse_state *state)
7570 {
7571 YYLTYPE loc = this->get_location();
7572
7573 unsigned num_vertices;
7574 if (!state->out_qualifier->vertices->
7575 process_qualifier_constant(state, "vertices", &num_vertices,
7576 false)) {
7577 /* return here to stop cascading incorrect error messages */
7578 return NULL;
7579 }
7580
7581 /* If any shader outputs occurred before this declaration and specified an
7582 * array size, make sure the size they specified is consistent with the
7583 * primitive type.
7584 */
7585 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7586 _mesa_glsl_error(&loc, state,
7587 "this tessellation control shader output layout "
7588 "specifies %u vertices, but a previous output "
7589 "is declared with size %u",
7590 num_vertices, state->tcs_output_size);
7591 return NULL;
7592 }
7593
7594 state->tcs_output_vertices_specified = true;
7595
7596 /* If any shader outputs occurred before this declaration and did not
7597 * specify an array size, their size is determined now.
7598 */
7599 foreach_in_list (ir_instruction, node, instructions) {
7600 ir_variable *var = node->as_variable();
7601 if (var == NULL || var->data.mode != ir_var_shader_out)
7602 continue;
7603
7604 /* Note: Not all tessellation control shader output are arrays. */
7605 if (!var->type->is_unsized_array() || var->data.patch)
7606 continue;
7607
7608 if (var->data.max_array_access >= num_vertices) {
7609 _mesa_glsl_error(&loc, state,
7610 "this tessellation control shader output layout "
7611 "specifies %u vertices, but an access to element "
7612 "%u of output `%s' already exists", num_vertices,
7613 var->data.max_array_access, var->name);
7614 } else {
7615 var->type = glsl_type::get_array_instance(var->type->fields.array,
7616 num_vertices);
7617 }
7618 }
7619
7620 return NULL;
7621 }
7622
7623
7624 ir_rvalue *
7625 ast_gs_input_layout::hir(exec_list *instructions,
7626 struct _mesa_glsl_parse_state *state)
7627 {
7628 YYLTYPE loc = this->get_location();
7629
7630 /* If any geometry input layout declaration preceded this one, make sure it
7631 * was consistent with this one.
7632 */
7633 if (state->gs_input_prim_type_specified &&
7634 state->in_qualifier->prim_type != this->prim_type) {
7635 _mesa_glsl_error(&loc, state,
7636 "geometry shader input layout does not match"
7637 " previous declaration");
7638 return NULL;
7639 }
7640
7641 /* If any shader inputs occurred before this declaration and specified an
7642 * array size, make sure the size they specified is consistent with the
7643 * primitive type.
7644 */
7645 unsigned num_vertices = vertices_per_prim(this->prim_type);
7646 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7647 _mesa_glsl_error(&loc, state,
7648 "this geometry shader input layout implies %u vertices"
7649 " per primitive, but a previous input is declared"
7650 " with size %u", num_vertices, state->gs_input_size);
7651 return NULL;
7652 }
7653
7654 state->gs_input_prim_type_specified = true;
7655
7656 /* If any shader inputs occurred before this declaration and did not
7657 * specify an array size, their size is determined now.
7658 */
7659 foreach_in_list(ir_instruction, node, instructions) {
7660 ir_variable *var = node->as_variable();
7661 if (var == NULL || var->data.mode != ir_var_shader_in)
7662 continue;
7663
7664 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7665 * array; skip it.
