glsl: Check that layout is non-null before dereferencing.
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* ESSL does not allow implicit conversions */
295 if (state->es_shader)
296 return false;
297
298 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
299 *
300 * "There are no implicit array or structure conversions. For
301 * example, an array of int cannot be implicitly converted to an
302 * array of float.
303 */
304 if (!to->is_numeric() || !from->type->is_numeric())
305 return false;
306
307 /* We don't actually want the specific type `to`, we want a type
308 * with the same base type as `to`, but the same vector width as
309 * `from`.
310 */
311 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
312 from->type->matrix_columns);
313
314 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
315 if (op) {
316 from = new(ctx) ir_expression(op, to, from, NULL);
317 return true;
318 } else {
319 return false;
320 }
321 }
322
323
324 static const struct glsl_type *
325 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
326 bool multiply,
327 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
328 {
329 const glsl_type *type_a = value_a->type;
330 const glsl_type *type_b = value_b->type;
331
332 /* From GLSL 1.50 spec, page 56:
333 *
334 * "The arithmetic binary operators add (+), subtract (-),
335 * multiply (*), and divide (/) operate on integer and
336 * floating-point scalars, vectors, and matrices."
337 */
338 if (!type_a->is_numeric() || !type_b->is_numeric()) {
339 _mesa_glsl_error(loc, state,
340 "operands to arithmetic operators must be numeric");
341 return glsl_type::error_type;
342 }
343
344
345 /* "If one operand is floating-point based and the other is
346 * not, then the conversions from Section 4.1.10 "Implicit
347 * Conversions" are applied to the non-floating-point-based operand."
348 */
349 if (!apply_implicit_conversion(type_a, value_b, state)
350 && !apply_implicit_conversion(type_b, value_a, state)) {
351 _mesa_glsl_error(loc, state,
352 "could not implicitly convert operands to "
353 "arithmetic operator");
354 return glsl_type::error_type;
355 }
356 type_a = value_a->type;
357 type_b = value_b->type;
358
359 /* "If the operands are integer types, they must both be signed or
360 * both be unsigned."
361 *
362 * From this rule and the preceeding conversion it can be inferred that
363 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
364 * The is_numeric check above already filtered out the case where either
365 * type is not one of these, so now the base types need only be tested for
366 * equality.
367 */
368 if (type_a->base_type != type_b->base_type) {
369 _mesa_glsl_error(loc, state,
370 "base type mismatch for arithmetic operator");
371 return glsl_type::error_type;
372 }
373
374 /* "All arithmetic binary operators result in the same fundamental type
375 * (signed integer, unsigned integer, or floating-point) as the
376 * operands they operate on, after operand type conversion. After
377 * conversion, the following cases are valid
378 *
379 * * The two operands are scalars. In this case the operation is
380 * applied, resulting in a scalar."
381 */
382 if (type_a->is_scalar() && type_b->is_scalar())
383 return type_a;
384
385 /* "* One operand is a scalar, and the other is a vector or matrix.
386 * In this case, the scalar operation is applied independently to each
387 * component of the vector or matrix, resulting in the same size
388 * vector or matrix."
389 */
390 if (type_a->is_scalar()) {
391 if (!type_b->is_scalar())
392 return type_b;
393 } else if (type_b->is_scalar()) {
394 return type_a;
395 }
396
397 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
398 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
399 * handled.
400 */
401 assert(!type_a->is_scalar());
402 assert(!type_b->is_scalar());
403
404 /* "* The two operands are vectors of the same size. In this case, the
405 * operation is done component-wise resulting in the same size
406 * vector."
407 */
408 if (type_a->is_vector() && type_b->is_vector()) {
409 if (type_a == type_b) {
410 return type_a;
411 } else {
412 _mesa_glsl_error(loc, state,
413 "vector size mismatch for arithmetic operator");
414 return glsl_type::error_type;
415 }
416 }
417
418 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
419 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
420 * <vector, vector> have been handled. At least one of the operands must
421 * be matrix. Further, since there are no integer matrix types, the base
422 * type of both operands must be float.
423 */
424 assert(type_a->is_matrix() || type_b->is_matrix());
425 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
426 type_a->base_type == GLSL_TYPE_DOUBLE);
427 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
428 type_b->base_type == GLSL_TYPE_DOUBLE);
429
430 /* "* The operator is add (+), subtract (-), or divide (/), and the
431 * operands are matrices with the same number of rows and the same
432 * number of columns. In this case, the operation is done component-
433 * wise resulting in the same size matrix."
434 * * The operator is multiply (*), where both operands are matrices or
435 * one operand is a vector and the other a matrix. A right vector
436 * operand is treated as a column vector and a left vector operand as a
437 * row vector. In all these cases, it is required that the number of
438 * columns of the left operand is equal to the number of rows of the
439 * right operand. Then, the multiply (*) operation does a linear
440 * algebraic multiply, yielding an object that has the same number of
441 * rows as the left operand and the same number of columns as the right
442 * operand. Section 5.10 "Vector and Matrix Operations" explains in
443 * more detail how vectors and matrices are operated on."
444 */
445 if (! multiply) {
446 if (type_a == type_b)
447 return type_a;
448 } else {
449 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
450
451 if (type == glsl_type::error_type) {
452 _mesa_glsl_error(loc, state,
453 "size mismatch for matrix multiplication");
454 }
455
456 return type;
457 }
458
459
460 /* "All other cases are illegal."
461 */
462 _mesa_glsl_error(loc, state, "type mismatch");
463 return glsl_type::error_type;
464 }
465
466
467 static const struct glsl_type *
468 unary_arithmetic_result_type(const struct glsl_type *type,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 /* From GLSL 1.50 spec, page 57:
472 *
473 * "The arithmetic unary operators negate (-), post- and pre-increment
474 * and decrement (-- and ++) operate on integer or floating-point
475 * values (including vectors and matrices). All unary operators work
476 * component-wise on their operands. These result with the same type
477 * they operated on."
478 */
479 if (!type->is_numeric()) {
480 _mesa_glsl_error(loc, state,
481 "operands to arithmetic operators must be numeric");
482 return glsl_type::error_type;
483 }
484
485 return type;
486 }
487
488 /**
489 * \brief Return the result type of a bit-logic operation.
490 *
491 * If the given types to the bit-logic operator are invalid, return
492 * glsl_type::error_type.
493 *
494 * \param value_a LHS of bit-logic op
495 * \param value_b RHS of bit-logic op
496 */
497 static const struct glsl_type *
498 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
499 ast_operators op,
500 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
501 {
502 const glsl_type *type_a = value_a->type;
503 const glsl_type *type_b = value_b->type;
504
505 if (!state->check_bitwise_operations_allowed(loc)) {
506 return glsl_type::error_type;
507 }
508
509 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
510 *
511 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
512 * (|). The operands must be of type signed or unsigned integers or
513 * integer vectors."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
517 ast_expression::operator_string(op));
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
522 ast_expression::operator_string(op));
523 return glsl_type::error_type;
524 }
525
526 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
527 * make sense for bitwise operations, as they don't operate on floats.
528 *
529 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
530 * here. It wasn't clear whether or not we should apply them to bitwise
531 * operations. However, Khronos has decided that they should in future
532 * language revisions. Applications also rely on this behavior. We opt
533 * to apply them in general, but issue a portability warning.
534 *
535 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
536 */
537 if (type_a->base_type != type_b->base_type) {
538 if (!apply_implicit_conversion(type_a, value_b, state)
539 && !apply_implicit_conversion(type_b, value_a, state)) {
540 _mesa_glsl_error(loc, state,
541 "could not implicitly convert operands to "
542 "`%s` operator",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 } else {
546 _mesa_glsl_warning(loc, state,
547 "some implementations may not support implicit "
548 "int -> uint conversions for `%s' operators; "
549 "consider casting explicitly for portability",
550 ast_expression::operator_string(op));
551 }
552 type_a = value_a->type;
553 type_b = value_b->type;
554 }
555
556 /* "The fundamental types of the operands (signed or unsigned) must
557 * match,"
558 */
559 if (type_a->base_type != type_b->base_type) {
560 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
561 "base type", ast_expression::operator_string(op));
562 return glsl_type::error_type;
563 }
564
565 /* "The operands cannot be vectors of differing size." */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
570 "different sizes", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If one operand is a scalar and the other a vector, the scalar is
575 * applied component-wise to the vector, resulting in the same type as
576 * the vector. The fundamental types of the operands [...] will be the
577 * resulting fundamental type."
578 */
579 if (type_a->is_scalar())
580 return type_b;
581 else
582 return type_a;
583 }
584
585 static const struct glsl_type *
586 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
587 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
588 {
589 const glsl_type *type_a = value_a->type;
590 const glsl_type *type_b = value_b->type;
591
592 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
593 return glsl_type::error_type;
594 }
595
596 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
597 *
598 * "The operator modulus (%) operates on signed or unsigned integers or
599 * integer vectors."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605 if (!type_b->is_integer()) {
606 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
607 return glsl_type::error_type;
608 }
609
610 /* "If the fundamental types in the operands do not match, then the
611 * conversions from section 4.1.10 "Implicit Conversions" are applied
612 * to create matching types."
613 *
614 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
615 * int -> uint conversion rules. Prior to that, there were no implicit
616 * conversions. So it's harmless to apply them universally - no implicit
617 * conversions will exist. If the types don't match, we'll receive false,
618 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
619 *
620 * "The operand types must both be signed or unsigned."
621 */
622 if (!apply_implicit_conversion(type_a, value_b, state) &&
623 !apply_implicit_conversion(type_b, value_a, state)) {
624 _mesa_glsl_error(loc, state,
625 "could not implicitly convert operands to "
626 "modulus (%%) operator");
627 return glsl_type::error_type;
628 }
629 type_a = value_a->type;
630 type_b = value_b->type;
631
632 /* "The operands cannot be vectors of differing size. If one operand is
633 * a scalar and the other vector, then the scalar is applied component-
634 * wise to the vector, resulting in the same type as the vector. If both
635 * are vectors of the same size, the result is computed component-wise."
636 */
637 if (type_a->is_vector()) {
638 if (!type_b->is_vector()
639 || (type_a->vector_elements == type_b->vector_elements))
640 return type_a;
641 } else
642 return type_b;
643
644 /* "The operator modulus (%) is not defined for any other data types
645 * (non-integer types)."
646 */
647 _mesa_glsl_error(loc, state, "type mismatch");
648 return glsl_type::error_type;
649 }
650
651
652 static const struct glsl_type *
653 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
654 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
655 {
656 const glsl_type *type_a = value_a->type;
657 const glsl_type *type_b = value_b->type;
658
659 /* From GLSL 1.50 spec, page 56:
660 * "The relational operators greater than (>), less than (<), greater
661 * than or equal (>=), and less than or equal (<=) operate only on
662 * scalar integer and scalar floating-point expressions."
663 */
664 if (!type_a->is_numeric()
665 || !type_b->is_numeric()
666 || !type_a->is_scalar()
667 || !type_b->is_scalar()) {
668 _mesa_glsl_error(loc, state,
669 "operands to relational operators must be scalar and "
670 "numeric");
671 return glsl_type::error_type;
672 }
673
674 /* "Either the operands' types must match, or the conversions from
675 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
676 * operand, after which the types must match."
677 */
678 if (!apply_implicit_conversion(type_a, value_b, state)
679 && !apply_implicit_conversion(type_b, value_a, state)) {
680 _mesa_glsl_error(loc, state,
681 "could not implicitly convert operands to "
682 "relational operator");
683 return glsl_type::error_type;
684 }
685 type_a = value_a->type;
686 type_b = value_b->type;
687
688 if (type_a->base_type != type_b->base_type) {
689 _mesa_glsl_error(loc, state, "base type mismatch");
690 return glsl_type::error_type;
691 }
692
693 /* "The result is scalar Boolean."
694 */
695 return glsl_type::bool_type;
696 }
697
698 /**
699 * \brief Return the result type of a bit-shift operation.
700 *
701 * If the given types to the bit-shift operator are invalid, return
702 * glsl_type::error_type.
703 *
704 * \param type_a Type of LHS of bit-shift op
705 * \param type_b Type of RHS of bit-shift op
706 */
707 static const struct glsl_type *
708 shift_result_type(const struct glsl_type *type_a,
709 const struct glsl_type *type_b,
710 ast_operators op,
711 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
712 {
713 if (!state->check_bitwise_operations_allowed(loc)) {
714 return glsl_type::error_type;
715 }
716
717 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
718 *
719 * "The shift operators (<<) and (>>). For both operators, the operands
720 * must be signed or unsigned integers or integer vectors. One operand
721 * can be signed while the other is unsigned."
722 */
723 if (!type_a->is_integer()) {
724 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
725 "integer vector", ast_expression::operator_string(op));
726 return glsl_type::error_type;
727
728 }
729 if (!type_b->is_integer()) {
730 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
731 "integer vector", ast_expression::operator_string(op));
732 return glsl_type::error_type;
733 }
734
735 /* "If the first operand is a scalar, the second operand has to be
736 * a scalar as well."
737 */
738 if (type_a->is_scalar() && !type_b->is_scalar()) {
739 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
740 "second must be scalar as well",
741 ast_expression::operator_string(op));
742 return glsl_type::error_type;
743 }
744
745 /* If both operands are vectors, check that they have same number of
746 * elements.
747 */
748 if (type_a->is_vector() &&
749 type_b->is_vector() &&
750 type_a->vector_elements != type_b->vector_elements) {
751 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
752 "have same number of elements",
753 ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "In all cases, the resulting type will be the same type as the left
758 * operand."
759 */
760 return type_a;
761 }
762
763 /**
764 * Returns the innermost array index expression in an rvalue tree.
765 * This is the largest indexing level -- if an array of blocks, then
766 * it is the block index rather than an indexing expression for an
767 * array-typed member of an array of blocks.
768 */
769 static ir_rvalue *
770 find_innermost_array_index(ir_rvalue *rv)
771 {
772 ir_dereference_array *last = NULL;
773 while (rv) {
774 if (rv->as_dereference_array()) {
775 last = rv->as_dereference_array();
776 rv = last->array;
777 } else if (rv->as_dereference_record())
778 rv = rv->as_dereference_record()->record;
779 else if (rv->as_swizzle())
780 rv = rv->as_swizzle()->val;
781 else
782 rv = NULL;
783 }
784
785 if (last)
786 return last->array_index;
787
788 return NULL;
789 }
790
791 /**
792 * Validates that a value can be assigned to a location with a specified type
793 *
794 * Validates that \c rhs can be assigned to some location. If the types are
795 * not an exact match but an automatic conversion is possible, \c rhs will be
796 * converted.
797 *
798 * \return
799 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
800 * Otherwise the actual RHS to be assigned will be returned. This may be
801 * \c rhs, or it may be \c rhs after some type conversion.
802 *
803 * \note
804 * In addition to being used for assignments, this function is used to
805 * type-check return values.
806 */
807 static ir_rvalue *
808 validate_assignment(struct _mesa_glsl_parse_state *state,
809 YYLTYPE loc, ir_rvalue *lhs,
810 ir_rvalue *rhs, bool is_initializer)
811 {
812 /* If there is already some error in the RHS, just return it. Anything
813 * else will lead to an avalanche of error message back to the user.
814 */
815 if (rhs->type->is_error())
816 return rhs;
817
818 /* In the Tessellation Control Shader:
819 * If a per-vertex output variable is used as an l-value, it is an error
820 * if the expression indicating the vertex number is not the identifier
821 * `gl_InvocationID`.
822 */
823 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
824 ir_variable *var = lhs->variable_referenced();
825 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
826 ir_rvalue *index = find_innermost_array_index(lhs);
827 ir_variable *index_var = index ? index->variable_referenced() : NULL;
828 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
829 _mesa_glsl_error(&loc, state,
830 "Tessellation control shader outputs can only "
831 "be indexed by gl_InvocationID");
832 return NULL;
833 }
834 }
835 }
836
837 /* If the types are identical, the assignment can trivially proceed.
838 */
839 if (rhs->type == lhs->type)
840 return rhs;
841
842 /* If the array element types are the same and the LHS is unsized,
843 * the assignment is okay for initializers embedded in variable
844 * declarations.
845 *
846 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
847 * is handled by ir_dereference::is_lvalue.
848 */
849 const glsl_type *lhs_t = lhs->type;
850 const glsl_type *rhs_t = rhs->type;
851 bool unsized_array = false;
852 while(lhs_t->is_array()) {
853 if (rhs_t == lhs_t)
854 break; /* the rest of the inner arrays match so break out early */
855 if (!rhs_t->is_array()) {
856 unsized_array = false;
857 break; /* number of dimensions mismatch */
858 }
859 if (lhs_t->length == rhs_t->length) {
860 lhs_t = lhs_t->fields.array;
861 rhs_t = rhs_t->fields.array;
862 continue;
863 } else if (lhs_t->is_unsized_array()) {
864 unsized_array = true;
865 } else {
866 unsized_array = false;
867 break; /* sized array mismatch */
868 }
869 lhs_t = lhs_t->fields.array;
870 rhs_t = rhs_t->fields.array;
871 }
872 if (unsized_array) {
873 if (is_initializer) {
874 return rhs;
875 } else {
876 _mesa_glsl_error(&loc, state,
877 "implicitly sized arrays cannot be assigned");
878 return NULL;
879 }
880 }
881
882 /* Check for implicit conversion in GLSL 1.20 */
883 if (apply_implicit_conversion(lhs->type, rhs, state)) {
884 if (rhs->type == lhs->type)
885 return rhs;
886 }
887
888 _mesa_glsl_error(&loc, state,
889 "%s of type %s cannot be assigned to "
890 "variable of type %s",
891 is_initializer ? "initializer" : "value",
892 rhs->type->name, lhs->type->name);
893
894 return NULL;
895 }
896
897 static void
898 mark_whole_array_access(ir_rvalue *access)
899 {
900 ir_dereference_variable *deref = access->as_dereference_variable();
901
902 if (deref && deref->var) {
903 deref->var->data.max_array_access = deref->type->length - 1;
904 }
905 }
906
907 static bool
908 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
909 const char *non_lvalue_description,
910 ir_rvalue *lhs, ir_rvalue *rhs,
911 ir_rvalue **out_rvalue, bool needs_rvalue,
912 bool is_initializer,
913 YYLTYPE lhs_loc)
914 {
915 void *ctx = state;
916 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
917
918 ir_variable *lhs_var = lhs->variable_referenced();
919 if (lhs_var)
920 lhs_var->data.assigned = true;
921
922 if (!error_emitted) {
923 if (non_lvalue_description != NULL) {
924 _mesa_glsl_error(&lhs_loc, state,
925 "assignment to %s",
926 non_lvalue_description);
927 error_emitted = true;
928 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
929 (lhs_var->data.mode == ir_var_shader_storage &&
930 lhs_var->data.image_read_only))) {
931 /* We can have image_read_only set on both images and buffer variables,
932 * but in the former there is a distinction between assignments to
933 * the variable itself (read_only) and to the memory they point to
934 * (image_read_only), while in the case of buffer variables there is
935 * no such distinction, that is why this check here is limited to
936 * buffer variables alone.
937 */
938 _mesa_glsl_error(&lhs_loc, state,
939 "assignment to read-only variable '%s'",
940 lhs_var->name);
941 error_emitted = true;
942 } else if (lhs->type->is_array() &&
943 !state->check_version(120, 300, &lhs_loc,
944 "whole array assignment forbidden")) {
945 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
946 *
947 * "Other binary or unary expressions, non-dereferenced
948 * arrays, function names, swizzles with repeated fields,
949 * and constants cannot be l-values."
950 *
951 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
952 */
953 error_emitted = true;
954 } else if (!lhs->is_lvalue()) {
955 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
956 error_emitted = true;
957 }
958 }
959
960 ir_rvalue *new_rhs =
961 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
962 if (new_rhs != NULL) {
963 rhs = new_rhs;
964
965 /* If the LHS array was not declared with a size, it takes it size from
966 * the RHS. If the LHS is an l-value and a whole array, it must be a
967 * dereference of a variable. Any other case would require that the LHS
968 * is either not an l-value or not a whole array.
969 */
970 if (lhs->type->is_unsized_array()) {
971 ir_dereference *const d = lhs->as_dereference();
972
973 assert(d != NULL);
974
975 ir_variable *const var = d->variable_referenced();
976
977 assert(var != NULL);
978
979 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
980 /* FINISHME: This should actually log the location of the RHS. */
981 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
982 "previous access",
983 var->data.max_array_access);
984 }
985
986 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
987 rhs->type->array_size());
988 d->type = var->type;
989 }
990 if (lhs->type->is_array()) {
991 mark_whole_array_access(rhs);
992 mark_whole_array_access(lhs);
993 }
994 }
995
996 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
997 * but not post_inc) need the converted assigned value as an rvalue
998 * to handle things like:
999 *
1000 * i = j += 1;
1001 */
1002 if (needs_rvalue) {
1003 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1004 ir_var_temporary);
1005 instructions->push_tail(var);
1006 instructions->push_tail(assign(var, rhs));
1007
1008 if (!error_emitted) {
1009 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1010 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1011 }
1012 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1013
1014 *out_rvalue = rvalue;
1015 } else {
1016 if (!error_emitted)
1017 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1018 *out_rvalue = NULL;
1019 }
1020
1021 return error_emitted;
1022 }
1023
1024 static ir_rvalue *
1025 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1026 {
1027 void *ctx = ralloc_parent(lvalue);
1028 ir_variable *var;
1029
1030 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1031 ir_var_temporary);
1032 instructions->push_tail(var);
1033
1034 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1035 lvalue));
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 ir_rvalue *
1042 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1043 {
1044 (void) instructions;
1045 (void) state;
1046
1047 return NULL;
1048 }
1049
1050 bool
1051 ast_node::has_sequence_subexpression() const
1052 {
1053 return false;
1054 }
1055
1056 void
1057 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1058 struct _mesa_glsl_parse_state *state)
1059 {
1060 (void)hir(instructions, state);
1061 }
1062
1063 void
1064 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1065 struct _mesa_glsl_parse_state *state)
1066 {
1067 (void)hir(instructions, state);
1068 }
1069
1070 static ir_rvalue *
1071 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1072 {
1073 int join_op;
1074 ir_rvalue *cmp = NULL;
1075
1076 if (operation == ir_binop_all_equal)
1077 join_op = ir_binop_logic_and;
1078 else
1079 join_op = ir_binop_logic_or;
1080
1081 switch (op0->type->base_type) {
1082 case GLSL_TYPE_FLOAT:
1083 case GLSL_TYPE_UINT:
1084 case GLSL_TYPE_INT:
1085 case GLSL_TYPE_BOOL:
1086 case GLSL_TYPE_DOUBLE:
1087 return new(mem_ctx) ir_expression(operation, op0, op1);
1088
1089 case GLSL_TYPE_ARRAY: {
1090 for (unsigned int i = 0; i < op0->type->length; i++) {
1091 ir_rvalue *e0, *e1, *result;
1092
1093 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1094 new(mem_ctx) ir_constant(i));
1095 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1096 new(mem_ctx) ir_constant(i));
1097 result = do_comparison(mem_ctx, operation, e0, e1);
1098
1099 if (cmp) {
1100 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1101 } else {
1102 cmp = result;
1103 }
1104 }
1105
1106 mark_whole_array_access(op0);
1107 mark_whole_array_access(op1);
1108 break;
1109 }
1110
1111 case GLSL_TYPE_STRUCT: {
1112 for (unsigned int i = 0; i < op0->type->length; i++) {
1113 ir_rvalue *e0, *e1, *result;
1114 const char *field_name = op0->type->fields.structure[i].name;
1115
1116 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1117 field_name);
1118 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1119 field_name);
1120 result = do_comparison(mem_ctx, operation, e0, e1);
1121
1122 if (cmp) {
1123 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1124 } else {
1125 cmp = result;
1126 }
1127 }
1128 break;
1129 }
1130
1131 case GLSL_TYPE_ERROR:
1132 case GLSL_TYPE_VOID:
1133 case GLSL_TYPE_SAMPLER:
1134 case GLSL_TYPE_IMAGE:
1135 case GLSL_TYPE_INTERFACE:
1136 case GLSL_TYPE_ATOMIC_UINT:
1137 case GLSL_TYPE_SUBROUTINE:
1138 case GLSL_TYPE_FUNCTION:
1139 /* I assume a comparison of a struct containing a sampler just
1140 * ignores the sampler present in the type.
1141 */
1142 break;
1143 }
1144
1145 if (cmp == NULL)
1146 cmp = new(mem_ctx) ir_constant(true);
1147
1148 return cmp;
1149 }
1150
1151 /* For logical operations, we want to ensure that the operands are
1152 * scalar booleans. If it isn't, emit an error and return a constant
1153 * boolean to avoid triggering cascading error messages.
1154 */
1155 ir_rvalue *
1156 get_scalar_boolean_operand(exec_list *instructions,
1157 struct _mesa_glsl_parse_state *state,
1158 ast_expression *parent_expr,
1159 int operand,
1160 const char *operand_name,
1161 bool *error_emitted)
1162 {
1163 ast_expression *expr = parent_expr->subexpressions[operand];
1164 void *ctx = state;
1165 ir_rvalue *val = expr->hir(instructions, state);
1166
1167 if (val->type->is_boolean() && val->type->is_scalar())
1168 return val;
1169
1170 if (!*error_emitted) {
1171 YYLTYPE loc = expr->get_location();
1172 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1173 operand_name,
1174 parent_expr->operator_string(parent_expr->oper));
1175 *error_emitted = true;
1176 }
1177
1178 return new(ctx) ir_constant(true);
1179 }
1180
1181 /**
1182 * If name refers to a builtin array whose maximum allowed size is less than
1183 * size, report an error and return true. Otherwise return false.
1184 */
1185 void
1186 check_builtin_array_max_size(const char *name, unsigned size,
1187 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1188 {
1189 if ((strcmp("gl_TexCoord", name) == 0)
1190 && (size > state->Const.MaxTextureCoords)) {
1191 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1192 *
1193 * "The size [of gl_TexCoord] can be at most
1194 * gl_MaxTextureCoords."
1195 */
1196 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1197 "be larger than gl_MaxTextureCoords (%u)",
1198 state->Const.MaxTextureCoords);
1199 } else if (strcmp("gl_ClipDistance", name) == 0) {
1200 state->clip_dist_size = size;
1201 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1202 /* From section 7.1 (Vertex Shader Special Variables) of the
1203 * GLSL 1.30 spec:
1204 *
1205 * "The gl_ClipDistance array is predeclared as unsized and
1206 * must be sized by the shader either redeclaring it with a
1207 * size or indexing it only with integral constant
1208 * expressions. ... The size can be at most
1209 * gl_MaxClipDistances."
1210 */
1211 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1212 "be larger than gl_MaxClipDistances (%u)",
1213 state->Const.MaxClipPlanes);
1214 }
1215 } else if (strcmp("gl_CullDistance", name) == 0) {
1216 state->cull_dist_size = size;
1217 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1218 /* From the ARB_cull_distance spec:
1219 *
1220 * "The gl_CullDistance array is predeclared as unsized and
1221 * must be sized by the shader either redeclaring it with
1222 * a size or indexing it only with integral constant
1223 * expressions. The size determines the number and set of
1224 * enabled cull distances and can be at most
1225 * gl_MaxCullDistances."
1226 */
1227 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1228 "be larger than gl_MaxCullDistances (%u)",
1229 state->Const.MaxClipPlanes);
1230 }
1231 }
1232 }
1233
1234 /**
1235 * Create the constant 1, of a which is appropriate for incrementing and
1236 * decrementing values of the given GLSL type. For example, if type is vec4,
1237 * this creates a constant value of 1.0 having type float.
1238 *
1239 * If the given type is invalid for increment and decrement operators, return
1240 * a floating point 1--the error will be detected later.
1241 */
1242 static ir_rvalue *
1243 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1244 {
1245 switch (type->base_type) {
1246 case GLSL_TYPE_UINT:
1247 return new(ctx) ir_constant((unsigned) 1);
1248 case GLSL_TYPE_INT:
1249 return new(ctx) ir_constant(1);
1250 default:
1251 case GLSL_TYPE_FLOAT:
1252 return new(ctx) ir_constant(1.0f);
1253 }
1254 }
1255
1256 ir_rvalue *
1257 ast_expression::hir(exec_list *instructions,
1258 struct _mesa_glsl_parse_state *state)
1259 {
1260 return do_hir(instructions, state, true);
1261 }
1262
1263 void
1264 ast_expression::hir_no_rvalue(exec_list *instructions,
1265 struct _mesa_glsl_parse_state *state)
1266 {
1267 do_hir(instructions, state, false);
1268 }
1269
1270 void
1271 ast_expression::set_is_lhs(bool new_value)
1272 {
1273 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1274 * if we lack a identifier we can just skip it.
1275 */
1276 if (this->primary_expression.identifier == NULL)
1277 return;
1278
1279 this->is_lhs = new_value;
1280
1281 /* We need to go through the subexpressions tree to cover cases like
1282 * ast_field_selection
1283 */
1284 if (this->subexpressions[0] != NULL)
1285 this->subexpressions[0]->set_is_lhs(new_value);
1286 }
1287
1288 ir_rvalue *
1289 ast_expression::do_hir(exec_list *instructions,
1290 struct _mesa_glsl_parse_state *state,
1291 bool needs_rvalue)
1292 {
1293 void *ctx = state;
1294 static const int operations[AST_NUM_OPERATORS] = {
1295 -1, /* ast_assign doesn't convert to ir_expression. */
1296 -1, /* ast_plus doesn't convert to ir_expression. */
1297 ir_unop_neg,
1298 ir_binop_add,
1299 ir_binop_sub,
1300 ir_binop_mul,
1301 ir_binop_div,
1302 ir_binop_mod,
1303 ir_binop_lshift,
1304 ir_binop_rshift,
1305 ir_binop_less,
1306 ir_binop_greater,
1307 ir_binop_lequal,
1308 ir_binop_gequal,
1309 ir_binop_all_equal,
1310 ir_binop_any_nequal,
1311 ir_binop_bit_and,
1312 ir_binop_bit_xor,
1313 ir_binop_bit_or,
1314 ir_unop_bit_not,
1315 ir_binop_logic_and,
1316 ir_binop_logic_xor,
1317 ir_binop_logic_or,
1318 ir_unop_logic_not,
1319
1320 /* Note: The following block of expression types actually convert
1321 * to multiple IR instructions.
