glsl: Fix segfault when lhs is error_type in TCS
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_UINT:
246 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2u;
250 default: return (ir_expression_operation)0;
251 }
252
253 case GLSL_TYPE_DOUBLE:
254 if (!state->has_double())
255 return (ir_expression_operation)0;
256 switch (from->base_type) {
257 case GLSL_TYPE_INT: return ir_unop_i2d;
258 case GLSL_TYPE_UINT: return ir_unop_u2d;
259 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
260 default: return (ir_expression_operation)0;
261 }
262
263 default: return (ir_expression_operation)0;
264 }
265 }
266
267
268 /**
269 * If a conversion is available, convert one operand to a different type
270 *
271 * The \c from \c ir_rvalue is converted "in place".
272 *
273 * \param to Type that the operand it to be converted to
274 * \param from Operand that is being converted
275 * \param state GLSL compiler state
276 *
277 * \return
278 * If a conversion is possible (or unnecessary), \c true is returned.
279 * Otherwise \c false is returned.
280 */
281 bool
282 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
283 struct _mesa_glsl_parse_state *state)
284 {
285 void *ctx = state;
286 if (to->base_type == from->type->base_type)
287 return true;
288
289 /* Prior to GLSL 1.20, there are no implicit conversions */
290 if (!state->is_version(120, 0))
291 return false;
292
293 /* ESSL does not allow implicit conversions */
294 if (state->es_shader)
295 return false;
296
297 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
298 *
299 * "There are no implicit array or structure conversions. For
300 * example, an array of int cannot be implicitly converted to an
301 * array of float.
302 */
303 if (!to->is_numeric() || !from->type->is_numeric())
304 return false;
305
306 /* We don't actually want the specific type `to`, we want a type
307 * with the same base type as `to`, but the same vector width as
308 * `from`.
309 */
310 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
311 from->type->matrix_columns);
312
313 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
314 if (op) {
315 from = new(ctx) ir_expression(op, to, from, NULL);
316 return true;
317 } else {
318 return false;
319 }
320 }
321
322
323 static const struct glsl_type *
324 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
325 bool multiply,
326 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
327 {
328 const glsl_type *type_a = value_a->type;
329 const glsl_type *type_b = value_b->type;
330
331 /* From GLSL 1.50 spec, page 56:
332 *
333 * "The arithmetic binary operators add (+), subtract (-),
334 * multiply (*), and divide (/) operate on integer and
335 * floating-point scalars, vectors, and matrices."
336 */
337 if (!type_a->is_numeric() || !type_b->is_numeric()) {
338 _mesa_glsl_error(loc, state,
339 "operands to arithmetic operators must be numeric");
340 return glsl_type::error_type;
341 }
342
343
344 /* "If one operand is floating-point based and the other is
345 * not, then the conversions from Section 4.1.10 "Implicit
346 * Conversions" are applied to the non-floating-point-based operand."
347 */
348 if (!apply_implicit_conversion(type_a, value_b, state)
349 && !apply_implicit_conversion(type_b, value_a, state)) {
350 _mesa_glsl_error(loc, state,
351 "could not implicitly convert operands to "
352 "arithmetic operator");
353 return glsl_type::error_type;
354 }
355 type_a = value_a->type;
356 type_b = value_b->type;
357
358 /* "If the operands are integer types, they must both be signed or
359 * both be unsigned."
360 *
361 * From this rule and the preceeding conversion it can be inferred that
362 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
363 * The is_numeric check above already filtered out the case where either
364 * type is not one of these, so now the base types need only be tested for
365 * equality.
366 */
367 if (type_a->base_type != type_b->base_type) {
368 _mesa_glsl_error(loc, state,
369 "base type mismatch for arithmetic operator");
370 return glsl_type::error_type;
371 }
372
373 /* "All arithmetic binary operators result in the same fundamental type
374 * (signed integer, unsigned integer, or floating-point) as the
375 * operands they operate on, after operand type conversion. After
376 * conversion, the following cases are valid
377 *
378 * * The two operands are scalars. In this case the operation is
379 * applied, resulting in a scalar."
380 */
381 if (type_a->is_scalar() && type_b->is_scalar())
382 return type_a;
383
384 /* "* One operand is a scalar, and the other is a vector or matrix.
385 * In this case, the scalar operation is applied independently to each
386 * component of the vector or matrix, resulting in the same size
387 * vector or matrix."
388 */
389 if (type_a->is_scalar()) {
390 if (!type_b->is_scalar())
391 return type_b;
392 } else if (type_b->is_scalar()) {
393 return type_a;
394 }
395
396 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
397 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
398 * handled.
399 */
400 assert(!type_a->is_scalar());
401 assert(!type_b->is_scalar());
402
403 /* "* The two operands are vectors of the same size. In this case, the
404 * operation is done component-wise resulting in the same size
405 * vector."
406 */
407 if (type_a->is_vector() && type_b->is_vector()) {
408 if (type_a == type_b) {
409 return type_a;
410 } else {
411 _mesa_glsl_error(loc, state,
412 "vector size mismatch for arithmetic operator");
413 return glsl_type::error_type;
414 }
415 }
416
417 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
418 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
419 * <vector, vector> have been handled. At least one of the operands must
420 * be matrix. Further, since there are no integer matrix types, the base
421 * type of both operands must be float.
422 */
423 assert(type_a->is_matrix() || type_b->is_matrix());
424 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
425 type_a->base_type == GLSL_TYPE_DOUBLE);
426 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
427 type_b->base_type == GLSL_TYPE_DOUBLE);
428
429 /* "* The operator is add (+), subtract (-), or divide (/), and the
430 * operands are matrices with the same number of rows and the same
431 * number of columns. In this case, the operation is done component-
432 * wise resulting in the same size matrix."
433 * * The operator is multiply (*), where both operands are matrices or
434 * one operand is a vector and the other a matrix. A right vector
435 * operand is treated as a column vector and a left vector operand as a
436 * row vector. In all these cases, it is required that the number of
437 * columns of the left operand is equal to the number of rows of the
438 * right operand. Then, the multiply (*) operation does a linear
439 * algebraic multiply, yielding an object that has the same number of
440 * rows as the left operand and the same number of columns as the right
441 * operand. Section 5.10 "Vector and Matrix Operations" explains in
442 * more detail how vectors and matrices are operated on."
443 */
444 if (! multiply) {
445 if (type_a == type_b)
446 return type_a;
447 } else {
448 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
449
450 if (type == glsl_type::error_type) {
451 _mesa_glsl_error(loc, state,
452 "size mismatch for matrix multiplication");
453 }
454
455 return type;
456 }
457
458
459 /* "All other cases are illegal."
460 */
461 _mesa_glsl_error(loc, state, "type mismatch");
462 return glsl_type::error_type;
463 }
464
465
466 static const struct glsl_type *
467 unary_arithmetic_result_type(const struct glsl_type *type,
468 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
469 {
470 /* From GLSL 1.50 spec, page 57:
471 *
472 * "The arithmetic unary operators negate (-), post- and pre-increment
473 * and decrement (-- and ++) operate on integer or floating-point
474 * values (including vectors and matrices). All unary operators work
475 * component-wise on their operands. These result with the same type
476 * they operated on."
477 */
478 if (!type->is_numeric()) {
479 _mesa_glsl_error(loc, state,
480 "operands to arithmetic operators must be numeric");
481 return glsl_type::error_type;
482 }
483
484 return type;
485 }
486
487 /**
488 * \brief Return the result type of a bit-logic operation.
489 *
490 * If the given types to the bit-logic operator are invalid, return
491 * glsl_type::error_type.
492 *
493 * \param value_a LHS of bit-logic op
494 * \param value_b RHS of bit-logic op
495 */
496 static const struct glsl_type *
497 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
498 ast_operators op,
499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501 const glsl_type *type_a = value_a->type;
502 const glsl_type *type_b = value_b->type;
503
504 if (!state->check_bitwise_operations_allowed(loc)) {
505 return glsl_type::error_type;
506 }
507
508 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
509 *
510 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
511 * (|). The operands must be of type signed or unsigned integers or
512 * integer vectors."
513 */
514 if (!type_a->is_integer()) {
515 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
516 ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
521 ast_expression::operator_string(op));
522 return glsl_type::error_type;
523 }
524
525 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
526 * make sense for bitwise operations, as they don't operate on floats.
527 *
528 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
529 * here. It wasn't clear whether or not we should apply them to bitwise
530 * operations. However, Khronos has decided that they should in future
531 * language revisions. Applications also rely on this behavior. We opt
532 * to apply them in general, but issue a portability warning.
533 *
534 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
535 */
536 if (type_a->base_type != type_b->base_type) {
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "`%s` operator",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 } else {
545 _mesa_glsl_warning(loc, state,
546 "some implementations may not support implicit "
547 "int -> uint conversions for `%s' operators; "
548 "consider casting explicitly for portability",
549 ast_expression::operator_string(op));
550 }
551 type_a = value_a->type;
552 type_b = value_b->type;
553 }
554
555 /* "The fundamental types of the operands (signed or unsigned) must
556 * match,"
557 */
558 if (type_a->base_type != type_b->base_type) {
559 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
560 "base type", ast_expression::operator_string(op));
561 return glsl_type::error_type;
562 }
563
564 /* "The operands cannot be vectors of differing size." */
565 if (type_a->is_vector() &&
566 type_b->is_vector() &&
567 type_a->vector_elements != type_b->vector_elements) {
568 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
569 "different sizes", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571 }
572
573 /* "If one operand is a scalar and the other a vector, the scalar is
574 * applied component-wise to the vector, resulting in the same type as
575 * the vector. The fundamental types of the operands [...] will be the
576 * resulting fundamental type."
577 */
578 if (type_a->is_scalar())
579 return type_b;
580 else
581 return type_a;
582 }
583
584 static const struct glsl_type *
585 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
586 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
587 {
588 const glsl_type *type_a = value_a->type;
589 const glsl_type *type_b = value_b->type;
590
591 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
592 return glsl_type::error_type;
593 }
594
595 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
596 *
597 * "The operator modulus (%) operates on signed or unsigned integers or
598 * integer vectors."
599 */
600 if (!type_a->is_integer()) {
601 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
602 return glsl_type::error_type;
603 }
604 if (!type_b->is_integer()) {
605 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
606 return glsl_type::error_type;
607 }
608
609 /* "If the fundamental types in the operands do not match, then the
610 * conversions from section 4.1.10 "Implicit Conversions" are applied
611 * to create matching types."
612 *
613 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
614 * int -> uint conversion rules. Prior to that, there were no implicit
615 * conversions. So it's harmless to apply them universally - no implicit
616 * conversions will exist. If the types don't match, we'll receive false,
617 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
618 *
619 * "The operand types must both be signed or unsigned."
620 */
621 if (!apply_implicit_conversion(type_a, value_b, state) &&
622 !apply_implicit_conversion(type_b, value_a, state)) {
623 _mesa_glsl_error(loc, state,
624 "could not implicitly convert operands to "
625 "modulus (%%) operator");
626 return glsl_type::error_type;
627 }
628 type_a = value_a->type;
629 type_b = value_b->type;
630
631 /* "The operands cannot be vectors of differing size. If one operand is
632 * a scalar and the other vector, then the scalar is applied component-
633 * wise to the vector, resulting in the same type as the vector. If both
634 * are vectors of the same size, the result is computed component-wise."
635 */
636 if (type_a->is_vector()) {
637 if (!type_b->is_vector()
638 || (type_a->vector_elements == type_b->vector_elements))
639 return type_a;
640 } else
641 return type_b;
642
643 /* "The operator modulus (%) is not defined for any other data types
644 * (non-integer types)."
645 */
646 _mesa_glsl_error(loc, state, "type mismatch");
647 return glsl_type::error_type;
648 }
649
650
651 static const struct glsl_type *
652 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
653 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
654 {
655 const glsl_type *type_a = value_a->type;
656 const glsl_type *type_b = value_b->type;
657
658 /* From GLSL 1.50 spec, page 56:
659 * "The relational operators greater than (>), less than (<), greater
660 * than or equal (>=), and less than or equal (<=) operate only on
661 * scalar integer and scalar floating-point expressions."
662 */
663 if (!type_a->is_numeric()
664 || !type_b->is_numeric()
665 || !type_a->is_scalar()
666 || !type_b->is_scalar()) {
667 _mesa_glsl_error(loc, state,
668 "operands to relational operators must be scalar and "
669 "numeric");
670 return glsl_type::error_type;
671 }
672
673 /* "Either the operands' types must match, or the conversions from
674 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
675 * operand, after which the types must match."
676 */
677 if (!apply_implicit_conversion(type_a, value_b, state)
678 && !apply_implicit_conversion(type_b, value_a, state)) {
679 _mesa_glsl_error(loc, state,
680 "could not implicitly convert operands to "
681 "relational operator");
682 return glsl_type::error_type;
683 }
684 type_a = value_a->type;
685 type_b = value_b->type;
686
687 if (type_a->base_type != type_b->base_type) {
688 _mesa_glsl_error(loc, state, "base type mismatch");
689 return glsl_type::error_type;
690 }
691
692 /* "The result is scalar Boolean."
693 */
694 return glsl_type::bool_type;
695 }
696
697 /**
698 * \brief Return the result type of a bit-shift operation.
699 *
700 * If the given types to the bit-shift operator are invalid, return
701 * glsl_type::error_type.
702 *
703 * \param type_a Type of LHS of bit-shift op
704 * \param type_b Type of RHS of bit-shift op
705 */
706 static const struct glsl_type *
707 shift_result_type(const struct glsl_type *type_a,
708 const struct glsl_type *type_b,
709 ast_operators op,
710 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
711 {
712 if (!state->check_bitwise_operations_allowed(loc)) {
713 return glsl_type::error_type;
714 }
715
716 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
717 *
718 * "The shift operators (<<) and (>>). For both operators, the operands
719 * must be signed or unsigned integers or integer vectors. One operand
720 * can be signed while the other is unsigned."
721 */
722 if (!type_a->is_integer()) {
723 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
724 "integer vector", ast_expression::operator_string(op));
725 return glsl_type::error_type;
726
727 }
728 if (!type_b->is_integer()) {
729 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
730 "integer vector", ast_expression::operator_string(op));
731 return glsl_type::error_type;
732 }
733
734 /* "If the first operand is a scalar, the second operand has to be
735 * a scalar as well."
736 */
737 if (type_a->is_scalar() && !type_b->is_scalar()) {
738 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
739 "second must be scalar as well",
740 ast_expression::operator_string(op));
741 return glsl_type::error_type;
742 }
743
744 /* If both operands are vectors, check that they have same number of
745 * elements.
746 */
747 if (type_a->is_vector() &&
748 type_b->is_vector() &&
749 type_a->vector_elements != type_b->vector_elements) {
750 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
751 "have same number of elements",
752 ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "In all cases, the resulting type will be the same type as the left
757 * operand."
758 */
759 return type_a;
760 }
761
762 /**
763 * Returns the innermost array index expression in an rvalue tree.
764 * This is the largest indexing level -- if an array of blocks, then
765 * it is the block index rather than an indexing expression for an
766 * array-typed member of an array of blocks.
767 */
768 static ir_rvalue *
769 find_innermost_array_index(ir_rvalue *rv)
770 {
771 ir_dereference_array *last = NULL;
772 while (rv) {
773 if (rv->as_dereference_array()) {
774 last = rv->as_dereference_array();
775 rv = last->array;
776 } else if (rv->as_dereference_record())
777 rv = rv->as_dereference_record()->record;
778 else if (rv->as_swizzle())
779 rv = rv->as_swizzle()->val;
780 else
781 rv = NULL;
782 }
783
784 if (last)
785 return last->array_index;
786
787 return NULL;
788 }
789
790 /**
791 * Validates that a value can be assigned to a location with a specified type
792 *
793 * Validates that \c rhs can be assigned to some location. If the types are
794 * not an exact match but an automatic conversion is possible, \c rhs will be
795 * converted.
796 *
797 * \return
798 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
799 * Otherwise the actual RHS to be assigned will be returned. This may be
800 * \c rhs, or it may be \c rhs after some type conversion.
801 *
802 * \note
803 * In addition to being used for assignments, this function is used to
804 * type-check return values.
805 */
806 static ir_rvalue *
807 validate_assignment(struct _mesa_glsl_parse_state *state,
808 YYLTYPE loc, ir_rvalue *lhs,
809 ir_rvalue *rhs, bool is_initializer)
810 {
811 /* If there is already some error in the RHS, just return it. Anything
812 * else will lead to an avalanche of error message back to the user.
813 */
814 if (rhs->type->is_error())
815 return rhs;
816
817 /* In the Tessellation Control Shader:
818 * If a per-vertex output variable is used as an l-value, it is an error
819 * if the expression indicating the vertex number is not the identifier
820 * `gl_InvocationID`.
821 */
822 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
823 ir_variable *var = lhs->variable_referenced();
824 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
825 ir_rvalue *index = find_innermost_array_index(lhs);
826 ir_variable *index_var = index ? index->variable_referenced() : NULL;
827 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
828 _mesa_glsl_error(&loc, state,
829 "Tessellation control shader outputs can only "
830 "be indexed by gl_InvocationID");
831 return NULL;
832 }
833 }
834 }
835
836 /* If the types are identical, the assignment can trivially proceed.
837 */
838 if (rhs->type == lhs->type)
839 return rhs;
840
841 /* If the array element types are the same and the LHS is unsized,
842 * the assignment is okay for initializers embedded in variable
843 * declarations.
844 *
845 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
846 * is handled by ir_dereference::is_lvalue.
847 */
848 const glsl_type *lhs_t = lhs->type;
849 const glsl_type *rhs_t = rhs->type;
850 bool unsized_array = false;
851 while(lhs_t->is_array()) {
852 if (rhs_t == lhs_t)
853 break; /* the rest of the inner arrays match so break out early */
854 if (!rhs_t->is_array()) {
855 unsized_array = false;
856 break; /* number of dimensions mismatch */
857 }
858 if (lhs_t->length == rhs_t->length) {
859 lhs_t = lhs_t->fields.array;
860 rhs_t = rhs_t->fields.array;
861 continue;
862 } else if (lhs_t->is_unsized_array()) {
863 unsized_array = true;
864 } else {
865 unsized_array = false;
866 break; /* sized array mismatch */
867 }
868 lhs_t = lhs_t->fields.array;
869 rhs_t = rhs_t->fields.array;
870 }
871 if (unsized_array) {
872 if (is_initializer) {
873 return rhs;
874 } else {
875 _mesa_glsl_error(&loc, state,
876 "implicitly sized arrays cannot be assigned");
877 return NULL;
878 }
879 }
880
881 /* Check for implicit conversion in GLSL 1.20 */
882 if (apply_implicit_conversion(lhs->type, rhs, state)) {
883 if (rhs->type == lhs->type)
884 return rhs;
885 }
886
887 _mesa_glsl_error(&loc, state,
888 "%s of type %s cannot be assigned to "
889 "variable of type %s",
890 is_initializer ? "initializer" : "value",
891 rhs->type->name, lhs->type->name);
892
893 return NULL;
894 }
895
896 static void
897 mark_whole_array_access(ir_rvalue *access)
898 {
899 ir_dereference_variable *deref = access->as_dereference_variable();
900
901 if (deref && deref->var) {
902 deref->var->data.max_array_access = deref->type->length - 1;
903 }
904 }
905
906 static bool
907 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
908 const char *non_lvalue_description,
909 ir_rvalue *lhs, ir_rvalue *rhs,
910 ir_rvalue **out_rvalue, bool needs_rvalue,
911 bool is_initializer,
912 YYLTYPE lhs_loc)
913 {
914 void *ctx = state;
915 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
916
917 ir_variable *lhs_var = lhs->variable_referenced();
918 if (lhs_var)
919 lhs_var->data.assigned = true;
920
921 if (!error_emitted) {
922 if (non_lvalue_description != NULL) {
923 _mesa_glsl_error(&lhs_loc, state,
924 "assignment to %s",
925 non_lvalue_description);
926 error_emitted = true;
927 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
928 (lhs_var->data.mode == ir_var_shader_storage &&
929 lhs_var->data.image_read_only))) {
930 /* We can have image_read_only set on both images and buffer variables,
931 * but in the former there is a distinction between assignments to
932 * the variable itself (read_only) and to the memory they point to
933 * (image_read_only), while in the case of buffer variables there is
934 * no such distinction, that is why this check here is limited to
935 * buffer variables alone.
936 */
937 _mesa_glsl_error(&lhs_loc, state,
938 "assignment to read-only variable '%s'",
939 lhs_var->name);
940 error_emitted = true;
941 } else if (lhs->type->is_array() &&
942 !state->check_version(120, 300, &lhs_loc,
943 "whole array assignment forbidden")) {
944 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
945 *
946 * "Other binary or unary expressions, non-dereferenced
947 * arrays, function names, swizzles with repeated fields,
948 * and constants cannot be l-values."
949 *
950 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
951 */
952 error_emitted = true;
953 } else if (!lhs->is_lvalue()) {
954 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
955 error_emitted = true;
956 }
957 }
958
959 ir_rvalue *new_rhs =
960 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
961 if (new_rhs != NULL) {
962 rhs = new_rhs;
963
964 /* If the LHS array was not declared with a size, it takes it size from
965 * the RHS. If the LHS is an l-value and a whole array, it must be a
966 * dereference of a variable. Any other case would require that the LHS
967 * is either not an l-value or not a whole array.
968 */
969 if (lhs->type->is_unsized_array()) {
970 ir_dereference *const d = lhs->as_dereference();
971
972 assert(d != NULL);
973
974 ir_variable *const var = d->variable_referenced();
975
976 assert(var != NULL);
977
978 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
979 /* FINISHME: This should actually log the location of the RHS. */
980 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
981 "previous access",
982 var->data.max_array_access);
983 }
984
985 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
986 rhs->type->array_size());
987 d->type = var->type;
988 }
989 if (lhs->type->is_array()) {
990 mark_whole_array_access(rhs);
991 mark_whole_array_access(lhs);
992 }
993 }
994
995 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
996 * but not post_inc) need the converted assigned value as an rvalue
997 * to handle things like:
998 *
999 * i = j += 1;
1000 */
1001 if (needs_rvalue) {
1002 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1003 ir_var_temporary);
1004 instructions->push_tail(var);
1005 instructions->push_tail(assign(var, rhs));
1006
1007 if (!error_emitted) {
1008 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1009 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1010 }
1011 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1012
1013 *out_rvalue = rvalue;
1014 } else {
1015 if (!error_emitted)
1016 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1017 *out_rvalue = NULL;
1018 }
1019
1020 return error_emitted;
1021 }
1022
1023 static ir_rvalue *
1024 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1025 {
1026 void *ctx = ralloc_parent(lvalue);
1027 ir_variable *var;
1028
1029 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1030 ir_var_temporary);
1031 instructions->push_tail(var);
1032
1033 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1034 lvalue));
1035
1036 return new(ctx) ir_dereference_variable(var);
1037 }
1038
1039
1040 ir_rvalue *
1041 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1042 {
1043 (void) instructions;
1044 (void) state;
1045
1046 return NULL;
1047 }
1048
1049 bool
1050 ast_node::has_sequence_subexpression() const
1051 {
1052 return false;
1053 }
1054
1055 void
1056 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1057 struct _mesa_glsl_parse_state *state)
1058 {
1059 (void)hir(instructions, state);
1060 }
1061
1062 void
1063 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 static ir_rvalue *
1070 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1071 {
1072 int join_op;
1073 ir_rvalue *cmp = NULL;
1074
1075 if (operation == ir_binop_all_equal)
1076 join_op = ir_binop_logic_and;
1077 else
1078 join_op = ir_binop_logic_or;
1079
1080 switch (op0->type->base_type) {
1081 case GLSL_TYPE_FLOAT:
1082 case GLSL_TYPE_UINT:
1083 case GLSL_TYPE_INT:
1084 case GLSL_TYPE_BOOL:
1085 case GLSL_TYPE_DOUBLE:
1086 return new(mem_ctx) ir_expression(operation, op0, op1);
1087
1088 case GLSL_TYPE_ARRAY: {
1089 for (unsigned int i = 0; i < op0->type->length; i++) {
1090 ir_rvalue *e0, *e1, *result;
1091
1092 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1093 new(mem_ctx) ir_constant(i));
1094 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1095 new(mem_ctx) ir_constant(i));
1096 result = do_comparison(mem_ctx, operation, e0, e1);
1097
1098 if (cmp) {
1099 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1100 } else {
1101 cmp = result;
1102 }
1103 }
1104
1105 mark_whole_array_access(op0);
1106 mark_whole_array_access(op1);
1107 break;
1108 }
1109
1110 case GLSL_TYPE_STRUCT: {
1111 for (unsigned int i = 0; i < op0->type->length; i++) {
1112 ir_rvalue *e0, *e1, *result;
1113 const char *field_name = op0->type->fields.structure[i].name;
1114
1115 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1116 field_name);
1117 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1118 field_name);
1119 result = do_comparison(mem_ctx, operation, e0, e1);
1120
1121 if (cmp) {
1122 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1123 } else {
1124 cmp = result;
1125 }
1126 }
1127 break;
1128 }
1129
1130 case GLSL_TYPE_ERROR:
1131 case GLSL_TYPE_VOID:
1132 case GLSL_TYPE_SAMPLER:
1133 case GLSL_TYPE_IMAGE:
1134 case GLSL_TYPE_INTERFACE:
1135 case GLSL_TYPE_ATOMIC_UINT:
1136 case GLSL_TYPE_SUBROUTINE:
1137 case GLSL_TYPE_FUNCTION:
1138 /* I assume a comparison of a struct containing a sampler just
1139 * ignores the sampler present in the type.
1140 */
1141 break;
1142 }
1143
1144 if (cmp == NULL)
1145 cmp = new(mem_ctx) ir_constant(true);
1146
1147 return cmp;
1148 }
1149
1150 /* For logical operations, we want to ensure that the operands are
1151 * scalar booleans. If it isn't, emit an error and return a constant
1152 * boolean to avoid triggering cascading error messages.
1153 */
1154 ir_rvalue *
1155 get_scalar_boolean_operand(exec_list *instructions,
1156 struct _mesa_glsl_parse_state *state,
1157 ast_expression *parent_expr,
1158 int operand,
1159 const char *operand_name,
1160 bool *error_emitted)
1161 {
1162 ast_expression *expr = parent_expr->subexpressions[operand];
1163 void *ctx = state;
1164 ir_rvalue *val = expr->hir(instructions, state);
1165
1166 if (val->type->is_boolean() && val->type->is_scalar())
1167 return val;
1168
1169 if (!*error_emitted) {
1170 YYLTYPE loc = expr->get_location();
1171 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1172 operand_name,
1173 parent_expr->operator_string(parent_expr->oper));
1174 *error_emitted = true;
1175 }
1176
1177 return new(ctx) ir_constant(true);
1178 }
1179
1180 /**
1181 * If name refers to a builtin array whose maximum allowed size is less than
1182 * size, report an error and return true. Otherwise return false.
1183 */
1184 void
1185 check_builtin_array_max_size(const char *name, unsigned size,
1186 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1187 {
1188 if ((strcmp("gl_TexCoord", name) == 0)
1189 && (size > state->Const.MaxTextureCoords)) {
1190 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1191 *
1192 * "The size [of gl_TexCoord] can be at most
1193 * gl_MaxTextureCoords."
1194 */
1195 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1196 "be larger than gl_MaxTextureCoords (%u)",
1197 state->Const.MaxTextureCoords);
1198 } else if (strcmp("gl_ClipDistance", name) == 0
1199 && size > state->Const.MaxClipPlanes) {
1200 /* From section 7.1 (Vertex Shader Special Variables) of the
1201 * GLSL 1.30 spec:
1202 *
1203 * "The gl_ClipDistance array is predeclared as unsized and
1204 * must be sized by the shader either redeclaring it with a
1205 * size or indexing it only with integral constant
1206 * expressions. ... The size can be at most
1207 * gl_MaxClipDistances."
1208 */
1209 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1210 "be larger than gl_MaxClipDistances (%u)",
1211 state->Const.MaxClipPlanes);
1212 }
1213 }
1214
1215 /**
1216 * Create the constant 1, of a which is appropriate for incrementing and
1217 * decrementing values of the given GLSL type. For example, if type is vec4,
1218 * this creates a constant value of 1.0 having type float.
1219 *
1220 * If the given type is invalid for increment and decrement operators, return
1221 * a floating point 1--the error will be detected later.
1222 */
1223 static ir_rvalue *
1224 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1225 {
1226 switch (type->base_type) {
1227 case GLSL_TYPE_UINT:
1228 return new(ctx) ir_constant((unsigned) 1);
1229 case GLSL_TYPE_INT:
1230 return new(ctx) ir_constant(1);
1231 default:
1232 case GLSL_TYPE_FLOAT:
1233 return new(ctx) ir_constant(1.0f);
1234 }
1235 }
1236
1237 ir_rvalue *
1238 ast_expression::hir(exec_list *instructions,
1239 struct _mesa_glsl_parse_state *state)
1240 {
1241 return do_hir(instructions, state, true);
1242 }
1243
1244 void
1245 ast_expression::hir_no_rvalue(exec_list *instructions,
1246 struct _mesa_glsl_parse_state *state)
1247 {
1248 do_hir(instructions, state, false);
1249 }
1250
1251 void
1252 ast_expression::set_is_lhs(bool new_value)
1253 {
1254 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1255 * if we lack a identifier we can just skip it.
