mesa: Add GL and GLSL plumbing for ARB_post_depth_coverage for i965 (gen9+).
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 static bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_rvalue *rvalue;
1005 if (!error_emitted) {
1006 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1007 ir_var_temporary);
1008 instructions->push_tail(var);
1009 instructions->push_tail(assign(var, rhs));
1010
1011 ir_dereference_variable *deref_var =
1012 new(ctx) ir_dereference_variable(var);
1013 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1014 rvalue = new(ctx) ir_dereference_variable(var);
1015 } else {
1016 rvalue = ir_rvalue::error_value(ctx);
1017 }
1018 *out_rvalue = rvalue;
1019 } else {
1020 if (!error_emitted)
1021 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1022 *out_rvalue = NULL;
1023 }
1024
1025 return error_emitted;
1026 }
1027
1028 static ir_rvalue *
1029 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1030 {
1031 void *ctx = ralloc_parent(lvalue);
1032 ir_variable *var;
1033
1034 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1035 ir_var_temporary);
1036 instructions->push_tail(var);
1037
1038 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1039 lvalue));
1040
1041 return new(ctx) ir_dereference_variable(var);
1042 }
1043
1044
1045 ir_rvalue *
1046 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1047 {
1048 (void) instructions;
1049 (void) state;
1050
1051 return NULL;
1052 }
1053
1054 bool
1055 ast_node::has_sequence_subexpression() const
1056 {
1057 return false;
1058 }
1059
1060 void
1061 ast_node::set_is_lhs(bool /* new_value */)
1062 {
1063 }
1064
1065 void
1066 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1067 struct _mesa_glsl_parse_state *state)
1068 {
1069 (void)hir(instructions, state);
1070 }
1071
1072 void
1073 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1074 struct _mesa_glsl_parse_state *state)
1075 {
1076 (void)hir(instructions, state);
1077 }
1078
1079 static ir_rvalue *
1080 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1081 {
1082 int join_op;
1083 ir_rvalue *cmp = NULL;
1084
1085 if (operation == ir_binop_all_equal)
1086 join_op = ir_binop_logic_and;
1087 else
1088 join_op = ir_binop_logic_or;
1089
1090 switch (op0->type->base_type) {
1091 case GLSL_TYPE_FLOAT:
1092 case GLSL_TYPE_UINT:
1093 case GLSL_TYPE_INT:
1094 case GLSL_TYPE_BOOL:
1095 case GLSL_TYPE_DOUBLE:
1096 return new(mem_ctx) ir_expression(operation, op0, op1);
1097
1098 case GLSL_TYPE_ARRAY: {
1099 for (unsigned int i = 0; i < op0->type->length; i++) {
1100 ir_rvalue *e0, *e1, *result;
1101
1102 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1103 new(mem_ctx) ir_constant(i));
1104 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1105 new(mem_ctx) ir_constant(i));
1106 result = do_comparison(mem_ctx, operation, e0, e1);
1107
1108 if (cmp) {
1109 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1110 } else {
1111 cmp = result;
1112 }
1113 }
1114
1115 mark_whole_array_access(op0);
1116 mark_whole_array_access(op1);
1117 break;
1118 }
1119
1120 case GLSL_TYPE_STRUCT: {
1121 for (unsigned int i = 0; i < op0->type->length; i++) {
1122 ir_rvalue *e0, *e1, *result;
1123 const char *field_name = op0->type->fields.structure[i].name;
1124
1125 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1126 field_name);
1127 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1128 field_name);
1129 result = do_comparison(mem_ctx, operation, e0, e1);
1130
1131 if (cmp) {
1132 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1133 } else {
1134 cmp = result;
1135 }
1136 }
1137 break;
1138 }
1139
1140 case GLSL_TYPE_ERROR:
1141 case GLSL_TYPE_VOID:
1142 case GLSL_TYPE_SAMPLER:
1143 case GLSL_TYPE_IMAGE:
1144 case GLSL_TYPE_INTERFACE:
1145 case GLSL_TYPE_ATOMIC_UINT:
1146 case GLSL_TYPE_SUBROUTINE:
1147 case GLSL_TYPE_FUNCTION:
1148 /* I assume a comparison of a struct containing a sampler just
1149 * ignores the sampler present in the type.
1150 */
1151 break;
1152 }
1153
1154 if (cmp == NULL)
1155 cmp = new(mem_ctx) ir_constant(true);
1156
1157 return cmp;
1158 }
1159
1160 /* For logical operations, we want to ensure that the operands are
1161 * scalar booleans. If it isn't, emit an error and return a constant
1162 * boolean to avoid triggering cascading error messages.
1163 */
1164 ir_rvalue *
1165 get_scalar_boolean_operand(exec_list *instructions,
1166 struct _mesa_glsl_parse_state *state,
1167 ast_expression *parent_expr,
1168 int operand,
1169 const char *operand_name,
1170 bool *error_emitted)
1171 {
1172 ast_expression *expr = parent_expr->subexpressions[operand];
1173 void *ctx = state;
1174 ir_rvalue *val = expr->hir(instructions, state);
1175
1176 if (val->type->is_boolean() && val->type->is_scalar())
1177 return val;
1178
1179 if (!*error_emitted) {
1180 YYLTYPE loc = expr->get_location();
1181 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1182 operand_name,
1183 parent_expr->operator_string(parent_expr->oper));
1184 *error_emitted = true;
1185 }
1186
1187 return new(ctx) ir_constant(true);
1188 }
1189
1190 /**
1191 * If name refers to a builtin array whose maximum allowed size is less than
1192 * size, report an error and return true. Otherwise return false.
1193 */
1194 void
1195 check_builtin_array_max_size(const char *name, unsigned size,
1196 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1197 {
1198 if ((strcmp("gl_TexCoord", name) == 0)
1199 && (size > state->Const.MaxTextureCoords)) {
1200 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1201 *
1202 * "The size [of gl_TexCoord] can be at most
1203 * gl_MaxTextureCoords."
1204 */
1205 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1206 "be larger than gl_MaxTextureCoords (%u)",
1207 state->Const.MaxTextureCoords);
1208 } else if (strcmp("gl_ClipDistance", name) == 0) {
1209 state->clip_dist_size = size;
1210 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1211 /* From section 7.1 (Vertex Shader Special Variables) of the
1212 * GLSL 1.30 spec:
1213 *
1214 * "The gl_ClipDistance array is predeclared as unsized and
1215 * must be sized by the shader either redeclaring it with a
1216 * size or indexing it only with integral constant
1217 * expressions. ... The size can be at most
1218 * gl_MaxClipDistances."
1219 */
1220 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1221 "be larger than gl_MaxClipDistances (%u)",
1222 state->Const.MaxClipPlanes);
1223 }
1224 } else if (strcmp("gl_CullDistance", name) == 0) {
1225 state->cull_dist_size = size;
1226 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1227 /* From the ARB_cull_distance spec:
1228 *
1229 * "The gl_CullDistance array is predeclared as unsized and
1230 * must be sized by the shader either redeclaring it with
1231 * a size or indexing it only with integral constant
1232 * expressions. The size determines the number and set of
1233 * enabled cull distances and can be at most
1234 * gl_MaxCullDistances."
1235 */
1236 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1237 "be larger than gl_MaxCullDistances (%u)",
1238 state->Const.MaxClipPlanes);
1239 }
1240 }
1241 }
1242
1243 /**
1244 * Create the constant 1, of a which is appropriate for incrementing and
1245 * decrementing values of the given GLSL type. For example, if type is vec4,
1246 * this creates a constant value of 1.0 having type float.
1247 *
1248 * If the given type is invalid for increment and decrement operators, return
1249 * a floating point 1--the error will be detected later.
1250 */
1251 static ir_rvalue *
1252 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1253 {
1254 switch (type->base_type) {
1255 case GLSL_TYPE_UINT:
1256 return new(ctx) ir_constant((unsigned) 1);
1257 case GLSL_TYPE_INT:
1258 return new(ctx) ir_constant(1);
1259 default:
1260 case GLSL_TYPE_FLOAT:
1261 return new(ctx) ir_constant(1.0f);
1262 }
1263 }
1264
1265 ir_rvalue *
1266 ast_expression::hir(exec_list *instructions,
1267 struct _mesa_glsl_parse_state *state)
1268 {
1269 return do_hir(instructions, state, true);
1270 }
1271
1272 void
1273 ast_expression::hir_no_rvalue(exec_list *instructions,
1274 struct _mesa_glsl_parse_state *state)
1275 {
1276 do_hir(instructions, state, false);
1277 }
1278
1279 void
1280 ast_expression::set_is_lhs(bool new_value)
1281 {
1282 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1283 * if we lack an identifier we can just skip it.
1284 */
1285 if (this->primary_expression.identifier == NULL)
1286 return;
1287
1288 this->is_lhs = new_value;
1289
1290 /* We need to go through the subexpressions tree to cover cases like
1291 * ast_field_selection
1292 */
1293 if (this->subexpressions[0] != NULL)
1294 this->subexpressions[0]->set_is_lhs(new_value);
1295 }
1296
1297 ir_rvalue *
1298 ast_expression::do_hir(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state,
1300 bool needs_rvalue)
1301 {
1302 void *ctx = state;
1303 static const int operations[AST_NUM_OPERATORS] = {
1304 -1, /* ast_assign doesn't convert to ir_expression. */
1305 -1, /* ast_plus doesn't convert to ir_expression. */
1306 ir_unop_neg,
1307 ir_binop_add,
1308 ir_binop_sub,
1309 ir_binop_mul,
1310 ir_binop_div,
1311 ir_binop_mod,
1312 ir_binop_lshift,
1313 ir_binop_rshift,
1314 ir_binop_less,
1315 ir_binop_greater,
1316 ir_binop_lequal,
1317 ir_binop_gequal,
1318 ir_binop_all_equal,
1319 ir_binop_any_nequal,
1320 ir_binop_bit_and,
1321 ir_binop_bit_xor,
1322 ir_binop_bit_or,
1323 ir_unop_bit_not,
1324 ir_binop_logic_and,
1325 ir_binop_logic_xor,
1326 ir_binop_logic_or,
1327 ir_unop_logic_not,
1328
1329 /* Note: The following block of expression types actually convert
1330 * to multiple IR instructions.
1331 */
1332 ir_binop_mul, /* ast_mul_assign */
1333 ir_binop_div, /* ast_div_assign */
1334 ir_binop_mod, /* ast_mod_assign */
1335 ir_binop_add, /* ast_add_assign */
1336 ir_binop_sub, /* ast_sub_assign */
1337 ir_binop_lshift, /* ast_ls_assign */
1338 ir_binop_rshift, /* ast_rs_assign */
1339 ir_binop_bit_and, /* ast_and_assign */
1340 ir_binop_bit_xor, /* ast_xor_assign */
1341 ir_binop_bit_or, /* ast_or_assign */
1342
1343 -1, /* ast_conditional doesn't convert to ir_expression. */
1344 ir_binop_add, /* ast_pre_inc. */
1345 ir_binop_sub, /* ast_pre_dec. */
1346 ir_binop_add, /* ast_post_inc. */
1347 ir_binop_sub, /* ast_post_dec. */
1348 -1, /* ast_field_selection doesn't conv to ir_expression. */
1349 -1, /* ast_array_index doesn't convert to ir_expression. */
1350 -1, /* ast_function_call doesn't conv to ir_expression. */
1351 -1, /* ast_identifier doesn't convert to ir_expression. */
1352 -1, /* ast_int_constant doesn't convert to ir_expression. */
1353 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1354 -1, /* ast_float_constant doesn't conv to ir_expression. */
1355 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1356 -1, /* ast_sequence doesn't convert to ir_expression. */
1357 -1, /* ast_aggregate shouldn't ever even get here. */
1358 };
1359 ir_rvalue *result = NULL;
1360 ir_rvalue *op[3];
1361 const struct glsl_type *type, *orig_type;
1362 bool error_emitted = false;
1363 YYLTYPE loc;
1364
1365 loc = this->get_location();
1366
1367 switch (this->oper) {
1368 case ast_aggregate:
1369 assert(!"ast_aggregate: Should never get here.");
1370 break;
1371
1372 case ast_assign: {
1373 this->subexpressions[0]->set_is_lhs(true);
1374 op[0] = this->subexpressions[0]->hir(instructions, state);
1375 op[1] = this->subexpressions[1]->hir(instructions, state);
1376
1377 error_emitted =
1378 do_assignment(instructions, state,
1379 this->subexpressions[0]->non_lvalue_description,
1380 op[0], op[1], &result, needs_rvalue, false,
1381 this->subexpressions[0]->get_location());
1382 break;
1383 }
1384
1385 case ast_plus:
1386 op[0] = this->subexpressions[0]->hir(instructions, state);
1387
1388 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1389
1390 error_emitted = type->is_error();
1391
1392 result = op[0];
1393 break;
1394
1395 case ast_neg:
1396 op[0] = this->subexpressions[0]->hir(instructions, state);
1397
1398 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1399
1400 error_emitted = type->is_error();
1401
1402 result = new(ctx) ir_expression(operations[this->oper], type,
1403 op[0], NULL);
1404 break;
1405
1406 case ast_add:
1407 case ast_sub:
1408 case ast_mul:
1409 case ast_div:
1410 op[0] = this->subexpressions[0]->hir(instructions, state);
1411 op[1] = this->subexpressions[1]->hir(instructions, state);
1412
1413 type = arithmetic_result_type(op[0], op[1],
1414 (this->oper == ast_mul),
1415 state, & loc);
1416 error_emitted = type->is_error();
1417
1418 result = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420 break;
1421
1422 case ast_mod:
1423 op[0] = this->subexpressions[0]->hir(instructions, state);
1424 op[1] = this->subexpressions[1]->hir(instructions, state);
1425
1426 type = modulus_result_type(op[0], op[1], state, &loc);
1427
1428 assert(operations[this->oper] == ir_binop_mod);
1429
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = type->is_error();
1433 break;
1434
1435 case ast_lshift:
1436 case ast_rshift:
1437 if (!state->check_bitwise_operations_allowed(&loc)) {
1438 error_emitted = true;
1439 }
1440
1441 op[0] = this->subexpressions[0]->hir(instructions, state);
1442 op[1] = this->subexpressions[1]->hir(instructions, state);
1443 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1444 &loc);
1445 result = new(ctx) ir_expression(operations[this->oper], type,
1446 op[0], op[1]);
1447 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1448 break;
1449
1450 case ast_less:
1451 case ast_greater:
1452 case ast_lequal:
1453 case ast_gequal:
1454 op[0] = this->subexpressions[0]->hir(instructions, state);
1455 op[1] = this->subexpressions[1]->hir(instructions, state);
1456
1457 type = relational_result_type(op[0], op[1], state, & loc);
1458
1459 /* The relational operators must either generate an error or result
1460 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1461 */
1462 assert(type->is_error()
1463 || ((type->base_type == GLSL_TYPE_BOOL)
1464 && type->is_scalar()));
1465
1466 result = new(ctx) ir_expression(operations[this->oper], type,
1467 op[0], op[1]);
1468 error_emitted = type->is_error();
1469 break;
1470
1471 case ast_nequal:
1472 case ast_equal:
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475
1476 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1477 *
1478 * "The equality operators equal (==), and not equal (!=)
1479 * operate on all types. They result in a scalar Boolean. If
1480 * the operand types do not match, then there must be a
1481 * conversion from Section 4.1.10 "Implicit Conversions"
1482 * applied to one operand that can make them match, in which
1483 * case this conversion is done."
1484 */
1485
1486 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1487 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1488 "no operation `%1$s' exists that takes a left-hand "
1489 "operand of type 'void' or a right operand of type "
1490 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1491 error_emitted = true;
1492 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1493 && !apply_implicit_conversion(op[1]->type, op[0], state))
1494 || (op[0]->type != op[1]->type)) {
1495 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1496 "type", (this->oper == ast_equal) ? "==" : "!=");
1497 error_emitted = true;
1498 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1499 !state->check_version(120, 300, &loc,
1500 "array comparisons forbidden")) {
1501 error_emitted = true;
1502 } else if ((op[0]->type->contains_subroutine() ||
1503 op[1]->type->contains_subroutine())) {
1504 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1505 error_emitted = true;
1506 } else if ((op[0]->type->contains_opaque() ||
1507 op[1]->type->contains_opaque())) {
1508 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1509 error_emitted = true;
1510 }
1511
1512 if (error_emitted) {
1513 result = new(ctx) ir_constant(false);
1514 } else {
1515 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1516 assert(result->type == glsl_type::bool_type);
1517 }
1518 break;
1519
1520 case ast_bit_and:
1521 case ast_bit_xor:
1522 case ast_bit_or:
1523 op[0] = this->subexpressions[0]->hir(instructions, state);
1524 op[1] = this->subexpressions[1]->hir(instructions, state);
1525 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1526 result = new(ctx) ir_expression(operations[this->oper], type,
1527 op[0], op[1]);
1528 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1529 break;
1530
1531 case ast_bit_not:
1532 op[0] = this->subexpressions[0]->hir(instructions, state);
1533
1534 if (!state->check_bitwise_operations_allowed(&loc)) {
1535 error_emitted = true;
1536 }
1537
1538 if (!op[0]->type->is_integer()) {
1539 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1540 error_emitted = true;
1541 }
1542
1543 type = error_emitted ? glsl_type::error_type : op[0]->type;
1544 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1545 break;
1546
1547 case ast_logic_and: {
1548 exec_list rhs_instructions;
1549 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1550 "LHS", &error_emitted);
1551 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1552 "RHS", &error_emitted);
1553
1554 if (rhs_instructions.is_empty()) {
1555 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1556 type = result->type;
1557 } else {
1558 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1559 "and_tmp",
1560 ir_var_temporary);
1561 instructions->push_tail(tmp);
1562
1563 ir_if *const stmt = new(ctx) ir_if(op[0]);
1564 instructions->push_tail(stmt);
1565
1566 stmt->then_instructions.append_list(&rhs_instructions);
1567 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1568 ir_assignment *const then_assign =
1569 new(ctx) ir_assignment(then_deref, op[1]);
1570 stmt->then_instructions.push_tail(then_assign);
1571
1572 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1573 ir_assignment *const else_assign =
1574 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1575 stmt->else_instructions.push_tail(else_assign);
1576
1577 result = new(ctx) ir_dereference_variable(tmp);
1578 type = tmp->type;
1579 }
1580 break;
1581 }
1582
1583 case ast_logic_or: {
1584 exec_list rhs_instructions;
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "LHS", &error_emitted);
1587 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1588 "RHS", &error_emitted);
1589
1590 if (rhs_instructions.is_empty()) {
1591 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1592 type = result->type;
1593 } else {
1594 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1595 "or_tmp",
1596 ir_var_temporary);
1597 instructions->push_tail(tmp);
1598
1599 ir_if *const stmt = new(ctx) ir_if(op[0]);
1600 instructions->push_tail(stmt);
1601
1602 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const then_assign =
1604 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1605 stmt->then_instructions.push_tail(then_assign);
1606
1607 stmt->else_instructions.append_list(&rhs_instructions);
1608 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1609 ir_assignment *const else_assign =
1610 new(ctx) ir_assignment(else_deref, op[1]);
1611 stmt->else_instructions.push_tail(else_assign);
1612
1613 result = new(ctx) ir_dereference_variable(tmp);
1614 type = tmp->type;
1615 }
1616 break;
1617 }
1618
1619 case ast_logic_xor:
1620 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1621 *
1622 * "The logical binary operators and (&&), or ( | | ), and
1623 * exclusive or (^^). They operate only on two Boolean
1624 * expressions and result in a Boolean expression."
1625 */
1626 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1627 &error_emitted);
1628 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1629 &error_emitted);
1630
1631 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1632 op[0], op[1]);
1633 break;
1634
1635 case ast_logic_not:
1636 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1637 "operand", &error_emitted);
1638
1639 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1640 op[0], NULL);
1641 break;
1642
1643 case ast_mul_assign:
1644 case ast_div_assign:
1645 case ast_add_assign:
1646 case ast_sub_assign: {
1647 this->subexpressions[0]->set_is_lhs(true);
1648 op[0] = this->subexpressions[0]->hir(instructions, state);
1649 op[1] = this->subexpressions[1]->hir(instructions, state);
1650
1651 orig_type = op[0]->type;
1652 type = arithmetic_result_type(op[0], op[1],
1653 (this->oper == ast_mul_assign),
1654 state, & loc);
1655
1656 if (type != orig_type) {
1657 _mesa_glsl_error(& loc, state,
1658 "could not implicitly convert "
1659 "%s to %s", type->name, orig_type->name);
1660 type = glsl_type::error_type;
1661 }
1662
1663 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1664 op[0], op[1]);
1665
1666 error_emitted =
1667 do_assignment(instructions, state,
1668 this->subexpressions[0]->non_lvalue_description,
1669 op[0]->clone(ctx, NULL), temp_rhs,
1670 &result, needs_rvalue, false,
1671 this->subexpressions[0]->get_location());
1672
1673 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1674 * explicitly test for this because none of the binary expression
1675 * operators allow array operands either.
1676 */
1677
1678 break;
1679 }
1680
1681 case ast_mod_assign: {
1682 this->subexpressions[0]->set_is_lhs(true);
1683 op[0] = this->subexpressions[0]->hir(instructions, state);
1684 op[1] = this->subexpressions[1]->hir(instructions, state);
1685
1686 orig_type = op[0]->type;
1687 type = modulus_result_type(op[0], op[1], state, &loc);
1688
1689 if (type != orig_type) {
1690 _mesa_glsl_error(& loc, state,
1691 "could not implicitly convert "
1692 "%s to %s", type->name, orig_type->name);
1693 type = glsl_type::error_type;
1694 }
1695
1696 assert(operations[this->oper] == ir_binop_mod);
1697
1698 ir_rvalue *temp_rhs;
1699 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1700 op[0], op[1]);
1701
1702 error_emitted =
1703 do_assignment(instructions, state,
1704 this->subexpressions[0]->non_lvalue_description,
1705 op[0]->clone(ctx, NULL), temp_rhs,
1706 &result, needs_rvalue, false,
1707 this->subexpressions[0]->get_location());
1708 break;
1709 }
1710
1711 case ast_ls_assign:
1712 case ast_rs_assign: {
1713 this->subexpressions[0]->set_is_lhs(true);
1714 op[0] = this->subexpressions[0]->hir(instructions, state);
1715 op[1] = this->subexpressions[1]->hir(instructions, state);
1716 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1717 &loc);
1718 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1719 type, op[0], op[1]);
1720 error_emitted =
1721 do_assignment(instructions, state,
1722 this->subexpressions[0]->non_lvalue_description,
1723 op[0]->clone(ctx, NULL), temp_rhs,
1724 &result, needs_rvalue, false,
1725 this->subexpressions[0]->get_location());
1726 break;
1727 }
1728
1729 case ast_and_assign:
1730 case ast_xor_assign:
1731 case ast_or_assign: {
1732 this->subexpressions[0]->set_is_lhs(true);
1733 op[0] = this->subexpressions[0]->hir(instructions, state);
1734 op[1] = this->subexpressions[1]->hir(instructions, state);
1735
1736 orig_type = op[0]->type;
1737 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1738
1739 if (type != orig_type) {
1740 _mesa_glsl_error(& loc, state,
1741 "could not implicitly convert "
1742 "%s to %s", type->name, orig_type->name);
1743 type = glsl_type::error_type;
1744 }
1745
1746 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1747 type, op[0], op[1]);
1748 error_emitted =
1749 do_assignment(instructions, state,
1750 this->subexpressions[0]->non_lvalue_description,
1751 op[0]->clone(ctx, NULL), temp_rhs,
1752 &result, needs_rvalue, false,
1753 this->subexpressions[0]->get_location());
1754 break;
1755 }
1756
1757 case ast_conditional: {
1758 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1759 *
1760 * "The ternary selection operator (?:). It operates on three
1761 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1762 * first expression, which must result in a scalar Boolean."
1763 */
1764 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1765 "condition", &error_emitted);
1766
1767 /* The :? operator is implemented by generating an anonymous temporary
1768 * followed by an if-statement. The last instruction in each branch of
1769 * the if-statement assigns a value to the anonymous temporary. This
1770 * temporary is the r-value of the expression.
1771 */
1772 exec_list then_instructions;
1773 exec_list else_instructions;
1774
1775 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1776 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1777
1778 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1779 *
1780 * "The second and third expressions can be any type, as
1781 * long their types match, or there is a conversion in
1782 * Section 4.1.10 "Implicit Conversions" that can be applied
1783 * to one of the expressions to make their types match. This
1784 * resulting matching type is the type of the entire
1785 * expression."
1786 */
1787 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1788 && !apply_implicit_conversion(op[2]->type, op[1], state))
1789 || (op[1]->type != op[2]->type)) {
1790 YYLTYPE loc = this->subexpressions[1]->get_location();
1791
1792 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1793 "operator must have matching types");
1794 error_emitted = true;
1795 type = glsl_type::error_type;
1796 } else {
1797 type = op[1]->type;
1798 }
1799
1800 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1801 *
1802 * "The second and third expressions must be the same type, but can
1803 * be of any type other than an array."
1804 */
1805 if (type->is_array() &&
1806 !state->check_version(120, 300, &loc,
1807 "second and third operands of ?: operator "
1808 "cannot be arrays")) {
1809 error_emitted = true;
1810 }
1811
1812 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1813 *
1814 * "Except for array indexing, structure member selection, and
1815 * parentheses, opaque variables are not allowed to be operands in
1816 * expressions; such use results in a compile-time error."
1817 */
1818 if (type->contains_opaque()) {
1819 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1820 "of the ?: operator");
1821 error_emitted = true;
1822 }
1823
1824 ir_constant *cond_val = op[0]->constant_expression_value();
1825
1826 if (then_instructions.is_empty()
1827 && else_instructions.is_empty()
1828 && cond_val != NULL) {
1829 result = cond_val->value.b[0] ? op[1] : op[2];
1830 } else {
1831 /* The copy to conditional_tmp reads the whole array. */
1832 if (type->is_array()) {
1833 mark_whole_array_access(op[1]);
1834 mark_whole_array_access(op[2]);
1835 }
1836
1837 ir_variable *const tmp =
1838 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1839 instructions->push_tail(tmp);
1840
1841 ir_if *const stmt = new(ctx) ir_if(op[0]);
1842 instructions->push_tail(stmt);
1843
1844 then_instructions.move_nodes_to(& stmt->then_instructions);
1845 ir_dereference *const then_deref =
1846 new(ctx) ir_dereference_variable(tmp);
1847 ir_assignment *const then_assign =
1848 new(ctx) ir_assignment(then_deref, op[1]);
1849 stmt->then_instructions.push_tail(then_assign);
1850
1851 else_instructions.move_nodes_to(& stmt->else_instructions);
1852 ir_dereference *const else_deref =
1853 new(ctx) ir_dereference_variable(tmp);
1854 ir_assignment *const else_assign =
1855 new(ctx) ir_assignment(else_deref, op[2]);
1856 stmt->else_instructions.push_tail(else_assign);
1857
1858 result = new(ctx) ir_dereference_variable(tmp);
1859 }
1860 break;
1861 }
1862
1863 case ast_pre_inc:
1864 case ast_pre_dec: {
1865 this->non_lvalue_description = (this->oper == ast_pre_inc)
1866 ? "pre-increment operation" : "pre-decrement operation";
1867
1868 op[0] = this->subexpressions[0]->hir(instructions, state);
1869 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1870
1871 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1872
1873 ir_rvalue *temp_rhs;
1874 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1875 op[0], op[1]);
1876
1877 error_emitted =
1878 do_assignment(instructions, state,
1879 this->subexpressions[0]->non_lvalue_description,
1880 op[0]->clone(ctx, NULL), temp_rhs,
1881 &result, needs_rvalue, false,
1882 this->subexpressions[0]->get_location());
1883 break;
1884 }
1885
1886 case ast_post_inc:
1887 case ast_post_dec: {
1888 this->non_lvalue_description = (this->oper == ast_post_inc)
1889 ? "post-increment operation" : "post-decrement operation";
1890 op[0] = this->subexpressions[0]->hir(instructions, state);
1891 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1892
1893 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 /* Get a temporary of a copy of the lvalue before it's modified.
1902 * This may get thrown away later.
1903 */
1904 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1905
1906 ir_rvalue *junk_rvalue;
1907 error_emitted =
1908 do_assignment(instructions, state,
1909 this->subexpressions[0]->non_lvalue_description,
1910 op[0]->clone(ctx, NULL), temp_rhs,
1911 &junk_rvalue, false, false,
1912 this->subexpressions[0]->get_location());
1913
1914 break;
1915 }
1916
1917 case ast_field_selection:
1918 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1919 break;
1920
1921 case ast_array_index: {
1922 YYLTYPE index_loc = subexpressions[1]->get_location();
1923
1924 /* Getting if an array is being used uninitialized is beyond what we get
1925 * from ir_value.data.assigned. Setting is_lhs as true would force to
1926 * not raise a uninitialized warning when using an array
1927 */
1928 subexpressions[0]->set_is_lhs(true);
1929 op[0] = subexpressions[0]->hir(instructions, state);
1930 op[1] = subexpressions[1]->hir(instructions, state);
1931
1932 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1933 loc, index_loc);
1934
1935 if (result->type->is_error())
1936 error_emitted = true;
1937
1938 break;
1939 }
1940
1941 case ast_unsized_array_dim:
1942 assert(!"ast_unsized_array_dim: Should never get here.");
1943 break;
1944
1945 case ast_function_call:
1946 /* Should *NEVER* get here. ast_function_call should always be handled
1947 * by ast_function_expression::hir.