1322 */
1323 ir_binop_mul, /* ast_mul_assign */
1324 ir_binop_div, /* ast_div_assign */
1325 ir_binop_mod, /* ast_mod_assign */
1326 ir_binop_add, /* ast_add_assign */
1327 ir_binop_sub, /* ast_sub_assign */
1328 ir_binop_lshift, /* ast_ls_assign */
1329 ir_binop_rshift, /* ast_rs_assign */
1330 ir_binop_bit_and, /* ast_and_assign */
1331 ir_binop_bit_xor, /* ast_xor_assign */
1332 ir_binop_bit_or, /* ast_or_assign */
1333
1334 -1, /* ast_conditional doesn't convert to ir_expression. */
1335 ir_binop_add, /* ast_pre_inc. */
1336 ir_binop_sub, /* ast_pre_dec. */
1337 ir_binop_add, /* ast_post_inc. */
1338 ir_binop_sub, /* ast_post_dec. */
1339 -1, /* ast_field_selection doesn't conv to ir_expression. */
1340 -1, /* ast_array_index doesn't convert to ir_expression. */
1341 -1, /* ast_function_call doesn't conv to ir_expression. */
1342 -1, /* ast_identifier doesn't convert to ir_expression. */
1343 -1, /* ast_int_constant doesn't convert to ir_expression. */
1344 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1345 -1, /* ast_float_constant doesn't conv to ir_expression. */
1346 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1347 -1, /* ast_sequence doesn't convert to ir_expression. */
1348 };
1349 ir_rvalue *result = NULL;
1350 ir_rvalue *op[3];
1351 const struct glsl_type *type; /* a temporary variable for switch cases */
1352 bool error_emitted = false;
1353 YYLTYPE loc;
1354
1355 loc = this->get_location();
1356
1357 switch (this->oper) {
1358 case ast_aggregate:
1359 assert(!"ast_aggregate: Should never get here.");
1360 break;
1361
1362 case ast_assign: {
1363 this->subexpressions[0]->set_is_lhs(true);
1364 op[0] = this->subexpressions[0]->hir(instructions, state);
1365 op[1] = this->subexpressions[1]->hir(instructions, state);
1366
1367 error_emitted =
1368 do_assignment(instructions, state,
1369 this->subexpressions[0]->non_lvalue_description,
1370 op[0], op[1], &result, needs_rvalue, false,
1371 this->subexpressions[0]->get_location());
1372 break;
1373 }
1374
1375 case ast_plus:
1376 op[0] = this->subexpressions[0]->hir(instructions, state);
1377
1378 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1379
1380 error_emitted = type->is_error();
1381
1382 result = op[0];
1383 break;
1384
1385 case ast_neg:
1386 op[0] = this->subexpressions[0]->hir(instructions, state);
1387
1388 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1389
1390 error_emitted = type->is_error();
1391
1392 result = new(ctx) ir_expression(operations[this->oper], type,
1393 op[0], NULL);
1394 break;
1395
1396 case ast_add:
1397 case ast_sub:
1398 case ast_mul:
1399 case ast_div:
1400 op[0] = this->subexpressions[0]->hir(instructions, state);
1401 op[1] = this->subexpressions[1]->hir(instructions, state);
1402
1403 type = arithmetic_result_type(op[0], op[1],
1404 (this->oper == ast_mul),
1405 state, & loc);
1406 error_emitted = type->is_error();
1407
1408 result = new(ctx) ir_expression(operations[this->oper], type,
1409 op[0], op[1]);
1410 break;
1411
1412 case ast_mod:
1413 op[0] = this->subexpressions[0]->hir(instructions, state);
1414 op[1] = this->subexpressions[1]->hir(instructions, state);
1415
1416 type = modulus_result_type(op[0], op[1], state, &loc);
1417
1418 assert(operations[this->oper] == ir_binop_mod);
1419
1420 result = new(ctx) ir_expression(operations[this->oper], type,
1421 op[0], op[1]);
1422 error_emitted = type->is_error();
1423 break;
1424
1425 case ast_lshift:
1426 case ast_rshift:
1427 if (!state->check_bitwise_operations_allowed(&loc)) {
1428 error_emitted = true;
1429 }
1430
1431 op[0] = this->subexpressions[0]->hir(instructions, state);
1432 op[1] = this->subexpressions[1]->hir(instructions, state);
1433 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1434 &loc);
1435 result = new(ctx) ir_expression(operations[this->oper], type,
1436 op[0], op[1]);
1437 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1438 break;
1439
1440 case ast_less:
1441 case ast_greater:
1442 case ast_lequal:
1443 case ast_gequal:
1444 op[0] = this->subexpressions[0]->hir(instructions, state);
1445 op[1] = this->subexpressions[1]->hir(instructions, state);
1446
1447 type = relational_result_type(op[0], op[1], state, & loc);
1448
1449 /* The relational operators must either generate an error or result
1450 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1451 */
1452 assert(type->is_error()
1453 || ((type->base_type == GLSL_TYPE_BOOL)
1454 && type->is_scalar()));
1455
1456 result = new(ctx) ir_expression(operations[this->oper], type,
1457 op[0], op[1]);
1458 error_emitted = type->is_error();
1459 break;
1460
1461 case ast_nequal:
1462 case ast_equal:
1463 op[0] = this->subexpressions[0]->hir(instructions, state);
1464 op[1] = this->subexpressions[1]->hir(instructions, state);
1465
1466 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1467 *
1468 * "The equality operators equal (==), and not equal (!=)
1469 * operate on all types. They result in a scalar Boolean. If
1470 * the operand types do not match, then there must be a
1471 * conversion from Section 4.1.10 "Implicit Conversions"
1472 * applied to one operand that can make them match, in which
1473 * case this conversion is done."
1474 */
1475
1476 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1477 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1478 "no operation `%1$s' exists that takes a left-hand "
1479 "operand of type 'void' or a right operand of type "
1480 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1481 error_emitted = true;
1482 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1483 && !apply_implicit_conversion(op[1]->type, op[0], state))
1484 || (op[0]->type != op[1]->type)) {
1485 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1486 "type", (this->oper == ast_equal) ? "==" : "!=");
1487 error_emitted = true;
1488 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1489 !state->check_version(120, 300, &loc,
1490 "array comparisons forbidden")) {
1491 error_emitted = true;
1492 } else if ((op[0]->type->contains_opaque() ||
1493 op[1]->type->contains_opaque())) {
1494 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1495 error_emitted = true;
1496 }
1497
1498 if (error_emitted) {
1499 result = new(ctx) ir_constant(false);
1500 } else {
1501 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1502 assert(result->type == glsl_type::bool_type);
1503 }
1504 break;
1505
1506 case ast_bit_and:
1507 case ast_bit_xor:
1508 case ast_bit_or:
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = this->subexpressions[1]->hir(instructions, state);
1511 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1512 result = new(ctx) ir_expression(operations[this->oper], type,
1513 op[0], op[1]);
1514 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1515 break;
1516
1517 case ast_bit_not:
1518 op[0] = this->subexpressions[0]->hir(instructions, state);
1519
1520 if (!state->check_bitwise_operations_allowed(&loc)) {
1521 error_emitted = true;
1522 }
1523
1524 if (!op[0]->type->is_integer()) {
1525 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1526 error_emitted = true;
1527 }
1528
1529 type = error_emitted ? glsl_type::error_type : op[0]->type;
1530 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1531 break;
1532
1533 case ast_logic_and: {
1534 exec_list rhs_instructions;
1535 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1536 "LHS", &error_emitted);
1537 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1538 "RHS", &error_emitted);
1539
1540 if (rhs_instructions.is_empty()) {
1541 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1542 type = result->type;
1543 } else {
1544 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1545 "and_tmp",
1546 ir_var_temporary);
1547 instructions->push_tail(tmp);
1548
1549 ir_if *const stmt = new(ctx) ir_if(op[0]);
1550 instructions->push_tail(stmt);
1551
1552 stmt->then_instructions.append_list(&rhs_instructions);
1553 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1554 ir_assignment *const then_assign =
1555 new(ctx) ir_assignment(then_deref, op[1]);
1556 stmt->then_instructions.push_tail(then_assign);
1557
1558 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1559 ir_assignment *const else_assign =
1560 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1561 stmt->else_instructions.push_tail(else_assign);
1562
1563 result = new(ctx) ir_dereference_variable(tmp);
1564 type = tmp->type;
1565 }
1566 break;
1567 }
1568
1569 case ast_logic_or: {
1570 exec_list rhs_instructions;
1571 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1572 "LHS", &error_emitted);
1573 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1574 "RHS", &error_emitted);
1575
1576 if (rhs_instructions.is_empty()) {
1577 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1578 type = result->type;
1579 } else {
1580 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1581 "or_tmp",
1582 ir_var_temporary);
1583 instructions->push_tail(tmp);
1584
1585 ir_if *const stmt = new(ctx) ir_if(op[0]);
1586 instructions->push_tail(stmt);
1587
1588 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1589 ir_assignment *const then_assign =
1590 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1591 stmt->then_instructions.push_tail(then_assign);
1592
1593 stmt->else_instructions.append_list(&rhs_instructions);
1594 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1595 ir_assignment *const else_assign =
1596 new(ctx) ir_assignment(else_deref, op[1]);
1597 stmt->else_instructions.push_tail(else_assign);
1598
1599 result = new(ctx) ir_dereference_variable(tmp);
1600 type = tmp->type;
1601 }
1602 break;
1603 }
1604
1605 case ast_logic_xor:
1606 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1607 *
1608 * "The logical binary operators and (&&), or ( | | ), and
1609 * exclusive or (^^). They operate only on two Boolean
1610 * expressions and result in a Boolean expression."
1611 */
1612 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1613 &error_emitted);
1614 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1615 &error_emitted);
1616
1617 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1618 op[0], op[1]);
1619 break;
1620
1621 case ast_logic_not:
1622 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1623 "operand", &error_emitted);
1624
1625 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1626 op[0], NULL);
1627 break;
1628
1629 case ast_mul_assign:
1630 case ast_div_assign:
1631 case ast_add_assign:
1632 case ast_sub_assign: {
1633 this->subexpressions[0]->set_is_lhs(true);
1634 op[0] = this->subexpressions[0]->hir(instructions, state);
1635 op[1] = this->subexpressions[1]->hir(instructions, state);
1636
1637 type = arithmetic_result_type(op[0], op[1],
1638 (this->oper == ast_mul_assign),
1639 state, & loc);
1640
1641 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1642 op[0], op[1]);
1643
1644 error_emitted =
1645 do_assignment(instructions, state,
1646 this->subexpressions[0]->non_lvalue_description,
1647 op[0]->clone(ctx, NULL), temp_rhs,
1648 &result, needs_rvalue, false,
1649 this->subexpressions[0]->get_location());
1650
1651 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1652 * explicitly test for this because none of the binary expression
1653 * operators allow array operands either.
1654 */
1655
1656 break;
1657 }
1658
1659 case ast_mod_assign: {
1660 this->subexpressions[0]->set_is_lhs(true);
1661 op[0] = this->subexpressions[0]->hir(instructions, state);
1662 op[1] = this->subexpressions[1]->hir(instructions, state);
1663
1664 type = modulus_result_type(op[0], op[1], state, &loc);
1665
1666 assert(operations[this->oper] == ir_binop_mod);
1667
1668 ir_rvalue *temp_rhs;
1669 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1670 op[0], op[1]);
1671
1672 error_emitted =
1673 do_assignment(instructions, state,
1674 this->subexpressions[0]->non_lvalue_description,
1675 op[0]->clone(ctx, NULL), temp_rhs,
1676 &result, needs_rvalue, false,
1677 this->subexpressions[0]->get_location());
1678 break;
1679 }
1680
1681 case ast_ls_assign:
1682 case ast_rs_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1687 &loc);
1688 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1689 type, op[0], op[1]);
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696 break;
1697 }
1698
1699 case ast_and_assign:
1700 case ast_xor_assign:
1701 case ast_or_assign: {
1702 this->subexpressions[0]->set_is_lhs(true);
1703 op[0] = this->subexpressions[0]->hir(instructions, state);
1704 op[1] = this->subexpressions[1]->hir(instructions, state);
1705 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1706 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1707 type, op[0], op[1]);
1708 error_emitted =
1709 do_assignment(instructions, state,
1710 this->subexpressions[0]->non_lvalue_description,
1711 op[0]->clone(ctx, NULL), temp_rhs,
1712 &result, needs_rvalue, false,
1713 this->subexpressions[0]->get_location());
1714 break;
1715 }
1716
1717 case ast_conditional: {
1718 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1719 *
1720 * "The ternary selection operator (?:). It operates on three
1721 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1722 * first expression, which must result in a scalar Boolean."
1723 */
1724 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1725 "condition", &error_emitted);
1726
1727 /* The :? operator is implemented by generating an anonymous temporary
1728 * followed by an if-statement. The last instruction in each branch of
1729 * the if-statement assigns a value to the anonymous temporary. This
1730 * temporary is the r-value of the expression.
1731 */
1732 exec_list then_instructions;
1733 exec_list else_instructions;
1734
1735 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1736 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1737
1738 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1739 *
1740 * "The second and third expressions can be any type, as
1741 * long their types match, or there is a conversion in
1742 * Section 4.1.10 "Implicit Conversions" that can be applied
1743 * to one of the expressions to make their types match. This
1744 * resulting matching type is the type of the entire
1745 * expression."
1746 */
1747 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1748 && !apply_implicit_conversion(op[2]->type, op[1], state))
1749 || (op[1]->type != op[2]->type)) {
1750 YYLTYPE loc = this->subexpressions[1]->get_location();
1751
1752 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1753 "operator must have matching types");
1754 error_emitted = true;
1755 type = glsl_type::error_type;
1756 } else {
1757 type = op[1]->type;
1758 }
1759
1760 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1761 *
1762 * "The second and third expressions must be the same type, but can
1763 * be of any type other than an array."
1764 */
1765 if (type->is_array() &&
1766 !state->check_version(120, 300, &loc,
1767 "second and third operands of ?: operator "
1768 "cannot be arrays")) {
1769 error_emitted = true;
1770 }
1771
1772 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1773 *
1774 * "Except for array indexing, structure member selection, and
1775 * parentheses, opaque variables are not allowed to be operands in
1776 * expressions; such use results in a compile-time error."
1777 */
1778 if (type->contains_opaque()) {
1779 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1780 "of the ?: operator");
1781 error_emitted = true;
1782 }
1783
1784 ir_constant *cond_val = op[0]->constant_expression_value();
1785
1786 if (then_instructions.is_empty()
1787 && else_instructions.is_empty()
1788 && cond_val != NULL) {
1789 result = cond_val->value.b[0] ? op[1] : op[2];
1790 } else {
1791 /* The copy to conditional_tmp reads the whole array. */
1792 if (type->is_array()) {
1793 mark_whole_array_access(op[1]);
1794 mark_whole_array_access(op[2]);
1795 }
1796
1797 ir_variable *const tmp =
1798 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1799 instructions->push_tail(tmp);
1800
1801 ir_if *const stmt = new(ctx) ir_if(op[0]);
1802 instructions->push_tail(stmt);
1803
1804 then_instructions.move_nodes_to(& stmt->then_instructions);
1805 ir_dereference *const then_deref =
1806 new(ctx) ir_dereference_variable(tmp);
1807 ir_assignment *const then_assign =
1808 new(ctx) ir_assignment(then_deref, op[1]);
1809 stmt->then_instructions.push_tail(then_assign);
1810
1811 else_instructions.move_nodes_to(& stmt->else_instructions);
1812 ir_dereference *const else_deref =
1813 new(ctx) ir_dereference_variable(tmp);
1814 ir_assignment *const else_assign =
1815 new(ctx) ir_assignment(else_deref, op[2]);
1816 stmt->else_instructions.push_tail(else_assign);
1817
1818 result = new(ctx) ir_dereference_variable(tmp);
1819 }
1820 break;
1821 }
1822
1823 case ast_pre_inc:
1824 case ast_pre_dec: {
1825 this->non_lvalue_description = (this->oper == ast_pre_inc)
1826 ? "pre-increment operation" : "pre-decrement operation";
1827
1828 op[0] = this->subexpressions[0]->hir(instructions, state);
1829 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1830
1831 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1832
1833 ir_rvalue *temp_rhs;
1834 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1835 op[0], op[1]);
1836
1837 error_emitted =
1838 do_assignment(instructions, state,
1839 this->subexpressions[0]->non_lvalue_description,
1840 op[0]->clone(ctx, NULL), temp_rhs,
1841 &result, needs_rvalue, false,
1842 this->subexpressions[0]->get_location());
1843 break;
1844 }
1845
1846 case ast_post_inc:
1847 case ast_post_dec: {
1848 this->non_lvalue_description = (this->oper == ast_post_inc)
1849 ? "post-increment operation" : "post-decrement operation";
1850 op[0] = this->subexpressions[0]->hir(instructions, state);
1851 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1852
1853 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1854
1855 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1856
1857 ir_rvalue *temp_rhs;
1858 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1859 op[0], op[1]);
1860
1861 /* Get a temporary of a copy of the lvalue before it's modified.
1862 * This may get thrown away later.
1863 */
1864 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1865
1866 ir_rvalue *junk_rvalue;
1867 error_emitted =
1868 do_assignment(instructions, state,
1869 this->subexpressions[0]->non_lvalue_description,
1870 op[0]->clone(ctx, NULL), temp_rhs,
1871 &junk_rvalue, false, false,
1872 this->subexpressions[0]->get_location());
1873
1874 break;
1875 }
1876
1877 case ast_field_selection:
1878 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1879 break;
1880
1881 case ast_array_index: {
1882 YYLTYPE index_loc = subexpressions[1]->get_location();
1883
1884 /* Getting if an array is being used uninitialized is beyond what we get
1885 * from ir_value.data.assigned. Setting is_lhs as true would force to
1886 * not raise a uninitialized warning when using an array
1887 */
1888 subexpressions[0]->set_is_lhs(true);
1889 op[0] = subexpressions[0]->hir(instructions, state);
1890 op[1] = subexpressions[1]->hir(instructions, state);
1891
1892 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1893 loc, index_loc);
1894
1895 if (result->type->is_error())
1896 error_emitted = true;
1897
1898 break;
1899 }
1900
1901 case ast_unsized_array_dim:
1902 assert(!"ast_unsized_array_dim: Should never get here.");
1903 break;
1904
1905 case ast_function_call:
1906 /* Should *NEVER* get here. ast_function_call should always be handled
1907 * by ast_function_expression::hir.
1908 */
1909 assert(0);
1910 break;
1911
1912 case ast_identifier: {
1913 /* ast_identifier can appear several places in a full abstract syntax
1914 * tree. This particular use must be at location specified in the grammar
1915 * as 'variable_identifier'.
1916 */
1917 ir_variable *var =
1918 state->symbols->get_variable(this->primary_expression.identifier);
1919
1920 if (var != NULL) {
1921 var->data.used = true;
1922 result = new(ctx) ir_dereference_variable(var);
1923
1924 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1925 && !this->is_lhs
1926 && result->variable_referenced()->data.assigned != true
1927 && !is_gl_identifier(var->name)) {
1928 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1929 this->primary_expression.identifier);
1930 }
1931 } else {
1932 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1933 this->primary_expression.identifier);
1934
1935 result = ir_rvalue::error_value(ctx);
1936 error_emitted = true;
1937 }
1938 break;
1939 }
1940
1941 case ast_int_constant:
1942 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1943 break;
1944
1945 case ast_uint_constant:
1946 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1947 break;
1948
1949 case ast_float_constant:
1950 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1951 break;
1952
1953 case ast_bool_constant:
1954 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1955 break;
1956
1957 case ast_double_constant:
1958 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1959 break;
1960
1961 case ast_sequence: {
1962 /* It should not be possible to generate a sequence in the AST without
1963 * any expressions in it.
1964 */
1965 assert(!this->expressions.is_empty());
1966
1967 /* The r-value of a sequence is the last expression in the sequence. If
1968 * the other expressions in the sequence do not have side-effects (and
1969 * therefore add instructions to the instruction list), they get dropped
1970 * on the floor.
1971 */
1972 exec_node *previous_tail_pred = NULL;
1973 YYLTYPE previous_operand_loc = loc;
1974
1975 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1976 /* If one of the operands of comma operator does not generate any
1977 * code, we want to emit a warning. At each pass through the loop
1978 * previous_tail_pred will point to the last instruction in the
1979 * stream *before* processing the previous operand. Naturally,
1980 * instructions->tail_pred will point to the last instruction in the
1981 * stream *after* processing the previous operand. If the two
1982 * pointers match, then the previous operand had no effect.
1983 *
1984 * The warning behavior here differs slightly from GCC. GCC will
1985 * only emit a warning if none of the left-hand operands have an
1986 * effect. However, it will emit a warning for each. I believe that
1987 * there are some cases in C (especially with GCC extensions) where
1988 * it is useful to have an intermediate step in a sequence have no
1989 * effect, but I don't think these cases exist in GLSL. Either way,
1990 * it would be a giant hassle to replicate that behavior.
1991 */
1992 if (previous_tail_pred == instructions->tail_pred) {
1993 _mesa_glsl_warning(&previous_operand_loc, state,
1994 "left-hand operand of comma expression has "
1995 "no effect");
1996 }
1997
1998 /* tail_pred is directly accessed instead of using the get_tail()
1999 * method for performance reasons. get_tail() has extra code to
2000 * return NULL when the list is empty. We don't care about that
2001 * here, so using tail_pred directly is fine.
2002 */
2003 previous_tail_pred = instructions->tail_pred;
2004 previous_operand_loc = ast->get_location();
2005
2006 result = ast->hir(instructions, state);
2007 }
2008
2009 /* Any errors should have already been emitted in the loop above.
2010 */
2011 error_emitted = true;
2012 break;
2013 }
2014 }
2015 type = NULL; /* use result->type, not type. */
2016 assert(result != NULL || !needs_rvalue);
2017
2018 if (result && result->type->is_error() && !error_emitted)
2019 _mesa_glsl_error(& loc, state, "type mismatch");
2020
2021 return result;
2022 }
2023
2024 bool
2025 ast_expression::has_sequence_subexpression() const
2026 {
2027 switch (this->oper) {
2028 case ast_plus:
2029 case ast_neg:
2030 case ast_bit_not:
2031 case ast_logic_not:
2032 case ast_pre_inc:
2033 case ast_pre_dec:
2034 case ast_post_inc:
2035 case ast_post_dec:
2036 return this->subexpressions[0]->has_sequence_subexpression();
2037
2038 case ast_assign:
2039 case ast_add:
2040 case ast_sub:
2041 case ast_mul:
2042 case ast_div:
2043 case ast_mod:
2044 case ast_lshift:
2045 case ast_rshift:
2046 case ast_less:
2047 case ast_greater:
2048 case ast_lequal:
2049 case ast_gequal:
2050 case ast_nequal:
2051 case ast_equal:
2052 case ast_bit_and:
2053 case ast_bit_xor:
2054 case ast_bit_or:
2055 case ast_logic_and:
2056 case ast_logic_or:
2057 case ast_logic_xor:
2058 case ast_array_index:
2059 case ast_mul_assign:
2060 case ast_div_assign:
2061 case ast_add_assign:
2062 case ast_sub_assign:
2063 case ast_mod_assign:
2064 case ast_ls_assign:
2065 case ast_rs_assign:
2066 case ast_and_assign:
2067 case ast_xor_assign:
2068 case ast_or_assign:
2069 return this->subexpressions[0]->has_sequence_subexpression() ||
2070 this->subexpressions[1]->has_sequence_subexpression();
2071
2072 case ast_conditional:
2073 return this->subexpressions[0]->has_sequence_subexpression() ||
2074 this->subexpressions[1]->has_sequence_subexpression() ||
2075 this->subexpressions[2]->has_sequence_subexpression();
2076
2077 case ast_sequence:
2078 return true;
2079
2080 case ast_field_selection:
2081 case ast_identifier:
2082 case ast_int_constant:
2083 case ast_uint_constant:
2084 case ast_float_constant:
2085 case ast_bool_constant:
2086 case ast_double_constant:
2087 return false;
2088
2089 case ast_aggregate:
2090 unreachable("ast_aggregate: Should never get here.");
2091
2092 case ast_function_call:
2093 unreachable("should be handled by ast_function_expression::hir");
2094
2095 case ast_unsized_array_dim:
2096 unreachable("ast_unsized_array_dim: Should never get here.");
2097 }
2098
2099 return false;
2100 }
2101
2102 ir_rvalue *
2103 ast_expression_statement::hir(exec_list *instructions,
2104 struct _mesa_glsl_parse_state *state)
2105 {
2106 /* It is possible to have expression statements that don't have an
2107 * expression. This is the solitary semicolon:
2108 *
2109 * for (i = 0; i < 5; i++)
2110 * ;
2111 *
2112 * In this case the expression will be NULL. Test for NULL and don't do
2113 * anything in that case.
2114 */
2115 if (expression != NULL)
2116 expression->hir_no_rvalue(instructions, state);
2117
2118 /* Statements do not have r-values.
2119 */
2120 return NULL;
2121 }
2122
2123
2124 ir_rvalue *
2125 ast_compound_statement::hir(exec_list *instructions,
2126 struct _mesa_glsl_parse_state *state)
2127 {
2128 if (new_scope)
2129 state->symbols->push_scope();
2130
2131 foreach_list_typed (ast_node, ast, link, &this->statements)
2132 ast->hir(instructions, state);
2133
2134 if (new_scope)
2135 state->symbols->pop_scope();
2136
2137 /* Compound statements do not have r-values.
2138 */
2139 return NULL;
2140 }
2141
2142 /**
2143 * Evaluate the given exec_node (which should be an ast_node representing
2144 * a single array dimension) and return its integer value.
2145 */
2146 static unsigned
2147 process_array_size(exec_node *node,
2148 struct _mesa_glsl_parse_state *state)
2149 {
2150 exec_list dummy_instructions;
2151
2152 ast_node *array_size = exec_node_data(ast_node, node, link);
2153
2154 /**
2155 * Dimensions other than the outermost dimension can by unsized if they
2156 * are immediately sized by a constructor or initializer.
2157 */
2158 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2159 return 0;
2160
2161 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2162 YYLTYPE loc = array_size->get_location();
2163
2164 if (ir == NULL) {
2165 _mesa_glsl_error(& loc, state,
2166 "array size could not be resolved");
2167 return 0;
2168 }
2169
2170 if (!ir->type->is_integer()) {
2171 _mesa_glsl_error(& loc, state,
2172 "array size must be integer type");
2173 return 0;
2174 }
2175
2176 if (!ir->type->is_scalar()) {
2177 _mesa_glsl_error(& loc, state,
2178 "array size must be scalar type");
2179 return 0;
2180 }
2181
2182 ir_constant *const size = ir->constant_expression_value();
2183 if (size == NULL ||
2184 (state->is_version(120, 300) &&
2185 array_size->has_sequence_subexpression())) {
2186 _mesa_glsl_error(& loc, state, "array size must be a "
2187 "constant valued expression");
2188 return 0;
2189 }
2190
2191 if (size->value.i[0] <= 0) {
2192 _mesa_glsl_error(& loc, state, "array size must be > 0");
2193 return 0;
2194 }
2195
2196 assert(size->type == ir->type);
2197
2198 /* If the array size is const (and we've verified that
2199 * it is) then no instructions should have been emitted
2200 * when we converted it to HIR. If they were emitted,
2201 * then either the array size isn't const after all, or
2202 * we are emitting unnecessary instructions.
2203 */
2204 assert(dummy_instructions.is_empty());
2205
2206 return size->value.u[0];
2207 }
2208
2209 static const glsl_type *
2210 process_array_type(YYLTYPE *loc, const glsl_type *base,
2211 ast_array_specifier *array_specifier,
2212 struct _mesa_glsl_parse_state *state)
2213 {
2214 const glsl_type *array_type = base;
2215
2216 if (array_specifier != NULL) {
2217 if (base->is_array()) {
2218
2219 /* From page 19 (page 25) of the GLSL 1.20 spec:
2220 *
2221 * "Only one-dimensional arrays may be declared."
2222 */
2223 if (!state->check_arrays_of_arrays_allowed(loc)) {
2224 return glsl_type::error_type;
2225 }
2226 }
2227
2228 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2229 !node->is_head_sentinel(); node = node->prev) {
2230 unsigned array_size = process_array_size(node, state);
2231 array_type = glsl_type::get_array_instance(array_type, array_size);
2232 }
2233 }
2234
2235 return array_type;
2236 }
2237
2238 static bool
2239 precision_qualifier_allowed(const glsl_type *type)
2240 {
2241 /* Precision qualifiers apply to floating point, integer and opaque
2242 * types.
2243 *
2244 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2245 * "Any floating point or any integer declaration can have the type
2246 * preceded by one of these precision qualifiers [...] Literal
2247 * constants do not have precision qualifiers. Neither do Boolean
2248 * variables.
2249 *
2250 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2251 * spec also says:
2252 *
2253 * "Precision qualifiers are added for code portability with OpenGL
2254 * ES, not for functionality. They have the same syntax as in OpenGL
2255 * ES."
2256 *
2257 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2258 *
2259 * "uniform lowp sampler2D sampler;
2260 * highp vec2 coord;
2261 * ...
2262 * lowp vec4 col = texture2D (sampler, coord);
2263 * // texture2D returns lowp"
2264 *
2265 * From this, we infer that GLSL 1.30 (and later) should allow precision
2266 * qualifiers on sampler types just like float and integer types.
2267 */
2268 return (type->is_float()
2269 || type->is_integer()
2270 || type->contains_opaque())
2271 && !type->without_array()->is_record();
2272 }
2273
2274 const glsl_type *
2275 ast_type_specifier::glsl_type(const char **name,
2276 struct _mesa_glsl_parse_state *state) const
2277 {
2278 const struct glsl_type *type;
2279
2280 type = state->symbols->get_type(this->type_name);
2281 *name = this->type_name;
2282
2283 YYLTYPE loc = this->get_location();
2284 type = process_array_type(&loc, type, this->array_specifier, state);
2285
2286 return type;
2287 }
2288
2289 /**
2290 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2291 *
2292 * "The precision statement
2293 *
2294 * precision precision-qualifier type;
2295 *
2296 * can be used to establish a default precision qualifier. The type field can
2297 * be either int or float or any of the sampler types, (...) If type is float,
2298 * the directive applies to non-precision-qualified floating point type
2299 * (scalar, vector, and matrix) declarations. If type is int, the directive
2300 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2301 * and unsigned) declarations."
2302 *
2303 * We use the symbol table to keep the values of the default precisions for
2304 * each 'type' in each scope and we use the 'type' string from the precision
2305 * statement as key in the symbol table. When we want to retrieve the default
2306 * precision associated with a given glsl_type we need to know the type string
2307 * associated with it. This is what this function returns.
