MESA_shader_integer_functions: Allow implicit int->uint conversions
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1005 ir_var_temporary);
1006 instructions->push_tail(var);
1007 instructions->push_tail(assign(var, rhs));
1008
1009 if (!error_emitted) {
1010 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1011 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1012 }
1013 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1014
1015 *out_rvalue = rvalue;
1016 } else {
1017 if (!error_emitted)
1018 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1019 *out_rvalue = NULL;
1020 }
1021
1022 return error_emitted;
1023 }
1024
1025 static ir_rvalue *
1026 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1027 {
1028 void *ctx = ralloc_parent(lvalue);
1029 ir_variable *var;
1030
1031 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1032 ir_var_temporary);
1033 instructions->push_tail(var);
1034
1035 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1036 lvalue));
1037
1038 return new(ctx) ir_dereference_variable(var);
1039 }
1040
1041
1042 ir_rvalue *
1043 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1044 {
1045 (void) instructions;
1046 (void) state;
1047
1048 return NULL;
1049 }
1050
1051 bool
1052 ast_node::has_sequence_subexpression() const
1053 {
1054 return false;
1055 }
1056
1057 void
1058 ast_node::set_is_lhs(bool /* new_value */)
1059 {
1060 }
1061
1062 void
1063 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 void
1070 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1071 struct _mesa_glsl_parse_state *state)
1072 {
1073 (void)hir(instructions, state);
1074 }
1075
1076 static ir_rvalue *
1077 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1078 {
1079 int join_op;
1080 ir_rvalue *cmp = NULL;
1081
1082 if (operation == ir_binop_all_equal)
1083 join_op = ir_binop_logic_and;
1084 else
1085 join_op = ir_binop_logic_or;
1086
1087 switch (op0->type->base_type) {
1088 case GLSL_TYPE_FLOAT:
1089 case GLSL_TYPE_UINT:
1090 case GLSL_TYPE_INT:
1091 case GLSL_TYPE_BOOL:
1092 case GLSL_TYPE_DOUBLE:
1093 return new(mem_ctx) ir_expression(operation, op0, op1);
1094
1095 case GLSL_TYPE_ARRAY: {
1096 for (unsigned int i = 0; i < op0->type->length; i++) {
1097 ir_rvalue *e0, *e1, *result;
1098
1099 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1100 new(mem_ctx) ir_constant(i));
1101 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1102 new(mem_ctx) ir_constant(i));
1103 result = do_comparison(mem_ctx, operation, e0, e1);
1104
1105 if (cmp) {
1106 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1107 } else {
1108 cmp = result;
1109 }
1110 }
1111
1112 mark_whole_array_access(op0);
1113 mark_whole_array_access(op1);
1114 break;
1115 }
1116
1117 case GLSL_TYPE_STRUCT: {
1118 for (unsigned int i = 0; i < op0->type->length; i++) {
1119 ir_rvalue *e0, *e1, *result;
1120 const char *field_name = op0->type->fields.structure[i].name;
1121
1122 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1123 field_name);
1124 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1125 field_name);
1126 result = do_comparison(mem_ctx, operation, e0, e1);
1127
1128 if (cmp) {
1129 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1130 } else {
1131 cmp = result;
1132 }
1133 }
1134 break;
1135 }
1136
1137 case GLSL_TYPE_ERROR:
1138 case GLSL_TYPE_VOID:
1139 case GLSL_TYPE_SAMPLER:
1140 case GLSL_TYPE_IMAGE:
1141 case GLSL_TYPE_INTERFACE:
1142 case GLSL_TYPE_ATOMIC_UINT:
1143 case GLSL_TYPE_SUBROUTINE:
1144 case GLSL_TYPE_FUNCTION:
1145 /* I assume a comparison of a struct containing a sampler just
1146 * ignores the sampler present in the type.
1147 */
1148 break;
1149 }
1150
1151 if (cmp == NULL)
1152 cmp = new(mem_ctx) ir_constant(true);
1153
1154 return cmp;
1155 }
1156
1157 /* For logical operations, we want to ensure that the operands are
1158 * scalar booleans. If it isn't, emit an error and return a constant
1159 * boolean to avoid triggering cascading error messages.
1160 */
1161 ir_rvalue *
1162 get_scalar_boolean_operand(exec_list *instructions,
1163 struct _mesa_glsl_parse_state *state,
1164 ast_expression *parent_expr,
1165 int operand,
1166 const char *operand_name,
1167 bool *error_emitted)
1168 {
1169 ast_expression *expr = parent_expr->subexpressions[operand];
1170 void *ctx = state;
1171 ir_rvalue *val = expr->hir(instructions, state);
1172
1173 if (val->type->is_boolean() && val->type->is_scalar())
1174 return val;
1175
1176 if (!*error_emitted) {
1177 YYLTYPE loc = expr->get_location();
1178 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1179 operand_name,
1180 parent_expr->operator_string(parent_expr->oper));
1181 *error_emitted = true;
1182 }
1183
1184 return new(ctx) ir_constant(true);
1185 }
1186
1187 /**
1188 * If name refers to a builtin array whose maximum allowed size is less than
1189 * size, report an error and return true. Otherwise return false.
1190 */
1191 void
1192 check_builtin_array_max_size(const char *name, unsigned size,
1193 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1194 {
1195 if ((strcmp("gl_TexCoord", name) == 0)
1196 && (size > state->Const.MaxTextureCoords)) {
1197 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1198 *
1199 * "The size [of gl_TexCoord] can be at most
1200 * gl_MaxTextureCoords."
1201 */
1202 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1203 "be larger than gl_MaxTextureCoords (%u)",
1204 state->Const.MaxTextureCoords);
1205 } else if (strcmp("gl_ClipDistance", name) == 0) {
1206 state->clip_dist_size = size;
1207 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1208 /* From section 7.1 (Vertex Shader Special Variables) of the
1209 * GLSL 1.30 spec:
1210 *
1211 * "The gl_ClipDistance array is predeclared as unsized and
1212 * must be sized by the shader either redeclaring it with a
1213 * size or indexing it only with integral constant
1214 * expressions. ... The size can be at most
1215 * gl_MaxClipDistances."
1216 */
1217 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1218 "be larger than gl_MaxClipDistances (%u)",
1219 state->Const.MaxClipPlanes);
1220 }
1221 } else if (strcmp("gl_CullDistance", name) == 0) {
1222 state->cull_dist_size = size;
1223 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1224 /* From the ARB_cull_distance spec:
1225 *
1226 * "The gl_CullDistance array is predeclared as unsized and
1227 * must be sized by the shader either redeclaring it with
1228 * a size or indexing it only with integral constant
1229 * expressions. The size determines the number and set of
1230 * enabled cull distances and can be at most
1231 * gl_MaxCullDistances."
1232 */
1233 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1234 "be larger than gl_MaxCullDistances (%u)",
1235 state->Const.MaxClipPlanes);
1236 }
1237 }
1238 }
1239
1240 /**
1241 * Create the constant 1, of a which is appropriate for incrementing and
1242 * decrementing values of the given GLSL type. For example, if type is vec4,
1243 * this creates a constant value of 1.0 having type float.
1244 *
1245 * If the given type is invalid for increment and decrement operators, return
1246 * a floating point 1--the error will be detected later.
1247 */
1248 static ir_rvalue *
1249 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1250 {
1251 switch (type->base_type) {
1252 case GLSL_TYPE_UINT:
1253 return new(ctx) ir_constant((unsigned) 1);
1254 case GLSL_TYPE_INT:
1255 return new(ctx) ir_constant(1);
1256 default:
1257 case GLSL_TYPE_FLOAT:
1258 return new(ctx) ir_constant(1.0f);
1259 }
1260 }
1261
1262 ir_rvalue *
1263 ast_expression::hir(exec_list *instructions,
1264 struct _mesa_glsl_parse_state *state)
1265 {
1266 return do_hir(instructions, state, true);
1267 }
1268
1269 void
1270 ast_expression::hir_no_rvalue(exec_list *instructions,
1271 struct _mesa_glsl_parse_state *state)
1272 {
1273 do_hir(instructions, state, false);
1274 }
1275
1276 void
1277 ast_expression::set_is_lhs(bool new_value)
1278 {
1279 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1280 * if we lack an identifier we can just skip it.
1281 */
1282 if (this->primary_expression.identifier == NULL)
1283 return;
1284
1285 this->is_lhs = new_value;
1286
1287 /* We need to go through the subexpressions tree to cover cases like
1288 * ast_field_selection
1289 */
1290 if (this->subexpressions[0] != NULL)
1291 this->subexpressions[0]->set_is_lhs(new_value);
1292 }
1293
1294 ir_rvalue *
1295 ast_expression::do_hir(exec_list *instructions,
1296 struct _mesa_glsl_parse_state *state,
1297 bool needs_rvalue)
1298 {
1299 void *ctx = state;
1300 static const int operations[AST_NUM_OPERATORS] = {
1301 -1, /* ast_assign doesn't convert to ir_expression. */
1302 -1, /* ast_plus doesn't convert to ir_expression. */
1303 ir_unop_neg,
1304 ir_binop_add,
1305 ir_binop_sub,
1306 ir_binop_mul,
1307 ir_binop_div,
1308 ir_binop_mod,
1309 ir_binop_lshift,
1310 ir_binop_rshift,
1311 ir_binop_less,
1312 ir_binop_greater,
1313 ir_binop_lequal,
1314 ir_binop_gequal,
1315 ir_binop_all_equal,
1316 ir_binop_any_nequal,
1317 ir_binop_bit_and,
1318 ir_binop_bit_xor,
1319 ir_binop_bit_or,
1320 ir_unop_bit_not,
1321 ir_binop_logic_and,
1322 ir_binop_logic_xor,
1323 ir_binop_logic_or,
1324 ir_unop_logic_not,
1325
1326 /* Note: The following block of expression types actually convert
1327 * to multiple IR instructions.
1328 */
1329 ir_binop_mul, /* ast_mul_assign */
1330 ir_binop_div, /* ast_div_assign */
1331 ir_binop_mod, /* ast_mod_assign */
1332 ir_binop_add, /* ast_add_assign */
1333 ir_binop_sub, /* ast_sub_assign */
1334 ir_binop_lshift, /* ast_ls_assign */
1335 ir_binop_rshift, /* ast_rs_assign */
1336 ir_binop_bit_and, /* ast_and_assign */
1337 ir_binop_bit_xor, /* ast_xor_assign */
1338 ir_binop_bit_or, /* ast_or_assign */
1339
1340 -1, /* ast_conditional doesn't convert to ir_expression. */
1341 ir_binop_add, /* ast_pre_inc. */
1342 ir_binop_sub, /* ast_pre_dec. */
1343 ir_binop_add, /* ast_post_inc. */
1344 ir_binop_sub, /* ast_post_dec. */
1345 -1, /* ast_field_selection doesn't conv to ir_expression. */
1346 -1, /* ast_array_index doesn't convert to ir_expression. */
1347 -1, /* ast_function_call doesn't conv to ir_expression. */
1348 -1, /* ast_identifier doesn't convert to ir_expression. */
1349 -1, /* ast_int_constant doesn't convert to ir_expression. */
1350 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1351 -1, /* ast_float_constant doesn't conv to ir_expression. */
1352 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1353 -1, /* ast_sequence doesn't convert to ir_expression. */
1354 };
1355 ir_rvalue *result = NULL;
1356 ir_rvalue *op[3];
1357 const struct glsl_type *type; /* a temporary variable for switch cases */
1358 bool error_emitted = false;
1359 YYLTYPE loc;
1360
1361 loc = this->get_location();
1362
1363 switch (this->oper) {
1364 case ast_aggregate:
1365 assert(!"ast_aggregate: Should never get here.");
1366 break;
1367
1368 case ast_assign: {
1369 this->subexpressions[0]->set_is_lhs(true);
1370 op[0] = this->subexpressions[0]->hir(instructions, state);
1371 op[1] = this->subexpressions[1]->hir(instructions, state);
1372
1373 error_emitted =
1374 do_assignment(instructions, state,
1375 this->subexpressions[0]->non_lvalue_description,
1376 op[0], op[1], &result, needs_rvalue, false,
1377 this->subexpressions[0]->get_location());
1378 break;
1379 }
1380
1381 case ast_plus:
1382 op[0] = this->subexpressions[0]->hir(instructions, state);
1383
1384 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1385
1386 error_emitted = type->is_error();
1387
1388 result = op[0];
1389 break;
1390
1391 case ast_neg:
1392 op[0] = this->subexpressions[0]->hir(instructions, state);
1393
1394 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1395
1396 error_emitted = type->is_error();
1397
1398 result = new(ctx) ir_expression(operations[this->oper], type,
1399 op[0], NULL);
1400 break;
1401
1402 case ast_add:
1403 case ast_sub:
1404 case ast_mul:
1405 case ast_div:
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 type = arithmetic_result_type(op[0], op[1],
1410 (this->oper == ast_mul),
1411 state, & loc);
1412 error_emitted = type->is_error();
1413
1414 result = new(ctx) ir_expression(operations[this->oper], type,
1415 op[0], op[1]);
1416 break;
1417
1418 case ast_mod:
1419 op[0] = this->subexpressions[0]->hir(instructions, state);
1420 op[1] = this->subexpressions[1]->hir(instructions, state);
1421
1422 type = modulus_result_type(op[0], op[1], state, &loc);
1423
1424 assert(operations[this->oper] == ir_binop_mod);
1425
1426 result = new(ctx) ir_expression(operations[this->oper], type,
1427 op[0], op[1]);
1428 error_emitted = type->is_error();
1429 break;
1430
1431 case ast_lshift:
1432 case ast_rshift:
1433 if (!state->check_bitwise_operations_allowed(&loc)) {
1434 error_emitted = true;
1435 }
1436
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438 op[1] = this->subexpressions[1]->hir(instructions, state);
1439 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1440 &loc);
1441 result = new(ctx) ir_expression(operations[this->oper], type,
1442 op[0], op[1]);
1443 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1444 break;
1445
1446 case ast_less:
1447 case ast_greater:
1448 case ast_lequal:
1449 case ast_gequal:
1450 op[0] = this->subexpressions[0]->hir(instructions, state);
1451 op[1] = this->subexpressions[1]->hir(instructions, state);
1452
1453 type = relational_result_type(op[0], op[1], state, & loc);
1454
1455 /* The relational operators must either generate an error or result
1456 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1457 */
1458 assert(type->is_error()
1459 || ((type->base_type == GLSL_TYPE_BOOL)
1460 && type->is_scalar()));
1461
1462 result = new(ctx) ir_expression(operations[this->oper], type,
1463 op[0], op[1]);
1464 error_emitted = type->is_error();
1465 break;
1466
1467 case ast_nequal:
1468 case ast_equal:
1469 op[0] = this->subexpressions[0]->hir(instructions, state);
1470 op[1] = this->subexpressions[1]->hir(instructions, state);
1471
1472 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1473 *
1474 * "The equality operators equal (==), and not equal (!=)
1475 * operate on all types. They result in a scalar Boolean. If
1476 * the operand types do not match, then there must be a
1477 * conversion from Section 4.1.10 "Implicit Conversions"
1478 * applied to one operand that can make them match, in which
1479 * case this conversion is done."