1948 */
1949 assert(0);
1950 break;
1951
1952 case ast_identifier: {
1953 /* ast_identifier can appear several places in a full abstract syntax
1954 * tree. This particular use must be at location specified in the grammar
1955 * as 'variable_identifier'.
1956 */
1957 ir_variable *var =
1958 state->symbols->get_variable(this->primary_expression.identifier);
1959
1960 if (var == NULL) {
1961 /* the identifier might be a subroutine name */
1962 char *sub_name;
1963 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1964 var = state->symbols->get_variable(sub_name);
1965 ralloc_free(sub_name);
1966 }
1967
1968 if (var != NULL) {
1969 var->data.used = true;
1970 result = new(ctx) ir_dereference_variable(var);
1971
1972 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1973 && !this->is_lhs
1974 && result->variable_referenced()->data.assigned != true
1975 && !is_gl_identifier(var->name)) {
1976 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1977 this->primary_expression.identifier);
1978 }
1979 } else {
1980 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1981 this->primary_expression.identifier);
1982
1983 result = ir_rvalue::error_value(ctx);
1984 error_emitted = true;
1985 }
1986 break;
1987 }
1988
1989 case ast_int_constant:
1990 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1991 break;
1992
1993 case ast_uint_constant:
1994 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1995 break;
1996
1997 case ast_float_constant:
1998 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1999 break;
2000
2001 case ast_bool_constant:
2002 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2003 break;
2004
2005 case ast_double_constant:
2006 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2007 break;
2008
2009 case ast_sequence: {
2010 /* It should not be possible to generate a sequence in the AST without
2011 * any expressions in it.
2012 */
2013 assert(!this->expressions.is_empty());
2014
2015 /* The r-value of a sequence is the last expression in the sequence. If
2016 * the other expressions in the sequence do not have side-effects (and
2017 * therefore add instructions to the instruction list), they get dropped
2018 * on the floor.
2019 */
2020 exec_node *previous_tail = NULL;
2021 YYLTYPE previous_operand_loc = loc;
2022
2023 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2024 /* If one of the operands of comma operator does not generate any
2025 * code, we want to emit a warning. At each pass through the loop
2026 * previous_tail will point to the last instruction in the stream
2027 * *before* processing the previous operand. Naturally,
2028 * instructions->get_tail_raw() will point to the last instruction in
2029 * the stream *after* processing the previous operand. If the two
2030 * pointers match, then the previous operand had no effect.
2031 *
2032 * The warning behavior here differs slightly from GCC. GCC will
2033 * only emit a warning if none of the left-hand operands have an
2034 * effect. However, it will emit a warning for each. I believe that
2035 * there are some cases in C (especially with GCC extensions) where
2036 * it is useful to have an intermediate step in a sequence have no
2037 * effect, but I don't think these cases exist in GLSL. Either way,
2038 * it would be a giant hassle to replicate that behavior.
2039 */
2040 if (previous_tail == instructions->get_tail_raw()) {
2041 _mesa_glsl_warning(&previous_operand_loc, state,
2042 "left-hand operand of comma expression has "
2043 "no effect");
2044 }
2045
2046 /* The tail is directly accessed instead of using the get_tail()
2047 * method for performance reasons. get_tail() has extra code to
2048 * return NULL when the list is empty. We don't care about that
2049 * here, so using get_tail_raw() is fine.
2050 */
2051 previous_tail = instructions->get_tail_raw();
2052 previous_operand_loc = ast->get_location();
2053
2054 result = ast->hir(instructions, state);
2055 }
2056
2057 /* Any errors should have already been emitted in the loop above.
2058 */
2059 error_emitted = true;
2060 break;
2061 }
2062 }
2063 type = NULL; /* use result->type, not type. */
2064 assert(result != NULL || !needs_rvalue);
2065
2066 if (result && result->type->is_error() && !error_emitted)
2067 _mesa_glsl_error(& loc, state, "type mismatch");
2068
2069 return result;
2070 }
2071
2072 bool
2073 ast_expression::has_sequence_subexpression() const
2074 {
2075 switch (this->oper) {
2076 case ast_plus:
2077 case ast_neg:
2078 case ast_bit_not:
2079 case ast_logic_not:
2080 case ast_pre_inc:
2081 case ast_pre_dec:
2082 case ast_post_inc:
2083 case ast_post_dec:
2084 return this->subexpressions[0]->has_sequence_subexpression();
2085
2086 case ast_assign:
2087 case ast_add:
2088 case ast_sub:
2089 case ast_mul:
2090 case ast_div:
2091 case ast_mod:
2092 case ast_lshift:
2093 case ast_rshift:
2094 case ast_less:
2095 case ast_greater:
2096 case ast_lequal:
2097 case ast_gequal:
2098 case ast_nequal:
2099 case ast_equal:
2100 case ast_bit_and:
2101 case ast_bit_xor:
2102 case ast_bit_or:
2103 case ast_logic_and:
2104 case ast_logic_or:
2105 case ast_logic_xor:
2106 case ast_array_index:
2107 case ast_mul_assign:
2108 case ast_div_assign:
2109 case ast_add_assign:
2110 case ast_sub_assign:
2111 case ast_mod_assign:
2112 case ast_ls_assign:
2113 case ast_rs_assign:
2114 case ast_and_assign:
2115 case ast_xor_assign:
2116 case ast_or_assign:
2117 return this->subexpressions[0]->has_sequence_subexpression() ||
2118 this->subexpressions[1]->has_sequence_subexpression();
2119
2120 case ast_conditional:
2121 return this->subexpressions[0]->has_sequence_subexpression() ||
2122 this->subexpressions[1]->has_sequence_subexpression() ||
2123 this->subexpressions[2]->has_sequence_subexpression();
2124
2125 case ast_sequence:
2126 return true;
2127
2128 case ast_field_selection:
2129 case ast_identifier:
2130 case ast_int_constant:
2131 case ast_uint_constant:
2132 case ast_float_constant:
2133 case ast_bool_constant:
2134 case ast_double_constant:
2135 return false;
2136
2137 case ast_aggregate:
2138 return false;
2139
2140 case ast_function_call:
2141 unreachable("should be handled by ast_function_expression::hir");
2142
2143 case ast_unsized_array_dim:
2144 unreachable("ast_unsized_array_dim: Should never get here.");
2145 }
2146
2147 return false;
2148 }
2149
2150 ir_rvalue *
2151 ast_expression_statement::hir(exec_list *instructions,
2152 struct _mesa_glsl_parse_state *state)
2153 {
2154 /* It is possible to have expression statements that don't have an
2155 * expression. This is the solitary semicolon:
2156 *
2157 * for (i = 0; i < 5; i++)
2158 * ;
2159 *
2160 * In this case the expression will be NULL. Test for NULL and don't do
2161 * anything in that case.
2162 */
2163 if (expression != NULL)
2164 expression->hir_no_rvalue(instructions, state);
2165
2166 /* Statements do not have r-values.
2167 */
2168 return NULL;
2169 }
2170
2171
2172 ir_rvalue *
2173 ast_compound_statement::hir(exec_list *instructions,
2174 struct _mesa_glsl_parse_state *state)
2175 {
2176 if (new_scope)
2177 state->symbols->push_scope();
2178
2179 foreach_list_typed (ast_node, ast, link, &this->statements)
2180 ast->hir(instructions, state);
2181
2182 if (new_scope)
2183 state->symbols->pop_scope();
2184
2185 /* Compound statements do not have r-values.
2186 */
2187 return NULL;
2188 }
2189
2190 /**
2191 * Evaluate the given exec_node (which should be an ast_node representing
2192 * a single array dimension) and return its integer value.
2193 */
2194 static unsigned
2195 process_array_size(exec_node *node,
2196 struct _mesa_glsl_parse_state *state)
2197 {
2198 exec_list dummy_instructions;
2199
2200 ast_node *array_size = exec_node_data(ast_node, node, link);
2201
2202 /**
2203 * Dimensions other than the outermost dimension can by unsized if they
2204 * are immediately sized by a constructor or initializer.
2205 */
2206 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2207 return 0;
2208
2209 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2210 YYLTYPE loc = array_size->get_location();
2211
2212 if (ir == NULL) {
2213 _mesa_glsl_error(& loc, state,
2214 "array size could not be resolved");
2215 return 0;
2216 }
2217
2218 if (!ir->type->is_integer()) {
2219 _mesa_glsl_error(& loc, state,
2220 "array size must be integer type");
2221 return 0;
2222 }
2223
2224 if (!ir->type->is_scalar()) {
2225 _mesa_glsl_error(& loc, state,
2226 "array size must be scalar type");
2227 return 0;
2228 }
2229
2230 ir_constant *const size = ir->constant_expression_value();
2231 if (size == NULL ||
2232 (state->is_version(120, 300) &&
2233 array_size->has_sequence_subexpression())) {
2234 _mesa_glsl_error(& loc, state, "array size must be a "
2235 "constant valued expression");
2236 return 0;
2237 }
2238
2239 if (size->value.i[0] <= 0) {
2240 _mesa_glsl_error(& loc, state, "array size must be > 0");
2241 return 0;
2242 }
2243
2244 assert(size->type == ir->type);
2245
2246 /* If the array size is const (and we've verified that
2247 * it is) then no instructions should have been emitted
2248 * when we converted it to HIR. If they were emitted,
2249 * then either the array size isn't const after all, or
2250 * we are emitting unnecessary instructions.
2251 */
2252 assert(dummy_instructions.is_empty());
2253
2254 return size->value.u[0];
2255 }
2256
2257 static const glsl_type *
2258 process_array_type(YYLTYPE *loc, const glsl_type *base,
2259 ast_array_specifier *array_specifier,
2260 struct _mesa_glsl_parse_state *state)
2261 {
2262 const glsl_type *array_type = base;
2263
2264 if (array_specifier != NULL) {
2265 if (base->is_array()) {
2266
2267 /* From page 19 (page 25) of the GLSL 1.20 spec:
2268 *
2269 * "Only one-dimensional arrays may be declared."
2270 */
2271 if (!state->check_arrays_of_arrays_allowed(loc)) {
2272 return glsl_type::error_type;
2273 }
2274 }
2275
2276 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2277 !node->is_head_sentinel(); node = node->prev) {
2278 unsigned array_size = process_array_size(node, state);
2279 array_type = glsl_type::get_array_instance(array_type, array_size);
2280 }
2281 }
2282
2283 return array_type;
2284 }
2285
2286 static bool
2287 precision_qualifier_allowed(const glsl_type *type)
2288 {
2289 /* Precision qualifiers apply to floating point, integer and opaque
2290 * types.
2291 *
2292 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2293 * "Any floating point or any integer declaration can have the type
2294 * preceded by one of these precision qualifiers [...] Literal
2295 * constants do not have precision qualifiers. Neither do Boolean
2296 * variables.
2297 *
2298 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2299 * spec also says:
2300 *
2301 * "Precision qualifiers are added for code portability with OpenGL
2302 * ES, not for functionality. They have the same syntax as in OpenGL
2303 * ES."
2304 *
2305 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2306 *
2307 * "uniform lowp sampler2D sampler;
2308 * highp vec2 coord;
2309 * ...
2310 * lowp vec4 col = texture2D (sampler, coord);
2311 * // texture2D returns lowp"
2312 *
2313 * From this, we infer that GLSL 1.30 (and later) should allow precision
2314 * qualifiers on sampler types just like float and integer types.
2315 */
2316 const glsl_type *const t = type->without_array();
2317
2318 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2319 !t->is_record();
2320 }
2321
2322 const glsl_type *
2323 ast_type_specifier::glsl_type(const char **name,
2324 struct _mesa_glsl_parse_state *state) const
2325 {
2326 const struct glsl_type *type;
2327
2328 type = state->symbols->get_type(this->type_name);
2329 *name = this->type_name;
2330
2331 YYLTYPE loc = this->get_location();
2332 type = process_array_type(&loc, type, this->array_specifier, state);
2333
2334 return type;
2335 }
2336
2337 /**
2338 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2339 *
2340 * "The precision statement
2341 *
2342 * precision precision-qualifier type;
2343 *
2344 * can be used to establish a default precision qualifier. The type field can
2345 * be either int or float or any of the sampler types, (...) If type is float,
2346 * the directive applies to non-precision-qualified floating point type
2347 * (scalar, vector, and matrix) declarations. If type is int, the directive
2348 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2349 * and unsigned) declarations."
2350 *
2351 * We use the symbol table to keep the values of the default precisions for
2352 * each 'type' in each scope and we use the 'type' string from the precision
2353 * statement as key in the symbol table. When we want to retrieve the default
2354 * precision associated with a given glsl_type we need to know the type string
2355 * associated with it. This is what this function returns.
2356 */
2357 static const char *
2358 get_type_name_for_precision_qualifier(const glsl_type *type)
2359 {
2360 switch (type->base_type) {
2361 case GLSL_TYPE_FLOAT:
2362 return "float";
2363 case GLSL_TYPE_UINT:
2364 case GLSL_TYPE_INT:
2365 return "int";
2366 case GLSL_TYPE_ATOMIC_UINT:
2367 return "atomic_uint";
2368 case GLSL_TYPE_IMAGE:
2369 /* fallthrough */
2370 case GLSL_TYPE_SAMPLER: {
2371 const unsigned type_idx =
2372 type->sampler_array + 2 * type->sampler_shadow;
2373 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2374 assert(type_idx < 4);
2375 switch (type->sampled_type) {
2376 case GLSL_TYPE_FLOAT:
2377 switch (type->sampler_dimensionality) {
2378 case GLSL_SAMPLER_DIM_1D: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "sampler1D", "sampler1DArray",
2382 "sampler1DShadow", "sampler1DArrayShadow"
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_2D: {
2387 static const char *const names[8] = {
2388 "sampler2D", "sampler2DArray",
2389 "sampler2DShadow", "sampler2DArrayShadow",
2390 "image2D", "image2DArray", NULL, NULL
2391 };
2392 return names[offset + type_idx];
2393 }
2394 case GLSL_SAMPLER_DIM_3D: {
2395 static const char *const names[8] = {
2396 "sampler3D", NULL, NULL, NULL,
2397 "image3D", NULL, NULL, NULL
2398 };
2399 return names[offset + type_idx];
2400 }
2401 case GLSL_SAMPLER_DIM_CUBE: {
2402 static const char *const names[8] = {
2403 "samplerCube", "samplerCubeArray",
2404 "samplerCubeShadow", "samplerCubeArrayShadow",
2405 "imageCube", NULL, NULL, NULL
2406 };
2407 return names[offset + type_idx];
2408 }
2409 case GLSL_SAMPLER_DIM_MS: {
2410 assert(type->base_type == GLSL_TYPE_SAMPLER);
2411 static const char *const names[4] = {
2412 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2413 };
2414 return names[type_idx];
2415 }
2416 case GLSL_SAMPLER_DIM_RECT: {
2417 assert(type->base_type == GLSL_TYPE_SAMPLER);
2418 static const char *const names[4] = {
2419 "samplerRect", NULL, "samplerRectShadow", NULL
2420 };
2421 return names[type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_BUF: {
2424 static const char *const names[8] = {
2425 "samplerBuffer", NULL, NULL, NULL,
2426 "imageBuffer", NULL, NULL, NULL
2427 };
2428 return names[offset + type_idx];
2429 }
2430 case GLSL_SAMPLER_DIM_EXTERNAL: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "samplerExternalOES", NULL, NULL, NULL
2434 };
2435 return names[type_idx];
2436 }
2437 default:
2438 unreachable("Unsupported sampler/image dimensionality");
2439 } /* sampler/image float dimensionality */
2440 break;
2441 case GLSL_TYPE_INT:
2442 switch (type->sampler_dimensionality) {
2443 case GLSL_SAMPLER_DIM_1D: {
2444 assert(type->base_type == GLSL_TYPE_SAMPLER);
2445 static const char *const names[4] = {
2446 "isampler1D", "isampler1DArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_2D: {
2451 static const char *const names[8] = {
2452 "isampler2D", "isampler2DArray", NULL, NULL,
2453 "iimage2D", "iimage2DArray", NULL, NULL
2454 };
2455 return names[offset + type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_3D: {
2458 static const char *const names[8] = {
2459 "isampler3D", NULL, NULL, NULL,
2460 "iimage3D", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_CUBE: {
2465 static const char *const names[8] = {
2466 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2467 "iimageCube", NULL, NULL, NULL
2468 };
2469 return names[offset + type_idx];
2470 }
2471 case GLSL_SAMPLER_DIM_MS: {
2472 assert(type->base_type == GLSL_TYPE_SAMPLER);
2473 static const char *const names[4] = {
2474 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2475 };
2476 return names[type_idx];
2477 }
2478 case GLSL_SAMPLER_DIM_RECT: {
2479 assert(type->base_type == GLSL_TYPE_SAMPLER);
2480 static const char *const names[4] = {
2481 "isamplerRect", NULL, "isamplerRectShadow", NULL
2482 };
2483 return names[type_idx];
2484 }
2485 case GLSL_SAMPLER_DIM_BUF: {
2486 static const char *const names[8] = {
2487 "isamplerBuffer", NULL, NULL, NULL,
2488 "iimageBuffer", NULL, NULL, NULL
2489 };
2490 return names[offset + type_idx];
2491 }
2492 default:
2493 unreachable("Unsupported isampler/iimage dimensionality");
2494 } /* sampler/image int dimensionality */
2495 break;
2496 case GLSL_TYPE_UINT:
2497 switch (type->sampler_dimensionality) {
2498 case GLSL_SAMPLER_DIM_1D: {
2499 assert(type->base_type == GLSL_TYPE_SAMPLER);
2500 static const char *const names[4] = {
2501 "usampler1D", "usampler1DArray", NULL, NULL
2502 };
2503 return names[type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_2D: {
2506 static const char *const names[8] = {
2507 "usampler2D", "usampler2DArray", NULL, NULL,
2508 "uimage2D", "uimage2DArray", NULL, NULL
2509 };
2510 return names[offset + type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_3D: {
2513 static const char *const names[8] = {
2514 "usampler3D", NULL, NULL, NULL,
2515 "uimage3D", NULL, NULL, NULL
2516 };
2517 return names[offset + type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_CUBE: {
2520 static const char *const names[8] = {
2521 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2522 "uimageCube", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 case GLSL_SAMPLER_DIM_MS: {
2527 assert(type->base_type == GLSL_TYPE_SAMPLER);
2528 static const char *const names[4] = {
2529 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2530 };
2531 return names[type_idx];
2532 }
2533 case GLSL_SAMPLER_DIM_RECT: {
2534 assert(type->base_type == GLSL_TYPE_SAMPLER);
2535 static const char *const names[4] = {
2536 "usamplerRect", NULL, "usamplerRectShadow", NULL
2537 };
2538 return names[type_idx];
2539 }
2540 case GLSL_SAMPLER_DIM_BUF: {
2541 static const char *const names[8] = {
2542 "usamplerBuffer", NULL, NULL, NULL,
2543 "uimageBuffer", NULL, NULL, NULL
2544 };
2545 return names[offset + type_idx];
2546 }
2547 default:
2548 unreachable("Unsupported usampler/uimage dimensionality");
2549 } /* sampler/image uint dimensionality */
2550 break;
2551 default:
2552 unreachable("Unsupported sampler/image type");
2553 } /* sampler/image type */
2554 break;
2555 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2556 break;
2557 default:
2558 unreachable("Unsupported type");
2559 } /* base type */
2560 }
2561
2562 static unsigned
2563 select_gles_precision(unsigned qual_precision,
2564 const glsl_type *type,
2565 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2566 {
2567 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2568 * In GLES we take the precision from the type qualifier if present,
2569 * otherwise, if the type of the variable allows precision qualifiers at
2570 * all, we look for the default precision qualifier for that type in the
2571 * current scope.
2572 */
2573 assert(state->es_shader);
2574
2575 unsigned precision = GLSL_PRECISION_NONE;
2576 if (qual_precision) {
2577 precision = qual_precision;
2578 } else if (precision_qualifier_allowed(type)) {
2579 const char *type_name =
2580 get_type_name_for_precision_qualifier(type->without_array());
2581 assert(type_name != NULL);
2582
2583 precision =
2584 state->symbols->get_default_precision_qualifier(type_name);
2585 if (precision == ast_precision_none) {
2586 _mesa_glsl_error(loc, state,
2587 "No precision specified in this scope for type `%s'",
2588 type->name);
2589 }
2590 }
2591
2592
2593 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2594 *
2595 * "The default precision of all atomic types is highp. It is an error to
2596 * declare an atomic type with a different precision or to specify the
2597 * default precision for an atomic type to be lowp or mediump."
2598 */
2599 if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2600 precision != ast_precision_high) {
2601 _mesa_glsl_error(loc, state,
2602 "atomic_uint can only have highp precision qualifier");
2603 }
2604
2605 return precision;
2606 }
2607
2608 const glsl_type *
2609 ast_fully_specified_type::glsl_type(const char **name,
2610 struct _mesa_glsl_parse_state *state) const
2611 {
2612 return this->specifier->glsl_type(name, state);
2613 }
2614
2615 /**
2616 * Determine whether a toplevel variable declaration declares a varying. This
2617 * function operates by examining the variable's mode and the shader target,
2618 * so it correctly identifies linkage variables regardless of whether they are
2619 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2620 *
2621 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2622 * this function will produce undefined results.
2623 */
2624 static bool
2625 is_varying_var(ir_variable *var, gl_shader_stage target)
2626 {
2627 switch (target) {
2628 case MESA_SHADER_VERTEX:
2629 return var->data.mode == ir_var_shader_out;
2630 case MESA_SHADER_FRAGMENT:
2631 return var->data.mode == ir_var_shader_in;
2632 default:
2633 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2634 }
2635 }
2636
2637
2638 /**
2639 * Matrix layout qualifiers are only allowed on certain types
2640 */
2641 static void
2642 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2643 YYLTYPE *loc,
2644 const glsl_type *type,
2645 ir_variable *var)
2646 {
2647 if (var && !var->is_in_buffer_block()) {
2648 /* Layout qualifiers may only apply to interface blocks and fields in
2649 * them.
2650 */
2651 _mesa_glsl_error(loc, state,
2652 "uniform block layout qualifiers row_major and "
2653 "column_major may not be applied to variables "
2654 "outside of uniform blocks");
2655 } else if (!type->without_array()->is_matrix()) {
2656 /* The OpenGL ES 3.0 conformance tests did not originally allow
2657 * matrix layout qualifiers on non-matrices. However, the OpenGL
2658 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2659 * amended to specifically allow these layouts on all types. Emit
2660 * a warning so that people know their code may not be portable.
2661 */
2662 _mesa_glsl_warning(loc, state,
2663 "uniform block layout qualifiers row_major and "
2664 "column_major applied to non-matrix types may "
2665 "be rejected by older compilers");
2666 }
2667 }
2668
2669 static bool
2670 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2671 struct _mesa_glsl_parse_state *state,
2672 unsigned xfb_buffer) {
2673 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2674 _mesa_glsl_error(loc, state,
2675 "invalid xfb_buffer specified %d is larger than "
2676 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2677 xfb_buffer,
2678 state->Const.MaxTransformFeedbackBuffers - 1);
2679 return false;
2680 }
2681
2682 return true;
2683 }
2684
2685 /* From the ARB_enhanced_layouts spec:
2686 *
2687 * "Variables and block members qualified with *xfb_offset* can be
2688 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2689 * The offset must be a multiple of the size of the first component of
2690 * the first qualified variable or block member, or a compile-time error
2691 * results. Further, if applied to an aggregate containing a double,
2692 * the offset must also be a multiple of 8, and the space taken in the
2693 * buffer will be a multiple of 8.
2694 */
2695 static bool
2696 validate_xfb_offset_qualifier(YYLTYPE *loc,
2697 struct _mesa_glsl_parse_state *state,
2698 int xfb_offset, const glsl_type *type,
2699 unsigned component_size) {
2700 const glsl_type *t_without_array = type->without_array();
2701
2702 if (xfb_offset != -1 && type->is_unsized_array()) {
2703 _mesa_glsl_error(loc, state,
2704 "xfb_offset can't be used with unsized arrays.");
2705 return false;
2706 }
2707
2708 /* Make sure nested structs don't contain unsized arrays, and validate
2709 * any xfb_offsets on interface members.
2710 */
2711 if (t_without_array->is_record() || t_without_array->is_interface())
2712 for (unsigned int i = 0; i < t_without_array->length; i++) {
2713 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2714
2715 /* When the interface block doesn't have an xfb_offset qualifier then
2716 * we apply the component size rules at the member level.
2717 */
2718 if (xfb_offset == -1)
2719 component_size = member_t->contains_double() ? 8 : 4;
2720
2721 int xfb_offset = t_without_array->fields.structure[i].offset;
2722 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2723 component_size);
2724 }
2725
2726 /* Nested structs or interface block without offset may not have had an
2727 * offset applied yet so return.
2728 */
2729 if (xfb_offset == -1) {
2730 return true;
2731 }
2732
2733 if (xfb_offset % component_size) {
2734 _mesa_glsl_error(loc, state,
2735 "invalid qualifier xfb_offset=%d must be a multiple "
2736 "of the first component size of the first qualified "
2737 "variable or block member. Or double if an aggregate "
2738 "that contains a double (%d).",
2739 xfb_offset, component_size);
2740 return false;
2741 }
2742
2743 return true;
2744 }
2745
2746 static bool
2747 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2748 unsigned stream)
2749 {
2750 if (stream >= state->ctx->Const.MaxVertexStreams) {
2751 _mesa_glsl_error(loc, state,
2752 "invalid stream specified %d is larger than "
2753 "MAX_VERTEX_STREAMS - 1 (%d).",
2754 stream, state->ctx->Const.MaxVertexStreams - 1);
2755 return false;
2756 }
2757
2758 return true;
2759 }
2760
2761 static void
2762 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2763 YYLTYPE *loc,
2764 ir_variable *var,
2765 const glsl_type *type,
2766 const ast_type_qualifier *qual)
2767 {
2768 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2769 _mesa_glsl_error(loc, state,
2770 "the \"binding\" qualifier only applies to uniforms and "
2771 "shader storage buffer objects");
2772 return;
2773 }
2774
2775 unsigned qual_binding;
2776 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2777 &qual_binding)) {
2778 return;
2779 }
2780
2781 const struct gl_context *const ctx = state->ctx;
2782 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2783 unsigned max_index = qual_binding + elements - 1;
2784 const glsl_type *base_type = type->without_array();
2785
2786 if (base_type->is_interface()) {
2787 /* UBOs. From page 60 of the GLSL 4.20 specification:
2788 * "If the binding point for any uniform block instance is less than zero,
2789 * or greater than or equal to the implementation-dependent maximum
2790 * number of uniform buffer bindings, a compilation error will occur.
2791 * When the binding identifier is used with a uniform block instanced as
2792 * an array of size N, all elements of the array from binding through
2793 * binding + N – 1 must be within this range."
2794 *
2795 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2796 */
2797 if (qual->flags.q.uniform &&
2798 max_index >= ctx->Const.MaxUniformBufferBindings) {
2799 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2800 "the maximum number of UBO binding points (%d)",
2801 qual_binding, elements,
2802 ctx->Const.MaxUniformBufferBindings);
2803 return;
2804 }
2805
2806 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2807 * "If the binding point for any uniform or shader storage block instance
2808 * is less than zero, or greater than or equal to the
2809 * implementation-dependent maximum number of uniform buffer bindings, a
2810 * compile-time error will occur. When the binding identifier is used
2811 * with a uniform or shader storage block instanced as an array of size
2812 * N, all elements of the array from binding through binding + N – 1 must
2813 * be within this range."
2814 */
2815 if (qual->flags.q.buffer &&
2816 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2817 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2818 "the maximum number of SSBO binding points (%d)",
2819 qual_binding, elements,
2820 ctx->Const.MaxShaderStorageBufferBindings);
2821 return;
2822 }
2823 } else if (base_type->is_sampler()) {
2824 /* Samplers. From page 63 of the GLSL 4.20 specification:
2825 * "If the binding is less than zero, or greater than or equal to the
2826 * implementation-dependent maximum supported number of units, a
2827 * compilation error will occur. When the binding identifier is used
2828 * with an array of size N, all elements of the array from binding
2829 * through binding + N - 1 must be within this range."