2308 */
2309 static const char *
2310 get_type_name_for_precision_qualifier(const glsl_type *type)
2311 {
2312 switch (type->base_type) {
2313 case GLSL_TYPE_FLOAT:
2314 return "float";
2315 case GLSL_TYPE_UINT:
2316 case GLSL_TYPE_INT:
2317 return "int";
2318 case GLSL_TYPE_ATOMIC_UINT:
2319 return "atomic_uint";
2320 case GLSL_TYPE_IMAGE:
2321 /* fallthrough */
2322 case GLSL_TYPE_SAMPLER: {
2323 const unsigned type_idx =
2324 type->sampler_array + 2 * type->sampler_shadow;
2325 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2326 assert(type_idx < 4);
2327 switch (type->sampled_type) {
2328 case GLSL_TYPE_FLOAT:
2329 switch (type->sampler_dimensionality) {
2330 case GLSL_SAMPLER_DIM_1D: {
2331 assert(type->base_type == GLSL_TYPE_SAMPLER);
2332 static const char *const names[4] = {
2333 "sampler1D", "sampler1DArray",
2334 "sampler1DShadow", "sampler1DArrayShadow"
2335 };
2336 return names[type_idx];
2337 }
2338 case GLSL_SAMPLER_DIM_2D: {
2339 static const char *const names[8] = {
2340 "sampler2D", "sampler2DArray",
2341 "sampler2DShadow", "sampler2DArrayShadow",
2342 "image2D", "image2DArray", NULL, NULL
2343 };
2344 return names[offset + type_idx];
2345 }
2346 case GLSL_SAMPLER_DIM_3D: {
2347 static const char *const names[8] = {
2348 "sampler3D", NULL, NULL, NULL,
2349 "image3D", NULL, NULL, NULL
2350 };
2351 return names[offset + type_idx];
2352 }
2353 case GLSL_SAMPLER_DIM_CUBE: {
2354 static const char *const names[8] = {
2355 "samplerCube", "samplerCubeArray",
2356 "samplerCubeShadow", "samplerCubeArrayShadow",
2357 "imageCube", NULL, NULL, NULL
2358 };
2359 return names[offset + type_idx];
2360 }
2361 case GLSL_SAMPLER_DIM_MS: {
2362 assert(type->base_type == GLSL_TYPE_SAMPLER);
2363 static const char *const names[4] = {
2364 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2365 };
2366 return names[type_idx];
2367 }
2368 case GLSL_SAMPLER_DIM_RECT: {
2369 assert(type->base_type == GLSL_TYPE_SAMPLER);
2370 static const char *const names[4] = {
2371 "samplerRect", NULL, "samplerRectShadow", NULL
2372 };
2373 return names[type_idx];
2374 }
2375 case GLSL_SAMPLER_DIM_BUF: {
2376 static const char *const names[8] = {
2377 "samplerBuffer", NULL, NULL, NULL,
2378 "imageBuffer", NULL, NULL, NULL
2379 };
2380 return names[offset + type_idx];
2381 }
2382 case GLSL_SAMPLER_DIM_EXTERNAL: {
2383 assert(type->base_type == GLSL_TYPE_SAMPLER);
2384 static const char *const names[4] = {
2385 "samplerExternalOES", NULL, NULL, NULL
2386 };
2387 return names[type_idx];
2388 }
2389 default:
2390 unreachable("Unsupported sampler/image dimensionality");
2391 } /* sampler/image float dimensionality */
2392 break;
2393 case GLSL_TYPE_INT:
2394 switch (type->sampler_dimensionality) {
2395 case GLSL_SAMPLER_DIM_1D: {
2396 assert(type->base_type == GLSL_TYPE_SAMPLER);
2397 static const char *const names[4] = {
2398 "isampler1D", "isampler1DArray", NULL, NULL
2399 };
2400 return names[type_idx];
2401 }
2402 case GLSL_SAMPLER_DIM_2D: {
2403 static const char *const names[8] = {
2404 "isampler2D", "isampler2DArray", NULL, NULL,
2405 "iimage2D", "iimage2DArray", NULL, NULL
2406 };
2407 return names[offset + type_idx];
2408 }
2409 case GLSL_SAMPLER_DIM_3D: {
2410 static const char *const names[8] = {
2411 "isampler3D", NULL, NULL, NULL,
2412 "iimage3D", NULL, NULL, NULL
2413 };
2414 return names[offset + type_idx];
2415 }
2416 case GLSL_SAMPLER_DIM_CUBE: {
2417 static const char *const names[8] = {
2418 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2419 "iimageCube", NULL, NULL, NULL
2420 };
2421 return names[offset + type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_MS: {
2424 assert(type->base_type == GLSL_TYPE_SAMPLER);
2425 static const char *const names[4] = {
2426 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2427 };
2428 return names[type_idx];
2429 }
2430 case GLSL_SAMPLER_DIM_RECT: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "isamplerRect", NULL, "isamplerRectShadow", NULL
2434 };
2435 return names[type_idx];
2436 }
2437 case GLSL_SAMPLER_DIM_BUF: {
2438 static const char *const names[8] = {
2439 "isamplerBuffer", NULL, NULL, NULL,
2440 "iimageBuffer", NULL, NULL, NULL
2441 };
2442 return names[offset + type_idx];
2443 }
2444 default:
2445 unreachable("Unsupported isampler/iimage dimensionality");
2446 } /* sampler/image int dimensionality */
2447 break;
2448 case GLSL_TYPE_UINT:
2449 switch (type->sampler_dimensionality) {
2450 case GLSL_SAMPLER_DIM_1D: {
2451 assert(type->base_type == GLSL_TYPE_SAMPLER);
2452 static const char *const names[4] = {
2453 "usampler1D", "usampler1DArray", NULL, NULL
2454 };
2455 return names[type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_2D: {
2458 static const char *const names[8] = {
2459 "usampler2D", "usampler2DArray", NULL, NULL,
2460 "uimage2D", "uimage2DArray", NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_3D: {
2465 static const char *const names[8] = {
2466 "usampler3D", NULL, NULL, NULL,
2467 "uimage3D", NULL, NULL, NULL
2468 };
2469 return names[offset + type_idx];
2470 }
2471 case GLSL_SAMPLER_DIM_CUBE: {
2472 static const char *const names[8] = {
2473 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2474 "uimageCube", NULL, NULL, NULL
2475 };
2476 return names[offset + type_idx];
2477 }
2478 case GLSL_SAMPLER_DIM_MS: {
2479 assert(type->base_type == GLSL_TYPE_SAMPLER);
2480 static const char *const names[4] = {
2481 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2482 };
2483 return names[type_idx];
2484 }
2485 case GLSL_SAMPLER_DIM_RECT: {
2486 assert(type->base_type == GLSL_TYPE_SAMPLER);
2487 static const char *const names[4] = {
2488 "usamplerRect", NULL, "usamplerRectShadow", NULL
2489 };
2490 return names[type_idx];
2491 }
2492 case GLSL_SAMPLER_DIM_BUF: {
2493 static const char *const names[8] = {
2494 "usamplerBuffer", NULL, NULL, NULL,
2495 "uimageBuffer", NULL, NULL, NULL
2496 };
2497 return names[offset + type_idx];
2498 }
2499 default:
2500 unreachable("Unsupported usampler/uimage dimensionality");
2501 } /* sampler/image uint dimensionality */
2502 break;
2503 default:
2504 unreachable("Unsupported sampler/image type");
2505 } /* sampler/image type */
2506 break;
2507 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2508 break;
2509 default:
2510 unreachable("Unsupported type");
2511 } /* base type */
2512 }
2513
2514 static unsigned
2515 select_gles_precision(unsigned qual_precision,
2516 const glsl_type *type,
2517 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2518 {
2519 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2520 * In GLES we take the precision from the type qualifier if present,
2521 * otherwise, if the type of the variable allows precision qualifiers at
2522 * all, we look for the default precision qualifier for that type in the
2523 * current scope.
2524 */
2525 assert(state->es_shader);
2526
2527 unsigned precision = GLSL_PRECISION_NONE;
2528 if (qual_precision) {
2529 precision = qual_precision;
2530 } else if (precision_qualifier_allowed(type)) {
2531 const char *type_name =
2532 get_type_name_for_precision_qualifier(type->without_array());
2533 assert(type_name != NULL);
2534
2535 precision =
2536 state->symbols->get_default_precision_qualifier(type_name);
2537 if (precision == ast_precision_none) {
2538 _mesa_glsl_error(loc, state,
2539 "No precision specified in this scope for type `%s'",
2540 type->name);
2541 }
2542 }
2543 return precision;
2544 }
2545
2546 const glsl_type *
2547 ast_fully_specified_type::glsl_type(const char **name,
2548 struct _mesa_glsl_parse_state *state) const
2549 {
2550 return this->specifier->glsl_type(name, state);
2551 }
2552
2553 /**
2554 * Determine whether a toplevel variable declaration declares a varying. This
2555 * function operates by examining the variable's mode and the shader target,
2556 * so it correctly identifies linkage variables regardless of whether they are
2557 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2558 *
2559 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2560 * this function will produce undefined results.
2561 */
2562 static bool
2563 is_varying_var(ir_variable *var, gl_shader_stage target)
2564 {
2565 switch (target) {
2566 case MESA_SHADER_VERTEX:
2567 return var->data.mode == ir_var_shader_out;
2568 case MESA_SHADER_FRAGMENT:
2569 return var->data.mode == ir_var_shader_in;
2570 default:
2571 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2572 }
2573 }
2574
2575
2576 /**
2577 * Matrix layout qualifiers are only allowed on certain types
2578 */
2579 static void
2580 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2581 YYLTYPE *loc,
2582 const glsl_type *type,
2583 ir_variable *var)
2584 {
2585 if (var && !var->is_in_buffer_block()) {
2586 /* Layout qualifiers may only apply to interface blocks and fields in
2587 * them.
2588 */
2589 _mesa_glsl_error(loc, state,
2590 "uniform block layout qualifiers row_major and "
2591 "column_major may not be applied to variables "
2592 "outside of uniform blocks");
2593 } else if (!type->without_array()->is_matrix()) {
2594 /* The OpenGL ES 3.0 conformance tests did not originally allow
2595 * matrix layout qualifiers on non-matrices. However, the OpenGL
2596 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2597 * amended to specifically allow these layouts on all types. Emit
2598 * a warning so that people know their code may not be portable.
2599 */
2600 _mesa_glsl_warning(loc, state,
2601 "uniform block layout qualifiers row_major and "
2602 "column_major applied to non-matrix types may "
2603 "be rejected by older compilers");
2604 }
2605 }
2606
2607 static bool
2608 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2609 struct _mesa_glsl_parse_state *state,
2610 unsigned xfb_buffer) {
2611 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2612 _mesa_glsl_error(loc, state,
2613 "invalid xfb_buffer specified %d is larger than "
2614 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2615 xfb_buffer,
2616 state->Const.MaxTransformFeedbackBuffers - 1);
2617 return false;
2618 }
2619
2620 return true;
2621 }
2622
2623 /* From the ARB_enhanced_layouts spec:
2624 *
2625 * "Variables and block members qualified with *xfb_offset* can be
2626 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2627 * The offset must be a multiple of the size of the first component of
2628 * the first qualified variable or block member, or a compile-time error
2629 * results. Further, if applied to an aggregate containing a double,
2630 * the offset must also be a multiple of 8, and the space taken in the
2631 * buffer will be a multiple of 8.
2632 */
2633 static bool
2634 validate_xfb_offset_qualifier(YYLTYPE *loc,
2635 struct _mesa_glsl_parse_state *state,
2636 int xfb_offset, const glsl_type *type,
2637 unsigned component_size) {
2638 const glsl_type *t_without_array = type->without_array();
2639
2640 if (xfb_offset != -1 && type->is_unsized_array()) {
2641 _mesa_glsl_error(loc, state,
2642 "xfb_offset can't be used with unsized arrays.");
2643 return false;
2644 }
2645
2646 /* Make sure nested structs don't contain unsized arrays, and validate
2647 * any xfb_offsets on interface members.
2648 */
2649 if (t_without_array->is_record() || t_without_array->is_interface())
2650 for (unsigned int i = 0; i < t_without_array->length; i++) {
2651 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2652
2653 /* When the interface block doesn't have an xfb_offset qualifier then
2654 * we apply the component size rules at the member level.
2655 */
2656 if (xfb_offset == -1)
2657 component_size = member_t->contains_double() ? 8 : 4;
2658
2659 int xfb_offset = t_without_array->fields.structure[i].offset;
2660 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2661 component_size);
2662 }
2663
2664 /* Nested structs or interface block without offset may not have had an
2665 * offset applied yet so return.
2666 */
2667 if (xfb_offset == -1) {
2668 return true;
2669 }
2670
2671 if (xfb_offset % component_size) {
2672 _mesa_glsl_error(loc, state,
2673 "invalid qualifier xfb_offset=%d must be a multiple "
2674 "of the first component size of the first qualified "
2675 "variable or block member. Or double if an aggregate "
2676 "that contains a double (%d).",
2677 xfb_offset, component_size);
2678 return false;
2679 }
2680
2681 return true;
2682 }
2683
2684 static bool
2685 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2686 unsigned stream)
2687 {
2688 if (stream >= state->ctx->Const.MaxVertexStreams) {
2689 _mesa_glsl_error(loc, state,
2690 "invalid stream specified %d is larger than "
2691 "MAX_VERTEX_STREAMS - 1 (%d).",
2692 stream, state->ctx->Const.MaxVertexStreams - 1);
2693 return false;
2694 }
2695
2696 return true;
2697 }
2698
2699 static void
2700 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2701 YYLTYPE *loc,
2702 ir_variable *var,
2703 const glsl_type *type,
2704 const ast_type_qualifier *qual)
2705 {
2706 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2707 _mesa_glsl_error(loc, state,
2708 "the \"binding\" qualifier only applies to uniforms and "
2709 "shader storage buffer objects");
2710 return;
2711 }
2712
2713 unsigned qual_binding;
2714 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2715 &qual_binding)) {
2716 return;
2717 }
2718
2719 const struct gl_context *const ctx = state->ctx;
2720 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2721 unsigned max_index = qual_binding + elements - 1;
2722 const glsl_type *base_type = type->without_array();
2723
2724 if (base_type->is_interface()) {
2725 /* UBOs. From page 60 of the GLSL 4.20 specification:
2726 * "If the binding point for any uniform block instance is less than zero,
2727 * or greater than or equal to the implementation-dependent maximum
2728 * number of uniform buffer bindings, a compilation error will occur.
2729 * When the binding identifier is used with a uniform block instanced as
2730 * an array of size N, all elements of the array from binding through
2731 * binding + N – 1 must be within this range."
2732 *
2733 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2734 */
2735 if (qual->flags.q.uniform &&
2736 max_index >= ctx->Const.MaxUniformBufferBindings) {
2737 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2738 "the maximum number of UBO binding points (%d)",
2739 qual_binding, elements,
2740 ctx->Const.MaxUniformBufferBindings);
2741 return;
2742 }
2743
2744 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2745 * "If the binding point for any uniform or shader storage block instance
2746 * is less than zero, or greater than or equal to the
2747 * implementation-dependent maximum number of uniform buffer bindings, a
2748 * compile-time error will occur. When the binding identifier is used
2749 * with a uniform or shader storage block instanced as an array of size
2750 * N, all elements of the array from binding through binding + N – 1 must
2751 * be within this range."
2752 */
2753 if (qual->flags.q.buffer &&
2754 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2755 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2756 "the maximum number of SSBO binding points (%d)",
2757 qual_binding, elements,
2758 ctx->Const.MaxShaderStorageBufferBindings);
2759 return;
2760 }
2761 } else if (base_type->is_sampler()) {
2762 /* Samplers. From page 63 of the GLSL 4.20 specification:
2763 * "If the binding is less than zero, or greater than or equal to the
2764 * implementation-dependent maximum supported number of units, a
2765 * compilation error will occur. When the binding identifier is used
2766 * with an array of size N, all elements of the array from binding
2767 * through binding + N - 1 must be within this range."
2768 */
2769 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2770
2771 if (max_index >= limit) {
2772 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2773 "exceeds the maximum number of texture image units "
2774 "(%u)", qual_binding, elements, limit);
2775
2776 return;
2777 }
2778 } else if (base_type->contains_atomic()) {
2779 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2780 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2781 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2782 " maximum number of atomic counter buffer bindings"
2783 "(%u)", qual_binding,
2784 ctx->Const.MaxAtomicBufferBindings);
2785
2786 return;
2787 }
2788 } else if ((state->is_version(420, 310) ||
2789 state->ARB_shading_language_420pack_enable) &&
2790 base_type->is_image()) {
2791 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2792 if (max_index >= ctx->Const.MaxImageUnits) {
2793 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2794 " maximum number of image units (%d)", max_index,
2795 ctx->Const.MaxImageUnits);
2796 return;
2797 }
2798
2799 } else {
2800 _mesa_glsl_error(loc, state,
2801 "the \"binding\" qualifier only applies to uniform "
2802 "blocks, opaque variables, or arrays thereof");
2803 return;
2804 }
2805
2806 var->data.explicit_binding = true;
2807 var->data.binding = qual_binding;
2808
2809 return;
2810 }
2811
2812
2813 static void
2814 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2815 YYLTYPE *loc,
2816 const glsl_interp_qualifier interpolation,
2817 const struct ast_type_qualifier *qual,
2818 const struct glsl_type *var_type,
2819 ir_variable_mode mode)
2820 {
2821 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2822 * not to vertex shader inputs nor fragment shader outputs.
2823 *
2824 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2825 * "Outputs from a vertex shader (out) and inputs to a fragment
2826 * shader (in) can be further qualified with one or more of these
2827 * interpolation qualifiers"
2828 * ...
2829 * "These interpolation qualifiers may only precede the qualifiers in,
2830 * centroid in, out, or centroid out in a declaration. They do not apply
2831 * to the deprecated storage qualifiers varying or centroid
2832 * varying. They also do not apply to inputs into a vertex shader or
2833 * outputs from a fragment shader."
2834 *
2835 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2836 * "Outputs from a shader (out) and inputs to a shader (in) can be
2837 * further qualified with one of these interpolation qualifiers."
2838 * ...
2839 * "These interpolation qualifiers may only precede the qualifiers
2840 * in, centroid in, out, or centroid out in a declaration. They do
2841 * not apply to inputs into a vertex shader or outputs from a
2842 * fragment shader."
2843 */
2844 if (state->is_version(130, 300)
2845 && interpolation != INTERP_QUALIFIER_NONE) {
2846 const char *i = interpolation_string(interpolation);
2847 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2848 _mesa_glsl_error(loc, state,
2849 "interpolation qualifier `%s' can only be applied to "
2850 "shader inputs or outputs.", i);
2851
2852 switch (state->stage) {
2853 case MESA_SHADER_VERTEX:
2854 if (mode == ir_var_shader_in) {
2855 _mesa_glsl_error(loc, state,
2856 "interpolation qualifier '%s' cannot be applied to "
2857 "vertex shader inputs", i);
2858 }
2859 break;
2860 case MESA_SHADER_FRAGMENT:
2861 if (mode == ir_var_shader_out) {
2862 _mesa_glsl_error(loc, state,
2863 "interpolation qualifier '%s' cannot be applied to "
2864 "fragment shader outputs", i);
2865 }
2866 break;
2867 default:
2868 break;
2869 }
2870 }
2871
2872 /* Interpolation qualifiers cannot be applied to 'centroid' and
2873 * 'centroid varying'.
2874 *
2875 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2876 * "interpolation qualifiers may only precede the qualifiers in,
2877 * centroid in, out, or centroid out in a declaration. They do not apply
2878 * to the deprecated storage qualifiers varying or centroid varying."
2879 *
2880 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2881 */
2882 if (state->is_version(130, 0)
2883 && interpolation != INTERP_QUALIFIER_NONE
2884 && qual->flags.q.varying) {
2885
2886 const char *i = interpolation_string(interpolation);
2887 const char *s;
2888 if (qual->flags.q.centroid)
2889 s = "centroid varying";
2890 else
2891 s = "varying";
2892
2893 _mesa_glsl_error(loc, state,
2894 "qualifier '%s' cannot be applied to the "
2895 "deprecated storage qualifier '%s'", i, s);
2896 }
2897
2898 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2899 * so must integer vertex outputs.
2900 *
2901 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2902 * "Fragment shader inputs that are signed or unsigned integers or
2903 * integer vectors must be qualified with the interpolation qualifier
2904 * flat."
2905 *
2906 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2907 * "Fragment shader inputs that are, or contain, signed or unsigned
2908 * integers or integer vectors must be qualified with the
2909 * interpolation qualifier flat."
2910 *
2911 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2912 * "Vertex shader outputs that are, or contain, signed or unsigned
2913 * integers or integer vectors must be qualified with the
2914 * interpolation qualifier flat."
2915 *
2916 * Note that prior to GLSL 1.50, this requirement applied to vertex
2917 * outputs rather than fragment inputs. That creates problems in the
2918 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2919 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2920 * apply the restriction to both vertex outputs and fragment inputs.
2921 *
2922 * Note also that the desktop GLSL specs are missing the text "or
2923 * contain"; this is presumably an oversight, since there is no
2924 * reasonable way to interpolate a fragment shader input that contains
2925 * an integer. See Khronos bug #15671.
2926 */
2927 if (state->is_version(130, 300)
2928 && var_type->contains_integer()
2929 && interpolation != INTERP_QUALIFIER_FLAT
2930 && ((state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_in)
2931 || (state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_out
2932 && state->es_shader))) {
2933 const char *shader_var_type = (state->stage == MESA_SHADER_VERTEX) ?
2934 "vertex output" : "fragment input";
2935 _mesa_glsl_error(loc, state, "if a %s is (or contains) "
2936 "an integer, then it must be qualified with 'flat'",
2937 shader_var_type);
2938 }
2939
2940 /* Double fragment inputs must be qualified with 'flat'.
2941 *
2942 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2943 * "This extension does not support interpolation of double-precision
2944 * values; doubles used as fragment shader inputs must be qualified as
2945 * "flat"."
2946 *
2947 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2948 * "Fragment shader inputs that are signed or unsigned integers, integer
2949 * vectors, or any double-precision floating-point type must be
2950 * qualified with the interpolation qualifier flat."
2951 *
2952 * Note that the GLSL specs are missing the text "or contain"; this is
2953 * presumably an oversight. See Khronos bug #15671.
2954 *
2955 * The 'double' type does not exist in GLSL ES so far.
2956 */
2957 if ((state->ARB_gpu_shader_fp64_enable
2958 || state->is_version(400, 0))
2959 && var_type->contains_double()
2960 && interpolation != INTERP_QUALIFIER_FLAT
2961 && state->stage == MESA_SHADER_FRAGMENT
2962 && mode == ir_var_shader_in) {
2963 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2964 "a double, then it must be qualified with 'flat'");
2965 }
2966 }
2967
2968 static glsl_interp_qualifier
2969 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2970 const struct glsl_type *var_type,
2971 ir_variable_mode mode,
2972 struct _mesa_glsl_parse_state *state,
2973 YYLTYPE *loc)
2974 {
2975 glsl_interp_qualifier interpolation;
2976 if (qual->flags.q.flat)
2977 interpolation = INTERP_QUALIFIER_FLAT;
2978 else if (qual->flags.q.noperspective)
2979 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2980 else if (qual->flags.q.smooth)
2981 interpolation = INTERP_QUALIFIER_SMOOTH;
2982 else if (state->es_shader &&
2983 ((mode == ir_var_shader_in &&
2984 state->stage != MESA_SHADER_VERTEX) ||
2985 (mode == ir_var_shader_out &&
2986 state->stage != MESA_SHADER_FRAGMENT)))
2987 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2988 *
2989 * "When no interpolation qualifier is present, smooth interpolation
2990 * is used."
2991 */
2992 interpolation = INTERP_QUALIFIER_SMOOTH;
2993 else
2994 interpolation = INTERP_QUALIFIER_NONE;
2995
2996 validate_interpolation_qualifier(state, loc,
2997 interpolation,
2998 qual, var_type, mode);
2999
3000 return interpolation;
3001 }
3002
3003
3004 static void
3005 apply_explicit_location(const struct ast_type_qualifier *qual,
3006 ir_variable *var,
3007 struct _mesa_glsl_parse_state *state,
3008 YYLTYPE *loc)
3009 {
3010 bool fail = false;
3011
3012 unsigned qual_location;
3013 if (!process_qualifier_constant(state, loc, "location", qual->location,
3014 &qual_location)) {
3015 return;
3016 }
3017
3018 /* Checks for GL_ARB_explicit_uniform_location. */
3019 if (qual->flags.q.uniform) {
3020 if (!state->check_explicit_uniform_location_allowed(loc, var))
3021 return;
3022
3023 const struct gl_context *const ctx = state->ctx;
3024 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3025
3026 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3027 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3028 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3029 ctx->Const.MaxUserAssignableUniformLocations);
3030 return;
3031 }
3032
3033 var->data.explicit_location = true;
3034 var->data.location = qual_location;
3035 return;
3036 }
3037
3038 /* Between GL_ARB_explicit_attrib_location an
3039 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3040 * stage can be assigned explicit locations. The checking here associates
3041 * the correct extension with the correct stage's input / output:
3042 *
3043 * input output
3044 * ----- ------
3045 * vertex explicit_loc sso
3046 * tess control sso sso
3047 * tess eval sso sso
3048 * geometry sso sso
3049 * fragment sso explicit_loc
3050 */
3051 switch (state->stage) {
3052 case MESA_SHADER_VERTEX:
3053 if (var->data.mode == ir_var_shader_in) {
3054 if (!state->check_explicit_attrib_location_allowed(loc, var))
3055 return;
3056
3057 break;
3058 }
3059
3060 if (var->data.mode == ir_var_shader_out) {
3061 if (!state->check_separate_shader_objects_allowed(loc, var))
3062 return;
3063
3064 break;
3065 }
3066
3067 fail = true;
3068 break;
3069
3070 case MESA_SHADER_TESS_CTRL:
3071 case MESA_SHADER_TESS_EVAL:
3072 case MESA_SHADER_GEOMETRY:
3073 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3074 if (!state->check_separate_shader_objects_allowed(loc, var))
3075 return;
3076
3077 break;
3078 }
3079
3080 fail = true;
3081 break;
3082
3083 case MESA_SHADER_FRAGMENT:
3084 if (var->data.mode == ir_var_shader_in) {
3085 if (!state->check_separate_shader_objects_allowed(loc, var))
3086 return;
3087
3088 break;
3089 }
3090
3091 if (var->data.mode == ir_var_shader_out) {
3092 if (!state->check_explicit_attrib_location_allowed(loc, var))
3093 return;
3094
3095 break;
3096 }
3097
3098 fail = true;
3099 break;
3100
3101 case MESA_SHADER_COMPUTE:
3102 _mesa_glsl_error(loc, state,
3103 "compute shader variables cannot be given "
3104 "explicit locations");
3105 return;
3106 };
3107
3108 if (fail) {
3109 _mesa_glsl_error(loc, state,
3110 "%s cannot be given an explicit location in %s shader",
3111 mode_string(var),
3112 _mesa_shader_stage_to_string(state->stage));
3113 } else {
3114 var->data.explicit_location = true;
3115
3116 switch (state->stage) {
3117 case MESA_SHADER_VERTEX:
3118 var->data.location = (var->data.mode == ir_var_shader_in)
3119 ? (qual_location + VERT_ATTRIB_GENERIC0)
3120 : (qual_location + VARYING_SLOT_VAR0);
3121 break;
3122
3123 case MESA_SHADER_TESS_CTRL:
3124 case MESA_SHADER_TESS_EVAL:
3125 case MESA_SHADER_GEOMETRY:
3126 if (var->data.patch)
3127 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3128 else
3129 var->data.location = qual_location + VARYING_SLOT_VAR0;
3130 break;
3131
3132 case MESA_SHADER_FRAGMENT:
3133 var->data.location = (var->data.mode == ir_var_shader_out)
3134 ? (qual_location + FRAG_RESULT_DATA0)
3135 : (qual_location + VARYING_SLOT_VAR0);
3136 break;
3137 case MESA_SHADER_COMPUTE:
3138 assert(!"Unexpected shader type");
3139 break;
3140 }
3141
3142 /* Check if index was set for the uniform instead of the function */
3143 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3144 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3145 "used with subroutine functions");
3146 return;
3147 }
3148
3149 unsigned qual_index;
3150 if (qual->flags.q.explicit_index &&
3151 process_qualifier_constant(state, loc, "index", qual->index,
3152 &qual_index)) {
3153 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3154 * Layout Qualifiers):
3155 *
3156 * "It is also a compile-time error if a fragment shader
3157 * sets a layout index to less than 0 or greater than 1."
3158 *
3159 * Older specifications don't mandate a behavior; we take
3160 * this as a clarification and always generate the error.
3161 */
3162 if (qual_index > 1) {
3163 _mesa_glsl_error(loc, state,
3164 "explicit index may only be 0 or 1");
3165 } else {
3166 var->data.explicit_index = true;
3167 var->data.index = qual_index;
3168 }
3169 }
3170 }
3171 }
3172
3173 static void
3174 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3175 ir_variable *var,
3176 struct _mesa_glsl_parse_state *state,
3177 YYLTYPE *loc)
3178 {
3179 const glsl_type *base_type = var->type->without_array();
3180
3181 if (base_type->is_image()) {
3182 if (var->data.mode != ir_var_uniform &&
3183 var->data.mode != ir_var_function_in) {
3184 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3185 "function parameters or uniform-qualified "
3186 "global variables");
3187 }
3188
3189 var->data.image_read_only |= qual->flags.q.read_only;
3190 var->data.image_write_only |= qual->flags.q.write_only;
3191 var->data.image_coherent |= qual->flags.q.coherent;
3192 var->data.image_volatile |= qual->flags.q._volatile;
3193 var->data.image_restrict |= qual->flags.q.restrict_flag;
3194 var->data.read_only = true;
3195
3196 if (qual->flags.q.explicit_image_format) {
3197 if (var->data.mode == ir_var_function_in) {
3198 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3199 "used on image function parameters");
3200 }
3201
3202 if (qual->image_base_type != base_type->sampled_type) {
3203 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3204 "base data type of the image");
3205 }
3206
3207 var->data.image_format = qual->image_format;
3208 } else {
3209 if (var->data.mode == ir_var_uniform) {
3210 if (state->es_shader) {
3211 _mesa_glsl_error(loc, state, "all image uniforms "
3212 "must have a format layout qualifier");
3213
3214 } else if (!qual->flags.q.write_only) {
3215 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3216 "`writeonly' must have a format layout "
3217 "qualifier");
3218 }
3219 }
3220
3221 var->data.image_format = GL_NONE;
3222 }
3223
3224 /* From page 70 of the GLSL ES 3.1 specification:
3225 *
3226 * "Except for image variables qualified with the format qualifiers
3227 * r32f, r32i, and r32ui, image variables must specify either memory
3228 * qualifier readonly or the memory qualifier writeonly."