1256 */
1257 if (this->primary_expression.identifier == NULL)
1258 return;
1259
1260 this->is_lhs = new_value;
1261
1262 /* We need to go through the subexpressions tree to cover cases like
1263 * ast_field_selection
1264 */
1265 if (this->subexpressions[0] != NULL)
1266 this->subexpressions[0]->set_is_lhs(new_value);
1267 }
1268
1269 ir_rvalue *
1270 ast_expression::do_hir(exec_list *instructions,
1271 struct _mesa_glsl_parse_state *state,
1272 bool needs_rvalue)
1273 {
1274 void *ctx = state;
1275 static const int operations[AST_NUM_OPERATORS] = {
1276 -1, /* ast_assign doesn't convert to ir_expression. */
1277 -1, /* ast_plus doesn't convert to ir_expression. */
1278 ir_unop_neg,
1279 ir_binop_add,
1280 ir_binop_sub,
1281 ir_binop_mul,
1282 ir_binop_div,
1283 ir_binop_mod,
1284 ir_binop_lshift,
1285 ir_binop_rshift,
1286 ir_binop_less,
1287 ir_binop_greater,
1288 ir_binop_lequal,
1289 ir_binop_gequal,
1290 ir_binop_all_equal,
1291 ir_binop_any_nequal,
1292 ir_binop_bit_and,
1293 ir_binop_bit_xor,
1294 ir_binop_bit_or,
1295 ir_unop_bit_not,
1296 ir_binop_logic_and,
1297 ir_binop_logic_xor,
1298 ir_binop_logic_or,
1299 ir_unop_logic_not,
1300
1301 /* Note: The following block of expression types actually convert
1302 * to multiple IR instructions.
1303 */
1304 ir_binop_mul, /* ast_mul_assign */
1305 ir_binop_div, /* ast_div_assign */
1306 ir_binop_mod, /* ast_mod_assign */
1307 ir_binop_add, /* ast_add_assign */
1308 ir_binop_sub, /* ast_sub_assign */
1309 ir_binop_lshift, /* ast_ls_assign */
1310 ir_binop_rshift, /* ast_rs_assign */
1311 ir_binop_bit_and, /* ast_and_assign */
1312 ir_binop_bit_xor, /* ast_xor_assign */
1313 ir_binop_bit_or, /* ast_or_assign */
1314
1315 -1, /* ast_conditional doesn't convert to ir_expression. */
1316 ir_binop_add, /* ast_pre_inc. */
1317 ir_binop_sub, /* ast_pre_dec. */
1318 ir_binop_add, /* ast_post_inc. */
1319 ir_binop_sub, /* ast_post_dec. */
1320 -1, /* ast_field_selection doesn't conv to ir_expression. */
1321 -1, /* ast_array_index doesn't convert to ir_expression. */
1322 -1, /* ast_function_call doesn't conv to ir_expression. */
1323 -1, /* ast_identifier doesn't convert to ir_expression. */
1324 -1, /* ast_int_constant doesn't convert to ir_expression. */
1325 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1326 -1, /* ast_float_constant doesn't conv to ir_expression. */
1327 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1328 -1, /* ast_sequence doesn't convert to ir_expression. */
1329 };
1330 ir_rvalue *result = NULL;
1331 ir_rvalue *op[3];
1332 const struct glsl_type *type; /* a temporary variable for switch cases */
1333 bool error_emitted = false;
1334 YYLTYPE loc;
1335
1336 loc = this->get_location();
1337
1338 switch (this->oper) {
1339 case ast_aggregate:
1340 assert(!"ast_aggregate: Should never get here.");
1341 break;
1342
1343 case ast_assign: {
1344 this->subexpressions[0]->set_is_lhs(true);
1345 op[0] = this->subexpressions[0]->hir(instructions, state);
1346 op[1] = this->subexpressions[1]->hir(instructions, state);
1347
1348 error_emitted =
1349 do_assignment(instructions, state,
1350 this->subexpressions[0]->non_lvalue_description,
1351 op[0], op[1], &result, needs_rvalue, false,
1352 this->subexpressions[0]->get_location());
1353 break;
1354 }
1355
1356 case ast_plus:
1357 op[0] = this->subexpressions[0]->hir(instructions, state);
1358
1359 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1360
1361 error_emitted = type->is_error();
1362
1363 result = op[0];
1364 break;
1365
1366 case ast_neg:
1367 op[0] = this->subexpressions[0]->hir(instructions, state);
1368
1369 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1370
1371 error_emitted = type->is_error();
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], NULL);
1375 break;
1376
1377 case ast_add:
1378 case ast_sub:
1379 case ast_mul:
1380 case ast_div:
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382 op[1] = this->subexpressions[1]->hir(instructions, state);
1383
1384 type = arithmetic_result_type(op[0], op[1],
1385 (this->oper == ast_mul),
1386 state, & loc);
1387 error_emitted = type->is_error();
1388
1389 result = new(ctx) ir_expression(operations[this->oper], type,
1390 op[0], op[1]);
1391 break;
1392
1393 case ast_mod:
1394 op[0] = this->subexpressions[0]->hir(instructions, state);
1395 op[1] = this->subexpressions[1]->hir(instructions, state);
1396
1397 type = modulus_result_type(op[0], op[1], state, &loc);
1398
1399 assert(operations[this->oper] == ir_binop_mod);
1400
1401 result = new(ctx) ir_expression(operations[this->oper], type,
1402 op[0], op[1]);
1403 error_emitted = type->is_error();
1404 break;
1405
1406 case ast_lshift:
1407 case ast_rshift:
1408 if (!state->check_bitwise_operations_allowed(&loc)) {
1409 error_emitted = true;
1410 }
1411
1412 op[0] = this->subexpressions[0]->hir(instructions, state);
1413 op[1] = this->subexpressions[1]->hir(instructions, state);
1414 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1415 &loc);
1416 result = new(ctx) ir_expression(operations[this->oper], type,
1417 op[0], op[1]);
1418 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1419 break;
1420
1421 case ast_less:
1422 case ast_greater:
1423 case ast_lequal:
1424 case ast_gequal:
1425 op[0] = this->subexpressions[0]->hir(instructions, state);
1426 op[1] = this->subexpressions[1]->hir(instructions, state);
1427
1428 type = relational_result_type(op[0], op[1], state, & loc);
1429
1430 /* The relational operators must either generate an error or result
1431 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1432 */
1433 assert(type->is_error()
1434 || ((type->base_type == GLSL_TYPE_BOOL)
1435 && type->is_scalar()));
1436
1437 result = new(ctx) ir_expression(operations[this->oper], type,
1438 op[0], op[1]);
1439 error_emitted = type->is_error();
1440 break;
1441
1442 case ast_nequal:
1443 case ast_equal:
1444 op[0] = this->subexpressions[0]->hir(instructions, state);
1445 op[1] = this->subexpressions[1]->hir(instructions, state);
1446
1447 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1448 *
1449 * "The equality operators equal (==), and not equal (!=)
1450 * operate on all types. They result in a scalar Boolean. If
1451 * the operand types do not match, then there must be a
1452 * conversion from Section 4.1.10 "Implicit Conversions"
1453 * applied to one operand that can make them match, in which
1454 * case this conversion is done."
1455 */
1456
1457 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1458 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1459 "no operation `%1$s' exists that takes a left-hand "
1460 "operand of type 'void' or a right operand of type "
1461 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1462 error_emitted = true;
1463 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1464 && !apply_implicit_conversion(op[1]->type, op[0], state))
1465 || (op[0]->type != op[1]->type)) {
1466 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1467 "type", (this->oper == ast_equal) ? "==" : "!=");
1468 error_emitted = true;
1469 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1470 !state->check_version(120, 300, &loc,
1471 "array comparisons forbidden")) {
1472 error_emitted = true;
1473 } else if ((op[0]->type->contains_opaque() ||
1474 op[1]->type->contains_opaque())) {
1475 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1476 error_emitted = true;
1477 }
1478
1479 if (error_emitted) {
1480 result = new(ctx) ir_constant(false);
1481 } else {
1482 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1483 assert(result->type == glsl_type::bool_type);
1484 }
1485 break;
1486
1487 case ast_bit_and:
1488 case ast_bit_xor:
1489 case ast_bit_or:
1490 op[0] = this->subexpressions[0]->hir(instructions, state);
1491 op[1] = this->subexpressions[1]->hir(instructions, state);
1492 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1493 result = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1496 break;
1497
1498 case ast_bit_not:
1499 op[0] = this->subexpressions[0]->hir(instructions, state);
1500
1501 if (!state->check_bitwise_operations_allowed(&loc)) {
1502 error_emitted = true;
1503 }
1504
1505 if (!op[0]->type->is_integer()) {
1506 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1507 error_emitted = true;
1508 }
1509
1510 type = error_emitted ? glsl_type::error_type : op[0]->type;
1511 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1512 break;
1513
1514 case ast_logic_and: {
1515 exec_list rhs_instructions;
1516 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1517 "LHS", &error_emitted);
1518 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1519 "RHS", &error_emitted);
1520
1521 if (rhs_instructions.is_empty()) {
1522 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1523 type = result->type;
1524 } else {
1525 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1526 "and_tmp",
1527 ir_var_temporary);
1528 instructions->push_tail(tmp);
1529
1530 ir_if *const stmt = new(ctx) ir_if(op[0]);
1531 instructions->push_tail(stmt);
1532
1533 stmt->then_instructions.append_list(&rhs_instructions);
1534 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1535 ir_assignment *const then_assign =
1536 new(ctx) ir_assignment(then_deref, op[1]);
1537 stmt->then_instructions.push_tail(then_assign);
1538
1539 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1540 ir_assignment *const else_assign =
1541 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1542 stmt->else_instructions.push_tail(else_assign);
1543
1544 result = new(ctx) ir_dereference_variable(tmp);
1545 type = tmp->type;
1546 }
1547 break;
1548 }
1549
1550 case ast_logic_or: {
1551 exec_list rhs_instructions;
1552 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1553 "LHS", &error_emitted);
1554 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1555 "RHS", &error_emitted);
1556
1557 if (rhs_instructions.is_empty()) {
1558 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1559 type = result->type;
1560 } else {
1561 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1562 "or_tmp",
1563 ir_var_temporary);
1564 instructions->push_tail(tmp);
1565
1566 ir_if *const stmt = new(ctx) ir_if(op[0]);
1567 instructions->push_tail(stmt);
1568
1569 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1570 ir_assignment *const then_assign =
1571 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1572 stmt->then_instructions.push_tail(then_assign);
1573
1574 stmt->else_instructions.append_list(&rhs_instructions);
1575 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1576 ir_assignment *const else_assign =
1577 new(ctx) ir_assignment(else_deref, op[1]);
1578 stmt->else_instructions.push_tail(else_assign);
1579
1580 result = new(ctx) ir_dereference_variable(tmp);
1581 type = tmp->type;
1582 }
1583 break;
1584 }
1585
1586 case ast_logic_xor:
1587 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1588 *
1589 * "The logical binary operators and (&&), or ( | | ), and
1590 * exclusive or (^^). They operate only on two Boolean
1591 * expressions and result in a Boolean expression."
1592 */
1593 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1594 &error_emitted);
1595 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1596 &error_emitted);
1597
1598 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1599 op[0], op[1]);
1600 break;
1601
1602 case ast_logic_not:
1603 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1604 "operand", &error_emitted);
1605
1606 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1607 op[0], NULL);
1608 break;
1609
1610 case ast_mul_assign:
1611 case ast_div_assign:
1612 case ast_add_assign:
1613 case ast_sub_assign: {
1614 this->subexpressions[0]->set_is_lhs(true);
1615 op[0] = this->subexpressions[0]->hir(instructions, state);
1616 op[1] = this->subexpressions[1]->hir(instructions, state);
1617
1618 type = arithmetic_result_type(op[0], op[1],
1619 (this->oper == ast_mul_assign),
1620 state, & loc);
1621
1622 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1623 op[0], op[1]);
1624
1625 error_emitted =
1626 do_assignment(instructions, state,
1627 this->subexpressions[0]->non_lvalue_description,
1628 op[0]->clone(ctx, NULL), temp_rhs,
1629 &result, needs_rvalue, false,
1630 this->subexpressions[0]->get_location());
1631
1632 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1633 * explicitly test for this because none of the binary expression
1634 * operators allow array operands either.
1635 */
1636
1637 break;
1638 }
1639
1640 case ast_mod_assign: {
1641 this->subexpressions[0]->set_is_lhs(true);
1642 op[0] = this->subexpressions[0]->hir(instructions, state);
1643 op[1] = this->subexpressions[1]->hir(instructions, state);
1644
1645 type = modulus_result_type(op[0], op[1], state, &loc);
1646
1647 assert(operations[this->oper] == ir_binop_mod);
1648
1649 ir_rvalue *temp_rhs;
1650 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1651 op[0], op[1]);
1652
1653 error_emitted =
1654 do_assignment(instructions, state,
1655 this->subexpressions[0]->non_lvalue_description,
1656 op[0]->clone(ctx, NULL), temp_rhs,
1657 &result, needs_rvalue, false,
1658 this->subexpressions[0]->get_location());
1659 break;
1660 }
1661
1662 case ast_ls_assign:
1663 case ast_rs_assign: {
1664 this->subexpressions[0]->set_is_lhs(true);
1665 op[0] = this->subexpressions[0]->hir(instructions, state);
1666 op[1] = this->subexpressions[1]->hir(instructions, state);
1667 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1668 &loc);
1669 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1670 type, op[0], op[1]);
1671 error_emitted =
1672 do_assignment(instructions, state,
1673 this->subexpressions[0]->non_lvalue_description,
1674 op[0]->clone(ctx, NULL), temp_rhs,
1675 &result, needs_rvalue, false,
1676 this->subexpressions[0]->get_location());
1677 break;
1678 }
1679
1680 case ast_and_assign:
1681 case ast_xor_assign:
1682 case ast_or_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1688 type, op[0], op[1]);
1689 error_emitted =
1690 do_assignment(instructions, state,
1691 this->subexpressions[0]->non_lvalue_description,
1692 op[0]->clone(ctx, NULL), temp_rhs,
1693 &result, needs_rvalue, false,
1694 this->subexpressions[0]->get_location());
1695 break;
1696 }
1697
1698 case ast_conditional: {
1699 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1700 *
1701 * "The ternary selection operator (?:). It operates on three
1702 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1703 * first expression, which must result in a scalar Boolean."
1704 */
1705 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1706 "condition", &error_emitted);
1707
1708 /* The :? operator is implemented by generating an anonymous temporary
1709 * followed by an if-statement. The last instruction in each branch of
1710 * the if-statement assigns a value to the anonymous temporary. This
1711 * temporary is the r-value of the expression.
1712 */
1713 exec_list then_instructions;
1714 exec_list else_instructions;
1715
1716 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1717 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1718
1719 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1720 *
1721 * "The second and third expressions can be any type, as
1722 * long their types match, or there is a conversion in
1723 * Section 4.1.10 "Implicit Conversions" that can be applied
1724 * to one of the expressions to make their types match. This
1725 * resulting matching type is the type of the entire
1726 * expression."
1727 */
1728 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1729 && !apply_implicit_conversion(op[2]->type, op[1], state))
1730 || (op[1]->type != op[2]->type)) {
1731 YYLTYPE loc = this->subexpressions[1]->get_location();
1732
1733 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1734 "operator must have matching types");
1735 error_emitted = true;
1736 type = glsl_type::error_type;
1737 } else {
1738 type = op[1]->type;
1739 }
1740
1741 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1742 *
1743 * "The second and third expressions must be the same type, but can
1744 * be of any type other than an array."
1745 */
1746 if (type->is_array() &&
1747 !state->check_version(120, 300, &loc,
1748 "second and third operands of ?: operator "
1749 "cannot be arrays")) {
1750 error_emitted = true;
1751 }
1752
1753 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1754 *
1755 * "Except for array indexing, structure member selection, and
1756 * parentheses, opaque variables are not allowed to be operands in
1757 * expressions; such use results in a compile-time error."
1758 */
1759 if (type->contains_opaque()) {
1760 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1761 "of the ?: operator");
1762 error_emitted = true;
1763 }
1764
1765 ir_constant *cond_val = op[0]->constant_expression_value();
1766
1767 if (then_instructions.is_empty()
1768 && else_instructions.is_empty()
1769 && cond_val != NULL) {
1770 result = cond_val->value.b[0] ? op[1] : op[2];
1771 } else {
1772 /* The copy to conditional_tmp reads the whole array. */
1773 if (type->is_array()) {
1774 mark_whole_array_access(op[1]);
1775 mark_whole_array_access(op[2]);
1776 }
1777
1778 ir_variable *const tmp =
1779 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1780 instructions->push_tail(tmp);
1781
1782 ir_if *const stmt = new(ctx) ir_if(op[0]);
1783 instructions->push_tail(stmt);
1784
1785 then_instructions.move_nodes_to(& stmt->then_instructions);
1786 ir_dereference *const then_deref =
1787 new(ctx) ir_dereference_variable(tmp);
1788 ir_assignment *const then_assign =
1789 new(ctx) ir_assignment(then_deref, op[1]);
1790 stmt->then_instructions.push_tail(then_assign);
1791
1792 else_instructions.move_nodes_to(& stmt->else_instructions);
1793 ir_dereference *const else_deref =
1794 new(ctx) ir_dereference_variable(tmp);
1795 ir_assignment *const else_assign =
1796 new(ctx) ir_assignment(else_deref, op[2]);
1797 stmt->else_instructions.push_tail(else_assign);
1798
1799 result = new(ctx) ir_dereference_variable(tmp);
1800 }
1801 break;
1802 }
1803
1804 case ast_pre_inc:
1805 case ast_pre_dec: {
1806 this->non_lvalue_description = (this->oper == ast_pre_inc)
1807 ? "pre-increment operation" : "pre-decrement operation";
1808
1809 op[0] = this->subexpressions[0]->hir(instructions, state);
1810 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1811
1812 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1813
1814 ir_rvalue *temp_rhs;
1815 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1816 op[0], op[1]);
1817
1818 error_emitted =
1819 do_assignment(instructions, state,
1820 this->subexpressions[0]->non_lvalue_description,
1821 op[0]->clone(ctx, NULL), temp_rhs,
1822 &result, needs_rvalue, false,
1823 this->subexpressions[0]->get_location());
1824 break;
1825 }
1826
1827 case ast_post_inc:
1828 case ast_post_dec: {
1829 this->non_lvalue_description = (this->oper == ast_post_inc)
1830 ? "post-increment operation" : "post-decrement operation";
1831 op[0] = this->subexpressions[0]->hir(instructions, state);
1832 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1833
1834 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1835
1836 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1837
1838 ir_rvalue *temp_rhs;
1839 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1840 op[0], op[1]);
1841
1842 /* Get a temporary of a copy of the lvalue before it's modified.
1843 * This may get thrown away later.
1844 */
1845 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1846
1847 ir_rvalue *junk_rvalue;
1848 error_emitted =
1849 do_assignment(instructions, state,
1850 this->subexpressions[0]->non_lvalue_description,
1851 op[0]->clone(ctx, NULL), temp_rhs,
1852 &junk_rvalue, false, false,
1853 this->subexpressions[0]->get_location());
1854
1855 break;
1856 }
1857
1858 case ast_field_selection:
1859 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1860 break;
1861
1862 case ast_array_index: {
1863 YYLTYPE index_loc = subexpressions[1]->get_location();
1864
1865 /* Getting if an array is being used uninitialized is beyond what we get
1866 * from ir_value.data.assigned. Setting is_lhs as true would force to
1867 * not raise a uninitialized warning when using an array
1868 */
1869 subexpressions[0]->set_is_lhs(true);
1870 op[0] = subexpressions[0]->hir(instructions, state);
1871 op[1] = subexpressions[1]->hir(instructions, state);
1872
1873 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1874 loc, index_loc);
1875
1876 if (result->type->is_error())
1877 error_emitted = true;
1878
1879 break;
1880 }
1881
1882 case ast_unsized_array_dim:
1883 assert(!"ast_unsized_array_dim: Should never get here.");
1884 break;
1885
1886 case ast_function_call:
1887 /* Should *NEVER* get here. ast_function_call should always be handled
1888 * by ast_function_expression::hir.
1889 */
1890 assert(0);
1891 break;
1892
1893 case ast_identifier: {
1894 /* ast_identifier can appear several places in a full abstract syntax
1895 * tree. This particular use must be at location specified in the grammar
1896 * as 'variable_identifier'.
1897 */
1898 ir_variable *var =
1899 state->symbols->get_variable(this->primary_expression.identifier);
1900
1901 if (var != NULL) {
1902 var->data.used = true;
1903 result = new(ctx) ir_dereference_variable(var);
1904
1905 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1906 && !this->is_lhs
1907 && result->variable_referenced()->data.assigned != true) {
1908 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1909 this->primary_expression.identifier);
1910 }
1911 } else {
1912 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1913 this->primary_expression.identifier);
1914
1915 result = ir_rvalue::error_value(ctx);
1916 error_emitted = true;
1917 }
1918 break;
1919 }
1920
1921 case ast_int_constant:
1922 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1923 break;
1924
1925 case ast_uint_constant:
1926 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1927 break;
1928
1929 case ast_float_constant:
1930 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1931 break;
1932
1933 case ast_bool_constant:
1934 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1935 break;
1936
1937 case ast_double_constant:
1938 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1939 break;
1940
1941 case ast_sequence: {
1942 /* It should not be possible to generate a sequence in the AST without
1943 * any expressions in it.
1944 */
1945 assert(!this->expressions.is_empty());
1946
1947 /* The r-value of a sequence is the last expression in the sequence. If
1948 * the other expressions in the sequence do not have side-effects (and
1949 * therefore add instructions to the instruction list), they get dropped
1950 * on the floor.
1951 */
1952 exec_node *previous_tail_pred = NULL;
1953 YYLTYPE previous_operand_loc = loc;
1954
1955 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1956 /* If one of the operands of comma operator does not generate any
1957 * code, we want to emit a warning. At each pass through the loop
1958 * previous_tail_pred will point to the last instruction in the
1959 * stream *before* processing the previous operand. Naturally,
1960 * instructions->tail_pred will point to the last instruction in the
1961 * stream *after* processing the previous operand. If the two
1962 * pointers match, then the previous operand had no effect.
1963 *
1964 * The warning behavior here differs slightly from GCC. GCC will
1965 * only emit a warning if none of the left-hand operands have an
1966 * effect. However, it will emit a warning for each. I believe that
1967 * there are some cases in C (especially with GCC extensions) where
1968 * it is useful to have an intermediate step in a sequence have no
1969 * effect, but I don't think these cases exist in GLSL. Either way,
1970 * it would be a giant hassle to replicate that behavior.
1971 */
1972 if (previous_tail_pred == instructions->tail_pred) {
1973 _mesa_glsl_warning(&previous_operand_loc, state,
1974 "left-hand operand of comma expression has "
1975 "no effect");
1976 }
1977
1978 /* tail_pred is directly accessed instead of using the get_tail()
1979 * method for performance reasons. get_tail() has extra code to
1980 * return NULL when the list is empty. We don't care about that
1981 * here, so using tail_pred directly is fine.
1982 */
1983 previous_tail_pred = instructions->tail_pred;
1984 previous_operand_loc = ast->get_location();
1985
1986 result = ast->hir(instructions, state);
1987 }
1988
1989 /* Any errors should have already been emitted in the loop above.
1990 */
1991 error_emitted = true;
1992 break;
1993 }
1994 }
1995 type = NULL; /* use result->type, not type. */
1996 assert(result != NULL || !needs_rvalue);
1997
1998 if (result && result->type->is_error() && !error_emitted)
1999 _mesa_glsl_error(& loc, state, "type mismatch");
2000
2001 return result;
2002 }
2003
2004 bool
2005 ast_expression::has_sequence_subexpression() const
2006 {
2007 switch (this->oper) {
2008 case ast_plus:
2009 case ast_neg:
2010 case ast_bit_not:
2011 case ast_logic_not:
2012 case ast_pre_inc:
2013 case ast_pre_dec:
2014 case ast_post_inc:
2015 case ast_post_dec:
2016 return this->subexpressions[0]->has_sequence_subexpression();
2017
2018 case ast_assign:
2019 case ast_add:
2020 case ast_sub:
2021 case ast_mul:
2022 case ast_div:
2023 case ast_mod:
2024 case ast_lshift:
2025 case ast_rshift:
2026 case ast_less:
2027 case ast_greater:
2028 case ast_lequal:
2029 case ast_gequal:
2030 case ast_nequal:
2031 case ast_equal:
2032 case ast_bit_and:
2033 case ast_bit_xor:
2034 case ast_bit_or:
2035 case ast_logic_and:
2036 case ast_logic_or:
2037 case ast_logic_xor:
2038 case ast_array_index:
2039 case ast_mul_assign:
2040 case ast_div_assign:
2041 case ast_add_assign:
2042 case ast_sub_assign:
2043 case ast_mod_assign:
2044 case ast_ls_assign:
2045 case ast_rs_assign:
2046 case ast_and_assign:
2047 case ast_xor_assign:
2048 case ast_or_assign:
2049 return this->subexpressions[0]->has_sequence_subexpression() ||
2050 this->subexpressions[1]->has_sequence_subexpression();
2051
2052 case ast_conditional:
2053 return this->subexpressions[0]->has_sequence_subexpression() ||
2054 this->subexpressions[1]->has_sequence_subexpression() ||
2055 this->subexpressions[2]->has_sequence_subexpression();
2056
2057 case ast_sequence:
2058 return true;
2059
2060 case ast_field_selection:
2061 case ast_identifier:
2062 case ast_int_constant:
2063 case ast_uint_constant:
2064 case ast_float_constant:
2065 case ast_bool_constant:
2066 case ast_double_constant:
2067 return false;
2068
2069 case ast_aggregate:
2070 unreachable("ast_aggregate: Should never get here.");
2071
2072 case ast_function_call:
2073 unreachable("should be handled by ast_function_expression::hir");
2074
2075 case ast_unsized_array_dim:
2076 unreachable("ast_unsized_array_dim: Should never get here.");
2077 }
2078
2079 return false;
2080 }
2081
2082 ir_rvalue *
2083 ast_expression_statement::hir(exec_list *instructions,
2084 struct _mesa_glsl_parse_state *state)
2085 {
2086 /* It is possible to have expression statements that don't have an
2087 * expression. This is the solitary semicolon:
2088 *
2089 * for (i = 0; i < 5; i++)
2090 * ;
2091 *
2092 * In this case the expression will be NULL. Test for NULL and don't do
2093 * anything in that case.
2094 */
2095 if (expression != NULL)
2096 expression->hir_no_rvalue(instructions, state);
2097
2098 /* Statements do not have r-values.
2099 */
2100 return NULL;
2101 }
2102
2103
2104 ir_rvalue *
2105 ast_compound_statement::hir(exec_list *instructions,
2106 struct _mesa_glsl_parse_state *state)
2107 {
2108 if (new_scope)
2109 state->symbols->push_scope();
2110
2111 foreach_list_typed (ast_node, ast, link, &this->statements)
2112 ast->hir(instructions, state);
2113
2114 if (new_scope)
2115 state->symbols->pop_scope();
2116
2117 /* Compound statements do not have r-values.
2118 */
2119 return NULL;
2120 }
2121
2122 /**
2123 * Evaluate the given exec_node (which should be an ast_node representing
2124 * a single array dimension) and return its integer value.
2125 */
2126 static unsigned
2127 process_array_size(exec_node *node,
2128 struct _mesa_glsl_parse_state *state)
2129 {
2130 exec_list dummy_instructions;
2131
2132 ast_node *array_size = exec_node_data(ast_node, node, link);
2133
2134 /**
2135 * Dimensions other than the outermost dimension can by unsized if they
2136 * are immediately sized by a constructor or initializer.
2137 */
2138 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2139 return 0;
2140
2141 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2142 YYLTYPE loc = array_size->get_location();
2143
2144 if (ir == NULL) {
2145 _mesa_glsl_error(& loc, state,
2146 "array size could not be resolved");
2147 return 0;
2148 }
2149
2150 if (!ir->type->is_integer()) {
2151 _mesa_glsl_error(& loc, state,
2152 "array size must be integer type");
2153 return 0;
2154 }
2155
2156 if (!ir->type->is_scalar()) {
2157 _mesa_glsl_error(& loc, state,
2158 "array size must be scalar type");
2159 return 0;
2160 }
2161
2162 ir_constant *const size = ir->constant_expression_value();
2163 if (size == NULL ||
2164 (state->is_version(120, 300) &&
2165 array_size->has_sequence_subexpression())) {
2166 _mesa_glsl_error(& loc, state, "array size must be a "
2167 "constant valued expression");
2168 return 0;
2169 }
2170
2171 if (size->value.i[0] <= 0) {
2172 _mesa_glsl_error(& loc, state, "array size must be > 0");
2173 return 0;
2174 }
2175
2176 assert(size->type == ir->type);
2177
2178 /* If the array size is const (and we've verified that
2179 * it is) then no instructions should have been emitted
2180 * when we converted it to HIR. If they were emitted,
2181 * then either the array size isn't const after all, or
2182 * we are emitting unnecessary instructions.
2183 */
2184 assert(dummy_instructions.is_empty());
2185
2186 return size->value.u[0];
2187 }
2188
2189 static const glsl_type *
2190 process_array_type(YYLTYPE *loc, const glsl_type *base,
2191 ast_array_specifier *array_specifier,
2192 struct _mesa_glsl_parse_state *state)
2193 {
2194 const glsl_type *array_type = base;
2195
2196 if (array_specifier != NULL) {
2197 if (base->is_array()) {
2198
2199 /* From page 19 (page 25) of the GLSL 1.20 spec:
2200 *
2201 * "Only one-dimensional arrays may be declared."
2202 */
2203 if (!state->check_arrays_of_arrays_allowed(loc)) {
2204 return glsl_type::error_type;
2205 }
2206 }
2207
2208 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2209 !node->is_head_sentinel(); node = node->prev) {
2210 unsigned array_size = process_array_size(node, state);
2211 array_type = glsl_type::get_array_instance(array_type, array_size);
2212 }
2213 }
2214
2215 return array_type;
2216 }
2217
2218 static bool
2219 precision_qualifier_allowed(const glsl_type *type)
2220 {
2221 /* Precision qualifiers apply to floating point, integer and opaque
2222 * types.