2830 */
2831 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2832
2833 if (max_index >= limit) {
2834 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2835 "exceeds the maximum number of texture image units "
2836 "(%u)", qual_binding, elements, limit);
2837
2838 return;
2839 }
2840 } else if (base_type->contains_atomic()) {
2841 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2842 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2843 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2844 " maximum number of atomic counter buffer bindings"
2845 "(%u)", qual_binding,
2846 ctx->Const.MaxAtomicBufferBindings);
2847
2848 return;
2849 }
2850 } else if ((state->is_version(420, 310) ||
2851 state->ARB_shading_language_420pack_enable) &&
2852 base_type->is_image()) {
2853 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2854 if (max_index >= ctx->Const.MaxImageUnits) {
2855 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2856 " maximum number of image units (%d)", max_index,
2857 ctx->Const.MaxImageUnits);
2858 return;
2859 }
2860
2861 } else {
2862 _mesa_glsl_error(loc, state,
2863 "the \"binding\" qualifier only applies to uniform "
2864 "blocks, opaque variables, or arrays thereof");
2865 return;
2866 }
2867
2868 var->data.explicit_binding = true;
2869 var->data.binding = qual_binding;
2870
2871 return;
2872 }
2873
2874
2875 static void
2876 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2877 YYLTYPE *loc,
2878 const glsl_interp_mode interpolation,
2879 const struct ast_type_qualifier *qual,
2880 const struct glsl_type *var_type,
2881 ir_variable_mode mode)
2882 {
2883 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2884 * not to vertex shader inputs nor fragment shader outputs.
2885 *
2886 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2887 * "Outputs from a vertex shader (out) and inputs to a fragment
2888 * shader (in) can be further qualified with one or more of these
2889 * interpolation qualifiers"
2890 * ...
2891 * "These interpolation qualifiers may only precede the qualifiers in,
2892 * centroid in, out, or centroid out in a declaration. They do not apply
2893 * to the deprecated storage qualifiers varying or centroid
2894 * varying. They also do not apply to inputs into a vertex shader or
2895 * outputs from a fragment shader."
2896 *
2897 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2898 * "Outputs from a shader (out) and inputs to a shader (in) can be
2899 * further qualified with one of these interpolation qualifiers."
2900 * ...
2901 * "These interpolation qualifiers may only precede the qualifiers
2902 * in, centroid in, out, or centroid out in a declaration. They do
2903 * not apply to inputs into a vertex shader or outputs from a
2904 * fragment shader."
2905 */
2906 if (state->is_version(130, 300)
2907 && interpolation != INTERP_MODE_NONE) {
2908 const char *i = interpolation_string(interpolation);
2909 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2910 _mesa_glsl_error(loc, state,
2911 "interpolation qualifier `%s' can only be applied to "
2912 "shader inputs or outputs.", i);
2913
2914 switch (state->stage) {
2915 case MESA_SHADER_VERTEX:
2916 if (mode == ir_var_shader_in) {
2917 _mesa_glsl_error(loc, state,
2918 "interpolation qualifier '%s' cannot be applied to "
2919 "vertex shader inputs", i);
2920 }
2921 break;
2922 case MESA_SHADER_FRAGMENT:
2923 if (mode == ir_var_shader_out) {
2924 _mesa_glsl_error(loc, state,
2925 "interpolation qualifier '%s' cannot be applied to "
2926 "fragment shader outputs", i);
2927 }
2928 break;
2929 default:
2930 break;
2931 }
2932 }
2933
2934 /* Interpolation qualifiers cannot be applied to 'centroid' and
2935 * 'centroid varying'.
2936 *
2937 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2938 * "interpolation qualifiers may only precede the qualifiers in,
2939 * centroid in, out, or centroid out in a declaration. They do not apply
2940 * to the deprecated storage qualifiers varying or centroid varying."
2941 *
2942 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2943 */
2944 if (state->is_version(130, 0)
2945 && interpolation != INTERP_MODE_NONE
2946 && qual->flags.q.varying) {
2947
2948 const char *i = interpolation_string(interpolation);
2949 const char *s;
2950 if (qual->flags.q.centroid)
2951 s = "centroid varying";
2952 else
2953 s = "varying";
2954
2955 _mesa_glsl_error(loc, state,
2956 "qualifier '%s' cannot be applied to the "
2957 "deprecated storage qualifier '%s'", i, s);
2958 }
2959
2960 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2961 * so must integer vertex outputs.
2962 *
2963 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2964 * "Fragment shader inputs that are signed or unsigned integers or
2965 * integer vectors must be qualified with the interpolation qualifier
2966 * flat."
2967 *
2968 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2969 * "Fragment shader inputs that are, or contain, signed or unsigned
2970 * integers or integer vectors must be qualified with the
2971 * interpolation qualifier flat."
2972 *
2973 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2974 * "Vertex shader outputs that are, or contain, signed or unsigned
2975 * integers or integer vectors must be qualified with the
2976 * interpolation qualifier flat."
2977 *
2978 * Note that prior to GLSL 1.50, this requirement applied to vertex
2979 * outputs rather than fragment inputs. That creates problems in the
2980 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2981 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2982 * apply the restriction to both vertex outputs and fragment inputs.
2983 *
2984 * Note also that the desktop GLSL specs are missing the text "or
2985 * contain"; this is presumably an oversight, since there is no
2986 * reasonable way to interpolate a fragment shader input that contains
2987 * an integer. See Khronos bug #15671.
2988 */
2989 if (state->is_version(130, 300)
2990 && var_type->contains_integer()
2991 && interpolation != INTERP_MODE_FLAT
2992 && state->stage == MESA_SHADER_FRAGMENT
2993 && mode == ir_var_shader_in) {
2994 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2995 "an integer, then it must be qualified with 'flat'");
2996 }
2997
2998 /* Double fragment inputs must be qualified with 'flat'.
2999 *
3000 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3001 * "This extension does not support interpolation of double-precision
3002 * values; doubles used as fragment shader inputs must be qualified as
3003 * "flat"."
3004 *
3005 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3006 * "Fragment shader inputs that are signed or unsigned integers, integer
3007 * vectors, or any double-precision floating-point type must be
3008 * qualified with the interpolation qualifier flat."
3009 *
3010 * Note that the GLSL specs are missing the text "or contain"; this is
3011 * presumably an oversight. See Khronos bug #15671.
3012 *
3013 * The 'double' type does not exist in GLSL ES so far.
3014 */
3015 if (state->has_double()
3016 && var_type->contains_double()
3017 && interpolation != INTERP_MODE_FLAT
3018 && state->stage == MESA_SHADER_FRAGMENT
3019 && mode == ir_var_shader_in) {
3020 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3021 "a double, then it must be qualified with 'flat'");
3022 }
3023 }
3024
3025 static glsl_interp_mode
3026 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3027 const struct glsl_type *var_type,
3028 ir_variable_mode mode,
3029 struct _mesa_glsl_parse_state *state,
3030 YYLTYPE *loc)
3031 {
3032 glsl_interp_mode interpolation;
3033 if (qual->flags.q.flat)
3034 interpolation = INTERP_MODE_FLAT;
3035 else if (qual->flags.q.noperspective)
3036 interpolation = INTERP_MODE_NOPERSPECTIVE;
3037 else if (qual->flags.q.smooth)
3038 interpolation = INTERP_MODE_SMOOTH;
3039 else if (state->es_shader &&
3040 ((mode == ir_var_shader_in &&
3041 state->stage != MESA_SHADER_VERTEX) ||
3042 (mode == ir_var_shader_out &&
3043 state->stage != MESA_SHADER_FRAGMENT)))
3044 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3045 *
3046 * "When no interpolation qualifier is present, smooth interpolation
3047 * is used."
3048 */
3049 interpolation = INTERP_MODE_SMOOTH;
3050 else
3051 interpolation = INTERP_MODE_NONE;
3052
3053 validate_interpolation_qualifier(state, loc,
3054 interpolation,
3055 qual, var_type, mode);
3056
3057 return interpolation;
3058 }
3059
3060
3061 static void
3062 apply_explicit_location(const struct ast_type_qualifier *qual,
3063 ir_variable *var,
3064 struct _mesa_glsl_parse_state *state,
3065 YYLTYPE *loc)
3066 {
3067 bool fail = false;
3068
3069 unsigned qual_location;
3070 if (!process_qualifier_constant(state, loc, "location", qual->location,
3071 &qual_location)) {
3072 return;
3073 }
3074
3075 /* Checks for GL_ARB_explicit_uniform_location. */
3076 if (qual->flags.q.uniform) {
3077 if (!state->check_explicit_uniform_location_allowed(loc, var))
3078 return;
3079
3080 const struct gl_context *const ctx = state->ctx;
3081 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3082
3083 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3084 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3085 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3086 ctx->Const.MaxUserAssignableUniformLocations);
3087 return;
3088 }
3089
3090 var->data.explicit_location = true;
3091 var->data.location = qual_location;
3092 return;
3093 }
3094
3095 /* Between GL_ARB_explicit_attrib_location an
3096 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3097 * stage can be assigned explicit locations. The checking here associates
3098 * the correct extension with the correct stage's input / output:
3099 *
3100 * input output
3101 * ----- ------
3102 * vertex explicit_loc sso
3103 * tess control sso sso
3104 * tess eval sso sso
3105 * geometry sso sso
3106 * fragment sso explicit_loc
3107 */
3108 switch (state->stage) {
3109 case MESA_SHADER_VERTEX:
3110 if (var->data.mode == ir_var_shader_in) {
3111 if (!state->check_explicit_attrib_location_allowed(loc, var))
3112 return;
3113
3114 break;
3115 }
3116
3117 if (var->data.mode == ir_var_shader_out) {
3118 if (!state->check_separate_shader_objects_allowed(loc, var))
3119 return;
3120
3121 break;
3122 }
3123
3124 fail = true;
3125 break;
3126
3127 case MESA_SHADER_TESS_CTRL:
3128 case MESA_SHADER_TESS_EVAL:
3129 case MESA_SHADER_GEOMETRY:
3130 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3131 if (!state->check_separate_shader_objects_allowed(loc, var))
3132 return;
3133
3134 break;
3135 }
3136
3137 fail = true;
3138 break;
3139
3140 case MESA_SHADER_FRAGMENT:
3141 if (var->data.mode == ir_var_shader_in) {
3142 if (!state->check_separate_shader_objects_allowed(loc, var))
3143 return;
3144
3145 break;
3146 }
3147
3148 if (var->data.mode == ir_var_shader_out) {
3149 if (!state->check_explicit_attrib_location_allowed(loc, var))
3150 return;
3151
3152 break;
3153 }
3154
3155 fail = true;
3156 break;
3157
3158 case MESA_SHADER_COMPUTE:
3159 _mesa_glsl_error(loc, state,
3160 "compute shader variables cannot be given "
3161 "explicit locations");
3162 return;
3163 };
3164
3165 if (fail) {
3166 _mesa_glsl_error(loc, state,
3167 "%s cannot be given an explicit location in %s shader",
3168 mode_string(var),
3169 _mesa_shader_stage_to_string(state->stage));
3170 } else {
3171 var->data.explicit_location = true;
3172
3173 switch (state->stage) {
3174 case MESA_SHADER_VERTEX:
3175 var->data.location = (var->data.mode == ir_var_shader_in)
3176 ? (qual_location + VERT_ATTRIB_GENERIC0)
3177 : (qual_location + VARYING_SLOT_VAR0);
3178 break;
3179
3180 case MESA_SHADER_TESS_CTRL:
3181 case MESA_SHADER_TESS_EVAL:
3182 case MESA_SHADER_GEOMETRY:
3183 if (var->data.patch)
3184 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3185 else
3186 var->data.location = qual_location + VARYING_SLOT_VAR0;
3187 break;
3188
3189 case MESA_SHADER_FRAGMENT:
3190 var->data.location = (var->data.mode == ir_var_shader_out)
3191 ? (qual_location + FRAG_RESULT_DATA0)
3192 : (qual_location + VARYING_SLOT_VAR0);
3193 break;
3194 case MESA_SHADER_COMPUTE:
3195 assert(!"Unexpected shader type");
3196 break;
3197 }
3198
3199 /* Check if index was set for the uniform instead of the function */
3200 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3201 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3202 "used with subroutine functions");
3203 return;
3204 }
3205
3206 unsigned qual_index;
3207 if (qual->flags.q.explicit_index &&
3208 process_qualifier_constant(state, loc, "index", qual->index,
3209 &qual_index)) {
3210 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3211 * Layout Qualifiers):
3212 *
3213 * "It is also a compile-time error if a fragment shader
3214 * sets a layout index to less than 0 or greater than 1."
3215 *
3216 * Older specifications don't mandate a behavior; we take
3217 * this as a clarification and always generate the error.
3218 */
3219 if (qual_index > 1) {
3220 _mesa_glsl_error(loc, state,
3221 "explicit index may only be 0 or 1");
3222 } else {
3223 var->data.explicit_index = true;
3224 var->data.index = qual_index;
3225 }
3226 }
3227 }
3228 }
3229
3230 static void
3231 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3232 ir_variable *var,
3233 struct _mesa_glsl_parse_state *state,
3234 YYLTYPE *loc)
3235 {
3236 const glsl_type *base_type = var->type->without_array();
3237
3238 if (base_type->is_image()) {
3239 if (var->data.mode != ir_var_uniform &&
3240 var->data.mode != ir_var_function_in) {
3241 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3242 "function parameters or uniform-qualified "
3243 "global variables");
3244 }
3245
3246 var->data.image_read_only |= qual->flags.q.read_only;
3247 var->data.image_write_only |= qual->flags.q.write_only;
3248 var->data.image_coherent |= qual->flags.q.coherent;
3249 var->data.image_volatile |= qual->flags.q._volatile;
3250 var->data.image_restrict |= qual->flags.q.restrict_flag;
3251 var->data.read_only = true;
3252
3253 if (qual->flags.q.explicit_image_format) {
3254 if (var->data.mode == ir_var_function_in) {
3255 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3256 "used on image function parameters");
3257 }
3258
3259 if (qual->image_base_type != base_type->sampled_type) {
3260 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3261 "base data type of the image");
3262 }
3263
3264 var->data.image_format = qual->image_format;
3265 } else {
3266 if (var->data.mode == ir_var_uniform) {
3267 if (state->es_shader) {
3268 _mesa_glsl_error(loc, state, "all image uniforms "
3269 "must have a format layout qualifier");
3270
3271 } else if (!qual->flags.q.write_only) {
3272 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3273 "`writeonly' must have a format layout "
3274 "qualifier");
3275 }
3276 }
3277
3278 var->data.image_format = GL_NONE;
3279 }
3280
3281 /* From page 70 of the GLSL ES 3.1 specification:
3282 *
3283 * "Except for image variables qualified with the format qualifiers
3284 * r32f, r32i, and r32ui, image variables must specify either memory
3285 * qualifier readonly or the memory qualifier writeonly."
3286 */
3287 if (state->es_shader &&
3288 var->data.image_format != GL_R32F &&
3289 var->data.image_format != GL_R32I &&
3290 var->data.image_format != GL_R32UI &&
3291 !var->data.image_read_only &&
3292 !var->data.image_write_only) {
3293 _mesa_glsl_error(loc, state, "image variables of format other than "
3294 "r32f, r32i or r32ui must be qualified `readonly' or "
3295 "`writeonly'");
3296 }
3297
3298 } else if (qual->flags.q.read_only ||
3299 qual->flags.q.write_only ||
3300 qual->flags.q.coherent ||
3301 qual->flags.q._volatile ||
3302 qual->flags.q.restrict_flag ||
3303 qual->flags.q.explicit_image_format) {
3304 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3305 "images");
3306 }
3307 }
3308
3309 static inline const char*
3310 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3311 {
3312 if (origin_upper_left && pixel_center_integer)
3313 return "origin_upper_left, pixel_center_integer";
3314 else if (origin_upper_left)
3315 return "origin_upper_left";
3316 else if (pixel_center_integer)
3317 return "pixel_center_integer";
3318 else
3319 return " ";
3320 }
3321
3322 static inline bool
3323 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3324 const struct ast_type_qualifier *qual)
3325 {
3326 /* If gl_FragCoord was previously declared, and the qualifiers were
3327 * different in any way, return true.
3328 */
3329 if (state->fs_redeclares_gl_fragcoord) {
3330 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3331 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3332 }
3333
3334 return false;
3335 }
3336
3337 static inline void
3338 validate_array_dimensions(const glsl_type *t,
3339 struct _mesa_glsl_parse_state *state,
3340 YYLTYPE *loc) {
3341 if (t->is_array()) {
3342 t = t->fields.array;
3343 while (t->is_array()) {
3344 if (t->is_unsized_array()) {
3345 _mesa_glsl_error(loc, state,
3346 "only the outermost array dimension can "
3347 "be unsized",
3348 t->name);
3349 break;
3350 }
3351 t = t->fields.array;
3352 }
3353 }
3354 }
3355
3356 static void
3357 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3358 ir_variable *var,
3359 struct _mesa_glsl_parse_state *state,
3360 YYLTYPE *loc)
3361 {
3362 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3363
3364 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3365 *
3366 * "Within any shader, the first redeclarations of gl_FragCoord
3367 * must appear before any use of gl_FragCoord."
3368 *
3369 * Generate a compiler error if above condition is not met by the
3370 * fragment shader.
3371 */
3372 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3373 if (earlier != NULL &&
3374 earlier->data.used &&
3375 !state->fs_redeclares_gl_fragcoord) {
3376 _mesa_glsl_error(loc, state,
3377 "gl_FragCoord used before its first redeclaration "
3378 "in fragment shader");
3379 }
3380
3381 /* Make sure all gl_FragCoord redeclarations specify the same layout
3382 * qualifiers.
3383 */
3384 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3385 const char *const qual_string =
3386 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3387 qual->flags.q.pixel_center_integer);
3388
3389 const char *const state_string =
3390 get_layout_qualifier_string(state->fs_origin_upper_left,
3391 state->fs_pixel_center_integer);
3392
3393 _mesa_glsl_error(loc, state,
3394 "gl_FragCoord redeclared with different layout "
3395 "qualifiers (%s) and (%s) ",
3396 state_string,
3397 qual_string);
3398 }
3399 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3400 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3401 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3402 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3403 state->fs_redeclares_gl_fragcoord =
3404 state->fs_origin_upper_left ||
3405 state->fs_pixel_center_integer ||
3406 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3407 }
3408
3409 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3410 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3411 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3412 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3413 const char *const qual_string = (qual->flags.q.origin_upper_left)
3414 ? "origin_upper_left" : "pixel_center_integer";
3415
3416 _mesa_glsl_error(loc, state,
3417 "layout qualifier `%s' can only be applied to "
3418 "fragment shader input `gl_FragCoord'",
3419 qual_string);
3420 }
3421
3422 if (qual->flags.q.explicit_location) {
3423 apply_explicit_location(qual, var, state, loc);
3424
3425 if (qual->flags.q.explicit_component) {
3426 unsigned qual_component;
3427 if (process_qualifier_constant(state, loc, "component",
3428 qual->component, &qual_component)) {
3429 const glsl_type *type = var->type->without_array();
3430 unsigned components = type->component_slots();
3431
3432 if (type->is_matrix() || type->is_record()) {
3433 _mesa_glsl_error(loc, state, "component layout qualifier "
3434 "cannot be applied to a matrix, a structure, "
3435 "a block, or an array containing any of "
3436 "these.");
3437 } else if (qual_component != 0 &&
3438 (qual_component + components - 1) > 3) {
3439 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3440 (qual_component + components - 1));
3441 } else if (qual_component == 1 && type->is_64bit()) {
3442 /* We don't bother checking for 3 as it should be caught by the
3443 * overflow check above.
3444 */
3445 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3446 "component 1 or 3");
3447 } else {
3448 var->data.explicit_component = true;
3449 var->data.location_frac = qual_component;
3450 }
3451 }
3452 }
3453 } else if (qual->flags.q.explicit_index) {
3454 if (!qual->flags.q.subroutine_def)
3455 _mesa_glsl_error(loc, state,
3456 "explicit index requires explicit location");
3457 } else if (qual->flags.q.explicit_component) {
3458 _mesa_glsl_error(loc, state,
3459 "explicit component requires explicit location");
3460 }
3461
3462 if (qual->flags.q.explicit_binding) {
3463 apply_explicit_binding(state, loc, var, var->type, qual);
3464 }
3465
3466 if (state->stage == MESA_SHADER_GEOMETRY &&
3467 qual->flags.q.out && qual->flags.q.stream) {
3468 unsigned qual_stream;
3469 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3470 &qual_stream) &&
3471 validate_stream_qualifier(loc, state, qual_stream)) {
3472 var->data.stream = qual_stream;
3473 }
3474 }
3475
3476 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3477 unsigned qual_xfb_buffer;
3478 if (process_qualifier_constant(state, loc, "xfb_buffer",
3479 qual->xfb_buffer, &qual_xfb_buffer) &&
3480 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3481 var->data.xfb_buffer = qual_xfb_buffer;
3482 if (qual->flags.q.explicit_xfb_buffer)
3483 var->data.explicit_xfb_buffer = true;
3484 }
3485 }
3486
3487 if (qual->flags.q.explicit_xfb_offset) {
3488 unsigned qual_xfb_offset;
3489 unsigned component_size = var->type->contains_double() ? 8 : 4;
3490
3491 if (process_qualifier_constant(state, loc, "xfb_offset",
3492 qual->offset, &qual_xfb_offset) &&
3493 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3494 var->type, component_size)) {
3495 var->data.offset = qual_xfb_offset;
3496 var->data.explicit_xfb_offset = true;
3497 }
3498 }
3499
3500 if (qual->flags.q.explicit_xfb_stride) {
3501 unsigned qual_xfb_stride;
3502 if (process_qualifier_constant(state, loc, "xfb_stride",
3503 qual->xfb_stride, &qual_xfb_stride)) {
3504 var->data.xfb_stride = qual_xfb_stride;
3505 var->data.explicit_xfb_stride = true;
3506 }
3507 }
3508
3509 if (var->type->contains_atomic()) {
3510 if (var->data.mode == ir_var_uniform) {
3511 if (var->data.explicit_binding) {
3512 unsigned *offset =
3513 &state->atomic_counter_offsets[var->data.binding];
3514
3515 if (*offset % ATOMIC_COUNTER_SIZE)
3516 _mesa_glsl_error(loc, state,
3517 "misaligned atomic counter offset");
3518
3519 var->data.offset = *offset;
3520 *offset += var->type->atomic_size();
3521
3522 } else {
3523 _mesa_glsl_error(loc, state,
3524 "atomic counters require explicit binding point");
3525 }
3526 } else if (var->data.mode != ir_var_function_in) {
3527 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3528 "function parameters or uniform-qualified "
3529 "global variables");
3530 }
3531 }
3532
3533 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3534 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3535 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3536 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3537 * These extensions and all following extensions that add the 'layout'
3538 * keyword have been modified to require the use of 'in' or 'out'.
3539 *
3540 * The following extension do not allow the deprecated keywords:
3541 *
3542 * GL_AMD_conservative_depth
3543 * GL_ARB_conservative_depth
3544 * GL_ARB_gpu_shader5
3545 * GL_ARB_separate_shader_objects
3546 * GL_ARB_tessellation_shader
3547 * GL_ARB_transform_feedback3
3548 * GL_ARB_uniform_buffer_object
3549 *
3550 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3551 * allow layout with the deprecated keywords.
3552 */
3553 const bool relaxed_layout_qualifier_checking =
3554 state->ARB_fragment_coord_conventions_enable;
3555
3556 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3557 || qual->flags.q.varying;
3558 if (qual->has_layout() && uses_deprecated_qualifier) {
3559 if (relaxed_layout_qualifier_checking) {
3560 _mesa_glsl_warning(loc, state,
3561 "`layout' qualifier may not be used with "
3562 "`attribute' or `varying'");
3563 } else {
3564 _mesa_glsl_error(loc, state,
3565 "`layout' qualifier may not be used with "
3566 "`attribute' or `varying'");
3567 }
3568 }
3569
3570 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3571 * AMD_conservative_depth.
3572 */
3573 int depth_layout_count = qual->flags.q.depth_any
3574 + qual->flags.q.depth_greater
3575 + qual->flags.q.depth_less
3576 + qual->flags.q.depth_unchanged;
3577 if (depth_layout_count > 0
3578 && !state->is_version(420, 0)
3579 && !state->AMD_conservative_depth_enable
3580 && !state->ARB_conservative_depth_enable) {
3581 _mesa_glsl_error(loc, state,
3582 "extension GL_AMD_conservative_depth or "
3583 "GL_ARB_conservative_depth must be enabled "
3584 "to use depth layout qualifiers");
3585 } else if (depth_layout_count > 0
3586 && strcmp(var->name, "gl_FragDepth") != 0) {
3587 _mesa_glsl_error(loc, state,
3588 "depth layout qualifiers can be applied only to "
3589 "gl_FragDepth");
3590 } else if (depth_layout_count > 1
3591 && strcmp(var->name, "gl_FragDepth") == 0) {
3592 _mesa_glsl_error(loc, state,
3593 "at most one depth layout qualifier can be applied to "
3594 "gl_FragDepth");
3595 }
3596 if (qual->flags.q.depth_any)
3597 var->data.depth_layout = ir_depth_layout_any;
3598 else if (qual->flags.q.depth_greater)
3599 var->data.depth_layout = ir_depth_layout_greater;
3600 else if (qual->flags.q.depth_less)
3601 var->data.depth_layout = ir_depth_layout_less;
3602 else if (qual->flags.q.depth_unchanged)
3603 var->data.depth_layout = ir_depth_layout_unchanged;
3604 else
3605 var->data.depth_layout = ir_depth_layout_none;
3606
3607 if (qual->flags.q.std140 ||
3608 qual->flags.q.std430 ||
3609 qual->flags.q.packed ||
3610 qual->flags.q.shared) {
3611 _mesa_glsl_error(loc, state,
3612 "uniform and shader storage block layout qualifiers "
3613 "std140, std430, packed, and shared can only be "
3614 "applied to uniform or shader storage blocks, not "
3615 "members");
3616 }
3617
3618 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3619 validate_matrix_layout_for_type(state, loc, var->type, var);
3620 }
3621
3622 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3623 * Inputs):
3624 *
3625 * "Fragment shaders also allow the following layout qualifier on in only
3626 * (not with variable declarations)
3627 * layout-qualifier-id
3628 * early_fragment_tests
3629 * [...]"
3630 */
3631 if (qual->flags.q.early_fragment_tests) {
3632 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3633 "valid in fragment shader input layout declaration.");
3634 }
3635
3636 if (qual->flags.q.post_depth_coverage) {
3637 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3638 "valid in fragment shader input layout declaration.");
3639 }
3640 }
3641
3642 static void
3643 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3644 ir_variable *var,
3645 struct _mesa_glsl_parse_state *state,
3646 YYLTYPE *loc,
3647 bool is_parameter)
3648 {
3649 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3650
3651 if (qual->flags.q.invariant) {
3652 if (var->data.used) {
3653 _mesa_glsl_error(loc, state,
3654 "variable `%s' may not be redeclared "
3655 "`invariant' after being used",
3656 var->name);
3657 } else {
3658 var->data.invariant = 1;
3659 }
3660 }
3661
3662 if (qual->flags.q.precise) {
3663 if (var->data.used) {
3664 _mesa_glsl_error(loc, state,
3665 "variable `%s' may not be redeclared "
3666 "`precise' after being used",
3667 var->name);
3668 } else {
3669 var->data.precise = 1;
3670 }
3671 }
3672
3673 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3674 _mesa_glsl_error(loc, state,
3675 "`subroutine' may only be applied to uniforms, "
3676 "subroutine type declarations, or function definitions");
3677 }
3678
3679 if (qual->flags.q.constant || qual->flags.q.attribute
3680 || qual->flags.q.uniform
3681 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3682 var->data.read_only = 1;
3683
3684 if (qual->flags.q.centroid)
3685 var->data.centroid = 1;
3686
3687 if (qual->flags.q.sample)
3688 var->data.sample = 1;
3689
3690 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3691 if (state->es_shader) {
3692 var->data.precision =
3693 select_gles_precision(qual->precision, var->type, state, loc);
3694 }
3695
3696 if (qual->flags.q.patch)
3697 var->data.patch = 1;
3698
3699 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3700 var->type = glsl_type::error_type;
3701 _mesa_glsl_error(loc, state,
3702 "`attribute' variables may not be declared in the "
3703 "%s shader",
3704 _mesa_shader_stage_to_string(state->stage));
3705 }
3706
3707 /* Disallow layout qualifiers which may only appear on layout declarations. */
3708 if (qual->flags.q.prim_type) {
3709 _mesa_glsl_error(loc, state,
3710 "Primitive type may only be specified on GS input or output "
3711 "layout declaration, not on variables.");
3712 }
3713
3714 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3715 *
3716 * "However, the const qualifier cannot be used with out or inout."
3717 *
3718 * The same section of the GLSL 4.40 spec further clarifies this saying:
3719 *
3720 * "The const qualifier cannot be used with out or inout, or a
3721 * compile-time error results."
3722 */
3723 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3724 _mesa_glsl_error(loc, state,
3725 "`const' may not be applied to `out' or `inout' "
3726 "function parameters");
3727 }
3728
3729 /* If there is no qualifier that changes the mode of the variable, leave
3730 * the setting alone.