3229 */
3230 if (state->es_shader &&
3231 var->data.image_format != GL_R32F &&
3232 var->data.image_format != GL_R32I &&
3233 var->data.image_format != GL_R32UI &&
3234 !var->data.image_read_only &&
3235 !var->data.image_write_only) {
3236 _mesa_glsl_error(loc, state, "image variables of format other than "
3237 "r32f, r32i or r32ui must be qualified `readonly' or "
3238 "`writeonly'");
3239 }
3240
3241 } else if (qual->flags.q.read_only ||
3242 qual->flags.q.write_only ||
3243 qual->flags.q.coherent ||
3244 qual->flags.q._volatile ||
3245 qual->flags.q.restrict_flag ||
3246 qual->flags.q.explicit_image_format) {
3247 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3248 "images");
3249 }
3250 }
3251
3252 static inline const char*
3253 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3254 {
3255 if (origin_upper_left && pixel_center_integer)
3256 return "origin_upper_left, pixel_center_integer";
3257 else if (origin_upper_left)
3258 return "origin_upper_left";
3259 else if (pixel_center_integer)
3260 return "pixel_center_integer";
3261 else
3262 return " ";
3263 }
3264
3265 static inline bool
3266 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3267 const struct ast_type_qualifier *qual)
3268 {
3269 /* If gl_FragCoord was previously declared, and the qualifiers were
3270 * different in any way, return true.
3271 */
3272 if (state->fs_redeclares_gl_fragcoord) {
3273 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3274 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3275 }
3276
3277 return false;
3278 }
3279
3280 static inline void
3281 validate_array_dimensions(const glsl_type *t,
3282 struct _mesa_glsl_parse_state *state,
3283 YYLTYPE *loc) {
3284 if (t->is_array()) {
3285 t = t->fields.array;
3286 while (t->is_array()) {
3287 if (t->is_unsized_array()) {
3288 _mesa_glsl_error(loc, state,
3289 "only the outermost array dimension can "
3290 "be unsized",
3291 t->name);
3292 break;
3293 }
3294 t = t->fields.array;
3295 }
3296 }
3297 }
3298
3299 static void
3300 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3301 ir_variable *var,
3302 struct _mesa_glsl_parse_state *state,
3303 YYLTYPE *loc)
3304 {
3305 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3306
3307 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3308 *
3309 * "Within any shader, the first redeclarations of gl_FragCoord
3310 * must appear before any use of gl_FragCoord."
3311 *
3312 * Generate a compiler error if above condition is not met by the
3313 * fragment shader.
3314 */
3315 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3316 if (earlier != NULL &&
3317 earlier->data.used &&
3318 !state->fs_redeclares_gl_fragcoord) {
3319 _mesa_glsl_error(loc, state,
3320 "gl_FragCoord used before its first redeclaration "
3321 "in fragment shader");
3322 }
3323
3324 /* Make sure all gl_FragCoord redeclarations specify the same layout
3325 * qualifiers.
3326 */
3327 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3328 const char *const qual_string =
3329 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3330 qual->flags.q.pixel_center_integer);
3331
3332 const char *const state_string =
3333 get_layout_qualifier_string(state->fs_origin_upper_left,
3334 state->fs_pixel_center_integer);
3335
3336 _mesa_glsl_error(loc, state,
3337 "gl_FragCoord redeclared with different layout "
3338 "qualifiers (%s) and (%s) ",
3339 state_string,
3340 qual_string);
3341 }
3342 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3343 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3344 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3345 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3346 state->fs_redeclares_gl_fragcoord =
3347 state->fs_origin_upper_left ||
3348 state->fs_pixel_center_integer ||
3349 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3350 }
3351
3352 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3353 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3354 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3355 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3356 const char *const qual_string = (qual->flags.q.origin_upper_left)
3357 ? "origin_upper_left" : "pixel_center_integer";
3358
3359 _mesa_glsl_error(loc, state,
3360 "layout qualifier `%s' can only be applied to "
3361 "fragment shader input `gl_FragCoord'",
3362 qual_string);
3363 }
3364
3365 if (qual->flags.q.explicit_location) {
3366 apply_explicit_location(qual, var, state, loc);
3367
3368 if (qual->flags.q.explicit_component) {
3369 unsigned qual_component;
3370 if (process_qualifier_constant(state, loc, "component",
3371 qual->component, &qual_component)) {
3372 const glsl_type *type = var->type->without_array();
3373 unsigned components = type->component_slots();
3374
3375 if (type->is_matrix() || type->is_record()) {
3376 _mesa_glsl_error(loc, state, "component layout qualifier "
3377 "cannot be applied to a matrix, a structure, "
3378 "a block, or an array containing any of "
3379 "these.");
3380 } else if (qual_component != 0 &&
3381 (qual_component + components - 1) > 3) {
3382 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3383 (qual_component + components - 1));
3384 } else if (qual_component == 1 && type->is_double()) {
3385 /* We don't bother checking for 3 as it should be caught by the
3386 * overflow check above.
3387 */
3388 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3389 "component 1 or 3");
3390 } else {
3391 var->data.explicit_component = true;
3392 var->data.location_frac = qual_component;
3393 }
3394 }
3395 }
3396 } else if (qual->flags.q.explicit_index) {
3397 if (!qual->flags.q.subroutine_def)
3398 _mesa_glsl_error(loc, state,
3399 "explicit index requires explicit location");
3400 } else if (qual->flags.q.explicit_component) {
3401 _mesa_glsl_error(loc, state,
3402 "explicit component requires explicit location");
3403 }
3404
3405 if (qual->flags.q.explicit_binding) {
3406 apply_explicit_binding(state, loc, var, var->type, qual);
3407 }
3408
3409 if (state->stage == MESA_SHADER_GEOMETRY &&
3410 qual->flags.q.out && qual->flags.q.stream) {
3411 unsigned qual_stream;
3412 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3413 &qual_stream) &&
3414 validate_stream_qualifier(loc, state, qual_stream)) {
3415 var->data.stream = qual_stream;
3416 }
3417 }
3418
3419 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3420 unsigned qual_xfb_buffer;
3421 if (process_qualifier_constant(state, loc, "xfb_buffer",
3422 qual->xfb_buffer, &qual_xfb_buffer) &&
3423 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3424 var->data.xfb_buffer = qual_xfb_buffer;
3425 if (qual->flags.q.explicit_xfb_buffer)
3426 var->data.explicit_xfb_buffer = true;
3427 }
3428 }
3429
3430 if (qual->flags.q.explicit_xfb_offset) {
3431 unsigned qual_xfb_offset;
3432 unsigned component_size = var->type->contains_double() ? 8 : 4;
3433
3434 if (process_qualifier_constant(state, loc, "xfb_offset",
3435 qual->offset, &qual_xfb_offset) &&
3436 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3437 var->type, component_size)) {
3438 var->data.offset = qual_xfb_offset;
3439 var->data.explicit_xfb_offset = true;
3440 }
3441 }
3442
3443 if (qual->flags.q.explicit_xfb_stride) {
3444 unsigned qual_xfb_stride;
3445 if (process_qualifier_constant(state, loc, "xfb_stride",
3446 qual->xfb_stride, &qual_xfb_stride)) {
3447 var->data.xfb_stride = qual_xfb_stride;
3448 var->data.explicit_xfb_stride = true;
3449 }
3450 }
3451
3452 if (var->type->contains_atomic()) {
3453 if (var->data.mode == ir_var_uniform) {
3454 if (var->data.explicit_binding) {
3455 unsigned *offset =
3456 &state->atomic_counter_offsets[var->data.binding];
3457
3458 if (*offset % ATOMIC_COUNTER_SIZE)
3459 _mesa_glsl_error(loc, state,
3460 "misaligned atomic counter offset");
3461
3462 var->data.offset = *offset;
3463 *offset += var->type->atomic_size();
3464
3465 } else {
3466 _mesa_glsl_error(loc, state,
3467 "atomic counters require explicit binding point");
3468 }
3469 } else if (var->data.mode != ir_var_function_in) {
3470 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3471 "function parameters or uniform-qualified "
3472 "global variables");
3473 }
3474 }
3475
3476 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3477 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3478 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3479 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3480 * These extensions and all following extensions that add the 'layout'
3481 * keyword have been modified to require the use of 'in' or 'out'.
3482 *
3483 * The following extension do not allow the deprecated keywords:
3484 *
3485 * GL_AMD_conservative_depth
3486 * GL_ARB_conservative_depth
3487 * GL_ARB_gpu_shader5
3488 * GL_ARB_separate_shader_objects
3489 * GL_ARB_tessellation_shader
3490 * GL_ARB_transform_feedback3
3491 * GL_ARB_uniform_buffer_object
3492 *
3493 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3494 * allow layout with the deprecated keywords.
3495 */
3496 const bool relaxed_layout_qualifier_checking =
3497 state->ARB_fragment_coord_conventions_enable;
3498
3499 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3500 || qual->flags.q.varying;
3501 if (qual->has_layout() && uses_deprecated_qualifier) {
3502 if (relaxed_layout_qualifier_checking) {
3503 _mesa_glsl_warning(loc, state,
3504 "`layout' qualifier may not be used with "
3505 "`attribute' or `varying'");
3506 } else {
3507 _mesa_glsl_error(loc, state,
3508 "`layout' qualifier may not be used with "
3509 "`attribute' or `varying'");
3510 }
3511 }
3512
3513 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3514 * AMD_conservative_depth.
3515 */
3516 int depth_layout_count = qual->flags.q.depth_any
3517 + qual->flags.q.depth_greater
3518 + qual->flags.q.depth_less
3519 + qual->flags.q.depth_unchanged;
3520 if (depth_layout_count > 0
3521 && !state->is_version(420, 0)
3522 && !state->AMD_conservative_depth_enable
3523 && !state->ARB_conservative_depth_enable) {
3524 _mesa_glsl_error(loc, state,
3525 "extension GL_AMD_conservative_depth or "
3526 "GL_ARB_conservative_depth must be enabled "
3527 "to use depth layout qualifiers");
3528 } else if (depth_layout_count > 0
3529 && strcmp(var->name, "gl_FragDepth") != 0) {
3530 _mesa_glsl_error(loc, state,
3531 "depth layout qualifiers can be applied only to "
3532 "gl_FragDepth");
3533 } else if (depth_layout_count > 1
3534 && strcmp(var->name, "gl_FragDepth") == 0) {
3535 _mesa_glsl_error(loc, state,
3536 "at most one depth layout qualifier can be applied to "
3537 "gl_FragDepth");
3538 }
3539 if (qual->flags.q.depth_any)
3540 var->data.depth_layout = ir_depth_layout_any;
3541 else if (qual->flags.q.depth_greater)
3542 var->data.depth_layout = ir_depth_layout_greater;
3543 else if (qual->flags.q.depth_less)
3544 var->data.depth_layout = ir_depth_layout_less;
3545 else if (qual->flags.q.depth_unchanged)
3546 var->data.depth_layout = ir_depth_layout_unchanged;
3547 else
3548 var->data.depth_layout = ir_depth_layout_none;
3549
3550 if (qual->flags.q.std140 ||
3551 qual->flags.q.std430 ||
3552 qual->flags.q.packed ||
3553 qual->flags.q.shared) {
3554 _mesa_glsl_error(loc, state,
3555 "uniform and shader storage block layout qualifiers "
3556 "std140, std430, packed, and shared can only be "
3557 "applied to uniform or shader storage blocks, not "
3558 "members");
3559 }
3560
3561 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3562 validate_matrix_layout_for_type(state, loc, var->type, var);
3563 }
3564
3565 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3566 * Inputs):
3567 *
3568 * "Fragment shaders also allow the following layout qualifier on in only
3569 * (not with variable declarations)
3570 * layout-qualifier-id
3571 * early_fragment_tests
3572 * [...]"
3573 */
3574 if (qual->flags.q.early_fragment_tests) {
3575 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3576 "valid in fragment shader input layout declaration.");
3577 }
3578 }
3579
3580 static void
3581 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3582 ir_variable *var,
3583 struct _mesa_glsl_parse_state *state,
3584 YYLTYPE *loc,
3585 bool is_parameter)
3586 {
3587 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3588
3589 if (qual->flags.q.invariant) {
3590 if (var->data.used) {
3591 _mesa_glsl_error(loc, state,
3592 "variable `%s' may not be redeclared "
3593 "`invariant' after being used",
3594 var->name);
3595 } else {
3596 var->data.invariant = 1;
3597 }
3598 }
3599
3600 if (qual->flags.q.precise) {
3601 if (var->data.used) {
3602 _mesa_glsl_error(loc, state,
3603 "variable `%s' may not be redeclared "
3604 "`precise' after being used",
3605 var->name);
3606 } else {
3607 var->data.precise = 1;
3608 }
3609 }
3610
3611 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3612 _mesa_glsl_error(loc, state,
3613 "`subroutine' may only be applied to uniforms, "
3614 "subroutine type declarations, or function definitions");
3615 }
3616
3617 if (qual->flags.q.constant || qual->flags.q.attribute
3618 || qual->flags.q.uniform
3619 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3620 var->data.read_only = 1;
3621
3622 if (qual->flags.q.centroid)
3623 var->data.centroid = 1;
3624
3625 if (qual->flags.q.sample)
3626 var->data.sample = 1;
3627
3628 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3629 if (state->es_shader) {
3630 var->data.precision =
3631 select_gles_precision(qual->precision, var->type, state, loc);
3632 }
3633
3634 if (qual->flags.q.patch)
3635 var->data.patch = 1;
3636
3637 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3638 var->type = glsl_type::error_type;
3639 _mesa_glsl_error(loc, state,
3640 "`attribute' variables may not be declared in the "
3641 "%s shader",
3642 _mesa_shader_stage_to_string(state->stage));
3643 }
3644
3645 /* Disallow layout qualifiers which may only appear on layout declarations. */
3646 if (qual->flags.q.prim_type) {
3647 _mesa_glsl_error(loc, state,
3648 "Primitive type may only be specified on GS input or output "
3649 "layout declaration, not on variables.");
3650 }
3651
3652 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3653 *
3654 * "However, the const qualifier cannot be used with out or inout."
3655 *
3656 * The same section of the GLSL 4.40 spec further clarifies this saying:
3657 *
3658 * "The const qualifier cannot be used with out or inout, or a
3659 * compile-time error results."
3660 */
3661 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3662 _mesa_glsl_error(loc, state,
3663 "`const' may not be applied to `out' or `inout' "
3664 "function parameters");
3665 }
3666
3667 /* If there is no qualifier that changes the mode of the variable, leave
3668 * the setting alone.
3669 */
3670 assert(var->data.mode != ir_var_temporary);
3671 if (qual->flags.q.in && qual->flags.q.out)
3672 var->data.mode = ir_var_function_inout;
3673 else if (qual->flags.q.in)
3674 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3675 else if (qual->flags.q.attribute
3676 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3677 var->data.mode = ir_var_shader_in;
3678 else if (qual->flags.q.out)
3679 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3680 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3681 var->data.mode = ir_var_shader_out;
3682 else if (qual->flags.q.uniform)
3683 var->data.mode = ir_var_uniform;
3684 else if (qual->flags.q.buffer)
3685 var->data.mode = ir_var_shader_storage;
3686 else if (qual->flags.q.shared_storage)
3687 var->data.mode = ir_var_shader_shared;
3688
3689 if (!is_parameter && is_varying_var(var, state->stage)) {
3690 /* User-defined ins/outs are not permitted in compute shaders. */
3691 if (state->stage == MESA_SHADER_COMPUTE) {
3692 _mesa_glsl_error(loc, state,
3693 "user-defined input and output variables are not "
3694 "permitted in compute shaders");
3695 }
3696
3697 /* This variable is being used to link data between shader stages (in
3698 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3699 * that is allowed for such purposes.
3700 *
3701 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3702 *
3703 * "The varying qualifier can be used only with the data types
3704 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3705 * these."
3706 *
3707 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3708 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3709 *
3710 * "Fragment inputs can only be signed and unsigned integers and
3711 * integer vectors, float, floating-point vectors, matrices, or
3712 * arrays of these. Structures cannot be input.
3713 *
3714 * Similar text exists in the section on vertex shader outputs.
3715 *
3716 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3717 * 3.00 spec allows structs as well. Varying structs are also allowed
3718 * in GLSL 1.50.
3719 */
3720 switch (var->type->get_scalar_type()->base_type) {
3721 case GLSL_TYPE_FLOAT:
3722 /* Ok in all GLSL versions */
3723 break;
3724 case GLSL_TYPE_UINT:
3725 case GLSL_TYPE_INT:
3726 if (state->is_version(130, 300))
3727 break;
3728 _mesa_glsl_error(loc, state,
3729 "varying variables must be of base type float in %s",
3730 state->get_version_string());
3731 break;
3732 case GLSL_TYPE_STRUCT:
3733 if (state->is_version(150, 300))
3734 break;
3735 _mesa_glsl_error(loc, state,
3736 "varying variables may not be of type struct");
3737 break;
3738 case GLSL_TYPE_DOUBLE:
3739 break;
3740 default:
3741 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3742 break;
3743 }
3744 }
3745
3746 if (state->all_invariant && (state->current_function == NULL)) {
3747 switch (state->stage) {
3748 case MESA_SHADER_VERTEX:
3749 if (var->data.mode == ir_var_shader_out)
3750 var->data.invariant = true;
3751 break;
3752 case MESA_SHADER_TESS_CTRL:
3753 case MESA_SHADER_TESS_EVAL:
3754 case MESA_SHADER_GEOMETRY:
3755 if ((var->data.mode == ir_var_shader_in)
3756 || (var->data.mode == ir_var_shader_out))
3757 var->data.invariant = true;
3758 break;
3759 case MESA_SHADER_FRAGMENT:
3760 if (var->data.mode == ir_var_shader_in)
3761 var->data.invariant = true;
3762 break;
3763 case MESA_SHADER_COMPUTE:
3764 /* Invariance isn't meaningful in compute shaders. */
3765 break;
3766 }
3767 }
3768
3769 var->data.interpolation =
3770 interpret_interpolation_qualifier(qual, var->type,
3771 (ir_variable_mode) var->data.mode,
3772 state, loc);
3773
3774 /* Does the declaration use the deprecated 'attribute' or 'varying'
3775 * keywords?
3776 */
3777 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3778 || qual->flags.q.varying;
3779
3780
3781 /* Validate auxiliary storage qualifiers */
3782
3783 /* From section 4.3.4 of the GLSL 1.30 spec:
3784 * "It is an error to use centroid in in a vertex shader."
3785 *
3786 * From section 4.3.4 of the GLSL ES 3.00 spec:
3787 * "It is an error to use centroid in or interpolation qualifiers in
3788 * a vertex shader input."
3789 */
3790
3791 /* Section 4.3.6 of the GLSL 1.30 specification states:
3792 * "It is an error to use centroid out in a fragment shader."
3793 *
3794 * The GL_ARB_shading_language_420pack extension specification states:
3795 * "It is an error to use auxiliary storage qualifiers or interpolation
3796 * qualifiers on an output in a fragment shader."
3797 */
3798 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3799 _mesa_glsl_error(loc, state,
3800 "sample qualifier may only be used on `in` or `out` "
3801 "variables between shader stages");
3802 }
3803 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3804 _mesa_glsl_error(loc, state,
3805 "centroid qualifier may only be used with `in', "
3806 "`out' or `varying' variables between shader stages");
3807 }
3808
3809 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3810 _mesa_glsl_error(loc, state,
3811 "the shared storage qualifiers can only be used with "
3812 "compute shaders");
3813 }
3814
3815 apply_image_qualifier_to_variable(qual, var, state, loc);
3816 }
3817
3818 /**
3819 * Get the variable that is being redeclared by this declaration
3820 *
3821 * Semantic checks to verify the validity of the redeclaration are also
3822 * performed. If semantic checks fail, compilation error will be emitted via
3823 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3824 *
3825 * \returns
3826 * A pointer to an existing variable in the current scope if the declaration
3827 * is a redeclaration, \c NULL otherwise.
3828 */
3829 static ir_variable *
3830 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3831 struct _mesa_glsl_parse_state *state,
3832 bool allow_all_redeclarations)
3833 {
3834 /* Check if this declaration is actually a re-declaration, either to
3835 * resize an array or add qualifiers to an existing variable.
3836 *
3837 * This is allowed for variables in the current scope, or when at
3838 * global scope (for built-ins in the implicit outer scope).
3839 */
3840 ir_variable *earlier = state->symbols->get_variable(var->name);
3841 if (earlier == NULL ||
3842 (state->current_function != NULL &&
3843 !state->symbols->name_declared_this_scope(var->name))) {
3844 return NULL;
3845 }
3846
3847
3848 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3849 *
3850 * "It is legal to declare an array without a size and then
3851 * later re-declare the same name as an array of the same
3852 * type and specify a size."
3853 */
3854 if (earlier->type->is_unsized_array() && var->type->is_array()
3855 && (var->type->fields.array == earlier->type->fields.array)) {
3856 /* FINISHME: This doesn't match the qualifiers on the two
3857 * FINISHME: declarations. It's not 100% clear whether this is
3858 * FINISHME: required or not.
3859 */
3860
3861 const unsigned size = unsigned(var->type->array_size());
3862 check_builtin_array_max_size(var->name, size, loc, state);
3863 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3864 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3865 "previous access",
3866 earlier->data.max_array_access);
3867 }
3868
3869 earlier->type = var->type;
3870 delete var;
3871 var = NULL;
3872 } else if ((state->ARB_fragment_coord_conventions_enable ||
3873 state->is_version(150, 0))
3874 && strcmp(var->name, "gl_FragCoord") == 0
3875 && earlier->type == var->type
3876 && var->data.mode == ir_var_shader_in) {
3877 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3878 * qualifiers.
3879 */
3880 earlier->data.origin_upper_left = var->data.origin_upper_left;
3881 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3882
3883 /* According to section 4.3.7 of the GLSL 1.30 spec,
3884 * the following built-in varaibles can be redeclared with an
3885 * interpolation qualifier:
3886 * * gl_FrontColor
3887 * * gl_BackColor
3888 * * gl_FrontSecondaryColor
3889 * * gl_BackSecondaryColor
3890 * * gl_Color
3891 * * gl_SecondaryColor
3892 */
3893 } else if (state->is_version(130, 0)
3894 && (strcmp(var->name, "gl_FrontColor") == 0
3895 || strcmp(var->name, "gl_BackColor") == 0
3896 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3897 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3898 || strcmp(var->name, "gl_Color") == 0
3899 || strcmp(var->name, "gl_SecondaryColor") == 0)
3900 && earlier->type == var->type
3901 && earlier->data.mode == var->data.mode) {
3902 earlier->data.interpolation = var->data.interpolation;
3903
3904 /* Layout qualifiers for gl_FragDepth. */
3905 } else if ((state->is_version(420, 0) ||
3906 state->AMD_conservative_depth_enable ||
3907 state->ARB_conservative_depth_enable)
3908 && strcmp(var->name, "gl_FragDepth") == 0
3909 && earlier->type == var->type
3910 && earlier->data.mode == var->data.mode) {
3911
3912 /** From the AMD_conservative_depth spec:
3913 * Within any shader, the first redeclarations of gl_FragDepth
3914 * must appear before any use of gl_FragDepth.
3915 */
3916 if (earlier->data.used) {
3917 _mesa_glsl_error(&loc, state,
3918 "the first redeclaration of gl_FragDepth "
3919 "must appear before any use of gl_FragDepth");
3920 }
3921
3922 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3923 if (earlier->data.depth_layout != ir_depth_layout_none
3924 && earlier->data.depth_layout != var->data.depth_layout) {
3925 _mesa_glsl_error(&loc, state,
3926 "gl_FragDepth: depth layout is declared here "
3927 "as '%s, but it was previously declared as "
3928 "'%s'",
3929 depth_layout_string(var->data.depth_layout),
3930 depth_layout_string(earlier->data.depth_layout));
3931 }
3932
3933 earlier->data.depth_layout = var->data.depth_layout;
3934
3935 } else if (allow_all_redeclarations) {
3936 if (earlier->data.mode != var->data.mode) {
3937 _mesa_glsl_error(&loc, state,
3938 "redeclaration of `%s' with incorrect qualifiers",
3939 var->name);
3940 } else if (earlier->type != var->type) {
3941 _mesa_glsl_error(&loc, state,
3942 "redeclaration of `%s' has incorrect type",
3943 var->name);
3944 }
3945 } else {
3946 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3947 }
3948
3949 return earlier;
3950 }
3951
3952 /**
3953 * Generate the IR for an initializer in a variable declaration
3954 */
3955 ir_rvalue *
3956 process_initializer(ir_variable *var, ast_declaration *decl,
3957 ast_fully_specified_type *type,
3958 exec_list *initializer_instructions,
3959 struct _mesa_glsl_parse_state *state)
3960 {
3961 ir_rvalue *result = NULL;
3962
3963 YYLTYPE initializer_loc = decl->initializer->get_location();
3964
3965 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3966 *
3967 * "All uniform variables are read-only and are initialized either
3968 * directly by an application via API commands, or indirectly by
3969 * OpenGL."
3970 */
3971 if (var->data.mode == ir_var_uniform) {
3972 state->check_version(120, 0, &initializer_loc,
3973 "cannot initialize uniform %s",
3974 var->name);
3975 }
3976
3977 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3978 *
3979 * "Buffer variables cannot have initializers."
3980 */
3981 if (var->data.mode == ir_var_shader_storage) {
3982 _mesa_glsl_error(&initializer_loc, state,
3983 "cannot initialize buffer variable %s",
3984 var->name);
3985 }
3986
3987 /* From section 4.1.7 of the GLSL 4.40 spec:
3988 *
3989 * "Opaque variables [...] are initialized only through the
3990 * OpenGL API; they cannot be declared with an initializer in a
3991 * shader."
3992 */
3993 if (var->type->contains_opaque()) {
3994 _mesa_glsl_error(&initializer_loc, state,
3995 "cannot initialize opaque variable %s",
3996 var->name);
3997 }
3998
3999 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4000 _mesa_glsl_error(&initializer_loc, state,
4001 "cannot initialize %s shader input / %s %s",
4002 _mesa_shader_stage_to_string(state->stage),
4003 (state->stage == MESA_SHADER_VERTEX)
4004 ? "attribute" : "varying",
4005 var->name);
4006 }
4007
4008 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4009 _mesa_glsl_error(&initializer_loc, state,
4010 "cannot initialize %s shader output %s",
4011 _mesa_shader_stage_to_string(state->stage),
4012 var->name);
4013 }
4014
4015 /* If the initializer is an ast_aggregate_initializer, recursively store
4016 * type information from the LHS into it, so that its hir() function can do
4017 * type checking.
4018 */
4019 if (decl->initializer->oper == ast_aggregate)
4020 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4021
4022 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4023 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4024
4025 /* Calculate the constant value if this is a const or uniform
4026 * declaration.
4027 *
4028 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4029 *
4030 * "Declarations of globals without a storage qualifier, or with
4031 * just the const qualifier, may include initializers, in which case
4032 * they will be initialized before the first line of main() is
4033 * executed. Such initializers must be a constant expression."
4034 *
4035 * The same section of the GLSL ES 3.00.4 spec has similar language.
4036 */
4037 if (type->qualifier.flags.q.constant
4038 || type->qualifier.flags.q.uniform
4039 || (state->es_shader && state->current_function == NULL)) {
4040 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4041 lhs, rhs, true);
4042 if (new_rhs != NULL) {
4043 rhs = new_rhs;
4044
4045 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4046 * says:
4047 *
4048 * "A constant expression is one of
4049 *
4050 * ...
4051 *
4052 * - an expression formed by an operator on operands that are
4053 * all constant expressions, including getting an element of
4054 * a constant array, or a field of a constant structure, or
4055 * components of a constant vector. However, the sequence
4056 * operator ( , ) and the assignment operators ( =, +=, ...)
4057 * are not included in the operators that can create a
4058 * constant expression."
4059 *
4060 * Section 12.43 (Sequence operator and constant expressions) says:
4061 *
4062 * "Should the following construct be allowed?
4063 *
4064 * float a[2,3];
4065 *
4066 * The expression within the brackets uses the sequence operator
4067 * (',') and returns the integer 3 so the construct is declaring
4068 * a single-dimensional array of size 3. In some languages, the
4069 * construct declares a two-dimensional array. It would be
4070 * preferable to make this construct illegal to avoid confusion.
4071 *
4072 * One possibility is to change the definition of the sequence
4073 * operator so that it does not return a constant-expression and
4074 * hence cannot be used to declare an array size.
4075 *
4076 * RESOLUTION: The result of a sequence operator is not a
4077 * constant-expression."
4078 *
4079 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4080 * contains language almost identical to the section 4.3.3 in the
4081 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4082 * versions.
4083 */
4084 ir_constant *constant_value = rhs->constant_expression_value();
4085 if (!constant_value ||
4086 (state->is_version(430, 300) &&
4087 decl->initializer->has_sequence_subexpression())) {
4088 const char *const variable_mode =
4089 (type->qualifier.flags.q.constant)
4090 ? "const"
4091 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4092
4093 /* If ARB_shading_language_420pack is enabled, initializers of
4094 * const-qualified local variables do not have to be constant
4095 * expressions. Const-qualified global variables must still be
4096 * initialized with constant expressions.
4097 */
4098 if (!state->has_420pack()
4099 || state->current_function == NULL) {
4100 _mesa_glsl_error(& initializer_loc, state,
4101 "initializer of %s variable `%s' must be a "
4102 "constant expression",
4103 variable_mode,
4104 decl->identifier);
4105 if (var->type->is_numeric()) {
4106 /* Reduce cascading errors. */
4107 var->constant_value = type->qualifier.flags.q.constant
4108 ? ir_constant::zero(state, var->type) : NULL;
4109 }
4110 }
4111 } else {
4112 rhs = constant_value;
4113 var->constant_value = type->qualifier.flags.q.constant
4114 ? constant_value : NULL;
4115 }
4116 } else {
4117 if (var->type->is_numeric()) {
4118 /* Reduce cascading errors. */
4119 var->constant_value = type->qualifier.flags.q.constant
4120 ? ir_constant::zero(state, var->type) : NULL;
4121 }
4122 }
4123 }
4124
4125 if (rhs && !rhs->type->is_error()) {
4126 bool temp = var->data.read_only;
4127 if (type->qualifier.flags.q.constant)
4128 var->data.read_only = false;
4129
4130 /* Never emit code to initialize a uniform.
4131 */
4132 const glsl_type *initializer_type;
4133 if (!type->qualifier.flags.q.uniform) {
4134 do_assignment(initializer_instructions, state,
4135 NULL,
4136 lhs, rhs,
4137 &result, true,
4138 true,
4139 type->get_location());
4140 initializer_type = result->type;
4141 } else
4142 initializer_type = rhs->type;
4143
4144 var->constant_initializer = rhs->constant_expression_value();
4145 var->data.has_initializer = true;
4146
4147 /* If the declared variable is an unsized array, it must inherrit
4148 * its full type from the initializer. A declaration such as
4149 *
4150 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4151 *
4152 * becomes
4153 *
4154 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4155 *
4156 * The assignment generated in the if-statement (below) will also
4157 * automatically handle this case for non-uniforms.
4158 *
4159 * If the declared variable is not an array, the types must
4160 * already match exactly. As a result, the type assignment
4161 * here can be done unconditionally. For non-uniforms the call
4162 * to do_assignment can change the type of the initializer (via
4163 * the implicit conversion rules). For uniforms the initializer
4164 * must be a constant expression, and the type of that expression
4165 * was validated above.