1480 */
1481
1482 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1483 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1484 "no operation `%1$s' exists that takes a left-hand "
1485 "operand of type 'void' or a right operand of type "
1486 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1487 error_emitted = true;
1488 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1489 && !apply_implicit_conversion(op[1]->type, op[0], state))
1490 || (op[0]->type != op[1]->type)) {
1491 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1492 "type", (this->oper == ast_equal) ? "==" : "!=");
1493 error_emitted = true;
1494 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1495 !state->check_version(120, 300, &loc,
1496 "array comparisons forbidden")) {
1497 error_emitted = true;
1498 } else if ((op[0]->type->contains_opaque() ||
1499 op[1]->type->contains_opaque())) {
1500 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1501 error_emitted = true;
1502 }
1503
1504 if (error_emitted) {
1505 result = new(ctx) ir_constant(false);
1506 } else {
1507 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1508 assert(result->type == glsl_type::bool_type);
1509 }
1510 break;
1511
1512 case ast_bit_and:
1513 case ast_bit_xor:
1514 case ast_bit_or:
1515 op[0] = this->subexpressions[0]->hir(instructions, state);
1516 op[1] = this->subexpressions[1]->hir(instructions, state);
1517 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1518 result = new(ctx) ir_expression(operations[this->oper], type,
1519 op[0], op[1]);
1520 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1521 break;
1522
1523 case ast_bit_not:
1524 op[0] = this->subexpressions[0]->hir(instructions, state);
1525
1526 if (!state->check_bitwise_operations_allowed(&loc)) {
1527 error_emitted = true;
1528 }
1529
1530 if (!op[0]->type->is_integer()) {
1531 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1532 error_emitted = true;
1533 }
1534
1535 type = error_emitted ? glsl_type::error_type : op[0]->type;
1536 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1537 break;
1538
1539 case ast_logic_and: {
1540 exec_list rhs_instructions;
1541 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1542 "LHS", &error_emitted);
1543 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1544 "RHS", &error_emitted);
1545
1546 if (rhs_instructions.is_empty()) {
1547 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1548 type = result->type;
1549 } else {
1550 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1551 "and_tmp",
1552 ir_var_temporary);
1553 instructions->push_tail(tmp);
1554
1555 ir_if *const stmt = new(ctx) ir_if(op[0]);
1556 instructions->push_tail(stmt);
1557
1558 stmt->then_instructions.append_list(&rhs_instructions);
1559 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1560 ir_assignment *const then_assign =
1561 new(ctx) ir_assignment(then_deref, op[1]);
1562 stmt->then_instructions.push_tail(then_assign);
1563
1564 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1565 ir_assignment *const else_assign =
1566 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1567 stmt->else_instructions.push_tail(else_assign);
1568
1569 result = new(ctx) ir_dereference_variable(tmp);
1570 type = tmp->type;
1571 }
1572 break;
1573 }
1574
1575 case ast_logic_or: {
1576 exec_list rhs_instructions;
1577 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1578 "LHS", &error_emitted);
1579 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1580 "RHS", &error_emitted);
1581
1582 if (rhs_instructions.is_empty()) {
1583 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1584 type = result->type;
1585 } else {
1586 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1587 "or_tmp",
1588 ir_var_temporary);
1589 instructions->push_tail(tmp);
1590
1591 ir_if *const stmt = new(ctx) ir_if(op[0]);
1592 instructions->push_tail(stmt);
1593
1594 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1595 ir_assignment *const then_assign =
1596 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1597 stmt->then_instructions.push_tail(then_assign);
1598
1599 stmt->else_instructions.append_list(&rhs_instructions);
1600 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1601 ir_assignment *const else_assign =
1602 new(ctx) ir_assignment(else_deref, op[1]);
1603 stmt->else_instructions.push_tail(else_assign);
1604
1605 result = new(ctx) ir_dereference_variable(tmp);
1606 type = tmp->type;
1607 }
1608 break;
1609 }
1610
1611 case ast_logic_xor:
1612 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1613 *
1614 * "The logical binary operators and (&&), or ( | | ), and
1615 * exclusive or (^^). They operate only on two Boolean
1616 * expressions and result in a Boolean expression."
1617 */
1618 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1619 &error_emitted);
1620 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1621 &error_emitted);
1622
1623 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1624 op[0], op[1]);
1625 break;
1626
1627 case ast_logic_not:
1628 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1629 "operand", &error_emitted);
1630
1631 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1632 op[0], NULL);
1633 break;
1634
1635 case ast_mul_assign:
1636 case ast_div_assign:
1637 case ast_add_assign:
1638 case ast_sub_assign: {
1639 this->subexpressions[0]->set_is_lhs(true);
1640 op[0] = this->subexpressions[0]->hir(instructions, state);
1641 op[1] = this->subexpressions[1]->hir(instructions, state);
1642
1643 type = arithmetic_result_type(op[0], op[1],
1644 (this->oper == ast_mul_assign),
1645 state, & loc);
1646
1647 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1648 op[0], op[1]);
1649
1650 error_emitted =
1651 do_assignment(instructions, state,
1652 this->subexpressions[0]->non_lvalue_description,
1653 op[0]->clone(ctx, NULL), temp_rhs,
1654 &result, needs_rvalue, false,
1655 this->subexpressions[0]->get_location());
1656
1657 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1658 * explicitly test for this because none of the binary expression
1659 * operators allow array operands either.
1660 */
1661
1662 break;
1663 }
1664
1665 case ast_mod_assign: {
1666 this->subexpressions[0]->set_is_lhs(true);
1667 op[0] = this->subexpressions[0]->hir(instructions, state);
1668 op[1] = this->subexpressions[1]->hir(instructions, state);
1669
1670 type = modulus_result_type(op[0], op[1], state, &loc);
1671
1672 assert(operations[this->oper] == ir_binop_mod);
1673
1674 ir_rvalue *temp_rhs;
1675 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1676 op[0], op[1]);
1677
1678 error_emitted =
1679 do_assignment(instructions, state,
1680 this->subexpressions[0]->non_lvalue_description,
1681 op[0]->clone(ctx, NULL), temp_rhs,
1682 &result, needs_rvalue, false,
1683 this->subexpressions[0]->get_location());
1684 break;
1685 }
1686
1687 case ast_ls_assign:
1688 case ast_rs_assign: {
1689 this->subexpressions[0]->set_is_lhs(true);
1690 op[0] = this->subexpressions[0]->hir(instructions, state);
1691 op[1] = this->subexpressions[1]->hir(instructions, state);
1692 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1693 &loc);
1694 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1695 type, op[0], op[1]);
1696 error_emitted =
1697 do_assignment(instructions, state,
1698 this->subexpressions[0]->non_lvalue_description,
1699 op[0]->clone(ctx, NULL), temp_rhs,
1700 &result, needs_rvalue, false,
1701 this->subexpressions[0]->get_location());
1702 break;
1703 }
1704
1705 case ast_and_assign:
1706 case ast_xor_assign:
1707 case ast_or_assign: {
1708 this->subexpressions[0]->set_is_lhs(true);
1709 op[0] = this->subexpressions[0]->hir(instructions, state);
1710 op[1] = this->subexpressions[1]->hir(instructions, state);
1711 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1712 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1713 type, op[0], op[1]);
1714 error_emitted =
1715 do_assignment(instructions, state,
1716 this->subexpressions[0]->non_lvalue_description,
1717 op[0]->clone(ctx, NULL), temp_rhs,
1718 &result, needs_rvalue, false,
1719 this->subexpressions[0]->get_location());
1720 break;
1721 }
1722
1723 case ast_conditional: {
1724 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1725 *
1726 * "The ternary selection operator (?:). It operates on three
1727 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1728 * first expression, which must result in a scalar Boolean."
1729 */
1730 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1731 "condition", &error_emitted);
1732
1733 /* The :? operator is implemented by generating an anonymous temporary
1734 * followed by an if-statement. The last instruction in each branch of
1735 * the if-statement assigns a value to the anonymous temporary. This
1736 * temporary is the r-value of the expression.
1737 */
1738 exec_list then_instructions;
1739 exec_list else_instructions;
1740
1741 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1742 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1743
1744 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1745 *
1746 * "The second and third expressions can be any type, as
1747 * long their types match, or there is a conversion in
1748 * Section 4.1.10 "Implicit Conversions" that can be applied
1749 * to one of the expressions to make their types match. This
1750 * resulting matching type is the type of the entire
1751 * expression."
1752 */
1753 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1754 && !apply_implicit_conversion(op[2]->type, op[1], state))
1755 || (op[1]->type != op[2]->type)) {
1756 YYLTYPE loc = this->subexpressions[1]->get_location();
1757
1758 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1759 "operator must have matching types");
1760 error_emitted = true;
1761 type = glsl_type::error_type;
1762 } else {
1763 type = op[1]->type;
1764 }
1765
1766 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1767 *
1768 * "The second and third expressions must be the same type, but can
1769 * be of any type other than an array."
1770 */
1771 if (type->is_array() &&
1772 !state->check_version(120, 300, &loc,
1773 "second and third operands of ?: operator "
1774 "cannot be arrays")) {
1775 error_emitted = true;
1776 }
1777
1778 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1779 *
1780 * "Except for array indexing, structure member selection, and
1781 * parentheses, opaque variables are not allowed to be operands in
1782 * expressions; such use results in a compile-time error."
1783 */
1784 if (type->contains_opaque()) {
1785 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1786 "of the ?: operator");
1787 error_emitted = true;
1788 }
1789
1790 ir_constant *cond_val = op[0]->constant_expression_value();
1791
1792 if (then_instructions.is_empty()
1793 && else_instructions.is_empty()
1794 && cond_val != NULL) {
1795 result = cond_val->value.b[0] ? op[1] : op[2];
1796 } else {
1797 /* The copy to conditional_tmp reads the whole array. */
1798 if (type->is_array()) {
1799 mark_whole_array_access(op[1]);
1800 mark_whole_array_access(op[2]);
1801 }
1802
1803 ir_variable *const tmp =
1804 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1805 instructions->push_tail(tmp);
1806
1807 ir_if *const stmt = new(ctx) ir_if(op[0]);
1808 instructions->push_tail(stmt);
1809
1810 then_instructions.move_nodes_to(& stmt->then_instructions);
1811 ir_dereference *const then_deref =
1812 new(ctx) ir_dereference_variable(tmp);
1813 ir_assignment *const then_assign =
1814 new(ctx) ir_assignment(then_deref, op[1]);
1815 stmt->then_instructions.push_tail(then_assign);
1816
1817 else_instructions.move_nodes_to(& stmt->else_instructions);
1818 ir_dereference *const else_deref =
1819 new(ctx) ir_dereference_variable(tmp);
1820 ir_assignment *const else_assign =
1821 new(ctx) ir_assignment(else_deref, op[2]);
1822 stmt->else_instructions.push_tail(else_assign);
1823
1824 result = new(ctx) ir_dereference_variable(tmp);
1825 }
1826 break;
1827 }
1828
1829 case ast_pre_inc:
1830 case ast_pre_dec: {
1831 this->non_lvalue_description = (this->oper == ast_pre_inc)
1832 ? "pre-increment operation" : "pre-decrement operation";
1833
1834 op[0] = this->subexpressions[0]->hir(instructions, state);
1835 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1836
1837 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1838
1839 ir_rvalue *temp_rhs;
1840 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1841 op[0], op[1]);
1842
1843 error_emitted =
1844 do_assignment(instructions, state,
1845 this->subexpressions[0]->non_lvalue_description,
1846 op[0]->clone(ctx, NULL), temp_rhs,
1847 &result, needs_rvalue, false,
1848 this->subexpressions[0]->get_location());
1849 break;
1850 }
1851
1852 case ast_post_inc:
1853 case ast_post_dec: {
1854 this->non_lvalue_description = (this->oper == ast_post_inc)
1855 ? "post-increment operation" : "post-decrement operation";
1856 op[0] = this->subexpressions[0]->hir(instructions, state);
1857 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1858
1859 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1860
1861 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1862
1863 ir_rvalue *temp_rhs;
1864 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1865 op[0], op[1]);
1866
1867 /* Get a temporary of a copy of the lvalue before it's modified.