3731 */
3732 assert(var->data.mode != ir_var_temporary);
3733 if (qual->flags.q.in && qual->flags.q.out)
3734 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3735 else if (qual->flags.q.in)
3736 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3737 else if (qual->flags.q.attribute
3738 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3739 var->data.mode = ir_var_shader_in;
3740 else if (qual->flags.q.out)
3741 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3742 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3743 var->data.mode = ir_var_shader_out;
3744 else if (qual->flags.q.uniform)
3745 var->data.mode = ir_var_uniform;
3746 else if (qual->flags.q.buffer)
3747 var->data.mode = ir_var_shader_storage;
3748 else if (qual->flags.q.shared_storage)
3749 var->data.mode = ir_var_shader_shared;
3750
3751 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3752 qual->flags.q.in && qual->flags.q.out;
3753
3754 if (!is_parameter && is_varying_var(var, state->stage)) {
3755 /* User-defined ins/outs are not permitted in compute shaders. */
3756 if (state->stage == MESA_SHADER_COMPUTE) {
3757 _mesa_glsl_error(loc, state,
3758 "user-defined input and output variables are not "
3759 "permitted in compute shaders");
3760 }
3761
3762 /* This variable is being used to link data between shader stages (in
3763 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3764 * that is allowed for such purposes.
3765 *
3766 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3767 *
3768 * "The varying qualifier can be used only with the data types
3769 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3770 * these."
3771 *
3772 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3773 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3774 *
3775 * "Fragment inputs can only be signed and unsigned integers and
3776 * integer vectors, float, floating-point vectors, matrices, or
3777 * arrays of these. Structures cannot be input.
3778 *
3779 * Similar text exists in the section on vertex shader outputs.
3780 *
3781 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3782 * 3.00 spec allows structs as well. Varying structs are also allowed
3783 * in GLSL 1.50.
3784 */
3785 switch (var->type->get_scalar_type()->base_type) {
3786 case GLSL_TYPE_FLOAT:
3787 /* Ok in all GLSL versions */
3788 break;
3789 case GLSL_TYPE_UINT:
3790 case GLSL_TYPE_INT:
3791 if (state->is_version(130, 300))
3792 break;
3793 _mesa_glsl_error(loc, state,
3794 "varying variables must be of base type float in %s",
3795 state->get_version_string());
3796 break;
3797 case GLSL_TYPE_STRUCT:
3798 if (state->is_version(150, 300))
3799 break;
3800 _mesa_glsl_error(loc, state,
3801 "varying variables may not be of type struct");
3802 break;
3803 case GLSL_TYPE_DOUBLE:
3804 break;
3805 default:
3806 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3807 break;
3808 }
3809 }
3810
3811 if (state->all_invariant && (state->current_function == NULL)) {
3812 switch (state->stage) {
3813 case MESA_SHADER_VERTEX:
3814 if (var->data.mode == ir_var_shader_out)
3815 var->data.invariant = true;
3816 break;
3817 case MESA_SHADER_TESS_CTRL:
3818 case MESA_SHADER_TESS_EVAL:
3819 case MESA_SHADER_GEOMETRY:
3820 if ((var->data.mode == ir_var_shader_in)
3821 || (var->data.mode == ir_var_shader_out))
3822 var->data.invariant = true;
3823 break;
3824 case MESA_SHADER_FRAGMENT:
3825 if (var->data.mode == ir_var_shader_in)
3826 var->data.invariant = true;
3827 break;
3828 case MESA_SHADER_COMPUTE:
3829 /* Invariance isn't meaningful in compute shaders. */
3830 break;
3831 }
3832 }
3833
3834 var->data.interpolation =
3835 interpret_interpolation_qualifier(qual, var->type,
3836 (ir_variable_mode) var->data.mode,
3837 state, loc);
3838
3839 /* Does the declaration use the deprecated 'attribute' or 'varying'
3840 * keywords?
3841 */
3842 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3843 || qual->flags.q.varying;
3844
3845
3846 /* Validate auxiliary storage qualifiers */
3847
3848 /* From section 4.3.4 of the GLSL 1.30 spec:
3849 * "It is an error to use centroid in in a vertex shader."
3850 *
3851 * From section 4.3.4 of the GLSL ES 3.00 spec:
3852 * "It is an error to use centroid in or interpolation qualifiers in
3853 * a vertex shader input."
3854 */
3855
3856 /* Section 4.3.6 of the GLSL 1.30 specification states:
3857 * "It is an error to use centroid out in a fragment shader."
3858 *
3859 * The GL_ARB_shading_language_420pack extension specification states:
3860 * "It is an error to use auxiliary storage qualifiers or interpolation
3861 * qualifiers on an output in a fragment shader."
3862 */
3863 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3864 _mesa_glsl_error(loc, state,
3865 "sample qualifier may only be used on `in` or `out` "
3866 "variables between shader stages");
3867 }
3868 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3869 _mesa_glsl_error(loc, state,
3870 "centroid qualifier may only be used with `in', "
3871 "`out' or `varying' variables between shader stages");
3872 }
3873
3874 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3875 _mesa_glsl_error(loc, state,
3876 "the shared storage qualifiers can only be used with "
3877 "compute shaders");
3878 }
3879
3880 apply_image_qualifier_to_variable(qual, var, state, loc);
3881 }
3882
3883 /**
3884 * Get the variable that is being redeclared by this declaration
3885 *
3886 * Semantic checks to verify the validity of the redeclaration are also
3887 * performed. If semantic checks fail, compilation error will be emitted via
3888 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3889 *
3890 * \returns
3891 * A pointer to an existing variable in the current scope if the declaration
3892 * is a redeclaration, \c NULL otherwise.
3893 */
3894 static ir_variable *
3895 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3896 struct _mesa_glsl_parse_state *state,
3897 bool allow_all_redeclarations)
3898 {
3899 /* Check if this declaration is actually a re-declaration, either to
3900 * resize an array or add qualifiers to an existing variable.
3901 *
3902 * This is allowed for variables in the current scope, or when at
3903 * global scope (for built-ins in the implicit outer scope).
3904 */
3905 ir_variable *earlier = state->symbols->get_variable(var->name);
3906 if (earlier == NULL ||
3907 (state->current_function != NULL &&
3908 !state->symbols->name_declared_this_scope(var->name))) {
3909 return NULL;
3910 }
3911
3912
3913 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3914 *
3915 * "It is legal to declare an array without a size and then
3916 * later re-declare the same name as an array of the same
3917 * type and specify a size."
3918 */
3919 if (earlier->type->is_unsized_array() && var->type->is_array()
3920 && (var->type->fields.array == earlier->type->fields.array)) {
3921 /* FINISHME: This doesn't match the qualifiers on the two
3922 * FINISHME: declarations. It's not 100% clear whether this is
3923 * FINISHME: required or not.
3924 */
3925
3926 const int size = var->type->array_size();
3927 check_builtin_array_max_size(var->name, size, loc, state);
3928 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3929 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3930 "previous access",
3931 earlier->data.max_array_access);
3932 }
3933
3934 earlier->type = var->type;
3935 delete var;
3936 var = NULL;
3937 } else if ((state->ARB_fragment_coord_conventions_enable ||
3938 state->is_version(150, 0))
3939 && strcmp(var->name, "gl_FragCoord") == 0
3940 && earlier->type == var->type
3941 && var->data.mode == ir_var_shader_in) {
3942 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3943 * qualifiers.
3944 */
3945 earlier->data.origin_upper_left = var->data.origin_upper_left;
3946 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3947
3948 /* According to section 4.3.7 of the GLSL 1.30 spec,
3949 * the following built-in varaibles can be redeclared with an
3950 * interpolation qualifier:
3951 * * gl_FrontColor
3952 * * gl_BackColor
3953 * * gl_FrontSecondaryColor
3954 * * gl_BackSecondaryColor
3955 * * gl_Color
3956 * * gl_SecondaryColor
3957 */
3958 } else if (state->is_version(130, 0)
3959 && (strcmp(var->name, "gl_FrontColor") == 0
3960 || strcmp(var->name, "gl_BackColor") == 0
3961 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3962 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3963 || strcmp(var->name, "gl_Color") == 0
3964 || strcmp(var->name, "gl_SecondaryColor") == 0)
3965 && earlier->type == var->type
3966 && earlier->data.mode == var->data.mode) {
3967 earlier->data.interpolation = var->data.interpolation;
3968
3969 /* Layout qualifiers for gl_FragDepth. */
3970 } else if ((state->is_version(420, 0) ||
3971 state->AMD_conservative_depth_enable ||
3972 state->ARB_conservative_depth_enable)
3973 && strcmp(var->name, "gl_FragDepth") == 0
3974 && earlier->type == var->type
3975 && earlier->data.mode == var->data.mode) {
3976
3977 /** From the AMD_conservative_depth spec:
3978 * Within any shader, the first redeclarations of gl_FragDepth
3979 * must appear before any use of gl_FragDepth.
3980 */
3981 if (earlier->data.used) {
3982 _mesa_glsl_error(&loc, state,
3983 "the first redeclaration of gl_FragDepth "
3984 "must appear before any use of gl_FragDepth");
3985 }
3986
3987 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3988 if (earlier->data.depth_layout != ir_depth_layout_none
3989 && earlier->data.depth_layout != var->data.depth_layout) {
3990 _mesa_glsl_error(&loc, state,
3991 "gl_FragDepth: depth layout is declared here "
3992 "as '%s, but it was previously declared as "
3993 "'%s'",
3994 depth_layout_string(var->data.depth_layout),
3995 depth_layout_string(earlier->data.depth_layout));
3996 }
3997
3998 earlier->data.depth_layout = var->data.depth_layout;
3999
4000 } else if (state->has_framebuffer_fetch() &&
4001 strcmp(var->name, "gl_LastFragData") == 0 &&
4002 var->type == earlier->type &&
4003 var->data.mode == ir_var_auto) {
4004 /* According to the EXT_shader_framebuffer_fetch spec:
4005 *
4006 * "By default, gl_LastFragData is declared with the mediump precision
4007 * qualifier. This can be changed by redeclaring the corresponding
4008 * variables with the desired precision qualifier."
4009 */
4010 earlier->data.precision = var->data.precision;
4011
4012 } else if (allow_all_redeclarations) {
4013 if (earlier->data.mode != var->data.mode) {
4014 _mesa_glsl_error(&loc, state,
4015 "redeclaration of `%s' with incorrect qualifiers",
4016 var->name);
4017 } else if (earlier->type != var->type) {
4018 _mesa_glsl_error(&loc, state,
4019 "redeclaration of `%s' has incorrect type",
4020 var->name);
4021 }
4022 } else {
4023 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4024 }
4025
4026 return earlier;
4027 }
4028
4029 /**
4030 * Generate the IR for an initializer in a variable declaration
4031 */
4032 ir_rvalue *
4033 process_initializer(ir_variable *var, ast_declaration *decl,
4034 ast_fully_specified_type *type,
4035 exec_list *initializer_instructions,
4036 struct _mesa_glsl_parse_state *state)
4037 {
4038 ir_rvalue *result = NULL;
4039
4040 YYLTYPE initializer_loc = decl->initializer->get_location();
4041
4042 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4043 *
4044 * "All uniform variables are read-only and are initialized either
4045 * directly by an application via API commands, or indirectly by
4046 * OpenGL."
4047 */
4048 if (var->data.mode == ir_var_uniform) {
4049 state->check_version(120, 0, &initializer_loc,
4050 "cannot initialize uniform %s",
4051 var->name);
4052 }
4053
4054 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4055 *
4056 * "Buffer variables cannot have initializers."
4057 */
4058 if (var->data.mode == ir_var_shader_storage) {
4059 _mesa_glsl_error(&initializer_loc, state,
4060 "cannot initialize buffer variable %s",
4061 var->name);
4062 }
4063
4064 /* From section 4.1.7 of the GLSL 4.40 spec:
4065 *
4066 * "Opaque variables [...] are initialized only through the
4067 * OpenGL API; they cannot be declared with an initializer in a
4068 * shader."
4069 */
4070 if (var->type->contains_opaque()) {
4071 _mesa_glsl_error(&initializer_loc, state,
4072 "cannot initialize opaque variable %s",
4073 var->name);
4074 }
4075
4076 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4077 _mesa_glsl_error(&initializer_loc, state,
4078 "cannot initialize %s shader input / %s %s",
4079 _mesa_shader_stage_to_string(state->stage),
4080 (state->stage == MESA_SHADER_VERTEX)
4081 ? "attribute" : "varying",
4082 var->name);
4083 }
4084
4085 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4086 _mesa_glsl_error(&initializer_loc, state,
4087 "cannot initialize %s shader output %s",
4088 _mesa_shader_stage_to_string(state->stage),
4089 var->name);
4090 }
4091
4092 /* If the initializer is an ast_aggregate_initializer, recursively store
4093 * type information from the LHS into it, so that its hir() function can do
4094 * type checking.
4095 */
4096 if (decl->initializer->oper == ast_aggregate)
4097 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4098
4099 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4100 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4101
4102 /* Calculate the constant value if this is a const or uniform
4103 * declaration.
4104 *
4105 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4106 *
4107 * "Declarations of globals without a storage qualifier, or with
4108 * just the const qualifier, may include initializers, in which case
4109 * they will be initialized before the first line of main() is
4110 * executed. Such initializers must be a constant expression."
4111 *
4112 * The same section of the GLSL ES 3.00.4 spec has similar language.
4113 */
4114 if (type->qualifier.flags.q.constant
4115 || type->qualifier.flags.q.uniform
4116 || (state->es_shader && state->current_function == NULL)) {
4117 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4118 lhs, rhs, true);
4119 if (new_rhs != NULL) {
4120 rhs = new_rhs;
4121
4122 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4123 * says:
4124 *
4125 * "A constant expression is one of
4126 *
4127 * ...
4128 *
4129 * - an expression formed by an operator on operands that are
4130 * all constant expressions, including getting an element of
4131 * a constant array, or a field of a constant structure, or
4132 * components of a constant vector. However, the sequence
4133 * operator ( , ) and the assignment operators ( =, +=, ...)
4134 * are not included in the operators that can create a
4135 * constant expression."
4136 *
4137 * Section 12.43 (Sequence operator and constant expressions) says:
4138 *
4139 * "Should the following construct be allowed?
4140 *
4141 * float a[2,3];
4142 *
4143 * The expression within the brackets uses the sequence operator
4144 * (',') and returns the integer 3 so the construct is declaring
4145 * a single-dimensional array of size 3. In some languages, the
4146 * construct declares a two-dimensional array. It would be
4147 * preferable to make this construct illegal to avoid confusion.
4148 *
4149 * One possibility is to change the definition of the sequence
4150 * operator so that it does not return a constant-expression and
4151 * hence cannot be used to declare an array size.
4152 *
4153 * RESOLUTION: The result of a sequence operator is not a
4154 * constant-expression."
4155 *
4156 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4157 * contains language almost identical to the section 4.3.3 in the
4158 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4159 * versions.
4160 */
4161 ir_constant *constant_value = rhs->constant_expression_value();
4162 if (!constant_value ||
4163 (state->is_version(430, 300) &&
4164 decl->initializer->has_sequence_subexpression())) {
4165 const char *const variable_mode =
4166 (type->qualifier.flags.q.constant)
4167 ? "const"
4168 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4169
4170 /* If ARB_shading_language_420pack is enabled, initializers of
4171 * const-qualified local variables do not have to be constant
4172 * expressions. Const-qualified global variables must still be
4173 * initialized with constant expressions.
4174 */
4175 if (!state->has_420pack()
4176 || state->current_function == NULL) {
4177 _mesa_glsl_error(& initializer_loc, state,
4178 "initializer of %s variable `%s' must be a "
4179 "constant expression",
4180 variable_mode,
4181 decl->identifier);
4182 if (var->type->is_numeric()) {
4183 /* Reduce cascading errors. */
4184 var->constant_value = type->qualifier.flags.q.constant
4185 ? ir_constant::zero(state, var->type) : NULL;
4186 }
4187 }
4188 } else {
4189 rhs = constant_value;
4190 var->constant_value = type->qualifier.flags.q.constant
4191 ? constant_value : NULL;
4192 }
4193 } else {
4194 if (var->type->is_numeric()) {
4195 /* Reduce cascading errors. */
4196 var->constant_value = type->qualifier.flags.q.constant
4197 ? ir_constant::zero(state, var->type) : NULL;
4198 }
4199 }
4200 }
4201
4202 if (rhs && !rhs->type->is_error()) {
4203 bool temp = var->data.read_only;
4204 if (type->qualifier.flags.q.constant)
4205 var->data.read_only = false;
4206
4207 /* Never emit code to initialize a uniform.
4208 */
4209 const glsl_type *initializer_type;
4210 if (!type->qualifier.flags.q.uniform) {
4211 do_assignment(initializer_instructions, state,
4212 NULL,
4213 lhs, rhs,
4214 &result, true,
4215 true,
4216 type->get_location());
4217 initializer_type = result->type;
4218 } else
4219 initializer_type = rhs->type;
4220
4221 var->constant_initializer = rhs->constant_expression_value();
4222 var->data.has_initializer = true;
4223
4224 /* If the declared variable is an unsized array, it must inherrit
4225 * its full type from the initializer. A declaration such as
4226 *
4227 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4228 *
4229 * becomes
4230 *
4231 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4232 *
4233 * The assignment generated in the if-statement (below) will also
4234 * automatically handle this case for non-uniforms.
4235 *
4236 * If the declared variable is not an array, the types must
4237 * already match exactly. As a result, the type assignment
4238 * here can be done unconditionally. For non-uniforms the call
4239 * to do_assignment can change the type of the initializer (via
4240 * the implicit conversion rules). For uniforms the initializer
4241 * must be a constant expression, and the type of that expression
4242 * was validated above.
4243 */
4244 var->type = initializer_type;
4245
4246 var->data.read_only = temp;
4247 }
4248
4249 return result;
4250 }
4251
4252 static void
4253 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4254 YYLTYPE loc, ir_variable *var,
4255 unsigned num_vertices,
4256 unsigned *size,
4257 const char *var_category)
4258 {
4259 if (var->type->is_unsized_array()) {
4260 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4261 *
4262 * All geometry shader input unsized array declarations will be
4263 * sized by an earlier input layout qualifier, when present, as per
4264 * the following table.
4265 *
4266 * Followed by a table mapping each allowed input layout qualifier to
4267 * the corresponding input length.
4268 *
4269 * Similarly for tessellation control shader outputs.
4270 */
4271 if (num_vertices != 0)
4272 var->type = glsl_type::get_array_instance(var->type->fields.array,
4273 num_vertices);
4274 } else {
4275 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4276 * includes the following examples of compile-time errors:
4277 *
4278 * // code sequence within one shader...
4279 * in vec4 Color1[]; // size unknown
4280 * ...Color1.length()...// illegal, length() unknown
4281 * in vec4 Color2[2]; // size is 2
4282 * ...Color1.length()...// illegal, Color1 still has no size
4283 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4284 * layout(lines) in; // legal, input size is 2, matching
4285 * in vec4 Color4[3]; // illegal, contradicts layout
4286 * ...
4287 *
4288 * To detect the case illustrated by Color3, we verify that the size of
4289 * an explicitly-sized array matches the size of any previously declared
4290 * explicitly-sized array. To detect the case illustrated by Color4, we
4291 * verify that the size of an explicitly-sized array is consistent with
4292 * any previously declared input layout.
4293 */
4294 if (num_vertices != 0 && var->type->length != num_vertices) {
4295 _mesa_glsl_error(&loc, state,
4296 "%s size contradicts previously declared layout "
4297 "(size is %u, but layout requires a size of %u)",
4298 var_category, var->type->length, num_vertices);
4299 } else if (*size != 0 && var->type->length != *size) {
4300 _mesa_glsl_error(&loc, state,
4301 "%s sizes are inconsistent (size is %u, but a "
4302 "previous declaration has size %u)",
4303 var_category, var->type->length, *size);
4304 } else {
4305 *size = var->type->length;
4306 }
4307 }
4308 }
4309
4310 static void
4311 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4312 YYLTYPE loc, ir_variable *var)
4313 {
4314 unsigned num_vertices = 0;
4315
4316 if (state->tcs_output_vertices_specified) {
4317 if (!state->out_qualifier->vertices->
4318 process_qualifier_constant(state, "vertices",
4319 &num_vertices, false)) {
4320 return;
4321 }
4322
4323 if (num_vertices > state->Const.MaxPatchVertices) {
4324 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4325 "GL_MAX_PATCH_VERTICES", num_vertices);
4326 return;
4327 }
4328 }
4329
4330 if (!var->type->is_array() && !var->data.patch) {
4331 _mesa_glsl_error(&loc, state,
4332 "tessellation control shader outputs must be arrays");
4333
4334 /* To avoid cascading failures, short circuit the checks below. */
4335 return;
4336 }
4337
4338 if (var->data.patch)
4339 return;
4340
4341 var->data.tess_varying_implicit_sized_array = var->type->is_unsized_array();
4342
4343 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4344 &state->tcs_output_size,
4345 "tessellation control shader output");
4346 }
4347
4348 /**
4349 * Do additional processing necessary for tessellation control/evaluation shader
4350 * input declarations. This covers both interface block arrays and bare input
4351 * variables.
4352 */
4353 static void
4354 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4355 YYLTYPE loc, ir_variable *var)
4356 {
4357 if (!var->type->is_array() && !var->data.patch) {
4358 _mesa_glsl_error(&loc, state,
4359 "per-vertex tessellation shader inputs must be arrays");
4360 /* Avoid cascading failures. */
4361 return;
4362 }
4363
4364 if (var->data.patch)
4365 return;
4366
4367 /* The ARB_tessellation_shader spec says:
4368 *
4369 * "Declaring an array size is optional. If no size is specified, it
4370 * will be taken from the implementation-dependent maximum patch size
4371 * (gl_MaxPatchVertices). If a size is specified, it must match the
4372 * maximum patch size; otherwise, a compile or link error will occur."
4373 *
4374 * This text appears twice, once for TCS inputs, and again for TES inputs.
4375 */
4376 if (var->type->is_unsized_array()) {
4377 var->type = glsl_type::get_array_instance(var->type->fields.array,
4378 state->Const.MaxPatchVertices);
4379 var->data.tess_varying_implicit_sized_array = true;
4380 } else if (var->type->length != state->Const.MaxPatchVertices) {
4381 _mesa_glsl_error(&loc, state,
4382 "per-vertex tessellation shader input arrays must be "
4383 "sized to gl_MaxPatchVertices (%d).",
4384 state->Const.MaxPatchVertices);
4385 }
4386 }
4387
4388
4389 /**
4390 * Do additional processing necessary for geometry shader input declarations
4391 * (this covers both interface blocks arrays and bare input variables).
4392 */
4393 static void
4394 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4395 YYLTYPE loc, ir_variable *var)
4396 {
4397 unsigned num_vertices = 0;
4398
4399 if (state->gs_input_prim_type_specified) {
4400 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4401 }
4402
4403 /* Geometry shader input variables must be arrays. Caller should have
4404 * reported an error for this.
4405 */
4406 if (!var->type->is_array()) {
4407 assert(state->error);
4408
4409 /* To avoid cascading failures, short circuit the checks below. */
4410 return;
4411 }
4412
4413 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4414 &state->gs_input_size,
4415 "geometry shader input");
4416 }
4417
4418 void
4419 validate_identifier(const char *identifier, YYLTYPE loc,
4420 struct _mesa_glsl_parse_state *state)
4421 {
4422 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4423 *
4424 * "Identifiers starting with "gl_" are reserved for use by
4425 * OpenGL, and may not be declared in a shader as either a
4426 * variable or a function."
4427 */
4428 if (is_gl_identifier(identifier)) {
4429 _mesa_glsl_error(&loc, state,
4430 "identifier `%s' uses reserved `gl_' prefix",
4431 identifier);
4432 } else if (strstr(identifier, "__")) {
4433 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4434 * spec:
4435 *
4436 * "In addition, all identifiers containing two
4437 * consecutive underscores (__) are reserved as
4438 * possible future keywords."
4439 *
4440 * The intention is that names containing __ are reserved for internal
4441 * use by the implementation, and names prefixed with GL_ are reserved
4442 * for use by Khronos. Names simply containing __ are dangerous to use,
4443 * but should be allowed.
4444 *
4445 * A future version of the GLSL specification will clarify this.
4446 */
4447 _mesa_glsl_warning(&loc, state,
4448 "identifier `%s' uses reserved `__' string",
4449 identifier);
4450 }
4451 }
4452
4453 ir_rvalue *
4454 ast_declarator_list::hir(exec_list *instructions,
4455 struct _mesa_glsl_parse_state *state)
4456 {
4457 void *ctx = state;
4458 const struct glsl_type *decl_type;
4459 const char *type_name = NULL;
4460 ir_rvalue *result = NULL;
4461 YYLTYPE loc = this->get_location();
4462
4463 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4464 *
4465 * "To ensure that a particular output variable is invariant, it is
4466 * necessary to use the invariant qualifier. It can either be used to
4467 * qualify a previously declared variable as being invariant
4468 *
4469 * invariant gl_Position; // make existing gl_Position be invariant"
4470 *
4471 * In these cases the parser will set the 'invariant' flag in the declarator
4472 * list, and the type will be NULL.
4473 */
4474 if (this->invariant) {
4475 assert(this->type == NULL);
4476
4477 if (state->current_function != NULL) {
4478 _mesa_glsl_error(& loc, state,
4479 "all uses of `invariant' keyword must be at global "
4480 "scope");
4481 }
4482
4483 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4484 assert(decl->array_specifier == NULL);
4485 assert(decl->initializer == NULL);
4486
4487 ir_variable *const earlier =
4488 state->symbols->get_variable(decl->identifier);
4489 if (earlier == NULL) {
4490 _mesa_glsl_error(& loc, state,
4491 "undeclared variable `%s' cannot be marked "
4492 "invariant", decl->identifier);
4493 } else if (!is_varying_var(earlier, state->stage)) {
4494 _mesa_glsl_error(&loc, state,
4495 "`%s' cannot be marked invariant; interfaces between "
4496 "shader stages only.", decl->identifier);
4497 } else if (earlier->data.used) {
4498 _mesa_glsl_error(& loc, state,
4499 "variable `%s' may not be redeclared "
4500 "`invariant' after being used",
4501 earlier->name);
4502 } else {
4503 earlier->data.invariant = true;
4504 }
4505 }
4506
4507 /* Invariant redeclarations do not have r-values.
4508 */
4509 return NULL;
4510 }
4511
4512 if (this->precise) {
4513 assert(this->type == NULL);
4514
4515 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4516 assert(decl->array_specifier == NULL);
4517 assert(decl->initializer == NULL);
4518
4519 ir_variable *const earlier =
4520 state->symbols->get_variable(decl->identifier);
4521 if (earlier == NULL) {
4522 _mesa_glsl_error(& loc, state,
4523 "undeclared variable `%s' cannot be marked "
4524 "precise", decl->identifier);
4525 } else if (state->current_function != NULL &&
4526 !state->symbols->name_declared_this_scope(decl->identifier)) {
4527 /* Note: we have to check if we're in a function, since
4528 * builtins are treated as having come from another scope.
4529 */
4530 _mesa_glsl_error(& loc, state,
4531 "variable `%s' from an outer scope may not be "
4532 "redeclared `precise' in this scope",
4533 earlier->name);
4534 } else if (earlier->data.used) {
4535 _mesa_glsl_error(& loc, state,
4536 "variable `%s' may not be redeclared "
4537 "`precise' after being used",
4538 earlier->name);
4539 } else {
4540 earlier->data.precise = true;
4541 }
4542 }
4543
4544 /* Precise redeclarations do not have r-values either. */
4545 return NULL;
4546 }
4547
4548 assert(this->type != NULL);
4549 assert(!this->invariant);
4550 assert(!this->precise);
4551
4552 /* The type specifier may contain a structure definition. Process that
4553 * before any of the variable declarations.
4554 */
4555 (void) this->type->specifier->hir(instructions, state);
4556
4557 decl_type = this->type->glsl_type(& type_name, state);
4558
4559 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4560 * "Buffer variables may only be declared inside interface blocks
4561 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4562 * shader storage blocks. It is a compile-time error to declare buffer
4563 * variables at global scope (outside a block)."
4564 */
4565 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4566 _mesa_glsl_error(&loc, state,
4567 "buffer variables cannot be declared outside "
4568 "interface blocks");
4569 }
4570
4571 /* An offset-qualified atomic counter declaration sets the default
4572 * offset for the next declaration within the same atomic counter
4573 * buffer.
4574 */
4575 if (decl_type && decl_type->contains_atomic()) {
4576 if (type->qualifier.flags.q.explicit_binding &&
4577 type->qualifier.flags.q.explicit_offset) {
4578 unsigned qual_binding;
4579 unsigned qual_offset;
4580 if (process_qualifier_constant(state, &loc, "binding",
4581 type->qualifier.binding,
4582 &qual_binding)
4583 && process_qualifier_constant(state, &loc, "offset",
4584 type->qualifier.offset,
4585 &qual_offset)) {
4586 state->atomic_counter_offsets[qual_binding] = qual_offset;
4587 }
4588 }
4589
4590 ast_type_qualifier allowed_atomic_qual_mask;
4591 allowed_atomic_qual_mask.flags.i = 0;
4592 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4593 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4594 allowed_atomic_qual_mask.flags.q.uniform = 1;
4595
4596 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4597 "invalid layout qualifier for",
4598 "atomic_uint");
4599 }
4600
4601 if (this->declarations.is_empty()) {
4602 /* If there is no structure involved in the program text, there are two
4603 * possible scenarios:
4604 *
4605 * - The program text contained something like 'vec4;'. This is an
4606 * empty declaration. It is valid but weird. Emit a warning.