4166 */
4167 var->type = initializer_type;
4168
4169 var->data.read_only = temp;
4170 }
4171
4172 return result;
4173 }
4174
4175 static void
4176 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4177 YYLTYPE loc, ir_variable *var,
4178 unsigned num_vertices,
4179 unsigned *size,
4180 const char *var_category)
4181 {
4182 if (var->type->is_unsized_array()) {
4183 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4184 *
4185 * All geometry shader input unsized array declarations will be
4186 * sized by an earlier input layout qualifier, when present, as per
4187 * the following table.
4188 *
4189 * Followed by a table mapping each allowed input layout qualifier to
4190 * the corresponding input length.
4191 *
4192 * Similarly for tessellation control shader outputs.
4193 */
4194 if (num_vertices != 0)
4195 var->type = glsl_type::get_array_instance(var->type->fields.array,
4196 num_vertices);
4197 } else {
4198 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4199 * includes the following examples of compile-time errors:
4200 *
4201 * // code sequence within one shader...
4202 * in vec4 Color1[]; // size unknown
4203 * ...Color1.length()...// illegal, length() unknown
4204 * in vec4 Color2[2]; // size is 2
4205 * ...Color1.length()...// illegal, Color1 still has no size
4206 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4207 * layout(lines) in; // legal, input size is 2, matching
4208 * in vec4 Color4[3]; // illegal, contradicts layout
4209 * ...
4210 *
4211 * To detect the case illustrated by Color3, we verify that the size of
4212 * an explicitly-sized array matches the size of any previously declared
4213 * explicitly-sized array. To detect the case illustrated by Color4, we
4214 * verify that the size of an explicitly-sized array is consistent with
4215 * any previously declared input layout.
4216 */
4217 if (num_vertices != 0 && var->type->length != num_vertices) {
4218 _mesa_glsl_error(&loc, state,
4219 "%s size contradicts previously declared layout "
4220 "(size is %u, but layout requires a size of %u)",
4221 var_category, var->type->length, num_vertices);
4222 } else if (*size != 0 && var->type->length != *size) {
4223 _mesa_glsl_error(&loc, state,
4224 "%s sizes are inconsistent (size is %u, but a "
4225 "previous declaration has size %u)",
4226 var_category, var->type->length, *size);
4227 } else {
4228 *size = var->type->length;
4229 }
4230 }
4231 }
4232
4233 static void
4234 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4235 YYLTYPE loc, ir_variable *var)
4236 {
4237 unsigned num_vertices = 0;
4238
4239 if (state->tcs_output_vertices_specified) {
4240 if (!state->out_qualifier->vertices->
4241 process_qualifier_constant(state, "vertices",
4242 &num_vertices, false)) {
4243 return;
4244 }
4245
4246 if (num_vertices > state->Const.MaxPatchVertices) {
4247 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4248 "GL_MAX_PATCH_VERTICES", num_vertices);
4249 return;
4250 }
4251 }
4252
4253 if (!var->type->is_array() && !var->data.patch) {
4254 _mesa_glsl_error(&loc, state,
4255 "tessellation control shader outputs must be arrays");
4256
4257 /* To avoid cascading failures, short circuit the checks below. */
4258 return;
4259 }
4260
4261 if (var->data.patch)
4262 return;
4263
4264 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4265 &state->tcs_output_size,
4266 "tessellation control shader output");
4267 }
4268
4269 /**
4270 * Do additional processing necessary for tessellation control/evaluation shader
4271 * input declarations. This covers both interface block arrays and bare input
4272 * variables.
4273 */
4274 static void
4275 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4276 YYLTYPE loc, ir_variable *var)
4277 {
4278 if (!var->type->is_array() && !var->data.patch) {
4279 _mesa_glsl_error(&loc, state,
4280 "per-vertex tessellation shader inputs must be arrays");
4281 /* Avoid cascading failures. */
4282 return;
4283 }
4284
4285 if (var->data.patch)
4286 return;
4287
4288 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4289 if (var->type->is_unsized_array()) {
4290 var->type = glsl_type::get_array_instance(var->type->fields.array,
4291 state->Const.MaxPatchVertices);
4292 }
4293 }
4294
4295
4296 /**
4297 * Do additional processing necessary for geometry shader input declarations
4298 * (this covers both interface blocks arrays and bare input variables).
4299 */
4300 static void
4301 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4302 YYLTYPE loc, ir_variable *var)
4303 {
4304 unsigned num_vertices = 0;
4305
4306 if (state->gs_input_prim_type_specified) {
4307 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4308 }
4309
4310 /* Geometry shader input variables must be arrays. Caller should have
4311 * reported an error for this.
4312 */
4313 if (!var->type->is_array()) {
4314 assert(state->error);
4315
4316 /* To avoid cascading failures, short circuit the checks below. */
4317 return;
4318 }
4319
4320 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4321 &state->gs_input_size,
4322 "geometry shader input");
4323 }
4324
4325 void
4326 validate_identifier(const char *identifier, YYLTYPE loc,
4327 struct _mesa_glsl_parse_state *state)
4328 {
4329 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4330 *
4331 * "Identifiers starting with "gl_" are reserved for use by
4332 * OpenGL, and may not be declared in a shader as either a
4333 * variable or a function."
4334 */
4335 if (is_gl_identifier(identifier)) {
4336 _mesa_glsl_error(&loc, state,
4337 "identifier `%s' uses reserved `gl_' prefix",
4338 identifier);
4339 } else if (strstr(identifier, "__")) {
4340 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4341 * spec:
4342 *
4343 * "In addition, all identifiers containing two
4344 * consecutive underscores (__) are reserved as
4345 * possible future keywords."
4346 *
4347 * The intention is that names containing __ are reserved for internal
4348 * use by the implementation, and names prefixed with GL_ are reserved
4349 * for use by Khronos. Names simply containing __ are dangerous to use,
4350 * but should be allowed.
4351 *
4352 * A future version of the GLSL specification will clarify this.
4353 */
4354 _mesa_glsl_warning(&loc, state,
4355 "identifier `%s' uses reserved `__' string",
4356 identifier);
4357 }
4358 }
4359
4360 ir_rvalue *
4361 ast_declarator_list::hir(exec_list *instructions,
4362 struct _mesa_glsl_parse_state *state)
4363 {
4364 void *ctx = state;
4365 const struct glsl_type *decl_type;
4366 const char *type_name = NULL;
4367 ir_rvalue *result = NULL;
4368 YYLTYPE loc = this->get_location();
4369
4370 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4371 *
4372 * "To ensure that a particular output variable is invariant, it is
4373 * necessary to use the invariant qualifier. It can either be used to
4374 * qualify a previously declared variable as being invariant
4375 *
4376 * invariant gl_Position; // make existing gl_Position be invariant"
4377 *
4378 * In these cases the parser will set the 'invariant' flag in the declarator
4379 * list, and the type will be NULL.
4380 */
4381 if (this->invariant) {
4382 assert(this->type == NULL);
4383
4384 if (state->current_function != NULL) {
4385 _mesa_glsl_error(& loc, state,
4386 "all uses of `invariant' keyword must be at global "
4387 "scope");
4388 }
4389
4390 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4391 assert(decl->array_specifier == NULL);
4392 assert(decl->initializer == NULL);
4393
4394 ir_variable *const earlier =
4395 state->symbols->get_variable(decl->identifier);
4396 if (earlier == NULL) {
4397 _mesa_glsl_error(& loc, state,
4398 "undeclared variable `%s' cannot be marked "
4399 "invariant", decl->identifier);
4400 } else if (!is_varying_var(earlier, state->stage)) {
4401 _mesa_glsl_error(&loc, state,
4402 "`%s' cannot be marked invariant; interfaces between "
4403 "shader stages only.", decl->identifier);
4404 } else if (earlier->data.used) {
4405 _mesa_glsl_error(& loc, state,
4406 "variable `%s' may not be redeclared "
4407 "`invariant' after being used",
4408 earlier->name);
4409 } else {
4410 earlier->data.invariant = true;
4411 }
4412 }
4413
4414 /* Invariant redeclarations do not have r-values.
4415 */
4416 return NULL;
4417 }
4418
4419 if (this->precise) {
4420 assert(this->type == NULL);
4421
4422 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4423 assert(decl->array_specifier == NULL);
4424 assert(decl->initializer == NULL);
4425
4426 ir_variable *const earlier =
4427 state->symbols->get_variable(decl->identifier);
4428 if (earlier == NULL) {
4429 _mesa_glsl_error(& loc, state,
4430 "undeclared variable `%s' cannot be marked "
4431 "precise", decl->identifier);
4432 } else if (state->current_function != NULL &&
4433 !state->symbols->name_declared_this_scope(decl->identifier)) {
4434 /* Note: we have to check if we're in a function, since
4435 * builtins are treated as having come from another scope.
4436 */
4437 _mesa_glsl_error(& loc, state,
4438 "variable `%s' from an outer scope may not be "
4439 "redeclared `precise' in this scope",
4440 earlier->name);
4441 } else if (earlier->data.used) {
4442 _mesa_glsl_error(& loc, state,
4443 "variable `%s' may not be redeclared "
4444 "`precise' after being used",
4445 earlier->name);
4446 } else {
4447 earlier->data.precise = true;
4448 }
4449 }
4450
4451 /* Precise redeclarations do not have r-values either. */
4452 return NULL;
4453 }
4454
4455 assert(this->type != NULL);
4456 assert(!this->invariant);
4457 assert(!this->precise);
4458
4459 /* The type specifier may contain a structure definition. Process that
4460 * before any of the variable declarations.
4461 */
4462 (void) this->type->specifier->hir(instructions, state);
4463
4464 decl_type = this->type->glsl_type(& type_name, state);
4465
4466 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4467 * "Buffer variables may only be declared inside interface blocks
4468 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4469 * shader storage blocks. It is a compile-time error to declare buffer
4470 * variables at global scope (outside a block)."
4471 */
4472 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4473 _mesa_glsl_error(&loc, state,
4474 "buffer variables cannot be declared outside "
4475 "interface blocks");
4476 }
4477
4478 /* An offset-qualified atomic counter declaration sets the default
4479 * offset for the next declaration within the same atomic counter
4480 * buffer.
4481 */
4482 if (decl_type && decl_type->contains_atomic()) {
4483 if (type->qualifier.flags.q.explicit_binding &&
4484 type->qualifier.flags.q.explicit_offset) {
4485 unsigned qual_binding;
4486 unsigned qual_offset;
4487 if (process_qualifier_constant(state, &loc, "binding",
4488 type->qualifier.binding,
4489 &qual_binding)
4490 && process_qualifier_constant(state, &loc, "offset",
4491 type->qualifier.offset,
4492 &qual_offset)) {
4493 state->atomic_counter_offsets[qual_binding] = qual_offset;
4494 }
4495 }
4496
4497 ast_type_qualifier allowed_atomic_qual_mask;
4498 allowed_atomic_qual_mask.flags.i = 0;
4499 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4500 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4501 allowed_atomic_qual_mask.flags.q.uniform = 1;
4502
4503 type->qualifier.validate_flags(&loc, state,
4504 "invalid layout qualifier for "
4505 "atomic_uint",
4506 allowed_atomic_qual_mask);
4507 }
4508
4509 if (this->declarations.is_empty()) {
4510 /* If there is no structure involved in the program text, there are two
4511 * possible scenarios:
4512 *
4513 * - The program text contained something like 'vec4;'. This is an
4514 * empty declaration. It is valid but weird. Emit a warning.
4515 *
4516 * - The program text contained something like 'S;' and 'S' is not the
4517 * name of a known structure type. This is both invalid and weird.
4518 * Emit an error.
4519 *
4520 * - The program text contained something like 'mediump float;'
4521 * when the programmer probably meant 'precision mediump
4522 * float;' Emit a warning with a description of what they
4523 * probably meant to do.
4524 *
4525 * Note that if decl_type is NULL and there is a structure involved,
4526 * there must have been some sort of error with the structure. In this
4527 * case we assume that an error was already generated on this line of
4528 * code for the structure. There is no need to generate an additional,
4529 * confusing error.
4530 */
4531 assert(this->type->specifier->structure == NULL || decl_type != NULL
4532 || state->error);
4533
4534 if (decl_type == NULL) {
4535 _mesa_glsl_error(&loc, state,
4536 "invalid type `%s' in empty declaration",
4537 type_name);
4538 } else {
4539 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4540 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4541 * spec:
4542 *
4543 * "... any declaration that leaves the size undefined is
4544 * disallowed as this would add complexity and there are no
4545 * use-cases."
4546 */
4547 if (state->es_shader && decl_type->is_unsized_array()) {
4548 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4549 "or implicitly defined");
4550 }
4551
4552 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4553 *
4554 * "The combinations of types and qualifiers that cause
4555 * compile-time or link-time errors are the same whether or not
4556 * the declaration is empty."
4557 */
4558 validate_array_dimensions(decl_type, state, &loc);
4559 }
4560
4561 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4562 /* Empty atomic counter declarations are allowed and useful
4563 * to set the default offset qualifier.
4564 */
4565 return NULL;
4566 } else if (this->type->qualifier.precision != ast_precision_none) {
4567 if (this->type->specifier->structure != NULL) {
4568 _mesa_glsl_error(&loc, state,
4569 "precision qualifiers can't be applied "
4570 "to structures");
4571 } else {
4572 static const char *const precision_names[] = {
4573 "highp",
4574 "highp",
4575 "mediump",
4576 "lowp"
4577 };
4578
4579 _mesa_glsl_warning(&loc, state,
4580 "empty declaration with precision "
4581 "qualifier, to set the default precision, "
4582 "use `precision %s %s;'",
4583 precision_names[this->type->
4584 qualifier.precision],
4585 type_name);
4586 }
4587 } else if (this->type->specifier->structure == NULL) {
4588 _mesa_glsl_warning(&loc, state, "empty declaration");
4589 }
4590 }
4591 }
4592
4593 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4594 const struct glsl_type *var_type;
4595 ir_variable *var;
4596 const char *identifier = decl->identifier;
4597 /* FINISHME: Emit a warning if a variable declaration shadows a
4598 * FINISHME: declaration at a higher scope.
4599 */
4600
4601 if ((decl_type == NULL) || decl_type->is_void()) {
4602 if (type_name != NULL) {
4603 _mesa_glsl_error(& loc, state,
4604 "invalid type `%s' in declaration of `%s'",
4605 type_name, decl->identifier);
4606 } else {
4607 _mesa_glsl_error(& loc, state,
4608 "invalid type in declaration of `%s'",
4609 decl->identifier);
4610 }
4611 continue;
4612 }
4613
4614 if (this->type->qualifier.flags.q.subroutine) {
4615 const glsl_type *t;
4616 const char *name;
4617
4618 t = state->symbols->get_type(this->type->specifier->type_name);
4619 if (!t)
4620 _mesa_glsl_error(& loc, state,
4621 "invalid type in declaration of `%s'",
4622 decl->identifier);
4623 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4624
4625 identifier = name;
4626
4627 }
4628 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4629 state);
4630
4631 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4632
4633 /* The 'varying in' and 'varying out' qualifiers can only be used with
4634 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4635 * yet.
4636 */
4637 if (this->type->qualifier.flags.q.varying) {
4638 if (this->type->qualifier.flags.q.in) {
4639 _mesa_glsl_error(& loc, state,
4640 "`varying in' qualifier in declaration of "
4641 "`%s' only valid for geometry shaders using "
4642 "ARB_geometry_shader4 or EXT_geometry_shader4",
4643 decl->identifier);
4644 } else if (this->type->qualifier.flags.q.out) {
4645 _mesa_glsl_error(& loc, state,
4646 "`varying out' qualifier in declaration of "
4647 "`%s' only valid for geometry shaders using "
4648 "ARB_geometry_shader4 or EXT_geometry_shader4",
4649 decl->identifier);
4650 }
4651 }
4652
4653 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4654 *
4655 * "Global variables can only use the qualifiers const,
4656 * attribute, uniform, or varying. Only one may be
4657 * specified.
4658 *
4659 * Local variables can only use the qualifier const."
4660 *
4661 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4662 * any extension that adds the 'layout' keyword.
4663 */
4664 if (!state->is_version(130, 300)
4665 && !state->has_explicit_attrib_location()
4666 && !state->has_separate_shader_objects()
4667 && !state->ARB_fragment_coord_conventions_enable) {
4668 if (this->type->qualifier.flags.q.out) {
4669 _mesa_glsl_error(& loc, state,
4670 "`out' qualifier in declaration of `%s' "
4671 "only valid for function parameters in %s",
4672 decl->identifier, state->get_version_string());
4673 }
4674 if (this->type->qualifier.flags.q.in) {
4675 _mesa_glsl_error(& loc, state,
4676 "`in' qualifier in declaration of `%s' "
4677 "only valid for function parameters in %s",
4678 decl->identifier, state->get_version_string());
4679 }
4680 /* FINISHME: Test for other invalid qualifiers. */
4681 }
4682
4683 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4684 & loc, false);
4685 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4686 &loc);
4687
4688 if (this->type->qualifier.flags.q.invariant) {
4689 if (!is_varying_var(var, state->stage)) {
4690 _mesa_glsl_error(&loc, state,
4691 "`%s' cannot be marked invariant; interfaces between "
4692 "shader stages only", var->name);
4693 }
4694 }
4695
4696 if (state->current_function != NULL) {
4697 const char *mode = NULL;
4698 const char *extra = "";
4699
4700 /* There is no need to check for 'inout' here because the parser will
4701 * only allow that in function parameter lists.
4702 */
4703 if (this->type->qualifier.flags.q.attribute) {
4704 mode = "attribute";
4705 } else if (this->type->qualifier.flags.q.subroutine) {
4706 mode = "subroutine uniform";
4707 } else if (this->type->qualifier.flags.q.uniform) {
4708 mode = "uniform";
4709 } else if (this->type->qualifier.flags.q.varying) {
4710 mode = "varying";
4711 } else if (this->type->qualifier.flags.q.in) {
4712 mode = "in";
4713 extra = " or in function parameter list";
4714 } else if (this->type->qualifier.flags.q.out) {
4715 mode = "out";
4716 extra = " or in function parameter list";
4717 }
4718
4719 if (mode) {
4720 _mesa_glsl_error(& loc, state,
4721 "%s variable `%s' must be declared at "
4722 "global scope%s",
4723 mode, var->name, extra);
4724 }
4725 } else if (var->data.mode == ir_var_shader_in) {
4726 var->data.read_only = true;
4727
4728 if (state->stage == MESA_SHADER_VERTEX) {
4729 bool error_emitted = false;
4730
4731 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4732 *
4733 * "Vertex shader inputs can only be float, floating-point
4734 * vectors, matrices, signed and unsigned integers and integer
4735 * vectors. Vertex shader inputs can also form arrays of these
4736 * types, but not structures."
4737 *
4738 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4739 *
4740 * "Vertex shader inputs can only be float, floating-point
4741 * vectors, matrices, signed and unsigned integers and integer
4742 * vectors. They cannot be arrays or structures."
4743 *
4744 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4745 *
4746 * "The attribute qualifier can be used only with float,
4747 * floating-point vectors, and matrices. Attribute variables
4748 * cannot be declared as arrays or structures."
4749 *
4750 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4751 *
4752 * "Vertex shader inputs can only be float, floating-point
4753 * vectors, matrices, signed and unsigned integers and integer
4754 * vectors. Vertex shader inputs cannot be arrays or
4755 * structures."
4756 */
4757 const glsl_type *check_type = var->type->without_array();
4758
4759 switch (check_type->base_type) {
4760 case GLSL_TYPE_FLOAT:
4761 break;
4762 case GLSL_TYPE_UINT:
4763 case GLSL_TYPE_INT:
4764 if (state->is_version(120, 300))
4765 break;
4766 case GLSL_TYPE_DOUBLE:
4767 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4768 break;
4769 /* FALLTHROUGH */
4770 default:
4771 _mesa_glsl_error(& loc, state,
4772 "vertex shader input / attribute cannot have "
4773 "type %s`%s'",
4774 var->type->is_array() ? "array of " : "",
4775 check_type->name);
4776 error_emitted = true;
4777 }
4778
4779 if (!error_emitted && var->type->is_array() &&
4780 !state->check_version(150, 0, &loc,
4781 "vertex shader input / attribute "
4782 "cannot have array type")) {
4783 error_emitted = true;
4784 }
4785 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4786 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4787 *
4788 * Geometry shader input variables get the per-vertex values
4789 * written out by vertex shader output variables of the same
4790 * names. Since a geometry shader operates on a set of
4791 * vertices, each input varying variable (or input block, see
4792 * interface blocks below) needs to be declared as an array.
4793 */
4794 if (!var->type->is_array()) {
4795 _mesa_glsl_error(&loc, state,
4796 "geometry shader inputs must be arrays");
4797 }
4798
4799 handle_geometry_shader_input_decl(state, loc, var);
4800 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4801 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4802 *
4803 * It is a compile-time error to declare a fragment shader
4804 * input with, or that contains, any of the following types:
4805 *
4806 * * A boolean type
4807 * * An opaque type
4808 * * An array of arrays
4809 * * An array of structures
4810 * * A structure containing an array
4811 * * A structure containing a structure
4812 */
4813 if (state->es_shader) {
4814 const glsl_type *check_type = var->type->without_array();
4815 if (check_type->is_boolean() ||
4816 check_type->contains_opaque()) {
4817 _mesa_glsl_error(&loc, state,
4818 "fragment shader input cannot have type %s",
4819 check_type->name);
4820 }
4821 if (var->type->is_array() &&
4822 var->type->fields.array->is_array()) {
4823 _mesa_glsl_error(&loc, state,
4824 "%s shader output "
4825 "cannot have an array of arrays",
4826 _mesa_shader_stage_to_string(state->stage));
4827 }
4828 if (var->type->is_array() &&
4829 var->type->fields.array->is_record()) {
4830 _mesa_glsl_error(&loc, state,
4831 "fragment shader input "
4832 "cannot have an array of structs");
4833 }
4834 if (var->type->is_record()) {
4835 for (unsigned i = 0; i < var->type->length; i++) {
4836 if (var->type->fields.structure[i].type->is_array() ||
4837 var->type->fields.structure[i].type->is_record())
4838 _mesa_glsl_error(&loc, state,
4839 "fragement shader input cannot have "
4840 "a struct that contains an "
4841 "array or struct");
4842 }
4843 }
4844 }
4845 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4846 state->stage == MESA_SHADER_TESS_EVAL) {
4847 handle_tess_shader_input_decl(state, loc, var);
4848 }
4849 } else if (var->data.mode == ir_var_shader_out) {
4850 const glsl_type *check_type = var->type->without_array();
4851
4852 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4853 *
4854 * It is a compile-time error to declare a vertex, tessellation
4855 * evaluation, tessellation control, or geometry shader output
4856 * that contains any of the following:
4857 *
4858 * * A Boolean type (bool, bvec2 ...)
4859 * * An opaque type
4860 */
4861 if (check_type->is_boolean() || check_type->contains_opaque())
4862 _mesa_glsl_error(&loc, state,
4863 "%s shader output cannot have type %s",
4864 _mesa_shader_stage_to_string(state->stage),
4865 check_type->name);
4866
4867 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4868 *
4869 * It is a compile-time error to declare a fragment shader output
4870 * that contains any of the following:
4871 *
4872 * * A Boolean type (bool, bvec2 ...)
4873 * * A double-precision scalar or vector (double, dvec2 ...)
4874 * * An opaque type
4875 * * Any matrix type
4876 * * A structure
4877 */
4878 if (state->stage == MESA_SHADER_FRAGMENT) {
4879 if (check_type->is_record() || check_type->is_matrix())
4880 _mesa_glsl_error(&loc, state,
4881 "fragment shader output "
4882 "cannot have struct or matrix type");
4883 switch (check_type->base_type) {
4884 case GLSL_TYPE_UINT:
4885 case GLSL_TYPE_INT:
4886 case GLSL_TYPE_FLOAT:
4887 break;
4888 default:
4889 _mesa_glsl_error(&loc, state,
4890 "fragment shader output cannot have "
4891 "type %s", check_type->name);
4892 }
4893 }
4894
4895 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4896 *
4897 * It is a compile-time error to declare a vertex shader output
4898 * with, or that contains, any of the following types:
4899 *
4900 * * A boolean type
4901 * * An opaque type
4902 * * An array of arrays
4903 * * An array of structures
4904 * * A structure containing an array
4905 * * A structure containing a structure
4906 *
4907 * It is a compile-time error to declare a fragment shader output
4908 * with, or that contains, any of the following types:
4909 *
4910 * * A boolean type
4911 * * An opaque type
4912 * * A matrix
4913 * * A structure
4914 * * An array of array
4915 */
4916 if (state->es_shader) {
4917 if (var->type->is_array() &&
4918 var->type->fields.array->is_array()) {
4919 _mesa_glsl_error(&loc, state,
4920 "%s shader output "
4921 "cannot have an array of arrays",
4922 _mesa_shader_stage_to_string(state->stage));
4923 }
4924 if (state->stage == MESA_SHADER_VERTEX) {
4925 if (var->type->is_array() &&
4926 var->type->fields.array->is_record()) {
4927 _mesa_glsl_error(&loc, state,
4928 "vertex shader output "
4929 "cannot have an array of structs");
4930 }
4931 if (var->type->is_record()) {
4932 for (unsigned i = 0; i < var->type->length; i++) {
4933 if (var->type->fields.structure[i].type->is_array() ||
4934 var->type->fields.structure[i].type->is_record())
4935 _mesa_glsl_error(&loc, state,
4936 "vertex shader output cannot have a "
4937 "struct that contains an "
4938 "array or struct");
4939 }
4940 }
4941 }
4942 }
4943
4944 if (state->stage == MESA_SHADER_TESS_CTRL) {
4945 handle_tess_ctrl_shader_output_decl(state, loc, var);
4946 }
4947 } else if (var->type->contains_subroutine()) {
4948 /* declare subroutine uniforms as hidden */
4949 var->data.how_declared = ir_var_hidden;
4950 }
4951
4952 /* From section 4.3.4 of the GLSL 4.00 spec:
4953 * "Input variables may not be declared using the patch in qualifier
4954 * in tessellation control or geometry shaders."
4955 *
4956 * From section 4.3.6 of the GLSL 4.00 spec:
4957 * "It is an error to use patch out in a vertex, tessellation
4958 * evaluation, or geometry shader."
4959 *
4960 * This doesn't explicitly forbid using them in a fragment shader, but
4961 * that's probably just an oversight.
4962 */
4963 if (state->stage != MESA_SHADER_TESS_EVAL
4964 && this->type->qualifier.flags.q.patch
4965 && this->type->qualifier.flags.q.in) {
4966
4967 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4968 "tessellation evaluation shader");
4969 }
4970
4971 if (state->stage != MESA_SHADER_TESS_CTRL
4972 && this->type->qualifier.flags.q.patch
4973 && this->type->qualifier.flags.q.out) {
4974
4975 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4976 "tessellation control shader");
4977 }
4978
4979 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4980 */
4981 if (this->type->qualifier.precision != ast_precision_none) {
4982 state->check_precision_qualifiers_allowed(&loc);
4983 }
4984
4985
4986 /* If a precision qualifier is allowed on a type, it is allowed on
4987 * an array of that type.
4988 */
4989 if (!(this->type->qualifier.precision == ast_precision_none
4990 || precision_qualifier_allowed(var->type->without_array()))) {
4991
4992 _mesa_glsl_error(&loc, state,
4993 "precision qualifiers apply only to floating point"
4994 ", integer and opaque types");
4995 }
4996
4997 /* From section 4.1.7 of the GLSL 4.40 spec:
4998 *
4999 * "[Opaque types] can only be declared as function
5000 * parameters or uniform-qualified variables."
5001 */
5002 if (var_type->contains_opaque() &&
5003 !this->type->qualifier.flags.q.uniform) {
5004 _mesa_glsl_error(&loc, state,
5005 "opaque variables must be declared uniform");
5006 }
5007
5008 /* Process the initializer and add its instructions to a temporary
5009 * list. This list will be added to the instruction stream (below) after
5010 * the declaration is added. This is done because in some cases (such as
5011 * redeclarations) the declaration may not actually be added to the
5012 * instruction stream.
5013 */
5014 exec_list initializer_instructions;
5015
5016 /* Examine var name here since var may get deleted in the next call */
5017 bool var_is_gl_id = is_gl_identifier(var->name);
5018
5019 ir_variable *earlier =
5020 get_variable_being_redeclared(var, decl->get_location(), state,
5021 false /* allow_all_redeclarations */);
5022 if (earlier != NULL) {
5023 if (var_is_gl_id &&
5024 earlier->data.how_declared == ir_var_declared_in_block) {
5025 _mesa_glsl_error(&loc, state,
5026 "`%s' has already been redeclared using "
5027 "gl_PerVertex", earlier->name);
5028 }
5029 earlier->data.how_declared = ir_var_declared_normally;
5030 }
5031
5032 if (decl->initializer != NULL) {
5033 result = process_initializer((earlier == NULL) ? var : earlier,
5034 decl, this->type,
5035 &initializer_instructions, state);
5036 } else {
5037 validate_array_dimensions(var_type, state, &loc);
5038 }
5039
5040 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5041 *
5042 * "It is an error to write to a const variable outside of
5043 * its declaration, so they must be initialized when
5044 * declared."
5045 */
5046 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5047 _mesa_glsl_error(& loc, state,
5048 "const declaration of `%s' must be initialized",
5049 decl->identifier);
5050 }
5051
5052 if (state->es_shader) {
5053 const glsl_type *const t = (earlier == NULL)
5054 ? var->type : earlier->type;
5055
5056 if (t->is_unsized_array())
5057 /* Section 10.17 of the GLSL ES 1.00 specification states that
5058 * unsized array declarations have been removed from the language.
5059 * Arrays that are sized using an initializer are still explicitly
5060 * sized. However, GLSL ES 1.00 does not allow array
5061 * initializers. That is only allowed in GLSL ES 3.00.
5062 *
5063 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5064 *
5065 * "An array type can also be formed without specifying a size
5066 * if the definition includes an initializer:
5067 *
5068 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5069 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5070 *
5071 * float a[5];
5072 * float b[] = a;"
5073 */
5074 _mesa_glsl_error(& loc, state,
5075 "unsized array declarations are not allowed in "
5076 "GLSL ES");
5077 }
5078
5079 /* If the declaration is not a redeclaration, there are a few additional
5080 * semantic checks that must be applied. In addition, variable that was
5081 * created for the declaration should be added to the IR stream.
5082 */
5083 if (earlier == NULL) {
5084 validate_identifier(decl->identifier, loc, state);
5085
5086 /* Add the variable to the symbol table. Note that the initializer's
5087 * IR was already processed earlier (though it hasn't been emitted
5088 * yet), without the variable in scope.
5089 *
5090 * This differs from most C-like languages, but it follows the GLSL
5091 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5092 * spec:
5093 *
5094 * "Within a declaration, the scope of a name starts immediately
5095 * after the initializer if present or immediately after the name
5096 * being declared if not."