1868 * This may get thrown away later.
1869 */
1870 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1871
1872 ir_rvalue *junk_rvalue;
1873 error_emitted =
1874 do_assignment(instructions, state,
1875 this->subexpressions[0]->non_lvalue_description,
1876 op[0]->clone(ctx, NULL), temp_rhs,
1877 &junk_rvalue, false, false,
1878 this->subexpressions[0]->get_location());
1879
1880 break;
1881 }
1882
1883 case ast_field_selection:
1884 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1885 break;
1886
1887 case ast_array_index: {
1888 YYLTYPE index_loc = subexpressions[1]->get_location();
1889
1890 /* Getting if an array is being used uninitialized is beyond what we get
1891 * from ir_value.data.assigned. Setting is_lhs as true would force to
1892 * not raise a uninitialized warning when using an array
1893 */
1894 subexpressions[0]->set_is_lhs(true);
1895 op[0] = subexpressions[0]->hir(instructions, state);
1896 op[1] = subexpressions[1]->hir(instructions, state);
1897
1898 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1899 loc, index_loc);
1900
1901 if (result->type->is_error())
1902 error_emitted = true;
1903
1904 break;
1905 }
1906
1907 case ast_unsized_array_dim:
1908 assert(!"ast_unsized_array_dim: Should never get here.");
1909 break;
1910
1911 case ast_function_call:
1912 /* Should *NEVER* get here. ast_function_call should always be handled
1913 * by ast_function_expression::hir.
1914 */
1915 assert(0);
1916 break;
1917
1918 case ast_identifier: {
1919 /* ast_identifier can appear several places in a full abstract syntax
1920 * tree. This particular use must be at location specified in the grammar
1921 * as 'variable_identifier'.
1922 */
1923 ir_variable *var =
1924 state->symbols->get_variable(this->primary_expression.identifier);
1925
1926 if (var == NULL) {
1927 /* the identifier might be a subroutine name */
1928 char *sub_name;
1929 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1930 var = state->symbols->get_variable(sub_name);
1931 ralloc_free(sub_name);
1932 }
1933
1934 if (var != NULL) {
1935 var->data.used = true;
1936 result = new(ctx) ir_dereference_variable(var);
1937
1938 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1939 && !this->is_lhs
1940 && result->variable_referenced()->data.assigned != true
1941 && !is_gl_identifier(var->name)) {
1942 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1943 this->primary_expression.identifier);
1944 }
1945 } else {
1946 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1947 this->primary_expression.identifier);
1948
1949 result = ir_rvalue::error_value(ctx);
1950 error_emitted = true;
1951 }
1952 break;
1953 }
1954
1955 case ast_int_constant:
1956 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1957 break;
1958
1959 case ast_uint_constant:
1960 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1961 break;
1962
1963 case ast_float_constant:
1964 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1965 break;
1966
1967 case ast_bool_constant:
1968 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1969 break;
1970
1971 case ast_double_constant:
1972 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1973 break;
1974
1975 case ast_sequence: {
1976 /* It should not be possible to generate a sequence in the AST without
1977 * any expressions in it.
1978 */
1979 assert(!this->expressions.is_empty());
1980
1981 /* The r-value of a sequence is the last expression in the sequence. If
1982 * the other expressions in the sequence do not have side-effects (and
1983 * therefore add instructions to the instruction list), they get dropped
1984 * on the floor.
1985 */
1986 exec_node *previous_tail_pred = NULL;
1987 YYLTYPE previous_operand_loc = loc;
1988
1989 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1990 /* If one of the operands of comma operator does not generate any
1991 * code, we want to emit a warning. At each pass through the loop
1992 * previous_tail_pred will point to the last instruction in the
1993 * stream *before* processing the previous operand. Naturally,
1994 * instructions->tail_pred will point to the last instruction in the
1995 * stream *after* processing the previous operand. If the two
1996 * pointers match, then the previous operand had no effect.
1997 *
1998 * The warning behavior here differs slightly from GCC. GCC will
1999 * only emit a warning if none of the left-hand operands have an
2000 * effect. However, it will emit a warning for each. I believe that
2001 * there are some cases in C (especially with GCC extensions) where
2002 * it is useful to have an intermediate step in a sequence have no
2003 * effect, but I don't think these cases exist in GLSL. Either way,
2004 * it would be a giant hassle to replicate that behavior.
2005 */
2006 if (previous_tail_pred == instructions->tail_pred) {
2007 _mesa_glsl_warning(&previous_operand_loc, state,
2008 "left-hand operand of comma expression has "
2009 "no effect");
2010 }
2011
2012 /* tail_pred is directly accessed instead of using the get_tail()
2013 * method for performance reasons. get_tail() has extra code to
2014 * return NULL when the list is empty. We don't care about that
2015 * here, so using tail_pred directly is fine.
2016 */
2017 previous_tail_pred = instructions->tail_pred;
2018 previous_operand_loc = ast->get_location();
2019
2020 result = ast->hir(instructions, state);
2021 }
2022
2023 /* Any errors should have already been emitted in the loop above.
2024 */
2025 error_emitted = true;
2026 break;
2027 }
2028 }
2029 type = NULL; /* use result->type, not type. */
2030 assert(result != NULL || !needs_rvalue);
2031
2032 if (result && result->type->is_error() && !error_emitted)
2033 _mesa_glsl_error(& loc, state, "type mismatch");
2034
2035 return result;
2036 }
2037
2038 bool
2039 ast_expression::has_sequence_subexpression() const
2040 {
2041 switch (this->oper) {
2042 case ast_plus:
2043 case ast_neg:
2044 case ast_bit_not:
2045 case ast_logic_not:
2046 case ast_pre_inc:
2047 case ast_pre_dec:
2048 case ast_post_inc:
2049 case ast_post_dec:
2050 return this->subexpressions[0]->has_sequence_subexpression();
2051
2052 case ast_assign:
2053 case ast_add:
2054 case ast_sub:
2055 case ast_mul:
2056 case ast_div:
2057 case ast_mod:
2058 case ast_lshift:
2059 case ast_rshift:
2060 case ast_less:
2061 case ast_greater:
2062 case ast_lequal:
2063 case ast_gequal:
2064 case ast_nequal:
2065 case ast_equal:
2066 case ast_bit_and:
2067 case ast_bit_xor:
2068 case ast_bit_or:
2069 case ast_logic_and:
2070 case ast_logic_or:
2071 case ast_logic_xor:
2072 case ast_array_index:
2073 case ast_mul_assign:
2074 case ast_div_assign:
2075 case ast_add_assign:
2076 case ast_sub_assign:
2077 case ast_mod_assign:
2078 case ast_ls_assign:
2079 case ast_rs_assign:
2080 case ast_and_assign:
2081 case ast_xor_assign:
2082 case ast_or_assign:
2083 return this->subexpressions[0]->has_sequence_subexpression() ||
2084 this->subexpressions[1]->has_sequence_subexpression();
2085
2086 case ast_conditional:
2087 return this->subexpressions[0]->has_sequence_subexpression() ||
2088 this->subexpressions[1]->has_sequence_subexpression() ||
2089 this->subexpressions[2]->has_sequence_subexpression();
2090
2091 case ast_sequence:
2092 return true;
2093
2094 case ast_field_selection:
2095 case ast_identifier:
2096 case ast_int_constant:
2097 case ast_uint_constant:
2098 case ast_float_constant:
2099 case ast_bool_constant:
2100 case ast_double_constant:
2101 return false;
2102
2103 case ast_aggregate:
2104 return false;
2105
2106 case ast_function_call:
2107 unreachable("should be handled by ast_function_expression::hir");
2108
2109 case ast_unsized_array_dim:
2110 unreachable("ast_unsized_array_dim: Should never get here.");
2111 }
2112
2113 return false;
2114 }
2115
2116 ir_rvalue *
2117 ast_expression_statement::hir(exec_list *instructions,
2118 struct _mesa_glsl_parse_state *state)
2119 {
2120 /* It is possible to have expression statements that don't have an
2121 * expression. This is the solitary semicolon:
2122 *
2123 * for (i = 0; i < 5; i++)
2124 * ;
2125 *
2126 * In this case the expression will be NULL. Test for NULL and don't do
2127 * anything in that case.
2128 */
2129 if (expression != NULL)
2130 expression->hir_no_rvalue(instructions, state);
2131
2132 /* Statements do not have r-values.
2133 */
2134 return NULL;
2135 }
2136
2137
2138 ir_rvalue *
2139 ast_compound_statement::hir(exec_list *instructions,
2140 struct _mesa_glsl_parse_state *state)
2141 {
2142 if (new_scope)
2143 state->symbols->push_scope();
2144
2145 foreach_list_typed (ast_node, ast, link, &this->statements)
2146 ast->hir(instructions, state);
2147
2148 if (new_scope)
2149 state->symbols->pop_scope();
2150
2151 /* Compound statements do not have r-values.
2152 */
2153 return NULL;
2154 }
2155
2156 /**
2157 * Evaluate the given exec_node (which should be an ast_node representing
2158 * a single array dimension) and return its integer value.
2159 */
2160 static unsigned
2161 process_array_size(exec_node *node,
2162 struct _mesa_glsl_parse_state *state)
2163 {
2164 exec_list dummy_instructions;
2165
2166 ast_node *array_size = exec_node_data(ast_node, node, link);
2167
2168 /**
2169 * Dimensions other than the outermost dimension can by unsized if they
2170 * are immediately sized by a constructor or initializer.
2171 */
2172 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2173 return 0;
2174
2175 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2176 YYLTYPE loc = array_size->get_location();
2177
2178 if (ir == NULL) {
2179 _mesa_glsl_error(& loc, state,
2180 "array size could not be resolved");
2181 return 0;
2182 }
2183
2184 if (!ir->type->is_integer()) {
2185 _mesa_glsl_error(& loc, state,
2186 "array size must be integer type");
2187 return 0;
2188 }
2189
2190 if (!ir->type->is_scalar()) {
2191 _mesa_glsl_error(& loc, state,
2192 "array size must be scalar type");
2193 return 0;
2194 }
2195
2196 ir_constant *const size = ir->constant_expression_value();
2197 if (size == NULL ||
2198 (state->is_version(120, 300) &&
2199 array_size->has_sequence_subexpression())) {
2200 _mesa_glsl_error(& loc, state, "array size must be a "
2201 "constant valued expression");
2202 return 0;
2203 }
2204
2205 if (size->value.i[0] <= 0) {
2206 _mesa_glsl_error(& loc, state, "array size must be > 0");
2207 return 0;
2208 }
2209
2210 assert(size->type == ir->type);
2211
2212 /* If the array size is const (and we've verified that
2213 * it is) then no instructions should have been emitted
2214 * when we converted it to HIR. If they were emitted,
2215 * then either the array size isn't const after all, or
2216 * we are emitting unnecessary instructions.
2217 */
2218 assert(dummy_instructions.is_empty());
2219
2220 return size->value.u[0];
2221 }
2222
2223 static const glsl_type *
2224 process_array_type(YYLTYPE *loc, const glsl_type *base,
2225 ast_array_specifier *array_specifier,
2226 struct _mesa_glsl_parse_state *state)
2227 {
2228 const glsl_type *array_type = base;
2229
2230 if (array_specifier != NULL) {
2231 if (base->is_array()) {
2232
2233 /* From page 19 (page 25) of the GLSL 1.20 spec:
2234 *
2235 * "Only one-dimensional arrays may be declared."
2236 */
2237 if (!state->check_arrays_of_arrays_allowed(loc)) {
2238 return glsl_type::error_type;
2239 }
2240 }
2241
2242 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2243 !node->is_head_sentinel(); node = node->prev) {
2244 unsigned array_size = process_array_size(node, state);
2245 array_type = glsl_type::get_array_instance(array_type, array_size);
2246 }
2247 }
2248
2249 return array_type;
2250 }
2251
2252 static bool
2253 precision_qualifier_allowed(const glsl_type *type)
2254 {
2255 /* Precision qualifiers apply to floating point, integer and opaque
2256 * types.
2257 *
2258 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2259 * "Any floating point or any integer declaration can have the type
2260 * preceded by one of these precision qualifiers [...] Literal
2261 * constants do not have precision qualifiers. Neither do Boolean
2262 * variables.
2263 *
2264 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2265 * spec also says:
2266 *
2267 * "Precision qualifiers are added for code portability with OpenGL
2268 * ES, not for functionality. They have the same syntax as in OpenGL
2269 * ES."
2270 *
2271 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2272 *
2273 * "uniform lowp sampler2D sampler;
2274 * highp vec2 coord;
2275 * ...
2276 * lowp vec4 col = texture2D (sampler, coord);
2277 * // texture2D returns lowp"
2278 *
2279 * From this, we infer that GLSL 1.30 (and later) should allow precision
2280 * qualifiers on sampler types just like float and integer types.
2281 */
2282 const glsl_type *const t = type->without_array();
2283
2284 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2285 !t->is_record();
2286 }
2287
2288 const glsl_type *
2289 ast_type_specifier::glsl_type(const char **name,
2290 struct _mesa_glsl_parse_state *state) const
2291 {
2292 const struct glsl_type *type;
2293
2294 type = state->symbols->get_type(this->type_name);
2295 *name = this->type_name;
2296
2297 YYLTYPE loc = this->get_location();
2298 type = process_array_type(&loc, type, this->array_specifier, state);
2299
2300 return type;
2301 }
2302
2303 /**
2304 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2305 *
2306 * "The precision statement
2307 *
2308 * precision precision-qualifier type;
2309 *
2310 * can be used to establish a default precision qualifier. The type field can
2311 * be either int or float or any of the sampler types, (...) If type is float,
2312 * the directive applies to non-precision-qualified floating point type
2313 * (scalar, vector, and matrix) declarations. If type is int, the directive
2314 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2315 * and unsigned) declarations."