4607 *
4608 * - The program text contained something like 'S;' and 'S' is not the
4609 * name of a known structure type. This is both invalid and weird.
4610 * Emit an error.
4611 *
4612 * - The program text contained something like 'mediump float;'
4613 * when the programmer probably meant 'precision mediump
4614 * float;' Emit a warning with a description of what they
4615 * probably meant to do.
4616 *
4617 * Note that if decl_type is NULL and there is a structure involved,
4618 * there must have been some sort of error with the structure. In this
4619 * case we assume that an error was already generated on this line of
4620 * code for the structure. There is no need to generate an additional,
4621 * confusing error.
4622 */
4623 assert(this->type->specifier->structure == NULL || decl_type != NULL
4624 || state->error);
4625
4626 if (decl_type == NULL) {
4627 _mesa_glsl_error(&loc, state,
4628 "invalid type `%s' in empty declaration",
4629 type_name);
4630 } else {
4631 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4632 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4633 * spec:
4634 *
4635 * "... any declaration that leaves the size undefined is
4636 * disallowed as this would add complexity and there are no
4637 * use-cases."
4638 */
4639 if (state->es_shader && decl_type->is_unsized_array()) {
4640 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4641 "or implicitly defined");
4642 }
4643
4644 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4645 *
4646 * "The combinations of types and qualifiers that cause
4647 * compile-time or link-time errors are the same whether or not
4648 * the declaration is empty."
4649 */
4650 validate_array_dimensions(decl_type, state, &loc);
4651 }
4652
4653 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4654 /* Empty atomic counter declarations are allowed and useful
4655 * to set the default offset qualifier.
4656 */
4657 return NULL;
4658 } else if (this->type->qualifier.precision != ast_precision_none) {
4659 if (this->type->specifier->structure != NULL) {
4660 _mesa_glsl_error(&loc, state,
4661 "precision qualifiers can't be applied "
4662 "to structures");
4663 } else {
4664 static const char *const precision_names[] = {
4665 "highp",
4666 "highp",
4667 "mediump",
4668 "lowp"
4669 };
4670
4671 _mesa_glsl_warning(&loc, state,
4672 "empty declaration with precision "
4673 "qualifier, to set the default precision, "
4674 "use `precision %s %s;'",
4675 precision_names[this->type->
4676 qualifier.precision],
4677 type_name);
4678 }
4679 } else if (this->type->specifier->structure == NULL) {
4680 _mesa_glsl_warning(&loc, state, "empty declaration");
4681 }
4682 }
4683 }
4684
4685 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4686 const struct glsl_type *var_type;
4687 ir_variable *var;
4688 const char *identifier = decl->identifier;
4689 /* FINISHME: Emit a warning if a variable declaration shadows a
4690 * FINISHME: declaration at a higher scope.
4691 */
4692
4693 if ((decl_type == NULL) || decl_type->is_void()) {
4694 if (type_name != NULL) {
4695 _mesa_glsl_error(& loc, state,
4696 "invalid type `%s' in declaration of `%s'",
4697 type_name, decl->identifier);
4698 } else {
4699 _mesa_glsl_error(& loc, state,
4700 "invalid type in declaration of `%s'",
4701 decl->identifier);
4702 }
4703 continue;
4704 }
4705
4706 if (this->type->qualifier.flags.q.subroutine) {
4707 const glsl_type *t;
4708 const char *name;
4709
4710 t = state->symbols->get_type(this->type->specifier->type_name);
4711 if (!t)
4712 _mesa_glsl_error(& loc, state,
4713 "invalid type in declaration of `%s'",
4714 decl->identifier);
4715 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4716
4717 identifier = name;
4718
4719 }
4720 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4721 state);
4722
4723 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4724
4725 /* The 'varying in' and 'varying out' qualifiers can only be used with
4726 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4727 * yet.
4728 */
4729 if (this->type->qualifier.flags.q.varying) {
4730 if (this->type->qualifier.flags.q.in) {
4731 _mesa_glsl_error(& loc, state,
4732 "`varying in' qualifier in declaration of "
4733 "`%s' only valid for geometry shaders using "
4734 "ARB_geometry_shader4 or EXT_geometry_shader4",
4735 decl->identifier);
4736 } else if (this->type->qualifier.flags.q.out) {
4737 _mesa_glsl_error(& loc, state,
4738 "`varying out' qualifier in declaration of "
4739 "`%s' only valid for geometry shaders using "
4740 "ARB_geometry_shader4 or EXT_geometry_shader4",
4741 decl->identifier);
4742 }
4743 }
4744
4745 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4746 *
4747 * "Global variables can only use the qualifiers const,
4748 * attribute, uniform, or varying. Only one may be
4749 * specified.
4750 *
4751 * Local variables can only use the qualifier const."
4752 *
4753 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4754 * any extension that adds the 'layout' keyword.
4755 */
4756 if (!state->is_version(130, 300)
4757 && !state->has_explicit_attrib_location()
4758 && !state->has_separate_shader_objects()
4759 && !state->ARB_fragment_coord_conventions_enable) {
4760 if (this->type->qualifier.flags.q.out) {
4761 _mesa_glsl_error(& loc, state,
4762 "`out' qualifier in declaration of `%s' "
4763 "only valid for function parameters in %s",
4764 decl->identifier, state->get_version_string());
4765 }
4766 if (this->type->qualifier.flags.q.in) {
4767 _mesa_glsl_error(& loc, state,
4768 "`in' qualifier in declaration of `%s' "
4769 "only valid for function parameters in %s",
4770 decl->identifier, state->get_version_string());
4771 }
4772 /* FINISHME: Test for other invalid qualifiers. */
4773 }
4774
4775 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4776 & loc, false);
4777 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4778 &loc);
4779
4780 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4781 && (var->type->is_numeric() || var->type->is_boolean())
4782 && state->zero_init) {
4783 const ir_constant_data data = {0};
4784 var->data.has_initializer = true;
4785 var->constant_initializer = new(var) ir_constant(var->type, &data);
4786 }
4787
4788 if (this->type->qualifier.flags.q.invariant) {
4789 if (!is_varying_var(var, state->stage)) {
4790 _mesa_glsl_error(&loc, state,
4791 "`%s' cannot be marked invariant; interfaces between "
4792 "shader stages only", var->name);
4793 }
4794 }
4795
4796 if (state->current_function != NULL) {
4797 const char *mode = NULL;
4798 const char *extra = "";
4799
4800 /* There is no need to check for 'inout' here because the parser will
4801 * only allow that in function parameter lists.
4802 */
4803 if (this->type->qualifier.flags.q.attribute) {
4804 mode = "attribute";
4805 } else if (this->type->qualifier.flags.q.subroutine) {
4806 mode = "subroutine uniform";
4807 } else if (this->type->qualifier.flags.q.uniform) {
4808 mode = "uniform";
4809 } else if (this->type->qualifier.flags.q.varying) {
4810 mode = "varying";
4811 } else if (this->type->qualifier.flags.q.in) {
4812 mode = "in";
4813 extra = " or in function parameter list";
4814 } else if (this->type->qualifier.flags.q.out) {
4815 mode = "out";
4816 extra = " or in function parameter list";
4817 }
4818
4819 if (mode) {
4820 _mesa_glsl_error(& loc, state,
4821 "%s variable `%s' must be declared at "
4822 "global scope%s",
4823 mode, var->name, extra);
4824 }
4825 } else if (var->data.mode == ir_var_shader_in) {
4826 var->data.read_only = true;
4827
4828 if (state->stage == MESA_SHADER_VERTEX) {
4829 bool error_emitted = false;
4830
4831 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4832 *
4833 * "Vertex shader inputs can only be float, floating-point
4834 * vectors, matrices, signed and unsigned integers and integer
4835 * vectors. Vertex shader inputs can also form arrays of these
4836 * types, but not structures."
4837 *
4838 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4839 *
4840 * "Vertex shader inputs can only be float, floating-point
4841 * vectors, matrices, signed and unsigned integers and integer
4842 * vectors. They cannot be arrays or structures."
4843 *
4844 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4845 *
4846 * "The attribute qualifier can be used only with float,
4847 * floating-point vectors, and matrices. Attribute variables
4848 * cannot be declared as arrays or structures."
4849 *
4850 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4851 *
4852 * "Vertex shader inputs can only be float, floating-point
4853 * vectors, matrices, signed and unsigned integers and integer
4854 * vectors. Vertex shader inputs cannot be arrays or
4855 * structures."
4856 */
4857 const glsl_type *check_type = var->type->without_array();
4858
4859 switch (check_type->base_type) {
4860 case GLSL_TYPE_FLOAT:
4861 break;
4862 case GLSL_TYPE_UINT:
4863 case GLSL_TYPE_INT:
4864 if (state->is_version(120, 300))
4865 break;
4866 case GLSL_TYPE_DOUBLE:
4867 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4868 break;
4869 /* FALLTHROUGH */
4870 default:
4871 _mesa_glsl_error(& loc, state,
4872 "vertex shader input / attribute cannot have "
4873 "type %s`%s'",
4874 var->type->is_array() ? "array of " : "",
4875 check_type->name);
4876 error_emitted = true;
4877 }
4878
4879 if (!error_emitted && var->type->is_array() &&
4880 !state->check_version(150, 0, &loc,
4881 "vertex shader input / attribute "
4882 "cannot have array type")) {
4883 error_emitted = true;
4884 }
4885 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4886 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4887 *
4888 * Geometry shader input variables get the per-vertex values
4889 * written out by vertex shader output variables of the same
4890 * names. Since a geometry shader operates on a set of
4891 * vertices, each input varying variable (or input block, see
4892 * interface blocks below) needs to be declared as an array.
4893 */
4894 if (!var->type->is_array()) {
4895 _mesa_glsl_error(&loc, state,
4896 "geometry shader inputs must be arrays");
4897 }
4898
4899 handle_geometry_shader_input_decl(state, loc, var);
4900 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4901 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4902 *
4903 * It is a compile-time error to declare a fragment shader
4904 * input with, or that contains, any of the following types:
4905 *
4906 * * A boolean type
4907 * * An opaque type
4908 * * An array of arrays
4909 * * An array of structures
4910 * * A structure containing an array
4911 * * A structure containing a structure
4912 */
4913 if (state->es_shader) {
4914 const glsl_type *check_type = var->type->without_array();
4915 if (check_type->is_boolean() ||
4916 check_type->contains_opaque()) {
4917 _mesa_glsl_error(&loc, state,
4918 "fragment shader input cannot have type %s",
4919 check_type->name);
4920 }
4921 if (var->type->is_array() &&
4922 var->type->fields.array->is_array()) {
4923 _mesa_glsl_error(&loc, state,
4924 "%s shader output "
4925 "cannot have an array of arrays",
4926 _mesa_shader_stage_to_string(state->stage));
4927 }
4928 if (var->type->is_array() &&
4929 var->type->fields.array->is_record()) {
4930 _mesa_glsl_error(&loc, state,
4931 "fragment shader input "
4932 "cannot have an array of structs");
4933 }
4934 if (var->type->is_record()) {
4935 for (unsigned i = 0; i < var->type->length; i++) {
4936 if (var->type->fields.structure[i].type->is_array() ||
4937 var->type->fields.structure[i].type->is_record())
4938 _mesa_glsl_error(&loc, state,
4939 "fragement shader input cannot have "
4940 "a struct that contains an "
4941 "array or struct");
4942 }
4943 }
4944 }
4945 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4946 state->stage == MESA_SHADER_TESS_EVAL) {
4947 handle_tess_shader_input_decl(state, loc, var);
4948 }
4949 } else if (var->data.mode == ir_var_shader_out) {
4950 const glsl_type *check_type = var->type->without_array();
4951
4952 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4953 *
4954 * It is a compile-time error to declare a vertex, tessellation
4955 * evaluation, tessellation control, or geometry shader output
4956 * that contains any of the following:
4957 *
4958 * * A Boolean type (bool, bvec2 ...)
4959 * * An opaque type
4960 */
4961 if (check_type->is_boolean() || check_type->contains_opaque())
4962 _mesa_glsl_error(&loc, state,
4963 "%s shader output cannot have type %s",
4964 _mesa_shader_stage_to_string(state->stage),
4965 check_type->name);
4966
4967 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4968 *
4969 * It is a compile-time error to declare a fragment shader output
4970 * that contains any of the following:
4971 *
4972 * * A Boolean type (bool, bvec2 ...)
4973 * * A double-precision scalar or vector (double, dvec2 ...)
4974 * * An opaque type
4975 * * Any matrix type
4976 * * A structure
4977 */
4978 if (state->stage == MESA_SHADER_FRAGMENT) {
4979 if (check_type->is_record() || check_type->is_matrix())
4980 _mesa_glsl_error(&loc, state,
4981 "fragment shader output "
4982 "cannot have struct or matrix type");
4983 switch (check_type->base_type) {
4984 case GLSL_TYPE_UINT:
4985 case GLSL_TYPE_INT:
4986 case GLSL_TYPE_FLOAT:
4987 break;
4988 default:
4989 _mesa_glsl_error(&loc, state,
4990 "fragment shader output cannot have "
4991 "type %s", check_type->name);
4992 }
4993 }
4994
4995 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4996 *
4997 * It is a compile-time error to declare a vertex shader output
4998 * with, or that contains, any of the following types:
4999 *
5000 * * A boolean type
5001 * * An opaque type
5002 * * An array of arrays
5003 * * An array of structures
5004 * * A structure containing an array
5005 * * A structure containing a structure
5006 *
5007 * It is a compile-time error to declare a fragment shader output
5008 * with, or that contains, any of the following types:
5009 *
5010 * * A boolean type
5011 * * An opaque type
5012 * * A matrix
5013 * * A structure
5014 * * An array of array
5015 */
5016 if (state->es_shader) {
5017 if (var->type->is_array() &&
5018 var->type->fields.array->is_array()) {
5019 _mesa_glsl_error(&loc, state,
5020 "%s shader output "
5021 "cannot have an array of arrays",
5022 _mesa_shader_stage_to_string(state->stage));
5023 }
5024 if (state->stage == MESA_SHADER_VERTEX) {
5025 if (var->type->is_array() &&
5026 var->type->fields.array->is_record()) {
5027 _mesa_glsl_error(&loc, state,
5028 "vertex shader output "
5029 "cannot have an array of structs");
5030 }
5031 if (var->type->is_record()) {
5032 for (unsigned i = 0; i < var->type->length; i++) {
5033 if (var->type->fields.structure[i].type->is_array() ||
5034 var->type->fields.structure[i].type->is_record())
5035 _mesa_glsl_error(&loc, state,
5036 "vertex shader output cannot have a "
5037 "struct that contains an "
5038 "array or struct");
5039 }
5040 }
5041 }
5042 }
5043
5044 if (state->stage == MESA_SHADER_TESS_CTRL) {
5045 handle_tess_ctrl_shader_output_decl(state, loc, var);
5046 }
5047 } else if (var->type->contains_subroutine()) {
5048 /* declare subroutine uniforms as hidden */
5049 var->data.how_declared = ir_var_hidden;
5050 }
5051
5052 /* From section 4.3.4 of the GLSL 4.00 spec:
5053 * "Input variables may not be declared using the patch in qualifier
5054 * in tessellation control or geometry shaders."
5055 *
5056 * From section 4.3.6 of the GLSL 4.00 spec:
5057 * "It is an error to use patch out in a vertex, tessellation
5058 * evaluation, or geometry shader."
5059 *
5060 * This doesn't explicitly forbid using them in a fragment shader, but
5061 * that's probably just an oversight.
5062 */
5063 if (state->stage != MESA_SHADER_TESS_EVAL
5064 && this->type->qualifier.flags.q.patch
5065 && this->type->qualifier.flags.q.in) {
5066
5067 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5068 "tessellation evaluation shader");
5069 }
5070
5071 if (state->stage != MESA_SHADER_TESS_CTRL
5072 && this->type->qualifier.flags.q.patch
5073 && this->type->qualifier.flags.q.out) {
5074
5075 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5076 "tessellation control shader");
5077 }
5078
5079 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5080 */
5081 if (this->type->qualifier.precision != ast_precision_none) {
5082 state->check_precision_qualifiers_allowed(&loc);
5083 }
5084
5085 if (this->type->qualifier.precision != ast_precision_none &&
5086 !precision_qualifier_allowed(var->type)) {
5087 _mesa_glsl_error(&loc, state,
5088 "precision qualifiers apply only to floating point"
5089 ", integer and opaque types");
5090 }
5091
5092 /* From section 4.1.7 of the GLSL 4.40 spec:
5093 *
5094 * "[Opaque types] can only be declared as function
5095 * parameters or uniform-qualified variables."
5096 */
5097 if (var_type->contains_opaque() &&
5098 !this->type->qualifier.flags.q.uniform) {
5099 _mesa_glsl_error(&loc, state,
5100 "opaque variables must be declared uniform");
5101 }
5102
5103 /* Process the initializer and add its instructions to a temporary
5104 * list. This list will be added to the instruction stream (below) after
5105 * the declaration is added. This is done because in some cases (such as
5106 * redeclarations) the declaration may not actually be added to the
5107 * instruction stream.
5108 */
5109 exec_list initializer_instructions;
5110
5111 /* Examine var name here since var may get deleted in the next call */
5112 bool var_is_gl_id = is_gl_identifier(var->name);
5113
5114 ir_variable *earlier =
5115 get_variable_being_redeclared(var, decl->get_location(), state,
5116 false /* allow_all_redeclarations */);
5117 if (earlier != NULL) {
5118 if (var_is_gl_id &&
5119 earlier->data.how_declared == ir_var_declared_in_block) {
5120 _mesa_glsl_error(&loc, state,
5121 "`%s' has already been redeclared using "
5122 "gl_PerVertex", earlier->name);
5123 }
5124 earlier->data.how_declared = ir_var_declared_normally;
5125 }
5126
5127 if (decl->initializer != NULL) {
5128 result = process_initializer((earlier == NULL) ? var : earlier,
5129 decl, this->type,
5130 &initializer_instructions, state);
5131 } else {
5132 validate_array_dimensions(var_type, state, &loc);
5133 }
5134
5135 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5136 *
5137 * "It is an error to write to a const variable outside of
5138 * its declaration, so they must be initialized when
5139 * declared."
5140 */
5141 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5142 _mesa_glsl_error(& loc, state,
5143 "const declaration of `%s' must be initialized",
5144 decl->identifier);
5145 }
5146
5147 if (state->es_shader) {
5148 const glsl_type *const t = (earlier == NULL)
5149 ? var->type : earlier->type;
5150
5151 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5152 *
5153 * The GL_OES_tessellation_shader spec says about inputs:
5154 *
5155 * "Declaring an array size is optional. If no size is specified,
5156 * it will be taken from the implementation-dependent maximum
5157 * patch size (gl_MaxPatchVertices)."
5158 *
5159 * and about TCS outputs:
5160 *
5161 * "If no size is specified, it will be taken from output patch
5162 * size declared in the shader."
5163 *
5164 * The GL_OES_geometry_shader spec says:
5165 *
5166 * "All geometry shader input unsized array declarations will be
5167 * sized by an earlier input primitive layout qualifier, when
5168 * present, as per the following table."
5169 */
5170 const bool implicitly_sized =
5171 (var->data.mode == ir_var_shader_in &&
5172 state->stage >= MESA_SHADER_TESS_CTRL &&
5173 state->stage <= MESA_SHADER_GEOMETRY) ||
5174 (var->data.mode == ir_var_shader_out &&
5175 state->stage == MESA_SHADER_TESS_CTRL);
5176
5177 if (t->is_unsized_array() && !implicitly_sized)
5178 /* Section 10.17 of the GLSL ES 1.00 specification states that
5179 * unsized array declarations have been removed from the language.
5180 * Arrays that are sized using an initializer are still explicitly
5181 * sized. However, GLSL ES 1.00 does not allow array
5182 * initializers. That is only allowed in GLSL ES 3.00.
5183 *
5184 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5185 *
5186 * "An array type can also be formed without specifying a size
5187 * if the definition includes an initializer:
5188 *
5189 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5190 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5191 *
5192 * float a[5];
5193 * float b[] = a;"
5194 */
5195 _mesa_glsl_error(& loc, state,
5196 "unsized array declarations are not allowed in "
5197 "GLSL ES");
5198 }
5199
5200 /* If the declaration is not a redeclaration, there are a few additional
5201 * semantic checks that must be applied. In addition, variable that was
5202 * created for the declaration should be added to the IR stream.
5203 */
5204 if (earlier == NULL) {
5205 validate_identifier(decl->identifier, loc, state);
5206
5207 /* Add the variable to the symbol table. Note that the initializer's
5208 * IR was already processed earlier (though it hasn't been emitted
5209 * yet), without the variable in scope.
5210 *
5211 * This differs from most C-like languages, but it follows the GLSL
5212 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5213 * spec:
5214 *
5215 * "Within a declaration, the scope of a name starts immediately
5216 * after the initializer if present or immediately after the name
5217 * being declared if not."
5218 */
5219 if (!state->symbols->add_variable(var)) {
5220 YYLTYPE loc = this->get_location();
5221 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5222 "current scope", decl->identifier);
5223 continue;
5224 }
5225
5226 /* Push the variable declaration to the top. It means that all the
5227 * variable declarations will appear in a funny last-to-first order,
5228 * but otherwise we run into trouble if a function is prototyped, a
5229 * global var is decled, then the function is defined with usage of
5230 * the global var. See glslparsertest's CorrectModule.frag.
5231 */
5232 instructions->push_head(var);
5233 }
5234
5235 instructions->append_list(&initializer_instructions);
5236 }
5237
5238
5239 /* Generally, variable declarations do not have r-values. However,
5240 * one is used for the declaration in
5241 *
5242 * while (bool b = some_condition()) {
5243 * ...
5244 * }
5245 *
5246 * so we return the rvalue from the last seen declaration here.
5247 */
5248 return result;
5249 }
5250
5251
5252 ir_rvalue *
5253 ast_parameter_declarator::hir(exec_list *instructions,
5254 struct _mesa_glsl_parse_state *state)
5255 {
5256 void *ctx = state;
5257 const struct glsl_type *type;
5258 const char *name = NULL;
5259 YYLTYPE loc = this->get_location();
5260
5261 type = this->type->glsl_type(& name, state);
5262
5263 if (type == NULL) {
5264 if (name != NULL) {
5265 _mesa_glsl_error(& loc, state,
5266 "invalid type `%s' in declaration of `%s'",
5267 name, this->identifier);
5268 } else {
5269 _mesa_glsl_error(& loc, state,
5270 "invalid type in declaration of `%s'",
5271 this->identifier);
5272 }
5273
5274 type = glsl_type::error_type;
5275 }
5276
5277 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5278 *
5279 * "Functions that accept no input arguments need not use void in the
5280 * argument list because prototypes (or definitions) are required and
5281 * therefore there is no ambiguity when an empty argument list "( )" is
5282 * declared. The idiom "(void)" as a parameter list is provided for
5283 * convenience."
5284 *
5285 * Placing this check here prevents a void parameter being set up
5286 * for a function, which avoids tripping up checks for main taking
5287 * parameters and lookups of an unnamed symbol.
5288 */
5289 if (type->is_void()) {
5290 if (this->identifier != NULL)
5291 _mesa_glsl_error(& loc, state,
5292 "named parameter cannot have type `void'");
5293
5294 is_void = true;
5295 return NULL;
5296 }
5297
5298 if (formal_parameter && (this->identifier == NULL)) {
5299 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5300 return NULL;
5301 }
5302
5303 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5304 * call already handled the "vec4[..] foo" case.
5305 */
5306 type = process_array_type(&loc, type, this->array_specifier, state);
5307
5308 if (!type->is_error() && type->is_unsized_array()) {
5309 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5310 "a declared size");
5311 type = glsl_type::error_type;
5312 }
5313
5314 is_void = false;
5315 ir_variable *var = new(ctx)
5316 ir_variable(type, this->identifier, ir_var_function_in);
5317
5318 /* Apply any specified qualifiers to the parameter declaration. Note that
5319 * for function parameters the default mode is 'in'.
5320 */
5321 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5322 true);
5323
5324 /* From section 4.1.7 of the GLSL 4.40 spec:
5325 *
5326 * "Opaque variables cannot be treated as l-values; hence cannot
5327 * be used as out or inout function parameters, nor can they be
5328 * assigned into."
5329 */
5330 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5331 && type->contains_opaque()) {
5332 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5333 "contain opaque variables");
5334 type = glsl_type::error_type;
5335 }
5336
5337 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5338 *
5339 * "When calling a function, expressions that do not evaluate to
5340 * l-values cannot be passed to parameters declared as out or inout."
5341 *
5342 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5343 *
5344 * "Other binary or unary expressions, non-dereferenced arrays,
5345 * function names, swizzles with repeated fields, and constants
5346 * cannot be l-values."
5347 *
5348 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5349 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5350 */
5351 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5352 && type->is_array()
5353 && !state->check_version(120, 100, &loc,
5354 "arrays cannot be out or inout parameters")) {
5355 type = glsl_type::error_type;
5356 }
5357
5358 instructions->push_tail(var);
5359
5360 /* Parameter declarations do not have r-values.
5361 */
5362 return NULL;
5363 }
5364
5365
5366 void
5367 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5368 bool formal,
5369 exec_list *ir_parameters,
5370 _mesa_glsl_parse_state *state)
5371 {
5372 ast_parameter_declarator *void_param = NULL;
5373 unsigned count = 0;
5374
5375 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5376 param->formal_parameter = formal;
5377 param->hir(ir_parameters, state);
5378
5379 if (param->is_void)
5380 void_param = param;
5381
5382 count++;
5383 }
5384
5385 if ((void_param != NULL) && (count > 1)) {
5386 YYLTYPE loc = void_param->get_location();
5387
5388 _mesa_glsl_error(& loc, state,
5389 "`void' parameter must be only parameter");
5390 }
5391 }
5392
5393
5394 void
5395 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5396 {
5397 /* IR invariants disallow function declarations or definitions
5398 * nested within other function definitions. But there is no
5399 * requirement about the relative order of function declarations
5400 * and definitions with respect to one another. So simply insert
5401 * the new ir_function block at the end of the toplevel instruction
5402 * list.
5403 */
5404 state->toplevel_ir->push_tail(f);
5405 }
5406
5407
5408 ir_rvalue *
5409 ast_function::hir(exec_list *instructions,
5410 struct _mesa_glsl_parse_state *state)
5411 {
5412 void *ctx = state;
5413 ir_function *f = NULL;
5414 ir_function_signature *sig = NULL;
5415 exec_list hir_parameters;
5416 YYLTYPE loc = this->get_location();
5417
5418 const char *const name = identifier;
5419
5420 /* New functions are always added to the top-level IR instruction stream,
5421 * so this instruction list pointer is ignored. See also emit_function
5422 * (called below).
5423 */
5424 (void) instructions;
5425
5426 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5427 *
5428 * "Function declarations (prototypes) cannot occur inside of functions;
5429 * they must be at global scope, or for the built-in functions, outside
5430 * the global scope."
5431 *
5432 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5433 *
5434 * "User defined functions may only be defined within the global scope."
5435 *
5436 * Note that this language does not appear in GLSL 1.10.
5437 */
5438 if ((state->current_function != NULL) &&
5439 state->is_version(120, 100)) {
5440 YYLTYPE loc = this->get_location();
5441 _mesa_glsl_error(&loc, state,
5442 "declaration of function `%s' not allowed within "
5443 "function body", name);
5444 }
5445
5446 validate_identifier(name, this->get_location(), state);
5447
5448 /* Convert the list of function parameters to HIR now so that they can be
5449 * used below to compare this function's signature with previously seen
5450 * signatures for functions with the same name.
5451 */
5452 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5453 is_definition,
5454 & hir_parameters, state);
5455
5456 const char *return_type_name;
5457 const glsl_type *return_type =
5458 this->return_type->glsl_type(& return_type_name, state);
5459
5460 if (!return_type) {
5461 YYLTYPE loc = this->get_location();
5462 _mesa_glsl_error(&loc, state,
5463 "function `%s' has undeclared return type `%s'",
5464 name, return_type_name);
5465 return_type = glsl_type::error_type;
5466 }
5467
5468 /* ARB_shader_subroutine states:
5469 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5470 * subroutine(...) to a function declaration."
5471 */
5472 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5473 YYLTYPE loc = this->get_location();
5474 _mesa_glsl_error(&loc, state,
5475 "function declaration `%s' cannot have subroutine prepended",
5476 name);
5477 }
5478
5479 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5480 * "No qualifier is allowed on the return type of a function."
5481 */
5482 if (this->return_type->has_qualifiers(state)) {
5483 YYLTYPE loc = this->get_location();
5484 _mesa_glsl_error(& loc, state,
5485 "function `%s' return type has qualifiers", name);
5486 }
5487
5488 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5489 *
5490 * "Arrays are allowed as arguments and as the return type. In both
5491 * cases, the array must be explicitly sized."
5492 */
5493 if (return_type->is_unsized_array()) {
5494 YYLTYPE loc = this->get_location();
5495 _mesa_glsl_error(& loc, state,
5496 "function `%s' return type array must be explicitly "
5497 "sized", name);
5498 }
5499
5500 /* From section 4.1.7 of the GLSL 4.40 spec:
5501 *
5502 * "[Opaque types] can only be declared as function parameters
5503 * or uniform-qualified variables."