5097 */
5098 if (!state->symbols->add_variable(var)) {
5099 YYLTYPE loc = this->get_location();
5100 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5101 "current scope", decl->identifier);
5102 continue;
5103 }
5104
5105 /* Push the variable declaration to the top. It means that all the
5106 * variable declarations will appear in a funny last-to-first order,
5107 * but otherwise we run into trouble if a function is prototyped, a
5108 * global var is decled, then the function is defined with usage of
5109 * the global var. See glslparsertest's CorrectModule.frag.
5110 */
5111 instructions->push_head(var);
5112 }
5113
5114 instructions->append_list(&initializer_instructions);
5115 }
5116
5117
5118 /* Generally, variable declarations do not have r-values. However,
5119 * one is used for the declaration in
5120 *
5121 * while (bool b = some_condition()) {
5122 * ...
5123 * }
5124 *
5125 * so we return the rvalue from the last seen declaration here.
5126 */
5127 return result;
5128 }
5129
5130
5131 ir_rvalue *
5132 ast_parameter_declarator::hir(exec_list *instructions,
5133 struct _mesa_glsl_parse_state *state)
5134 {
5135 void *ctx = state;
5136 const struct glsl_type *type;
5137 const char *name = NULL;
5138 YYLTYPE loc = this->get_location();
5139
5140 type = this->type->glsl_type(& name, state);
5141
5142 if (type == NULL) {
5143 if (name != NULL) {
5144 _mesa_glsl_error(& loc, state,
5145 "invalid type `%s' in declaration of `%s'",
5146 name, this->identifier);
5147 } else {
5148 _mesa_glsl_error(& loc, state,
5149 "invalid type in declaration of `%s'",
5150 this->identifier);
5151 }
5152
5153 type = glsl_type::error_type;
5154 }
5155
5156 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5157 *
5158 * "Functions that accept no input arguments need not use void in the
5159 * argument list because prototypes (or definitions) are required and
5160 * therefore there is no ambiguity when an empty argument list "( )" is
5161 * declared. The idiom "(void)" as a parameter list is provided for
5162 * convenience."
5163 *
5164 * Placing this check here prevents a void parameter being set up
5165 * for a function, which avoids tripping up checks for main taking
5166 * parameters and lookups of an unnamed symbol.
5167 */
5168 if (type->is_void()) {
5169 if (this->identifier != NULL)
5170 _mesa_glsl_error(& loc, state,
5171 "named parameter cannot have type `void'");
5172
5173 is_void = true;
5174 return NULL;
5175 }
5176
5177 if (formal_parameter && (this->identifier == NULL)) {
5178 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5179 return NULL;
5180 }
5181
5182 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5183 * call already handled the "vec4[..] foo" case.
5184 */
5185 type = process_array_type(&loc, type, this->array_specifier, state);
5186
5187 if (!type->is_error() && type->is_unsized_array()) {
5188 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5189 "a declared size");
5190 type = glsl_type::error_type;
5191 }
5192
5193 is_void = false;
5194 ir_variable *var = new(ctx)
5195 ir_variable(type, this->identifier, ir_var_function_in);
5196
5197 /* Apply any specified qualifiers to the parameter declaration. Note that
5198 * for function parameters the default mode is 'in'.
5199 */
5200 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5201 true);
5202
5203 /* From section 4.1.7 of the GLSL 4.40 spec:
5204 *
5205 * "Opaque variables cannot be treated as l-values; hence cannot
5206 * be used as out or inout function parameters, nor can they be
5207 * assigned into."
5208 */
5209 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5210 && type->contains_opaque()) {
5211 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5212 "contain opaque variables");
5213 type = glsl_type::error_type;
5214 }
5215
5216 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5217 *
5218 * "When calling a function, expressions that do not evaluate to
5219 * l-values cannot be passed to parameters declared as out or inout."
5220 *
5221 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5222 *
5223 * "Other binary or unary expressions, non-dereferenced arrays,
5224 * function names, swizzles with repeated fields, and constants
5225 * cannot be l-values."
5226 *
5227 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5228 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5229 */
5230 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5231 && type->is_array()
5232 && !state->check_version(120, 100, &loc,
5233 "arrays cannot be out or inout parameters")) {
5234 type = glsl_type::error_type;
5235 }
5236
5237 instructions->push_tail(var);
5238
5239 /* Parameter declarations do not have r-values.
5240 */
5241 return NULL;
5242 }
5243
5244
5245 void
5246 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5247 bool formal,
5248 exec_list *ir_parameters,
5249 _mesa_glsl_parse_state *state)
5250 {
5251 ast_parameter_declarator *void_param = NULL;
5252 unsigned count = 0;
5253
5254 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5255 param->formal_parameter = formal;
5256 param->hir(ir_parameters, state);
5257
5258 if (param->is_void)
5259 void_param = param;
5260
5261 count++;
5262 }
5263
5264 if ((void_param != NULL) && (count > 1)) {
5265 YYLTYPE loc = void_param->get_location();
5266
5267 _mesa_glsl_error(& loc, state,
5268 "`void' parameter must be only parameter");
5269 }
5270 }
5271
5272
5273 void
5274 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5275 {
5276 /* IR invariants disallow function declarations or definitions
5277 * nested within other function definitions. But there is no
5278 * requirement about the relative order of function declarations
5279 * and definitions with respect to one another. So simply insert
5280 * the new ir_function block at the end of the toplevel instruction
5281 * list.
5282 */
5283 state->toplevel_ir->push_tail(f);
5284 }
5285
5286
5287 ir_rvalue *
5288 ast_function::hir(exec_list *instructions,
5289 struct _mesa_glsl_parse_state *state)
5290 {
5291 void *ctx = state;
5292 ir_function *f = NULL;
5293 ir_function_signature *sig = NULL;
5294 exec_list hir_parameters;
5295 YYLTYPE loc = this->get_location();
5296
5297 const char *const name = identifier;
5298
5299 /* New functions are always added to the top-level IR instruction stream,
5300 * so this instruction list pointer is ignored. See also emit_function
5301 * (called below).
5302 */
5303 (void) instructions;
5304
5305 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5306 *
5307 * "Function declarations (prototypes) cannot occur inside of functions;
5308 * they must be at global scope, or for the built-in functions, outside
5309 * the global scope."
5310 *
5311 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5312 *
5313 * "User defined functions may only be defined within the global scope."
5314 *
5315 * Note that this language does not appear in GLSL 1.10.
5316 */
5317 if ((state->current_function != NULL) &&
5318 state->is_version(120, 100)) {
5319 YYLTYPE loc = this->get_location();
5320 _mesa_glsl_error(&loc, state,
5321 "declaration of function `%s' not allowed within "
5322 "function body", name);
5323 }
5324
5325 validate_identifier(name, this->get_location(), state);
5326
5327 /* Convert the list of function parameters to HIR now so that they can be
5328 * used below to compare this function's signature with previously seen
5329 * signatures for functions with the same name.
5330 */
5331 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5332 is_definition,
5333 & hir_parameters, state);
5334
5335 const char *return_type_name;
5336 const glsl_type *return_type =
5337 this->return_type->glsl_type(& return_type_name, state);
5338
5339 if (!return_type) {
5340 YYLTYPE loc = this->get_location();
5341 _mesa_glsl_error(&loc, state,
5342 "function `%s' has undeclared return type `%s'",
5343 name, return_type_name);
5344 return_type = glsl_type::error_type;
5345 }
5346
5347 /* ARB_shader_subroutine states:
5348 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5349 * subroutine(...) to a function declaration."
5350 */
5351 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5352 YYLTYPE loc = this->get_location();
5353 _mesa_glsl_error(&loc, state,
5354 "function declaration `%s' cannot have subroutine prepended",
5355 name);
5356 }
5357
5358 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5359 * "No qualifier is allowed on the return type of a function."
5360 */
5361 if (this->return_type->has_qualifiers(state)) {
5362 YYLTYPE loc = this->get_location();
5363 _mesa_glsl_error(& loc, state,
5364 "function `%s' return type has qualifiers", name);
5365 }
5366
5367 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5368 *
5369 * "Arrays are allowed as arguments and as the return type. In both
5370 * cases, the array must be explicitly sized."
5371 */
5372 if (return_type->is_unsized_array()) {
5373 YYLTYPE loc = this->get_location();
5374 _mesa_glsl_error(& loc, state,
5375 "function `%s' return type array must be explicitly "
5376 "sized", name);
5377 }
5378
5379 /* From section 4.1.7 of the GLSL 4.40 spec:
5380 *
5381 * "[Opaque types] can only be declared as function parameters
5382 * or uniform-qualified variables."
5383 */
5384 if (return_type->contains_opaque()) {
5385 YYLTYPE loc = this->get_location();
5386 _mesa_glsl_error(&loc, state,
5387 "function `%s' return type can't contain an opaque type",
5388 name);
5389 }
5390
5391 /* Create an ir_function if one doesn't already exist. */
5392 f = state->symbols->get_function(name);
5393 if (f == NULL) {
5394 f = new(ctx) ir_function(name);
5395 if (!this->return_type->qualifier.flags.q.subroutine) {
5396 if (!state->symbols->add_function(f)) {
5397 /* This function name shadows a non-function use of the same name. */
5398 YYLTYPE loc = this->get_location();
5399 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5400 "non-function", name);
5401 return NULL;
5402 }
5403 }
5404 emit_function(state, f);
5405 }
5406
5407 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5408 *
5409 * "A shader cannot redefine or overload built-in functions."
5410 *
5411 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5412 *
5413 * "User code can overload the built-in functions but cannot redefine
5414 * them."
5415 */
5416 if (state->es_shader && state->language_version >= 300) {
5417 /* Local shader has no exact candidates; check the built-ins. */
5418 _mesa_glsl_initialize_builtin_functions();
5419 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5420 YYLTYPE loc = this->get_location();
5421 _mesa_glsl_error(& loc, state,
5422 "A shader cannot redefine or overload built-in "
5423 "function `%s' in GLSL ES 3.00", name);
5424 return NULL;
5425 }
5426 }
5427
5428 /* Verify that this function's signature either doesn't match a previously
5429 * seen signature for a function with the same name, or, if a match is found,
5430 * that the previously seen signature does not have an associated definition.
5431 */
5432 if (state->es_shader || f->has_user_signature()) {
5433 sig = f->exact_matching_signature(state, &hir_parameters);
5434 if (sig != NULL) {
5435 const char *badvar = sig->qualifiers_match(&hir_parameters);
5436 if (badvar != NULL) {
5437 YYLTYPE loc = this->get_location();
5438
5439 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5440 "qualifiers don't match prototype", name, badvar);
5441 }
5442
5443 if (sig->return_type != return_type) {
5444 YYLTYPE loc = this->get_location();
5445
5446 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5447 "match prototype", name);
5448 }
5449
5450 if (sig->is_defined) {
5451 if (is_definition) {
5452 YYLTYPE loc = this->get_location();
5453 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5454 } else {
5455 /* We just encountered a prototype that exactly matches a
5456 * function that's already been defined. This is redundant,
5457 * and we should ignore it.
5458 */
5459 return NULL;
5460 }
5461 }
5462 }
5463 }
5464
5465 /* Verify the return type of main() */
5466 if (strcmp(name, "main") == 0) {
5467 if (! return_type->is_void()) {
5468 YYLTYPE loc = this->get_location();
5469
5470 _mesa_glsl_error(& loc, state, "main() must return void");
5471 }
5472
5473 if (!hir_parameters.is_empty()) {
5474 YYLTYPE loc = this->get_location();
5475
5476 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5477 }
5478 }
5479
5480 /* Finish storing the information about this new function in its signature.
5481 */
5482 if (sig == NULL) {
5483 sig = new(ctx) ir_function_signature(return_type);
5484 f->add_signature(sig);
5485 }
5486
5487 sig->replace_parameters(&hir_parameters);
5488 signature = sig;
5489
5490 if (this->return_type->qualifier.flags.q.subroutine_def) {
5491 int idx;
5492
5493 if (this->return_type->qualifier.flags.q.explicit_index) {
5494 unsigned qual_index;
5495 if (process_qualifier_constant(state, &loc, "index",
5496 this->return_type->qualifier.index,
5497 &qual_index)) {
5498 if (!state->has_explicit_uniform_location()) {
5499 _mesa_glsl_error(&loc, state, "subroutine index requires "
5500 "GL_ARB_explicit_uniform_location or "
5501 "GLSL 4.30");
5502 } else if (qual_index >= MAX_SUBROUTINES) {
5503 _mesa_glsl_error(&loc, state,
5504 "invalid subroutine index (%d) index must "
5505 "be a number between 0 and "
5506 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5507 MAX_SUBROUTINES - 1);
5508 } else {
5509 f->subroutine_index = qual_index;
5510 }
5511 }
5512 }
5513
5514 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5515 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5516 f->num_subroutine_types);
5517 idx = 0;
5518 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5519 const struct glsl_type *type;
5520 /* the subroutine type must be already declared */
5521 type = state->symbols->get_type(decl->identifier);
5522 if (!type) {
5523 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5524 }
5525 f->subroutine_types[idx++] = type;
5526 }
5527 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5528 ir_function *,
5529 state->num_subroutines + 1);
5530 state->subroutines[state->num_subroutines] = f;
5531 state->num_subroutines++;
5532
5533 }
5534
5535 if (this->return_type->qualifier.flags.q.subroutine) {
5536 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5537 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5538 return NULL;
5539 }
5540 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5541 ir_function *,
5542 state->num_subroutine_types + 1);
5543 state->subroutine_types[state->num_subroutine_types] = f;
5544 state->num_subroutine_types++;
5545
5546 f->is_subroutine = true;
5547 }
5548
5549 /* Function declarations (prototypes) do not have r-values.
5550 */
5551 return NULL;
5552 }
5553
5554
5555 ir_rvalue *
5556 ast_function_definition::hir(exec_list *instructions,
5557 struct _mesa_glsl_parse_state *state)
5558 {
5559 prototype->is_definition = true;
5560 prototype->hir(instructions, state);
5561
5562 ir_function_signature *signature = prototype->signature;
5563 if (signature == NULL)
5564 return NULL;
5565
5566 assert(state->current_function == NULL);
5567 state->current_function = signature;
5568 state->found_return = false;
5569
5570 /* Duplicate parameters declared in the prototype as concrete variables.
5571 * Add these to the symbol table.
5572 */
5573 state->symbols->push_scope();
5574 foreach_in_list(ir_variable, var, &signature->parameters) {
5575 assert(var->as_variable() != NULL);
5576
5577 /* The only way a parameter would "exist" is if two parameters have
5578 * the same name.
5579 */
5580 if (state->symbols->name_declared_this_scope(var->name)) {
5581 YYLTYPE loc = this->get_location();
5582
5583 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5584 } else {
5585 state->symbols->add_variable(var);
5586 }
5587 }
5588
5589 /* Convert the body of the function to HIR. */
5590 this->body->hir(&signature->body, state);
5591 signature->is_defined = true;
5592
5593 state->symbols->pop_scope();
5594
5595 assert(state->current_function == signature);
5596 state->current_function = NULL;
5597
5598 if (!signature->return_type->is_void() && !state->found_return) {
5599 YYLTYPE loc = this->get_location();
5600 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5601 "%s, but no return statement",
5602 signature->function_name(),
5603 signature->return_type->name);
5604 }
5605
5606 /* Function definitions do not have r-values.
5607 */
5608 return NULL;
5609 }
5610
5611
5612 ir_rvalue *
5613 ast_jump_statement::hir(exec_list *instructions,
5614 struct _mesa_glsl_parse_state *state)
5615 {
5616 void *ctx = state;
5617
5618 switch (mode) {
5619 case ast_return: {
5620 ir_return *inst;
5621 assert(state->current_function);
5622
5623 if (opt_return_value) {
5624 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5625
5626 /* The value of the return type can be NULL if the shader says
5627 * 'return foo();' and foo() is a function that returns void.
5628 *
5629 * NOTE: The GLSL spec doesn't say that this is an error. The type
5630 * of the return value is void. If the return type of the function is
5631 * also void, then this should compile without error. Seriously.
5632 */
5633 const glsl_type *const ret_type =
5634 (ret == NULL) ? glsl_type::void_type : ret->type;
5635
5636 /* Implicit conversions are not allowed for return values prior to
5637 * ARB_shading_language_420pack.
5638 */
5639 if (state->current_function->return_type != ret_type) {
5640 YYLTYPE loc = this->get_location();
5641
5642 if (state->has_420pack()) {
5643 if (!apply_implicit_conversion(state->current_function->return_type,
5644 ret, state)) {
5645 _mesa_glsl_error(& loc, state,
5646 "could not implicitly convert return value "
5647 "to %s, in function `%s'",
5648 state->current_function->return_type->name,
5649 state->current_function->function_name());
5650 }
5651 } else {
5652 _mesa_glsl_error(& loc, state,
5653 "`return' with wrong type %s, in function `%s' "
5654 "returning %s",
5655 ret_type->name,
5656 state->current_function->function_name(),
5657 state->current_function->return_type->name);
5658 }
5659 } else if (state->current_function->return_type->base_type ==
5660 GLSL_TYPE_VOID) {
5661 YYLTYPE loc = this->get_location();
5662
5663 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5664 * specs add a clarification:
5665 *
5666 * "A void function can only use return without a return argument, even if
5667 * the return argument has void type. Return statements only accept values:
5668 *
5669 * void func1() { }
5670 * void func2() { return func1(); } // illegal return statement"
5671 */
5672 _mesa_glsl_error(& loc, state,
5673 "void functions can only use `return' without a "
5674 "return argument");
5675 }
5676
5677 inst = new(ctx) ir_return(ret);
5678 } else {
5679 if (state->current_function->return_type->base_type !=
5680 GLSL_TYPE_VOID) {
5681 YYLTYPE loc = this->get_location();
5682
5683 _mesa_glsl_error(& loc, state,
5684 "`return' with no value, in function %s returning "
5685 "non-void",
5686 state->current_function->function_name());
5687 }
5688 inst = new(ctx) ir_return;
5689 }
5690
5691 state->found_return = true;
5692 instructions->push_tail(inst);
5693 break;
5694 }
5695
5696 case ast_discard:
5697 if (state->stage != MESA_SHADER_FRAGMENT) {
5698 YYLTYPE loc = this->get_location();
5699
5700 _mesa_glsl_error(& loc, state,
5701 "`discard' may only appear in a fragment shader");
5702 }
5703 instructions->push_tail(new(ctx) ir_discard);
5704 break;
5705
5706 case ast_break:
5707 case ast_continue:
5708 if (mode == ast_continue &&
5709 state->loop_nesting_ast == NULL) {
5710 YYLTYPE loc = this->get_location();
5711
5712 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5713 } else if (mode == ast_break &&
5714 state->loop_nesting_ast == NULL &&
5715 state->switch_state.switch_nesting_ast == NULL) {
5716 YYLTYPE loc = this->get_location();
5717
5718 _mesa_glsl_error(& loc, state,
5719 "break may only appear in a loop or a switch");
5720 } else {
5721 /* For a loop, inline the for loop expression again, since we don't
5722 * know where near the end of the loop body the normal copy of it is
5723 * going to be placed. Same goes for the condition for a do-while
5724 * loop.
5725 */
5726 if (state->loop_nesting_ast != NULL &&
5727 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5728 if (state->loop_nesting_ast->rest_expression) {
5729 state->loop_nesting_ast->rest_expression->hir(instructions,
5730 state);
5731 }
5732 if (state->loop_nesting_ast->mode ==
5733 ast_iteration_statement::ast_do_while) {
5734 state->loop_nesting_ast->condition_to_hir(instructions, state);
5735 }
5736 }
5737
5738 if (state->switch_state.is_switch_innermost &&
5739 mode == ast_continue) {
5740 /* Set 'continue_inside' to true. */
5741 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5742 ir_dereference_variable *deref_continue_inside_var =
5743 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5744 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5745 true_val));
5746
5747 /* Break out from the switch, continue for the loop will
5748 * be called right after switch. */
5749 ir_loop_jump *const jump =
5750 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5751 instructions->push_tail(jump);
5752
5753 } else if (state->switch_state.is_switch_innermost &&
5754 mode == ast_break) {
5755 /* Force break out of switch by inserting a break. */
5756 ir_loop_jump *const jump =
5757 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5758 instructions->push_tail(jump);
5759 } else {
5760 ir_loop_jump *const jump =
5761 new(ctx) ir_loop_jump((mode == ast_break)
5762 ? ir_loop_jump::jump_break
5763 : ir_loop_jump::jump_continue);
5764 instructions->push_tail(jump);
5765 }
5766 }
5767
5768 break;
5769 }
5770
5771 /* Jump instructions do not have r-values.
5772 */
5773 return NULL;
5774 }
5775
5776
5777 ir_rvalue *
5778 ast_selection_statement::hir(exec_list *instructions,
5779 struct _mesa_glsl_parse_state *state)
5780 {
5781 void *ctx = state;
5782
5783 ir_rvalue *const condition = this->condition->hir(instructions, state);
5784
5785 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5786 *
5787 * "Any expression whose type evaluates to a Boolean can be used as the
5788 * conditional expression bool-expression. Vector types are not accepted
5789 * as the expression to if."
5790 *
5791 * The checks are separated so that higher quality diagnostics can be
5792 * generated for cases where both rules are violated.
5793 */
5794 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5795 YYLTYPE loc = this->condition->get_location();
5796
5797 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5798 "boolean");
5799 }
5800
5801 ir_if *const stmt = new(ctx) ir_if(condition);
5802
5803 if (then_statement != NULL) {
5804 state->symbols->push_scope();
5805 then_statement->hir(& stmt->then_instructions, state);
5806 state->symbols->pop_scope();
5807 }
5808
5809 if (else_statement != NULL) {
5810 state->symbols->push_scope();
5811 else_statement->hir(& stmt->else_instructions, state);
5812 state->symbols->pop_scope();
5813 }
5814
5815 instructions->push_tail(stmt);
5816
5817 /* if-statements do not have r-values.
5818 */
5819 return NULL;
5820 }
5821
5822
5823 ir_rvalue *
5824 ast_switch_statement::hir(exec_list *instructions,
5825 struct _mesa_glsl_parse_state *state)
5826 {
5827 void *ctx = state;
5828
5829 ir_rvalue *const test_expression =
5830 this->test_expression->hir(instructions, state);
5831
5832 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5833 *
5834 * "The type of init-expression in a switch statement must be a
5835 * scalar integer."
5836 */
5837 if (!test_expression->type->is_scalar() ||
5838 !test_expression->type->is_integer()) {
5839 YYLTYPE loc = this->test_expression->get_location();
5840
5841 _mesa_glsl_error(& loc,
5842 state,
5843 "switch-statement expression must be scalar "
5844 "integer");
5845 }
5846
5847 /* Track the switch-statement nesting in a stack-like manner.
5848 */
5849 struct glsl_switch_state saved = state->switch_state;
5850
5851 state->switch_state.is_switch_innermost = true;
5852 state->switch_state.switch_nesting_ast = this;
5853 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5854 hash_table_pointer_compare);
5855 state->switch_state.previous_default = NULL;
5856
5857 /* Initalize is_fallthru state to false.
5858 */
5859 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5860 state->switch_state.is_fallthru_var =
5861 new(ctx) ir_variable(glsl_type::bool_type,
5862 "switch_is_fallthru_tmp",
5863 ir_var_temporary);
5864 instructions->push_tail(state->switch_state.is_fallthru_var);
5865
5866 ir_dereference_variable *deref_is_fallthru_var =
5867 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5868 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5869 is_fallthru_val));
5870
5871 /* Initialize continue_inside state to false.
5872 */
5873 state->switch_state.continue_inside =
5874 new(ctx) ir_variable(glsl_type::bool_type,
5875 "continue_inside_tmp",
5876 ir_var_temporary);
5877 instructions->push_tail(state->switch_state.continue_inside);
5878
5879 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5880 ir_dereference_variable *deref_continue_inside_var =
5881 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5882 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5883 false_val));
5884
5885 state->switch_state.run_default =
5886 new(ctx) ir_variable(glsl_type::bool_type,
5887 "run_default_tmp",
5888 ir_var_temporary);
5889 instructions->push_tail(state->switch_state.run_default);
5890
5891 /* Loop around the switch is used for flow control. */
5892 ir_loop * loop = new(ctx) ir_loop();
5893 instructions->push_tail(loop);
5894
5895 /* Cache test expression.
5896 */
5897 test_to_hir(&loop->body_instructions, state);
5898
5899 /* Emit code for body of switch stmt.
5900 */
5901 body->hir(&loop->body_instructions, state);
5902
5903 /* Insert a break at the end to exit loop. */
5904 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5905 loop->body_instructions.push_tail(jump);
5906
5907 /* If we are inside loop, check if continue got called inside switch. */
5908 if (state->loop_nesting_ast != NULL) {
5909 ir_dereference_variable *deref_continue_inside =
5910 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5911 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5912 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5913
5914 if (state->loop_nesting_ast != NULL) {
5915 if (state->loop_nesting_ast->rest_expression) {
5916 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5917 state);
5918 }
5919 if (state->loop_nesting_ast->mode ==
5920 ast_iteration_statement::ast_do_while) {
5921 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5922 }
5923 }
5924 irif->then_instructions.push_tail(jump);
5925 instructions->push_tail(irif);
5926 }
5927
5928 hash_table_dtor(state->switch_state.labels_ht);
5929
5930 state->switch_state = saved;
5931
5932 /* Switch statements do not have r-values. */
5933 return NULL;
5934 }
5935
5936
5937 void
5938 ast_switch_statement::test_to_hir(exec_list *instructions,
5939 struct _mesa_glsl_parse_state *state)
5940 {
5941 void *ctx = state;
5942
5943 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5944 * on the switch test case. The first one would be already raised when
5945 * getting the test_expression at ast_switch_statement::hir
5946 */
5947 test_expression->set_is_lhs(true);
5948 /* Cache value of test expression. */
5949 ir_rvalue *const test_val =
5950 test_expression->hir(instructions,
5951 state);
5952
5953 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5954 "switch_test_tmp",
5955 ir_var_temporary);
5956 ir_dereference_variable *deref_test_var =
5957 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5958
5959 instructions->push_tail(state->switch_state.test_var);
5960 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5961 }
5962
5963
5964 ir_rvalue *
5965 ast_switch_body::hir(exec_list *instructions,
5966 struct _mesa_glsl_parse_state *state)
5967 {
5968 if (stmts != NULL)
5969 stmts->hir(instructions, state);
5970
5971 /* Switch bodies do not have r-values. */
5972 return NULL;
5973 }
5974
5975 ir_rvalue *
5976 ast_case_statement_list::hir(exec_list *instructions,
5977 struct _mesa_glsl_parse_state *state)
5978 {
5979 exec_list default_case, after_default, tmp;
5980
5981 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5982 case_stmt->hir(&tmp, state);
5983
5984 /* Default case. */
5985 if (state->switch_state.previous_default && default_case.is_empty()) {
5986 default_case.append_list(&tmp);
5987 continue;
5988 }
5989
5990 /* If default case found, append 'after_default' list. */
5991 if (!default_case.is_empty())
5992 after_default.append_list(&tmp);
5993 else
5994 instructions->append_list(&tmp);
5995 }
5996
5997 /* Handle the default case. This is done here because default might not be
5998 * the last case. We need to add checks against following cases first to see
5999 * if default should be chosen or not.
6000 */
6001 if (!default_case.is_empty()) {
6002
6003 ir_rvalue *const true_val = new (state) ir_constant(true);
6004 ir_dereference_variable *deref_run_default_var =
6005 new(state) ir_dereference_variable(state->switch_state.run_default);
6006
6007 /* Choose to run default case initially, following conditional
6008 * assignments might change this.
6009 */
6010 ir_assignment *const init_var =
6011 new(state) ir_assignment(deref_run_default_var, true_val);
6012 instructions->push_tail(init_var);
6013
6014 /* Default case was the last one, no checks required. */
6015 if (after_default.is_empty()) {
6016 instructions->append_list(&default_case);
6017 return NULL;
6018 }
6019
6020 foreach_in_list(ir_instruction, ir, &after_default) {
6021 ir_assignment *assign = ir->as_assignment();
6022
6023 if (!assign)
6024 continue;
6025
6026 /* Clone the check between case label and init expression. */
6027 ir_expression *exp = (ir_expression*) assign->condition;
6028 ir_expression *clone = exp->clone(state, NULL);
6029
6030 ir_dereference_variable *deref_var =
6031 new(state) ir_dereference_variable(state->switch_state.run_default);
6032 ir_rvalue *const false_val = new (state) ir_constant(false);
6033
6034 ir_assignment *const set_false =
6035 new(state) ir_assignment(deref_var, false_val, clone);
6036
6037 instructions->push_tail(set_false);
6038 }
6039
6040 /* Append default case and all cases after it. */
6041 instructions->append_list(&default_case);
6042 instructions->append_list(&after_default);
6043 }
6044
6045 /* Case statements do not have r-values. */
6046 return NULL;
6047 }
6048
6049 ir_rvalue *
6050 ast_case_statement::hir(exec_list *instructions,
6051 struct _mesa_glsl_parse_state *state)
6052 {
6053 labels->hir(instructions, state);
6054
6055 /* Guard case statements depending on fallthru state. */
6056 ir_dereference_variable *const deref_fallthru_guard =
6057 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6058 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6059
6060 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6061 stmt->hir(& test_fallthru->then_instructions, state);
6062
6063 instructions->push_tail(test_fallthru);
6064
6065 /* Case statements do not have r-values. */
6066 return NULL;
6067 }
6068
6069
6070 ir_rvalue *
6071 ast_case_label_list::hir(exec_list *instructions,
6072 struct _mesa_glsl_parse_state *state)
6073 {
6074 foreach_list_typed (ast_case_label, label, link, & this->labels)
6075 label->hir(instructions, state);
6076
6077 /* Case labels do not have r-values. */
6078 return NULL;
6079 }
6080
6081 ir_rvalue *
6082 ast_case_label::hir(exec_list *instructions,
6083 struct _mesa_glsl_parse_state *state)
6084 {
6085 void *ctx = state;
6086
6087 ir_dereference_variable *deref_fallthru_var =
6088 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6089
6090 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6091
6092 /* If not default case, ... */
6093 if (this->test_value != NULL) {
6094 /* Conditionally set fallthru state based on
6095 * comparison of cached test expression value to case label.