2316 *
2317 * We use the symbol table to keep the values of the default precisions for
2318 * each 'type' in each scope and we use the 'type' string from the precision
2319 * statement as key in the symbol table. When we want to retrieve the default
2320 * precision associated with a given glsl_type we need to know the type string
2321 * associated with it. This is what this function returns.
2322 */
2323 static const char *
2324 get_type_name_for_precision_qualifier(const glsl_type *type)
2325 {
2326 switch (type->base_type) {
2327 case GLSL_TYPE_FLOAT:
2328 return "float";
2329 case GLSL_TYPE_UINT:
2330 case GLSL_TYPE_INT:
2331 return "int";
2332 case GLSL_TYPE_ATOMIC_UINT:
2333 return "atomic_uint";
2334 case GLSL_TYPE_IMAGE:
2335 /* fallthrough */
2336 case GLSL_TYPE_SAMPLER: {
2337 const unsigned type_idx =
2338 type->sampler_array + 2 * type->sampler_shadow;
2339 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2340 assert(type_idx < 4);
2341 switch (type->sampled_type) {
2342 case GLSL_TYPE_FLOAT:
2343 switch (type->sampler_dimensionality) {
2344 case GLSL_SAMPLER_DIM_1D: {
2345 assert(type->base_type == GLSL_TYPE_SAMPLER);
2346 static const char *const names[4] = {
2347 "sampler1D", "sampler1DArray",
2348 "sampler1DShadow", "sampler1DArrayShadow"
2349 };
2350 return names[type_idx];
2351 }
2352 case GLSL_SAMPLER_DIM_2D: {
2353 static const char *const names[8] = {
2354 "sampler2D", "sampler2DArray",
2355 "sampler2DShadow", "sampler2DArrayShadow",
2356 "image2D", "image2DArray", NULL, NULL
2357 };
2358 return names[offset + type_idx];
2359 }
2360 case GLSL_SAMPLER_DIM_3D: {
2361 static const char *const names[8] = {
2362 "sampler3D", NULL, NULL, NULL,
2363 "image3D", NULL, NULL, NULL
2364 };
2365 return names[offset + type_idx];
2366 }
2367 case GLSL_SAMPLER_DIM_CUBE: {
2368 static const char *const names[8] = {
2369 "samplerCube", "samplerCubeArray",
2370 "samplerCubeShadow", "samplerCubeArrayShadow",
2371 "imageCube", NULL, NULL, NULL
2372 };
2373 return names[offset + type_idx];
2374 }
2375 case GLSL_SAMPLER_DIM_MS: {
2376 assert(type->base_type == GLSL_TYPE_SAMPLER);
2377 static const char *const names[4] = {
2378 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2379 };
2380 return names[type_idx];
2381 }
2382 case GLSL_SAMPLER_DIM_RECT: {
2383 assert(type->base_type == GLSL_TYPE_SAMPLER);
2384 static const char *const names[4] = {
2385 "samplerRect", NULL, "samplerRectShadow", NULL
2386 };
2387 return names[type_idx];
2388 }
2389 case GLSL_SAMPLER_DIM_BUF: {
2390 static const char *const names[8] = {
2391 "samplerBuffer", NULL, NULL, NULL,
2392 "imageBuffer", NULL, NULL, NULL
2393 };
2394 return names[offset + type_idx];
2395 }
2396 case GLSL_SAMPLER_DIM_EXTERNAL: {
2397 assert(type->base_type == GLSL_TYPE_SAMPLER);
2398 static const char *const names[4] = {
2399 "samplerExternalOES", NULL, NULL, NULL
2400 };
2401 return names[type_idx];
2402 }
2403 default:
2404 unreachable("Unsupported sampler/image dimensionality");
2405 } /* sampler/image float dimensionality */
2406 break;
2407 case GLSL_TYPE_INT:
2408 switch (type->sampler_dimensionality) {
2409 case GLSL_SAMPLER_DIM_1D: {
2410 assert(type->base_type == GLSL_TYPE_SAMPLER);
2411 static const char *const names[4] = {
2412 "isampler1D", "isampler1DArray", NULL, NULL
2413 };
2414 return names[type_idx];
2415 }
2416 case GLSL_SAMPLER_DIM_2D: {
2417 static const char *const names[8] = {
2418 "isampler2D", "isampler2DArray", NULL, NULL,
2419 "iimage2D", "iimage2DArray", NULL, NULL
2420 };
2421 return names[offset + type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_3D: {
2424 static const char *const names[8] = {
2425 "isampler3D", NULL, NULL, NULL,
2426 "iimage3D", NULL, NULL, NULL
2427 };
2428 return names[offset + type_idx];
2429 }
2430 case GLSL_SAMPLER_DIM_CUBE: {
2431 static const char *const names[8] = {
2432 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2433 "iimageCube", NULL, NULL, NULL
2434 };
2435 return names[offset + type_idx];
2436 }
2437 case GLSL_SAMPLER_DIM_MS: {
2438 assert(type->base_type == GLSL_TYPE_SAMPLER);
2439 static const char *const names[4] = {
2440 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2441 };
2442 return names[type_idx];
2443 }
2444 case GLSL_SAMPLER_DIM_RECT: {
2445 assert(type->base_type == GLSL_TYPE_SAMPLER);
2446 static const char *const names[4] = {
2447 "isamplerRect", NULL, "isamplerRectShadow", NULL
2448 };
2449 return names[type_idx];
2450 }
2451 case GLSL_SAMPLER_DIM_BUF: {
2452 static const char *const names[8] = {
2453 "isamplerBuffer", NULL, NULL, NULL,
2454 "iimageBuffer", NULL, NULL, NULL
2455 };
2456 return names[offset + type_idx];
2457 }
2458 default:
2459 unreachable("Unsupported isampler/iimage dimensionality");
2460 } /* sampler/image int dimensionality */
2461 break;
2462 case GLSL_TYPE_UINT:
2463 switch (type->sampler_dimensionality) {
2464 case GLSL_SAMPLER_DIM_1D: {
2465 assert(type->base_type == GLSL_TYPE_SAMPLER);
2466 static const char *const names[4] = {
2467 "usampler1D", "usampler1DArray", NULL, NULL
2468 };
2469 return names[type_idx];
2470 }
2471 case GLSL_SAMPLER_DIM_2D: {
2472 static const char *const names[8] = {
2473 "usampler2D", "usampler2DArray", NULL, NULL,
2474 "uimage2D", "uimage2DArray", NULL, NULL
2475 };
2476 return names[offset + type_idx];
2477 }
2478 case GLSL_SAMPLER_DIM_3D: {
2479 static const char *const names[8] = {
2480 "usampler3D", NULL, NULL, NULL,
2481 "uimage3D", NULL, NULL, NULL
2482 };
2483 return names[offset + type_idx];
2484 }
2485 case GLSL_SAMPLER_DIM_CUBE: {
2486 static const char *const names[8] = {
2487 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2488 "uimageCube", NULL, NULL, NULL
2489 };
2490 return names[offset + type_idx];
2491 }
2492 case GLSL_SAMPLER_DIM_MS: {
2493 assert(type->base_type == GLSL_TYPE_SAMPLER);
2494 static const char *const names[4] = {
2495 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2496 };
2497 return names[type_idx];
2498 }
2499 case GLSL_SAMPLER_DIM_RECT: {
2500 assert(type->base_type == GLSL_TYPE_SAMPLER);
2501 static const char *const names[4] = {
2502 "usamplerRect", NULL, "usamplerRectShadow", NULL
2503 };
2504 return names[type_idx];
2505 }
2506 case GLSL_SAMPLER_DIM_BUF: {
2507 static const char *const names[8] = {
2508 "usamplerBuffer", NULL, NULL, NULL,
2509 "uimageBuffer", NULL, NULL, NULL
2510 };
2511 return names[offset + type_idx];
2512 }
2513 default:
2514 unreachable("Unsupported usampler/uimage dimensionality");
2515 } /* sampler/image uint dimensionality */
2516 break;
2517 default:
2518 unreachable("Unsupported sampler/image type");
2519 } /* sampler/image type */
2520 break;
2521 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2522 break;
2523 default:
2524 unreachable("Unsupported type");
2525 } /* base type */
2526 }
2527
2528 static unsigned
2529 select_gles_precision(unsigned qual_precision,
2530 const glsl_type *type,
2531 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2532 {
2533 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2534 * In GLES we take the precision from the type qualifier if present,
2535 * otherwise, if the type of the variable allows precision qualifiers at
2536 * all, we look for the default precision qualifier for that type in the
2537 * current scope.
2538 */
2539 assert(state->es_shader);
2540
2541 unsigned precision = GLSL_PRECISION_NONE;
2542 if (qual_precision) {
2543 precision = qual_precision;
2544 } else if (precision_qualifier_allowed(type)) {
2545 const char *type_name =
2546 get_type_name_for_precision_qualifier(type->without_array());
2547 assert(type_name != NULL);
2548
2549 precision =
2550 state->symbols->get_default_precision_qualifier(type_name);
2551 if (precision == ast_precision_none) {
2552 _mesa_glsl_error(loc, state,
2553 "No precision specified in this scope for type `%s'",
2554 type->name);
2555 }
2556 }
2557 return precision;
2558 }
2559
2560 const glsl_type *
2561 ast_fully_specified_type::glsl_type(const char **name,
2562 struct _mesa_glsl_parse_state *state) const
2563 {
2564 return this->specifier->glsl_type(name, state);
2565 }
2566
2567 /**
2568 * Determine whether a toplevel variable declaration declares a varying. This
2569 * function operates by examining the variable's mode and the shader target,
2570 * so it correctly identifies linkage variables regardless of whether they are
2571 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2572 *
2573 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2574 * this function will produce undefined results.
2575 */
2576 static bool
2577 is_varying_var(ir_variable *var, gl_shader_stage target)
2578 {
2579 switch (target) {
2580 case MESA_SHADER_VERTEX:
2581 return var->data.mode == ir_var_shader_out;
2582 case MESA_SHADER_FRAGMENT:
2583 return var->data.mode == ir_var_shader_in;
2584 default:
2585 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2586 }
2587 }
2588
2589
2590 /**
2591 * Matrix layout qualifiers are only allowed on certain types
2592 */
2593 static void
2594 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2595 YYLTYPE *loc,
2596 const glsl_type *type,
2597 ir_variable *var)
2598 {
2599 if (var && !var->is_in_buffer_block()) {
2600 /* Layout qualifiers may only apply to interface blocks and fields in
2601 * them.
2602 */
2603 _mesa_glsl_error(loc, state,
2604 "uniform block layout qualifiers row_major and "
2605 "column_major may not be applied to variables "
2606 "outside of uniform blocks");
2607 } else if (!type->without_array()->is_matrix()) {
2608 /* The OpenGL ES 3.0 conformance tests did not originally allow
2609 * matrix layout qualifiers on non-matrices. However, the OpenGL
2610 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2611 * amended to specifically allow these layouts on all types. Emit
2612 * a warning so that people know their code may not be portable.
2613 */
2614 _mesa_glsl_warning(loc, state,
2615 "uniform block layout qualifiers row_major and "
2616 "column_major applied to non-matrix types may "
2617 "be rejected by older compilers");
2618 }
2619 }
2620
2621 static bool
2622 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2623 struct _mesa_glsl_parse_state *state,
2624 unsigned xfb_buffer) {
2625 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2626 _mesa_glsl_error(loc, state,
2627 "invalid xfb_buffer specified %d is larger than "
2628 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2629 xfb_buffer,
2630 state->Const.MaxTransformFeedbackBuffers - 1);
2631 return false;
2632 }
2633
2634 return true;
2635 }
2636
2637 /* From the ARB_enhanced_layouts spec:
2638 *
2639 * "Variables and block members qualified with *xfb_offset* can be
2640 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2641 * The offset must be a multiple of the size of the first component of
2642 * the first qualified variable or block member, or a compile-time error
2643 * results. Further, if applied to an aggregate containing a double,
2644 * the offset must also be a multiple of 8, and the space taken in the
2645 * buffer will be a multiple of 8.
2646 */
2647 static bool
2648 validate_xfb_offset_qualifier(YYLTYPE *loc,
2649 struct _mesa_glsl_parse_state *state,
2650 int xfb_offset, const glsl_type *type,
2651 unsigned component_size) {
2652 const glsl_type *t_without_array = type->without_array();
2653
2654 if (xfb_offset != -1 && type->is_unsized_array()) {
2655 _mesa_glsl_error(loc, state,
2656 "xfb_offset can't be used with unsized arrays.");
2657 return false;
2658 }
2659
2660 /* Make sure nested structs don't contain unsized arrays, and validate
2661 * any xfb_offsets on interface members.
2662 */
2663 if (t_without_array->is_record() || t_without_array->is_interface())
2664 for (unsigned int i = 0; i < t_without_array->length; i++) {
2665 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2666
2667 /* When the interface block doesn't have an xfb_offset qualifier then
2668 * we apply the component size rules at the member level.
2669 */
2670 if (xfb_offset == -1)
2671 component_size = member_t->contains_double() ? 8 : 4;
2672
2673 int xfb_offset = t_without_array->fields.structure[i].offset;
2674 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2675 component_size);
2676 }
2677
2678 /* Nested structs or interface block without offset may not have had an
2679 * offset applied yet so return.