5504 */
5505 if (return_type->contains_opaque()) {
5506 YYLTYPE loc = this->get_location();
5507 _mesa_glsl_error(&loc, state,
5508 "function `%s' return type can't contain an opaque type",
5509 name);
5510 }
5511
5512 /**/
5513 if (return_type->is_subroutine()) {
5514 YYLTYPE loc = this->get_location();
5515 _mesa_glsl_error(&loc, state,
5516 "function `%s' return type can't be a subroutine type",
5517 name);
5518 }
5519
5520
5521 /* Create an ir_function if one doesn't already exist. */
5522 f = state->symbols->get_function(name);
5523 if (f == NULL) {
5524 f = new(ctx) ir_function(name);
5525 if (!this->return_type->qualifier.flags.q.subroutine) {
5526 if (!state->symbols->add_function(f)) {
5527 /* This function name shadows a non-function use of the same name. */
5528 YYLTYPE loc = this->get_location();
5529 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5530 "non-function", name);
5531 return NULL;
5532 }
5533 }
5534 emit_function(state, f);
5535 }
5536
5537 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5538 *
5539 * "A shader cannot redefine or overload built-in functions."
5540 *
5541 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5542 *
5543 * "User code can overload the built-in functions but cannot redefine
5544 * them."
5545 */
5546 if (state->es_shader && state->language_version >= 300) {
5547 /* Local shader has no exact candidates; check the built-ins. */
5548 _mesa_glsl_initialize_builtin_functions();
5549 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5550 YYLTYPE loc = this->get_location();
5551 _mesa_glsl_error(& loc, state,
5552 "A shader cannot redefine or overload built-in "
5553 "function `%s' in GLSL ES 3.00", name);
5554 return NULL;
5555 }
5556 }
5557
5558 /* Verify that this function's signature either doesn't match a previously
5559 * seen signature for a function with the same name, or, if a match is found,
5560 * that the previously seen signature does not have an associated definition.
5561 */
5562 if (state->es_shader || f->has_user_signature()) {
5563 sig = f->exact_matching_signature(state, &hir_parameters);
5564 if (sig != NULL) {
5565 const char *badvar = sig->qualifiers_match(&hir_parameters);
5566 if (badvar != NULL) {
5567 YYLTYPE loc = this->get_location();
5568
5569 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5570 "qualifiers don't match prototype", name, badvar);
5571 }
5572
5573 if (sig->return_type != return_type) {
5574 YYLTYPE loc = this->get_location();
5575
5576 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5577 "match prototype", name);
5578 }
5579
5580 if (sig->is_defined) {
5581 if (is_definition) {
5582 YYLTYPE loc = this->get_location();
5583 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5584 } else {
5585 /* We just encountered a prototype that exactly matches a
5586 * function that's already been defined. This is redundant,
5587 * and we should ignore it.
5588 */
5589 return NULL;
5590 }
5591 }
5592 }
5593 }
5594
5595 /* Verify the return type of main() */
5596 if (strcmp(name, "main") == 0) {
5597 if (! return_type->is_void()) {
5598 YYLTYPE loc = this->get_location();
5599
5600 _mesa_glsl_error(& loc, state, "main() must return void");
5601 }
5602
5603 if (!hir_parameters.is_empty()) {
5604 YYLTYPE loc = this->get_location();
5605
5606 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5607 }
5608 }
5609
5610 /* Finish storing the information about this new function in its signature.
5611 */
5612 if (sig == NULL) {
5613 sig = new(ctx) ir_function_signature(return_type);
5614 f->add_signature(sig);
5615 }
5616
5617 sig->replace_parameters(&hir_parameters);
5618 signature = sig;
5619
5620 if (this->return_type->qualifier.flags.q.subroutine_def) {
5621 int idx;
5622
5623 if (this->return_type->qualifier.flags.q.explicit_index) {
5624 unsigned qual_index;
5625 if (process_qualifier_constant(state, &loc, "index",
5626 this->return_type->qualifier.index,
5627 &qual_index)) {
5628 if (!state->has_explicit_uniform_location()) {
5629 _mesa_glsl_error(&loc, state, "subroutine index requires "
5630 "GL_ARB_explicit_uniform_location or "
5631 "GLSL 4.30");
5632 } else if (qual_index >= MAX_SUBROUTINES) {
5633 _mesa_glsl_error(&loc, state,
5634 "invalid subroutine index (%d) index must "
5635 "be a number between 0 and "
5636 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5637 MAX_SUBROUTINES - 1);
5638 } else {
5639 f->subroutine_index = qual_index;
5640 }
5641 }
5642 }
5643
5644 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5645 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5646 f->num_subroutine_types);
5647 idx = 0;
5648 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5649 const struct glsl_type *type;
5650 /* the subroutine type must be already declared */
5651 type = state->symbols->get_type(decl->identifier);
5652 if (!type) {
5653 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5654 }
5655
5656 for (int i = 0; i < state->num_subroutine_types; i++) {
5657 ir_function *fn = state->subroutine_types[i];
5658 ir_function_signature *tsig = NULL;
5659
5660 if (strcmp(fn->name, decl->identifier))
5661 continue;
5662
5663 tsig = fn->matching_signature(state, &sig->parameters,
5664 false);
5665 if (!tsig) {
5666 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5667 } else {
5668 if (tsig->return_type != sig->return_type) {
5669 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5670 }
5671 }
5672 }
5673 f->subroutine_types[idx++] = type;
5674 }
5675 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5676 ir_function *,
5677 state->num_subroutines + 1);
5678 state->subroutines[state->num_subroutines] = f;
5679 state->num_subroutines++;
5680
5681 }
5682
5683 if (this->return_type->qualifier.flags.q.subroutine) {
5684 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5685 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5686 return NULL;
5687 }
5688 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5689 ir_function *,
5690 state->num_subroutine_types + 1);
5691 state->subroutine_types[state->num_subroutine_types] = f;
5692 state->num_subroutine_types++;
5693
5694 f->is_subroutine = true;
5695 }
5696
5697 /* Function declarations (prototypes) do not have r-values.
5698 */
5699 return NULL;
5700 }
5701
5702
5703 ir_rvalue *
5704 ast_function_definition::hir(exec_list *instructions,
5705 struct _mesa_glsl_parse_state *state)
5706 {
5707 prototype->is_definition = true;
5708 prototype->hir(instructions, state);
5709
5710 ir_function_signature *signature = prototype->signature;
5711 if (signature == NULL)
5712 return NULL;
5713
5714 assert(state->current_function == NULL);
5715 state->current_function = signature;
5716 state->found_return = false;
5717
5718 /* Duplicate parameters declared in the prototype as concrete variables.
5719 * Add these to the symbol table.
5720 */
5721 state->symbols->push_scope();
5722 foreach_in_list(ir_variable, var, &signature->parameters) {
5723 assert(var->as_variable() != NULL);
5724
5725 /* The only way a parameter would "exist" is if two parameters have
5726 * the same name.
5727 */
5728 if (state->symbols->name_declared_this_scope(var->name)) {
5729 YYLTYPE loc = this->get_location();
5730
5731 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5732 } else {
5733 state->symbols->add_variable(var);
5734 }
5735 }
5736
5737 /* Convert the body of the function to HIR. */
5738 this->body->hir(&signature->body, state);
5739 signature->is_defined = true;
5740
5741 state->symbols->pop_scope();
5742
5743 assert(state->current_function == signature);
5744 state->current_function = NULL;
5745
5746 if (!signature->return_type->is_void() && !state->found_return) {
5747 YYLTYPE loc = this->get_location();
5748 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5749 "%s, but no return statement",
5750 signature->function_name(),
5751 signature->return_type->name);
5752 }
5753
5754 /* Function definitions do not have r-values.
5755 */
5756 return NULL;
5757 }
5758
5759
5760 ir_rvalue *
5761 ast_jump_statement::hir(exec_list *instructions,
5762 struct _mesa_glsl_parse_state *state)
5763 {
5764 void *ctx = state;
5765
5766 switch (mode) {
5767 case ast_return: {
5768 ir_return *inst;
5769 assert(state->current_function);
5770
5771 if (opt_return_value) {
5772 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5773
5774 /* The value of the return type can be NULL if the shader says
5775 * 'return foo();' and foo() is a function that returns void.
5776 *
5777 * NOTE: The GLSL spec doesn't say that this is an error. The type
5778 * of the return value is void. If the return type of the function is
5779 * also void, then this should compile without error. Seriously.
5780 */
5781 const glsl_type *const ret_type =
5782 (ret == NULL) ? glsl_type::void_type : ret->type;
5783
5784 /* Implicit conversions are not allowed for return values prior to
5785 * ARB_shading_language_420pack.
5786 */
5787 if (state->current_function->return_type != ret_type) {
5788 YYLTYPE loc = this->get_location();
5789
5790 if (state->has_420pack()) {
5791 if (!apply_implicit_conversion(state->current_function->return_type,
5792 ret, state)) {
5793 _mesa_glsl_error(& loc, state,
5794 "could not implicitly convert return value "
5795 "to %s, in function `%s'",
5796 state->current_function->return_type->name,
5797 state->current_function->function_name());
5798 }
5799 } else {
5800 _mesa_glsl_error(& loc, state,
5801 "`return' with wrong type %s, in function `%s' "
5802 "returning %s",
5803 ret_type->name,
5804 state->current_function->function_name(),
5805 state->current_function->return_type->name);
5806 }
5807 } else if (state->current_function->return_type->base_type ==
5808 GLSL_TYPE_VOID) {
5809 YYLTYPE loc = this->get_location();
5810
5811 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5812 * specs add a clarification:
5813 *
5814 * "A void function can only use return without a return argument, even if
5815 * the return argument has void type. Return statements only accept values:
5816 *
5817 * void func1() { }
5818 * void func2() { return func1(); } // illegal return statement"
5819 */
5820 _mesa_glsl_error(& loc, state,
5821 "void functions can only use `return' without a "
5822 "return argument");
5823 }
5824
5825 inst = new(ctx) ir_return(ret);
5826 } else {
5827 if (state->current_function->return_type->base_type !=
5828 GLSL_TYPE_VOID) {
5829 YYLTYPE loc = this->get_location();
5830
5831 _mesa_glsl_error(& loc, state,
5832 "`return' with no value, in function %s returning "
5833 "non-void",
5834 state->current_function->function_name());
5835 }
5836 inst = new(ctx) ir_return;
5837 }
5838
5839 state->found_return = true;
5840 instructions->push_tail(inst);
5841 break;
5842 }
5843
5844 case ast_discard:
5845 if (state->stage != MESA_SHADER_FRAGMENT) {
5846 YYLTYPE loc = this->get_location();
5847
5848 _mesa_glsl_error(& loc, state,
5849 "`discard' may only appear in a fragment shader");
5850 }
5851 instructions->push_tail(new(ctx) ir_discard);
5852 break;
5853
5854 case ast_break:
5855 case ast_continue:
5856 if (mode == ast_continue &&
5857 state->loop_nesting_ast == NULL) {
5858 YYLTYPE loc = this->get_location();
5859
5860 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5861 } else if (mode == ast_break &&
5862 state->loop_nesting_ast == NULL &&
5863 state->switch_state.switch_nesting_ast == NULL) {
5864 YYLTYPE loc = this->get_location();
5865
5866 _mesa_glsl_error(& loc, state,
5867 "break may only appear in a loop or a switch");
5868 } else {
5869 /* For a loop, inline the for loop expression again, since we don't
5870 * know where near the end of the loop body the normal copy of it is
5871 * going to be placed. Same goes for the condition for a do-while
5872 * loop.
5873 */
5874 if (state->loop_nesting_ast != NULL &&
5875 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5876 if (state->loop_nesting_ast->rest_expression) {
5877 state->loop_nesting_ast->rest_expression->hir(instructions,
5878 state);
5879 }
5880 if (state->loop_nesting_ast->mode ==
5881 ast_iteration_statement::ast_do_while) {
5882 state->loop_nesting_ast->condition_to_hir(instructions, state);
5883 }
5884 }
5885
5886 if (state->switch_state.is_switch_innermost &&
5887 mode == ast_continue) {
5888 /* Set 'continue_inside' to true. */
5889 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5890 ir_dereference_variable *deref_continue_inside_var =
5891 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5892 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5893 true_val));
5894
5895 /* Break out from the switch, continue for the loop will
5896 * be called right after switch. */
5897 ir_loop_jump *const jump =
5898 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5899 instructions->push_tail(jump);
5900
5901 } else if (state->switch_state.is_switch_innermost &&
5902 mode == ast_break) {
5903 /* Force break out of switch by inserting a break. */
5904 ir_loop_jump *const jump =
5905 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5906 instructions->push_tail(jump);
5907 } else {
5908 ir_loop_jump *const jump =
5909 new(ctx) ir_loop_jump((mode == ast_break)
5910 ? ir_loop_jump::jump_break
5911 : ir_loop_jump::jump_continue);
5912 instructions->push_tail(jump);
5913 }
5914 }
5915
5916 break;
5917 }
5918
5919 /* Jump instructions do not have r-values.
5920 */
5921 return NULL;
5922 }
5923
5924
5925 ir_rvalue *
5926 ast_selection_statement::hir(exec_list *instructions,
5927 struct _mesa_glsl_parse_state *state)
5928 {
5929 void *ctx = state;
5930
5931 ir_rvalue *const condition = this->condition->hir(instructions, state);
5932
5933 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5934 *
5935 * "Any expression whose type evaluates to a Boolean can be used as the
5936 * conditional expression bool-expression. Vector types are not accepted
5937 * as the expression to if."
5938 *
5939 * The checks are separated so that higher quality diagnostics can be
5940 * generated for cases where both rules are violated.
5941 */
5942 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5943 YYLTYPE loc = this->condition->get_location();
5944
5945 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5946 "boolean");
5947 }
5948
5949 ir_if *const stmt = new(ctx) ir_if(condition);
5950
5951 if (then_statement != NULL) {
5952 state->symbols->push_scope();
5953 then_statement->hir(& stmt->then_instructions, state);
5954 state->symbols->pop_scope();
5955 }
5956
5957 if (else_statement != NULL) {
5958 state->symbols->push_scope();
5959 else_statement->hir(& stmt->else_instructions, state);
5960 state->symbols->pop_scope();
5961 }
5962
5963 instructions->push_tail(stmt);
5964
5965 /* if-statements do not have r-values.
5966 */
5967 return NULL;
5968 }
5969
5970
5971 /* Used for detection of duplicate case values, compare
5972 * given contents directly.
5973 */
5974 static bool
5975 compare_case_value(const void *a, const void *b)
5976 {
5977 return *(unsigned *) a == *(unsigned *) b;
5978 }
5979
5980
5981 /* Used for detection of duplicate case values, just
5982 * returns key contents as is.
5983 */
5984 static unsigned
5985 key_contents(const void *key)
5986 {
5987 return *(unsigned *) key;
5988 }
5989
5990
5991 ir_rvalue *
5992 ast_switch_statement::hir(exec_list *instructions,
5993 struct _mesa_glsl_parse_state *state)
5994 {
5995 void *ctx = state;
5996
5997 ir_rvalue *const test_expression =
5998 this->test_expression->hir(instructions, state);
5999
6000 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6001 *
6002 * "The type of init-expression in a switch statement must be a
6003 * scalar integer."
6004 */
6005 if (!test_expression->type->is_scalar() ||
6006 !test_expression->type->is_integer()) {
6007 YYLTYPE loc = this->test_expression->get_location();
6008
6009 _mesa_glsl_error(& loc,
6010 state,
6011 "switch-statement expression must be scalar "
6012 "integer");
6013 }
6014
6015 /* Track the switch-statement nesting in a stack-like manner.
6016 */
6017 struct glsl_switch_state saved = state->switch_state;
6018
6019 state->switch_state.is_switch_innermost = true;
6020 state->switch_state.switch_nesting_ast = this;
6021 state->switch_state.labels_ht =
6022 _mesa_hash_table_create(NULL, key_contents,
6023 compare_case_value);
6024 state->switch_state.previous_default = NULL;
6025
6026 /* Initalize is_fallthru state to false.
6027 */
6028 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6029 state->switch_state.is_fallthru_var =
6030 new(ctx) ir_variable(glsl_type::bool_type,
6031 "switch_is_fallthru_tmp",
6032 ir_var_temporary);
6033 instructions->push_tail(state->switch_state.is_fallthru_var);
6034
6035 ir_dereference_variable *deref_is_fallthru_var =
6036 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6037 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6038 is_fallthru_val));
6039
6040 /* Initialize continue_inside state to false.
6041 */
6042 state->switch_state.continue_inside =
6043 new(ctx) ir_variable(glsl_type::bool_type,
6044 "continue_inside_tmp",
6045 ir_var_temporary);
6046 instructions->push_tail(state->switch_state.continue_inside);
6047
6048 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6049 ir_dereference_variable *deref_continue_inside_var =
6050 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6051 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6052 false_val));
6053
6054 state->switch_state.run_default =
6055 new(ctx) ir_variable(glsl_type::bool_type,
6056 "run_default_tmp",
6057 ir_var_temporary);
6058 instructions->push_tail(state->switch_state.run_default);
6059
6060 /* Loop around the switch is used for flow control. */
6061 ir_loop * loop = new(ctx) ir_loop();
6062 instructions->push_tail(loop);
6063
6064 /* Cache test expression.
6065 */
6066 test_to_hir(&loop->body_instructions, state);
6067
6068 /* Emit code for body of switch stmt.
6069 */
6070 body->hir(&loop->body_instructions, state);
6071
6072 /* Insert a break at the end to exit loop. */
6073 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6074 loop->body_instructions.push_tail(jump);
6075
6076 /* If we are inside loop, check if continue got called inside switch. */
6077 if (state->loop_nesting_ast != NULL) {
6078 ir_dereference_variable *deref_continue_inside =
6079 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6080 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6081 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6082
6083 if (state->loop_nesting_ast != NULL) {
6084 if (state->loop_nesting_ast->rest_expression) {
6085 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6086 state);
6087 }
6088 if (state->loop_nesting_ast->mode ==
6089 ast_iteration_statement::ast_do_while) {
6090 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6091 }
6092 }
6093 irif->then_instructions.push_tail(jump);
6094 instructions->push_tail(irif);
6095 }
6096
6097 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6098
6099 state->switch_state = saved;
6100
6101 /* Switch statements do not have r-values. */
6102 return NULL;
6103 }
6104
6105
6106 void
6107 ast_switch_statement::test_to_hir(exec_list *instructions,
6108 struct _mesa_glsl_parse_state *state)
6109 {
6110 void *ctx = state;
6111
6112 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6113 * on the switch test case. The first one would be already raised when
6114 * getting the test_expression at ast_switch_statement::hir
6115 */
6116 test_expression->set_is_lhs(true);
6117 /* Cache value of test expression. */
6118 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6119
6120 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6121 "switch_test_tmp",
6122 ir_var_temporary);
6123 ir_dereference_variable *deref_test_var =
6124 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6125
6126 instructions->push_tail(state->switch_state.test_var);
6127 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6128 }
6129
6130
6131 ir_rvalue *
6132 ast_switch_body::hir(exec_list *instructions,
6133 struct _mesa_glsl_parse_state *state)
6134 {
6135 if (stmts != NULL)
6136 stmts->hir(instructions, state);
6137
6138 /* Switch bodies do not have r-values. */
6139 return NULL;
6140 }
6141
6142 ir_rvalue *
6143 ast_case_statement_list::hir(exec_list *instructions,
6144 struct _mesa_glsl_parse_state *state)
6145 {
6146 exec_list default_case, after_default, tmp;
6147
6148 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6149 case_stmt->hir(&tmp, state);
6150
6151 /* Default case. */
6152 if (state->switch_state.previous_default && default_case.is_empty()) {
6153 default_case.append_list(&tmp);
6154 continue;
6155 }
6156
6157 /* If default case found, append 'after_default' list. */
6158 if (!default_case.is_empty())
6159 after_default.append_list(&tmp);
6160 else
6161 instructions->append_list(&tmp);
6162 }
6163
6164 /* Handle the default case. This is done here because default might not be
6165 * the last case. We need to add checks against following cases first to see
6166 * if default should be chosen or not.
6167 */
6168 if (!default_case.is_empty()) {
6169
6170 ir_rvalue *const true_val = new (state) ir_constant(true);
6171 ir_dereference_variable *deref_run_default_var =
6172 new(state) ir_dereference_variable(state->switch_state.run_default);
6173
6174 /* Choose to run default case initially, following conditional
6175 * assignments might change this.
6176 */
6177 ir_assignment *const init_var =
6178 new(state) ir_assignment(deref_run_default_var, true_val);
6179 instructions->push_tail(init_var);
6180
6181 /* Default case was the last one, no checks required. */
6182 if (after_default.is_empty()) {
6183 instructions->append_list(&default_case);
6184 return NULL;
6185 }
6186
6187 foreach_in_list(ir_instruction, ir, &after_default) {
6188 ir_assignment *assign = ir->as_assignment();
6189
6190 if (!assign)
6191 continue;
6192
6193 /* Clone the check between case label and init expression. */
6194 ir_expression *exp = (ir_expression*) assign->condition;
6195 ir_expression *clone = exp->clone(state, NULL);
6196
6197 ir_dereference_variable *deref_var =
6198 new(state) ir_dereference_variable(state->switch_state.run_default);
6199 ir_rvalue *const false_val = new (state) ir_constant(false);
6200
6201 ir_assignment *const set_false =
6202 new(state) ir_assignment(deref_var, false_val, clone);
6203
6204 instructions->push_tail(set_false);
6205 }
6206
6207 /* Append default case and all cases after it. */
6208 instructions->append_list(&default_case);
6209 instructions->append_list(&after_default);
6210 }
6211
6212 /* Case statements do not have r-values. */
6213 return NULL;
6214 }
6215
6216 ir_rvalue *
6217 ast_case_statement::hir(exec_list *instructions,
6218 struct _mesa_glsl_parse_state *state)
6219 {
6220 labels->hir(instructions, state);
6221
6222 /* Guard case statements depending on fallthru state. */
6223 ir_dereference_variable *const deref_fallthru_guard =
6224 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6225 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6226
6227 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6228 stmt->hir(& test_fallthru->then_instructions, state);
6229
6230 instructions->push_tail(test_fallthru);
6231
6232 /* Case statements do not have r-values. */
6233 return NULL;
6234 }
6235
6236
6237 ir_rvalue *
6238 ast_case_label_list::hir(exec_list *instructions,
6239 struct _mesa_glsl_parse_state *state)
6240 {
6241 foreach_list_typed (ast_case_label, label, link, & this->labels)
6242 label->hir(instructions, state);
6243
6244 /* Case labels do not have r-values. */
6245 return NULL;
6246 }
6247
6248 ir_rvalue *
6249 ast_case_label::hir(exec_list *instructions,
6250 struct _mesa_glsl_parse_state *state)
6251 {
6252 void *ctx = state;
6253
6254 ir_dereference_variable *deref_fallthru_var =
6255 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6256
6257 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6258
6259 /* If not default case, ... */
6260 if (this->test_value != NULL) {
6261 /* Conditionally set fallthru state based on
6262 * comparison of cached test expression value to case label.
6263 */
6264 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6265 ir_constant *label_const = label_rval->constant_expression_value();
6266
6267 if (!label_const) {
6268 YYLTYPE loc = this->test_value->get_location();
6269
6270 _mesa_glsl_error(& loc, state,
6271 "switch statement case label must be a "
6272 "constant expression");
6273
6274 /* Stuff a dummy value in to allow processing to continue. */
6275 label_const = new(ctx) ir_constant(0);
6276 } else {
6277 hash_entry *entry =
6278 _mesa_hash_table_search(state->switch_state.labels_ht,
6279 (void *)(uintptr_t)&label_const->value.u[0]);
6280
6281 if (entry) {
6282 ast_expression *previous_label = (ast_expression *) entry->data;
6283 YYLTYPE loc = this->test_value->get_location();
6284 _mesa_glsl_error(& loc, state, "duplicate case value");
6285
6286 loc = previous_label->get_location();
6287 _mesa_glsl_error(& loc, state, "this is the previous case label");
6288 } else {
6289 _mesa_hash_table_insert(state->switch_state.labels_ht,
6290 (void *)(uintptr_t)&label_const->value.u[0],
6291 this->test_value);
6292 }
6293 }
6294
6295 ir_dereference_variable *deref_test_var =
6296 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6297
6298 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6299 label_const,
6300 deref_test_var);
6301
6302 /*
6303 * From GLSL 4.40 specification section 6.2 ("Selection"):
6304 *
6305 * "The type of the init-expression value in a switch statement must
6306 * be a scalar int or uint. The type of the constant-expression value
6307 * in a case label also must be a scalar int or uint. When any pair
6308 * of these values is tested for "equal value" and the types do not
6309 * match, an implicit conversion will be done to convert the int to a
6310 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6311 * is done."
6312 */
6313 if (label_const->type != state->switch_state.test_var->type) {
6314 YYLTYPE loc = this->test_value->get_location();
6315
6316 const glsl_type *type_a = label_const->type;
6317 const glsl_type *type_b = state->switch_state.test_var->type;
6318
6319 /* Check if int->uint implicit conversion is supported. */
6320 bool integer_conversion_supported =
6321 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6322 state);
6323
6324 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6325 !integer_conversion_supported) {
6326 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6327 "init-expression and case label (%s != %s)",
6328 type_a->name, type_b->name);
6329 } else {
6330 /* Conversion of the case label. */
6331 if (type_a->base_type == GLSL_TYPE_INT) {
6332 if (!apply_implicit_conversion(glsl_type::uint_type,
6333 test_cond->operands[0], state))
6334 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6335 } else {
6336 /* Conversion of the init-expression value. */
6337 if (!apply_implicit_conversion(glsl_type::uint_type,
6338 test_cond->operands[1], state))
6339 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6340 }
6341 }
6342 }
6343
6344 ir_assignment *set_fallthru_on_test =
6345 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6346
6347 instructions->push_tail(set_fallthru_on_test);
6348 } else { /* default case */
6349 if (state->switch_state.previous_default) {
6350 YYLTYPE loc = this->get_location();
6351 _mesa_glsl_error(& loc, state,
6352 "multiple default labels in one switch");
6353
6354 loc = state->switch_state.previous_default->get_location();
6355 _mesa_glsl_error(& loc, state, "this is the first default label");
6356 }
6357 state->switch_state.previous_default = this;
6358
6359 /* Set fallthru condition on 'run_default' bool. */
6360 ir_dereference_variable *deref_run_default =
6361 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6362 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6363 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6364 cond_true,
6365 deref_run_default);
6366
6367 /* Set falltrhu state. */
6368 ir_assignment *set_fallthru =
6369 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6370
6371 instructions->push_tail(set_fallthru);
6372 }
6373
6374 /* Case statements do not have r-values. */
6375 return NULL;
6376 }
6377
6378 void
6379 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6380 struct _mesa_glsl_parse_state *state)
6381 {
6382 void *ctx = state;
6383
6384 if (condition != NULL) {
6385 ir_rvalue *const cond =
6386 condition->hir(instructions, state);
6387
6388 if ((cond == NULL)
6389 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6390 YYLTYPE loc = condition->get_location();
6391
6392 _mesa_glsl_error(& loc, state,
6393 "loop condition must be scalar boolean");
6394 } else {
6395 /* As the first code in the loop body, generate a block that looks
6396 * like 'if (!condition) break;' as the loop termination condition.
6397 */
6398 ir_rvalue *const not_cond =
6399 new(ctx) ir_expression(ir_unop_logic_not, cond);
6400
6401 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6402
6403 ir_jump *const break_stmt =
6404 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6405
6406 if_stmt->then_instructions.push_tail(break_stmt);
6407 instructions->push_tail(if_stmt);
6408 }
6409 }
6410 }
6411
6412
6413 ir_rvalue *
6414 ast_iteration_statement::hir(exec_list *instructions,
6415 struct _mesa_glsl_parse_state *state)
6416 {
6417 void *ctx = state;
6418
6419 /* For-loops and while-loops start a new scope, but do-while loops do not.
6420 */
6421 if (mode != ast_do_while)
6422 state->symbols->push_scope();
6423
6424 if (init_statement != NULL)
6425 init_statement->hir(instructions, state);
6426
6427 ir_loop *const stmt = new(ctx) ir_loop();
6428 instructions->push_tail(stmt);
6429
6430 /* Track the current loop nesting. */
6431 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6432
6433 state->loop_nesting_ast = this;
6434
6435 /* Likewise, indicate that following code is closest to a loop,
6436 * NOT closest to a switch.
6437 */
6438 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6439 state->switch_state.is_switch_innermost = false;
6440
6441 if (mode != ast_do_while)
6442 condition_to_hir(&stmt->body_instructions, state);
6443
6444 if (body != NULL)
6445 body->hir(& stmt->body_instructions, state);
6446
6447 if (rest_expression != NULL)
6448 rest_expression->hir(& stmt->body_instructions, state);
6449
6450 if (mode == ast_do_while)
6451 condition_to_hir(&stmt->body_instructions, state);
6452
6453 if (mode != ast_do_while)
6454 state->symbols->pop_scope();
6455
6456 /* Restore previous nesting before returning. */
6457 state->loop_nesting_ast = nesting_ast;
6458 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6459
6460 /* Loops do not have r-values.