6096 */
6097 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6098 ir_constant *label_const = label_rval->constant_expression_value();
6099
6100 if (!label_const) {
6101 YYLTYPE loc = this->test_value->get_location();
6102
6103 _mesa_glsl_error(& loc, state,
6104 "switch statement case label must be a "
6105 "constant expression");
6106
6107 /* Stuff a dummy value in to allow processing to continue. */
6108 label_const = new(ctx) ir_constant(0);
6109 } else {
6110 ast_expression *previous_label = (ast_expression *)
6111 hash_table_find(state->switch_state.labels_ht,
6112 (void *)(uintptr_t)label_const->value.u[0]);
6113
6114 if (previous_label) {
6115 YYLTYPE loc = this->test_value->get_location();
6116 _mesa_glsl_error(& loc, state, "duplicate case value");
6117
6118 loc = previous_label->get_location();
6119 _mesa_glsl_error(& loc, state, "this is the previous case label");
6120 } else {
6121 hash_table_insert(state->switch_state.labels_ht,
6122 this->test_value,
6123 (void *)(uintptr_t)label_const->value.u[0]);
6124 }
6125 }
6126
6127 ir_dereference_variable *deref_test_var =
6128 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6129
6130 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6131 label_const,
6132 deref_test_var);
6133
6134 /*
6135 * From GLSL 4.40 specification section 6.2 ("Selection"):
6136 *
6137 * "The type of the init-expression value in a switch statement must
6138 * be a scalar int or uint. The type of the constant-expression value
6139 * in a case label also must be a scalar int or uint. When any pair
6140 * of these values is tested for "equal value" and the types do not
6141 * match, an implicit conversion will be done to convert the int to a
6142 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6143 * is done."
6144 */
6145 if (label_const->type != state->switch_state.test_var->type) {
6146 YYLTYPE loc = this->test_value->get_location();
6147
6148 const glsl_type *type_a = label_const->type;
6149 const glsl_type *type_b = state->switch_state.test_var->type;
6150
6151 /* Check if int->uint implicit conversion is supported. */
6152 bool integer_conversion_supported =
6153 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6154 state);
6155
6156 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6157 !integer_conversion_supported) {
6158 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6159 "init-expression and case label (%s != %s)",
6160 type_a->name, type_b->name);
6161 } else {
6162 /* Conversion of the case label. */
6163 if (type_a->base_type == GLSL_TYPE_INT) {
6164 if (!apply_implicit_conversion(glsl_type::uint_type,
6165 test_cond->operands[0], state))
6166 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6167 } else {
6168 /* Conversion of the init-expression value. */
6169 if (!apply_implicit_conversion(glsl_type::uint_type,
6170 test_cond->operands[1], state))
6171 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6172 }
6173 }
6174 }
6175
6176 ir_assignment *set_fallthru_on_test =
6177 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6178
6179 instructions->push_tail(set_fallthru_on_test);
6180 } else { /* default case */
6181 if (state->switch_state.previous_default) {
6182 YYLTYPE loc = this->get_location();
6183 _mesa_glsl_error(& loc, state,
6184 "multiple default labels in one switch");
6185
6186 loc = state->switch_state.previous_default->get_location();
6187 _mesa_glsl_error(& loc, state, "this is the first default label");
6188 }
6189 state->switch_state.previous_default = this;
6190
6191 /* Set fallthru condition on 'run_default' bool. */
6192 ir_dereference_variable *deref_run_default =
6193 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6194 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6195 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6196 cond_true,
6197 deref_run_default);
6198
6199 /* Set falltrhu state. */
6200 ir_assignment *set_fallthru =
6201 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6202
6203 instructions->push_tail(set_fallthru);
6204 }
6205
6206 /* Case statements do not have r-values. */
6207 return NULL;
6208 }
6209
6210 void
6211 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6212 struct _mesa_glsl_parse_state *state)
6213 {
6214 void *ctx = state;
6215
6216 if (condition != NULL) {
6217 ir_rvalue *const cond =
6218 condition->hir(instructions, state);
6219
6220 if ((cond == NULL)
6221 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6222 YYLTYPE loc = condition->get_location();
6223
6224 _mesa_glsl_error(& loc, state,
6225 "loop condition must be scalar boolean");
6226 } else {
6227 /* As the first code in the loop body, generate a block that looks
6228 * like 'if (!condition) break;' as the loop termination condition.
6229 */
6230 ir_rvalue *const not_cond =
6231 new(ctx) ir_expression(ir_unop_logic_not, cond);
6232
6233 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6234
6235 ir_jump *const break_stmt =
6236 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6237
6238 if_stmt->then_instructions.push_tail(break_stmt);
6239 instructions->push_tail(if_stmt);
6240 }
6241 }
6242 }
6243
6244
6245 ir_rvalue *
6246 ast_iteration_statement::hir(exec_list *instructions,
6247 struct _mesa_glsl_parse_state *state)
6248 {
6249 void *ctx = state;
6250
6251 /* For-loops and while-loops start a new scope, but do-while loops do not.
6252 */
6253 if (mode != ast_do_while)
6254 state->symbols->push_scope();
6255
6256 if (init_statement != NULL)
6257 init_statement->hir(instructions, state);
6258
6259 ir_loop *const stmt = new(ctx) ir_loop();
6260 instructions->push_tail(stmt);
6261
6262 /* Track the current loop nesting. */
6263 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6264
6265 state->loop_nesting_ast = this;
6266
6267 /* Likewise, indicate that following code is closest to a loop,
6268 * NOT closest to a switch.
6269 */
6270 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6271 state->switch_state.is_switch_innermost = false;
6272
6273 if (mode != ast_do_while)
6274 condition_to_hir(&stmt->body_instructions, state);
6275
6276 if (body != NULL)
6277 body->hir(& stmt->body_instructions, state);
6278
6279 if (rest_expression != NULL)
6280 rest_expression->hir(& stmt->body_instructions, state);
6281
6282 if (mode == ast_do_while)
6283 condition_to_hir(&stmt->body_instructions, state);
6284
6285 if (mode != ast_do_while)
6286 state->symbols->pop_scope();
6287
6288 /* Restore previous nesting before returning. */
6289 state->loop_nesting_ast = nesting_ast;
6290 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6291
6292 /* Loops do not have r-values.
6293 */
6294 return NULL;
6295 }
6296
6297
6298 /**
6299 * Determine if the given type is valid for establishing a default precision
6300 * qualifier.
6301 *
6302 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6303 *
6304 * "The precision statement
6305 *
6306 * precision precision-qualifier type;
6307 *
6308 * can be used to establish a default precision qualifier. The type field
6309 * can be either int or float or any of the sampler types, and the
6310 * precision-qualifier can be lowp, mediump, or highp."
6311 *
6312 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6313 * qualifiers on sampler types, but this seems like an oversight (since the
6314 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6315 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6316 * version.
6317 */
6318 static bool
6319 is_valid_default_precision_type(const struct glsl_type *const type)
6320 {
6321 if (type == NULL)
6322 return false;
6323
6324 switch (type->base_type) {
6325 case GLSL_TYPE_INT:
6326 case GLSL_TYPE_FLOAT:
6327 /* "int" and "float" are valid, but vectors and matrices are not. */
6328 return type->vector_elements == 1 && type->matrix_columns == 1;
6329 case GLSL_TYPE_SAMPLER:
6330 case GLSL_TYPE_IMAGE:
6331 case GLSL_TYPE_ATOMIC_UINT:
6332 return true;
6333 default:
6334 return false;
6335 }
6336 }
6337
6338
6339 ir_rvalue *
6340 ast_type_specifier::hir(exec_list *instructions,
6341 struct _mesa_glsl_parse_state *state)
6342 {
6343 if (this->default_precision == ast_precision_none && this->structure == NULL)
6344 return NULL;
6345
6346 YYLTYPE loc = this->get_location();
6347
6348 /* If this is a precision statement, check that the type to which it is
6349 * applied is either float or int.
6350 *
6351 * From section 4.5.3 of the GLSL 1.30 spec:
6352 * "The precision statement
6353 * precision precision-qualifier type;
6354 * can be used to establish a default precision qualifier. The type
6355 * field can be either int or float [...]. Any other types or
6356 * qualifiers will result in an error.
6357 */
6358 if (this->default_precision != ast_precision_none) {
6359 if (!state->check_precision_qualifiers_allowed(&loc))
6360 return NULL;
6361
6362 if (this->structure != NULL) {
6363 _mesa_glsl_error(&loc, state,
6364 "precision qualifiers do not apply to structures");
6365 return NULL;
6366 }
6367
6368 if (this->array_specifier != NULL) {
6369 _mesa_glsl_error(&loc, state,
6370 "default precision statements do not apply to "
6371 "arrays");
6372 return NULL;
6373 }
6374
6375 const struct glsl_type *const type =
6376 state->symbols->get_type(this->type_name);
6377 if (!is_valid_default_precision_type(type)) {
6378 _mesa_glsl_error(&loc, state,
6379 "default precision statements apply only to "
6380 "float, int, and opaque types");
6381 return NULL;
6382 }
6383
6384 if (state->es_shader) {
6385 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6386 * spec says:
6387 *
6388 * "Non-precision qualified declarations will use the precision
6389 * qualifier specified in the most recent precision statement
6390 * that is still in scope. The precision statement has the same
6391 * scoping rules as variable declarations. If it is declared
6392 * inside a compound statement, its effect stops at the end of
6393 * the innermost statement it was declared in. Precision
6394 * statements in nested scopes override precision statements in
6395 * outer scopes. Multiple precision statements for the same basic
6396 * type can appear inside the same scope, with later statements
6397 * overriding earlier statements within that scope."
6398 *
6399 * Default precision specifications follow the same scope rules as
6400 * variables. So, we can track the state of the default precision
6401 * qualifiers in the symbol table, and the rules will just work. This
6402 * is a slight abuse of the symbol table, but it has the semantics
6403 * that we want.
6404 */
6405 state->symbols->add_default_precision_qualifier(this->type_name,
6406 this->default_precision);
6407 }
6408
6409 /* FINISHME: Translate precision statements into IR. */
6410 return NULL;
6411 }
6412
6413 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6414 * process_record_constructor() can do type-checking on C-style initializer
6415 * expressions of structs, but ast_struct_specifier should only be translated
6416 * to HIR if it is declaring the type of a structure.
6417 *
6418 * The ->is_declaration field is false for initializers of variables
6419 * declared separately from the struct's type definition.
6420 *
6421 * struct S { ... }; (is_declaration = true)
6422 * struct T { ... } t = { ... }; (is_declaration = true)
6423 * S s = { ... }; (is_declaration = false)
6424 */
6425 if (this->structure != NULL && this->structure->is_declaration)
6426 return this->structure->hir(instructions, state);
6427
6428 return NULL;
6429 }
6430
6431
6432 /**
6433 * Process a structure or interface block tree into an array of structure fields
6434 *
6435 * After parsing, where there are some syntax differnces, structures and
6436 * interface blocks are almost identical. They are similar enough that the
6437 * AST for each can be processed the same way into a set of
6438 * \c glsl_struct_field to describe the members.
6439 *
6440 * If we're processing an interface block, var_mode should be the type of the
6441 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6442 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6443 * ir_var_auto.
6444 *
6445 * \return
6446 * The number of fields processed. A pointer to the array structure fields is
6447 * stored in \c *fields_ret.
6448 */
6449 static unsigned
6450 ast_process_struct_or_iface_block_members(exec_list *instructions,
6451 struct _mesa_glsl_parse_state *state,
6452 exec_list *declarations,
6453 glsl_struct_field **fields_ret,
6454 bool is_interface,
6455 enum glsl_matrix_layout matrix_layout,
6456 bool allow_reserved_names,
6457 ir_variable_mode var_mode,
6458 ast_type_qualifier *layout,
6459 unsigned block_stream,
6460 unsigned block_xfb_buffer,
6461 unsigned block_xfb_offset,
6462 unsigned expl_location,
6463 unsigned expl_align)
6464 {
6465 unsigned decl_count = 0;
6466 unsigned next_offset = 0;
6467
6468 /* Make an initial pass over the list of fields to determine how
6469 * many there are. Each element in this list is an ast_declarator_list.
6470 * This means that we actually need to count the number of elements in the
6471 * 'declarations' list in each of the elements.
6472 */
6473 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6474 decl_count += decl_list->declarations.length();
6475 }
6476
6477 /* Allocate storage for the fields and process the field
6478 * declarations. As the declarations are processed, try to also convert
6479 * the types to HIR. This ensures that structure definitions embedded in
6480 * other structure definitions or in interface blocks are processed.
6481 */
6482 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6483 decl_count);
6484
6485 bool first_member = true;
6486 bool first_member_has_explicit_location = false;
6487
6488 unsigned i = 0;
6489 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6490 const char *type_name;
6491 YYLTYPE loc = decl_list->get_location();
6492
6493 decl_list->type->specifier->hir(instructions, state);
6494
6495 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6496 *
6497 * "Anonymous structures are not supported; so embedded structures
6498 * must have a declarator. A name given to an embedded struct is
6499 * scoped at the same level as the struct it is embedded in."
6500 *
6501 * The same section of the GLSL 1.20 spec says:
6502 *
6503 * "Anonymous structures are not supported. Embedded structures are
6504 * not supported."
6505 *
6506 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6507 * embedded structures in 1.10 only.
6508 */
6509 if (state->language_version != 110 &&
6510 decl_list->type->specifier->structure != NULL)
6511 _mesa_glsl_error(&loc, state,
6512 "embedded structure declarations are not allowed");
6513
6514 const glsl_type *decl_type =
6515 decl_list->type->glsl_type(& type_name, state);
6516
6517 const struct ast_type_qualifier *const qual =
6518 &decl_list->type->qualifier;
6519
6520 /* From section 4.3.9 of the GLSL 4.40 spec:
6521 *
6522 * "[In interface blocks] opaque types are not allowed."
6523 *
6524 * It should be impossible for decl_type to be NULL here. Cases that
6525 * might naturally lead to decl_type being NULL, especially for the
6526 * is_interface case, will have resulted in compilation having
6527 * already halted due to a syntax error.
6528 */
6529 assert(decl_type);
6530
6531 if (is_interface) {
6532 if (decl_type->contains_opaque()) {
6533 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6534 "interface block contains opaque variable");
6535 }
6536 } else {
6537 if (decl_type->contains_atomic()) {
6538 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6539 *
6540 * "Members of structures cannot be declared as atomic counter
6541 * types."
6542 */
6543 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6544 }
6545
6546 if (decl_type->contains_image()) {
6547 /* FINISHME: Same problem as with atomic counters.
6548 * FINISHME: Request clarification from Khronos and add
6549 * FINISHME: spec quotation here.
6550 */
6551 _mesa_glsl_error(&loc, state, "image in structure");
6552 }
6553 }
6554
6555 if (qual->flags.q.explicit_binding) {
6556 _mesa_glsl_error(&loc, state,
6557 "binding layout qualifier cannot be applied "
6558 "to struct or interface block members");
6559 }
6560
6561 if (is_interface) {
6562 if (!first_member) {
6563 if (!layout->flags.q.explicit_location &&
6564 ((first_member_has_explicit_location &&
6565 !qual->flags.q.explicit_location) ||
6566 (!first_member_has_explicit_location &&
6567 qual->flags.q.explicit_location))) {
6568 _mesa_glsl_error(&loc, state,
6569 "when block-level location layout qualifier "
6570 "is not supplied either all members must "
6571 "have a location layout qualifier or all "
6572 "members must not have a location layout "
6573 "qualifier");
6574 }
6575 } else {
6576 first_member = false;
6577 first_member_has_explicit_location =
6578 qual->flags.q.explicit_location;
6579 }
6580 }
6581
6582 if (qual->flags.q.std140 ||
6583 qual->flags.q.std430 ||
6584 qual->flags.q.packed ||
6585 qual->flags.q.shared) {
6586 _mesa_glsl_error(&loc, state,
6587 "uniform/shader storage block layout qualifiers "
6588 "std140, std430, packed, and shared can only be "
6589 "applied to uniform/shader storage blocks, not "
6590 "members");
6591 }
6592
6593 if (qual->flags.q.constant) {
6594 _mesa_glsl_error(&loc, state,
6595 "const storage qualifier cannot be applied "
6596 "to struct or interface block members");
6597 }
6598
6599 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6600 *
6601 * "A block member may be declared with a stream identifier, but
6602 * the specified stream must match the stream associated with the
6603 * containing block."
6604 */
6605 if (qual->flags.q.explicit_stream) {
6606 unsigned qual_stream;
6607 if (process_qualifier_constant(state, &loc, "stream",
6608 qual->stream, &qual_stream) &&
6609 qual_stream != block_stream) {
6610 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6611 "interface block member does not match "
6612 "the interface block (%u vs %u)", qual_stream,
6613 block_stream);
6614 }
6615 }
6616
6617 int xfb_buffer;
6618 unsigned explicit_xfb_buffer = 0;
6619 if (qual->flags.q.explicit_xfb_buffer) {
6620 unsigned qual_xfb_buffer;
6621 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6622 qual->xfb_buffer, &qual_xfb_buffer)) {
6623 explicit_xfb_buffer = 1;
6624 if (qual_xfb_buffer != block_xfb_buffer)
6625 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6626 "interface block member does not match "
6627 "the interface block (%u vs %u)",
6628 qual_xfb_buffer, block_xfb_buffer);
6629 }
6630 xfb_buffer = (int) qual_xfb_buffer;
6631 } else {
6632 if (layout)
6633 explicit_xfb_buffer = layout->flags.q.xfb_buffer;
6634 xfb_buffer = (int) block_xfb_buffer;
6635 }
6636
6637 int xfb_stride = -1;
6638 if (qual->flags.q.explicit_xfb_stride) {
6639 unsigned qual_xfb_stride;
6640 if (process_qualifier_constant(state, &loc, "xfb_stride",
6641 qual->xfb_stride, &qual_xfb_stride)) {
6642 xfb_stride = (int) qual_xfb_stride;
6643 }
6644 }
6645
6646 if (qual->flags.q.uniform && qual->has_interpolation()) {
6647 _mesa_glsl_error(&loc, state,
6648 "interpolation qualifiers cannot be used "
6649 "with uniform interface blocks");
6650 }
6651
6652 if ((qual->flags.q.uniform || !is_interface) &&
6653 qual->has_auxiliary_storage()) {
6654 _mesa_glsl_error(&loc, state,
6655 "auxiliary storage qualifiers cannot be used "
6656 "in uniform blocks or structures.");
6657 }
6658
6659 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6660 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6661 _mesa_glsl_error(&loc, state,
6662 "row_major and column_major can only be "
6663 "applied to interface blocks");
6664 } else
6665 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6666 }
6667
6668 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6669 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6670 "readonly and writeonly.");
6671 }
6672
6673 foreach_list_typed (ast_declaration, decl, link,
6674 &decl_list->declarations) {
6675 YYLTYPE loc = decl->get_location();
6676
6677 if (!allow_reserved_names)
6678 validate_identifier(decl->identifier, loc, state);
6679
6680 const struct glsl_type *field_type =
6681 process_array_type(&loc, decl_type, decl->array_specifier, state);
6682 validate_array_dimensions(field_type, state, &loc);
6683 fields[i].type = field_type;
6684 fields[i].name = decl->identifier;
6685 fields[i].interpolation =
6686 interpret_interpolation_qualifier(qual, field_type,
6687 var_mode, state, &loc);
6688 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6689 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6690 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6691 fields[i].precision = qual->precision;
6692 fields[i].offset = -1;
6693 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6694 fields[i].xfb_buffer = xfb_buffer;
6695 fields[i].xfb_stride = xfb_stride;
6696
6697 if (qual->flags.q.explicit_location) {
6698 unsigned qual_location;
6699 if (process_qualifier_constant(state, &loc, "location",
6700 qual->location, &qual_location)) {
6701 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6702 expl_location = fields[i].location +
6703 fields[i].type->count_attribute_slots(false);
6704 }
6705 } else {
6706 if (layout && layout->flags.q.explicit_location) {
6707 fields[i].location = expl_location;
6708 expl_location += fields[i].type->count_attribute_slots(false);
6709 } else {
6710 fields[i].location = -1;
6711 }
6712 }
6713
6714 /* Offset can only be used with std430 and std140 layouts an initial
6715 * value of 0 is used for error detection.
6716 */
6717 unsigned align = 0;
6718 unsigned size = 0;
6719 if (layout) {
6720 bool row_major;
6721 if (qual->flags.q.row_major ||
6722 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6723 row_major = true;
6724 } else {
6725 row_major = false;
6726 }
6727
6728 if(layout->flags.q.std140) {
6729 align = field_type->std140_base_alignment(row_major);
6730 size = field_type->std140_size(row_major);
6731 } else if (layout->flags.q.std430) {
6732 align = field_type->std430_base_alignment(row_major);
6733 size = field_type->std430_size(row_major);
6734 }
6735 }
6736
6737 if (qual->flags.q.explicit_offset) {
6738 unsigned qual_offset;
6739 if (process_qualifier_constant(state, &loc, "offset",
6740 qual->offset, &qual_offset)) {
6741 if (align != 0 && size != 0) {
6742 if (next_offset > qual_offset)
6743 _mesa_glsl_error(&loc, state, "layout qualifier "
6744 "offset overlaps previous member");
6745
6746 if (qual_offset % align) {
6747 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6748 "must be a multiple of the base "
6749 "alignment of %s", field_type->name);
6750 }
6751 fields[i].offset = qual_offset;
6752 next_offset = glsl_align(qual_offset + size, align);
6753 } else {
6754 _mesa_glsl_error(&loc, state, "offset can only be used "
6755 "with std430 and std140 layouts");
6756 }
6757 }
6758 }
6759
6760 if (qual->flags.q.explicit_align || expl_align != 0) {
6761 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6762 next_offset;
6763 if (align == 0 || size == 0) {
6764 _mesa_glsl_error(&loc, state, "align can only be used with "
6765 "std430 and std140 layouts");
6766 } else if (qual->flags.q.explicit_align) {
6767 unsigned member_align;
6768 if (process_qualifier_constant(state, &loc, "align",
6769 qual->align, &member_align)) {
6770 if (member_align == 0 ||
6771 member_align & (member_align - 1)) {
6772 _mesa_glsl_error(&loc, state, "align layout qualifier "
6773 "in not a power of 2");
6774 } else {
6775 fields[i].offset = glsl_align(offset, member_align);
6776 next_offset = glsl_align(fields[i].offset + size, align);
6777 }
6778 }
6779 } else {
6780 fields[i].offset = glsl_align(offset, expl_align);
6781 next_offset = glsl_align(fields[i].offset + size, align);
6782 }
6783 }
6784
6785 if (!qual->flags.q.explicit_offset) {
6786 if (align != 0 && size != 0)
6787 next_offset = glsl_align(next_offset + size, align);
6788 }
6789
6790 /* From the ARB_enhanced_layouts spec:
6791 *
6792 * "The given offset applies to the first component of the first
6793 * member of the qualified entity. Then, within the qualified
6794 * entity, subsequent components are each assigned, in order, to
6795 * the next available offset aligned to a multiple of that
6796 * component's size. Aggregate types are flattened down to the
6797 * component level to get this sequence of components."
6798 */
6799 if (qual->flags.q.explicit_xfb_offset) {
6800 unsigned xfb_offset;
6801 if (process_qualifier_constant(state, &loc, "xfb_offset",
6802 qual->offset, &xfb_offset)) {
6803 fields[i].offset = xfb_offset;
6804 block_xfb_offset = fields[i].offset +
6805 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6806 }
6807 } else {
6808 if (layout && layout->flags.q.explicit_xfb_offset) {
6809 unsigned align = field_type->is_double() ? 8 : 4;
6810 fields[i].offset = glsl_align(block_xfb_offset, align);
6811 block_xfb_offset +=
6812 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6813 }
6814 }
6815
6816 /* Propogate row- / column-major information down the fields of the
6817 * structure or interface block. Structures need this data because
6818 * the structure may contain a structure that contains ... a matrix
6819 * that need the proper layout.
6820 */
6821 if (is_interface && layout &&
6822 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6823 (field_type->without_array()->is_matrix()
6824 || field_type->without_array()->is_record())) {
6825 /* If no layout is specified for the field, inherit the layout
6826 * from the block.
6827 */
6828 fields[i].matrix_layout = matrix_layout;
6829
6830 if (qual->flags.q.row_major)
6831 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6832 else if (qual->flags.q.column_major)
6833 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6834
6835 /* If we're processing an uniform or buffer block, the matrix
6836 * layout must be decided by this point.
6837 */
6838 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6839 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6840 }
6841
6842 /* Image qualifiers are allowed on buffer variables, which can only
6843 * be defined inside shader storage buffer objects
6844 */
6845 if (layout && var_mode == ir_var_shader_storage) {
6846 /* For readonly and writeonly qualifiers the field definition,
6847 * if set, overwrites the layout qualifier.
6848 */
6849 if (qual->flags.q.read_only) {
6850 fields[i].image_read_only = true;
6851 fields[i].image_write_only = false;
6852 } else if (qual->flags.q.write_only) {
6853 fields[i].image_read_only = false;
6854 fields[i].image_write_only = true;
6855 } else {
6856 fields[i].image_read_only = layout->flags.q.read_only;
6857 fields[i].image_write_only = layout->flags.q.write_only;
6858 }
6859
6860 /* For other qualifiers, we set the flag if either the layout
6861 * qualifier or the field qualifier are set
6862 */
6863 fields[i].image_coherent = qual->flags.q.coherent ||
6864 layout->flags.q.coherent;
6865 fields[i].image_volatile = qual->flags.q._volatile ||
6866 layout->flags.q._volatile;
6867 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6868 layout->flags.q.restrict_flag;
6869 }
6870
6871 i++;
6872 }
6873 }
6874
6875 assert(i == decl_count);
6876
6877 *fields_ret = fields;
6878 return decl_count;
6879 }
6880
6881
6882 ir_rvalue *
6883 ast_struct_specifier::hir(exec_list *instructions,
6884 struct _mesa_glsl_parse_state *state)
6885 {
6886 YYLTYPE loc = this->get_location();
6887
6888 unsigned expl_location = 0;
6889 if (layout && layout->flags.q.explicit_location) {
6890 if (!process_qualifier_constant(state, &loc, "location",
6891 layout->location, &expl_location)) {
6892 return NULL;
6893 } else {
6894 expl_location = VARYING_SLOT_VAR0 + expl_location;
6895 }
6896 }
6897
6898 glsl_struct_field *fields;
6899 unsigned decl_count =
6900 ast_process_struct_or_iface_block_members(instructions,
6901 state,
6902 &this->declarations,
6903 &fields,
6904 false,
6905 GLSL_MATRIX_LAYOUT_INHERITED,
6906 false /* allow_reserved_names */,
6907 ir_var_auto,
6908 layout,
6909 0, /* for interface only */
6910 0, /* for interface only */
6911 0, /* for interface only */
6912 expl_location,
6913 0 /* for interface only */);
6914
6915 validate_identifier(this->name, loc, state);
6916
6917 const glsl_type *t =
6918 glsl_type::get_record_instance(fields, decl_count, this->name);
6919
6920 if (!state->symbols->add_type(name, t)) {
6921 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6922 } else {
6923 const glsl_type **s = reralloc(state, state->user_structures,
6924 const glsl_type *,
6925 state->num_user_structures + 1);
6926 if (s != NULL) {
6927 s[state->num_user_structures] = t;
6928 state->user_structures = s;
6929 state->num_user_structures++;
6930 }
6931 }
6932
6933 /* Structure type definitions do not have r-values.
6934 */
6935 return NULL;
6936 }
6937
6938
6939 /**
6940 * Visitor class which detects whether a given interface block has been used.
6941 */
6942 class interface_block_usage_visitor : public ir_hierarchical_visitor
6943 {
6944 public:
6945 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6946 : mode(mode), block(block), found(false)
6947 {
6948 }
6949
6950 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6951 {
6952 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6953 found = true;
6954 return visit_stop;
6955 }
6956 return visit_continue;
6957 }
6958
6959 bool usage_found() const
6960 {
6961 return this->found;
6962 }
6963
6964 private:
6965 ir_variable_mode mode;
6966 const glsl_type *block;
6967 bool found;
6968 };
6969
6970 static bool
6971 is_unsized_array_last_element(ir_variable *v)
6972 {
6973 const glsl_type *interface_type = v->get_interface_type();
6974 int length = interface_type->length;
6975
6976 assert(v->type->is_unsized_array());
6977
6978 /* Check if it is the last element of the interface */
6979 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6980 return true;
6981 return false;
6982 }
6983
6984 static void
6985 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
6986 {
6987 var->data.image_read_only = field.image_read_only;
6988 var->data.image_write_only = field.image_write_only;
6989 var->data.image_coherent = field.image_coherent;
6990 var->data.image_volatile = field.image_volatile;
6991 var->data.image_restrict = field.image_restrict;
6992 }
6993
6994 ir_rvalue *
6995 ast_interface_block::hir(exec_list *instructions,
6996 struct _mesa_glsl_parse_state *state)
6997 {
6998 YYLTYPE loc = this->get_location();
6999
7000 /* Interface blocks must be declared at global scope */
7001 if (state->current_function != NULL) {
7002 _mesa_glsl_error(&loc, state,
7003 "Interface block `%s' must be declared "
7004 "at global scope",
7005 this->block_name);
7006 }
7007
7008 if (!this->layout.flags.q.buffer &&
7009 this->layout.flags.q.std430) {
7010 _mesa_glsl_error(&loc, state,
7011 "std430 storage block layout qualifier is supported "
7012 "only for shader storage blocks");
7013 }
7014
7015 /* The ast_interface_block has a list of ast_declarator_lists. We
7016 * need to turn those into ir_variables with an association
7017 * with this uniform block.
7018 */
7019 enum glsl_interface_packing packing;
7020 if (this->layout.flags.q.shared) {
7021 packing = GLSL_INTERFACE_PACKING_SHARED;
7022 } else if (this->layout.flags.q.packed) {
7023 packing = GLSL_INTERFACE_PACKING_PACKED;
7024 } else if (this->layout.flags.q.std430) {
7025 packing = GLSL_INTERFACE_PACKING_STD430;
7026 } else {
7027 /* The default layout is std140.
7028 */
7029 packing = GLSL_INTERFACE_PACKING_STD140;
7030 }
7031
7032 ir_variable_mode var_mode;
7033 const char *iface_type_name;
7034 if (this->layout.flags.q.in) {
7035 var_mode = ir_var_shader_in;
7036 iface_type_name = "in";
7037 } else if (this->layout.flags.q.out) {
7038 var_mode = ir_var_shader_out;
7039 iface_type_name = "out";
7040 } else if (this->layout.flags.q.uniform) {
7041 var_mode = ir_var_uniform;
7042 iface_type_name = "uniform";
7043 } else if (this->layout.flags.q.buffer) {
7044 var_mode = ir_var_shader_storage;
7045 iface_type_name = "buffer";
7046 } else {
7047 var_mode = ir_var_auto;
7048 iface_type_name = "UNKNOWN";
7049 assert(!"interface block layout qualifier not found!");
7050 }
7051
7052 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7053 if (this->layout.flags.q.row_major)
7054 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7055 else if (this->layout.flags.q.column_major)
7056 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7057
7058 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7059 exec_list declared_variables;
7060 glsl_struct_field *fields;
7061
7062 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7063 * that we don't have incompatible qualifiers
7064 */
7065 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7066 _mesa_glsl_error(&loc, state,
7067 "Interface block sets both readonly and writeonly");
7068 }
7069
7070 if (this->layout.flags.q.explicit_component) {
7071 _mesa_glsl_error(&loc, state, "component layout qualifier cannot be "
7072 "applied to a matrix, a structure, a block, or an "
7073 "array containing any of these.");
7074 }
7075
7076 unsigned qual_stream;
7077 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7078 &qual_stream) ||
7079 !validate_stream_qualifier(&loc, state, qual_stream)) {
7080 /* If the stream qualifier is invalid it doesn't make sense to continue
7081 * on and try to compare stream layouts on member variables against it
7082 * so just return early.