2680 */
2681 if (xfb_offset == -1) {
2682 return true;
2683 }
2684
2685 if (xfb_offset % component_size) {
2686 _mesa_glsl_error(loc, state,
2687 "invalid qualifier xfb_offset=%d must be a multiple "
2688 "of the first component size of the first qualified "
2689 "variable or block member. Or double if an aggregate "
2690 "that contains a double (%d).",
2691 xfb_offset, component_size);
2692 return false;
2693 }
2694
2695 return true;
2696 }
2697
2698 static bool
2699 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2700 unsigned stream)
2701 {
2702 if (stream >= state->ctx->Const.MaxVertexStreams) {
2703 _mesa_glsl_error(loc, state,
2704 "invalid stream specified %d is larger than "
2705 "MAX_VERTEX_STREAMS - 1 (%d).",
2706 stream, state->ctx->Const.MaxVertexStreams - 1);
2707 return false;
2708 }
2709
2710 return true;
2711 }
2712
2713 static void
2714 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2715 YYLTYPE *loc,
2716 ir_variable *var,
2717 const glsl_type *type,
2718 const ast_type_qualifier *qual)
2719 {
2720 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2721 _mesa_glsl_error(loc, state,
2722 "the \"binding\" qualifier only applies to uniforms and "
2723 "shader storage buffer objects");
2724 return;
2725 }
2726
2727 unsigned qual_binding;
2728 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2729 &qual_binding)) {
2730 return;
2731 }
2732
2733 const struct gl_context *const ctx = state->ctx;
2734 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2735 unsigned max_index = qual_binding + elements - 1;
2736 const glsl_type *base_type = type->without_array();
2737
2738 if (base_type->is_interface()) {
2739 /* UBOs. From page 60 of the GLSL 4.20 specification:
2740 * "If the binding point for any uniform block instance is less than zero,
2741 * or greater than or equal to the implementation-dependent maximum
2742 * number of uniform buffer bindings, a compilation error will occur.
2743 * When the binding identifier is used with a uniform block instanced as
2744 * an array of size N, all elements of the array from binding through
2745 * binding + N – 1 must be within this range."
2746 *
2747 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2748 */
2749 if (qual->flags.q.uniform &&
2750 max_index >= ctx->Const.MaxUniformBufferBindings) {
2751 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2752 "the maximum number of UBO binding points (%d)",
2753 qual_binding, elements,
2754 ctx->Const.MaxUniformBufferBindings);
2755 return;
2756 }
2757
2758 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2759 * "If the binding point for any uniform or shader storage block instance
2760 * is less than zero, or greater than or equal to the
2761 * implementation-dependent maximum number of uniform buffer bindings, a
2762 * compile-time error will occur. When the binding identifier is used
2763 * with a uniform or shader storage block instanced as an array of size
2764 * N, all elements of the array from binding through binding + N – 1 must
2765 * be within this range."
2766 */
2767 if (qual->flags.q.buffer &&
2768 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2769 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2770 "the maximum number of SSBO binding points (%d)",
2771 qual_binding, elements,
2772 ctx->Const.MaxShaderStorageBufferBindings);
2773 return;
2774 }
2775 } else if (base_type->is_sampler()) {
2776 /* Samplers. From page 63 of the GLSL 4.20 specification:
2777 * "If the binding is less than zero, or greater than or equal to the
2778 * implementation-dependent maximum supported number of units, a
2779 * compilation error will occur. When the binding identifier is used
2780 * with an array of size N, all elements of the array from binding
2781 * through binding + N - 1 must be within this range."
2782 */
2783 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2784
2785 if (max_index >= limit) {
2786 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2787 "exceeds the maximum number of texture image units "
2788 "(%u)", qual_binding, elements, limit);
2789
2790 return;
2791 }
2792 } else if (base_type->contains_atomic()) {
2793 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2794 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2795 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2796 " maximum number of atomic counter buffer bindings"
2797 "(%u)", qual_binding,
2798 ctx->Const.MaxAtomicBufferBindings);
2799
2800 return;
2801 }
2802 } else if ((state->is_version(420, 310) ||
2803 state->ARB_shading_language_420pack_enable) &&
2804 base_type->is_image()) {
2805 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2806 if (max_index >= ctx->Const.MaxImageUnits) {
2807 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2808 " maximum number of image units (%d)", max_index,
2809 ctx->Const.MaxImageUnits);
2810 return;
2811 }
2812
2813 } else {
2814 _mesa_glsl_error(loc, state,
2815 "the \"binding\" qualifier only applies to uniform "
2816 "blocks, opaque variables, or arrays thereof");
2817 return;
2818 }
2819
2820 var->data.explicit_binding = true;
2821 var->data.binding = qual_binding;
2822
2823 return;
2824 }
2825
2826
2827 static void
2828 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2829 YYLTYPE *loc,
2830 const glsl_interp_mode interpolation,
2831 const struct ast_type_qualifier *qual,
2832 const struct glsl_type *var_type,
2833 ir_variable_mode mode)
2834 {
2835 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2836 * not to vertex shader inputs nor fragment shader outputs.
2837 *
2838 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2839 * "Outputs from a vertex shader (out) and inputs to a fragment
2840 * shader (in) can be further qualified with one or more of these
2841 * interpolation qualifiers"
2842 * ...
2843 * "These interpolation qualifiers may only precede the qualifiers in,
2844 * centroid in, out, or centroid out in a declaration. They do not apply
2845 * to the deprecated storage qualifiers varying or centroid
2846 * varying. They also do not apply to inputs into a vertex shader or
2847 * outputs from a fragment shader."
2848 *
2849 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2850 * "Outputs from a shader (out) and inputs to a shader (in) can be
2851 * further qualified with one of these interpolation qualifiers."
2852 * ...
2853 * "These interpolation qualifiers may only precede the qualifiers
2854 * in, centroid in, out, or centroid out in a declaration. They do
2855 * not apply to inputs into a vertex shader or outputs from a
2856 * fragment shader."
2857 */
2858 if (state->is_version(130, 300)
2859 && interpolation != INTERP_MODE_NONE) {
2860 const char *i = interpolation_string(interpolation);
2861 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2862 _mesa_glsl_error(loc, state,
2863 "interpolation qualifier `%s' can only be applied to "
2864 "shader inputs or outputs.", i);
2865
2866 switch (state->stage) {
2867 case MESA_SHADER_VERTEX:
2868 if (mode == ir_var_shader_in) {
2869 _mesa_glsl_error(loc, state,
2870 "interpolation qualifier '%s' cannot be applied to "
2871 "vertex shader inputs", i);
2872 }
2873 break;
2874 case MESA_SHADER_FRAGMENT:
2875 if (mode == ir_var_shader_out) {
2876 _mesa_glsl_error(loc, state,
2877 "interpolation qualifier '%s' cannot be applied to "
2878 "fragment shader outputs", i);
2879 }
2880 break;
2881 default:
2882 break;
2883 }
2884 }
2885
2886 /* Interpolation qualifiers cannot be applied to 'centroid' and
2887 * 'centroid varying'.
2888 *
2889 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2890 * "interpolation qualifiers may only precede the qualifiers in,
2891 * centroid in, out, or centroid out in a declaration. They do not apply
2892 * to the deprecated storage qualifiers varying or centroid varying."
2893 *
2894 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2895 */
2896 if (state->is_version(130, 0)
2897 && interpolation != INTERP_MODE_NONE
2898 && qual->flags.q.varying) {
2899
2900 const char *i = interpolation_string(interpolation);
2901 const char *s;
2902 if (qual->flags.q.centroid)
2903 s = "centroid varying";
2904 else
2905 s = "varying";
2906
2907 _mesa_glsl_error(loc, state,
2908 "qualifier '%s' cannot be applied to the "
2909 "deprecated storage qualifier '%s'", i, s);
2910 }
2911
2912 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2913 * so must integer vertex outputs.
2914 *
2915 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2916 * "Fragment shader inputs that are signed or unsigned integers or
2917 * integer vectors must be qualified with the interpolation qualifier
2918 * flat."
2919 *
2920 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2921 * "Fragment shader inputs that are, or contain, signed or unsigned
2922 * integers or integer vectors must be qualified with the
2923 * interpolation qualifier flat."
2924 *
2925 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2926 * "Vertex shader outputs that are, or contain, signed or unsigned
2927 * integers or integer vectors must be qualified with the
2928 * interpolation qualifier flat."
2929 *
2930 * Note that prior to GLSL 1.50, this requirement applied to vertex
2931 * outputs rather than fragment inputs. That creates problems in the
2932 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2933 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2934 * apply the restriction to both vertex outputs and fragment inputs.
2935 *
2936 * Note also that the desktop GLSL specs are missing the text "or
2937 * contain"; this is presumably an oversight, since there is no
2938 * reasonable way to interpolate a fragment shader input that contains
2939 * an integer. See Khronos bug #15671.
2940 */
2941 if (state->is_version(130, 300)
2942 && var_type->contains_integer()
2943 && interpolation != INTERP_MODE_FLAT
2944 && ((state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_in)
2945 || (state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_out
2946 && state->es_shader))) {
2947 const char *shader_var_type = (state->stage == MESA_SHADER_VERTEX) ?
2948 "vertex output" : "fragment input";
2949 _mesa_glsl_error(loc, state, "if a %s is (or contains) "
2950 "an integer, then it must be qualified with 'flat'",
2951 shader_var_type);
2952 }
2953
2954 /* Double fragment inputs must be qualified with 'flat'.
2955 *
2956 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2957 * "This extension does not support interpolation of double-precision
2958 * values; doubles used as fragment shader inputs must be qualified as
2959 * "flat"."
2960 *
2961 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2962 * "Fragment shader inputs that are signed or unsigned integers, integer
2963 * vectors, or any double-precision floating-point type must be
2964 * qualified with the interpolation qualifier flat."
2965 *
2966 * Note that the GLSL specs are missing the text "or contain"; this is
2967 * presumably an oversight. See Khronos bug #15671.
2968 *
2969 * The 'double' type does not exist in GLSL ES so far.
2970 */
2971 if (state->has_double()
2972 && var_type->contains_double()
2973 && interpolation != INTERP_MODE_FLAT
2974 && state->stage == MESA_SHADER_FRAGMENT
2975 && mode == ir_var_shader_in) {
2976 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2977 "a double, then it must be qualified with 'flat'");
2978 }
2979 }
2980
2981 static glsl_interp_mode
2982 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2983 const struct glsl_type *var_type,
2984 ir_variable_mode mode,
2985 struct _mesa_glsl_parse_state *state,
2986 YYLTYPE *loc)
2987 {
2988 glsl_interp_mode interpolation;
2989 if (qual->flags.q.flat)
2990 interpolation = INTERP_MODE_FLAT;
2991 else if (qual->flags.q.noperspective)
2992 interpolation = INTERP_MODE_NOPERSPECTIVE;
2993 else if (qual->flags.q.smooth)
2994 interpolation = INTERP_MODE_SMOOTH;
2995 else if (state->es_shader &&
2996 ((mode == ir_var_shader_in &&
2997 state->stage != MESA_SHADER_VERTEX) ||
2998 (mode == ir_var_shader_out &&
2999 state->stage != MESA_SHADER_FRAGMENT)))
3000 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3001 *
3002 * "When no interpolation qualifier is present, smooth interpolation
3003 * is used."
3004 */
3005 interpolation = INTERP_MODE_SMOOTH;
3006 else
3007 interpolation = INTERP_MODE_NONE;
3008
3009 validate_interpolation_qualifier(state, loc,
3010 interpolation,
3011 qual, var_type, mode);
3012
3013 return interpolation;
3014 }
3015
3016
3017 static void
3018 apply_explicit_location(const struct ast_type_qualifier *qual,
3019 ir_variable *var,
3020 struct _mesa_glsl_parse_state *state,
3021 YYLTYPE *loc)
3022 {
3023 bool fail = false;
3024
3025 unsigned qual_location;
3026 if (!process_qualifier_constant(state, loc, "location", qual->location,
3027 &qual_location)) {
3028 return;
3029 }
3030
3031 /* Checks for GL_ARB_explicit_uniform_location. */
3032 if (qual->flags.q.uniform) {
3033 if (!state->check_explicit_uniform_location_allowed(loc, var))
3034 return;
3035
3036 const struct gl_context *const ctx = state->ctx;
3037 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3038
3039 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3040 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3041 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3042 ctx->Const.MaxUserAssignableUniformLocations);
3043 return;
3044 }
3045
3046 var->data.explicit_location = true;
3047 var->data.location = qual_location;
3048 return;
3049 }
3050
3051 /* Between GL_ARB_explicit_attrib_location an
3052 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3053 * stage can be assigned explicit locations. The checking here associates
3054 * the correct extension with the correct stage's input / output:
3055 *
3056 * input output
3057 * ----- ------
3058 * vertex explicit_loc sso
3059 * tess control sso sso
3060 * tess eval sso sso
3061 * geometry sso sso
3062 * fragment sso explicit_loc
3063 */
3064 switch (state->stage) {
3065 case MESA_SHADER_VERTEX:
3066 if (var->data.mode == ir_var_shader_in) {
3067 if (!state->check_explicit_attrib_location_allowed(loc, var))
3068 return;
3069
3070 break;
3071 }
3072
3073 if (var->data.mode == ir_var_shader_out) {
3074 if (!state->check_separate_shader_objects_allowed(loc, var))
3075 return;
3076
3077 break;
3078 }
3079
3080 fail = true;
3081 break;
3082
3083 case MESA_SHADER_TESS_CTRL:
3084 case MESA_SHADER_TESS_EVAL:
3085 case MESA_SHADER_GEOMETRY:
3086 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3087 if (!state->check_separate_shader_objects_allowed(loc, var))
3088 return;
3089
3090 break;
3091 }
3092
3093 fail = true;
3094 break;
3095
3096 case MESA_SHADER_FRAGMENT:
3097 if (var->data.mode == ir_var_shader_in) {
3098 if (!state->check_separate_shader_objects_allowed(loc, var))
3099 return;
3100
3101 break;
3102 }
3103
3104 if (var->data.mode == ir_var_shader_out) {
3105 if (!state->check_explicit_attrib_location_allowed(loc, var))
3106 return;
3107
3108 break;
3109 }
3110
3111 fail = true;
3112 break;
3113
3114 case MESA_SHADER_COMPUTE:
3115 _mesa_glsl_error(loc, state,
3116 "compute shader variables cannot be given "
3117 "explicit locations");
3118 return;
3119 };
3120
3121 if (fail) {
3122 _mesa_glsl_error(loc, state,
3123 "%s cannot be given an explicit location in %s shader",
3124 mode_string(var),
3125 _mesa_shader_stage_to_string(state->stage));
3126 } else {
3127 var->data.explicit_location = true;
3128
3129 switch (state->stage) {
3130 case MESA_SHADER_VERTEX:
3131 var->data.location = (var->data.mode == ir_var_shader_in)
3132 ? (qual_location + VERT_ATTRIB_GENERIC0)
3133 : (qual_location + VARYING_SLOT_VAR0);
3134 break;
3135
3136 case MESA_SHADER_TESS_CTRL:
3137 case MESA_SHADER_TESS_EVAL:
3138 case MESA_SHADER_GEOMETRY:
3139 if (var->data.patch)
3140 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3141 else
3142 var->data.location = qual_location + VARYING_SLOT_VAR0;
3143 break;
3144
3145 case MESA_SHADER_FRAGMENT:
3146 var->data.location = (var->data.mode == ir_var_shader_out)
3147 ? (qual_location + FRAG_RESULT_DATA0)
3148 : (qual_location + VARYING_SLOT_VAR0);
3149 break;
3150 case MESA_SHADER_COMPUTE:
3151 assert(!"Unexpected shader type");
3152 break;
3153 }
3154
3155 /* Check if index was set for the uniform instead of the function */
3156 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3157 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3158 "used with subroutine functions");
3159 return;
3160 }
3161
3162 unsigned qual_index;
3163 if (qual->flags.q.explicit_index &&
3164 process_qualifier_constant(state, loc, "index", qual->index,
3165 &qual_index)) {
3166 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3167 * Layout Qualifiers):
3168 *
3169 * "It is also a compile-time error if a fragment shader
3170 * sets a layout index to less than 0 or greater than 1."