6461 */
6462 return NULL;
6463 }
6464
6465
6466 /**
6467 * Determine if the given type is valid for establishing a default precision
6468 * qualifier.
6469 *
6470 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6471 *
6472 * "The precision statement
6473 *
6474 * precision precision-qualifier type;
6475 *
6476 * can be used to establish a default precision qualifier. The type field
6477 * can be either int or float or any of the sampler types, and the
6478 * precision-qualifier can be lowp, mediump, or highp."
6479 *
6480 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6481 * qualifiers on sampler types, but this seems like an oversight (since the
6482 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6483 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6484 * version.
6485 */
6486 static bool
6487 is_valid_default_precision_type(const struct glsl_type *const type)
6488 {
6489 if (type == NULL)
6490 return false;
6491
6492 switch (type->base_type) {
6493 case GLSL_TYPE_INT:
6494 case GLSL_TYPE_FLOAT:
6495 /* "int" and "float" are valid, but vectors and matrices are not. */
6496 return type->vector_elements == 1 && type->matrix_columns == 1;
6497 case GLSL_TYPE_SAMPLER:
6498 case GLSL_TYPE_IMAGE:
6499 case GLSL_TYPE_ATOMIC_UINT:
6500 return true;
6501 default:
6502 return false;
6503 }
6504 }
6505
6506
6507 ir_rvalue *
6508 ast_type_specifier::hir(exec_list *instructions,
6509 struct _mesa_glsl_parse_state *state)
6510 {
6511 if (this->default_precision == ast_precision_none && this->structure == NULL)
6512 return NULL;
6513
6514 YYLTYPE loc = this->get_location();
6515
6516 /* If this is a precision statement, check that the type to which it is
6517 * applied is either float or int.
6518 *
6519 * From section 4.5.3 of the GLSL 1.30 spec:
6520 * "The precision statement
6521 * precision precision-qualifier type;
6522 * can be used to establish a default precision qualifier. The type
6523 * field can be either int or float [...]. Any other types or
6524 * qualifiers will result in an error.
6525 */
6526 if (this->default_precision != ast_precision_none) {
6527 if (!state->check_precision_qualifiers_allowed(&loc))
6528 return NULL;
6529
6530 if (this->structure != NULL) {
6531 _mesa_glsl_error(&loc, state,
6532 "precision qualifiers do not apply to structures");
6533 return NULL;
6534 }
6535
6536 if (this->array_specifier != NULL) {
6537 _mesa_glsl_error(&loc, state,
6538 "default precision statements do not apply to "
6539 "arrays");
6540 return NULL;
6541 }
6542
6543 const struct glsl_type *const type =
6544 state->symbols->get_type(this->type_name);
6545 if (!is_valid_default_precision_type(type)) {
6546 _mesa_glsl_error(&loc, state,
6547 "default precision statements apply only to "
6548 "float, int, and opaque types");
6549 return NULL;
6550 }
6551
6552 if (state->es_shader) {
6553 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6554 * spec says:
6555 *
6556 * "Non-precision qualified declarations will use the precision
6557 * qualifier specified in the most recent precision statement
6558 * that is still in scope. The precision statement has the same
6559 * scoping rules as variable declarations. If it is declared
6560 * inside a compound statement, its effect stops at the end of
6561 * the innermost statement it was declared in. Precision
6562 * statements in nested scopes override precision statements in
6563 * outer scopes. Multiple precision statements for the same basic
6564 * type can appear inside the same scope, with later statements
6565 * overriding earlier statements within that scope."
6566 *
6567 * Default precision specifications follow the same scope rules as
6568 * variables. So, we can track the state of the default precision
6569 * qualifiers in the symbol table, and the rules will just work. This
6570 * is a slight abuse of the symbol table, but it has the semantics
6571 * that we want.
6572 */
6573 state->symbols->add_default_precision_qualifier(this->type_name,
6574 this->default_precision);
6575 }
6576
6577 /* FINISHME: Translate precision statements into IR. */
6578 return NULL;
6579 }
6580
6581 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6582 * process_record_constructor() can do type-checking on C-style initializer
6583 * expressions of structs, but ast_struct_specifier should only be translated
6584 * to HIR if it is declaring the type of a structure.
6585 *
6586 * The ->is_declaration field is false for initializers of variables
6587 * declared separately from the struct's type definition.
6588 *
6589 * struct S { ... }; (is_declaration = true)
6590 * struct T { ... } t = { ... }; (is_declaration = true)
6591 * S s = { ... }; (is_declaration = false)
6592 */
6593 if (this->structure != NULL && this->structure->is_declaration)
6594 return this->structure->hir(instructions, state);
6595
6596 return NULL;
6597 }
6598
6599
6600 /**
6601 * Process a structure or interface block tree into an array of structure fields
6602 *
6603 * After parsing, where there are some syntax differnces, structures and
6604 * interface blocks are almost identical. They are similar enough that the
6605 * AST for each can be processed the same way into a set of
6606 * \c glsl_struct_field to describe the members.
6607 *
6608 * If we're processing an interface block, var_mode should be the type of the
6609 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6610 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6611 * ir_var_auto.
6612 *
6613 * \return
6614 * The number of fields processed. A pointer to the array structure fields is
6615 * stored in \c *fields_ret.
6616 */
6617 static unsigned
6618 ast_process_struct_or_iface_block_members(exec_list *instructions,
6619 struct _mesa_glsl_parse_state *state,
6620 exec_list *declarations,
6621 glsl_struct_field **fields_ret,
6622 bool is_interface,
6623 enum glsl_matrix_layout matrix_layout,
6624 bool allow_reserved_names,
6625 ir_variable_mode var_mode,
6626 ast_type_qualifier *layout,
6627 unsigned block_stream,
6628 unsigned block_xfb_buffer,
6629 unsigned block_xfb_offset,
6630 unsigned expl_location,
6631 unsigned expl_align)
6632 {
6633 unsigned decl_count = 0;
6634 unsigned next_offset = 0;
6635
6636 /* Make an initial pass over the list of fields to determine how
6637 * many there are. Each element in this list is an ast_declarator_list.
6638 * This means that we actually need to count the number of elements in the
6639 * 'declarations' list in each of the elements.
6640 */
6641 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6642 decl_count += decl_list->declarations.length();
6643 }
6644
6645 /* Allocate storage for the fields and process the field
6646 * declarations. As the declarations are processed, try to also convert
6647 * the types to HIR. This ensures that structure definitions embedded in
6648 * other structure definitions or in interface blocks are processed.
6649 */
6650 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6651 decl_count);
6652
6653 bool first_member = true;
6654 bool first_member_has_explicit_location = false;
6655
6656 unsigned i = 0;
6657 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6658 const char *type_name;
6659 YYLTYPE loc = decl_list->get_location();
6660
6661 decl_list->type->specifier->hir(instructions, state);
6662
6663 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6664 *
6665 * "Anonymous structures are not supported; so embedded structures
6666 * must have a declarator. A name given to an embedded struct is
6667 * scoped at the same level as the struct it is embedded in."
6668 *
6669 * The same section of the GLSL 1.20 spec says:
6670 *
6671 * "Anonymous structures are not supported. Embedded structures are
6672 * not supported."
6673 *
6674 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6675 * embedded structures in 1.10 only.
6676 */
6677 if (state->language_version != 110 &&
6678 decl_list->type->specifier->structure != NULL)
6679 _mesa_glsl_error(&loc, state,
6680 "embedded structure declarations are not allowed");
6681
6682 const glsl_type *decl_type =
6683 decl_list->type->glsl_type(& type_name, state);
6684
6685 const struct ast_type_qualifier *const qual =
6686 &decl_list->type->qualifier;
6687
6688 /* From section 4.3.9 of the GLSL 4.40 spec:
6689 *
6690 * "[In interface blocks] opaque types are not allowed."
6691 *
6692 * It should be impossible for decl_type to be NULL here. Cases that
6693 * might naturally lead to decl_type being NULL, especially for the
6694 * is_interface case, will have resulted in compilation having
6695 * already halted due to a syntax error.
6696 */
6697 assert(decl_type);
6698
6699 if (is_interface) {
6700 if (decl_type->contains_opaque()) {
6701 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6702 "interface block contains opaque variable");
6703 }
6704 } else {
6705 if (decl_type->contains_atomic()) {
6706 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6707 *
6708 * "Members of structures cannot be declared as atomic counter
6709 * types."
6710 */
6711 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6712 }
6713
6714 if (decl_type->contains_image()) {
6715 /* FINISHME: Same problem as with atomic counters.
6716 * FINISHME: Request clarification from Khronos and add
6717 * FINISHME: spec quotation here.
6718 */
6719 _mesa_glsl_error(&loc, state, "image in structure");
6720 }
6721 }
6722
6723 if (qual->flags.q.explicit_binding) {
6724 _mesa_glsl_error(&loc, state,
6725 "binding layout qualifier cannot be applied "
6726 "to struct or interface block members");
6727 }
6728
6729 if (is_interface) {
6730 if (!first_member) {
6731 if (!layout->flags.q.explicit_location &&
6732 ((first_member_has_explicit_location &&
6733 !qual->flags.q.explicit_location) ||
6734 (!first_member_has_explicit_location &&
6735 qual->flags.q.explicit_location))) {
6736 _mesa_glsl_error(&loc, state,
6737 "when block-level location layout qualifier "
6738 "is not supplied either all members must "
6739 "have a location layout qualifier or all "
6740 "members must not have a location layout "
6741 "qualifier");
6742 }
6743 } else {
6744 first_member = false;
6745 first_member_has_explicit_location =
6746 qual->flags.q.explicit_location;
6747 }
6748 }
6749
6750 if (qual->flags.q.std140 ||
6751 qual->flags.q.std430 ||
6752 qual->flags.q.packed ||
6753 qual->flags.q.shared) {
6754 _mesa_glsl_error(&loc, state,
6755 "uniform/shader storage block layout qualifiers "
6756 "std140, std430, packed, and shared can only be "
6757 "applied to uniform/shader storage blocks, not "
6758 "members");
6759 }
6760
6761 if (qual->flags.q.constant) {
6762 _mesa_glsl_error(&loc, state,
6763 "const storage qualifier cannot be applied "
6764 "to struct or interface block members");
6765 }
6766
6767 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6768 *
6769 * "A block member may be declared with a stream identifier, but
6770 * the specified stream must match the stream associated with the
6771 * containing block."
6772 */
6773 if (qual->flags.q.explicit_stream) {
6774 unsigned qual_stream;
6775 if (process_qualifier_constant(state, &loc, "stream",
6776 qual->stream, &qual_stream) &&
6777 qual_stream != block_stream) {
6778 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6779 "interface block member does not match "
6780 "the interface block (%u vs %u)", qual_stream,
6781 block_stream);
6782 }
6783 }
6784
6785 int xfb_buffer;
6786 unsigned explicit_xfb_buffer = 0;
6787 if (qual->flags.q.explicit_xfb_buffer) {
6788 unsigned qual_xfb_buffer;
6789 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6790 qual->xfb_buffer, &qual_xfb_buffer)) {
6791 explicit_xfb_buffer = 1;
6792 if (qual_xfb_buffer != block_xfb_buffer)
6793 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6794 "interface block member does not match "
6795 "the interface block (%u vs %u)",
6796 qual_xfb_buffer, block_xfb_buffer);
6797 }
6798 xfb_buffer = (int) qual_xfb_buffer;
6799 } else {
6800 if (layout)
6801 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6802 xfb_buffer = (int) block_xfb_buffer;
6803 }
6804
6805 int xfb_stride = -1;
6806 if (qual->flags.q.explicit_xfb_stride) {
6807 unsigned qual_xfb_stride;
6808 if (process_qualifier_constant(state, &loc, "xfb_stride",
6809 qual->xfb_stride, &qual_xfb_stride)) {
6810 xfb_stride = (int) qual_xfb_stride;
6811 }
6812 }
6813
6814 if (qual->flags.q.uniform && qual->has_interpolation()) {
6815 _mesa_glsl_error(&loc, state,
6816 "interpolation qualifiers cannot be used "
6817 "with uniform interface blocks");
6818 }
6819
6820 if ((qual->flags.q.uniform || !is_interface) &&
6821 qual->has_auxiliary_storage()) {
6822 _mesa_glsl_error(&loc, state,
6823 "auxiliary storage qualifiers cannot be used "
6824 "in uniform blocks or structures.");
6825 }
6826
6827 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6828 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6829 _mesa_glsl_error(&loc, state,
6830 "row_major and column_major can only be "
6831 "applied to interface blocks");
6832 } else
6833 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6834 }
6835
6836 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6837 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6838 "readonly and writeonly.");
6839 }
6840
6841 foreach_list_typed (ast_declaration, decl, link,
6842 &decl_list->declarations) {
6843 YYLTYPE loc = decl->get_location();
6844
6845 if (!allow_reserved_names)
6846 validate_identifier(decl->identifier, loc, state);
6847
6848 const struct glsl_type *field_type =
6849 process_array_type(&loc, decl_type, decl->array_specifier, state);
6850 validate_array_dimensions(field_type, state, &loc);
6851 fields[i].type = field_type;
6852 fields[i].name = decl->identifier;
6853 fields[i].interpolation =
6854 interpret_interpolation_qualifier(qual, field_type,
6855 var_mode, state, &loc);
6856 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6857 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6858 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6859 fields[i].precision = qual->precision;
6860 fields[i].offset = -1;
6861 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6862 fields[i].xfb_buffer = xfb_buffer;
6863 fields[i].xfb_stride = xfb_stride;
6864
6865 if (qual->flags.q.explicit_location) {
6866 unsigned qual_location;
6867 if (process_qualifier_constant(state, &loc, "location",
6868 qual->location, &qual_location)) {
6869 fields[i].location = qual_location +
6870 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6871 expl_location = fields[i].location +
6872 fields[i].type->count_attribute_slots(false);
6873 }
6874 } else {
6875 if (layout && layout->flags.q.explicit_location) {
6876 fields[i].location = expl_location;
6877 expl_location += fields[i].type->count_attribute_slots(false);
6878 } else {
6879 fields[i].location = -1;
6880 }
6881 }
6882
6883 /* Offset can only be used with std430 and std140 layouts an initial
6884 * value of 0 is used for error detection.
6885 */
6886 unsigned align = 0;
6887 unsigned size = 0;
6888 if (layout) {
6889 bool row_major;
6890 if (qual->flags.q.row_major ||
6891 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6892 row_major = true;
6893 } else {
6894 row_major = false;
6895 }
6896
6897 if(layout->flags.q.std140) {
6898 align = field_type->std140_base_alignment(row_major);
6899 size = field_type->std140_size(row_major);
6900 } else if (layout->flags.q.std430) {
6901 align = field_type->std430_base_alignment(row_major);
6902 size = field_type->std430_size(row_major);
6903 }
6904 }
6905
6906 if (qual->flags.q.explicit_offset) {
6907 unsigned qual_offset;
6908 if (process_qualifier_constant(state, &loc, "offset",
6909 qual->offset, &qual_offset)) {
6910 if (align != 0 && size != 0) {
6911 if (next_offset > qual_offset)
6912 _mesa_glsl_error(&loc, state, "layout qualifier "
6913 "offset overlaps previous member");
6914
6915 if (qual_offset % align) {
6916 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6917 "must be a multiple of the base "
6918 "alignment of %s", field_type->name);
6919 }
6920 fields[i].offset = qual_offset;
6921 next_offset = glsl_align(qual_offset + size, align);
6922 } else {
6923 _mesa_glsl_error(&loc, state, "offset can only be used "
6924 "with std430 and std140 layouts");
6925 }
6926 }
6927 }
6928
6929 if (qual->flags.q.explicit_align || expl_align != 0) {
6930 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6931 next_offset;
6932 if (align == 0 || size == 0) {
6933 _mesa_glsl_error(&loc, state, "align can only be used with "
6934 "std430 and std140 layouts");
6935 } else if (qual->flags.q.explicit_align) {
6936 unsigned member_align;
6937 if (process_qualifier_constant(state, &loc, "align",
6938 qual->align, &member_align)) {
6939 if (member_align == 0 ||
6940 member_align & (member_align - 1)) {
6941 _mesa_glsl_error(&loc, state, "align layout qualifier "
6942 "in not a power of 2");
6943 } else {
6944 fields[i].offset = glsl_align(offset, member_align);
6945 next_offset = glsl_align(fields[i].offset + size, align);
6946 }
6947 }
6948 } else {
6949 fields[i].offset = glsl_align(offset, expl_align);
6950 next_offset = glsl_align(fields[i].offset + size, align);
6951 }
6952 } else if (!qual->flags.q.explicit_offset) {
6953 if (align != 0 && size != 0)
6954 next_offset = glsl_align(next_offset + size, align);
6955 }
6956
6957 /* From the ARB_enhanced_layouts spec:
6958 *
6959 * "The given offset applies to the first component of the first
6960 * member of the qualified entity. Then, within the qualified
6961 * entity, subsequent components are each assigned, in order, to
6962 * the next available offset aligned to a multiple of that
6963 * component's size. Aggregate types are flattened down to the
6964 * component level to get this sequence of components."
6965 */
6966 if (qual->flags.q.explicit_xfb_offset) {
6967 unsigned xfb_offset;
6968 if (process_qualifier_constant(state, &loc, "xfb_offset",
6969 qual->offset, &xfb_offset)) {
6970 fields[i].offset = xfb_offset;
6971 block_xfb_offset = fields[i].offset +
6972 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6973 }
6974 } else {
6975 if (layout && layout->flags.q.explicit_xfb_offset) {
6976 unsigned align = field_type->is_64bit() ? 8 : 4;
6977 fields[i].offset = glsl_align(block_xfb_offset, align);
6978 block_xfb_offset +=
6979 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6980 }
6981 }
6982
6983 /* Propogate row- / column-major information down the fields of the
6984 * structure or interface block. Structures need this data because
6985 * the structure may contain a structure that contains ... a matrix
6986 * that need the proper layout.
6987 */
6988 if (is_interface && layout &&
6989 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6990 (field_type->without_array()->is_matrix()
6991 || field_type->without_array()->is_record())) {
6992 /* If no layout is specified for the field, inherit the layout
6993 * from the block.
6994 */
6995 fields[i].matrix_layout = matrix_layout;
6996
6997 if (qual->flags.q.row_major)
6998 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6999 else if (qual->flags.q.column_major)
7000 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7001
7002 /* If we're processing an uniform or buffer block, the matrix
7003 * layout must be decided by this point.
7004 */
7005 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7006 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7007 }
7008
7009 /* Image qualifiers are allowed on buffer variables, which can only
7010 * be defined inside shader storage buffer objects
7011 */
7012 if (layout && var_mode == ir_var_shader_storage) {
7013 /* For readonly and writeonly qualifiers the field definition,
7014 * if set, overwrites the layout qualifier.
7015 */
7016 if (qual->flags.q.read_only) {
7017 fields[i].image_read_only = true;
7018 fields[i].image_write_only = false;
7019 } else if (qual->flags.q.write_only) {
7020 fields[i].image_read_only = false;
7021 fields[i].image_write_only = true;
7022 } else {
7023 fields[i].image_read_only = layout->flags.q.read_only;
7024 fields[i].image_write_only = layout->flags.q.write_only;
7025 }
7026
7027 /* For other qualifiers, we set the flag if either the layout
7028 * qualifier or the field qualifier are set
7029 */
7030 fields[i].image_coherent = qual->flags.q.coherent ||
7031 layout->flags.q.coherent;
7032 fields[i].image_volatile = qual->flags.q._volatile ||
7033 layout->flags.q._volatile;
7034 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7035 layout->flags.q.restrict_flag;
7036 }
7037
7038 i++;
7039 }
7040 }
7041
7042 assert(i == decl_count);
7043
7044 *fields_ret = fields;
7045 return decl_count;
7046 }
7047
7048
7049 ir_rvalue *
7050 ast_struct_specifier::hir(exec_list *instructions,
7051 struct _mesa_glsl_parse_state *state)
7052 {
7053 YYLTYPE loc = this->get_location();
7054
7055 unsigned expl_location = 0;
7056 if (layout && layout->flags.q.explicit_location) {
7057 if (!process_qualifier_constant(state, &loc, "location",
7058 layout->location, &expl_location)) {
7059 return NULL;
7060 } else {
7061 expl_location = VARYING_SLOT_VAR0 + expl_location;
7062 }
7063 }
7064
7065 glsl_struct_field *fields;
7066 unsigned decl_count =
7067 ast_process_struct_or_iface_block_members(instructions,
7068 state,
7069 &this->declarations,
7070 &fields,
7071 false,
7072 GLSL_MATRIX_LAYOUT_INHERITED,
7073 false /* allow_reserved_names */,
7074 ir_var_auto,
7075 layout,
7076 0, /* for interface only */
7077 0, /* for interface only */
7078 0, /* for interface only */
7079 expl_location,
7080 0 /* for interface only */);
7081
7082 validate_identifier(this->name, loc, state);
7083
7084 const glsl_type *t =
7085 glsl_type::get_record_instance(fields, decl_count, this->name);
7086
7087 if (!state->symbols->add_type(name, t)) {
7088 const glsl_type *match = state->symbols->get_type(name);
7089 /* allow struct matching for desktop GL - older UE4 does this */
7090 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7091 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7092 else
7093 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7094 } else {
7095 const glsl_type **s = reralloc(state, state->user_structures,
7096 const glsl_type *,
7097 state->num_user_structures + 1);
7098 if (s != NULL) {
7099 s[state->num_user_structures] = t;
7100 state->user_structures = s;
7101 state->num_user_structures++;
7102 }
7103 }
7104
7105 /* Structure type definitions do not have r-values.
7106 */
7107 return NULL;
7108 }
7109
7110
7111 /**
7112 * Visitor class which detects whether a given interface block has been used.
7113 */
7114 class interface_block_usage_visitor : public ir_hierarchical_visitor
7115 {
7116 public:
7117 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7118 : mode(mode), block(block), found(false)
7119 {
7120 }
7121
7122 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7123 {
7124 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7125 found = true;
7126 return visit_stop;
7127 }
7128 return visit_continue;
7129 }
7130
7131 bool usage_found() const
7132 {
7133 return this->found;
7134 }
7135
7136 private:
7137 ir_variable_mode mode;
7138 const glsl_type *block;
7139 bool found;
7140 };
7141
7142 static bool
7143 is_unsized_array_last_element(ir_variable *v)
7144 {
7145 const glsl_type *interface_type = v->get_interface_type();
7146 int length = interface_type->length;
7147
7148 assert(v->type->is_unsized_array());
7149
7150 /* Check if it is the last element of the interface */
7151 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7152 return true;
7153 return false;
7154 }
7155
7156 static void
7157 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7158 {
7159 var->data.image_read_only = field.image_read_only;
7160 var->data.image_write_only = field.image_write_only;
7161 var->data.image_coherent = field.image_coherent;
7162 var->data.image_volatile = field.image_volatile;
7163 var->data.image_restrict = field.image_restrict;
7164 }
7165
7166 ir_rvalue *
7167 ast_interface_block::hir(exec_list *instructions,
7168 struct _mesa_glsl_parse_state *state)
7169 {
7170 YYLTYPE loc = this->get_location();
7171
7172 /* Interface blocks must be declared at global scope */
7173 if (state->current_function != NULL) {
7174 _mesa_glsl_error(&loc, state,
7175 "Interface block `%s' must be declared "
7176 "at global scope",
7177 this->block_name);
7178 }
7179
7180 /* Validate qualifiers:
7181 *
7182 * - Layout Qualifiers as per the table in Section 4.4
7183 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7184 *
7185 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7186 * GLSL 4.50 spec:
7187 *
7188 * "Additionally, memory qualifiers may also be used in the declaration
7189 * of shader storage blocks"
7190 *
7191 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7192 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7193 * Layout Qualifiers) of the GLSL 4.50 spec says:
7194 *
7195 * "The std430 qualifier is supported only for shader storage blocks;
7196 * using std430 on a uniform block will result in a compile-time error."
7197 */
7198 ast_type_qualifier allowed_blk_qualifiers;
7199 allowed_blk_qualifiers.flags.i = 0;
7200 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7201 allowed_blk_qualifiers.flags.q.shared = 1;
7202 allowed_blk_qualifiers.flags.q.packed = 1;
7203 allowed_blk_qualifiers.flags.q.std140 = 1;
7204 allowed_blk_qualifiers.flags.q.row_major = 1;
7205 allowed_blk_qualifiers.flags.q.column_major = 1;
7206 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7207 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7208 if (this->layout.flags.q.buffer) {
7209 allowed_blk_qualifiers.flags.q.buffer = 1;
7210 allowed_blk_qualifiers.flags.q.std430 = 1;
7211 allowed_blk_qualifiers.flags.q.coherent = 1;
7212 allowed_blk_qualifiers.flags.q._volatile = 1;
7213 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7214 allowed_blk_qualifiers.flags.q.read_only = 1;
7215 allowed_blk_qualifiers.flags.q.write_only = 1;
7216 } else {
7217 allowed_blk_qualifiers.flags.q.uniform = 1;
7218 }
7219 } else {
7220 /* Interface block */
7221 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7222
7223 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7224 if (this->layout.flags.q.out) {
7225 allowed_blk_qualifiers.flags.q.out = 1;
7226 if (state->stage == MESA_SHADER_GEOMETRY ||
7227 state->stage == MESA_SHADER_TESS_CTRL ||
7228 state->stage == MESA_SHADER_TESS_EVAL ||
7229 state->stage == MESA_SHADER_VERTEX ) {
7230 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7231 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7232 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7233 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7234 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7235 if (state->stage == MESA_SHADER_GEOMETRY) {
7236 allowed_blk_qualifiers.flags.q.stream = 1;
7237 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7238 }
7239 if (state->stage == MESA_SHADER_TESS_CTRL) {
7240 allowed_blk_qualifiers.flags.q.patch = 1;
7241 }
7242 }
7243 } else {
7244 allowed_blk_qualifiers.flags.q.in = 1;
7245 if (state->stage == MESA_SHADER_TESS_EVAL) {
7246 allowed_blk_qualifiers.flags.q.patch = 1;
7247 }
7248 }
7249 }
7250
7251 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7252 "invalid qualifier for block",
7253 this->block_name);
7254
7255 /* The ast_interface_block has a list of ast_declarator_lists. We
7256 * need to turn those into ir_variables with an association
7257 * with this uniform block.
7258 */
7259 enum glsl_interface_packing packing;
7260 if (this->layout.flags.q.shared) {
7261 packing = GLSL_INTERFACE_PACKING_SHARED;
7262 } else if (this->layout.flags.q.packed) {
7263 packing = GLSL_INTERFACE_PACKING_PACKED;
7264 } else if (this->layout.flags.q.std430) {
7265 packing = GLSL_INTERFACE_PACKING_STD430;
7266 } else {
7267 /* The default layout is std140.
7268 */
7269 packing = GLSL_INTERFACE_PACKING_STD140;
7270 }
7271
7272 ir_variable_mode var_mode;
7273 const char *iface_type_name;
7274 if (this->layout.flags.q.in) {
7275 var_mode = ir_var_shader_in;
7276 iface_type_name = "in";
7277 } else if (this->layout.flags.q.out) {
7278 var_mode = ir_var_shader_out;
7279 iface_type_name = "out";
7280 } else if (this->layout.flags.q.uniform) {
7281 var_mode = ir_var_uniform;
7282 iface_type_name = "uniform";
7283 } else if (this->layout.flags.q.buffer) {
7284 var_mode = ir_var_shader_storage;
7285 iface_type_name = "buffer";
7286 } else {
7287 var_mode = ir_var_auto;
7288 iface_type_name = "UNKNOWN";
7289 assert(!"interface block layout qualifier not found!");
7290 }
7291
7292 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7293 if (this->layout.flags.q.row_major)
7294 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7295 else if (this->layout.flags.q.column_major)
7296 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7297
7298 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7299 exec_list declared_variables;
7300 glsl_struct_field *fields;
7301
7302 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7303 * that we don't have incompatible qualifiers
7304 */
7305 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7306 _mesa_glsl_error(&loc, state,
7307 "Interface block sets both readonly and writeonly");
7308 }
7309
7310 unsigned qual_stream;
7311 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7312 &qual_stream) ||
7313 !validate_stream_qualifier(&loc, state, qual_stream)) {
7314 /* If the stream qualifier is invalid it doesn't make sense to continue
7315 * on and try to compare stream layouts on member variables against it
7316 * so just return early.