2223 *
2224 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2225 * "Any floating point or any integer declaration can have the type
2226 * preceded by one of these precision qualifiers [...] Literal
2227 * constants do not have precision qualifiers. Neither do Boolean
2228 * variables.
2229 *
2230 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2231 * spec also says:
2232 *
2233 * "Precision qualifiers are added for code portability with OpenGL
2234 * ES, not for functionality. They have the same syntax as in OpenGL
2235 * ES."
2236 *
2237 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2238 *
2239 * "uniform lowp sampler2D sampler;
2240 * highp vec2 coord;
2241 * ...
2242 * lowp vec4 col = texture2D (sampler, coord);
2243 * // texture2D returns lowp"
2244 *
2245 * From this, we infer that GLSL 1.30 (and later) should allow precision
2246 * qualifiers on sampler types just like float and integer types.
2247 */
2248 return (type->is_float()
2249 || type->is_integer()
2250 || type->contains_opaque())
2251 && !type->without_array()->is_record();
2252 }
2253
2254 const glsl_type *
2255 ast_type_specifier::glsl_type(const char **name,
2256 struct _mesa_glsl_parse_state *state) const
2257 {
2258 const struct glsl_type *type;
2259
2260 type = state->symbols->get_type(this->type_name);
2261 *name = this->type_name;
2262
2263 YYLTYPE loc = this->get_location();
2264 type = process_array_type(&loc, type, this->array_specifier, state);
2265
2266 return type;
2267 }
2268
2269 /**
2270 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2271 *
2272 * "The precision statement
2273 *
2274 * precision precision-qualifier type;
2275 *
2276 * can be used to establish a default precision qualifier. The type field can
2277 * be either int or float or any of the sampler types, (...) If type is float,
2278 * the directive applies to non-precision-qualified floating point type
2279 * (scalar, vector, and matrix) declarations. If type is int, the directive
2280 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2281 * and unsigned) declarations."
2282 *
2283 * We use the symbol table to keep the values of the default precisions for
2284 * each 'type' in each scope and we use the 'type' string from the precision
2285 * statement as key in the symbol table. When we want to retrieve the default
2286 * precision associated with a given glsl_type we need to know the type string
2287 * associated with it. This is what this function returns.
2288 */
2289 static const char *
2290 get_type_name_for_precision_qualifier(const glsl_type *type)
2291 {
2292 switch (type->base_type) {
2293 case GLSL_TYPE_FLOAT:
2294 return "float";
2295 case GLSL_TYPE_UINT:
2296 case GLSL_TYPE_INT:
2297 return "int";
2298 case GLSL_TYPE_ATOMIC_UINT:
2299 return "atomic_uint";
2300 case GLSL_TYPE_IMAGE:
2301 /* fallthrough */
2302 case GLSL_TYPE_SAMPLER: {
2303 const unsigned type_idx =
2304 type->sampler_array + 2 * type->sampler_shadow;
2305 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2306 assert(type_idx < 4);
2307 switch (type->sampled_type) {
2308 case GLSL_TYPE_FLOAT:
2309 switch (type->sampler_dimensionality) {
2310 case GLSL_SAMPLER_DIM_1D: {
2311 assert(type->base_type == GLSL_TYPE_SAMPLER);
2312 static const char *const names[4] = {
2313 "sampler1D", "sampler1DArray",
2314 "sampler1DShadow", "sampler1DArrayShadow"
2315 };
2316 return names[type_idx];
2317 }
2318 case GLSL_SAMPLER_DIM_2D: {
2319 static const char *const names[8] = {
2320 "sampler2D", "sampler2DArray",
2321 "sampler2DShadow", "sampler2DArrayShadow",
2322 "image2D", "image2DArray", NULL, NULL
2323 };
2324 return names[offset + type_idx];
2325 }
2326 case GLSL_SAMPLER_DIM_3D: {
2327 static const char *const names[8] = {
2328 "sampler3D", NULL, NULL, NULL,
2329 "image3D", NULL, NULL, NULL
2330 };
2331 return names[offset + type_idx];
2332 }
2333 case GLSL_SAMPLER_DIM_CUBE: {
2334 static const char *const names[8] = {
2335 "samplerCube", "samplerCubeArray",
2336 "samplerCubeShadow", "samplerCubeArrayShadow",
2337 "imageCube", NULL, NULL, NULL
2338 };
2339 return names[offset + type_idx];
2340 }
2341 case GLSL_SAMPLER_DIM_MS: {
2342 assert(type->base_type == GLSL_TYPE_SAMPLER);
2343 static const char *const names[4] = {
2344 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2345 };
2346 return names[type_idx];
2347 }
2348 case GLSL_SAMPLER_DIM_RECT: {
2349 assert(type->base_type == GLSL_TYPE_SAMPLER);
2350 static const char *const names[4] = {
2351 "samplerRect", NULL, "samplerRectShadow", NULL
2352 };
2353 return names[type_idx];
2354 }
2355 case GLSL_SAMPLER_DIM_BUF: {
2356 static const char *const names[8] = {
2357 "samplerBuffer", NULL, NULL, NULL,
2358 "imageBuffer", NULL, NULL, NULL
2359 };
2360 return names[offset + type_idx];
2361 }
2362 case GLSL_SAMPLER_DIM_EXTERNAL: {
2363 assert(type->base_type == GLSL_TYPE_SAMPLER);
2364 static const char *const names[4] = {
2365 "samplerExternalOES", NULL, NULL, NULL
2366 };
2367 return names[type_idx];
2368 }
2369 default:
2370 unreachable("Unsupported sampler/image dimensionality");
2371 } /* sampler/image float dimensionality */
2372 break;
2373 case GLSL_TYPE_INT:
2374 switch (type->sampler_dimensionality) {
2375 case GLSL_SAMPLER_DIM_1D: {
2376 assert(type->base_type == GLSL_TYPE_SAMPLER);
2377 static const char *const names[4] = {
2378 "isampler1D", "isampler1DArray", NULL, NULL
2379 };
2380 return names[type_idx];
2381 }
2382 case GLSL_SAMPLER_DIM_2D: {
2383 static const char *const names[8] = {
2384 "isampler2D", "isampler2DArray", NULL, NULL,
2385 "iimage2D", "iimage2DArray", NULL, NULL
2386 };
2387 return names[offset + type_idx];
2388 }
2389 case GLSL_SAMPLER_DIM_3D: {
2390 static const char *const names[8] = {
2391 "isampler3D", NULL, NULL, NULL,
2392 "iimage3D", NULL, NULL, NULL
2393 };
2394 return names[offset + type_idx];
2395 }
2396 case GLSL_SAMPLER_DIM_CUBE: {
2397 static const char *const names[8] = {
2398 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2399 "iimageCube", NULL, NULL, NULL
2400 };
2401 return names[offset + type_idx];
2402 }
2403 case GLSL_SAMPLER_DIM_MS: {
2404 assert(type->base_type == GLSL_TYPE_SAMPLER);
2405 static const char *const names[4] = {
2406 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2407 };
2408 return names[type_idx];
2409 }
2410 case GLSL_SAMPLER_DIM_RECT: {
2411 assert(type->base_type == GLSL_TYPE_SAMPLER);
2412 static const char *const names[4] = {
2413 "isamplerRect", NULL, "isamplerRectShadow", NULL
2414 };
2415 return names[type_idx];
2416 }
2417 case GLSL_SAMPLER_DIM_BUF: {
2418 static const char *const names[8] = {
2419 "isamplerBuffer", NULL, NULL, NULL,
2420 "iimageBuffer", NULL, NULL, NULL
2421 };
2422 return names[offset + type_idx];
2423 }
2424 default:
2425 unreachable("Unsupported isampler/iimage dimensionality");
2426 } /* sampler/image int dimensionality */
2427 break;
2428 case GLSL_TYPE_UINT:
2429 switch (type->sampler_dimensionality) {
2430 case GLSL_SAMPLER_DIM_1D: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "usampler1D", "usampler1DArray", NULL, NULL
2434 };
2435 return names[type_idx];
2436 }
2437 case GLSL_SAMPLER_DIM_2D: {
2438 static const char *const names[8] = {
2439 "usampler2D", "usampler2DArray", NULL, NULL,
2440 "uimage2D", "uimage2DArray", NULL, NULL
2441 };
2442 return names[offset + type_idx];
2443 }
2444 case GLSL_SAMPLER_DIM_3D: {
2445 static const char *const names[8] = {
2446 "usampler3D", NULL, NULL, NULL,
2447 "uimage3D", NULL, NULL, NULL
2448 };
2449 return names[offset + type_idx];
2450 }
2451 case GLSL_SAMPLER_DIM_CUBE: {
2452 static const char *const names[8] = {
2453 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2454 "uimageCube", NULL, NULL, NULL
2455 };
2456 return names[offset + type_idx];
2457 }
2458 case GLSL_SAMPLER_DIM_MS: {
2459 assert(type->base_type == GLSL_TYPE_SAMPLER);
2460 static const char *const names[4] = {
2461 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2462 };
2463 return names[type_idx];
2464 }
2465 case GLSL_SAMPLER_DIM_RECT: {
2466 assert(type->base_type == GLSL_TYPE_SAMPLER);
2467 static const char *const names[4] = {
2468 "usamplerRect", NULL, "usamplerRectShadow", NULL
2469 };
2470 return names[type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_BUF: {
2473 static const char *const names[8] = {
2474 "usamplerBuffer", NULL, NULL, NULL,
2475 "uimageBuffer", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 default:
2480 unreachable("Unsupported usampler/uimage dimensionality");
2481 } /* sampler/image uint dimensionality */
2482 break;
2483 default:
2484 unreachable("Unsupported sampler/image type");
2485 } /* sampler/image type */
2486 break;
2487 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2488 break;
2489 default:
2490 unreachable("Unsupported type");
2491 } /* base type */
2492 }
2493
2494 static unsigned
2495 select_gles_precision(unsigned qual_precision,
2496 const glsl_type *type,
2497 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2498 {
2499 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2500 * In GLES we take the precision from the type qualifier if present,
2501 * otherwise, if the type of the variable allows precision qualifiers at
2502 * all, we look for the default precision qualifier for that type in the
2503 * current scope.
2504 */
2505 assert(state->es_shader);
2506
2507 unsigned precision = GLSL_PRECISION_NONE;
2508 if (qual_precision) {
2509 precision = qual_precision;
2510 } else if (precision_qualifier_allowed(type)) {
2511 const char *type_name =
2512 get_type_name_for_precision_qualifier(type->without_array());
2513 assert(type_name != NULL);
2514
2515 precision =
2516 state->symbols->get_default_precision_qualifier(type_name);
2517 if (precision == ast_precision_none) {
2518 _mesa_glsl_error(loc, state,
2519 "No precision specified in this scope for type `%s'",
2520 type->name);
2521 }
2522 }
2523 return precision;
2524 }
2525
2526 const glsl_type *
2527 ast_fully_specified_type::glsl_type(const char **name,
2528 struct _mesa_glsl_parse_state *state) const
2529 {
2530 return this->specifier->glsl_type(name, state);
2531 }
2532
2533 /**
2534 * Determine whether a toplevel variable declaration declares a varying. This
2535 * function operates by examining the variable's mode and the shader target,
2536 * so it correctly identifies linkage variables regardless of whether they are
2537 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2538 *
2539 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2540 * this function will produce undefined results.
2541 */
2542 static bool
2543 is_varying_var(ir_variable *var, gl_shader_stage target)
2544 {
2545 switch (target) {
2546 case MESA_SHADER_VERTEX:
2547 return var->data.mode == ir_var_shader_out;
2548 case MESA_SHADER_FRAGMENT:
2549 return var->data.mode == ir_var_shader_in;
2550 default:
2551 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2552 }
2553 }
2554
2555
2556 /**
2557 * Matrix layout qualifiers are only allowed on certain types
2558 */
2559 static void
2560 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2561 YYLTYPE *loc,
2562 const glsl_type *type,
2563 ir_variable *var)
2564 {
2565 if (var && !var->is_in_buffer_block()) {
2566 /* Layout qualifiers may only apply to interface blocks and fields in
2567 * them.
2568 */
2569 _mesa_glsl_error(loc, state,
2570 "uniform block layout qualifiers row_major and "
2571 "column_major may not be applied to variables "
2572 "outside of uniform blocks");
2573 } else if (!type->without_array()->is_matrix()) {
2574 /* The OpenGL ES 3.0 conformance tests did not originally allow
2575 * matrix layout qualifiers on non-matrices. However, the OpenGL
2576 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2577 * amended to specifically allow these layouts on all types. Emit
2578 * a warning so that people know their code may not be portable.
2579 */
2580 _mesa_glsl_warning(loc, state,
2581 "uniform block layout qualifiers row_major and "
2582 "column_major applied to non-matrix types may "
2583 "be rejected by older compilers");
2584 }
2585 }
2586
2587 static bool
2588 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2589 YYLTYPE *loc,
2590 const char *qual_indentifier,
2591 ast_expression *const_expression,
2592 unsigned *value)
2593 {
2594 exec_list dummy_instructions;
2595
2596 if (const_expression == NULL) {
2597 *value = 0;
2598 return true;
2599 }
2600
2601 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2602
2603 ir_constant *const const_int = ir->constant_expression_value();
2604 if (const_int == NULL || !const_int->type->is_integer()) {
2605 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2606 "expression", qual_indentifier);
2607 return false;
2608 }
2609
2610 if (const_int->value.i[0] < 0) {
2611 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2612 qual_indentifier, const_int->value.u[0]);
2613 return false;
2614 }
2615
2616 /* If the location is const (and we've verified that
2617 * it is) then no instructions should have been emitted
2618 * when we converted it to HIR. If they were emitted,
2619 * then either the location isn't const after all, or
2620 * we are emitting unnecessary instructions.
2621 */
2622 assert(dummy_instructions.is_empty());
2623
2624 *value = const_int->value.u[0];
2625 return true;
2626 }
2627
2628 static bool
2629 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2630 unsigned stream)
2631 {
2632 if (stream >= state->ctx->Const.MaxVertexStreams) {
2633 _mesa_glsl_error(loc, state,
2634 "invalid stream specified %d is larger than "
2635 "MAX_VERTEX_STREAMS - 1 (%d).",
2636 stream, state->ctx->Const.MaxVertexStreams - 1);
2637 return false;
2638 }
2639
2640 return true;
2641 }
2642
2643 static void
2644 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2645 YYLTYPE *loc,
2646 ir_variable *var,
2647 const glsl_type *type,
2648 const ast_type_qualifier *qual)
2649 {
2650 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2651 _mesa_glsl_error(loc, state,
2652 "the \"binding\" qualifier only applies to uniforms and "
2653 "shader storage buffer objects");
2654 return;
2655 }
2656
2657 unsigned qual_binding;
2658 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2659 &qual_binding)) {
2660 return;
2661 }
2662
2663 const struct gl_context *const ctx = state->ctx;
2664 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2665 unsigned max_index = qual_binding + elements - 1;
2666 const glsl_type *base_type = type->without_array();
2667
2668 if (base_type->is_interface()) {
2669 /* UBOs. From page 60 of the GLSL 4.20 specification:
2670 * "If the binding point for any uniform block instance is less than zero,
2671 * or greater than or equal to the implementation-dependent maximum
2672 * number of uniform buffer bindings, a compilation error will occur.
2673 * When the binding identifier is used with a uniform block instanced as
2674 * an array of size N, all elements of the array from binding through
2675 * binding + N – 1 must be within this range."
2676 *
2677 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2678 */
2679 if (qual->flags.q.uniform &&
2680 max_index >= ctx->Const.MaxUniformBufferBindings) {
2681 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2682 "the maximum number of UBO binding points (%d)",
2683 qual_binding, elements,
2684 ctx->Const.MaxUniformBufferBindings);
2685 return;
2686 }
2687
2688 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2689 * "If the binding point for any uniform or shader storage block instance
2690 * is less than zero, or greater than or equal to the
2691 * implementation-dependent maximum number of uniform buffer bindings, a
2692 * compile-time error will occur. When the binding identifier is used
2693 * with a uniform or shader storage block instanced as an array of size
2694 * N, all elements of the array from binding through binding + N – 1 must
2695 * be within this range."
2696 */
2697 if (qual->flags.q.buffer &&
2698 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2699 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2700 "the maximum number of SSBO binding points (%d)",
2701 qual_binding, elements,
2702 ctx->Const.MaxShaderStorageBufferBindings);
2703 return;
2704 }
2705 } else if (base_type->is_sampler()) {
2706 /* Samplers. From page 63 of the GLSL 4.20 specification:
2707 * "If the binding is less than zero, or greater than or equal to the
2708 * implementation-dependent maximum supported number of units, a
2709 * compilation error will occur. When the binding identifier is used
2710 * with an array of size N, all elements of the array from binding
2711 * through binding + N - 1 must be within this range."
2712 */
2713 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2714
2715 if (max_index >= limit) {
2716 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2717 "exceeds the maximum number of texture image units "
2718 "(%u)", qual_binding, elements, limit);
2719
2720 return;
2721 }
2722 } else if (base_type->contains_atomic()) {
2723 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2724 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2725 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2726 " maximum number of atomic counter buffer bindings"
2727 "(%u)", qual_binding,
2728 ctx->Const.MaxAtomicBufferBindings);
2729
2730 return;
2731 }
2732 } else if ((state->is_version(420, 310) ||
2733 state->ARB_shading_language_420pack_enable) &&
2734 base_type->is_image()) {
2735 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2736 if (max_index >= ctx->Const.MaxImageUnits) {
2737 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2738 " maximum number of image units (%d)", max_index,
2739 ctx->Const.MaxImageUnits);
2740 return;
2741 }
2742
2743 } else {
2744 _mesa_glsl_error(loc, state,
2745 "the \"binding\" qualifier only applies to uniform "
2746 "blocks, opaque variables, or arrays thereof");
2747 return;
2748 }
2749
2750 var->data.explicit_binding = true;
2751 var->data.binding = qual_binding;
2752
2753 return;
2754 }
2755
2756
2757 static glsl_interp_qualifier
2758 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2759 ir_variable_mode mode,
2760 struct _mesa_glsl_parse_state *state,
2761 YYLTYPE *loc)
2762 {
2763 glsl_interp_qualifier interpolation;
2764 if (qual->flags.q.flat)
2765 interpolation = INTERP_QUALIFIER_FLAT;
2766 else if (qual->flags.q.noperspective)
2767 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2768 else if (qual->flags.q.smooth)
2769 interpolation = INTERP_QUALIFIER_SMOOTH;
2770 else
2771 interpolation = INTERP_QUALIFIER_NONE;
2772
2773 if (interpolation != INTERP_QUALIFIER_NONE) {
2774 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2775 _mesa_glsl_error(loc, state,
2776 "interpolation qualifier `%s' can only be applied to "
2777 "shader inputs or outputs.",
2778 interpolation_string(interpolation));
2779
2780 }
2781
2782 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2783 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2784 _mesa_glsl_error(loc, state,
2785 "interpolation qualifier `%s' cannot be applied to "
2786 "vertex shader inputs or fragment shader outputs",
2787 interpolation_string(interpolation));
2788 }
2789 } else if (state->es_shader &&
2790 ((mode == ir_var_shader_in &&
2791 state->stage != MESA_SHADER_VERTEX) ||
2792 (mode == ir_var_shader_out &&
2793 state->stage != MESA_SHADER_FRAGMENT))) {
2794 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2795 *
2796 * "When no interpolation qualifier is present, smooth interpolation
2797 * is used."
2798 */
2799 interpolation = INTERP_QUALIFIER_SMOOTH;
2800 }
2801
2802 return interpolation;
2803 }
2804
2805
2806 static void
2807 apply_explicit_location(const struct ast_type_qualifier *qual,
2808 ir_variable *var,
2809 struct _mesa_glsl_parse_state *state,
2810 YYLTYPE *loc)
2811 {
2812 bool fail = false;
2813
2814 unsigned qual_location;
2815 if (!process_qualifier_constant(state, loc, "location", qual->location,
2816 &qual_location)) {
2817 return;
2818 }
2819
2820 /* Checks for GL_ARB_explicit_uniform_location. */
2821 if (qual->flags.q.uniform) {
2822 if (!state->check_explicit_uniform_location_allowed(loc, var))
2823 return;
2824
2825 const struct gl_context *const ctx = state->ctx;
2826 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2827
2828 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2829 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2830 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2831 ctx->Const.MaxUserAssignableUniformLocations);
2832 return;
2833 }
2834
2835 var->data.explicit_location = true;
2836 var->data.location = qual_location;
2837 return;
2838 }
2839
2840 /* Between GL_ARB_explicit_attrib_location an
2841 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2842 * stage can be assigned explicit locations. The checking here associates
2843 * the correct extension with the correct stage's input / output:
2844 *
2845 * input output
2846 * ----- ------
2847 * vertex explicit_loc sso
2848 * tess control sso sso
2849 * tess eval sso sso
2850 * geometry sso sso
2851 * fragment sso explicit_loc
2852 */
2853 switch (state->stage) {
2854 case MESA_SHADER_VERTEX:
2855 if (var->data.mode == ir_var_shader_in) {
2856 if (!state->check_explicit_attrib_location_allowed(loc, var))
2857 return;
2858
2859 break;
2860 }
2861
2862 if (var->data.mode == ir_var_shader_out) {
2863 if (!state->check_separate_shader_objects_allowed(loc, var))
2864 return;
2865
2866 break;
2867 }
2868
2869 fail = true;
2870 break;
2871
2872 case MESA_SHADER_TESS_CTRL:
2873 case MESA_SHADER_TESS_EVAL:
2874 case MESA_SHADER_GEOMETRY:
2875 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2876 if (!state->check_separate_shader_objects_allowed(loc, var))
2877 return;
2878
2879 break;
2880 }
2881
2882 fail = true;
2883 break;
2884
2885 case MESA_SHADER_FRAGMENT:
2886 if (var->data.mode == ir_var_shader_in) {
2887 if (!state->check_separate_shader_objects_allowed(loc, var))
2888 return;
2889
2890 break;
2891 }
2892
2893 if (var->data.mode == ir_var_shader_out) {
2894 if (!state->check_explicit_attrib_location_allowed(loc, var))
2895 return;
2896
2897 break;
2898 }
2899
2900 fail = true;
2901 break;
2902
2903 case MESA_SHADER_COMPUTE:
2904 _mesa_glsl_error(loc, state,
2905 "compute shader variables cannot be given "
2906 "explicit locations");
2907 return;
2908 };
2909
2910 if (fail) {
2911 _mesa_glsl_error(loc, state,
2912 "%s cannot be given an explicit location in %s shader",
2913 mode_string(var),
2914 _mesa_shader_stage_to_string(state->stage));
2915 } else {
2916 var->data.explicit_location = true;
2917
2918 switch (state->stage) {
2919 case MESA_SHADER_VERTEX:
2920 var->data.location = (var->data.mode == ir_var_shader_in)
2921 ? (qual_location + VERT_ATTRIB_GENERIC0)
2922 : (qual_location + VARYING_SLOT_VAR0);
2923 break;
2924
2925 case MESA_SHADER_TESS_CTRL:
2926 case MESA_SHADER_TESS_EVAL:
2927 case MESA_SHADER_GEOMETRY:
2928 if (var->data.patch)
2929 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2930 else
2931 var->data.location = qual_location + VARYING_SLOT_VAR0;
2932 break;
2933
2934 case MESA_SHADER_FRAGMENT:
2935 var->data.location = (var->data.mode == ir_var_shader_out)
2936 ? (qual_location + FRAG_RESULT_DATA0)
2937 : (qual_location + VARYING_SLOT_VAR0);
2938 break;
2939 case MESA_SHADER_COMPUTE:
2940 assert(!"Unexpected shader type");
2941 break;
2942 }
2943
2944 /* Check if index was set for the uniform instead of the function */
2945 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2946 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2947 "used with subroutine functions");
2948 return;
2949 }
2950
2951 unsigned qual_index;
2952 if (qual->flags.q.explicit_index &&
2953 process_qualifier_constant(state, loc, "index", qual->index,
2954 &qual_index)) {
2955 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2956 * Layout Qualifiers):
2957 *
2958 * "It is also a compile-time error if a fragment shader
2959 * sets a layout index to less than 0 or greater than 1."
2960 *
2961 * Older specifications don't mandate a behavior; we take
2962 * this as a clarification and always generate the error.
2963 */
2964 if (qual_index > 1) {
2965 _mesa_glsl_error(loc, state,
2966 "explicit index may only be 0 or 1");
2967 } else {
2968 var->data.explicit_index = true;
2969 var->data.index = qual_index;
2970 }
2971 }
2972 }
2973 }
2974
2975 static void
2976 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2977 ir_variable *var,
2978 struct _mesa_glsl_parse_state *state,
2979 YYLTYPE *loc)
2980 {
2981 const glsl_type *base_type = var->type->without_array();
2982
2983 if (base_type->is_image()) {
2984 if (var->data.mode != ir_var_uniform &&
2985 var->data.mode != ir_var_function_in) {
2986 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2987 "function parameters or uniform-qualified "
2988 "global variables");
2989 }
2990
2991 var->data.image_read_only |= qual->flags.q.read_only;
2992 var->data.image_write_only |= qual->flags.q.write_only;
2993 var->data.image_coherent |= qual->flags.q.coherent;
2994 var->data.image_volatile |= qual->flags.q._volatile;
2995 var->data.image_restrict |= qual->flags.q.restrict_flag;
2996 var->data.read_only = true;
2997
2998 if (qual->flags.q.explicit_image_format) {
2999 if (var->data.mode == ir_var_function_in) {
3000 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3001 "used on image function parameters");
3002 }
3003
3004 if (qual->image_base_type != base_type->sampled_type) {
3005 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3006 "base data type of the image");
3007 }
3008
3009 var->data.image_format = qual->image_format;
3010 } else {
3011 if (var->data.mode == ir_var_uniform) {
3012 if (state->es_shader) {
3013 _mesa_glsl_error(loc, state, "all image uniforms "
3014 "must have a format layout qualifier");
3015
3016 } else if (!qual->flags.q.write_only) {
3017 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3018 "`writeonly' must have a format layout "
3019 "qualifier");
3020 }
3021 }
3022
3023 var->data.image_format = GL_NONE;
3024 }
3025
3026 /* From page 70 of the GLSL ES 3.1 specification:
3027 *
3028 * "Except for image variables qualified with the format qualifiers
3029 * r32f, r32i, and r32ui, image variables must specify either memory
3030 * qualifier readonly or the memory qualifier writeonly."
3031 */
3032 if (state->es_shader &&
3033 var->data.image_format != GL_R32F &&
3034 var->data.image_format != GL_R32I &&
3035 var->data.image_format != GL_R32UI &&
3036 !var->data.image_read_only &&
3037 !var->data.image_write_only) {
3038 _mesa_glsl_error(loc, state, "image variables of format other than "
3039 "r32f, r32i or r32ui must be qualified `readonly' or "
3040 "`writeonly'");
3041 }
3042
3043 } else if (qual->flags.q.read_only ||
3044 qual->flags.q.write_only ||
3045 qual->flags.q.coherent ||
3046 qual->flags.q._volatile ||
3047 qual->flags.q.restrict_flag ||
3048 qual->flags.q.explicit_image_format) {
3049 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3050 "images");
3051 }
3052 }
3053
3054 static inline const char*
3055 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3056 {
3057 if (origin_upper_left && pixel_center_integer)
3058 return "origin_upper_left, pixel_center_integer";
3059 else if (origin_upper_left)
3060 return "origin_upper_left";
3061 else if (pixel_center_integer)
3062 return "pixel_center_integer";
3063 else
3064 return " ";
3065 }
3066
3067 static inline bool
3068 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3069 const struct ast_type_qualifier *qual)
3070 {
3071 /* If gl_FragCoord was previously declared, and the qualifiers were
3072 * different in any way, return true.
3073 */
3074 if (state->fs_redeclares_gl_fragcoord) {
3075 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3076 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3077 }
3078
3079 return false;
3080 }
3081
3082 static inline void
3083 validate_array_dimensions(const glsl_type *t,
3084 struct _mesa_glsl_parse_state *state,
3085 YYLTYPE *loc) {
3086 if (t->is_array()) {
3087 t = t->fields.array;
3088 while (t->is_array()) {
3089 if (t->is_unsized_array()) {
3090 _mesa_glsl_error(loc, state,
3091 "only the outermost array dimension can "
3092 "be unsized",
3093 t->name);
3094 break;
3095 }
3096 t = t->fields.array;
3097 }
3098 }
3099 }
3100
3101 static void
3102 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3103 ir_variable *var,
3104 struct _mesa_glsl_parse_state *state,
3105 YYLTYPE *loc)
3106 {
3107 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3108
3109 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3110 *
3111 * "Within any shader, the first redeclarations of gl_FragCoord
3112 * must appear before any use of gl_FragCoord."
3113 *
3114 * Generate a compiler error if above condition is not met by the
3115 * fragment shader.
3116 */
3117 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3118 if (earlier != NULL &&
3119 earlier->data.used &&
3120 !state->fs_redeclares_gl_fragcoord) {
3121 _mesa_glsl_error(loc, state,
3122 "gl_FragCoord used before its first redeclaration "
3123 "in fragment shader");
3124 }
3125
3126 /* Make sure all gl_FragCoord redeclarations specify the same layout
3127 * qualifiers.