3171 *
3172 * Older specifications don't mandate a behavior; we take
3173 * this as a clarification and always generate the error.
3174 */
3175 if (qual_index > 1) {
3176 _mesa_glsl_error(loc, state,
3177 "explicit index may only be 0 or 1");
3178 } else {
3179 var->data.explicit_index = true;
3180 var->data.index = qual_index;
3181 }
3182 }
3183 }
3184 }
3185
3186 static void
3187 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3188 ir_variable *var,
3189 struct _mesa_glsl_parse_state *state,
3190 YYLTYPE *loc)
3191 {
3192 const glsl_type *base_type = var->type->without_array();
3193
3194 if (base_type->is_image()) {
3195 if (var->data.mode != ir_var_uniform &&
3196 var->data.mode != ir_var_function_in) {
3197 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3198 "function parameters or uniform-qualified "
3199 "global variables");
3200 }
3201
3202 var->data.image_read_only |= qual->flags.q.read_only;
3203 var->data.image_write_only |= qual->flags.q.write_only;
3204 var->data.image_coherent |= qual->flags.q.coherent;
3205 var->data.image_volatile |= qual->flags.q._volatile;
3206 var->data.image_restrict |= qual->flags.q.restrict_flag;
3207 var->data.read_only = true;
3208
3209 if (qual->flags.q.explicit_image_format) {
3210 if (var->data.mode == ir_var_function_in) {
3211 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3212 "used on image function parameters");
3213 }
3214
3215 if (qual->image_base_type != base_type->sampled_type) {
3216 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3217 "base data type of the image");
3218 }
3219
3220 var->data.image_format = qual->image_format;
3221 } else {
3222 if (var->data.mode == ir_var_uniform) {
3223 if (state->es_shader) {
3224 _mesa_glsl_error(loc, state, "all image uniforms "
3225 "must have a format layout qualifier");
3226
3227 } else if (!qual->flags.q.write_only) {
3228 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3229 "`writeonly' must have a format layout "
3230 "qualifier");
3231 }
3232 }
3233
3234 var->data.image_format = GL_NONE;
3235 }
3236
3237 /* From page 70 of the GLSL ES 3.1 specification:
3238 *
3239 * "Except for image variables qualified with the format qualifiers
3240 * r32f, r32i, and r32ui, image variables must specify either memory
3241 * qualifier readonly or the memory qualifier writeonly."
3242 */
3243 if (state->es_shader &&
3244 var->data.image_format != GL_R32F &&
3245 var->data.image_format != GL_R32I &&
3246 var->data.image_format != GL_R32UI &&
3247 !var->data.image_read_only &&
3248 !var->data.image_write_only) {
3249 _mesa_glsl_error(loc, state, "image variables of format other than "
3250 "r32f, r32i or r32ui must be qualified `readonly' or "
3251 "`writeonly'");
3252 }
3253
3254 } else if (qual->flags.q.read_only ||
3255 qual->flags.q.write_only ||
3256 qual->flags.q.coherent ||
3257 qual->flags.q._volatile ||
3258 qual->flags.q.restrict_flag ||
3259 qual->flags.q.explicit_image_format) {
3260 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3261 "images");
3262 }
3263 }
3264
3265 static inline const char*
3266 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3267 {
3268 if (origin_upper_left && pixel_center_integer)
3269 return "origin_upper_left, pixel_center_integer";
3270 else if (origin_upper_left)
3271 return "origin_upper_left";
3272 else if (pixel_center_integer)
3273 return "pixel_center_integer";
3274 else
3275 return " ";
3276 }
3277
3278 static inline bool
3279 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3280 const struct ast_type_qualifier *qual)
3281 {
3282 /* If gl_FragCoord was previously declared, and the qualifiers were
3283 * different in any way, return true.
3284 */
3285 if (state->fs_redeclares_gl_fragcoord) {
3286 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3287 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3288 }
3289
3290 return false;
3291 }
3292
3293 static inline void
3294 validate_array_dimensions(const glsl_type *t,
3295 struct _mesa_glsl_parse_state *state,
3296 YYLTYPE *loc) {
3297 if (t->is_array()) {
3298 t = t->fields.array;
3299 while (t->is_array()) {
3300 if (t->is_unsized_array()) {
3301 _mesa_glsl_error(loc, state,
3302 "only the outermost array dimension can "
3303 "be unsized",
3304 t->name);
3305 break;
3306 }
3307 t = t->fields.array;
3308 }
3309 }
3310 }
3311
3312 static void
3313 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3314 ir_variable *var,
3315 struct _mesa_glsl_parse_state *state,
3316 YYLTYPE *loc)
3317 {
3318 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3319
3320 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3321 *
3322 * "Within any shader, the first redeclarations of gl_FragCoord
3323 * must appear before any use of gl_FragCoord."
3324 *
3325 * Generate a compiler error if above condition is not met by the
3326 * fragment shader.
3327 */
3328 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3329 if (earlier != NULL &&
3330 earlier->data.used &&
3331 !state->fs_redeclares_gl_fragcoord) {
3332 _mesa_glsl_error(loc, state,
3333 "gl_FragCoord used before its first redeclaration "
3334 "in fragment shader");
3335 }
3336
3337 /* Make sure all gl_FragCoord redeclarations specify the same layout
3338 * qualifiers.
3339 */
3340 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3341 const char *const qual_string =
3342 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3343 qual->flags.q.pixel_center_integer);
3344
3345 const char *const state_string =
3346 get_layout_qualifier_string(state->fs_origin_upper_left,
3347 state->fs_pixel_center_integer);
3348
3349 _mesa_glsl_error(loc, state,
3350 "gl_FragCoord redeclared with different layout "
3351 "qualifiers (%s) and (%s) ",
3352 state_string,
3353 qual_string);
3354 }
3355 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3356 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3357 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3358 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3359 state->fs_redeclares_gl_fragcoord =
3360 state->fs_origin_upper_left ||
3361 state->fs_pixel_center_integer ||
3362 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3363 }
3364
3365 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3366 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3367 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3368 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3369 const char *const qual_string = (qual->flags.q.origin_upper_left)
3370 ? "origin_upper_left" : "pixel_center_integer";
3371
3372 _mesa_glsl_error(loc, state,
3373 "layout qualifier `%s' can only be applied to "
3374 "fragment shader input `gl_FragCoord'",
3375 qual_string);
3376 }
3377
3378 if (qual->flags.q.explicit_location) {
3379 apply_explicit_location(qual, var, state, loc);
3380
3381 if (qual->flags.q.explicit_component) {
3382 unsigned qual_component;
3383 if (process_qualifier_constant(state, loc, "component",
3384 qual->component, &qual_component)) {
3385 const glsl_type *type = var->type->without_array();
3386 unsigned components = type->component_slots();
3387
3388 if (type->is_matrix() || type->is_record()) {
3389 _mesa_glsl_error(loc, state, "component layout qualifier "
3390 "cannot be applied to a matrix, a structure, "
3391 "a block, or an array containing any of "
3392 "these.");
3393 } else if (qual_component != 0 &&
3394 (qual_component + components - 1) > 3) {
3395 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3396 (qual_component + components - 1));
3397 } else if (qual_component == 1 && type->is_64bit()) {
3398 /* We don't bother checking for 3 as it should be caught by the
3399 * overflow check above.
3400 */
3401 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3402 "component 1 or 3");
3403 } else {
3404 var->data.explicit_component = true;
3405 var->data.location_frac = qual_component;
3406 }
3407 }
3408 }
3409 } else if (qual->flags.q.explicit_index) {
3410 if (!qual->flags.q.subroutine_def)
3411 _mesa_glsl_error(loc, state,
3412 "explicit index requires explicit location");
3413 } else if (qual->flags.q.explicit_component) {
3414 _mesa_glsl_error(loc, state,
3415 "explicit component requires explicit location");
3416 }
3417
3418 if (qual->flags.q.explicit_binding) {
3419 apply_explicit_binding(state, loc, var, var->type, qual);
3420 }
3421
3422 if (state->stage == MESA_SHADER_GEOMETRY &&
3423 qual->flags.q.out && qual->flags.q.stream) {
3424 unsigned qual_stream;
3425 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3426 &qual_stream) &&
3427 validate_stream_qualifier(loc, state, qual_stream)) {
3428 var->data.stream = qual_stream;
3429 }
3430 }
3431
3432 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3433 unsigned qual_xfb_buffer;
3434 if (process_qualifier_constant(state, loc, "xfb_buffer",
3435 qual->xfb_buffer, &qual_xfb_buffer) &&
3436 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3437 var->data.xfb_buffer = qual_xfb_buffer;
3438 if (qual->flags.q.explicit_xfb_buffer)
3439 var->data.explicit_xfb_buffer = true;
3440 }
3441 }
3442
3443 if (qual->flags.q.explicit_xfb_offset) {
3444 unsigned qual_xfb_offset;
3445 unsigned component_size = var->type->contains_double() ? 8 : 4;
3446
3447 if (process_qualifier_constant(state, loc, "xfb_offset",
3448 qual->offset, &qual_xfb_offset) &&
3449 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3450 var->type, component_size)) {
3451 var->data.offset = qual_xfb_offset;
3452 var->data.explicit_xfb_offset = true;
3453 }
3454 }
3455
3456 if (qual->flags.q.explicit_xfb_stride) {
3457 unsigned qual_xfb_stride;
3458 if (process_qualifier_constant(state, loc, "xfb_stride",
3459 qual->xfb_stride, &qual_xfb_stride)) {
3460 var->data.xfb_stride = qual_xfb_stride;
3461 var->data.explicit_xfb_stride = true;
3462 }
3463 }
3464
3465 if (var->type->contains_atomic()) {
3466 if (var->data.mode == ir_var_uniform) {
3467 if (var->data.explicit_binding) {
3468 unsigned *offset =
3469 &state->atomic_counter_offsets[var->data.binding];
3470
3471 if (*offset % ATOMIC_COUNTER_SIZE)
3472 _mesa_glsl_error(loc, state,
3473 "misaligned atomic counter offset");
3474
3475 var->data.offset = *offset;
3476 *offset += var->type->atomic_size();
3477
3478 } else {
3479 _mesa_glsl_error(loc, state,
3480 "atomic counters require explicit binding point");
3481 }
3482 } else if (var->data.mode != ir_var_function_in) {
3483 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3484 "function parameters or uniform-qualified "
3485 "global variables");
3486 }
3487 }
3488
3489 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3490 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3491 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3492 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3493 * These extensions and all following extensions that add the 'layout'
3494 * keyword have been modified to require the use of 'in' or 'out'.
3495 *
3496 * The following extension do not allow the deprecated keywords:
3497 *
3498 * GL_AMD_conservative_depth
3499 * GL_ARB_conservative_depth
3500 * GL_ARB_gpu_shader5
3501 * GL_ARB_separate_shader_objects
3502 * GL_ARB_tessellation_shader
3503 * GL_ARB_transform_feedback3
3504 * GL_ARB_uniform_buffer_object
3505 *
3506 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3507 * allow layout with the deprecated keywords.