7083 */
7084 return NULL;
7085 }
7086
7087 unsigned qual_xfb_buffer;
7088 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7089 layout.xfb_buffer, &qual_xfb_buffer) ||
7090 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7091 return NULL;
7092 }
7093
7094 unsigned qual_xfb_offset;
7095 if (layout.flags.q.explicit_xfb_offset) {
7096 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7097 layout.offset, &qual_xfb_offset)) {
7098 return NULL;
7099 }
7100 }
7101
7102 unsigned qual_xfb_stride;
7103 if (layout.flags.q.explicit_xfb_stride) {
7104 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7105 layout.xfb_stride, &qual_xfb_stride)) {
7106 return NULL;
7107 }
7108 }
7109
7110 unsigned expl_location = 0;
7111 if (layout.flags.q.explicit_location) {
7112 if (!process_qualifier_constant(state, &loc, "location",
7113 layout.location, &expl_location)) {
7114 return NULL;
7115 } else {
7116 expl_location = VARYING_SLOT_VAR0 + expl_location;
7117 }
7118 }
7119
7120 unsigned expl_align = 0;
7121 if (layout.flags.q.explicit_align) {
7122 if (!process_qualifier_constant(state, &loc, "align",
7123 layout.align, &expl_align)) {
7124 return NULL;
7125 } else {
7126 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7127 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7128 "power of 2.");
7129 return NULL;
7130 }
7131 }
7132 }
7133
7134 unsigned int num_variables =
7135 ast_process_struct_or_iface_block_members(&declared_variables,
7136 state,
7137 &this->declarations,
7138 &fields,
7139 true,
7140 matrix_layout,
7141 redeclaring_per_vertex,
7142 var_mode,
7143 &this->layout,
7144 qual_stream,
7145 qual_xfb_buffer,
7146 qual_xfb_offset,
7147 expl_location,
7148 expl_align);
7149
7150 if (!redeclaring_per_vertex) {
7151 validate_identifier(this->block_name, loc, state);
7152
7153 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7154 *
7155 * "Block names have no other use within a shader beyond interface
7156 * matching; it is a compile-time error to use a block name at global
7157 * scope for anything other than as a block name."
7158 */
7159 ir_variable *var = state->symbols->get_variable(this->block_name);
7160 if (var && !var->type->is_interface()) {
7161 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7162 "already used in the scope.",
7163 this->block_name);
7164 }
7165 }
7166
7167 const glsl_type *earlier_per_vertex = NULL;
7168 if (redeclaring_per_vertex) {
7169 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7170 * the named interface block gl_in, we can find it by looking at the
7171 * previous declaration of gl_in. Otherwise we can find it by looking
7172 * at the previous decalartion of any of the built-in outputs,
7173 * e.g. gl_Position.
7174 *
7175 * Also check that the instance name and array-ness of the redeclaration
7176 * are correct.
7177 */
7178 switch (var_mode) {
7179 case ir_var_shader_in:
7180 if (ir_variable *earlier_gl_in =
7181 state->symbols->get_variable("gl_in")) {
7182 earlier_per_vertex = earlier_gl_in->get_interface_type();
7183 } else {
7184 _mesa_glsl_error(&loc, state,
7185 "redeclaration of gl_PerVertex input not allowed "
7186 "in the %s shader",
7187 _mesa_shader_stage_to_string(state->stage));
7188 }
7189 if (this->instance_name == NULL ||
7190 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7191 !this->array_specifier->is_single_dimension()) {
7192 _mesa_glsl_error(&loc, state,
7193 "gl_PerVertex input must be redeclared as "
7194 "gl_in[]");
7195 }
7196 break;
7197 case ir_var_shader_out:
7198 if (ir_variable *earlier_gl_Position =
7199 state->symbols->get_variable("gl_Position")) {
7200 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7201 } else if (ir_variable *earlier_gl_out =
7202 state->symbols->get_variable("gl_out")) {
7203 earlier_per_vertex = earlier_gl_out->get_interface_type();
7204 } else {
7205 _mesa_glsl_error(&loc, state,
7206 "redeclaration of gl_PerVertex output not "
7207 "allowed in the %s shader",
7208 _mesa_shader_stage_to_string(state->stage));
7209 }
7210 if (state->stage == MESA_SHADER_TESS_CTRL) {
7211 if (this->instance_name == NULL ||
7212 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7213 _mesa_glsl_error(&loc, state,
7214 "gl_PerVertex output must be redeclared as "
7215 "gl_out[]");
7216 }
7217 } else {
7218 if (this->instance_name != NULL) {
7219 _mesa_glsl_error(&loc, state,
7220 "gl_PerVertex output may not be redeclared with "
7221 "an instance name");
7222 }
7223 }
7224 break;
7225 default:
7226 _mesa_glsl_error(&loc, state,
7227 "gl_PerVertex must be declared as an input or an "
7228 "output");
7229 break;
7230 }
7231
7232 if (earlier_per_vertex == NULL) {
7233 /* An error has already been reported. Bail out to avoid null
7234 * dereferences later in this function.
7235 */
7236 return NULL;
7237 }
7238
7239 /* Copy locations from the old gl_PerVertex interface block. */
7240 for (unsigned i = 0; i < num_variables; i++) {
7241 int j = earlier_per_vertex->field_index(fields[i].name);
7242 if (j == -1) {
7243 _mesa_glsl_error(&loc, state,
7244 "redeclaration of gl_PerVertex must be a subset "
7245 "of the built-in members of gl_PerVertex");
7246 } else {
7247 fields[i].location =
7248 earlier_per_vertex->fields.structure[j].location;
7249 fields[i].offset =
7250 earlier_per_vertex->fields.structure[j].offset;
7251 fields[i].interpolation =
7252 earlier_per_vertex->fields.structure[j].interpolation;
7253 fields[i].centroid =
7254 earlier_per_vertex->fields.structure[j].centroid;
7255 fields[i].sample =
7256 earlier_per_vertex->fields.structure[j].sample;
7257 fields[i].patch =
7258 earlier_per_vertex->fields.structure[j].patch;
7259 fields[i].precision =
7260 earlier_per_vertex->fields.structure[j].precision;
7261 fields[i].explicit_xfb_buffer =
7262 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7263 fields[i].xfb_buffer =
7264 earlier_per_vertex->fields.structure[j].xfb_buffer;
7265 fields[i].xfb_stride =
7266 earlier_per_vertex->fields.structure[j].xfb_stride;
7267 }
7268 }
7269
7270 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7271 * spec:
7272 *
7273 * If a built-in interface block is redeclared, it must appear in
7274 * the shader before any use of any member included in the built-in
7275 * declaration, or a compilation error will result.
7276 *
7277 * This appears to be a clarification to the behaviour established for
7278 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7279 * regardless of GLSL version.
7280 */
7281 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7282 v.run(instructions);
7283 if (v.usage_found()) {
7284 _mesa_glsl_error(&loc, state,
7285 "redeclaration of a built-in interface block must "
7286 "appear before any use of any member of the "
7287 "interface block");
7288 }
7289 }
7290
7291 const glsl_type *block_type =
7292 glsl_type::get_interface_instance(fields,
7293 num_variables,
7294 packing,
7295 this->block_name);
7296
7297 unsigned component_size = block_type->contains_double() ? 8 : 4;
7298 int xfb_offset =
7299 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7300 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7301 component_size);
7302
7303 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7304 YYLTYPE loc = this->get_location();
7305 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7306 "already taken in the current scope",
7307 this->block_name, iface_type_name);
7308 }
7309
7310 /* Since interface blocks cannot contain statements, it should be
7311 * impossible for the block to generate any instructions.
7312 */
7313 assert(declared_variables.is_empty());
7314
7315 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7316 *
7317 * Geometry shader input variables get the per-vertex values written
7318 * out by vertex shader output variables of the same names. Since a
7319 * geometry shader operates on a set of vertices, each input varying
7320 * variable (or input block, see interface blocks below) needs to be
7321 * declared as an array.
7322 */
7323 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7324 var_mode == ir_var_shader_in) {
7325 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7326 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7327 state->stage == MESA_SHADER_TESS_EVAL) &&
7328 this->array_specifier == NULL &&
7329 var_mode == ir_var_shader_in) {
7330 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7331 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7332 this->array_specifier == NULL &&
7333 var_mode == ir_var_shader_out) {
7334 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7335 }
7336
7337
7338 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7339 * says:
7340 *
7341 * "If an instance name (instance-name) is used, then it puts all the
7342 * members inside a scope within its own name space, accessed with the
7343 * field selector ( . ) operator (analogously to structures)."
7344 */
7345 if (this->instance_name) {
7346 if (redeclaring_per_vertex) {
7347 /* When a built-in in an unnamed interface block is redeclared,
7348 * get_variable_being_redeclared() calls
7349 * check_builtin_array_max_size() to make sure that built-in array
7350 * variables aren't redeclared to illegal sizes. But we're looking
7351 * at a redeclaration of a named built-in interface block. So we
7352 * have to manually call check_builtin_array_max_size() for all parts
7353 * of the interface that are arrays.
7354 */
7355 for (unsigned i = 0; i < num_variables; i++) {
7356 if (fields[i].type->is_array()) {
7357 const unsigned size = fields[i].type->array_size();
7358 check_builtin_array_max_size(fields[i].name, size, loc, state);
7359 }
7360 }
7361 } else {
7362 validate_identifier(this->instance_name, loc, state);
7363 }
7364
7365 ir_variable *var;
7366
7367 if (this->array_specifier != NULL) {
7368 const glsl_type *block_array_type =
7369 process_array_type(&loc, block_type, this->array_specifier, state);
7370
7371 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7372 *
7373 * For uniform blocks declared an array, each individual array
7374 * element corresponds to a separate buffer object backing one
7375 * instance of the block. As the array size indicates the number
7376 * of buffer objects needed, uniform block array declarations
7377 * must specify an array size.
7378 *
7379 * And a few paragraphs later:
7380 *
7381 * Geometry shader input blocks must be declared as arrays and
7382 * follow the array declaration and linking rules for all
7383 * geometry shader inputs. All other input and output block
7384 * arrays must specify an array size.
7385 *
7386 * The same applies to tessellation shaders.
7387 *
7388 * The upshot of this is that the only circumstance where an
7389 * interface array size *doesn't* need to be specified is on a
7390 * geometry shader input, tessellation control shader input,
7391 * tessellation control shader output, and tessellation evaluation
7392 * shader input.
7393 */
7394 if (block_array_type->is_unsized_array()) {
7395 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7396 state->stage == MESA_SHADER_TESS_CTRL ||
7397 state->stage == MESA_SHADER_TESS_EVAL;
7398 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7399
7400 if (this->layout.flags.q.in) {
7401 if (!allow_inputs)
7402 _mesa_glsl_error(&loc, state,
7403 "unsized input block arrays not allowed in "
7404 "%s shader",
7405 _mesa_shader_stage_to_string(state->stage));
7406 } else if (this->layout.flags.q.out) {
7407 if (!allow_outputs)
7408 _mesa_glsl_error(&loc, state,
7409 "unsized output block arrays not allowed in "
7410 "%s shader",
7411 _mesa_shader_stage_to_string(state->stage));
7412 } else {
7413 /* by elimination, this is a uniform block array */
7414 _mesa_glsl_error(&loc, state,
7415 "unsized uniform block arrays not allowed in "
7416 "%s shader",
7417 _mesa_shader_stage_to_string(state->stage));
7418 }
7419 }
7420
7421 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7422 *
7423 * * Arrays of arrays of blocks are not allowed
7424 */
7425 if (state->es_shader && block_array_type->is_array() &&
7426 block_array_type->fields.array->is_array()) {
7427 _mesa_glsl_error(&loc, state,
7428 "arrays of arrays interface blocks are "
7429 "not allowed");
7430 }
7431
7432 var = new(state) ir_variable(block_array_type,
7433 this->instance_name,
7434 var_mode);
7435 } else {
7436 var = new(state) ir_variable(block_type,
7437 this->instance_name,
7438 var_mode);
7439 }
7440
7441 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7442 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7443
7444 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7445 var->data.read_only = true;
7446
7447 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7448 handle_geometry_shader_input_decl(state, loc, var);
7449 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7450 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7451 handle_tess_shader_input_decl(state, loc, var);
7452 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7453 handle_tess_ctrl_shader_output_decl(state, loc, var);
7454
7455 for (unsigned i = 0; i < num_variables; i++) {
7456 if (fields[i].type->is_unsized_array()) {
7457 if (var_mode == ir_var_shader_storage) {
7458 if (i != (num_variables - 1)) {
7459 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7460 "only last member of a shader storage block "
7461 "can be defined as unsized array",
7462 fields[i].name);
7463 }
7464 } else {
7465 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7466 *
7467 * "If an array is declared as the last member of a shader storage
7468 * block and the size is not specified at compile-time, it is
7469 * sized at run-time. In all other cases, arrays are sized only
7470 * at compile-time."
7471 */
7472 if (state->es_shader) {
7473 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7474 "only last member of a shader storage block "
7475 "can be defined as unsized array",
7476 fields[i].name);
7477 }
7478 }
7479 }
7480
7481 if (var->data.mode == ir_var_shader_storage)
7482 apply_memory_qualifiers(var, fields[i]);
7483 }
7484
7485 if (ir_variable *earlier =
7486 state->symbols->get_variable(this->instance_name)) {
7487 if (!redeclaring_per_vertex) {
7488 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7489 this->instance_name);
7490 }
7491 earlier->data.how_declared = ir_var_declared_normally;
7492 earlier->type = var->type;
7493 earlier->reinit_interface_type(block_type);
7494 delete var;
7495 } else {
7496 if (this->layout.flags.q.explicit_binding) {
7497 apply_explicit_binding(state, &loc, var, var->type,
7498 &this->layout);
7499 }
7500
7501 var->data.stream = qual_stream;
7502 if (layout.flags.q.explicit_location) {
7503 var->data.location = expl_location;
7504 var->data.explicit_location = true;
7505 }
7506
7507 state->symbols->add_variable(var);
7508 instructions->push_tail(var);
7509 }
7510 } else {
7511 /* In order to have an array size, the block must also be declared with
7512 * an instance name.
7513 */
7514 assert(this->array_specifier == NULL);
7515
7516 for (unsigned i = 0; i < num_variables; i++) {
7517 ir_variable *var =
7518 new(state) ir_variable(fields[i].type,
7519 ralloc_strdup(state, fields[i].name),
7520 var_mode);
7521 var->data.interpolation = fields[i].interpolation;
7522 var->data.centroid = fields[i].centroid;
7523 var->data.sample = fields[i].sample;
7524 var->data.patch = fields[i].patch;
7525 var->data.stream = qual_stream;
7526 var->data.location = fields[i].location;
7527
7528 if (fields[i].location != -1)
7529 var->data.explicit_location = true;
7530
7531 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7532 var->data.xfb_buffer = fields[i].xfb_buffer;
7533
7534 if (fields[i].offset != -1)
7535 var->data.explicit_xfb_offset = true;
7536 var->data.offset = fields[i].offset;
7537
7538 var->init_interface_type(block_type);
7539
7540 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7541 var->data.read_only = true;
7542
7543 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7544 if (state->es_shader) {
7545 var->data.precision =
7546 select_gles_precision(fields[i].precision, fields[i].type,
7547 state, &loc);
7548 }
7549
7550 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7551 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7552 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7553 } else {
7554 var->data.matrix_layout = fields[i].matrix_layout;
7555 }
7556
7557 if (var->data.mode == ir_var_shader_storage)
7558 apply_memory_qualifiers(var, fields[i]);
7559
7560 /* Examine var name here since var may get deleted in the next call */
7561 bool var_is_gl_id = is_gl_identifier(var->name);
7562
7563 if (redeclaring_per_vertex) {
7564 ir_variable *earlier =
7565 get_variable_being_redeclared(var, loc, state,
7566 true /* allow_all_redeclarations */);
7567 if (!var_is_gl_id || earlier == NULL) {
7568 _mesa_glsl_error(&loc, state,
7569 "redeclaration of gl_PerVertex can only "
7570 "include built-in variables");
7571 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7572 _mesa_glsl_error(&loc, state,
7573 "`%s' has already been redeclared",
7574 earlier->name);
7575 } else {
7576 earlier->data.how_declared = ir_var_declared_in_block;
7577 earlier->reinit_interface_type(block_type);
7578 }
7579 continue;
7580 }
7581
7582 if (state->symbols->get_variable(var->name) != NULL)
7583 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7584
7585 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7586 * The UBO declaration itself doesn't get an ir_variable unless it
7587 * has an instance name. This is ugly.
7588 */
7589 if (this->layout.flags.q.explicit_binding) {
7590 apply_explicit_binding(state, &loc, var,
7591 var->get_interface_type(), &this->layout);
7592 }
7593
7594 if (var->type->is_unsized_array()) {
7595 if (var->is_in_shader_storage_block()) {
7596 if (!is_unsized_array_last_element(var)) {
7597 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7598 "only last member of a shader storage block "
7599 "can be defined as unsized array",
7600 var->name);
7601 }
7602 var->data.from_ssbo_unsized_array = true;
7603 } else {
7604 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7605 *
7606 * "If an array is declared as the last member of a shader storage
7607 * block and the size is not specified at compile-time, it is
7608 * sized at run-time. In all other cases, arrays are sized only
7609 * at compile-time."
7610 */
7611 if (state->es_shader) {
7612 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7613 "only last member of a shader storage block "
7614 "can be defined as unsized array",
7615 var->name);
7616 }
7617 }
7618 }
7619
7620 state->symbols->add_variable(var);
7621 instructions->push_tail(var);
7622 }
7623
7624 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7625 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7626 *
7627 * It is also a compilation error ... to redeclare a built-in
7628 * block and then use a member from that built-in block that was
7629 * not included in the redeclaration.
7630 *
7631 * This appears to be a clarification to the behaviour established
7632 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7633 * behaviour regardless of GLSL version.
7634 *
7635 * To prevent the shader from using a member that was not included in
7636 * the redeclaration, we disable any ir_variables that are still
7637 * associated with the old declaration of gl_PerVertex (since we've
7638 * already updated all of the variables contained in the new
7639 * gl_PerVertex to point to it).
7640 *
7641 * As a side effect this will prevent
7642 * validate_intrastage_interface_blocks() from getting confused and
7643 * thinking there are conflicting definitions of gl_PerVertex in the
7644 * shader.
7645 */
7646 foreach_in_list_safe(ir_instruction, node, instructions) {
7647 ir_variable *const var = node->as_variable();
7648 if (var != NULL &&
7649 var->get_interface_type() == earlier_per_vertex &&
7650 var->data.mode == var_mode) {
7651 if (var->data.how_declared == ir_var_declared_normally) {
7652 _mesa_glsl_error(&loc, state,
7653 "redeclaration of gl_PerVertex cannot "
7654 "follow a redeclaration of `%s'",
7655 var->name);
7656 }
7657 state->symbols->disable_variable(var->name);
7658 var->remove();
7659 }
7660 }
7661 }
7662 }
7663
7664 return NULL;
7665 }
7666
7667
7668 ir_rvalue *
7669 ast_tcs_output_layout::hir(exec_list *instructions,
7670 struct _mesa_glsl_parse_state *state)
7671 {
7672 YYLTYPE loc = this->get_location();
7673
7674 unsigned num_vertices;
7675 if (!state->out_qualifier->vertices->
7676 process_qualifier_constant(state, "vertices", &num_vertices,
7677 false)) {
7678 /* return here to stop cascading incorrect error messages */
7679 return NULL;
7680 }
7681
7682 /* If any shader outputs occurred before this declaration and specified an
7683 * array size, make sure the size they specified is consistent with the
7684 * primitive type.
7685 */
7686 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7687 _mesa_glsl_error(&loc, state,
7688 "this tessellation control shader output layout "
7689 "specifies %u vertices, but a previous output "
7690 "is declared with size %u",
7691 num_vertices, state->tcs_output_size);
7692 return NULL;
7693 }
7694
7695 state->tcs_output_vertices_specified = true;
7696
7697 /* If any shader outputs occurred before this declaration and did not
7698 * specify an array size, their size is determined now.
7699 */
7700 foreach_in_list (ir_instruction, node, instructions) {
7701 ir_variable *var = node->as_variable();
7702 if (var == NULL || var->data.mode != ir_var_shader_out)
7703 continue;
7704
7705 /* Note: Not all tessellation control shader output are arrays. */
7706 if (!var->type->is_unsized_array() || var->data.patch)
7707 continue;
7708
7709 if (var->data.max_array_access >= num_vertices) {
7710 _mesa_glsl_error(&loc, state,
7711 "this tessellation control shader output layout "
7712 "specifies %u vertices, but an access to element "
7713 "%u of output `%s' already exists", num_vertices,
7714 var->data.max_array_access, var->name);
7715 } else {
7716 var->type = glsl_type::get_array_instance(var->type->fields.array,
7717 num_vertices);
7718 }
7719 }
7720
7721 return NULL;
7722 }
7723
7724
7725 ir_rvalue *
7726 ast_gs_input_layout::hir(exec_list *instructions,
7727 struct _mesa_glsl_parse_state *state)
7728 {
7729 YYLTYPE loc = this->get_location();
7730
7731 /* If any geometry input layout declaration preceded this one, make sure it
7732 * was consistent with this one.
7733 */
7734 if (state->gs_input_prim_type_specified &&
7735 state->in_qualifier->prim_type != this->prim_type) {
7736 _mesa_glsl_error(&loc, state,
7737 "geometry shader input layout does not match"
7738 " previous declaration");
7739 return NULL;
7740 }
7741
7742 /* If any shader inputs occurred before this declaration and specified an
7743 * array size, make sure the size they specified is consistent with the
7744 * primitive type.
7745 */
7746 unsigned num_vertices = vertices_per_prim(this->prim_type);
7747 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7748 _mesa_glsl_error(&loc, state,
7749 "this geometry shader input layout implies %u vertices"
7750 " per primitive, but a previous input is declared"
7751 " with size %u", num_vertices, state->gs_input_size);
7752 return NULL;
7753 }
7754
7755 state->gs_input_prim_type_specified = true;
7756
7757 /* If any shader inputs occurred before this declaration and did not
7758 * specify an array size, their size is determined now.
7759 */
7760 foreach_in_list(ir_instruction, node, instructions) {
7761 ir_variable *var = node->as_variable();
7762 if (var == NULL || var->data.mode != ir_var_shader_in)
7763 continue;
7764
7765 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7766 * array; skip it.
7767 */
7768
7769 if (var->type->is_unsized_array()) {
7770 if (var->data.max_array_access >= num_vertices) {
7771 _mesa_glsl_error(&loc, state,
7772 "this geometry shader input layout implies %u"
7773 " vertices, but an access to element %u of input"
7774 " `%s' already exists", num_vertices,
7775 var->data.max_array_access, var->name);
7776 } else {
7777 var->type = glsl_type::get_array_instance(var->type->fields.array,
7778 num_vertices);
7779 }
7780 }
7781 }
7782
7783 return NULL;
7784 }
7785
7786
7787 ir_rvalue *
7788 ast_cs_input_layout::hir(exec_list *instructions,
7789 struct _mesa_glsl_parse_state *state)
7790 {
7791 YYLTYPE loc = this->get_location();
7792
7793 /* From the ARB_compute_shader specification:
7794 *
7795 * If the local size of the shader in any dimension is greater
7796 * than the maximum size supported by the implementation for that
7797 * dimension, a compile-time error results.
7798 *
7799 * It is not clear from the spec how the error should be reported if
7800 * the total size of the work group exceeds
7801 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7802 * report it at compile time as well.
7803 */
7804 GLuint64 total_invocations = 1;
7805 unsigned qual_local_size[3];
7806 for (int i = 0; i < 3; i++) {
7807
7808 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7809 'x' + i);
7810 /* Infer a local_size of 1 for unspecified dimensions */
7811 if (this->local_size[i] == NULL) {
7812 qual_local_size[i] = 1;
7813 } else if (!this->local_size[i]->
7814 process_qualifier_constant(state, local_size_str,
7815 &qual_local_size[i], false)) {
7816 ralloc_free(local_size_str);
7817 return NULL;
7818 }
7819 ralloc_free(local_size_str);
7820
7821 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7822 _mesa_glsl_error(&loc, state,
7823 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7824 " (%d)", 'x' + i,
7825 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7826 break;
7827 }
7828 total_invocations *= qual_local_size[i];
7829 if (total_invocations >
7830 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7831 _mesa_glsl_error(&loc, state,
7832 "product of local_sizes exceeds "
7833 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7834 state->ctx->Const.MaxComputeWorkGroupInvocations);
7835 break;
7836 }
7837 }
7838
7839 /* If any compute input layout declaration preceded this one, make sure it
7840 * was consistent with this one.
7841 */
7842 if (state->cs_input_local_size_specified) {
7843 for (int i = 0; i < 3; i++) {
7844 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7845 _mesa_glsl_error(&loc, state,
7846 "compute shader input layout does not match"
7847 " previous declaration");
7848 return NULL;
7849 }
7850 }
7851 }
7852
7853 state->cs_input_local_size_specified = true;
7854 for (int i = 0; i < 3; i++)
7855 state->cs_input_local_size[i] = qual_local_size[i];
7856
7857 /* We may now declare the built-in constant gl_WorkGroupSize (see
7858 * builtin_variable_generator::generate_constants() for why we didn't
7859 * declare it earlier).
7860 */
7861 ir_variable *var = new(state->symbols)
7862 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7863 var->data.how_declared = ir_var_declared_implicitly;
7864 var->data.read_only = true;
7865 instructions->push_tail(var);
7866 state->symbols->add_variable(var);
7867 ir_constant_data data;
7868 memset(&data, 0, sizeof(data));
7869 for (int i = 0; i < 3; i++)
7870 data.u[i] = qual_local_size[i];
7871 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7872 var->constant_initializer =
7873 new(var) ir_constant(glsl_type::uvec3_type, &data);
7874 var->data.has_initializer = true;
7875
7876 return NULL;
7877 }
7878
7879
7880 static void
7881 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7882 exec_list *instructions)
7883 {
7884 bool gl_FragColor_assigned = false;
7885 bool gl_FragData_assigned = false;
7886 bool gl_FragSecondaryColor_assigned = false;
7887 bool gl_FragSecondaryData_assigned = false;
7888 bool user_defined_fs_output_assigned = false;
7889 ir_variable *user_defined_fs_output = NULL;
7890
7891 /* It would be nice to have proper location information. */
7892 YYLTYPE loc;
7893 memset(&loc, 0, sizeof(loc));
7894
7895 foreach_in_list(ir_instruction, node, instructions) {
7896 ir_variable *var = node->as_variable();
7897
7898 if (!var || !var->data.assigned)
7899 continue;
7900
7901 if (strcmp(var->name, "gl_FragColor") == 0)
7902 gl_FragColor_assigned = true;
7903 else if (strcmp(var->name, "gl_FragData") == 0)
7904 gl_FragData_assigned = true;
7905 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7906 gl_FragSecondaryColor_assigned = true;
7907 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7908 gl_FragSecondaryData_assigned = true;
7909 else if (!is_gl_identifier(var->name)) {
7910 if (state->stage == MESA_SHADER_FRAGMENT &&
7911 var->data.mode == ir_var_shader_out) {
7912 user_defined_fs_output_assigned = true;
7913 user_defined_fs_output = var;
7914 }
7915 }
7916 }
7917
7918 /* From the GLSL 1.30 spec:
7919 *
7920 * "If a shader statically assigns a value to gl_FragColor, it
7921 * may not assign a value to any element of gl_FragData. If a
7922 * shader statically writes a value to any element of
7923 * gl_FragData, it may not assign a value to
7924 * gl_FragColor. That is, a shader may assign values to either
7925 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7926 * linked together must also consistently write just one of
7927 * these variables. Similarly, if user declared output
7928 * variables are in use (statically assigned to), then the
7929 * built-in variables gl_FragColor and gl_FragData may not be
7930 * assigned to. These incorrect usages all generate compile
7931 * time errors."
7932 */
7933 if (gl_FragColor_assigned && gl_FragData_assigned) {
7934 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7935 "`gl_FragColor' and `gl_FragData'");
7936 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7937 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7938 "`gl_FragColor' and `%s'",
7939 user_defined_fs_output->name);
7940 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7941 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7942 "`gl_FragSecondaryColorEXT' and"
7943 " `gl_FragSecondaryDataEXT'");
7944 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7945 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7946 "`gl_FragColor' and"
7947 " `gl_FragSecondaryDataEXT'");
7948 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7949 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7950 "`gl_FragData' and"
7951 " `gl_FragSecondaryColorEXT'");
7952 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7953 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7954 "`gl_FragData' and `%s'",
7955 user_defined_fs_output->name);
7956 }
7957
7958 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7959 !state->EXT_blend_func_extended_enable) {
7960 _mesa_glsl_error(&loc, state,
7961 "Dual source blending requires EXT_blend_func_extended");
7962 }
7963 }
7964
7965
7966 static void
7967 remove_per_vertex_blocks(exec_list *instructions,
7968 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7969 {
7970 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7971 * if it exists in this shader type.
7972 */
7973 const glsl_type *per_vertex = NULL;
7974 switch (mode) {
7975 case ir_var_shader_in:
7976 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7977 per_vertex = gl_in->get_interface_type();
7978 break;
7979 case ir_var_shader_out:
7980 if (ir_variable *gl_Position =
7981 state->symbols->get_variable("gl_Position")) {
7982 per_vertex = gl_Position->get_interface_type();
7983 }
7984 break;
7985 default:
7986 assert(!"Unexpected mode");
7987 break;
7988 }
7989
7990 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7991 * need to do anything.
7992 */
7993 if (per_vertex == NULL)
7994 return;
7995
7996 /* If the interface block is used by the shader, then we don't need to do
7997 * anything.
7998 */
7999 interface_block_usage_visitor v(mode, per_vertex);
8000 v.run(instructions);
8001 if (v.usage_found())
8002 return;
8003
8004 /* Remove any ir_variable declarations that refer to the interface block
8005 * we're removing.
8006 */
8007 foreach_in_list_safe(ir_instruction, node, instructions) {
8008 ir_variable *const var = node->as_variable();
8009 if (var != NULL && var->get_interface_type() == per_vertex &&
8010 var->data.mode == mode) {
8011 state->symbols->disable_variable(var->name);
8012 var->remove();
8013 }
8014 }
8015 }