3128 */
3129 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3130 const char *const qual_string =
3131 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3132 qual->flags.q.pixel_center_integer);
3133
3134 const char *const state_string =
3135 get_layout_qualifier_string(state->fs_origin_upper_left,
3136 state->fs_pixel_center_integer);
3137
3138 _mesa_glsl_error(loc, state,
3139 "gl_FragCoord redeclared with different layout "
3140 "qualifiers (%s) and (%s) ",
3141 state_string,
3142 qual_string);
3143 }
3144 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3145 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3146 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3147 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3148 state->fs_redeclares_gl_fragcoord =
3149 state->fs_origin_upper_left ||
3150 state->fs_pixel_center_integer ||
3151 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3152 }
3153
3154 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3155 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3156 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3157 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3158 const char *const qual_string = (qual->flags.q.origin_upper_left)
3159 ? "origin_upper_left" : "pixel_center_integer";
3160
3161 _mesa_glsl_error(loc, state,
3162 "layout qualifier `%s' can only be applied to "
3163 "fragment shader input `gl_FragCoord'",
3164 qual_string);
3165 }
3166
3167 if (qual->flags.q.explicit_location) {
3168 apply_explicit_location(qual, var, state, loc);
3169 } else if (qual->flags.q.explicit_index) {
3170 if (!qual->flags.q.subroutine_def)
3171 _mesa_glsl_error(loc, state,
3172 "explicit index requires explicit location");
3173 }
3174
3175 if (qual->flags.q.explicit_binding) {
3176 apply_explicit_binding(state, loc, var, var->type, qual);
3177 }
3178
3179 if (state->stage == MESA_SHADER_GEOMETRY &&
3180 qual->flags.q.out && qual->flags.q.stream) {
3181 unsigned qual_stream;
3182 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3183 &qual_stream) &&
3184 validate_stream_qualifier(loc, state, qual_stream)) {
3185 var->data.stream = qual_stream;
3186 }
3187 }
3188
3189 if (var->type->contains_atomic()) {
3190 if (var->data.mode == ir_var_uniform) {
3191 if (var->data.explicit_binding) {
3192 unsigned *offset =
3193 &state->atomic_counter_offsets[var->data.binding];
3194
3195 if (*offset % ATOMIC_COUNTER_SIZE)
3196 _mesa_glsl_error(loc, state,
3197 "misaligned atomic counter offset");
3198
3199 var->data.offset = *offset;
3200 *offset += var->type->atomic_size();
3201
3202 } else {
3203 _mesa_glsl_error(loc, state,
3204 "atomic counters require explicit binding point");
3205 }
3206 } else if (var->data.mode != ir_var_function_in) {
3207 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3208 "function parameters or uniform-qualified "
3209 "global variables");
3210 }
3211 }
3212
3213 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3214 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3215 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3216 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3217 * These extensions and all following extensions that add the 'layout'
3218 * keyword have been modified to require the use of 'in' or 'out'.
3219 *
3220 * The following extension do not allow the deprecated keywords:
3221 *
3222 * GL_AMD_conservative_depth
3223 * GL_ARB_conservative_depth
3224 * GL_ARB_gpu_shader5
3225 * GL_ARB_separate_shader_objects
3226 * GL_ARB_tessellation_shader
3227 * GL_ARB_transform_feedback3
3228 * GL_ARB_uniform_buffer_object
3229 *
3230 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3231 * allow layout with the deprecated keywords.
3232 */
3233 const bool relaxed_layout_qualifier_checking =
3234 state->ARB_fragment_coord_conventions_enable;
3235
3236 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3237 || qual->flags.q.varying;
3238 if (qual->has_layout() && uses_deprecated_qualifier) {
3239 if (relaxed_layout_qualifier_checking) {
3240 _mesa_glsl_warning(loc, state,
3241 "`layout' qualifier may not be used with "
3242 "`attribute' or `varying'");
3243 } else {
3244 _mesa_glsl_error(loc, state,
3245 "`layout' qualifier may not be used with "
3246 "`attribute' or `varying'");
3247 }
3248 }
3249
3250 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3251 * AMD_conservative_depth.
3252 */
3253 int depth_layout_count = qual->flags.q.depth_any
3254 + qual->flags.q.depth_greater
3255 + qual->flags.q.depth_less
3256 + qual->flags.q.depth_unchanged;
3257 if (depth_layout_count > 0
3258 && !state->AMD_conservative_depth_enable
3259 && !state->ARB_conservative_depth_enable) {
3260 _mesa_glsl_error(loc, state,
3261 "extension GL_AMD_conservative_depth or "
3262 "GL_ARB_conservative_depth must be enabled "
3263 "to use depth layout qualifiers");
3264 } else if (depth_layout_count > 0
3265 && strcmp(var->name, "gl_FragDepth") != 0) {
3266 _mesa_glsl_error(loc, state,
3267 "depth layout qualifiers can be applied only to "
3268 "gl_FragDepth");
3269 } else if (depth_layout_count > 1
3270 && strcmp(var->name, "gl_FragDepth") == 0) {
3271 _mesa_glsl_error(loc, state,
3272 "at most one depth layout qualifier can be applied to "
3273 "gl_FragDepth");
3274 }
3275 if (qual->flags.q.depth_any)
3276 var->data.depth_layout = ir_depth_layout_any;
3277 else if (qual->flags.q.depth_greater)
3278 var->data.depth_layout = ir_depth_layout_greater;
3279 else if (qual->flags.q.depth_less)
3280 var->data.depth_layout = ir_depth_layout_less;
3281 else if (qual->flags.q.depth_unchanged)
3282 var->data.depth_layout = ir_depth_layout_unchanged;
3283 else
3284 var->data.depth_layout = ir_depth_layout_none;
3285
3286 if (qual->flags.q.std140 ||
3287 qual->flags.q.std430 ||
3288 qual->flags.q.packed ||
3289 qual->flags.q.shared) {
3290 _mesa_glsl_error(loc, state,
3291 "uniform and shader storage block layout qualifiers "
3292 "std140, std430, packed, and shared can only be "
3293 "applied to uniform or shader storage blocks, not "
3294 "members");
3295 }
3296
3297 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3298 validate_matrix_layout_for_type(state, loc, var->type, var);
3299 }
3300
3301 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3302 * Inputs):
3303 *
3304 * "Fragment shaders also allow the following layout qualifier on in only
3305 * (not with variable declarations)
3306 * layout-qualifier-id
3307 * early_fragment_tests
3308 * [...]"
3309 */
3310 if (qual->flags.q.early_fragment_tests) {
3311 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3312 "valid in fragment shader input layout declaration.");
3313 }
3314 }
3315
3316 static void
3317 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3318 ir_variable *var,
3319 struct _mesa_glsl_parse_state *state,
3320 YYLTYPE *loc,
3321 bool is_parameter)
3322 {
3323 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3324
3325 if (qual->flags.q.invariant) {
3326 if (var->data.used) {
3327 _mesa_glsl_error(loc, state,
3328 "variable `%s' may not be redeclared "
3329 "`invariant' after being used",
3330 var->name);
3331 } else {
3332 var->data.invariant = 1;
3333 }
3334 }
3335
3336 if (qual->flags.q.precise) {
3337 if (var->data.used) {
3338 _mesa_glsl_error(loc, state,
3339 "variable `%s' may not be redeclared "
3340 "`precise' after being used",
3341 var->name);
3342 } else {
3343 var->data.precise = 1;
3344 }
3345 }
3346
3347 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3348 _mesa_glsl_error(loc, state,
3349 "`subroutine' may only be applied to uniforms, "
3350 "subroutine type declarations, or function definitions");
3351 }
3352
3353 if (qual->flags.q.constant || qual->flags.q.attribute
3354 || qual->flags.q.uniform
3355 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3356 var->data.read_only = 1;
3357
3358 if (qual->flags.q.centroid)
3359 var->data.centroid = 1;
3360
3361 if (qual->flags.q.sample)
3362 var->data.sample = 1;
3363
3364 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3365 if (state->es_shader) {
3366 var->data.precision =
3367 select_gles_precision(qual->precision, var->type, state, loc);
3368 }
3369
3370 if (qual->flags.q.patch)
3371 var->data.patch = 1;
3372
3373 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3374 var->type = glsl_type::error_type;
3375 _mesa_glsl_error(loc, state,
3376 "`attribute' variables may not be declared in the "
3377 "%s shader",
3378 _mesa_shader_stage_to_string(state->stage));
3379 }
3380
3381 /* Disallow layout qualifiers which may only appear on layout declarations. */
3382 if (qual->flags.q.prim_type) {
3383 _mesa_glsl_error(loc, state,
3384 "Primitive type may only be specified on GS input or output "
3385 "layout declaration, not on variables.");
3386 }
3387
3388 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3389 *
3390 * "However, the const qualifier cannot be used with out or inout."
3391 *
3392 * The same section of the GLSL 4.40 spec further clarifies this saying:
3393 *
3394 * "The const qualifier cannot be used with out or inout, or a
3395 * compile-time error results."
3396 */
3397 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3398 _mesa_glsl_error(loc, state,
3399 "`const' may not be applied to `out' or `inout' "
3400 "function parameters");
3401 }
3402
3403 /* If there is no qualifier that changes the mode of the variable, leave
3404 * the setting alone.
3405 */
3406 assert(var->data.mode != ir_var_temporary);
3407 if (qual->flags.q.in && qual->flags.q.out)
3408 var->data.mode = ir_var_function_inout;
3409 else if (qual->flags.q.in)
3410 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3411 else if (qual->flags.q.attribute
3412 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3413 var->data.mode = ir_var_shader_in;
3414 else if (qual->flags.q.out)
3415 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3416 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3417 var->data.mode = ir_var_shader_out;
3418 else if (qual->flags.q.uniform)
3419 var->data.mode = ir_var_uniform;
3420 else if (qual->flags.q.buffer)
3421 var->data.mode = ir_var_shader_storage;
3422 else if (qual->flags.q.shared_storage)
3423 var->data.mode = ir_var_shader_shared;
3424
3425 if (!is_parameter && is_varying_var(var, state->stage)) {
3426 /* User-defined ins/outs are not permitted in compute shaders. */
3427 if (state->stage == MESA_SHADER_COMPUTE) {
3428 _mesa_glsl_error(loc, state,
3429 "user-defined input and output variables are not "
3430 "permitted in compute shaders");
3431 }
3432
3433 /* This variable is being used to link data between shader stages (in
3434 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3435 * that is allowed for such purposes.
3436 *
3437 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3438 *
3439 * "The varying qualifier can be used only with the data types
3440 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3441 * these."
3442 *
3443 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3444 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3445 *
3446 * "Fragment inputs can only be signed and unsigned integers and
3447 * integer vectors, float, floating-point vectors, matrices, or
3448 * arrays of these. Structures cannot be input.
3449 *
3450 * Similar text exists in the section on vertex shader outputs.
3451 *
3452 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3453 * 3.00 spec allows structs as well. Varying structs are also allowed
3454 * in GLSL 1.50.
3455 */
3456 switch (var->type->get_scalar_type()->base_type) {
3457 case GLSL_TYPE_FLOAT:
3458 /* Ok in all GLSL versions */
3459 break;
3460 case GLSL_TYPE_UINT:
3461 case GLSL_TYPE_INT:
3462 if (state->is_version(130, 300))
3463 break;
3464 _mesa_glsl_error(loc, state,
3465 "varying variables must be of base type float in %s",
3466 state->get_version_string());
3467 break;
3468 case GLSL_TYPE_STRUCT:
3469 if (state->is_version(150, 300))
3470 break;
3471 _mesa_glsl_error(loc, state,
3472 "varying variables may not be of type struct");
3473 break;
3474 case GLSL_TYPE_DOUBLE:
3475 break;
3476 default:
3477 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3478 break;
3479 }
3480 }
3481
3482 if (state->all_invariant && (state->current_function == NULL)) {
3483 switch (state->stage) {
3484 case MESA_SHADER_VERTEX:
3485 if (var->data.mode == ir_var_shader_out)
3486 var->data.invariant = true;
3487 break;
3488 case MESA_SHADER_TESS_CTRL:
3489 case MESA_SHADER_TESS_EVAL:
3490 case MESA_SHADER_GEOMETRY:
3491 if ((var->data.mode == ir_var_shader_in)
3492 || (var->data.mode == ir_var_shader_out))
3493 var->data.invariant = true;
3494 break;
3495 case MESA_SHADER_FRAGMENT:
3496 if (var->data.mode == ir_var_shader_in)
3497 var->data.invariant = true;
3498 break;
3499 case MESA_SHADER_COMPUTE:
3500 /* Invariance isn't meaningful in compute shaders. */
3501 break;
3502 }
3503 }
3504
3505 var->data.interpolation =
3506 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3507 state, loc);
3508
3509 /* Does the declaration use the deprecated 'attribute' or 'varying'
3510 * keywords?
3511 */
3512 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3513 || qual->flags.q.varying;
3514
3515
3516 /* Validate auxiliary storage qualifiers */
3517
3518 /* From section 4.3.4 of the GLSL 1.30 spec:
3519 * "It is an error to use centroid in in a vertex shader."
3520 *
3521 * From section 4.3.4 of the GLSL ES 3.00 spec:
3522 * "It is an error to use centroid in or interpolation qualifiers in
3523 * a vertex shader input."
3524 */
3525
3526 /* Section 4.3.6 of the GLSL 1.30 specification states:
3527 * "It is an error to use centroid out in a fragment shader."
3528 *
3529 * The GL_ARB_shading_language_420pack extension specification states:
3530 * "It is an error to use auxiliary storage qualifiers or interpolation
3531 * qualifiers on an output in a fragment shader."
3532 */
3533 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3534 _mesa_glsl_error(loc, state,
3535 "sample qualifier may only be used on `in` or `out` "
3536 "variables between shader stages");
3537 }
3538 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3539 _mesa_glsl_error(loc, state,
3540 "centroid qualifier may only be used with `in', "
3541 "`out' or `varying' variables between shader stages");
3542 }
3543
3544 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3545 _mesa_glsl_error(loc, state,
3546 "the shared storage qualifiers can only be used with "
3547 "compute shaders");
3548 }
3549
3550 apply_image_qualifier_to_variable(qual, var, state, loc);
3551 }
3552
3553 /**
3554 * Get the variable that is being redeclared by this declaration
3555 *
3556 * Semantic checks to verify the validity of the redeclaration are also
3557 * performed. If semantic checks fail, compilation error will be emitted via
3558 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3559 *
3560 * \returns
3561 * A pointer to an existing variable in the current scope if the declaration
3562 * is a redeclaration, \c NULL otherwise.
3563 */
3564 static ir_variable *
3565 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3566 struct _mesa_glsl_parse_state *state,
3567 bool allow_all_redeclarations)
3568 {
3569 /* Check if this declaration is actually a re-declaration, either to
3570 * resize an array or add qualifiers to an existing variable.
3571 *
3572 * This is allowed for variables in the current scope, or when at
3573 * global scope (for built-ins in the implicit outer scope).
3574 */
3575 ir_variable *earlier = state->symbols->get_variable(var->name);
3576 if (earlier == NULL ||
3577 (state->current_function != NULL &&
3578 !state->symbols->name_declared_this_scope(var->name))) {
3579 return NULL;
3580 }
3581
3582
3583 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3584 *
3585 * "It is legal to declare an array without a size and then
3586 * later re-declare the same name as an array of the same
3587 * type and specify a size."
3588 */
3589 if (earlier->type->is_unsized_array() && var->type->is_array()
3590 && (var->type->fields.array == earlier->type->fields.array)) {
3591 /* FINISHME: This doesn't match the qualifiers on the two
3592 * FINISHME: declarations. It's not 100% clear whether this is
3593 * FINISHME: required or not.
3594 */
3595
3596 const unsigned size = unsigned(var->type->array_size());
3597 check_builtin_array_max_size(var->name, size, loc, state);
3598 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3599 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3600 "previous access",
3601 earlier->data.max_array_access);
3602 }
3603
3604 earlier->type = var->type;
3605 delete var;
3606 var = NULL;
3607 } else if ((state->ARB_fragment_coord_conventions_enable ||
3608 state->is_version(150, 0))
3609 && strcmp(var->name, "gl_FragCoord") == 0
3610 && earlier->type == var->type
3611 && var->data.mode == ir_var_shader_in) {
3612 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3613 * qualifiers.
3614 */
3615 earlier->data.origin_upper_left = var->data.origin_upper_left;
3616 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3617
3618 /* According to section 4.3.7 of the GLSL 1.30 spec,
3619 * the following built-in varaibles can be redeclared with an
3620 * interpolation qualifier:
3621 * * gl_FrontColor
3622 * * gl_BackColor
3623 * * gl_FrontSecondaryColor
3624 * * gl_BackSecondaryColor
3625 * * gl_Color
3626 * * gl_SecondaryColor
3627 */
3628 } else if (state->is_version(130, 0)
3629 && (strcmp(var->name, "gl_FrontColor") == 0
3630 || strcmp(var->name, "gl_BackColor") == 0
3631 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3632 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3633 || strcmp(var->name, "gl_Color") == 0
3634 || strcmp(var->name, "gl_SecondaryColor") == 0)
3635 && earlier->type == var->type
3636 && earlier->data.mode == var->data.mode) {
3637 earlier->data.interpolation = var->data.interpolation;
3638
3639 /* Layout qualifiers for gl_FragDepth. */
3640 } else if ((state->AMD_conservative_depth_enable ||
3641 state->ARB_conservative_depth_enable)
3642 && strcmp(var->name, "gl_FragDepth") == 0
3643 && earlier->type == var->type
3644 && earlier->data.mode == var->data.mode) {
3645
3646 /** From the AMD_conservative_depth spec:
3647 * Within any shader, the first redeclarations of gl_FragDepth
3648 * must appear before any use of gl_FragDepth.
3649 */
3650 if (earlier->data.used) {
3651 _mesa_glsl_error(&loc, state,
3652 "the first redeclaration of gl_FragDepth "
3653 "must appear before any use of gl_FragDepth");
3654 }
3655
3656 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3657 if (earlier->data.depth_layout != ir_depth_layout_none
3658 && earlier->data.depth_layout != var->data.depth_layout) {
3659 _mesa_glsl_error(&loc, state,
3660 "gl_FragDepth: depth layout is declared here "
3661 "as '%s, but it was previously declared as "
3662 "'%s'",
3663 depth_layout_string(var->data.depth_layout),
3664 depth_layout_string(earlier->data.depth_layout));
3665 }
3666
3667 earlier->data.depth_layout = var->data.depth_layout;
3668
3669 } else if (allow_all_redeclarations) {
3670 if (earlier->data.mode != var->data.mode) {
3671 _mesa_glsl_error(&loc, state,
3672 "redeclaration of `%s' with incorrect qualifiers",
3673 var->name);
3674 } else if (earlier->type != var->type) {
3675 _mesa_glsl_error(&loc, state,
3676 "redeclaration of `%s' has incorrect type",
3677 var->name);
3678 }
3679 } else {
3680 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3681 }
3682
3683 return earlier;
3684 }
3685
3686 /**
3687 * Generate the IR for an initializer in a variable declaration
3688 */
3689 ir_rvalue *
3690 process_initializer(ir_variable *var, ast_declaration *decl,
3691 ast_fully_specified_type *type,
3692 exec_list *initializer_instructions,
3693 struct _mesa_glsl_parse_state *state)
3694 {
3695 ir_rvalue *result = NULL;
3696
3697 YYLTYPE initializer_loc = decl->initializer->get_location();
3698
3699 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3700 *
3701 * "All uniform variables are read-only and are initialized either
3702 * directly by an application via API commands, or indirectly by
3703 * OpenGL."
3704 */
3705 if (var->data.mode == ir_var_uniform) {
3706 state->check_version(120, 0, &initializer_loc,
3707 "cannot initialize uniform %s",
3708 var->name);
3709 }
3710
3711 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3712 *
3713 * "Buffer variables cannot have initializers."
3714 */
3715 if (var->data.mode == ir_var_shader_storage) {
3716 _mesa_glsl_error(&initializer_loc, state,
3717 "cannot initialize buffer variable %s",
3718 var->name);
3719 }
3720
3721 /* From section 4.1.7 of the GLSL 4.40 spec:
3722 *
3723 * "Opaque variables [...] are initialized only through the
3724 * OpenGL API; they cannot be declared with an initializer in a
3725 * shader."
3726 */
3727 if (var->type->contains_opaque()) {
3728 _mesa_glsl_error(&initializer_loc, state,
3729 "cannot initialize opaque variable %s",
3730 var->name);
3731 }
3732
3733 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3734 _mesa_glsl_error(&initializer_loc, state,
3735 "cannot initialize %s shader input / %s %s",
3736 _mesa_shader_stage_to_string(state->stage),
3737 (state->stage == MESA_SHADER_VERTEX)
3738 ? "attribute" : "varying",
3739 var->name);
3740 }
3741
3742 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3743 _mesa_glsl_error(&initializer_loc, state,
3744 "cannot initialize %s shader output %s",
3745 _mesa_shader_stage_to_string(state->stage),
3746 var->name);
3747 }
3748
3749 /* If the initializer is an ast_aggregate_initializer, recursively store
3750 * type information from the LHS into it, so that its hir() function can do
3751 * type checking.
3752 */
3753 if (decl->initializer->oper == ast_aggregate)
3754 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3755
3756 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3757 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3758
3759 /* Calculate the constant value if this is a const or uniform
3760 * declaration.
3761 *
3762 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3763 *
3764 * "Declarations of globals without a storage qualifier, or with
3765 * just the const qualifier, may include initializers, in which case
3766 * they will be initialized before the first line of main() is
3767 * executed. Such initializers must be a constant expression."
3768 *
3769 * The same section of the GLSL ES 3.00.4 spec has similar language.
3770 */
3771 if (type->qualifier.flags.q.constant
3772 || type->qualifier.flags.q.uniform
3773 || (state->es_shader && state->current_function == NULL)) {
3774 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3775 lhs, rhs, true);
3776 if (new_rhs != NULL) {
3777 rhs = new_rhs;
3778
3779 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3780 * says:
3781 *
3782 * "A constant expression is one of
3783 *
3784 * ...
3785 *
3786 * - an expression formed by an operator on operands that are
3787 * all constant expressions, including getting an element of
3788 * a constant array, or a field of a constant structure, or
3789 * components of a constant vector. However, the sequence
3790 * operator ( , ) and the assignment operators ( =, +=, ...)
3791 * are not included in the operators that can create a
3792 * constant expression."
3793 *
3794 * Section 12.43 (Sequence operator and constant expressions) says:
3795 *
3796 * "Should the following construct be allowed?
3797 *
3798 * float a[2,3];
3799 *
3800 * The expression within the brackets uses the sequence operator
3801 * (',') and returns the integer 3 so the construct is declaring
3802 * a single-dimensional array of size 3. In some languages, the
3803 * construct declares a two-dimensional array. It would be
3804 * preferable to make this construct illegal to avoid confusion.
3805 *
3806 * One possibility is to change the definition of the sequence
3807 * operator so that it does not return a constant-expression and
3808 * hence cannot be used to declare an array size.
3809 *
3810 * RESOLUTION: The result of a sequence operator is not a
3811 * constant-expression."
3812 *
3813 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3814 * contains language almost identical to the section 4.3.3 in the
3815 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3816 * versions.
3817 */
3818 ir_constant *constant_value = rhs->constant_expression_value();
3819 if (!constant_value ||
3820 (state->is_version(430, 300) &&
3821 decl->initializer->has_sequence_subexpression())) {
3822 const char *const variable_mode =
3823 (type->qualifier.flags.q.constant)
3824 ? "const"
3825 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3826
3827 /* If ARB_shading_language_420pack is enabled, initializers of
3828 * const-qualified local variables do not have to be constant
3829 * expressions. Const-qualified global variables must still be
3830 * initialized with constant expressions.
3831 */
3832 if (!state->has_420pack()
3833 || state->current_function == NULL) {
3834 _mesa_glsl_error(& initializer_loc, state,
3835 "initializer of %s variable `%s' must be a "
3836 "constant expression",
3837 variable_mode,
3838 decl->identifier);
3839 if (var->type->is_numeric()) {
3840 /* Reduce cascading errors. */
3841 var->constant_value = type->qualifier.flags.q.constant
3842 ? ir_constant::zero(state, var->type) : NULL;
3843 }
3844 }
3845 } else {
3846 rhs = constant_value;
3847 var->constant_value = type->qualifier.flags.q.constant
3848 ? constant_value : NULL;
3849 }
3850 } else {
3851 if (var->type->is_numeric()) {
3852 /* Reduce cascading errors. */
3853 var->constant_value = type->qualifier.flags.q.constant
3854 ? ir_constant::zero(state, var->type) : NULL;
3855 }
3856 }
3857 }
3858
3859 if (rhs && !rhs->type->is_error()) {
3860 bool temp = var->data.read_only;
3861 if (type->qualifier.flags.q.constant)
3862 var->data.read_only = false;
3863
3864 /* Never emit code to initialize a uniform.
3865 */
3866 const glsl_type *initializer_type;
3867 if (!type->qualifier.flags.q.uniform) {
3868 do_assignment(initializer_instructions, state,
3869 NULL,
3870 lhs, rhs,
3871 &result, true,
3872 true,
3873 type->get_location());
3874 initializer_type = result->type;
3875 } else
3876 initializer_type = rhs->type;
3877
3878 var->constant_initializer = rhs->constant_expression_value();
3879 var->data.has_initializer = true;
3880
3881 /* If the declared variable is an unsized array, it must inherrit
3882 * its full type from the initializer. A declaration such as
3883 *
3884 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3885 *
3886 * becomes
3887 *
3888 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3889 *
3890 * The assignment generated in the if-statement (below) will also
3891 * automatically handle this case for non-uniforms.
3892 *
3893 * If the declared variable is not an array, the types must
3894 * already match exactly. As a result, the type assignment
3895 * here can be done unconditionally. For non-uniforms the call
3896 * to do_assignment can change the type of the initializer (via
3897 * the implicit conversion rules). For uniforms the initializer
3898 * must be a constant expression, and the type of that expression
3899 * was validated above.
3900 */
3901 var->type = initializer_type;
3902
3903 var->data.read_only = temp;
3904 }
3905
3906 return result;
3907 }
3908
3909 static void
3910 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3911 YYLTYPE loc, ir_variable *var,
3912 unsigned num_vertices,
3913 unsigned *size,
3914 const char *var_category)
3915 {
3916 if (var->type->is_unsized_array()) {
3917 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3918 *
3919 * All geometry shader input unsized array declarations will be
3920 * sized by an earlier input layout qualifier, when present, as per
3921 * the following table.
3922 *
3923 * Followed by a table mapping each allowed input layout qualifier to
3924 * the corresponding input length.
3925 *
3926 * Similarly for tessellation control shader outputs.
3927 */
3928 if (num_vertices != 0)
3929 var->type = glsl_type::get_array_instance(var->type->fields.array,
3930 num_vertices);
3931 } else {
3932 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3933 * includes the following examples of compile-time errors:
3934 *
3935 * // code sequence within one shader...
3936 * in vec4 Color1[]; // size unknown
3937 * ...Color1.length()...// illegal, length() unknown
3938 * in vec4 Color2[2]; // size is 2
3939 * ...Color1.length()...// illegal, Color1 still has no size
3940 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3941 * layout(lines) in; // legal, input size is 2, matching
3942 * in vec4 Color4[3]; // illegal, contradicts layout
3943 * ...
3944 *
3945 * To detect the case illustrated by Color3, we verify that the size of
3946 * an explicitly-sized array matches the size of any previously declared
3947 * explicitly-sized array. To detect the case illustrated by Color4, we
3948 * verify that the size of an explicitly-sized array is consistent with
3949 * any previously declared input layout.
3950 */
3951 if (num_vertices != 0 && var->type->length != num_vertices) {
3952 _mesa_glsl_error(&loc, state,
3953 "%s size contradicts previously declared layout "
3954 "(size is %u, but layout requires a size of %u)",
3955 var_category, var->type->length, num_vertices);
3956 } else if (*size != 0 && var->type->length != *size) {
3957 _mesa_glsl_error(&loc, state,
3958 "%s sizes are inconsistent (size is %u, but a "
3959 "previous declaration has size %u)",
3960 var_category, var->type->length, *size);
3961 } else {
3962 *size = var->type->length;
3963 }
3964 }
3965 }
3966
3967 static void
3968 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3969 YYLTYPE loc, ir_variable *var)
3970 {
3971 unsigned num_vertices = 0;
3972
3973 if (state->tcs_output_vertices_specified) {
3974 if (!state->out_qualifier->vertices->
3975 process_qualifier_constant(state, "vertices",
3976 &num_vertices, false)) {
3977 return;
3978 }
3979
3980 if (num_vertices > state->Const.MaxPatchVertices) {
3981 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3982 "GL_MAX_PATCH_VERTICES", num_vertices);
3983 return;
3984 }
3985 }
3986
3987 if (!var->type->is_array() && !var->data.patch) {
3988 _mesa_glsl_error(&loc, state,
3989 "tessellation control shader outputs must be arrays");
3990
3991 /* To avoid cascading failures, short circuit the checks below. */
3992 return;
3993 }
3994
3995 if (var->data.patch)
3996 return;
3997
3998 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3999 &state->tcs_output_size,
4000 "tessellation control shader output");
4001 }
4002
4003 /**
4004 * Do additional processing necessary for tessellation control/evaluation shader
4005 * input declarations. This covers both interface block arrays and bare input
4006 * variables.
4007 */
4008 static void
4009 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4010 YYLTYPE loc, ir_variable *var)
4011 {
4012 if (!var->type->is_array() && !var->data.patch) {
4013 _mesa_glsl_error(&loc, state,
4014 "per-vertex tessellation shader inputs must be arrays");
4015 /* Avoid cascading failures. */
4016 return;
4017 }
4018
4019 if (var->data.patch)
4020 return;
4021
4022 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4023 if (var->type->is_unsized_array()) {
4024 var->type = glsl_type::get_array_instance(var->type->fields.array,
4025 state->Const.MaxPatchVertices);
4026 }
4027 }
4028
4029
4030 /**
4031 * Do additional processing necessary for geometry shader input declarations
4032 * (this covers both interface blocks arrays and bare input variables).