3508 */
3509 const bool relaxed_layout_qualifier_checking =
3510 state->ARB_fragment_coord_conventions_enable;
3511
3512 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3513 || qual->flags.q.varying;
3514 if (qual->has_layout() && uses_deprecated_qualifier) {
3515 if (relaxed_layout_qualifier_checking) {
3516 _mesa_glsl_warning(loc, state,
3517 "`layout' qualifier may not be used with "
3518 "`attribute' or `varying'");
3519 } else {
3520 _mesa_glsl_error(loc, state,
3521 "`layout' qualifier may not be used with "
3522 "`attribute' or `varying'");
3523 }
3524 }
3525
3526 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3527 * AMD_conservative_depth.
3528 */
3529 int depth_layout_count = qual->flags.q.depth_any
3530 + qual->flags.q.depth_greater
3531 + qual->flags.q.depth_less
3532 + qual->flags.q.depth_unchanged;
3533 if (depth_layout_count > 0
3534 && !state->is_version(420, 0)
3535 && !state->AMD_conservative_depth_enable
3536 && !state->ARB_conservative_depth_enable) {
3537 _mesa_glsl_error(loc, state,
3538 "extension GL_AMD_conservative_depth or "
3539 "GL_ARB_conservative_depth must be enabled "
3540 "to use depth layout qualifiers");
3541 } else if (depth_layout_count > 0
3542 && strcmp(var->name, "gl_FragDepth") != 0) {
3543 _mesa_glsl_error(loc, state,
3544 "depth layout qualifiers can be applied only to "
3545 "gl_FragDepth");
3546 } else if (depth_layout_count > 1
3547 && strcmp(var->name, "gl_FragDepth") == 0) {
3548 _mesa_glsl_error(loc, state,
3549 "at most one depth layout qualifier can be applied to "
3550 "gl_FragDepth");
3551 }
3552 if (qual->flags.q.depth_any)
3553 var->data.depth_layout = ir_depth_layout_any;
3554 else if (qual->flags.q.depth_greater)
3555 var->data.depth_layout = ir_depth_layout_greater;
3556 else if (qual->flags.q.depth_less)
3557 var->data.depth_layout = ir_depth_layout_less;
3558 else if (qual->flags.q.depth_unchanged)
3559 var->data.depth_layout = ir_depth_layout_unchanged;
3560 else
3561 var->data.depth_layout = ir_depth_layout_none;
3562
3563 if (qual->flags.q.std140 ||
3564 qual->flags.q.std430 ||
3565 qual->flags.q.packed ||
3566 qual->flags.q.shared) {
3567 _mesa_glsl_error(loc, state,
3568 "uniform and shader storage block layout qualifiers "
3569 "std140, std430, packed, and shared can only be "
3570 "applied to uniform or shader storage blocks, not "
3571 "members");
3572 }
3573
3574 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3575 validate_matrix_layout_for_type(state, loc, var->type, var);
3576 }
3577
3578 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3579 * Inputs):
3580 *
3581 * "Fragment shaders also allow the following layout qualifier on in only
3582 * (not with variable declarations)
3583 * layout-qualifier-id
3584 * early_fragment_tests
3585 * [...]"
3586 */
3587 if (qual->flags.q.early_fragment_tests) {
3588 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3589 "valid in fragment shader input layout declaration.");
3590 }
3591 }
3592
3593 static void
3594 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3595 ir_variable *var,
3596 struct _mesa_glsl_parse_state *state,
3597 YYLTYPE *loc,
3598 bool is_parameter)
3599 {
3600 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3601
3602 if (qual->flags.q.invariant) {
3603 if (var->data.used) {
3604 _mesa_glsl_error(loc, state,
3605 "variable `%s' may not be redeclared "
3606 "`invariant' after being used",
3607 var->name);
3608 } else {
3609 var->data.invariant = 1;
3610 }
3611 }
3612
3613 if (qual->flags.q.precise) {
3614 if (var->data.used) {
3615 _mesa_glsl_error(loc, state,
3616 "variable `%s' may not be redeclared "
3617 "`precise' after being used",
3618 var->name);
3619 } else {
3620 var->data.precise = 1;
3621 }
3622 }
3623
3624 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3625 _mesa_glsl_error(loc, state,
3626 "`subroutine' may only be applied to uniforms, "
3627 "subroutine type declarations, or function definitions");
3628 }
3629
3630 if (qual->flags.q.constant || qual->flags.q.attribute
3631 || qual->flags.q.uniform
3632 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3633 var->data.read_only = 1;
3634
3635 if (qual->flags.q.centroid)
3636 var->data.centroid = 1;
3637
3638 if (qual->flags.q.sample)
3639 var->data.sample = 1;
3640
3641 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3642 if (state->es_shader) {
3643 var->data.precision =
3644 select_gles_precision(qual->precision, var->type, state, loc);
3645 }
3646
3647 if (qual->flags.q.patch)
3648 var->data.patch = 1;
3649
3650 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3651 var->type = glsl_type::error_type;
3652 _mesa_glsl_error(loc, state,
3653 "`attribute' variables may not be declared in the "
3654 "%s shader",
3655 _mesa_shader_stage_to_string(state->stage));
3656 }
3657
3658 /* Disallow layout qualifiers which may only appear on layout declarations. */
3659 if (qual->flags.q.prim_type) {
3660 _mesa_glsl_error(loc, state,
3661 "Primitive type may only be specified on GS input or output "
3662 "layout declaration, not on variables.");
3663 }
3664
3665 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3666 *
3667 * "However, the const qualifier cannot be used with out or inout."
3668 *
3669 * The same section of the GLSL 4.40 spec further clarifies this saying:
3670 *
3671 * "The const qualifier cannot be used with out or inout, or a
3672 * compile-time error results."
3673 */
3674 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3675 _mesa_glsl_error(loc, state,
3676 "`const' may not be applied to `out' or `inout' "
3677 "function parameters");
3678 }
3679
3680 /* If there is no qualifier that changes the mode of the variable, leave
3681 * the setting alone.
3682 */
3683 assert(var->data.mode != ir_var_temporary);
3684 if (qual->flags.q.in && qual->flags.q.out)
3685 var->data.mode = ir_var_function_inout;
3686 else if (qual->flags.q.in)
3687 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3688 else if (qual->flags.q.attribute
3689 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3690 var->data.mode = ir_var_shader_in;
3691 else if (qual->flags.q.out)
3692 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3693 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3694 var->data.mode = ir_var_shader_out;
3695 else if (qual->flags.q.uniform)
3696 var->data.mode = ir_var_uniform;
3697 else if (qual->flags.q.buffer)
3698 var->data.mode = ir_var_shader_storage;
3699 else if (qual->flags.q.shared_storage)
3700 var->data.mode = ir_var_shader_shared;
3701
3702 if (!is_parameter && is_varying_var(var, state->stage)) {
3703 /* User-defined ins/outs are not permitted in compute shaders. */
3704 if (state->stage == MESA_SHADER_COMPUTE) {
3705 _mesa_glsl_error(loc, state,
3706 "user-defined input and output variables are not "
3707 "permitted in compute shaders");
3708 }
3709
3710 /* This variable is being used to link data between shader stages (in
3711 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3712 * that is allowed for such purposes.
3713 *
3714 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3715 *
3716 * "The varying qualifier can be used only with the data types
3717 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3718 * these."
3719 *
3720 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3721 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3722 *
3723 * "Fragment inputs can only be signed and unsigned integers and
3724 * integer vectors, float, floating-point vectors, matrices, or
3725 * arrays of these. Structures cannot be input.
3726 *
3727 * Similar text exists in the section on vertex shader outputs.
3728 *
3729 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3730 * 3.00 spec allows structs as well. Varying structs are also allowed
3731 * in GLSL 1.50.
3732 */
3733 switch (var->type->get_scalar_type()->base_type) {
3734 case GLSL_TYPE_FLOAT:
3735 /* Ok in all GLSL versions */
3736 break;
3737 case GLSL_TYPE_UINT:
3738 case GLSL_TYPE_INT:
3739 if (state->is_version(130, 300))
3740 break;
3741 _mesa_glsl_error(loc, state,
3742 "varying variables must be of base type float in %s",
3743 state->get_version_string());
3744 break;
3745 case GLSL_TYPE_STRUCT:
3746 if (state->is_version(150, 300))
3747 break;
3748 _mesa_glsl_error(loc, state,
3749 "varying variables may not be of type struct");
3750 break;
3751 case GLSL_TYPE_DOUBLE:
3752 break;
3753 default:
3754 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3755 break;
3756 }
3757 }
3758
3759 if (state->all_invariant && (state->current_function == NULL)) {
3760 switch (state->stage) {
3761 case MESA_SHADER_VERTEX:
3762 if (var->data.mode == ir_var_shader_out)
3763 var->data.invariant = true;
3764 break;
3765 case MESA_SHADER_TESS_CTRL:
3766 case MESA_SHADER_TESS_EVAL:
3767 case MESA_SHADER_GEOMETRY:
3768 if ((var->data.mode == ir_var_shader_in)
3769 || (var->data.mode == ir_var_shader_out))
3770 var->data.invariant = true;
3771 break;
3772 case MESA_SHADER_FRAGMENT:
3773 if (var->data.mode == ir_var_shader_in)
3774 var->data.invariant = true;
3775 break;
3776 case MESA_SHADER_COMPUTE:
3777 /* Invariance isn't meaningful in compute shaders. */
3778 break;
3779 }
3780 }
3781
3782 var->data.interpolation =
3783 interpret_interpolation_qualifier(qual, var->type,
3784 (ir_variable_mode) var->data.mode,
3785 state, loc);
3786
3787 /* Does the declaration use the deprecated 'attribute' or 'varying'
3788 * keywords?
3789 */
3790 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3791 || qual->flags.q.varying;
3792
3793
3794 /* Validate auxiliary storage qualifiers */
3795
3796 /* From section 4.3.4 of the GLSL 1.30 spec:
3797 * "It is an error to use centroid in in a vertex shader."
3798 *
3799 * From section 4.3.4 of the GLSL ES 3.00 spec:
3800 * "It is an error to use centroid in or interpolation qualifiers in
3801 * a vertex shader input."
3802 */
3803
3804 /* Section 4.3.6 of the GLSL 1.30 specification states:
3805 * "It is an error to use centroid out in a fragment shader."
3806 *
3807 * The GL_ARB_shading_language_420pack extension specification states:
3808 * "It is an error to use auxiliary storage qualifiers or interpolation
3809 * qualifiers on an output in a fragment shader."
3810 */
3811 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3812 _mesa_glsl_error(loc, state,
3813 "sample qualifier may only be used on `in` or `out` "
3814 "variables between shader stages");
3815 }
3816 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3817 _mesa_glsl_error(loc, state,
3818 "centroid qualifier may only be used with `in', "
3819 "`out' or `varying' variables between shader stages");
3820 }
3821
3822 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3823 _mesa_glsl_error(loc, state,
3824 "the shared storage qualifiers can only be used with "
3825 "compute shaders");
3826 }
3827
3828 apply_image_qualifier_to_variable(qual, var, state, loc);
3829 }
3830
3831 /**
3832 * Get the variable that is being redeclared by this declaration
3833 *
3834 * Semantic checks to verify the validity of the redeclaration are also
3835 * performed. If semantic checks fail, compilation error will be emitted via
3836 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3837 *
3838 * \returns
3839 * A pointer to an existing variable in the current scope if the declaration
3840 * is a redeclaration, \c NULL otherwise.
3841 */
3842 static ir_variable *
3843 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3844 struct _mesa_glsl_parse_state *state,
3845 bool allow_all_redeclarations)
3846 {
3847 /* Check if this declaration is actually a re-declaration, either to
3848 * resize an array or add qualifiers to an existing variable.
3849 *
3850 * This is allowed for variables in the current scope, or when at
3851 * global scope (for built-ins in the implicit outer scope).
3852 */
3853 ir_variable *earlier = state->symbols->get_variable(var->name);
3854 if (earlier == NULL ||
3855 (state->current_function != NULL &&
3856 !state->symbols->name_declared_this_scope(var->name))) {
3857 return NULL;
3858 }
3859
3860
3861 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3862 *
3863 * "It is legal to declare an array without a size and then
3864 * later re-declare the same name as an array of the same
3865 * type and specify a size."
3866 */
3867 if (earlier->type->is_unsized_array() && var->type->is_array()
3868 && (var->type->fields.array == earlier->type->fields.array)) {
3869 /* FINISHME: This doesn't match the qualifiers on the two
3870 * FINISHME: declarations. It's not 100% clear whether this is
3871 * FINISHME: required or not.
3872 */
3873
3874 const int size = var->type->array_size();
3875 check_builtin_array_max_size(var->name, size, loc, state);
3876 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3877 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3878 "previous access",
3879 earlier->data.max_array_access);
3880 }
3881
3882 earlier->type = var->type;
3883 delete var;
3884 var = NULL;
3885 } else if ((state->ARB_fragment_coord_conventions_enable ||
3886 state->is_version(150, 0))
3887 && strcmp(var->name, "gl_FragCoord") == 0
3888 && earlier->type == var->type
3889 && var->data.mode == ir_var_shader_in) {
3890 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3891 * qualifiers.