7666 */
7667
7668 if (var->type->is_unsized_array()) {
7669 if (var->data.max_array_access >= num_vertices) {
7670 _mesa_glsl_error(&loc, state,
7671 "this geometry shader input layout implies %u"
7672 " vertices, but an access to element %u of input"
7673 " `%s' already exists", num_vertices,
7674 var->data.max_array_access, var->name);
7675 } else {
7676 var->type = glsl_type::get_array_instance(var->type->fields.array,
7677 num_vertices);
7678 }
7679 }
7680 }
7681
7682 return NULL;
7683 }
7684
7685
7686 ir_rvalue *
7687 ast_cs_input_layout::hir(exec_list *instructions,
7688 struct _mesa_glsl_parse_state *state)
7689 {
7690 YYLTYPE loc = this->get_location();
7691
7692 /* From the ARB_compute_shader specification:
7693 *
7694 * If the local size of the shader in any dimension is greater
7695 * than the maximum size supported by the implementation for that
7696 * dimension, a compile-time error results.
7697 *
7698 * It is not clear from the spec how the error should be reported if
7699 * the total size of the work group exceeds
7700 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7701 * report it at compile time as well.
7702 */
7703 GLuint64 total_invocations = 1;
7704 unsigned qual_local_size[3];
7705 for (int i = 0; i < 3; i++) {
7706
7707 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7708 'x' + i);
7709 /* Infer a local_size of 1 for unspecified dimensions */
7710 if (this->local_size[i] == NULL) {
7711 qual_local_size[i] = 1;
7712 } else if (!this->local_size[i]->
7713 process_qualifier_constant(state, local_size_str,
7714 &qual_local_size[i], false)) {
7715 ralloc_free(local_size_str);
7716 return NULL;
7717 }
7718 ralloc_free(local_size_str);
7719
7720 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7721 _mesa_glsl_error(&loc, state,
7722 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7723 " (%d)", 'x' + i,
7724 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7725 break;
7726 }
7727 total_invocations *= qual_local_size[i];
7728 if (total_invocations >
7729 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7730 _mesa_glsl_error(&loc, state,
7731 "product of local_sizes exceeds "
7732 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7733 state->ctx->Const.MaxComputeWorkGroupInvocations);
7734 break;
7735 }
7736 }
7737
7738 /* If any compute input layout declaration preceded this one, make sure it
7739 * was consistent with this one.
7740 */
7741 if (state->cs_input_local_size_specified) {
7742 for (int i = 0; i < 3; i++) {
7743 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7744 _mesa_glsl_error(&loc, state,
7745 "compute shader input layout does not match"
7746 " previous declaration");
7747 return NULL;
7748 }
7749 }
7750 }
7751
7752 state->cs_input_local_size_specified = true;
7753 for (int i = 0; i < 3; i++)
7754 state->cs_input_local_size[i] = qual_local_size[i];
7755
7756 /* We may now declare the built-in constant gl_WorkGroupSize (see
7757 * builtin_variable_generator::generate_constants() for why we didn't
7758 * declare it earlier).
7759 */
7760 ir_variable *var = new(state->symbols)
7761 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7762 var->data.how_declared = ir_var_declared_implicitly;
7763 var->data.read_only = true;
7764 instructions->push_tail(var);
7765 state->symbols->add_variable(var);
7766 ir_constant_data data;
7767 memset(&data, 0, sizeof(data));
7768 for (int i = 0; i < 3; i++)
7769 data.u[i] = qual_local_size[i];
7770 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7771 var->constant_initializer =
7772 new(var) ir_constant(glsl_type::uvec3_type, &data);
7773 var->data.has_initializer = true;
7774
7775 return NULL;
7776 }
7777
7778
7779 static void
7780 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7781 exec_list *instructions)
7782 {
7783 bool gl_FragColor_assigned = false;
7784 bool gl_FragData_assigned = false;
7785 bool gl_FragSecondaryColor_assigned = false;
7786 bool gl_FragSecondaryData_assigned = false;
7787 bool user_defined_fs_output_assigned = false;
7788 ir_variable *user_defined_fs_output = NULL;
7789
7790 /* It would be nice to have proper location information. */
7791 YYLTYPE loc;
7792 memset(&loc, 0, sizeof(loc));
7793
7794 foreach_in_list(ir_instruction, node, instructions) {