4033 */
4034 static void
4035 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4036 YYLTYPE loc, ir_variable *var)
4037 {
4038 unsigned num_vertices = 0;
4039
4040 if (state->gs_input_prim_type_specified) {
4041 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4042 }
4043
4044 /* Geometry shader input variables must be arrays. Caller should have
4045 * reported an error for this.
4046 */
4047 if (!var->type->is_array()) {
4048 assert(state->error);
4049
4050 /* To avoid cascading failures, short circuit the checks below. */
4051 return;
4052 }
4053
4054 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4055 &state->gs_input_size,
4056 "geometry shader input");
4057 }
4058
4059 void
4060 validate_identifier(const char *identifier, YYLTYPE loc,
4061 struct _mesa_glsl_parse_state *state)
4062 {
4063 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4064 *
4065 * "Identifiers starting with "gl_" are reserved for use by
4066 * OpenGL, and may not be declared in a shader as either a
4067 * variable or a function."
4068 */
4069 if (is_gl_identifier(identifier)) {
4070 _mesa_glsl_error(&loc, state,
4071 "identifier `%s' uses reserved `gl_' prefix",
4072 identifier);
4073 } else if (strstr(identifier, "__")) {
4074 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4075 * spec:
4076 *
4077 * "In addition, all identifiers containing two
4078 * consecutive underscores (__) are reserved as
4079 * possible future keywords."
4080 *
4081 * The intention is that names containing __ are reserved for internal
4082 * use by the implementation, and names prefixed with GL_ are reserved
4083 * for use by Khronos. Names simply containing __ are dangerous to use,
4084 * but should be allowed.
4085 *
4086 * A future version of the GLSL specification will clarify this.
4087 */
4088 _mesa_glsl_warning(&loc, state,
4089 "identifier `%s' uses reserved `__' string",
4090 identifier);
4091 }
4092 }
4093
4094 ir_rvalue *
4095 ast_declarator_list::hir(exec_list *instructions,
4096 struct _mesa_glsl_parse_state *state)
4097 {
4098 void *ctx = state;
4099 const struct glsl_type *decl_type;
4100 const char *type_name = NULL;
4101 ir_rvalue *result = NULL;
4102 YYLTYPE loc = this->get_location();
4103
4104 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4105 *
4106 * "To ensure that a particular output variable is invariant, it is
4107 * necessary to use the invariant qualifier. It can either be used to
4108 * qualify a previously declared variable as being invariant
4109 *
4110 * invariant gl_Position; // make existing gl_Position be invariant"
4111 *
4112 * In these cases the parser will set the 'invariant' flag in the declarator
4113 * list, and the type will be NULL.
4114 */
4115 if (this->invariant) {
4116 assert(this->type == NULL);
4117
4118 if (state->current_function != NULL) {
4119 _mesa_glsl_error(& loc, state,
4120 "all uses of `invariant' keyword must be at global "
4121 "scope");
4122 }
4123
4124 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4125 assert(decl->array_specifier == NULL);
4126 assert(decl->initializer == NULL);
4127
4128 ir_variable *const earlier =
4129 state->symbols->get_variable(decl->identifier);
4130 if (earlier == NULL) {
4131 _mesa_glsl_error(& loc, state,
4132 "undeclared variable `%s' cannot be marked "
4133 "invariant", decl->identifier);
4134 } else if (!is_varying_var(earlier, state->stage)) {
4135 _mesa_glsl_error(&loc, state,
4136 "`%s' cannot be marked invariant; interfaces between "
4137 "shader stages only.", decl->identifier);
4138 } else if (earlier->data.used) {
4139 _mesa_glsl_error(& loc, state,
4140 "variable `%s' may not be redeclared "
4141 "`invariant' after being used",
4142 earlier->name);
4143 } else {
4144 earlier->data.invariant = true;
4145 }
4146 }
4147
4148 /* Invariant redeclarations do not have r-values.
4149 */
4150 return NULL;
4151 }
4152
4153 if (this->precise) {
4154 assert(this->type == NULL);
4155
4156 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4157 assert(decl->array_specifier == NULL);
4158 assert(decl->initializer == NULL);
4159
4160 ir_variable *const earlier =
4161 state->symbols->get_variable(decl->identifier);
4162 if (earlier == NULL) {
4163 _mesa_glsl_error(& loc, state,
4164 "undeclared variable `%s' cannot be marked "
4165 "precise", decl->identifier);
4166 } else if (state->current_function != NULL &&
4167 !state->symbols->name_declared_this_scope(decl->identifier)) {
4168 /* Note: we have to check if we're in a function, since
4169 * builtins are treated as having come from another scope.
4170 */
4171 _mesa_glsl_error(& loc, state,
4172 "variable `%s' from an outer scope may not be "
4173 "redeclared `precise' in this scope",
4174 earlier->name);
4175 } else if (earlier->data.used) {
4176 _mesa_glsl_error(& loc, state,
4177 "variable `%s' may not be redeclared "
4178 "`precise' after being used",
4179 earlier->name);
4180 } else {
4181 earlier->data.precise = true;
4182 }
4183 }
4184
4185 /* Precise redeclarations do not have r-values either. */
4186 return NULL;
4187 }
4188
4189 assert(this->type != NULL);
4190 assert(!this->invariant);
4191 assert(!this->precise);
4192
4193 /* The type specifier may contain a structure definition. Process that
4194 * before any of the variable declarations.
4195 */
4196 (void) this->type->specifier->hir(instructions, state);
4197
4198 decl_type = this->type->glsl_type(& type_name, state);
4199
4200 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4201 * "Buffer variables may only be declared inside interface blocks
4202 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4203 * shader storage blocks. It is a compile-time error to declare buffer
4204 * variables at global scope (outside a block)."
4205 */
4206 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4207 _mesa_glsl_error(&loc, state,
4208 "buffer variables cannot be declared outside "
4209 "interface blocks");
4210 }
4211
4212 /* An offset-qualified atomic counter declaration sets the default
4213 * offset for the next declaration within the same atomic counter
4214 * buffer.
4215 */
4216 if (decl_type && decl_type->contains_atomic()) {
4217 if (type->qualifier.flags.q.explicit_binding &&
4218 type->qualifier.flags.q.explicit_offset) {
4219 unsigned qual_binding;
4220 unsigned qual_offset;
4221 if (process_qualifier_constant(state, &loc, "binding",
4222 type->qualifier.binding,
4223 &qual_binding)
4224 && process_qualifier_constant(state, &loc, "offset",
4225 type->qualifier.offset,
4226 &qual_offset)) {
4227 state->atomic_counter_offsets[qual_binding] = qual_offset;
4228 }
4229 }
4230 }
4231
4232 if (this->declarations.is_empty()) {
4233 /* If there is no structure involved in the program text, there are two
4234 * possible scenarios:
4235 *
4236 * - The program text contained something like 'vec4;'. This is an
4237 * empty declaration. It is valid but weird. Emit a warning.
4238 *
4239 * - The program text contained something like 'S;' and 'S' is not the
4240 * name of a known structure type. This is both invalid and weird.
4241 * Emit an error.
4242 *
4243 * - The program text contained something like 'mediump float;'
4244 * when the programmer probably meant 'precision mediump
4245 * float;' Emit a warning with a description of what they
4246 * probably meant to do.
4247 *
4248 * Note that if decl_type is NULL and there is a structure involved,
4249 * there must have been some sort of error with the structure. In this
4250 * case we assume that an error was already generated on this line of
4251 * code for the structure. There is no need to generate an additional,
4252 * confusing error.
4253 */
4254 assert(this->type->specifier->structure == NULL || decl_type != NULL
4255 || state->error);
4256
4257 if (decl_type == NULL) {
4258 _mesa_glsl_error(&loc, state,
4259 "invalid type `%s' in empty declaration",
4260 type_name);
4261 } else {
4262 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4263 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4264 * spec:
4265 *
4266 * "... any declaration that leaves the size undefined is
4267 * disallowed as this would add complexity and there are no
4268 * use-cases."
4269 */
4270 if (state->es_shader && decl_type->is_unsized_array()) {
4271 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4272 "or implicitly defined");
4273 }
4274
4275 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4276 *
4277 * "The combinations of types and qualifiers that cause
4278 * compile-time or link-time errors are the same whether or not
4279 * the declaration is empty."
4280 */
4281 validate_array_dimensions(decl_type, state, &loc);
4282 }
4283
4284 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4285 /* Empty atomic counter declarations are allowed and useful
4286 * to set the default offset qualifier.
4287 */
4288 return NULL;
4289 } else if (this->type->qualifier.precision != ast_precision_none) {
4290 if (this->type->specifier->structure != NULL) {
4291 _mesa_glsl_error(&loc, state,
4292 "precision qualifiers can't be applied "
4293 "to structures");
4294 } else {
4295 static const char *const precision_names[] = {
4296 "highp",
4297 "highp",
4298 "mediump",
4299 "lowp"
4300 };
4301
4302 _mesa_glsl_warning(&loc, state,
4303 "empty declaration with precision "
4304 "qualifier, to set the default precision, "
4305 "use `precision %s %s;'",
4306 precision_names[this->type->
4307 qualifier.precision],
4308 type_name);
4309 }
4310 } else if (this->type->specifier->structure == NULL) {
4311 _mesa_glsl_warning(&loc, state, "empty declaration");
4312 }
4313 }
4314 }
4315
4316 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4317 const struct glsl_type *var_type;
4318 ir_variable *var;
4319 const char *identifier = decl->identifier;
4320 /* FINISHME: Emit a warning if a variable declaration shadows a
4321 * FINISHME: declaration at a higher scope.
4322 */
4323
4324 if ((decl_type == NULL) || decl_type->is_void()) {
4325 if (type_name != NULL) {
4326 _mesa_glsl_error(& loc, state,
4327 "invalid type `%s' in declaration of `%s'",
4328 type_name, decl->identifier);
4329 } else {
4330 _mesa_glsl_error(& loc, state,
4331 "invalid type in declaration of `%s'",
4332 decl->identifier);
4333 }
4334 continue;
4335 }
4336
4337 if (this->type->qualifier.flags.q.subroutine) {
4338 const glsl_type *t;
4339 const char *name;
4340
4341 t = state->symbols->get_type(this->type->specifier->type_name);
4342 if (!t)
4343 _mesa_glsl_error(& loc, state,
4344 "invalid type in declaration of `%s'",
4345 decl->identifier);
4346 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4347
4348 identifier = name;
4349
4350 }
4351 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4352 state);
4353
4354 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4355
4356 /* The 'varying in' and 'varying out' qualifiers can only be used with
4357 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4358 * yet.
4359 */
4360 if (this->type->qualifier.flags.q.varying) {
4361 if (this->type->qualifier.flags.q.in) {
4362 _mesa_glsl_error(& loc, state,
4363 "`varying in' qualifier in declaration of "
4364 "`%s' only valid for geometry shaders using "
4365 "ARB_geometry_shader4 or EXT_geometry_shader4",
4366 decl->identifier);
4367 } else if (this->type->qualifier.flags.q.out) {
4368 _mesa_glsl_error(& loc, state,
4369 "`varying out' qualifier in declaration of "
4370 "`%s' only valid for geometry shaders using "
4371 "ARB_geometry_shader4 or EXT_geometry_shader4",
4372 decl->identifier);
4373 }
4374 }
4375
4376 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4377 *
4378 * "Global variables can only use the qualifiers const,
4379 * attribute, uniform, or varying. Only one may be
4380 * specified.
4381 *
4382 * Local variables can only use the qualifier const."
4383 *
4384 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4385 * any extension that adds the 'layout' keyword.
4386 */
4387 if (!state->is_version(130, 300)
4388 && !state->has_explicit_attrib_location()
4389 && !state->has_separate_shader_objects()
4390 && !state->ARB_fragment_coord_conventions_enable) {
4391 if (this->type->qualifier.flags.q.out) {
4392 _mesa_glsl_error(& loc, state,
4393 "`out' qualifier in declaration of `%s' "
4394 "only valid for function parameters in %s",
4395 decl->identifier, state->get_version_string());
4396 }
4397 if (this->type->qualifier.flags.q.in) {
4398 _mesa_glsl_error(& loc, state,
4399 "`in' qualifier in declaration of `%s' "
4400 "only valid for function parameters in %s",
4401 decl->identifier, state->get_version_string());
4402 }
4403 /* FINISHME: Test for other invalid qualifiers. */
4404 }
4405
4406 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4407 & loc, false);
4408 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4409 &loc);
4410
4411 if (this->type->qualifier.flags.q.invariant) {
4412 if (!is_varying_var(var, state->stage)) {
4413 _mesa_glsl_error(&loc, state,
4414 "`%s' cannot be marked invariant; interfaces between "
4415 "shader stages only", var->name);
4416 }
4417 }
4418
4419 if (state->current_function != NULL) {
4420 const char *mode = NULL;
4421 const char *extra = "";
4422
4423 /* There is no need to check for 'inout' here because the parser will
4424 * only allow that in function parameter lists.
4425 */
4426 if (this->type->qualifier.flags.q.attribute) {
4427 mode = "attribute";
4428 } else if (this->type->qualifier.flags.q.subroutine) {
4429 mode = "subroutine uniform";
4430 } else if (this->type->qualifier.flags.q.uniform) {
4431 mode = "uniform";
4432 } else if (this->type->qualifier.flags.q.varying) {
4433 mode = "varying";
4434 } else if (this->type->qualifier.flags.q.in) {
4435 mode = "in";
4436 extra = " or in function parameter list";
4437 } else if (this->type->qualifier.flags.q.out) {
4438 mode = "out";
4439 extra = " or in function parameter list";
4440 }
4441
4442 if (mode) {
4443 _mesa_glsl_error(& loc, state,
4444 "%s variable `%s' must be declared at "
4445 "global scope%s",
4446 mode, var->name, extra);
4447 }
4448 } else if (var->data.mode == ir_var_shader_in) {
4449 var->data.read_only = true;
4450
4451 if (state->stage == MESA_SHADER_VERTEX) {
4452 bool error_emitted = false;
4453
4454 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4455 *
4456 * "Vertex shader inputs can only be float, floating-point
4457 * vectors, matrices, signed and unsigned integers and integer
4458 * vectors. Vertex shader inputs can also form arrays of these
4459 * types, but not structures."
4460 *
4461 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4462 *
4463 * "Vertex shader inputs can only be float, floating-point
4464 * vectors, matrices, signed and unsigned integers and integer
4465 * vectors. They cannot be arrays or structures."
4466 *
4467 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4468 *
4469 * "The attribute qualifier can be used only with float,
4470 * floating-point vectors, and matrices. Attribute variables
4471 * cannot be declared as arrays or structures."
4472 *
4473 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4474 *
4475 * "Vertex shader inputs can only be float, floating-point
4476 * vectors, matrices, signed and unsigned integers and integer
4477 * vectors. Vertex shader inputs cannot be arrays or
4478 * structures."
4479 */
4480 const glsl_type *check_type = var->type->without_array();
4481
4482 switch (check_type->base_type) {
4483 case GLSL_TYPE_FLOAT:
4484 break;
4485 case GLSL_TYPE_UINT:
4486 case GLSL_TYPE_INT:
4487 if (state->is_version(120, 300))
4488 break;
4489 case GLSL_TYPE_DOUBLE:
4490 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4491 break;
4492 /* FALLTHROUGH */
4493 default:
4494 _mesa_glsl_error(& loc, state,
4495 "vertex shader input / attribute cannot have "
4496 "type %s`%s'",
4497 var->type->is_array() ? "array of " : "",
4498 check_type->name);
4499 error_emitted = true;
4500 }
4501
4502 if (!error_emitted && var->type->is_array() &&
4503 !state->check_version(150, 0, &loc,
4504 "vertex shader input / attribute "
4505 "cannot have array type")) {
4506 error_emitted = true;
4507 }
4508 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4509 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4510 *
4511 * Geometry shader input variables get the per-vertex values
4512 * written out by vertex shader output variables of the same
4513 * names. Since a geometry shader operates on a set of
4514 * vertices, each input varying variable (or input block, see
4515 * interface blocks below) needs to be declared as an array.
4516 */
4517 if (!var->type->is_array()) {
4518 _mesa_glsl_error(&loc, state,
4519 "geometry shader inputs must be arrays");
4520 }
4521
4522 handle_geometry_shader_input_decl(state, loc, var);
4523 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4524 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4525 *
4526 * It is a compile-time error to declare a fragment shader
4527 * input with, or that contains, any of the following types:
4528 *
4529 * * A boolean type
4530 * * An opaque type
4531 * * An array of arrays
4532 * * An array of structures
4533 * * A structure containing an array
4534 * * A structure containing a structure
4535 */
4536 if (state->es_shader) {
4537 const glsl_type *check_type = var->type->without_array();
4538 if (check_type->is_boolean() ||
4539 check_type->contains_opaque()) {
4540 _mesa_glsl_error(&loc, state,
4541 "fragment shader input cannot have type %s",
4542 check_type->name);
4543 }
4544 if (var->type->is_array() &&
4545 var->type->fields.array->is_array()) {
4546 _mesa_glsl_error(&loc, state,
4547 "%s shader output "
4548 "cannot have an array of arrays",
4549 _mesa_shader_stage_to_string(state->stage));
4550 }
4551 if (var->type->is_array() &&
4552 var->type->fields.array->is_record()) {
4553 _mesa_glsl_error(&loc, state,
4554 "fragment shader input "
4555 "cannot have an array of structs");
4556 }
4557 if (var->type->is_record()) {
4558 for (unsigned i = 0; i < var->type->length; i++) {
4559 if (var->type->fields.structure[i].type->is_array() ||
4560 var->type->fields.structure[i].type->is_record())
4561 _mesa_glsl_error(&loc, state,
4562 "fragement shader input cannot have "
4563 "a struct that contains an "
4564 "array or struct");
4565 }
4566 }
4567 }
4568 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4569 state->stage == MESA_SHADER_TESS_EVAL) {
4570 handle_tess_shader_input_decl(state, loc, var);
4571 }
4572 } else if (var->data.mode == ir_var_shader_out) {
4573 const glsl_type *check_type = var->type->without_array();
4574
4575 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4576 *
4577 * It is a compile-time error to declare a vertex, tessellation
4578 * evaluation, tessellation control, or geometry shader output
4579 * that contains any of the following:
4580 *
4581 * * A Boolean type (bool, bvec2 ...)
4582 * * An opaque type
4583 */
4584 if (check_type->is_boolean() || check_type->contains_opaque())
4585 _mesa_glsl_error(&loc, state,
4586 "%s shader output cannot have type %s",
4587 _mesa_shader_stage_to_string(state->stage),
4588 check_type->name);
4589
4590 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4591 *
4592 * It is a compile-time error to declare a fragment shader output
4593 * that contains any of the following:
4594 *
4595 * * A Boolean type (bool, bvec2 ...)
4596 * * A double-precision scalar or vector (double, dvec2 ...)
4597 * * An opaque type
4598 * * Any matrix type
4599 * * A structure
4600 */
4601 if (state->stage == MESA_SHADER_FRAGMENT) {
4602 if (check_type->is_record() || check_type->is_matrix())
4603 _mesa_glsl_error(&loc, state,
4604 "fragment shader output "
4605 "cannot have struct or matrix type");
4606 switch (check_type->base_type) {
4607 case GLSL_TYPE_UINT:
4608 case GLSL_TYPE_INT:
4609 case GLSL_TYPE_FLOAT:
4610 break;
4611 default:
4612 _mesa_glsl_error(&loc, state,
4613 "fragment shader output cannot have "
4614 "type %s", check_type->name);
4615 }
4616 }
4617
4618 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4619 *
4620 * It is a compile-time error to declare a vertex shader output
4621 * with, or that contains, any of the following types:
4622 *
4623 * * A boolean type
4624 * * An opaque type
4625 * * An array of arrays
4626 * * An array of structures
4627 * * A structure containing an array
4628 * * A structure containing a structure
4629 *
4630 * It is a compile-time error to declare a fragment shader output
4631 * with, or that contains, any of the following types:
4632 *
4633 * * A boolean type
4634 * * An opaque type
4635 * * A matrix
4636 * * A structure
4637 * * An array of array
4638 */
4639 if (state->es_shader) {
4640 if (var->type->is_array() &&
4641 var->type->fields.array->is_array()) {
4642 _mesa_glsl_error(&loc, state,
4643 "%s shader output "
4644 "cannot have an array of arrays",
4645 _mesa_shader_stage_to_string(state->stage));
4646 }
4647 if (state->stage == MESA_SHADER_VERTEX) {
4648 if (var->type->is_array() &&
4649 var->type->fields.array->is_record()) {
4650 _mesa_glsl_error(&loc, state,
4651 "vertex shader output "
4652 "cannot have an array of structs");
4653 }
4654 if (var->type->is_record()) {
4655 for (unsigned i = 0; i < var->type->length; i++) {
4656 if (var->type->fields.structure[i].type->is_array() ||
4657 var->type->fields.structure[i].type->is_record())
4658 _mesa_glsl_error(&loc, state,
4659 "vertex shader output cannot have a "
4660 "struct that contains an "
4661 "array or struct");
4662 }
4663 }
4664 }
4665 }
4666
4667 if (state->stage == MESA_SHADER_TESS_CTRL) {
4668 handle_tess_ctrl_shader_output_decl(state, loc, var);
4669 }
4670 } else if (var->type->contains_subroutine()) {
4671 /* declare subroutine uniforms as hidden */
4672 var->data.how_declared = ir_var_hidden;
4673 }
4674
4675 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4676 * so must integer vertex outputs.
4677 *
4678 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4679 * "Fragment shader inputs that are signed or unsigned integers or
4680 * integer vectors must be qualified with the interpolation qualifier
4681 * flat."
4682 *
4683 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4684 * "Fragment shader inputs that are, or contain, signed or unsigned
4685 * integers or integer vectors must be qualified with the
4686 * interpolation qualifier flat."
4687 *
4688 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4689 * "Vertex shader outputs that are, or contain, signed or unsigned
4690 * integers or integer vectors must be qualified with the
4691 * interpolation qualifier flat."
4692 *
4693 * Note that prior to GLSL 1.50, this requirement applied to vertex
4694 * outputs rather than fragment inputs. That creates problems in the
4695 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4696 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4697 * apply the restriction to both vertex outputs and fragment inputs.
4698 *
4699 * Note also that the desktop GLSL specs are missing the text "or
4700 * contain"; this is presumably an oversight, since there is no
4701 * reasonable way to interpolate a fragment shader input that contains
4702 * an integer.
4703 */
4704 if (state->is_version(130, 300) &&
4705 var->type->contains_integer() &&
4706 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4707 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4708 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4709 && state->es_shader))) {
4710 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4711 "vertex output" : "fragment input";
4712 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4713 "an integer, then it must be qualified with 'flat'",
4714 var_type);
4715 }
4716
4717 /* Double fragment inputs must be qualified with 'flat'. */
4718 if (var->type->contains_double() &&
4719 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4720 state->stage == MESA_SHADER_FRAGMENT &&
4721 var->data.mode == ir_var_shader_in) {
4722 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4723 "a double, then it must be qualified with 'flat'",
4724 var_type);
4725 }
4726
4727 /* Interpolation qualifiers cannot be applied to 'centroid' and
4728 * 'centroid varying'.
4729 *
4730 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4731 * "interpolation qualifiers may only precede the qualifiers in,
4732 * centroid in, out, or centroid out in a declaration. They do not apply
4733 * to the deprecated storage qualifiers varying or centroid varying."
4734 *
4735 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4736 */
4737 if (state->is_version(130, 0)
4738 && this->type->qualifier.has_interpolation()
4739 && this->type->qualifier.flags.q.varying) {
4740
4741 const char *i = interpolation_string(var->data.interpolation);
4742 const char *s;
4743 if (this->type->qualifier.flags.q.centroid)
4744 s = "centroid varying";
4745 else
4746 s = "varying";
4747
4748 _mesa_glsl_error(&loc, state,
4749 "qualifier '%s' cannot be applied to the "
4750 "deprecated storage qualifier '%s'", i, s);
4751 }
4752
4753
4754 /* Interpolation qualifiers can only apply to vertex shader outputs and
4755 * fragment shader inputs.
4756 *
4757 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4758 * "Outputs from a vertex shader (out) and inputs to a fragment
4759 * shader (in) can be further qualified with one or more of these
4760 * interpolation qualifiers"
4761 *
4762 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4763 * "These interpolation qualifiers may only precede the qualifiers
4764 * in, centroid in, out, or centroid out in a declaration. They do
4765 * not apply to inputs into a vertex shader or outputs from a
4766 * fragment shader."
4767 */
4768 if (state->is_version(130, 300)
4769 && this->type->qualifier.has_interpolation()) {
4770
4771 const char *i = interpolation_string(var->data.interpolation);
4772 switch (state->stage) {
4773 case MESA_SHADER_VERTEX:
4774 if (this->type->qualifier.flags.q.in) {
4775 _mesa_glsl_error(&loc, state,
4776 "qualifier '%s' cannot be applied to vertex "
4777 "shader inputs", i);
4778 }
4779 break;
4780 case MESA_SHADER_FRAGMENT:
4781 if (this->type->qualifier.flags.q.out) {
4782 _mesa_glsl_error(&loc, state,
4783 "qualifier '%s' cannot be applied to fragment "
4784 "shader outputs", i);
4785 }
4786 break;
4787 default:
4788 break;
4789 }
4790 }
4791
4792
4793 /* From section 4.3.4 of the GLSL 4.00 spec:
4794 * "Input variables may not be declared using the patch in qualifier
4795 * in tessellation control or geometry shaders."
4796 *
4797 * From section 4.3.6 of the GLSL 4.00 spec:
4798 * "It is an error to use patch out in a vertex, tessellation
4799 * evaluation, or geometry shader."
4800 *
4801 * This doesn't explicitly forbid using them in a fragment shader, but
4802 * that's probably just an oversight.
4803 */
4804 if (state->stage != MESA_SHADER_TESS_EVAL
4805 && this->type->qualifier.flags.q.patch
4806 && this->type->qualifier.flags.q.in) {
4807
4808 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4809 "tessellation evaluation shader");
4810 }
4811
4812 if (state->stage != MESA_SHADER_TESS_CTRL
4813 && this->type->qualifier.flags.q.patch
4814 && this->type->qualifier.flags.q.out) {
4815
4816 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4817 "tessellation control shader");
4818 }
4819
4820 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4821 */
4822 if (this->type->qualifier.precision != ast_precision_none) {
4823 state->check_precision_qualifiers_allowed(&loc);
4824 }
4825
4826
4827 /* If a precision qualifier is allowed on a type, it is allowed on
4828 * an array of that type.
4829 */
4830 if (!(this->type->qualifier.precision == ast_precision_none
4831 || precision_qualifier_allowed(var->type->without_array()))) {
4832
4833 _mesa_glsl_error(&loc, state,
4834 "precision qualifiers apply only to floating point"
4835 ", integer and opaque types");
4836 }
4837
4838 /* From section 4.1.7 of the GLSL 4.40 spec:
4839 *
4840 * "[Opaque types] can only be declared as function
4841 * parameters or uniform-qualified variables."
4842 */
4843 if (var_type->contains_opaque() &&
4844 !this->type->qualifier.flags.q.uniform) {
4845 _mesa_glsl_error(&loc, state,
4846 "opaque variables must be declared uniform");
4847 }
4848
4849 /* Process the initializer and add its instructions to a temporary
4850 * list. This list will be added to the instruction stream (below) after
4851 * the declaration is added. This is done because in some cases (such as
4852 * redeclarations) the declaration may not actually be added to the
4853 * instruction stream.
4854 */
4855 exec_list initializer_instructions;
4856
4857 /* Examine var name here since var may get deleted in the next call */
4858 bool var_is_gl_id = is_gl_identifier(var->name);
4859
4860 ir_variable *earlier =
4861 get_variable_being_redeclared(var, decl->get_location(), state,
4862 false /* allow_all_redeclarations */);
4863 if (earlier != NULL) {
4864 if (var_is_gl_id &&
4865 earlier->data.how_declared == ir_var_declared_in_block) {
4866 _mesa_glsl_error(&loc, state,
4867 "`%s' has already been redeclared using "
4868 "gl_PerVertex", earlier->name);
4869 }
4870 earlier->data.how_declared = ir_var_declared_normally;
4871 }
4872
4873 if (decl->initializer != NULL) {
4874 result = process_initializer((earlier == NULL) ? var : earlier,
4875 decl, this->type,
4876 &initializer_instructions, state);
4877 } else {
4878 validate_array_dimensions(var_type, state, &loc);
4879 }
4880
4881 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4882 *
4883 * "It is an error to write to a const variable outside of
4884 * its declaration, so they must be initialized when
4885 * declared."
4886 */
4887 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4888 _mesa_glsl_error(& loc, state,
4889 "const declaration of `%s' must be initialized",
4890 decl->identifier);
4891 }
4892
4893 if (state->es_shader) {
4894 const glsl_type *const t = (earlier == NULL)
4895 ? var->type : earlier->type;
4896
4897 if (t->is_unsized_array())
4898 /* Section 10.17 of the GLSL ES 1.00 specification states that
4899 * unsized array declarations have been removed from the language.
4900 * Arrays that are sized using an initializer are still explicitly
4901 * sized. However, GLSL ES 1.00 does not allow array
4902 * initializers. That is only allowed in GLSL ES 3.00.