7317 */
7318 return NULL;
7319 }
7320
7321 unsigned qual_xfb_buffer;
7322 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7323 layout.xfb_buffer, &qual_xfb_buffer) ||
7324 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7325 return NULL;
7326 }
7327
7328 unsigned qual_xfb_offset;
7329 if (layout.flags.q.explicit_xfb_offset) {
7330 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7331 layout.offset, &qual_xfb_offset)) {
7332 return NULL;
7333 }
7334 }
7335
7336 unsigned qual_xfb_stride;
7337 if (layout.flags.q.explicit_xfb_stride) {
7338 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7339 layout.xfb_stride, &qual_xfb_stride)) {
7340 return NULL;
7341 }
7342 }
7343
7344 unsigned expl_location = 0;
7345 if (layout.flags.q.explicit_location) {
7346 if (!process_qualifier_constant(state, &loc, "location",
7347 layout.location, &expl_location)) {
7348 return NULL;
7349 } else {
7350 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7351 : VARYING_SLOT_VAR0;
7352 }
7353 }
7354
7355 unsigned expl_align = 0;
7356 if (layout.flags.q.explicit_align) {
7357 if (!process_qualifier_constant(state, &loc, "align",
7358 layout.align, &expl_align)) {
7359 return NULL;
7360 } else {
7361 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7362 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7363 "power of 2.");
7364 return NULL;
7365 }
7366 }
7367 }
7368
7369 unsigned int num_variables =
7370 ast_process_struct_or_iface_block_members(&declared_variables,
7371 state,
7372 &this->declarations,
7373 &fields,
7374 true,
7375 matrix_layout,
7376 redeclaring_per_vertex,
7377 var_mode,
7378 &this->layout,
7379 qual_stream,
7380 qual_xfb_buffer,
7381 qual_xfb_offset,
7382 expl_location,
7383 expl_align);
7384
7385 if (!redeclaring_per_vertex) {
7386 validate_identifier(this->block_name, loc, state);
7387
7388 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7389 *
7390 * "Block names have no other use within a shader beyond interface
7391 * matching; it is a compile-time error to use a block name at global
7392 * scope for anything other than as a block name."
7393 */
7394 ir_variable *var = state->symbols->get_variable(this->block_name);
7395 if (var && !var->type->is_interface()) {
7396 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7397 "already used in the scope.",
7398 this->block_name);
7399 }
7400 }
7401
7402 const glsl_type *earlier_per_vertex = NULL;
7403 if (redeclaring_per_vertex) {
7404 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7405 * the named interface block gl_in, we can find it by looking at the
7406 * previous declaration of gl_in. Otherwise we can find it by looking
7407 * at the previous decalartion of any of the built-in outputs,
7408 * e.g. gl_Position.
7409 *
7410 * Also check that the instance name and array-ness of the redeclaration
7411 * are correct.
7412 */
7413 switch (var_mode) {
7414 case ir_var_shader_in:
7415 if (ir_variable *earlier_gl_in =
7416 state->symbols->get_variable("gl_in")) {
7417 earlier_per_vertex = earlier_gl_in->get_interface_type();
7418 } else {
7419 _mesa_glsl_error(&loc, state,
7420 "redeclaration of gl_PerVertex input not allowed "
7421 "in the %s shader",
7422 _mesa_shader_stage_to_string(state->stage));
7423 }
7424 if (this->instance_name == NULL ||
7425 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7426 !this->array_specifier->is_single_dimension()) {
7427 _mesa_glsl_error(&loc, state,
7428 "gl_PerVertex input must be redeclared as "
7429 "gl_in[]");
7430 }
7431 break;
7432 case ir_var_shader_out:
7433 if (ir_variable *earlier_gl_Position =
7434 state->symbols->get_variable("gl_Position")) {
7435 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7436 } else if (ir_variable *earlier_gl_out =
7437 state->symbols->get_variable("gl_out")) {
7438 earlier_per_vertex = earlier_gl_out->get_interface_type();
7439 } else {
7440 _mesa_glsl_error(&loc, state,
7441 "redeclaration of gl_PerVertex output not "
7442 "allowed in the %s shader",
7443 _mesa_shader_stage_to_string(state->stage));
7444 }
7445 if (state->stage == MESA_SHADER_TESS_CTRL) {
7446 if (this->instance_name == NULL ||
7447 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7448 _mesa_glsl_error(&loc, state,
7449 "gl_PerVertex output must be redeclared as "
7450 "gl_out[]");
7451 }
7452 } else {
7453 if (this->instance_name != NULL) {
7454 _mesa_glsl_error(&loc, state,
7455 "gl_PerVertex output may not be redeclared with "
7456 "an instance name");
7457 }
7458 }
7459 break;
7460 default:
7461 _mesa_glsl_error(&loc, state,
7462 "gl_PerVertex must be declared as an input or an "
7463 "output");
7464 break;
7465 }
7466
7467 if (earlier_per_vertex == NULL) {
7468 /* An error has already been reported. Bail out to avoid null
7469 * dereferences later in this function.
7470 */
7471 return NULL;
7472 }
7473
7474 /* Copy locations from the old gl_PerVertex interface block. */
7475 for (unsigned i = 0; i < num_variables; i++) {
7476 int j = earlier_per_vertex->field_index(fields[i].name);
7477 if (j == -1) {
7478 _mesa_glsl_error(&loc, state,
7479 "redeclaration of gl_PerVertex must be a subset "
7480 "of the built-in members of gl_PerVertex");
7481 } else {
7482 fields[i].location =
7483 earlier_per_vertex->fields.structure[j].location;
7484 fields[i].offset =
7485 earlier_per_vertex->fields.structure[j].offset;
7486 fields[i].interpolation =
7487 earlier_per_vertex->fields.structure[j].interpolation;
7488 fields[i].centroid =
7489 earlier_per_vertex->fields.structure[j].centroid;
7490 fields[i].sample =
7491 earlier_per_vertex->fields.structure[j].sample;
7492 fields[i].patch =
7493 earlier_per_vertex->fields.structure[j].patch;
7494 fields[i].precision =
7495 earlier_per_vertex->fields.structure[j].precision;
7496 fields[i].explicit_xfb_buffer =
7497 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7498 fields[i].xfb_buffer =
7499 earlier_per_vertex->fields.structure[j].xfb_buffer;
7500 fields[i].xfb_stride =
7501 earlier_per_vertex->fields.structure[j].xfb_stride;
7502 }
7503 }
7504
7505 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7506 * spec:
7507 *
7508 * If a built-in interface block is redeclared, it must appear in
7509 * the shader before any use of any member included in the built-in
7510 * declaration, or a compilation error will result.
7511 *
7512 * This appears to be a clarification to the behaviour established for
7513 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7514 * regardless of GLSL version.
7515 */
7516 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7517 v.run(instructions);
7518 if (v.usage_found()) {
7519 _mesa_glsl_error(&loc, state,
7520 "redeclaration of a built-in interface block must "
7521 "appear before any use of any member of the "
7522 "interface block");
7523 }
7524 }
7525
7526 const glsl_type *block_type =
7527 glsl_type::get_interface_instance(fields,
7528 num_variables,
7529 packing,
7530 matrix_layout ==
7531 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7532 this->block_name);
7533
7534 unsigned component_size = block_type->contains_double() ? 8 : 4;
7535 int xfb_offset =
7536 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7537 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7538 component_size);
7539
7540 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7541 YYLTYPE loc = this->get_location();
7542 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7543 "already taken in the current scope",
7544 this->block_name, iface_type_name);
7545 }
7546
7547 /* Since interface blocks cannot contain statements, it should be
7548 * impossible for the block to generate any instructions.
7549 */
7550 assert(declared_variables.is_empty());
7551
7552 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7553 *
7554 * Geometry shader input variables get the per-vertex values written
7555 * out by vertex shader output variables of the same names. Since a
7556 * geometry shader operates on a set of vertices, each input varying
7557 * variable (or input block, see interface blocks below) needs to be
7558 * declared as an array.
7559 */
7560 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7561 var_mode == ir_var_shader_in) {
7562 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7563 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7564 state->stage == MESA_SHADER_TESS_EVAL) &&
7565 !this->layout.flags.q.patch &&
7566 this->array_specifier == NULL &&
7567 var_mode == ir_var_shader_in) {
7568 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7569 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7570 !this->layout.flags.q.patch &&
7571 this->array_specifier == NULL &&
7572 var_mode == ir_var_shader_out) {
7573 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7574 }
7575
7576
7577 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7578 * says:
7579 *
7580 * "If an instance name (instance-name) is used, then it puts all the
7581 * members inside a scope within its own name space, accessed with the
7582 * field selector ( . ) operator (analogously to structures)."
7583 */
7584 if (this->instance_name) {
7585 if (redeclaring_per_vertex) {
7586 /* When a built-in in an unnamed interface block is redeclared,
7587 * get_variable_being_redeclared() calls
7588 * check_builtin_array_max_size() to make sure that built-in array
7589 * variables aren't redeclared to illegal sizes. But we're looking
7590 * at a redeclaration of a named built-in interface block. So we
7591 * have to manually call check_builtin_array_max_size() for all parts
7592 * of the interface that are arrays.
7593 */
7594 for (unsigned i = 0; i < num_variables; i++) {
7595 if (fields[i].type->is_array()) {
7596 const unsigned size = fields[i].type->array_size();
7597 check_builtin_array_max_size(fields[i].name, size, loc, state);
7598 }
7599 }
7600 } else {
7601 validate_identifier(this->instance_name, loc, state);
7602 }
7603
7604 ir_variable *var;
7605
7606 if (this->array_specifier != NULL) {
7607 const glsl_type *block_array_type =
7608 process_array_type(&loc, block_type, this->array_specifier, state);
7609
7610 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7611 *
7612 * For uniform blocks declared an array, each individual array
7613 * element corresponds to a separate buffer object backing one
7614 * instance of the block. As the array size indicates the number
7615 * of buffer objects needed, uniform block array declarations
7616 * must specify an array size.
7617 *
7618 * And a few paragraphs later:
7619 *
7620 * Geometry shader input blocks must be declared as arrays and
7621 * follow the array declaration and linking rules for all
7622 * geometry shader inputs. All other input and output block
7623 * arrays must specify an array size.
7624 *
7625 * The same applies to tessellation shaders.
7626 *
7627 * The upshot of this is that the only circumstance where an
7628 * interface array size *doesn't* need to be specified is on a
7629 * geometry shader input, tessellation control shader input,
7630 * tessellation control shader output, and tessellation evaluation
7631 * shader input.
7632 */
7633 if (block_array_type->is_unsized_array()) {
7634 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7635 state->stage == MESA_SHADER_TESS_CTRL ||
7636 state->stage == MESA_SHADER_TESS_EVAL;
7637 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7638
7639 if (this->layout.flags.q.in) {
7640 if (!allow_inputs)
7641 _mesa_glsl_error(&loc, state,
7642 "unsized input block arrays not allowed in "
7643 "%s shader",
7644 _mesa_shader_stage_to_string(state->stage));
7645 } else if (this->layout.flags.q.out) {
7646 if (!allow_outputs)
7647 _mesa_glsl_error(&loc, state,
7648 "unsized output block arrays not allowed in "
7649 "%s shader",
7650 _mesa_shader_stage_to_string(state->stage));
7651 } else {
7652 /* by elimination, this is a uniform block array */
7653 _mesa_glsl_error(&loc, state,
7654 "unsized uniform block arrays not allowed in "
7655 "%s shader",
7656 _mesa_shader_stage_to_string(state->stage));
7657 }
7658 }
7659
7660 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7661 *
7662 * * Arrays of arrays of blocks are not allowed
7663 */
7664 if (state->es_shader && block_array_type->is_array() &&
7665 block_array_type->fields.array->is_array()) {
7666 _mesa_glsl_error(&loc, state,
7667 "arrays of arrays interface blocks are "
7668 "not allowed");
7669 }
7670
7671 var = new(state) ir_variable(block_array_type,
7672 this->instance_name,
7673 var_mode);
7674 } else {
7675 var = new(state) ir_variable(block_type,
7676 this->instance_name,
7677 var_mode);
7678 }
7679
7680 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7681 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7682
7683 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7684 var->data.read_only = true;
7685
7686 var->data.patch = this->layout.flags.q.patch;
7687
7688 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7689 handle_geometry_shader_input_decl(state, loc, var);
7690 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7691 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7692 handle_tess_shader_input_decl(state, loc, var);
7693 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7694 handle_tess_ctrl_shader_output_decl(state, loc, var);
7695
7696 for (unsigned i = 0; i < num_variables; i++) {
7697 if (var->data.mode == ir_var_shader_storage)
7698 apply_memory_qualifiers(var, fields[i]);
7699 }
7700
7701 if (ir_variable *earlier =
7702 state->symbols->get_variable(this->instance_name)) {
7703 if (!redeclaring_per_vertex) {
7704 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7705 this->instance_name);
7706 }
7707 earlier->data.how_declared = ir_var_declared_normally;
7708 earlier->type = var->type;
7709 earlier->reinit_interface_type(block_type);
7710 delete var;
7711 } else {
7712 if (this->layout.flags.q.explicit_binding) {
7713 apply_explicit_binding(state, &loc, var, var->type,
7714 &this->layout);
7715 }
7716
7717 var->data.stream = qual_stream;
7718 if (layout.flags.q.explicit_location) {
7719 var->data.location = expl_location;
7720 var->data.explicit_location = true;
7721 }
7722
7723 state->symbols->add_variable(var);
7724 instructions->push_tail(var);
7725 }
7726 } else {
7727 /* In order to have an array size, the block must also be declared with
7728 * an instance name.
7729 */
7730 assert(this->array_specifier == NULL);
7731
7732 for (unsigned i = 0; i < num_variables; i++) {
7733 ir_variable *var =
7734 new(state) ir_variable(fields[i].type,
7735 ralloc_strdup(state, fields[i].name),
7736 var_mode);
7737 var->data.interpolation = fields[i].interpolation;
7738 var->data.centroid = fields[i].centroid;
7739 var->data.sample = fields[i].sample;
7740 var->data.patch = fields[i].patch;
7741 var->data.stream = qual_stream;
7742 var->data.location = fields[i].location;
7743
7744 if (fields[i].location != -1)
7745 var->data.explicit_location = true;
7746
7747 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7748 var->data.xfb_buffer = fields[i].xfb_buffer;
7749
7750 if (fields[i].offset != -1)
7751 var->data.explicit_xfb_offset = true;
7752 var->data.offset = fields[i].offset;
7753
7754 var->init_interface_type(block_type);
7755
7756 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7757 var->data.read_only = true;
7758
7759 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7760 if (state->es_shader) {
7761 var->data.precision =
7762 select_gles_precision(fields[i].precision, fields[i].type,
7763 state, &loc);
7764 }
7765
7766 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7767 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7768 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7769 } else {
7770 var->data.matrix_layout = fields[i].matrix_layout;
7771 }
7772
7773 if (var->data.mode == ir_var_shader_storage)
7774 apply_memory_qualifiers(var, fields[i]);
7775
7776 /* Examine var name here since var may get deleted in the next call */
7777 bool var_is_gl_id = is_gl_identifier(var->name);
7778
7779 if (redeclaring_per_vertex) {
7780 ir_variable *earlier =
7781 get_variable_being_redeclared(var, loc, state,
7782 true /* allow_all_redeclarations */);
7783 if (!var_is_gl_id || earlier == NULL) {
7784 _mesa_glsl_error(&loc, state,
7785 "redeclaration of gl_PerVertex can only "
7786 "include built-in variables");
7787 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7788 _mesa_glsl_error(&loc, state,
7789 "`%s' has already been redeclared",
7790 earlier->name);
7791 } else {
7792 earlier->data.how_declared = ir_var_declared_in_block;
7793 earlier->reinit_interface_type(block_type);
7794 }
7795 continue;
7796 }
7797
7798 if (state->symbols->get_variable(var->name) != NULL)
7799 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7800
7801 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7802 * The UBO declaration itself doesn't get an ir_variable unless it
7803 * has an instance name. This is ugly.
7804 */
7805 if (this->layout.flags.q.explicit_binding) {
7806 apply_explicit_binding(state, &loc, var,
7807 var->get_interface_type(), &this->layout);
7808 }
7809
7810 if (var->type->is_unsized_array()) {
7811 if (var->is_in_shader_storage_block()) {
7812 if (is_unsized_array_last_element(var)) {
7813 var->data.from_ssbo_unsized_array = true;
7814 }
7815 } else {
7816 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7817 *
7818 * "If an array is declared as the last member of a shader storage
7819 * block and the size is not specified at compile-time, it is
7820 * sized at run-time. In all other cases, arrays are sized only
7821 * at compile-time."
7822 */
7823 if (state->es_shader) {
7824 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7825 "definition: only last member of a shader "
7826 "storage block can be defined as unsized "
7827 "array", fields[i].name);
7828 }
7829 }
7830 }
7831
7832 state->symbols->add_variable(var);
7833 instructions->push_tail(var);
7834 }
7835
7836 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7837 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7838 *
7839 * It is also a compilation error ... to redeclare a built-in
7840 * block and then use a member from that built-in block that was
7841 * not included in the redeclaration.
7842 *
7843 * This appears to be a clarification to the behaviour established
7844 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7845 * behaviour regardless of GLSL version.
7846 *
7847 * To prevent the shader from using a member that was not included in
7848 * the redeclaration, we disable any ir_variables that are still
7849 * associated with the old declaration of gl_PerVertex (since we've
7850 * already updated all of the variables contained in the new
7851 * gl_PerVertex to point to it).
7852 *
7853 * As a side effect this will prevent
7854 * validate_intrastage_interface_blocks() from getting confused and
7855 * thinking there are conflicting definitions of gl_PerVertex in the
7856 * shader.
7857 */
7858 foreach_in_list_safe(ir_instruction, node, instructions) {
7859 ir_variable *const var = node->as_variable();
7860 if (var != NULL &&
7861 var->get_interface_type() == earlier_per_vertex &&
7862 var->data.mode == var_mode) {
7863 if (var->data.how_declared == ir_var_declared_normally) {
7864 _mesa_glsl_error(&loc, state,
7865 "redeclaration of gl_PerVertex cannot "
7866 "follow a redeclaration of `%s'",
7867 var->name);
7868 }
7869 state->symbols->disable_variable(var->name);
7870 var->remove();
7871 }
7872 }
7873 }
7874 }
7875
7876 return NULL;
7877 }
7878
7879
7880 ir_rvalue *
7881 ast_tcs_output_layout::hir(exec_list *instructions,
7882 struct _mesa_glsl_parse_state *state)
7883 {
7884 YYLTYPE loc = this->get_location();
7885
7886 unsigned num_vertices;
7887 if (!state->out_qualifier->vertices->
7888 process_qualifier_constant(state, "vertices", &num_vertices,
7889 false)) {
7890 /* return here to stop cascading incorrect error messages */
7891 return NULL;
7892 }
7893
7894 /* If any shader outputs occurred before this declaration and specified an
7895 * array size, make sure the size they specified is consistent with the
7896 * primitive type.
7897 */
7898 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7899 _mesa_glsl_error(&loc, state,
7900 "this tessellation control shader output layout "
7901 "specifies %u vertices, but a previous output "
7902 "is declared with size %u",
7903 num_vertices, state->tcs_output_size);
7904 return NULL;
7905 }
7906
7907 state->tcs_output_vertices_specified = true;
7908
7909 /* If any shader outputs occurred before this declaration and did not
7910 * specify an array size, their size is determined now.
7911 */
7912 foreach_in_list (ir_instruction, node, instructions) {
7913 ir_variable *var = node->as_variable();
7914 if (var == NULL || var->data.mode != ir_var_shader_out)
7915 continue;
7916
7917 /* Note: Not all tessellation control shader output are arrays. */
7918 if (!var->type->is_unsized_array() || var->data.patch)
7919 continue;
7920
7921 if (var->data.max_array_access >= (int)num_vertices) {
7922 _mesa_glsl_error(&loc, state,
7923 "this tessellation control shader output layout "
7924 "specifies %u vertices, but an access to element "
7925 "%u of output `%s' already exists", num_vertices,
7926 var->data.max_array_access, var->name);
7927 } else {
7928 var->type = glsl_type::get_array_instance(var->type->fields.array,
7929 num_vertices);
7930 }
7931 }
7932
7933 return NULL;
7934 }
7935
7936
7937 ir_rvalue *
7938 ast_gs_input_layout::hir(exec_list *instructions,
7939 struct _mesa_glsl_parse_state *state)
7940 {
7941 YYLTYPE loc = this->get_location();
7942
7943 /* Should have been prevented by the parser. */
7944 assert(!state->gs_input_prim_type_specified
7945 || state->in_qualifier->prim_type == this->prim_type);
7946
7947 /* If any shader inputs occurred before this declaration and specified an
7948 * array size, make sure the size they specified is consistent with the
7949 * primitive type.
7950 */
7951 unsigned num_vertices = vertices_per_prim(this->prim_type);
7952 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7953 _mesa_glsl_error(&loc, state,
7954 "this geometry shader input layout implies %u vertices"
7955 " per primitive, but a previous input is declared"
7956 " with size %u", num_vertices, state->gs_input_size);
7957 return NULL;
7958 }
7959
7960 state->gs_input_prim_type_specified = true;
7961
7962 /* If any shader inputs occurred before this declaration and did not
7963 * specify an array size, their size is determined now.
7964 */
7965 foreach_in_list(ir_instruction, node, instructions) {
7966 ir_variable *var = node->as_variable();
7967 if (var == NULL || var->data.mode != ir_var_shader_in)
7968 continue;
7969
7970 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7971 * array; skip it.
7972 */
7973
7974 if (var->type->is_unsized_array()) {
7975 if (var->data.max_array_access >= (int)num_vertices) {
7976 _mesa_glsl_error(&loc, state,
7977 "this geometry shader input layout implies %u"
7978 " vertices, but an access to element %u of input"
7979 " `%s' already exists", num_vertices,
7980 var->data.max_array_access, var->name);
7981 } else {
7982 var->type = glsl_type::get_array_instance(var->type->fields.array,
7983 num_vertices);
7984 }
7985 }
7986 }
7987
7988 return NULL;
7989 }
7990
7991
7992 ir_rvalue *
7993 ast_cs_input_layout::hir(exec_list *instructions,
7994 struct _mesa_glsl_parse_state *state)
7995 {
7996 YYLTYPE loc = this->get_location();
7997
7998 /* From the ARB_compute_shader specification:
7999 *
8000 * If the local size of the shader in any dimension is greater
8001 * than the maximum size supported by the implementation for that
8002 * dimension, a compile-time error results.
8003 *
8004 * It is not clear from the spec how the error should be reported if
8005 * the total size of the work group exceeds
8006 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8007 * report it at compile time as well.
8008 */
8009 GLuint64 total_invocations = 1;
8010 unsigned qual_local_size[3];
8011 for (int i = 0; i < 3; i++) {
8012
8013 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8014 'x' + i);
8015 /* Infer a local_size of 1 for unspecified dimensions */
8016 if (this->local_size[i] == NULL) {
8017 qual_local_size[i] = 1;
8018 } else if (!this->local_size[i]->
8019 process_qualifier_constant(state, local_size_str,
8020 &qual_local_size[i], false)) {
8021 ralloc_free(local_size_str);
8022 return NULL;
8023 }
8024 ralloc_free(local_size_str);
8025
8026 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8027 _mesa_glsl_error(&loc, state,
8028 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8029 " (%d)", 'x' + i,
8030 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8031 break;
8032 }
8033 total_invocations *= qual_local_size[i];
8034 if (total_invocations >
8035 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8036 _mesa_glsl_error(&loc, state,
8037 "product of local_sizes exceeds "
8038 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8039 state->ctx->Const.MaxComputeWorkGroupInvocations);
8040 break;
8041 }
8042 }
8043
8044 /* If any compute input layout declaration preceded this one, make sure it
8045 * was consistent with this one.
8046 */
8047 if (state->cs_input_local_size_specified) {
8048 for (int i = 0; i < 3; i++) {
8049 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8050 _mesa_glsl_error(&loc, state,
8051 "compute shader input layout does not match"
8052 " previous declaration");
8053 return NULL;
8054 }
8055 }
8056 }
8057
8058 /* The ARB_compute_variable_group_size spec says:
8059 *
8060 * If a compute shader including a *local_size_variable* qualifier also
8061 * declares a fixed local group size using the *local_size_x*,
8062 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8063 * results
8064 */
8065 if (state->cs_input_local_size_variable_specified) {
8066 _mesa_glsl_error(&loc, state,
8067 "compute shader can't include both a variable and a "
8068 "fixed local group size");
8069 return NULL;
8070 }
8071
8072 state->cs_input_local_size_specified = true;
8073 for (int i = 0; i < 3; i++)
8074 state->cs_input_local_size[i] = qual_local_size[i];
8075
8076 /* We may now declare the built-in constant gl_WorkGroupSize (see
8077 * builtin_variable_generator::generate_constants() for why we didn't
8078 * declare it earlier).
8079 */
8080 ir_variable *var = new(state->symbols)
8081 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8082 var->data.how_declared = ir_var_declared_implicitly;
8083 var->data.read_only = true;
8084 instructions->push_tail(var);
8085 state->symbols->add_variable(var);
8086 ir_constant_data data;
8087 memset(&data, 0, sizeof(data));
8088 for (int i = 0; i < 3; i++)
8089 data.u[i] = qual_local_size[i];
8090 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8091 var->constant_initializer =
8092 new(var) ir_constant(glsl_type::uvec3_type, &data);
8093 var->data.has_initializer = true;
8094
8095 return NULL;
8096 }
8097
8098
8099 static void
8100 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8101 exec_list *instructions)
8102 {
8103 bool gl_FragColor_assigned = false;
8104 bool gl_FragData_assigned = false;
8105 bool gl_FragSecondaryColor_assigned = false;
8106 bool gl_FragSecondaryData_assigned = false;
8107 bool user_defined_fs_output_assigned = false;
8108 ir_variable *user_defined_fs_output = NULL;
8109
8110 /* It would be nice to have proper location information. */
8111 YYLTYPE loc;
8112 memset(&loc, 0, sizeof(loc));
8113
8114 foreach_in_list(ir_instruction, node, instructions) {
8115 ir_variable *var = node->as_variable();
8116
8117 if (!var || !var->data.assigned)
8118 continue;
8119
8120 if (strcmp(var->name, "gl_FragColor") == 0)
8121 gl_FragColor_assigned = true;
8122 else if (strcmp(var->name, "gl_FragData") == 0)
8123 gl_FragData_assigned = true;
8124 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8125 gl_FragSecondaryColor_assigned = true;
8126 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8127 gl_FragSecondaryData_assigned = true;
8128 else if (!is_gl_identifier(var->name)) {
8129 if (state->stage == MESA_SHADER_FRAGMENT &&
8130 var->data.mode == ir_var_shader_out) {
8131 user_defined_fs_output_assigned = true;
8132 user_defined_fs_output = var;
8133 }
8134 }
8135 }
8136
8137 /* From the GLSL 1.30 spec:
8138 *
8139 * "If a shader statically assigns a value to gl_FragColor, it
8140 * may not assign a value to any element of gl_FragData. If a
8141 * shader statically writes a value to any element of
8142 * gl_FragData, it may not assign a value to
8143 * gl_FragColor. That is, a shader may assign values to either
8144 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8145 * linked together must also consistently write just one of
8146 * these variables. Similarly, if user declared output
8147 * variables are in use (statically assigned to), then the
8148 * built-in variables gl_FragColor and gl_FragData may not be
8149 * assigned to. These incorrect usages all generate compile
8150 * time errors."
8151 */
8152 if (gl_FragColor_assigned && gl_FragData_assigned) {
8153 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8154 "`gl_FragColor' and `gl_FragData'");
8155 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8156 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8157 "`gl_FragColor' and `%s'",
8158 user_defined_fs_output->name);
8159 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8160 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8161 "`gl_FragSecondaryColorEXT' and"
8162 " `gl_FragSecondaryDataEXT'");
8163 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8164 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8165 "`gl_FragColor' and"
8166 " `gl_FragSecondaryDataEXT'");
8167 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8168 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8169 "`gl_FragData' and"
8170 " `gl_FragSecondaryColorEXT'");
8171 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8172 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8173 "`gl_FragData' and `%s'",
8174 user_defined_fs_output->name);
8175 }
8176
8177 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8178 !state->EXT_blend_func_extended_enable) {
8179 _mesa_glsl_error(&loc, state,
8180 "Dual source blending requires EXT_blend_func_extended");
8181 }
8182 }
8183
8184
8185 static void
8186 remove_per_vertex_blocks(exec_list *instructions,
8187 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8188 {
8189 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8190 * if it exists in this shader type.
8191 */
8192 const glsl_type *per_vertex = NULL;
8193 switch (mode) {
8194 case ir_var_shader_in:
8195 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8196 per_vertex = gl_in->get_interface_type();
8197 break;
8198 case ir_var_shader_out:
8199 if (ir_variable *gl_Position =
8200 state->symbols->get_variable("gl_Position")) {
8201 per_vertex = gl_Position->get_interface_type();
8202 }
8203 break;
8204 default:
8205 assert(!"Unexpected mode");
8206 break;
8207 }
8208
8209 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8210 * need to do anything.
8211 */
8212 if (per_vertex == NULL)
8213 return;
8214
8215 /* If the interface block is used by the shader, then we don't need to do
8216 * anything.
8217 */
8218 interface_block_usage_visitor v(mode, per_vertex);
8219 v.run(instructions);
8220 if (v.usage_found())
8221 return;
8222
8223 /* Remove any ir_variable declarations that refer to the interface block
8224 * we're removing.
8225 */
8226 foreach_in_list_safe(ir_instruction, node, instructions) {
8227 ir_variable *const var = node->as_variable();
8228 if (var != NULL && var->get_interface_type() == per_vertex &&
8229 var->data.mode == mode) {
8230 state->symbols->disable_variable(var->name);
8231 var->remove();
8232 }
8233 }
8234 }