7795 ir_variable *var = node->as_variable();
7796
7797 if (!var || !var->data.assigned)
7798 continue;
7799
7800 if (strcmp(var->name, "gl_FragColor") == 0)
7801 gl_FragColor_assigned = true;
7802 else if (strcmp(var->name, "gl_FragData") == 0)
7803 gl_FragData_assigned = true;
7804 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7805 gl_FragSecondaryColor_assigned = true;
7806 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7807 gl_FragSecondaryData_assigned = true;
7808 else if (!is_gl_identifier(var->name)) {
7809 if (state->stage == MESA_SHADER_FRAGMENT &&
7810 var->data.mode == ir_var_shader_out) {
7811 user_defined_fs_output_assigned = true;
7812 user_defined_fs_output = var;
7813 }
7814 }
7815 }
7816
7817 /* From the GLSL 1.30 spec:
7818 *
7819 * "If a shader statically assigns a value to gl_FragColor, it
7820 * may not assign a value to any element of gl_FragData. If a
7821 * shader statically writes a value to any element of
7822 * gl_FragData, it may not assign a value to
7823 * gl_FragColor. That is, a shader may assign values to either
7824 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7825 * linked together must also consistently write just one of
7826 * these variables. Similarly, if user declared output
7827 * variables are in use (statically assigned to), then the
7828 * built-in variables gl_FragColor and gl_FragData may not be
7829 * assigned to. These incorrect usages all generate compile
7830 * time errors."
7831 */
7832 if (gl_FragColor_assigned && gl_FragData_assigned) {
7833 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7834 "`gl_FragColor' and `gl_FragData'");
7835 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7836 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7837 "`gl_FragColor' and `%s'",
7838 user_defined_fs_output->name);
7839 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7840 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7841 "`gl_FragSecondaryColorEXT' and"
7842 " `gl_FragSecondaryDataEXT'");
7843 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7844 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7845 "`gl_FragColor' and"
7846 " `gl_FragSecondaryDataEXT'");
7847 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7848 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7849 "`gl_FragData' and"
7850 " `gl_FragSecondaryColorEXT'");
7851 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7852 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7853 "`gl_FragData' and `%s'",
7854 user_defined_fs_output->name);
7855 }
7856
7857 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7858 !state->EXT_blend_func_extended_enable) {
7859 _mesa_glsl_error(&loc, state,
7860 "Dual source blending requires EXT_blend_func_extended");
7861 }
7862 }
7863
7864
7865 static void
7866 remove_per_vertex_blocks(exec_list *instructions,
7867 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7868 {
7869 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7870 * if it exists in this shader type.
7871 */
7872 const glsl_type *per_vertex = NULL;
7873 switch (mode) {
7874 case ir_var_shader_in:
7875 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7876 per_vertex = gl_in->get_interface_type();
7877 break;
7878 case ir_var_shader_out:
7879 if (ir_variable *gl_Position =
7880 state->symbols->get_variable("gl_Position")) {
7881 per_vertex = gl_Position->get_interface_type();
7882 }
7883 break;
7884 default:
7885 assert(!"Unexpected mode");
7886 break;
7887 }
7888
7889 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7890 * need to do anything.
7891 */
7892 if (per_vertex == NULL)
7893 return;
7894
7895 /* If the interface block is used by the shader, then we don't need to do
7896 * anything.
7897 */
7898 interface_block_usage_visitor v(mode, per_vertex);
7899 v.run(instructions);
7900 if (v.usage_found())
7901 return;
7902
7903 /* Remove any ir_variable declarations that refer to the interface block
7904 * we're removing.
7905 */
7906 foreach_in_list_safe(ir_instruction, node, instructions) {
7907 ir_variable *const var = node->as_variable();
7908 if (var != NULL && var->get_interface_type() == per_vertex &&
7909 var->data.mode == mode) {
7910 state->symbols->disable_variable(var->name);
7911 var->remove();
7912 }
7913 }
7914 }