4903 *
4904 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4905 *
4906 * "An array type can also be formed without specifying a size
4907 * if the definition includes an initializer:
4908 *
4909 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4910 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4911 *
4912 * float a[5];
4913 * float b[] = a;"
4914 */
4915 _mesa_glsl_error(& loc, state,
4916 "unsized array declarations are not allowed in "
4917 "GLSL ES");
4918 }
4919
4920 /* If the declaration is not a redeclaration, there are a few additional
4921 * semantic checks that must be applied. In addition, variable that was
4922 * created for the declaration should be added to the IR stream.
4923 */
4924 if (earlier == NULL) {
4925 validate_identifier(decl->identifier, loc, state);
4926
4927 /* Add the variable to the symbol table. Note that the initializer's
4928 * IR was already processed earlier (though it hasn't been emitted
4929 * yet), without the variable in scope.
4930 *
4931 * This differs from most C-like languages, but it follows the GLSL
4932 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4933 * spec:
4934 *
4935 * "Within a declaration, the scope of a name starts immediately
4936 * after the initializer if present or immediately after the name
4937 * being declared if not."
4938 */
4939 if (!state->symbols->add_variable(var)) {
4940 YYLTYPE loc = this->get_location();
4941 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4942 "current scope", decl->identifier);
4943 continue;
4944 }
4945
4946 /* Push the variable declaration to the top. It means that all the
4947 * variable declarations will appear in a funny last-to-first order,
4948 * but otherwise we run into trouble if a function is prototyped, a
4949 * global var is decled, then the function is defined with usage of
4950 * the global var. See glslparsertest's CorrectModule.frag.
4951 */
4952 instructions->push_head(var);
4953 }
4954
4955 instructions->append_list(&initializer_instructions);
4956 }
4957
4958
4959 /* Generally, variable declarations do not have r-values. However,
4960 * one is used for the declaration in
4961 *
4962 * while (bool b = some_condition()) {
4963 * ...
4964 * }
4965 *
4966 * so we return the rvalue from the last seen declaration here.
4967 */
4968 return result;
4969 }
4970
4971
4972 ir_rvalue *
4973 ast_parameter_declarator::hir(exec_list *instructions,
4974 struct _mesa_glsl_parse_state *state)
4975 {
4976 void *ctx = state;
4977 const struct glsl_type *type;
4978 const char *name = NULL;
4979 YYLTYPE loc = this->get_location();
4980
4981 type = this->type->glsl_type(& name, state);
4982
4983 if (type == NULL) {
4984 if (name != NULL) {
4985 _mesa_glsl_error(& loc, state,
4986 "invalid type `%s' in declaration of `%s'",
4987 name, this->identifier);
4988 } else {
4989 _mesa_glsl_error(& loc, state,
4990 "invalid type in declaration of `%s'",
4991 this->identifier);
4992 }
4993
4994 type = glsl_type::error_type;
4995 }
4996
4997 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4998 *
4999 * "Functions that accept no input arguments need not use void in the
5000 * argument list because prototypes (or definitions) are required and
5001 * therefore there is no ambiguity when an empty argument list "( )" is
5002 * declared. The idiom "(void)" as a parameter list is provided for
5003 * convenience."
5004 *
5005 * Placing this check here prevents a void parameter being set up
5006 * for a function, which avoids tripping up checks for main taking
5007 * parameters and lookups of an unnamed symbol.
5008 */
5009 if (type->is_void()) {
5010 if (this->identifier != NULL)
5011 _mesa_glsl_error(& loc, state,
5012 "named parameter cannot have type `void'");
5013
5014 is_void = true;
5015 return NULL;
5016 }
5017
5018 if (formal_parameter && (this->identifier == NULL)) {
5019 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5020 return NULL;
5021 }
5022
5023 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5024 * call already handled the "vec4[..] foo" case.
5025 */
5026 type = process_array_type(&loc, type, this->array_specifier, state);
5027
5028 if (!type->is_error() && type->is_unsized_array()) {
5029 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5030 "a declared size");
5031 type = glsl_type::error_type;
5032 }
5033
5034 is_void = false;
5035 ir_variable *var = new(ctx)
5036 ir_variable(type, this->identifier, ir_var_function_in);
5037
5038 /* Apply any specified qualifiers to the parameter declaration. Note that
5039 * for function parameters the default mode is 'in'.
5040 */
5041 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5042 true);
5043
5044 /* From section 4.1.7 of the GLSL 4.40 spec:
5045 *
5046 * "Opaque variables cannot be treated as l-values; hence cannot
5047 * be used as out or inout function parameters, nor can they be
5048 * assigned into."
5049 */
5050 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5051 && type->contains_opaque()) {
5052 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5053 "contain opaque variables");
5054 type = glsl_type::error_type;
5055 }
5056
5057 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5058 *
5059 * "When calling a function, expressions that do not evaluate to
5060 * l-values cannot be passed to parameters declared as out or inout."
5061 *
5062 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5063 *
5064 * "Other binary or unary expressions, non-dereferenced arrays,
5065 * function names, swizzles with repeated fields, and constants
5066 * cannot be l-values."
5067 *
5068 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5069 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5070 */
5071 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5072 && type->is_array()
5073 && !state->check_version(120, 100, &loc,
5074 "arrays cannot be out or inout parameters")) {
5075 type = glsl_type::error_type;
5076 }
5077
5078 instructions->push_tail(var);
5079
5080 /* Parameter declarations do not have r-values.
5081 */
5082 return NULL;
5083 }
5084
5085
5086 void
5087 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5088 bool formal,
5089 exec_list *ir_parameters,
5090 _mesa_glsl_parse_state *state)
5091 {
5092 ast_parameter_declarator *void_param = NULL;
5093 unsigned count = 0;
5094
5095 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5096 param->formal_parameter = formal;
5097 param->hir(ir_parameters, state);
5098
5099 if (param->is_void)
5100 void_param = param;
5101
5102 count++;
5103 }
5104
5105 if ((void_param != NULL) && (count > 1)) {
5106 YYLTYPE loc = void_param->get_location();
5107
5108 _mesa_glsl_error(& loc, state,
5109 "`void' parameter must be only parameter");
5110 }
5111 }
5112
5113
5114 void
5115 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5116 {
5117 /* IR invariants disallow function declarations or definitions
5118 * nested within other function definitions. But there is no
5119 * requirement about the relative order of function declarations
5120 * and definitions with respect to one another. So simply insert
5121 * the new ir_function block at the end of the toplevel instruction
5122 * list.
5123 */
5124 state->toplevel_ir->push_tail(f);
5125 }
5126
5127
5128 ir_rvalue *
5129 ast_function::hir(exec_list *instructions,
5130 struct _mesa_glsl_parse_state *state)
5131 {
5132 void *ctx = state;
5133 ir_function *f = NULL;
5134 ir_function_signature *sig = NULL;
5135 exec_list hir_parameters;
5136 YYLTYPE loc = this->get_location();
5137
5138 const char *const name = identifier;
5139
5140 /* New functions are always added to the top-level IR instruction stream,
5141 * so this instruction list pointer is ignored. See also emit_function
5142 * (called below).
5143 */
5144 (void) instructions;
5145
5146 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5147 *
5148 * "Function declarations (prototypes) cannot occur inside of functions;
5149 * they must be at global scope, or for the built-in functions, outside
5150 * the global scope."
5151 *
5152 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5153 *
5154 * "User defined functions may only be defined within the global scope."
5155 *
5156 * Note that this language does not appear in GLSL 1.10.
5157 */
5158 if ((state->current_function != NULL) &&
5159 state->is_version(120, 100)) {
5160 YYLTYPE loc = this->get_location();
5161 _mesa_glsl_error(&loc, state,
5162 "declaration of function `%s' not allowed within "
5163 "function body", name);
5164 }
5165
5166 validate_identifier(name, this->get_location(), state);
5167
5168 /* Convert the list of function parameters to HIR now so that they can be
5169 * used below to compare this function's signature with previously seen
5170 * signatures for functions with the same name.
5171 */
5172 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5173 is_definition,
5174 & hir_parameters, state);
5175
5176 const char *return_type_name;
5177 const glsl_type *return_type =
5178 this->return_type->glsl_type(& return_type_name, state);
5179
5180 if (!return_type) {
5181 YYLTYPE loc = this->get_location();
5182 _mesa_glsl_error(&loc, state,
5183 "function `%s' has undeclared return type `%s'",
5184 name, return_type_name);
5185 return_type = glsl_type::error_type;
5186 }
5187
5188 /* ARB_shader_subroutine states:
5189 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5190 * subroutine(...) to a function declaration."
5191 */
5192 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5193 YYLTYPE loc = this->get_location();
5194 _mesa_glsl_error(&loc, state,
5195 "function declaration `%s' cannot have subroutine prepended",
5196 name);
5197 }
5198
5199 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5200 * "No qualifier is allowed on the return type of a function."
5201 */
5202 if (this->return_type->has_qualifiers(state)) {
5203 YYLTYPE loc = this->get_location();
5204 _mesa_glsl_error(& loc, state,
5205 "function `%s' return type has qualifiers", name);
5206 }
5207
5208 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5209 *
5210 * "Arrays are allowed as arguments and as the return type. In both
5211 * cases, the array must be explicitly sized."
5212 */
5213 if (return_type->is_unsized_array()) {
5214 YYLTYPE loc = this->get_location();
5215 _mesa_glsl_error(& loc, state,
5216 "function `%s' return type array must be explicitly "
5217 "sized", name);
5218 }
5219
5220 /* From section 4.1.7 of the GLSL 4.40 spec:
5221 *
5222 * "[Opaque types] can only be declared as function parameters
5223 * or uniform-qualified variables."
5224 */
5225 if (return_type->contains_opaque()) {
5226 YYLTYPE loc = this->get_location();
5227 _mesa_glsl_error(&loc, state,
5228 "function `%s' return type can't contain an opaque type",
5229 name);
5230 }
5231
5232 /* Create an ir_function if one doesn't already exist. */
5233 f = state->symbols->get_function(name);
5234 if (f == NULL) {
5235 f = new(ctx) ir_function(name);
5236 if (!this->return_type->qualifier.flags.q.subroutine) {
5237 if (!state->symbols->add_function(f)) {
5238 /* This function name shadows a non-function use of the same name. */
5239 YYLTYPE loc = this->get_location();
5240 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5241 "non-function", name);
5242 return NULL;
5243 }
5244 }
5245 emit_function(state, f);
5246 }
5247
5248 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5249 *
5250 * "A shader cannot redefine or overload built-in functions."
5251 *
5252 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5253 *
5254 * "User code can overload the built-in functions but cannot redefine
5255 * them."
5256 */
5257 if (state->es_shader && state->language_version >= 300) {
5258 /* Local shader has no exact candidates; check the built-ins. */
5259 _mesa_glsl_initialize_builtin_functions();
5260 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5261 YYLTYPE loc = this->get_location();
5262 _mesa_glsl_error(& loc, state,
5263 "A shader cannot redefine or overload built-in "
5264 "function `%s' in GLSL ES 3.00", name);
5265 return NULL;
5266 }
5267 }
5268
5269 /* Verify that this function's signature either doesn't match a previously
5270 * seen signature for a function with the same name, or, if a match is found,
5271 * that the previously seen signature does not have an associated definition.
5272 */
5273 if (state->es_shader || f->has_user_signature()) {
5274 sig = f->exact_matching_signature(state, &hir_parameters);
5275 if (sig != NULL) {
5276 const char *badvar = sig->qualifiers_match(&hir_parameters);
5277 if (badvar != NULL) {
5278 YYLTYPE loc = this->get_location();
5279
5280 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5281 "qualifiers don't match prototype", name, badvar);
5282 }
5283
5284 if (sig->return_type != return_type) {
5285 YYLTYPE loc = this->get_location();
5286
5287 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5288 "match prototype", name);
5289 }
5290
5291 if (sig->is_defined) {
5292 if (is_definition) {
5293 YYLTYPE loc = this->get_location();
5294 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5295 } else {
5296 /* We just encountered a prototype that exactly matches a
5297 * function that's already been defined. This is redundant,
5298 * and we should ignore it.
5299 */
5300 return NULL;
5301 }
5302 }
5303 }
5304 }
5305
5306 /* Verify the return type of main() */
5307 if (strcmp(name, "main") == 0) {
5308 if (! return_type->is_void()) {
5309 YYLTYPE loc = this->get_location();
5310
5311 _mesa_glsl_error(& loc, state, "main() must return void");
5312 }
5313
5314 if (!hir_parameters.is_empty()) {
5315 YYLTYPE loc = this->get_location();
5316
5317 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5318 }
5319 }
5320
5321 /* Finish storing the information about this new function in its signature.
5322 */
5323 if (sig == NULL) {
5324 sig = new(ctx) ir_function_signature(return_type);
5325 f->add_signature(sig);
5326 }
5327
5328 sig->replace_parameters(&hir_parameters);
5329 signature = sig;
5330
5331 if (this->return_type->qualifier.flags.q.subroutine_def) {
5332 int idx;
5333
5334 if (this->return_type->qualifier.flags.q.explicit_index) {
5335 unsigned qual_index;
5336 if (process_qualifier_constant(state, &loc, "index",
5337 this->return_type->qualifier.index,
5338 &qual_index)) {
5339 if (!state->has_explicit_uniform_location()) {
5340 _mesa_glsl_error(&loc, state, "subroutine index requires "
5341 "GL_ARB_explicit_uniform_location or "
5342 "GLSL 4.30");
5343 } else if (qual_index >= MAX_SUBROUTINES) {
5344 _mesa_glsl_error(&loc, state,
5345 "invalid subroutine index (%d) index must "
5346 "be a number between 0 and "
5347 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5348 MAX_SUBROUTINES - 1);
5349 } else {
5350 f->subroutine_index = qual_index;
5351 }
5352 }
5353 }
5354
5355 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5356 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5357 f->num_subroutine_types);
5358 idx = 0;
5359 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5360 const struct glsl_type *type;
5361 /* the subroutine type must be already declared */
5362 type = state->symbols->get_type(decl->identifier);
5363 if (!type) {
5364 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5365 }
5366 f->subroutine_types[idx++] = type;
5367 }
5368 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5369 ir_function *,
5370 state->num_subroutines + 1);
5371 state->subroutines[state->num_subroutines] = f;
5372 state->num_subroutines++;
5373
5374 }
5375
5376 if (this->return_type->qualifier.flags.q.subroutine) {
5377 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5378 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5379 return NULL;
5380 }
5381 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5382 ir_function *,
5383 state->num_subroutine_types + 1);
5384 state->subroutine_types[state->num_subroutine_types] = f;
5385 state->num_subroutine_types++;
5386
5387 f->is_subroutine = true;
5388 }
5389
5390 /* Function declarations (prototypes) do not have r-values.
5391 */
5392 return NULL;
5393 }
5394
5395
5396 ir_rvalue *
5397 ast_function_definition::hir(exec_list *instructions,
5398 struct _mesa_glsl_parse_state *state)
5399 {
5400 prototype->is_definition = true;
5401 prototype->hir(instructions, state);
5402
5403 ir_function_signature *signature = prototype->signature;
5404 if (signature == NULL)
5405 return NULL;
5406
5407 assert(state->current_function == NULL);
5408 state->current_function = signature;
5409 state->found_return = false;
5410
5411 /* Duplicate parameters declared in the prototype as concrete variables.
5412 * Add these to the symbol table.
5413 */
5414 state->symbols->push_scope();
5415 foreach_in_list(ir_variable, var, &signature->parameters) {
5416 assert(var->as_variable() != NULL);
5417
5418 /* The only way a parameter would "exist" is if two parameters have
5419 * the same name.
5420 */
5421 if (state->symbols->name_declared_this_scope(var->name)) {
5422 YYLTYPE loc = this->get_location();
5423
5424 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5425 } else {
5426 state->symbols->add_variable(var);
5427 }
5428 }
5429
5430 /* Convert the body of the function to HIR. */
5431 this->body->hir(&signature->body, state);
5432 signature->is_defined = true;
5433
5434 state->symbols->pop_scope();
5435
5436 assert(state->current_function == signature);
5437 state->current_function = NULL;
5438
5439 if (!signature->return_type->is_void() && !state->found_return) {
5440 YYLTYPE loc = this->get_location();
5441 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5442 "%s, but no return statement",
5443 signature->function_name(),
5444 signature->return_type->name);
5445 }
5446
5447 /* Function definitions do not have r-values.
5448 */
5449 return NULL;
5450 }
5451
5452
5453 ir_rvalue *
5454 ast_jump_statement::hir(exec_list *instructions,
5455 struct _mesa_glsl_parse_state *state)
5456 {
5457 void *ctx = state;
5458
5459 switch (mode) {
5460 case ast_return: {
5461 ir_return *inst;
5462 assert(state->current_function);
5463
5464 if (opt_return_value) {
5465 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5466
5467 /* The value of the return type can be NULL if the shader says
5468 * 'return foo();' and foo() is a function that returns void.
5469 *
5470 * NOTE: The GLSL spec doesn't say that this is an error. The type
5471 * of the return value is void. If the return type of the function is
5472 * also void, then this should compile without error. Seriously.
5473 */
5474 const glsl_type *const ret_type =
5475 (ret == NULL) ? glsl_type::void_type : ret->type;
5476
5477 /* Implicit conversions are not allowed for return values prior to
5478 * ARB_shading_language_420pack.
5479 */
5480 if (state->current_function->return_type != ret_type) {
5481 YYLTYPE loc = this->get_location();
5482
5483 if (state->has_420pack()) {
5484 if (!apply_implicit_conversion(state->current_function->return_type,
5485 ret, state)) {
5486 _mesa_glsl_error(& loc, state,
5487 "could not implicitly convert return value "
5488 "to %s, in function `%s'",
5489 state->current_function->return_type->name,
5490 state->current_function->function_name());
5491 }
5492 } else {
5493 _mesa_glsl_error(& loc, state,
5494 "`return' with wrong type %s, in function `%s' "
5495 "returning %s",
5496 ret_type->name,
5497 state->current_function->function_name(),
5498 state->current_function->return_type->name);
5499 }
5500 } else if (state->current_function->return_type->base_type ==
5501 GLSL_TYPE_VOID) {
5502 YYLTYPE loc = this->get_location();
5503
5504 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5505 * specs add a clarification:
5506 *
5507 * "A void function can only use return without a return argument, even if
5508 * the return argument has void type. Return statements only accept values:
5509 *
5510 * void func1() { }
5511 * void func2() { return func1(); } // illegal return statement"
5512 */
5513 _mesa_glsl_error(& loc, state,
5514 "void functions can only use `return' without a "
5515 "return argument");
5516 }
5517
5518 inst = new(ctx) ir_return(ret);
5519 } else {
5520 if (state->current_function->return_type->base_type !=
5521 GLSL_TYPE_VOID) {
5522 YYLTYPE loc = this->get_location();
5523
5524 _mesa_glsl_error(& loc, state,
5525 "`return' with no value, in function %s returning "
5526 "non-void",
5527 state->current_function->function_name());
5528 }
5529 inst = new(ctx) ir_return;
5530 }
5531
5532 state->found_return = true;
5533 instructions->push_tail(inst);
5534 break;
5535 }
5536
5537 case ast_discard:
5538 if (state->stage != MESA_SHADER_FRAGMENT) {
5539 YYLTYPE loc = this->get_location();
5540
5541 _mesa_glsl_error(& loc, state,
5542 "`discard' may only appear in a fragment shader");
5543 }
5544 instructions->push_tail(new(ctx) ir_discard);
5545 break;
5546
5547 case ast_break:
5548 case ast_continue:
5549 if (mode == ast_continue &&
5550 state->loop_nesting_ast == NULL) {
5551 YYLTYPE loc = this->get_location();
5552
5553 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5554 } else if (mode == ast_break &&
5555 state->loop_nesting_ast == NULL &&
5556 state->switch_state.switch_nesting_ast == NULL) {
5557 YYLTYPE loc = this->get_location();
5558
5559 _mesa_glsl_error(& loc, state,
5560 "break may only appear in a loop or a switch");
5561 } else {
5562 /* For a loop, inline the for loop expression again, since we don't
5563 * know where near the end of the loop body the normal copy of it is
5564 * going to be placed. Same goes for the condition for a do-while
5565 * loop.
5566 */
5567 if (state->loop_nesting_ast != NULL &&
5568 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5569 if (state->loop_nesting_ast->rest_expression) {
5570 state->loop_nesting_ast->rest_expression->hir(instructions,
5571 state);
5572 }
5573 if (state->loop_nesting_ast->mode ==
5574 ast_iteration_statement::ast_do_while) {
5575 state->loop_nesting_ast->condition_to_hir(instructions, state);
5576 }
5577 }
5578
5579 if (state->switch_state.is_switch_innermost &&
5580 mode == ast_continue) {
5581 /* Set 'continue_inside' to true. */
5582 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5583 ir_dereference_variable *deref_continue_inside_var =
5584 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5585 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5586 true_val));
5587
5588 /* Break out from the switch, continue for the loop will
5589 * be called right after switch. */
5590 ir_loop_jump *const jump =
5591 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5592 instructions->push_tail(jump);
5593
5594 } else if (state->switch_state.is_switch_innermost &&
5595 mode == ast_break) {
5596 /* Force break out of switch by inserting a break. */
5597 ir_loop_jump *const jump =
5598 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5599 instructions->push_tail(jump);
5600 } else {
5601 ir_loop_jump *const jump =
5602 new(ctx) ir_loop_jump((mode == ast_break)
5603 ? ir_loop_jump::jump_break
5604 : ir_loop_jump::jump_continue);
5605 instructions->push_tail(jump);
5606 }
5607 }
5608
5609 break;
5610 }
5611
5612 /* Jump instructions do not have r-values.
5613 */
5614 return NULL;
5615 }
5616
5617
5618 ir_rvalue *
5619 ast_selection_statement::hir(exec_list *instructions,
5620 struct _mesa_glsl_parse_state *state)
5621 {
5622 void *ctx = state;
5623
5624 ir_rvalue *const condition = this->condition->hir(instructions, state);
5625
5626 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5627 *
5628 * "Any expression whose type evaluates to a Boolean can be used as the
5629 * conditional expression bool-expression. Vector types are not accepted
5630 * as the expression to if."
5631 *
5632 * The checks are separated so that higher quality diagnostics can be
5633 * generated for cases where both rules are violated.
5634 */
5635 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5636 YYLTYPE loc = this->condition->get_location();
5637
5638 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5639 "boolean");
5640 }
5641
5642 ir_if *const stmt = new(ctx) ir_if(condition);
5643
5644 if (then_statement != NULL) {
5645 state->symbols->push_scope();
5646 then_statement->hir(& stmt->then_instructions, state);
5647 state->symbols->pop_scope();
5648 }
5649
5650 if (else_statement != NULL) {
5651 state->symbols->push_scope();
5652 else_statement->hir(& stmt->else_instructions, state);
5653 state->symbols->pop_scope();
5654 }
5655
5656 instructions->push_tail(stmt);
5657
5658 /* if-statements do not have r-values.
5659 */
5660 return NULL;
5661 }
5662
5663
5664 ir_rvalue *
5665 ast_switch_statement::hir(exec_list *instructions,
5666 struct _mesa_glsl_parse_state *state)
5667 {
5668 void *ctx = state;
5669
5670 ir_rvalue *const test_expression =
5671 this->test_expression->hir(instructions, state);
5672
5673 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5674 *
5675 * "The type of init-expression in a switch statement must be a
5676 * scalar integer."
5677 */
5678 if (!test_expression->type->is_scalar() ||
5679 !test_expression->type->is_integer()) {
5680 YYLTYPE loc = this->test_expression->get_location();
5681
5682 _mesa_glsl_error(& loc,
5683 state,
5684 "switch-statement expression must be scalar "
5685 "integer");
5686 }
5687
5688 /* Track the switch-statement nesting in a stack-like manner.
5689 */
5690 struct glsl_switch_state saved = state->switch_state;
5691
5692 state->switch_state.is_switch_innermost = true;
5693 state->switch_state.switch_nesting_ast = this;
5694 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5695 hash_table_pointer_compare);
5696 state->switch_state.previous_default = NULL;
5697
5698 /* Initalize is_fallthru state to false.
5699 */
5700 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5701 state->switch_state.is_fallthru_var =
5702 new(ctx) ir_variable(glsl_type::bool_type,
5703 "switch_is_fallthru_tmp",
5704 ir_var_temporary);
5705 instructions->push_tail(state->switch_state.is_fallthru_var);
5706
5707 ir_dereference_variable *deref_is_fallthru_var =
5708 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5709 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5710 is_fallthru_val));
5711
5712 /* Initialize continue_inside state to false.
5713 */
5714 state->switch_state.continue_inside =
5715 new(ctx) ir_variable(glsl_type::bool_type,
5716 "continue_inside_tmp",
5717 ir_var_temporary);
5718 instructions->push_tail(state->switch_state.continue_inside);
5719
5720 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5721 ir_dereference_variable *deref_continue_inside_var =
5722 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5723 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5724 false_val));
5725
5726 state->switch_state.run_default =
5727 new(ctx) ir_variable(glsl_type::bool_type,
5728 "run_default_tmp",
5729 ir_var_temporary);
5730 instructions->push_tail(state->switch_state.run_default);
5731
5732 /* Loop around the switch is used for flow control. */
5733 ir_loop * loop = new(ctx) ir_loop();
5734 instructions->push_tail(loop);
5735
5736 /* Cache test expression.
5737 */
5738 test_to_hir(&loop->body_instructions, state);
5739
5740 /* Emit code for body of switch stmt.
5741 */
5742 body->hir(&loop->body_instructions, state);
5743
5744 /* Insert a break at the end to exit loop. */
5745 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5746 loop->body_instructions.push_tail(jump);
5747
5748 /* If we are inside loop, check if continue got called inside switch. */
5749 if (state->loop_nesting_ast != NULL) {
5750 ir_dereference_variable *deref_continue_inside =
5751 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5752 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5753 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5754
5755 if (state->loop_nesting_ast != NULL) {
5756 if (state->loop_nesting_ast->rest_expression) {
5757 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5758 state);
5759 }
5760 if (state->loop_nesting_ast->mode ==
5761 ast_iteration_statement::ast_do_while) {
5762 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5763 }
5764 }
5765 irif->then_instructions.push_tail(jump);
5766 instructions->push_tail(irif);
5767 }
5768
5769 hash_table_dtor(state->switch_state.labels_ht);
5770
5771 state->switch_state = saved;
5772
5773 /* Switch statements do not have r-values. */
5774 return NULL;
5775 }
5776
5777
5778 void
5779 ast_switch_statement::test_to_hir(exec_list *instructions,
5780 struct _mesa_glsl_parse_state *state)
5781 {
5782 void *ctx = state;
5783
5784 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5785 * on the switch test case. The first one would be already raised when
5786 * getting the test_expression at ast_switch_statement::hir
5787 */
5788 test_expression->set_is_lhs(true);
5789 /* Cache value of test expression. */
5790 ir_rvalue *const test_val =
5791 test_expression->hir(instructions,
5792 state);
5793
5794 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5795 "switch_test_tmp",
5796 ir_var_temporary);
5797 ir_dereference_variable *deref_test_var =
5798 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5799
5800 instructions->push_tail(state->switch_state.test_var);
5801 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5802 }
5803
5804
5805 ir_rvalue *
5806 ast_switch_body::hir(exec_list *instructions,
5807 struct _mesa_glsl_parse_state *state)
5808 {
5809 if (stmts != NULL)
5810 stmts->hir(instructions, state);
5811
5812 /* Switch bodies do not have r-values. */
5813 return NULL;
5814 }
5815
5816 ir_rvalue *
5817 ast_case_statement_list::hir(exec_list *instructions,
5818 struct _mesa_glsl_parse_state *state)
5819 {
5820 exec_list default_case, after_default, tmp;
5821
5822 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5823 case_stmt->hir(&tmp, state);
5824
5825 /* Default case. */
5826 if (state->switch_state.previous_default && default_case.is_empty()) {
5827 default_case.append_list(&tmp);
5828 continue;
5829 }
5830
5831 /* If default case found, append 'after_default' list. */
5832 if (!default_case.is_empty())
5833 after_default.append_list(&tmp);
5834 else
5835 instructions->append_list(&tmp);
5836 }
5837
5838 /* Handle the default case. This is done here because default might not be
5839 * the last case. We need to add checks against following cases first to see
5840 * if default should be chosen or not.
5841 */
5842 if (!default_case.is_empty()) {
5843
5844 ir_rvalue *const true_val = new (state) ir_constant(true);
5845 ir_dereference_variable *deref_run_default_var =
5846 new(state) ir_dereference_variable(state->switch_state.run_default);
5847
5848 /* Choose to run default case initially, following conditional
5849 * assignments might change this.
5850 */
5851 ir_assignment *const init_var =
5852 new(state) ir_assignment(deref_run_default_var, true_val);
5853 instructions->push_tail(init_var);
5854
5855 /* Default case was the last one, no checks required. */
5856 if (after_default.is_empty()) {
5857 instructions->append_list(&default_case);
5858 return NULL;
5859 }
5860
5861 foreach_in_list(ir_instruction, ir, &after_default) {
5862 ir_assignment *assign = ir->as_assignment();
5863
5864 if (!assign)
5865 continue;
5866
5867 /* Clone the check between case label and init expression. */
5868 ir_expression *exp = (ir_expression*) assign->condition;
5869 ir_expression *clone = exp->clone(state, NULL);
5870
5871 ir_dereference_variable *deref_var =
5872 new(state) ir_dereference_variable(state->switch_state.run_default);
5873 ir_rvalue *const false_val = new (state) ir_constant(false);
5874
5875 ir_assignment *const set_false =
5876 new(state) ir_assignment(deref_var, false_val, clone);
5877
5878 instructions->push_tail(set_false);
5879 }
5880
5881 /* Append default case and all cases after it. */
5882 instructions->append_list(&default_case);
5883 instructions->append_list(&after_default);
5884 }
5885
5886 /* Case statements do not have r-values. */
5887 return NULL;
5888 }
5889
5890 ir_rvalue *
5891 ast_case_statement::hir(exec_list *instructions,
5892 struct _mesa_glsl_parse_state *state)
5893 {
5894 labels->hir(instructions, state);
5895
5896 /* Guard case statements depending on fallthru state. */
5897 ir_dereference_variable *const deref_fallthru_guard =
5898 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5899 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5900
5901 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5902 stmt->hir(& test_fallthru->then_instructions, state);
5903
5904 instructions->push_tail(test_fallthru);
5905
5906 /* Case statements do not have r-values. */
5907 return NULL;
5908 }
5909
5910
5911 ir_rvalue *
5912 ast_case_label_list::hir(exec_list *instructions,
5913 struct _mesa_glsl_parse_state *state)
5914 {
5915 foreach_list_typed (ast_case_label, label, link, & this->labels)
5916 label->hir(instructions, state);
5917
5918 /* Case labels do not have r-values. */
5919 return NULL;
5920 }
5921
5922 ir_rvalue *
5923 ast_case_label::hir(exec_list *instructions,
5924 struct _mesa_glsl_parse_state *state)
5925 {
5926 void *ctx = state;
5927
5928 ir_dereference_variable *deref_fallthru_var =
5929 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5930
5931 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5932
5933 /* If not default case, ... */
5934 if (this->test_value != NULL) {
5935 /* Conditionally set fallthru state based on
5936 * comparison of cached test expression value to case label.
5937 */
5938 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5939 ir_constant *label_const = label_rval->constant_expression_value();
5940
5941 if (!label_const) {
5942 YYLTYPE loc = this->test_value->get_location();
5943
5944 _mesa_glsl_error(& loc, state,
5945 "switch statement case label must be a "
5946 "constant expression");
5947
5948 /* Stuff a dummy value in to allow processing to continue. */
5949 label_const = new(ctx) ir_constant(0);
5950 } else {
5951 ast_expression *previous_label = (ast_expression *)
5952 hash_table_find(state->switch_state.labels_ht,
5953 (void *)(uintptr_t)label_const->value.u[0]);
5954
5955 if (previous_label) {
5956 YYLTYPE loc = this->test_value->get_location();
5957 _mesa_glsl_error(& loc, state, "duplicate case value");
5958
5959 loc = previous_label->get_location();
5960 _mesa_glsl_error(& loc, state, "this is the previous case label");
5961 } else {
5962 hash_table_insert(state->switch_state.labels_ht,
5963 this->test_value,
5964 (void *)(uintptr_t)label_const->value.u[0]);
5965 }
5966 }
5967
5968 ir_dereference_variable *deref_test_var =
5969 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5970
5971 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5972 label_const,
5973 deref_test_var);
5974
5975 /*
5976 * From GLSL 4.40 specification section 6.2 ("Selection"):
5977 *
5978 * "The type of the init-expression value in a switch statement must
5979 * be a scalar int or uint. The type of the constant-expression value
5980 * in a case label also must be a scalar int or uint. When any pair
5981 * of these values is tested for "equal value" and the types do not
5982 * match, an implicit conversion will be done to convert the int to a
5983 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5984 * is done."
5985 */
5986 if (label_const->type != state->switch_state.test_var->type) {
5987 YYLTYPE loc = this->test_value->get_location();
5988
5989 const glsl_type *type_a = label_const->type;
5990 const glsl_type *type_b = state->switch_state.test_var->type;
5991
5992 /* Check if int->uint implicit conversion is supported. */
5993 bool integer_conversion_supported =
5994 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5995 state);
5996
5997 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5998 !integer_conversion_supported) {
5999 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6000 "init-expression and case label (%s != %s)",
6001 type_a->name, type_b->name);
6002 } else {
6003 /* Conversion of the case label. */
6004 if (type_a->base_type == GLSL_TYPE_INT) {
6005 if (!apply_implicit_conversion(glsl_type::uint_type,
6006 test_cond->operands[0], state))
6007 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6008 } else {
6009 /* Conversion of the init-expression value. */
6010 if (!apply_implicit_conversion(glsl_type::uint_type,
6011 test_cond->operands[1], state))
6012 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6013 }
6014 }
6015 }
6016
6017 ir_assignment *set_fallthru_on_test =
6018 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6019
6020 instructions->push_tail(set_fallthru_on_test);
6021 } else { /* default case */
6022 if (state->switch_state.previous_default) {
6023 YYLTYPE loc = this->get_location();
6024 _mesa_glsl_error(& loc, state,
6025 "multiple default labels in one switch");
6026
6027 loc = state->switch_state.previous_default->get_location();
6028 _mesa_glsl_error(& loc, state, "this is the first default label");
6029 }
6030 state->switch_state.previous_default = this;
6031
6032 /* Set fallthru condition on 'run_default' bool. */
6033 ir_dereference_variable *deref_run_default =
6034 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6035 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6036 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6037 cond_true,
6038 deref_run_default);
6039
6040 /* Set falltrhu state. */
6041 ir_assignment *set_fallthru =
6042 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6043
6044 instructions->push_tail(set_fallthru);
6045 }
6046
6047 /* Case statements do not have r-values. */
6048 return NULL;
6049 }
6050
6051 void
6052 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6053 struct _mesa_glsl_parse_state *state)
6054 {
6055 void *ctx = state;
6056
6057 if (condition != NULL) {
6058 ir_rvalue *const cond =
6059 condition->hir(instructions, state);
6060
6061 if ((cond == NULL)
6062 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6063 YYLTYPE loc = condition->get_location();
6064
6065 _mesa_glsl_error(& loc, state,
6066 "loop condition must be scalar boolean");
6067 } else {
6068 /* As the first code in the loop body, generate a block that looks
6069 * like 'if (!condition) break;' as the loop termination condition.
6070 */
6071 ir_rvalue *const not_cond =
6072 new(ctx) ir_expression(ir_unop_logic_not, cond);
6073
6074 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6075
6076 ir_jump *const break_stmt =
6077 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6078
6079 if_stmt->then_instructions.push_tail(break_stmt);
6080 instructions->push_tail(if_stmt);
6081 }
6082 }
6083 }
6084
6085
6086 ir_rvalue *
6087 ast_iteration_statement::hir(exec_list *instructions,
6088 struct _mesa_glsl_parse_state *state)
6089 {
6090 void *ctx = state;
6091
6092 /* For-loops and while-loops start a new scope, but do-while loops do not.
6093 */
6094 if (mode != ast_do_while)
6095 state->symbols->push_scope();
6096
6097 if (init_statement != NULL)
6098 init_statement->hir(instructions, state);
6099
6100 ir_loop *const stmt = new(ctx) ir_loop();
6101 instructions->push_tail(stmt);
6102
6103 /* Track the current loop nesting. */
6104 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6105
6106 state->loop_nesting_ast = this;
6107
6108 /* Likewise, indicate that following code is closest to a loop,
6109 * NOT closest to a switch.
6110 */
6111 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6112 state->switch_state.is_switch_innermost = false;
6113
6114 if (mode != ast_do_while)
6115 condition_to_hir(&stmt->body_instructions, state);
6116
6117 if (body != NULL)
6118 body->hir(& stmt->body_instructions, state);
6119
6120 if (rest_expression != NULL)
6121 rest_expression->hir(& stmt->body_instructions, state);
6122
6123 if (mode == ast_do_while)
6124 condition_to_hir(&stmt->body_instructions, state);
6125
6126 if (mode != ast_do_while)
6127 state->symbols->pop_scope();
6128
6129 /* Restore previous nesting before returning. */
6130 state->loop_nesting_ast = nesting_ast;
6131 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6132
6133 /* Loops do not have r-values.
6134 */
6135 return NULL;
6136 }
6137
6138
6139 /**
6140 * Determine if the given type is valid for establishing a default precision
6141 * qualifier.
6142 *
6143 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6144 *
6145 * "The precision statement
6146 *
6147 * precision precision-qualifier type;
6148 *
6149 * can be used to establish a default precision qualifier. The type field
6150 * can be either int or float or any of the sampler types, and the
6151 * precision-qualifier can be lowp, mediump, or highp."
6152 *
6153 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6154 * qualifiers on sampler types, but this seems like an oversight (since the
6155 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6156 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6157 * version.
6158 */
6159 static bool
6160 is_valid_default_precision_type(const struct glsl_type *const type)
6161 {
6162 if (type == NULL)
6163 return false;
6164
6165 switch (type->base_type) {
6166 case GLSL_TYPE_INT:
6167 case GLSL_TYPE_FLOAT:
6168 /* "int" and "float" are valid, but vectors and matrices are not. */
6169 return type->vector_elements == 1 && type->matrix_columns == 1;
6170 case GLSL_TYPE_SAMPLER:
6171 case GLSL_TYPE_IMAGE:
6172 case GLSL_TYPE_ATOMIC_UINT:
6173 return true;
6174 default:
6175 return false;
6176 }
6177 }
6178
6179
6180 ir_rvalue *
6181 ast_type_specifier::hir(exec_list *instructions,
6182 struct _mesa_glsl_parse_state *state)
6183 {
6184 if (this->default_precision == ast_precision_none && this->structure == NULL)
6185 return NULL;
6186
6187 YYLTYPE loc = this->get_location();
6188
6189 /* If this is a precision statement, check that the type to which it is
6190 * applied is either float or int.
6191 *
6192 * From section 4.5.3 of the GLSL 1.30 spec:
6193 * "The precision statement
6194 * precision precision-qualifier type;
6195 * can be used to establish a default precision qualifier. The type
6196 * field can be either int or float [...]. Any other types or
6197 * qualifiers will result in an error.
6198 */
6199 if (this->default_precision != ast_precision_none) {
6200 if (!state->check_precision_qualifiers_allowed(&loc))
6201 return NULL;
6202
6203 if (this->structure != NULL) {
6204 _mesa_glsl_error(&loc, state,
6205 "precision qualifiers do not apply to structures");
6206 return NULL;
6207 }
6208
6209 if (this->array_specifier != NULL) {
6210 _mesa_glsl_error(&loc, state,
6211 "default precision statements do not apply to "
6212 "arrays");
6213 return NULL;
6214 }
6215
6216 const struct glsl_type *const type =
6217 state->symbols->get_type(this->type_name);
6218 if (!is_valid_default_precision_type(type)) {
6219 _mesa_glsl_error(&loc, state,
6220 "default precision statements apply only to "
6221 "float, int, and opaque types");
6222 return NULL;
6223 }
6224
6225 if (state->es_shader) {
6226 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6227 * spec says:
6228 *
6229 * "Non-precision qualified declarations will use the precision
6230 * qualifier specified in the most recent precision statement
6231 * that is still in scope. The precision statement has the same
6232 * scoping rules as variable declarations. If it is declared
6233 * inside a compound statement, its effect stops at the end of
6234 * the innermost statement it was declared in. Precision
6235 * statements in nested scopes override precision statements in
6236 * outer scopes. Multiple precision statements for the same basic
6237 * type can appear inside the same scope, with later statements
6238 * overriding earlier statements within that scope."
6239 *
6240 * Default precision specifications follow the same scope rules as
6241 * variables. So, we can track the state of the default precision
6242 * qualifiers in the symbol table, and the rules will just work. This
6243 * is a slight abuse of the symbol table, but it has the semantics
6244 * that we want.
6245 */
6246 state->symbols->add_default_precision_qualifier(this->type_name,
6247 this->default_precision);
6248 }
6249
6250 /* FINISHME: Translate precision statements into IR. */
6251 return NULL;
6252 }
6253
6254 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6255 * process_record_constructor() can do type-checking on C-style initializer
6256 * expressions of structs, but ast_struct_specifier should only be translated
6257 * to HIR if it is declaring the type of a structure.
6258 *
6259 * The ->is_declaration field is false for initializers of variables
6260 * declared separately from the struct's type definition.
6261 *
6262 * struct S { ... }; (is_declaration = true)
6263 * struct T { ... } t = { ... }; (is_declaration = true)
6264 * S s = { ... }; (is_declaration = false)
6265 */
6266 if (this->structure != NULL && this->structure->is_declaration)
6267 return this->structure->hir(instructions, state);
6268
6269 return NULL;
6270 }
6271
6272
6273 /**
6274 * Process a structure or interface block tree into an array of structure fields
6275 *
6276 * After parsing, where there are some syntax differnces, structures and
6277 * interface blocks are almost identical. They are similar enough that the
6278 * AST for each can be processed the same way into a set of
6279 * \c glsl_struct_field to describe the members.
6280 *
6281 * If we're processing an interface block, var_mode should be the type of the
6282 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6283 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6284 * ir_var_auto.
6285 *
6286 * \return
6287 * The number of fields processed. A pointer to the array structure fields is
6288 * stored in \c *fields_ret.
6289 */
6290 static unsigned
6291 ast_process_struct_or_iface_block_members(exec_list *instructions,
6292 struct _mesa_glsl_parse_state *state,
6293 exec_list *declarations,
6294 glsl_struct_field **fields_ret,
6295 bool is_interface,
6296 enum glsl_matrix_layout matrix_layout,
6297 bool allow_reserved_names,
6298 ir_variable_mode var_mode,
6299 ast_type_qualifier *layout,
6300 unsigned block_stream,
6301 unsigned expl_location,
6302 unsigned expl_align)
6303 {
6304 unsigned decl_count = 0;
6305 unsigned next_offset = 0;
6306
6307 /* Make an initial pass over the list of fields to determine how
6308 * many there are. Each element in this list is an ast_declarator_list.
6309 * This means that we actually need to count the number of elements in the
6310 * 'declarations' list in each of the elements.
6311 */
6312 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6313 decl_count += decl_list->declarations.length();
6314 }
6315
6316 /* Allocate storage for the fields and process the field
6317 * declarations. As the declarations are processed, try to also convert
6318 * the types to HIR. This ensures that structure definitions embedded in
6319 * other structure definitions or in interface blocks are processed.
6320 */
6321 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6322 decl_count);
6323
6324 bool first_member = true;
6325 bool first_member_has_explicit_location = false;
6326
6327 unsigned i = 0;
6328 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6329 const char *type_name;
6330 YYLTYPE loc = decl_list->get_location();
6331
6332 decl_list->type->specifier->hir(instructions, state);
6333
6334 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6335 *
6336 * "Anonymous structures are not supported; so embedded structures
6337 * must have a declarator. A name given to an embedded struct is
6338 * scoped at the same level as the struct it is embedded in."
6339 *
6340 * The same section of the GLSL 1.20 spec says:
6341 *
6342 * "Anonymous structures are not supported. Embedded structures are
6343 * not supported."
6344 *
6345 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6346 * embedded structures in 1.10 only.
6347 */
6348 if (state->language_version != 110 &&
6349 decl_list->type->specifier->structure != NULL)
6350 _mesa_glsl_error(&loc, state,
6351 "embedded structure declarations are not allowed");
6352
6353 const glsl_type *decl_type =
6354 decl_list->type->glsl_type(& type_name, state);
6355
6356 const struct ast_type_qualifier *const qual =
6357 &decl_list->type->qualifier;
6358
6359 /* From section 4.3.9 of the GLSL 4.40 spec:
6360 *
6361 * "[In interface blocks] opaque types are not allowed."
6362 *
6363 * It should be impossible for decl_type to be NULL here. Cases that
6364 * might naturally lead to decl_type being NULL, especially for the
6365 * is_interface case, will have resulted in compilation having
6366 * already halted due to a syntax error.
6367 */
6368 assert(decl_type);
6369
6370 if (is_interface) {
6371 if (decl_type->contains_opaque()) {
6372 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6373 "interface block contains opaque variable");
6374 }
6375 } else {
6376 if (decl_type->contains_atomic()) {
6377 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6378 *
6379 * "Members of structures cannot be declared as atomic counter
6380 * types."
6381 */
6382 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6383 }
6384
6385 if (decl_type->contains_image()) {
6386 /* FINISHME: Same problem as with atomic counters.
6387 * FINISHME: Request clarification from Khronos and add
6388 * FINISHME: spec quotation here.
6389 */
6390 _mesa_glsl_error(&loc, state, "image in structure");
6391 }
6392 }
6393
6394 if (qual->flags.q.explicit_binding) {
6395 _mesa_glsl_error(&loc, state,
6396 "binding layout qualifier cannot be applied "
6397 "to struct or interface block members");
6398 }
6399
6400 if (is_interface) {
6401 if (!first_member) {
6402 if (!layout->flags.q.explicit_location &&
6403 ((first_member_has_explicit_location &&
6404 !qual->flags.q.explicit_location) ||
6405 (!first_member_has_explicit_location &&
6406 qual->flags.q.explicit_location))) {
6407 _mesa_glsl_error(&loc, state,
6408 "when block-level location layout qualifier "
6409 "is not supplied either all members must "
6410 "have a location layout qualifier or all "
6411 "members must not have a location layout "
6412 "qualifier");
6413 }
6414 } else {
6415 first_member = false;
6416 first_member_has_explicit_location =
6417 qual->flags.q.explicit_location;
6418 }
6419 }
6420
6421 if (qual->flags.q.std140 ||
6422 qual->flags.q.std430 ||
6423 qual->flags.q.packed ||
6424 qual->flags.q.shared) {
6425 _mesa_glsl_error(&loc, state,
6426 "uniform/shader storage block layout qualifiers "
6427 "std140, std430, packed, and shared can only be "
6428 "applied to uniform/shader storage blocks, not "
6429 "members");
6430 }
6431
6432 if (qual->flags.q.constant) {
6433 _mesa_glsl_error(&loc, state,
6434 "const storage qualifier cannot be applied "
6435 "to struct or interface block members");
6436 }
6437
6438 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6439 *
6440 * "A block member may be declared with a stream identifier, but
6441 * the specified stream must match the stream associated with the
6442 * containing block."
6443 */
6444 if (qual->flags.q.explicit_stream) {
6445 unsigned qual_stream;
6446 if (process_qualifier_constant(state, &loc, "stream",
6447 qual->stream, &qual_stream) &&
6448 qual_stream != block_stream) {
6449 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6450 "interface block member does not match "
6451 "the interface block (%u vs %u)", qual_stream,
6452 block_stream);
6453 }
6454 }
6455
6456 if (qual->flags.q.uniform && qual->has_interpolation()) {
6457 _mesa_glsl_error(&loc, state,
6458 "interpolation qualifiers cannot be used "
6459 "with uniform interface blocks");
6460 }
6461
6462 if ((qual->flags.q.uniform || !is_interface) &&
6463 qual->has_auxiliary_storage()) {
6464 _mesa_glsl_error(&loc, state,
6465 "auxiliary storage qualifiers cannot be used "
6466 "in uniform blocks or structures.");
6467 }
6468
6469 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6470 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6471 _mesa_glsl_error(&loc, state,
6472 "row_major and column_major can only be "
6473 "applied to interface blocks");
6474 } else
6475 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6476 }
6477
6478 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6479 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6480 "readonly and writeonly.");
6481 }
6482
6483 foreach_list_typed (ast_declaration, decl, link,
6484 &decl_list->declarations) {
6485 YYLTYPE loc = decl->get_location();
6486
6487 if (!allow_reserved_names)
6488 validate_identifier(decl->identifier, loc, state);
6489
6490 const struct glsl_type *field_type =
6491 process_array_type(&loc, decl_type, decl->array_specifier, state);
6492 validate_array_dimensions(field_type, state, &loc);
6493 fields[i].type = field_type;
6494 fields[i].name = decl->identifier;
6495 fields[i].interpolation =
6496 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6497 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6498 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6499 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6500 fields[i].precision = qual->precision;
6501
6502 if (qual->flags.q.explicit_location) {
6503 unsigned qual_location;
6504 if (process_qualifier_constant(state, &loc, "location",
6505 qual->location, &qual_location)) {
6506 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6507 expl_location = fields[i].location +
6508 fields[i].type->count_attribute_slots(false);
6509 }
6510 } else {
6511 if (layout && layout->flags.q.explicit_location) {
6512 fields[i].location = expl_location;
6513 expl_location += fields[i].type->count_attribute_slots(false);
6514 } else {
6515 fields[i].location = -1;
6516 }
6517 }
6518
6519 /* Offset can only be used with std430 and std140 layouts an initial
6520 * value of 0 is used for error detection.
6521 */
6522 unsigned align = 0;
6523 unsigned size = 0;
6524 if (layout) {
6525 bool row_major;
6526 if (qual->flags.q.row_major ||
6527 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6528 row_major = true;
6529 } else {
6530 row_major = false;
6531 }
6532
6533 if(layout->flags.q.std140) {
6534 align = field_type->std140_base_alignment(row_major);
6535 size = field_type->std140_size(row_major);
6536 } else if (layout->flags.q.std430) {
6537 align = field_type->std430_base_alignment(row_major);
6538 size = field_type->std430_size(row_major);
6539 }
6540 }
6541
6542 if (qual->flags.q.explicit_offset) {
6543 unsigned qual_offset;
6544 if (process_qualifier_constant(state, &loc, "offset",
6545 qual->offset, &qual_offset)) {
6546 if (align != 0 && size != 0) {
6547 if (next_offset > qual_offset)
6548 _mesa_glsl_error(&loc, state, "layout qualifier "
6549 "offset overlaps previous member");
6550
6551 if (qual_offset % align) {
6552 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6553 "must be a multiple of the base "
6554 "alignment of %s", field_type->name);
6555 }
6556 fields[i].offset = qual_offset;
6557 next_offset = glsl_align(qual_offset + size, align);
6558 } else {
6559 _mesa_glsl_error(&loc, state, "offset can only be used "
6560 "with std430 and std140 layouts");
6561 }
6562 }
6563 } else {
6564 fields[i].offset = -1;
6565 }
6566
6567 if (qual->flags.q.explicit_align || expl_align != 0) {
6568 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6569 next_offset;
6570 if (align == 0 || size == 0) {
6571 _mesa_glsl_error(&loc, state, "align can only be used with "
6572 "std430 and std140 layouts");
6573 } else if (qual->flags.q.explicit_align) {
6574 unsigned member_align;
6575 if (process_qualifier_constant(state, &loc, "align",
6576 qual->align, &member_align)) {
6577 if (member_align == 0 ||
6578 member_align & (member_align - 1)) {
6579 _mesa_glsl_error(&loc, state, "align layout qualifier "
6580 "in not a power of 2");
6581 } else {
6582 fields[i].offset = glsl_align(offset, member_align);
6583 next_offset = glsl_align(fields[i].offset + size, align);
6584 }
6585 }
6586 } else {
6587 fields[i].offset = glsl_align(offset, expl_align);
6588 next_offset = glsl_align(fields[i].offset + size, align);
6589 }
6590 }
6591
6592 if (!qual->flags.q.explicit_offset) {
6593 if (align != 0 && size != 0)
6594 next_offset = glsl_align(next_offset + size, align);
6595 }
6596
6597 /* Propogate row- / column-major information down the fields of the
6598 * structure or interface block. Structures need this data because
6599 * the structure may contain a structure that contains ... a matrix
6600 * that need the proper layout.
6601 */
6602 if (is_interface &&
6603 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6604 (field_type->without_array()->is_matrix()
6605 || field_type->without_array()->is_record())) {
6606 /* If no layout is specified for the field, inherit the layout
6607 * from the block.
6608 */
6609 fields[i].matrix_layout = matrix_layout;
6610
6611 if (qual->flags.q.row_major)
6612 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6613 else if (qual->flags.q.column_major)
6614 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6615
6616 /* If we're processing an uniform or buffer block, the matrix
6617 * layout must be decided by this point.
6618 */
6619 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6620 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6621 }
6622
6623 /* Image qualifiers are allowed on buffer variables, which can only
6624 * be defined inside shader storage buffer objects
6625 */
6626 if (layout && var_mode == ir_var_shader_storage) {
6627 /* For readonly and writeonly qualifiers the field definition,
6628 * if set, overwrites the layout qualifier.
6629 */
6630 if (qual->flags.q.read_only) {
6631 fields[i].image_read_only = true;
6632 fields[i].image_write_only = false;
6633 } else if (qual->flags.q.write_only) {
6634 fields[i].image_read_only = false;
6635 fields[i].image_write_only = true;
6636 } else {
6637 fields[i].image_read_only = layout->flags.q.read_only;
6638 fields[i].image_write_only = layout->flags.q.write_only;
6639 }
6640
6641 /* For other qualifiers, we set the flag if either the layout
6642 * qualifier or the field qualifier are set
6643 */
6644 fields[i].image_coherent = qual->flags.q.coherent ||
6645 layout->flags.q.coherent;
6646 fields[i].image_volatile = qual->flags.q._volatile ||
6647 layout->flags.q._volatile;
6648 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6649 layout->flags.q.restrict_flag;
6650 }
6651
6652 i++;
6653 }
6654 }
6655
6656 assert(i == decl_count);
6657
6658 *fields_ret = fields;
6659 return decl_count;
6660 }
6661
6662
6663 ir_rvalue *
6664 ast_struct_specifier::hir(exec_list *instructions,
6665 struct _mesa_glsl_parse_state *state)
6666 {
6667 YYLTYPE loc = this->get_location();
6668
6669 unsigned expl_location = 0;
6670 if (layout && layout->flags.q.explicit_location) {
6671 if (!process_qualifier_constant(state, &loc, "location",
6672 layout->location, &expl_location)) {
6673 return NULL;
6674 } else {
6675 expl_location = VARYING_SLOT_VAR0 + expl_location;
6676 }
6677 }
6678
6679 glsl_struct_field *fields;
6680 unsigned decl_count =
6681 ast_process_struct_or_iface_block_members(instructions,
6682 state,
6683 &this->declarations,
6684 &fields,
6685 false,
6686 GLSL_MATRIX_LAYOUT_INHERITED,
6687 false /* allow_reserved_names */,
6688 ir_var_auto,
6689 layout,
6690 0, /* for interface only */
6691 expl_location,
6692 0 /* for interface only */);
6693
6694 validate_identifier(this->name, loc, state);
6695
6696 const glsl_type *t =
6697 glsl_type::get_record_instance(fields, decl_count, this->name);
6698
6699 if (!state->symbols->add_type(name, t)) {
6700 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6701 } else {
6702 const glsl_type **s = reralloc(state, state->user_structures,
6703 const glsl_type *,
6704 state->num_user_structures + 1);
6705 if (s != NULL) {
6706 s[state->num_user_structures] = t;
6707 state->user_structures = s;
6708 state->num_user_structures++;
6709 }
6710 }
6711
6712 /* Structure type definitions do not have r-values.
6713 */
6714 return NULL;
6715 }
6716
6717
6718 /**
6719 * Visitor class which detects whether a given interface block has been used.
6720 */
6721 class interface_block_usage_visitor : public ir_hierarchical_visitor
6722 {
6723 public:
6724 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6725 : mode(mode), block(block), found(false)
6726 {
6727 }
6728
6729 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6730 {
6731 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6732 found = true;
6733 return visit_stop;
6734 }
6735 return visit_continue;
6736 }
6737
6738 bool usage_found() const
6739 {
6740 return this->found;
6741 }
6742
6743 private:
6744 ir_variable_mode mode;
6745 const glsl_type *block;
6746 bool found;
6747 };
6748
6749 static bool
6750 is_unsized_array_last_element(ir_variable *v)
6751 {
6752 const glsl_type *interface_type = v->get_interface_type();
6753 int length = interface_type->length;
6754
6755 assert(v->type->is_unsized_array());
6756
6757 /* Check if it is the last element of the interface */
6758 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6759 return true;
6760 return false;
6761 }
6762
6763 ir_rvalue *
6764 ast_interface_block::hir(exec_list *instructions,
6765 struct _mesa_glsl_parse_state *state)
6766 {
6767 YYLTYPE loc = this->get_location();
6768
6769 /* Interface blocks must be declared at global scope */
6770 if (state->current_function != NULL) {
6771 _mesa_glsl_error(&loc, state,
6772 "Interface block `%s' must be declared "
6773 "at global scope",
6774 this->block_name);
6775 }
6776
6777 if (!this->layout.flags.q.buffer &&
6778 this->layout.flags.q.std430) {
6779 _mesa_glsl_error(&loc, state,
6780 "std430 storage block layout qualifier is supported "
6781 "only for shader storage blocks");
6782 }
6783
6784 /* The ast_interface_block has a list of ast_declarator_lists. We
6785 * need to turn those into ir_variables with an association
6786 * with this uniform block.
6787 */
6788 enum glsl_interface_packing packing;
6789 if (this->layout.flags.q.shared) {
6790 packing = GLSL_INTERFACE_PACKING_SHARED;
6791 } else if (this->layout.flags.q.packed) {
6792 packing = GLSL_INTERFACE_PACKING_PACKED;
6793 } else if (this->layout.flags.q.std430) {
6794 packing = GLSL_INTERFACE_PACKING_STD430;
6795 } else {
6796 /* The default layout is std140.
6797 */
6798 packing = GLSL_INTERFACE_PACKING_STD140;
6799 }
6800
6801 ir_variable_mode var_mode;
6802 const char *iface_type_name;
6803 if (this->layout.flags.q.in) {
6804 var_mode = ir_var_shader_in;
6805 iface_type_name = "in";
6806 } else if (this->layout.flags.q.out) {
6807 var_mode = ir_var_shader_out;
6808 iface_type_name = "out";
6809 } else if (this->layout.flags.q.uniform) {
6810 var_mode = ir_var_uniform;
6811 iface_type_name = "uniform";
6812 } else if (this->layout.flags.q.buffer) {
6813 var_mode = ir_var_shader_storage;
6814 iface_type_name = "buffer";
6815 } else {
6816 var_mode = ir_var_auto;
6817 iface_type_name = "UNKNOWN";
6818 assert(!"interface block layout qualifier not found!");
6819 }
6820
6821 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6822 if (this->layout.flags.q.row_major)
6823 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6824 else if (this->layout.flags.q.column_major)
6825 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6826
6827 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6828 exec_list declared_variables;
6829 glsl_struct_field *fields;
6830
6831 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6832 * that we don't have incompatible qualifiers
6833 */
6834 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6835 _mesa_glsl_error(&loc, state,
6836 "Interface block sets both readonly and writeonly");
6837 }
6838
6839 unsigned qual_stream;
6840 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6841 &qual_stream) ||
6842 !validate_stream_qualifier(&loc, state, qual_stream)) {
6843 /* If the stream qualifier is invalid it doesn't make sense to continue
6844 * on and try to compare stream layouts on member variables against it
6845 * so just return early.
6846 */
6847 return NULL;
6848 }
6849
6850 unsigned expl_location = 0;
6851 if (layout.flags.q.explicit_location) {
6852 if (!process_qualifier_constant(state, &loc, "location",
6853 layout.location, &expl_location)) {
6854 return NULL;
6855 } else {
6856 expl_location = VARYING_SLOT_VAR0 + expl_location;
6857 }
6858 }
6859
6860 unsigned expl_align = 0;
6861 if (layout.flags.q.explicit_align) {
6862 if (!process_qualifier_constant(state, &loc, "align",
6863 layout.align, &expl_align)) {
6864 return NULL;
6865 } else {
6866 if (expl_align == 0 || expl_align & (expl_align - 1)) {
6867 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
6868 "power of 2.");
6869 return NULL;
6870 }
6871 }
6872 }
6873
6874 unsigned int num_variables =
6875 ast_process_struct_or_iface_block_members(&declared_variables,
6876 state,
6877 &this->declarations,
6878 &fields,
6879 true,
6880 matrix_layout,
6881 redeclaring_per_vertex,
6882 var_mode,
6883 &this->layout,
6884 qual_stream,
6885 expl_location,
6886 expl_align);
6887
6888 if (!redeclaring_per_vertex) {
6889 validate_identifier(this->block_name, loc, state);
6890
6891 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6892 *
6893 * "Block names have no other use within a shader beyond interface
6894 * matching; it is a compile-time error to use a block name at global
6895 * scope for anything other than as a block name."
6896 */
6897 ir_variable *var = state->symbols->get_variable(this->block_name);
6898 if (var && !var->type->is_interface()) {
6899 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6900 "already used in the scope.",
6901 this->block_name);
6902 }
6903 }
6904
6905 const glsl_type *earlier_per_vertex = NULL;
6906 if (redeclaring_per_vertex) {
6907 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6908 * the named interface block gl_in, we can find it by looking at the
6909 * previous declaration of gl_in. Otherwise we can find it by looking
6910 * at the previous decalartion of any of the built-in outputs,
6911 * e.g. gl_Position.
6912 *
6913 * Also check that the instance name and array-ness of the redeclaration
6914 * are correct.
6915 */
6916 switch (var_mode) {
6917 case ir_var_shader_in:
6918 if (ir_variable *earlier_gl_in =
6919 state->symbols->get_variable("gl_in")) {
6920 earlier_per_vertex = earlier_gl_in->get_interface_type();
6921 } else {
6922 _mesa_glsl_error(&loc, state,
6923 "redeclaration of gl_PerVertex input not allowed "
6924 "in the %s shader",
6925 _mesa_shader_stage_to_string(state->stage));
6926 }
6927 if (this->instance_name == NULL ||
6928 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6929 !this->array_specifier->is_single_dimension()) {
6930 _mesa_glsl_error(&loc, state,
6931 "gl_PerVertex input must be redeclared as "
6932 "gl_in[]");
6933 }
6934 break;
6935 case ir_var_shader_out:
6936 if (ir_variable *earlier_gl_Position =
6937 state->symbols->get_variable("gl_Position")) {
6938 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6939 } else if (ir_variable *earlier_gl_out =
6940 state->symbols->get_variable("gl_out")) {
6941 earlier_per_vertex = earlier_gl_out->get_interface_type();
6942 } else {
6943 _mesa_glsl_error(&loc, state,
6944 "redeclaration of gl_PerVertex output not "
6945 "allowed in the %s shader",
6946 _mesa_shader_stage_to_string(state->stage));
6947 }
6948 if (state->stage == MESA_SHADER_TESS_CTRL) {
6949 if (this->instance_name == NULL ||
6950 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6951 _mesa_glsl_error(&loc, state,
6952 "gl_PerVertex output must be redeclared as "
6953 "gl_out[]");
6954 }
6955 } else {
6956 if (this->instance_name != NULL) {
6957 _mesa_glsl_error(&loc, state,
6958 "gl_PerVertex output may not be redeclared with "
6959 "an instance name");
6960 }
6961 }
6962 break;
6963 default:
6964 _mesa_glsl_error(&loc, state,
6965 "gl_PerVertex must be declared as an input or an "
6966 "output");
6967 break;
6968 }
6969
6970 if (earlier_per_vertex == NULL) {
6971 /* An error has already been reported. Bail out to avoid null
6972 * dereferences later in this function.
6973 */
6974 return NULL;
6975 }
6976
6977 /* Copy locations from the old gl_PerVertex interface block. */
6978 for (unsigned i = 0; i < num_variables; i++) {
6979 int j = earlier_per_vertex->field_index(fields[i].name);
6980 if (j == -1) {
6981 _mesa_glsl_error(&loc, state,
6982 "redeclaration of gl_PerVertex must be a subset "
6983 "of the built-in members of gl_PerVertex");
6984 } else {
6985 fields[i].location =
6986 earlier_per_vertex->fields.structure[j].location;
6987 fields[i].offset =
6988 earlier_per_vertex->fields.structure[j].offset;
6989 fields[i].interpolation =
6990 earlier_per_vertex->fields.structure[j].interpolation;
6991 fields[i].centroid =
6992 earlier_per_vertex->fields.structure[j].centroid;
6993 fields[i].sample =
6994 earlier_per_vertex->fields.structure[j].sample;
6995 fields[i].patch =
6996 earlier_per_vertex->fields.structure[j].patch;
6997 fields[i].precision =
6998 earlier_per_vertex->fields.structure[j].precision;
6999 }
7000 }
7001
7002 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7003 * spec:
7004 *
7005 * If a built-in interface block is redeclared, it must appear in
7006 * the shader before any use of any member included in the built-in
7007 * declaration, or a compilation error will result.
7008 *
7009 * This appears to be a clarification to the behaviour established for
7010 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7011 * regardless of GLSL version.
7012 */
7013 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7014 v.run(instructions);
7015 if (v.usage_found()) {
7016 _mesa_glsl_error(&loc, state,
7017 "redeclaration of a built-in interface block must "
7018 "appear before any use of any member of the "
7019 "interface block");
7020 }
7021 }
7022
7023 const glsl_type *block_type =
7024 glsl_type::get_interface_instance(fields,
7025 num_variables,
7026 packing,
7027 this->block_name);
7028
7029 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7030 YYLTYPE loc = this->get_location();
7031 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7032 "already taken in the current scope",
7033 this->block_name, iface_type_name);
7034 }
7035
7036 /* Since interface blocks cannot contain statements, it should be
7037 * impossible for the block to generate any instructions.
7038 */
7039 assert(declared_variables.is_empty());
7040
7041 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7042 *
7043 * Geometry shader input variables get the per-vertex values written
7044 * out by vertex shader output variables of the same names. Since a
7045 * geometry shader operates on a set of vertices, each input varying
7046 * variable (or input block, see interface blocks below) needs to be
7047 * declared as an array.
7048 */
7049 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7050 var_mode == ir_var_shader_in) {
7051 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7052 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7053 state->stage == MESA_SHADER_TESS_EVAL) &&
7054 this->array_specifier == NULL &&
7055 var_mode == ir_var_shader_in) {
7056 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7057 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7058 this->array_specifier == NULL &&
7059 var_mode == ir_var_shader_out) {
7060 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7061 }
7062
7063
7064 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7065 * says:
7066 *
7067 * "If an instance name (instance-name) is used, then it puts all the
7068 * members inside a scope within its own name space, accessed with the
7069 * field selector ( . ) operator (analogously to structures)."
7070 */
7071 if (this->instance_name) {
7072 if (redeclaring_per_vertex) {
7073 /* When a built-in in an unnamed interface block is redeclared,
7074 * get_variable_being_redeclared() calls
7075 * check_builtin_array_max_size() to make sure that built-in array
7076 * variables aren't redeclared to illegal sizes. But we're looking
7077 * at a redeclaration of a named built-in interface block. So we
7078 * have to manually call check_builtin_array_max_size() for all parts
7079 * of the interface that are arrays.
7080 */
7081 for (unsigned i = 0; i < num_variables; i++) {
7082 if (fields[i].type->is_array()) {
7083 const unsigned size = fields[i].type->array_size();
7084 check_builtin_array_max_size(fields[i].name, size, loc, state);
7085 }
7086 }
7087 } else {
7088 validate_identifier(this->instance_name, loc, state);
7089 }
7090
7091 ir_variable *var;
7092
7093 if (this->array_specifier != NULL) {
7094 const glsl_type *block_array_type =
7095 process_array_type(&loc, block_type, this->array_specifier, state);
7096
7097 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7098 *
7099 * For uniform blocks declared an array, each individual array
7100 * element corresponds to a separate buffer object backing one
7101 * instance of the block. As the array size indicates the number
7102 * of buffer objects needed, uniform block array declarations
7103 * must specify an array size.
7104 *
7105 * And a few paragraphs later:
7106 *
7107 * Geometry shader input blocks must be declared as arrays and
7108 * follow the array declaration and linking rules for all
7109 * geometry shader inputs. All other input and output block
7110 * arrays must specify an array size.
7111 *
7112 * The same applies to tessellation shaders.
7113 *
7114 * The upshot of this is that the only circumstance where an
7115 * interface array size *doesn't* need to be specified is on a
7116 * geometry shader input, tessellation control shader input,
7117 * tessellation control shader output, and tessellation evaluation
7118 * shader input.
7119 */
7120 if (block_array_type->is_unsized_array()) {
7121 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7122 state->stage == MESA_SHADER_TESS_CTRL ||
7123 state->stage == MESA_SHADER_TESS_EVAL;
7124 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7125
7126 if (this->layout.flags.q.in) {
7127 if (!allow_inputs)
7128 _mesa_glsl_error(&loc, state,
7129 "unsized input block arrays not allowed in "
7130 "%s shader",
7131 _mesa_shader_stage_to_string(state->stage));
7132 } else if (this->layout.flags.q.out) {
7133 if (!allow_outputs)
7134 _mesa_glsl_error(&loc, state,
7135 "unsized output block arrays not allowed in "
7136 "%s shader",
7137 _mesa_shader_stage_to_string(state->stage));
7138 } else {
7139 /* by elimination, this is a uniform block array */
7140 _mesa_glsl_error(&loc, state,
7141 "unsized uniform block arrays not allowed in "
7142 "%s shader",
7143 _mesa_shader_stage_to_string(state->stage));
7144 }
7145 }
7146
7147 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7148 *
7149 * * Arrays of arrays of blocks are not allowed
7150 */
7151 if (state->es_shader && block_array_type->is_array() &&
7152 block_array_type->fields.array->is_array()) {
7153 _mesa_glsl_error(&loc, state,
7154 "arrays of arrays interface blocks are "
7155 "not allowed");
7156 }
7157
7158 var = new(state) ir_variable(block_array_type,
7159 this->instance_name,
7160 var_mode);
7161 } else {
7162 var = new(state) ir_variable(block_type,
7163 this->instance_name,
7164 var_mode);
7165 }
7166
7167 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7168 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7169
7170 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7171 var->data.read_only = true;
7172
7173 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7174 handle_geometry_shader_input_decl(state, loc, var);
7175 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7176 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7177 handle_tess_shader_input_decl(state, loc, var);
7178 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7179 handle_tess_ctrl_shader_output_decl(state, loc, var);
7180
7181 for (unsigned i = 0; i < num_variables; i++) {
7182 if (fields[i].type->is_unsized_array()) {
7183 if (var_mode == ir_var_shader_storage) {
7184 if (i != (num_variables - 1)) {
7185 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7186 "only last member of a shader storage block "
7187 "can be defined as unsized array",
7188 fields[i].name);
7189 }
7190 } else {
7191 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7192 *
7193 * "If an array is declared as the last member of a shader storage
7194 * block and the size is not specified at compile-time, it is
7195 * sized at run-time. In all other cases, arrays are sized only
7196 * at compile-time."
7197 */
7198 if (state->es_shader) {
7199 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7200 "only last member of a shader storage block "
7201 "can be defined as unsized array",
7202 fields[i].name);
7203 }
7204 }
7205 }
7206 }
7207
7208 if (ir_variable *earlier =
7209 state->symbols->get_variable(this->instance_name)) {
7210 if (!redeclaring_per_vertex) {
7211 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7212 this->instance_name);
7213 }
7214 earlier->data.how_declared = ir_var_declared_normally;
7215 earlier->type = var->type;
7216 earlier->reinit_interface_type(block_type);
7217 delete var;
7218 } else {
7219 if (this->layout.flags.q.explicit_binding) {
7220 apply_explicit_binding(state, &loc, var, var->type,
7221 &this->layout);
7222 }
7223
7224 var->data.stream = qual_stream;
7225 if (layout.flags.q.explicit_location) {
7226 var->data.location = expl_location;
7227 var->data.explicit_location = true;
7228 }
7229
7230 state->symbols->add_variable(var);
7231 instructions->push_tail(var);
7232 }
7233 } else {
7234 /* In order to have an array size, the block must also be declared with
7235 * an instance name.
7236 */
7237 assert(this->array_specifier == NULL);
7238
7239 for (unsigned i = 0; i < num_variables; i++) {
7240 ir_variable *var =
7241 new(state) ir_variable(fields[i].type,
7242 ralloc_strdup(state, fields[i].name),
7243 var_mode);
7244 var->data.interpolation = fields[i].interpolation;
7245 var->data.centroid = fields[i].centroid;
7246 var->data.sample = fields[i].sample;
7247 var->data.patch = fields[i].patch;
7248 var->data.stream = qual_stream;
7249 var->data.location = fields[i].location;
7250 if (fields[i].location != -1)
7251 var->data.explicit_location = true;
7252 var->init_interface_type(block_type);
7253
7254 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7255 var->data.read_only = true;
7256
7257 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7258 if (state->es_shader) {
7259 var->data.precision =
7260 select_gles_precision(fields[i].precision, fields[i].type,
7261 state, &loc);
7262 }
7263
7264 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7265 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7266 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7267 } else {
7268 var->data.matrix_layout = fields[i].matrix_layout;
7269 }
7270
7271 if (var->data.mode == ir_var_shader_storage) {
7272 var->data.image_read_only = fields[i].image_read_only;
7273 var->data.image_write_only = fields[i].image_write_only;
7274 var->data.image_coherent = fields[i].image_coherent;
7275 var->data.image_volatile = fields[i].image_volatile;
7276 var->data.image_restrict = fields[i].image_restrict;
7277 }
7278
7279 /* Examine var name here since var may get deleted in the next call */
7280 bool var_is_gl_id = is_gl_identifier(var->name);
7281
7282 if (redeclaring_per_vertex) {
7283 ir_variable *earlier =
7284 get_variable_being_redeclared(var, loc, state,
7285 true /* allow_all_redeclarations */);
7286 if (!var_is_gl_id || earlier == NULL) {
7287 _mesa_glsl_error(&loc, state,
7288 "redeclaration of gl_PerVertex can only "
7289 "include built-in variables");
7290 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7291 _mesa_glsl_error(&loc, state,
7292 "`%s' has already been redeclared",
7293 earlier->name);
7294 } else {
7295 earlier->data.how_declared = ir_var_declared_in_block;
7296 earlier->reinit_interface_type(block_type);
7297 }
7298 continue;
7299 }
7300
7301 if (state->symbols->get_variable(var->name) != NULL)
7302 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7303
7304 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7305 * The UBO declaration itself doesn't get an ir_variable unless it
7306 * has an instance name. This is ugly.
7307 */
7308 if (this->layout.flags.q.explicit_binding) {
7309 apply_explicit_binding(state, &loc, var,
7310 var->get_interface_type(), &this->layout);
7311 }
7312
7313 if (var->type->is_unsized_array()) {
7314 if (var->is_in_shader_storage_block()) {
7315 if (!is_unsized_array_last_element(var)) {
7316 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7317 "only last member of a shader storage block "
7318 "can be defined as unsized array",
7319 var->name);
7320 }
7321 var->data.from_ssbo_unsized_array = true;
7322 } else {
7323 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7324 *
7325 * "If an array is declared as the last member of a shader storage
7326 * block and the size is not specified at compile-time, it is
7327 * sized at run-time. In all other cases, arrays are sized only
7328 * at compile-time."
7329 */
7330 if (state->es_shader) {
7331 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7332 "only last member of a shader storage block "
7333 "can be defined as unsized array",
7334 var->name);
7335 }
7336 }
7337 }
7338
7339 state->symbols->add_variable(var);
7340 instructions->push_tail(var);
7341 }
7342
7343 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7344 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7345 *
7346 * It is also a compilation error ... to redeclare a built-in
7347 * block and then use a member from that built-in block that was
7348 * not included in the redeclaration.
7349 *
7350 * This appears to be a clarification to the behaviour established
7351 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7352 * behaviour regardless of GLSL version.
7353 *
7354 * To prevent the shader from using a member that was not included in
7355 * the redeclaration, we disable any ir_variables that are still
7356 * associated with the old declaration of gl_PerVertex (since we've
7357 * already updated all of the variables contained in the new
7358 * gl_PerVertex to point to it).
7359 *
7360 * As a side effect this will prevent
7361 * validate_intrastage_interface_blocks() from getting confused and
7362 * thinking there are conflicting definitions of gl_PerVertex in the
7363 * shader.
7364 */
7365 foreach_in_list_safe(ir_instruction, node, instructions) {
7366 ir_variable *const var = node->as_variable();
7367 if (var != NULL &&
7368 var->get_interface_type() == earlier_per_vertex &&
7369 var->data.mode == var_mode) {
7370 if (var->data.how_declared == ir_var_declared_normally) {
7371 _mesa_glsl_error(&loc, state,
7372 "redeclaration of gl_PerVertex cannot "
7373 "follow a redeclaration of `%s'",
7374 var->name);
7375 }
7376 state->symbols->disable_variable(var->name);
7377 var->remove();
7378 }
7379 }
7380 }
7381 }
7382
7383 return NULL;
7384 }
7385
7386
7387 ir_rvalue *
7388 ast_tcs_output_layout::hir(exec_list *instructions,
7389 struct _mesa_glsl_parse_state *state)
7390 {
7391 YYLTYPE loc = this->get_location();
7392
7393 unsigned num_vertices;
7394 if (!state->out_qualifier->vertices->
7395 process_qualifier_constant(state, "vertices", &num_vertices,
7396 false)) {
7397 /* return here to stop cascading incorrect error messages */
7398 return NULL;
7399 }
7400
7401 /* If any shader outputs occurred before this declaration and specified an
7402 * array size, make sure the size they specified is consistent with the
7403 * primitive type.
7404 */
7405 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7406 _mesa_glsl_error(&loc, state,
7407 "this tessellation control shader output layout "
7408 "specifies %u vertices, but a previous output "
7409 "is declared with size %u",
7410 num_vertices, state->tcs_output_size);
7411 return NULL;
7412 }
7413
7414 state->tcs_output_vertices_specified = true;
7415
7416 /* If any shader outputs occurred before this declaration and did not
7417 * specify an array size, their size is determined now.
7418 */
7419 foreach_in_list (ir_instruction, node, instructions) {
7420 ir_variable *var = node->as_variable();
7421 if (var == NULL || var->data.mode != ir_var_shader_out)
7422 continue;
7423
7424 /* Note: Not all tessellation control shader output are arrays. */
7425 if (!var->type->is_unsized_array() || var->data.patch)
7426 continue;
7427
7428 if (var->data.max_array_access >= num_vertices) {
7429 _mesa_glsl_error(&loc, state,
7430 "this tessellation control shader output layout "
7431 "specifies %u vertices, but an access to element "
7432 "%u of output `%s' already exists", num_vertices,
7433 var->data.max_array_access, var->name);
7434 } else {
7435 var->type = glsl_type::get_array_instance(var->type->fields.array,
7436 num_vertices);
7437 }
7438 }
7439
7440 return NULL;
7441 }
7442
7443
7444 ir_rvalue *
7445 ast_gs_input_layout::hir(exec_list *instructions,
7446 struct _mesa_glsl_parse_state *state)
7447 {
7448 YYLTYPE loc = this->get_location();
7449
7450 /* If any geometry input layout declaration preceded this one, make sure it
7451 * was consistent with this one.
7452 */
7453 if (state->gs_input_prim_type_specified &&
7454 state->in_qualifier->prim_type != this->prim_type) {
7455 _mesa_glsl_error(&loc, state,
7456 "geometry shader input layout does not match"
7457 " previous declaration");
7458 return NULL;
7459 }
7460
7461 /* If any shader inputs occurred before this declaration and specified an
7462 * array size, make sure the size they specified is consistent with the
7463 * primitive type.
7464 */
7465 unsigned num_vertices = vertices_per_prim(this->prim_type);
7466 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7467 _mesa_glsl_error(&loc, state,
7468 "this geometry shader input layout implies %u vertices"
7469 " per primitive, but a previous input is declared"
7470 " with size %u", num_vertices, state->gs_input_size);
7471 return NULL;
7472 }
7473
7474 state->gs_input_prim_type_specified = true;
7475
7476 /* If any shader inputs occurred before this declaration and did not
7477 * specify an array size, their size is determined now.
7478 */
7479 foreach_in_list(ir_instruction, node, instructions) {
7480 ir_variable *var = node->as_variable();
7481 if (var == NULL || var->data.mode != ir_var_shader_in)
7482 continue;
7483
7484 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7485 * array; skip it.
7486 */
7487
7488 if (var->type->is_unsized_array()) {
7489 if (var->data.max_array_access >= num_vertices) {
7490 _mesa_glsl_error(&loc, state,
7491 "this geometry shader input layout implies %u"
7492 " vertices, but an access to element %u of input"
7493 " `%s' already exists", num_vertices,
7494 var->data.max_array_access, var->name);
7495 } else {
7496 var->type = glsl_type::get_array_instance(var->type->fields.array,
7497 num_vertices);
7498 }
7499 }
7500 }
7501
7502 return NULL;
7503 }
7504
7505
7506 ir_rvalue *
7507 ast_cs_input_layout::hir(exec_list *instructions,
7508 struct _mesa_glsl_parse_state *state)
7509 {
7510 YYLTYPE loc = this->get_location();
7511
7512 /* From the ARB_compute_shader specification:
7513 *
7514 * If the local size of the shader in any dimension is greater
7515 * than the maximum size supported by the implementation for that
7516 * dimension, a compile-time error results.
7517 *
7518 * It is not clear from the spec how the error should be reported if
7519 * the total size of the work group exceeds
7520 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7521 * report it at compile time as well.
7522 */
7523 GLuint64 total_invocations = 1;
7524 unsigned qual_local_size[3];
7525 for (int i = 0; i < 3; i++) {
7526
7527 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7528 'x' + i);
7529 /* Infer a local_size of 1 for unspecified dimensions */
7530 if (this->local_size[i] == NULL) {
7531 qual_local_size[i] = 1;
7532 } else if (!this->local_size[i]->
7533 process_qualifier_constant(state, local_size_str,
7534 &qual_local_size[i], false)) {
7535 ralloc_free(local_size_str);
7536 return NULL;
7537 }
7538 ralloc_free(local_size_str);
7539
7540 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7541 _mesa_glsl_error(&loc, state,
7542 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7543 " (%d)", 'x' + i,
7544 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7545 break;
7546 }
7547 total_invocations *= qual_local_size[i];
7548 if (total_invocations >
7549 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7550 _mesa_glsl_error(&loc, state,
7551 "product of local_sizes exceeds "
7552 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7553 state->ctx->Const.MaxComputeWorkGroupInvocations);
7554 break;
7555 }
7556 }
7557
7558 /* If any compute input layout declaration preceded this one, make sure it
7559 * was consistent with this one.
7560 */
7561 if (state->cs_input_local_size_specified) {
7562 for (int i = 0; i < 3; i++) {
7563 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7564 _mesa_glsl_error(&loc, state,
7565 "compute shader input layout does not match"
7566 " previous declaration");
7567 return NULL;
7568 }
7569 }
7570 }
7571
7572 state->cs_input_local_size_specified = true;
7573 for (int i = 0; i < 3; i++)
7574 state->cs_input_local_size[i] = qual_local_size[i];
7575
7576 /* We may now declare the built-in constant gl_WorkGroupSize (see
7577 * builtin_variable_generator::generate_constants() for why we didn't
7578 * declare it earlier).
7579 */
7580 ir_variable *var = new(state->symbols)
7581 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7582 var->data.how_declared = ir_var_declared_implicitly;
7583 var->data.read_only = true;
7584 instructions->push_tail(var);
7585 state->symbols->add_variable(var);
7586 ir_constant_data data;
7587 memset(&data, 0, sizeof(data));
7588 for (int i = 0; i < 3; i++)
7589 data.u[i] = qual_local_size[i];
7590 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7591 var->constant_initializer =
7592 new(var) ir_constant(glsl_type::uvec3_type, &data);
7593 var->data.has_initializer = true;
7594
7595 return NULL;
7596 }
7597
7598
7599 static void
7600 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7601 exec_list *instructions)
7602 {
7603 bool gl_FragColor_assigned = false;
7604 bool gl_FragData_assigned = false;
7605 bool gl_FragSecondaryColor_assigned = false;
7606 bool gl_FragSecondaryData_assigned = false;
7607 bool user_defined_fs_output_assigned = false;
7608 ir_variable *user_defined_fs_output = NULL;
7609
7610 /* It would be nice to have proper location information. */
7611 YYLTYPE loc;
7612 memset(&loc, 0, sizeof(loc));
7613
7614 foreach_in_list(ir_instruction, node, instructions) {
7615 ir_variable *var = node->as_variable();
7616
7617 if (!var || !var->data.assigned)
7618 continue;
7619
7620 if (strcmp(var->name, "gl_FragColor") == 0)
7621 gl_FragColor_assigned = true;
7622 else if (strcmp(var->name, "gl_FragData") == 0)
7623 gl_FragData_assigned = true;
7624 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7625 gl_FragSecondaryColor_assigned = true;
7626 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7627 gl_FragSecondaryData_assigned = true;
7628 else if (!is_gl_identifier(var->name)) {
7629 if (state->stage == MESA_SHADER_FRAGMENT &&
7630 var->data.mode == ir_var_shader_out) {
7631 user_defined_fs_output_assigned = true;
7632 user_defined_fs_output = var;
7633 }
7634 }
7635 }
7636
7637 /* From the GLSL 1.30 spec:
7638 *
7639 * "If a shader statically assigns a value to gl_FragColor, it
7640 * may not assign a value to any element of gl_FragData. If a
7641 * shader statically writes a value to any element of
7642 * gl_FragData, it may not assign a value to
7643 * gl_FragColor. That is, a shader may assign values to either
7644 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7645 * linked together must also consistently write just one of
7646 * these variables. Similarly, if user declared output
7647 * variables are in use (statically assigned to), then the
7648 * built-in variables gl_FragColor and gl_FragData may not be
7649 * assigned to. These incorrect usages all generate compile
7650 * time errors."
7651 */
7652 if (gl_FragColor_assigned && gl_FragData_assigned) {
7653 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7654 "`gl_FragColor' and `gl_FragData'");
7655 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7656 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7657 "`gl_FragColor' and `%s'",
7658 user_defined_fs_output->name);
7659 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7660 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7661 "`gl_FragSecondaryColorEXT' and"
7662 " `gl_FragSecondaryDataEXT'");
7663 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7664 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7665 "`gl_FragColor' and"
7666 " `gl_FragSecondaryDataEXT'");
7667 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7668 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7669 "`gl_FragData' and"
7670 " `gl_FragSecondaryColorEXT'");
7671 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7672 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7673 "`gl_FragData' and `%s'",
7674 user_defined_fs_output->name);
7675 }
7676
7677 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7678 !state->EXT_blend_func_extended_enable) {
7679 _mesa_glsl_error(&loc, state,
7680 "Dual source blending requires EXT_blend_func_extended");
7681 }
7682 }
7683
7684
7685 static void
7686 remove_per_vertex_blocks(exec_list *instructions,
7687 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7688 {
7689 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7690 * if it exists in this shader type.
7691 */
7692 const glsl_type *per_vertex = NULL;
7693 switch (mode) {
7694 case ir_var_shader_in:
7695 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7696 per_vertex = gl_in->get_interface_type();
7697 break;
7698 case ir_var_shader_out:
7699 if (ir_variable *gl_Position =
7700 state->symbols->get_variable("gl_Position")) {
7701 per_vertex = gl_Position->get_interface_type();
7702 }
7703 break;
7704 default:
7705 assert(!"Unexpected mode");
7706 break;
7707 }
7708
7709 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7710 * need to do anything.
7711 */
7712 if (per_vertex == NULL)
7713 return;
7714
7715 /* If the interface block is used by the shader, then we don't need to do
7716 * anything.
7717 */
7718 interface_block_usage_visitor v(mode, per_vertex);
7719 v.run(instructions);
7720 if (v.usage_found())
7721 return;
7722
7723 /* Remove any ir_variable declarations that refer to the interface block
7724 * we're removing.
7725 */
7726 foreach_in_list_safe(ir_instruction, node, instructions) {
7727 ir_variable *const var = node->as_variable();
7728 if (var != NULL && var->get_interface_type() == per_vertex &&
7729 var->data.mode == mode) {
7730 state->symbols->disable_variable(var->name);
7731 var->remove();
7732 }
7733 }
7734 }