3892 */
3893 earlier->data.origin_upper_left = var->data.origin_upper_left;
3894 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3895
3896 /* According to section 4.3.7 of the GLSL 1.30 spec,
3897 * the following built-in varaibles can be redeclared with an
3898 * interpolation qualifier:
3899 * * gl_FrontColor
3900 * * gl_BackColor
3901 * * gl_FrontSecondaryColor
3902 * * gl_BackSecondaryColor
3903 * * gl_Color
3904 * * gl_SecondaryColor
3905 */
3906 } else if (state->is_version(130, 0)
3907 && (strcmp(var->name, "gl_FrontColor") == 0
3908 || strcmp(var->name, "gl_BackColor") == 0
3909 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3910 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3911 || strcmp(var->name, "gl_Color") == 0
3912 || strcmp(var->name, "gl_SecondaryColor") == 0)
3913 && earlier->type == var->type
3914 && earlier->data.mode == var->data.mode) {
3915 earlier->data.interpolation = var->data.interpolation;
3916
3917 /* Layout qualifiers for gl_FragDepth. */
3918 } else if ((state->is_version(420, 0) ||
3919 state->AMD_conservative_depth_enable ||
3920 state->ARB_conservative_depth_enable)
3921 && strcmp(var->name, "gl_FragDepth") == 0
3922 && earlier->type == var->type
3923 && earlier->data.mode == var->data.mode) {
3924
3925 /** From the AMD_conservative_depth spec:
3926 * Within any shader, the first redeclarations of gl_FragDepth
3927 * must appear before any use of gl_FragDepth.
3928 */
3929 if (earlier->data.used) {
3930 _mesa_glsl_error(&loc, state,
3931 "the first redeclaration of gl_FragDepth "
3932 "must appear before any use of gl_FragDepth");
3933 }
3934
3935 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3936 if (earlier->data.depth_layout != ir_depth_layout_none
3937 && earlier->data.depth_layout != var->data.depth_layout) {
3938 _mesa_glsl_error(&loc, state,
3939 "gl_FragDepth: depth layout is declared here "
3940 "as '%s, but it was previously declared as "
3941 "'%s'",
3942 depth_layout_string(var->data.depth_layout),
3943 depth_layout_string(earlier->data.depth_layout));
3944 }
3945
3946 earlier->data.depth_layout = var->data.depth_layout;
3947
3948 } else if (allow_all_redeclarations) {
3949 if (earlier->data.mode != var->data.mode) {
3950 _mesa_glsl_error(&loc, state,
3951 "redeclaration of `%s' with incorrect qualifiers",
3952 var->name);
3953 } else if (earlier->type != var->type) {
3954 _mesa_glsl_error(&loc, state,
3955 "redeclaration of `%s' has incorrect type",
3956 var->name);
3957 }
3958 } else {
3959 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3960 }
3961
3962 return earlier;
3963 }
3964
3965 /**
3966 * Generate the IR for an initializer in a variable declaration
3967 */
3968 ir_rvalue *
3969 process_initializer(ir_variable *var, ast_declaration *decl,
3970 ast_fully_specified_type *type,
3971 exec_list *initializer_instructions,
3972 struct _mesa_glsl_parse_state *state)
3973 {
3974 ir_rvalue *result = NULL;
3975
3976 YYLTYPE initializer_loc = decl->initializer->get_location();
3977
3978 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3979 *
3980 * "All uniform variables are read-only and are initialized either
3981 * directly by an application via API commands, or indirectly by
3982 * OpenGL."
3983 */
3984 if (var->data.mode == ir_var_uniform) {
3985 state->check_version(120, 0, &initializer_loc,
3986 "cannot initialize uniform %s",
3987 var->name);
3988 }
3989
3990 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3991 *
3992 * "Buffer variables cannot have initializers."
3993 */
3994 if (var->data.mode == ir_var_shader_storage) {
3995 _mesa_glsl_error(&initializer_loc, state,
3996 "cannot initialize buffer variable %s",
3997 var->name);
3998 }
3999
4000 /* From section 4.1.7 of the GLSL 4.40 spec:
4001 *
4002 * "Opaque variables [...] are initialized only through the
4003 * OpenGL API; they cannot be declared with an initializer in a
4004 * shader."
4005 */
4006 if (var->type->contains_opaque()) {
4007 _mesa_glsl_error(&initializer_loc, state,
4008 "cannot initialize opaque variable %s",
4009 var->name);
4010 }
4011
4012 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4013 _mesa_glsl_error(&initializer_loc, state,
4014 "cannot initialize %s shader input / %s %s",
4015 _mesa_shader_stage_to_string(state->stage),
4016 (state->stage == MESA_SHADER_VERTEX)
4017 ? "attribute" : "varying",
4018 var->name);
4019 }
4020
4021 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4022 _mesa_glsl_error(&initializer_loc, state,
4023 "cannot initialize %s shader output %s",
4024 _mesa_shader_stage_to_string(state->stage),
4025 var->name);
4026 }
4027
4028 /* If the initializer is an ast_aggregate_initializer, recursively store
4029 * type information from the LHS into it, so that its hir() function can do
4030 * type checking.
4031 */
4032 if (decl->initializer->oper == ast_aggregate)
4033 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4034
4035 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4036 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4037
4038 /* Calculate the constant value if this is a const or uniform
4039 * declaration.
4040 *
4041 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4042 *
4043 * "Declarations of globals without a storage qualifier, or with
4044 * just the const qualifier, may include initializers, in which case
4045 * they will be initialized before the first line of main() is
4046 * executed. Such initializers must be a constant expression."
4047 *
4048 * The same section of the GLSL ES 3.00.4 spec has similar language.
4049 */
4050 if (type->qualifier.flags.q.constant
4051 || type->qualifier.flags.q.uniform
4052 || (state->es_shader && state->current_function == NULL)) {
4053 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4054 lhs, rhs, true);
4055 if (new_rhs != NULL) {
4056 rhs = new_rhs;
4057
4058 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4059 * says:
4060 *
4061 * "A constant expression is one of
4062 *
4063 * ...
4064 *
4065 * - an expression formed by an operator on operands that are
4066 * all constant expressions, including getting an element of
4067 * a constant array, or a field of a constant structure, or
4068 * components of a constant vector. However, the sequence
4069 * operator ( , ) and the assignment operators ( =, +=, ...)
4070 * are not included in the operators that can create a
4071 * constant expression."
4072 *
4073 * Section 12.43 (Sequence operator and constant expressions) says:
4074 *
4075 * "Should the following construct be allowed?
4076 *
4077 * float a[2,3];
4078 *
4079 * The expression within the brackets uses the sequence operator
4080 * (',') and returns the integer 3 so the construct is declaring
4081 * a single-dimensional array of size 3. In some languages, the
4082 * construct declares a two-dimensional array. It would be
4083 * preferable to make this construct illegal to avoid confusion.
4084 *
4085 * One possibility is to change the definition of the sequence
4086 * operator so that it does not return a constant-expression and
4087 * hence cannot be used to declare an array size.
4088 *
4089 * RESOLUTION: The result of a sequence operator is not a
4090 * constant-expression."
4091 *
4092 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4093 * contains language almost identical to the section 4.3.3 in the
4094 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4095 * versions.
4096 */
4097 ir_constant *constant_value = rhs->constant_expression_value();
4098 if (!constant_value ||
4099 (state->is_version(430, 300) &&
4100 decl->initializer->has_sequence_subexpression())) {
4101 const char *const variable_mode =
4102 (type->qualifier.flags.q.constant)
4103 ? "const"
4104 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4105
4106 /* If ARB_shading_language_420pack is enabled, initializers of
4107 * const-qualified local variables do not have to be constant
4108 * expressions. Const-qualified global variables must still be
4109 * initialized with constant expressions.
4110 */
4111 if (!state->has_420pack()
4112 || state->current_function == NULL) {
4113 _mesa_glsl_error(& initializer_loc, state,
4114 "initializer of %s variable `%s' must be a "
4115 "constant expression",
4116 variable_mode,
4117 decl->identifier);
4118 if (var->type->is_numeric()) {
4119 /* Reduce cascading errors. */
4120 var->constant_value = type->qualifier.flags.q.constant
4121 ? ir_constant::zero(state, var->type) : NULL;
4122 }
4123 }
4124 } else {
4125 rhs = constant_value;
4126 var->constant_value = type->qualifier.flags.q.constant
4127 ? constant_value : NULL;
4128 }
4129 } else {
4130 if (var->type->is_numeric()) {
4131 /* Reduce cascading errors. */
4132 var->constant_value = type->qualifier.flags.q.constant
4133 ? ir_constant::zero(state, var->type) : NULL;
4134 }
4135 }
4136 }
4137
4138 if (rhs && !rhs->type->is_error()) {
4139 bool temp = var->data.read_only;
4140 if (type->qualifier.flags.q.constant)
4141 var->data.read_only = false;
4142
4143 /* Never emit code to initialize a uniform.
4144 */
4145 const glsl_type *initializer_type;
4146 if (!type->qualifier.flags.q.uniform) {
4147 do_assignment(initializer_instructions, state,
4148 NULL,
4149 lhs, rhs,
4150 &result, true,
4151 true,
4152 type->get_location());
4153 initializer_type = result->type;
4154 } else
4155 initializer_type = rhs->type;
4156
4157 var->constant_initializer = rhs->constant_expression_value();
4158 var->data.has_initializer = true;
4159
4160 /* If the declared variable is an unsized array, it must inherrit
4161 * its full type from the initializer. A declaration such as
4162 *
4163 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4164 *
4165 * becomes
4166 *
4167 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4168 *
4169 * The assignment generated in the if-statement (below) will also
4170 * automatically handle this case for non-uniforms.
4171 *
4172 * If the declared variable is not an array, the types must
4173 * already match exactly. As a result, the type assignment
4174 * here can be done unconditionally. For non-uniforms the call
4175 * to do_assignment can change the type of the initializer (via
4176 * the implicit conversion rules). For uniforms the initializer
4177 * must be a constant expression, and the type of that expression
4178 * was validated above.
4179 */
4180 var->type = initializer_type;
4181
4182 var->data.read_only = temp;
4183 }
4184
4185 return result;
4186 }
4187
4188 static void
4189 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4190 YYLTYPE loc, ir_variable *var,
4191 unsigned num_vertices,
4192 unsigned *size,
4193 const char *var_category)
4194 {
4195 if (var->type->is_unsized_array()) {
4196 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4197 *
4198 * All geometry shader input unsized array declarations will be
4199 * sized by an earlier input layout qualifier, when present, as per
4200 * the following table.
4201 *
4202 * Followed by a table mapping each allowed input layout qualifier to
4203 * the corresponding input length.
4204 *
4205 * Similarly for tessellation control shader outputs.
4206 */
4207 if (num_vertices != 0)
4208 var->type = glsl_type::get_array_instance(var->type->fields.array,
4209 num_vertices);
4210 } else {
4211 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4212 * includes the following examples of compile-time errors:
4213 *
4214 * // code sequence within one shader...
4215 * in vec4 Color1[]; // size unknown
4216 * ...Color1.length()...// illegal, length() unknown
4217 * in vec4 Color2[2]; // size is 2
4218 * ...Color1.length()...// illegal, Color1 still has no size
4219 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4220 * layout(lines) in; // legal, input size is 2, matching
4221 * in vec4 Color4[3]; // illegal, contradicts layout
4222 * ...
4223 *
4224 * To detect the case illustrated by Color3, we verify that the size of
4225 * an explicitly-sized array matches the size of any previously declared
4226 * explicitly-sized array. To detect the case illustrated by Color4, we
4227 * verify that the size of an explicitly-sized array is consistent with
4228 * any previously declared input layout.
4229 */
4230 if (num_vertices != 0 && var->type->length != num_vertices) {
4231 _mesa_glsl_error(&loc, state,
4232 "%s size contradicts previously declared layout "
4233 "(size is %u, but layout requires a size of %u)",
4234 var_category, var->type->length, num_vertices);
4235 } else if (*size != 0 && var->type->length != *size) {
4236 _mesa_glsl_error(&loc, state,
4237 "%s sizes are inconsistent (size is %u, but a "
4238 "previous declaration has size %u)",
4239 var_category, var->type->length, *size);
4240 } else {
4241 *size = var->type->length;
4242 }
4243 }
4244 }
4245
4246 static void
4247 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4248 YYLTYPE loc, ir_variable *var)
4249 {
4250 unsigned num_vertices = 0;
4251
4252 if (state->tcs_output_vertices_specified) {
4253 if (!state->out_qualifier->vertices->
4254 process_qualifier_constant(state, "vertices",
4255 &num_vertices, false)) {
4256 return;
4257 }
4258
4259 if (num_vertices > state->Const.MaxPatchVertices) {
4260 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4261 "GL_MAX_PATCH_VERTICES", num_vertices);
4262 return;
4263 }
4264 }
4265
4266 if (!var->type->is_array() && !var->data.patch) {
4267 _mesa_glsl_error(&loc, state,
4268 "tessellation control shader outputs must be arrays");
4269
4270 /* To avoid cascading failures, short circuit the checks below. */
4271 return;
4272 }
4273
4274 if (var->data.patch)
4275 return;
4276
4277 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4278 &state->tcs_output_size,
4279 "tessellation control shader output");
4280 }
4281
4282 /**
4283 * Do additional processing necessary for tessellation control/evaluation shader
4284 * input declarations. This covers both interface block arrays and bare input
4285 * variables.
4286 */
4287 static void
4288 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4289 YYLTYPE loc, ir_variable *var)
4290 {
4291 if (!var->type->is_array() && !var->data.patch) {
4292 _mesa_glsl_error(&loc, state,
4293 "per-vertex tessellation shader inputs must be arrays");
4294 /* Avoid cascading failures. */
4295 return;
4296 }
4297
4298 if (var->data.patch)
4299 return;
4300
4301 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4302 if (var->type->is_unsized_array()) {
4303 var->type = glsl_type::get_array_instance(var->type->fields.array,
4304 state->Const.MaxPatchVertices);
4305 }
4306 }
4307
4308
4309 /**
4310 * Do additional processing necessary for geometry shader input declarations
4311 * (this covers both interface blocks arrays and bare input variables).
4312 */
4313 static void
4314 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4315 YYLTYPE loc, ir_variable *var)
4316 {
4317 unsigned num_vertices = 0;
4318
4319 if (state->gs_input_prim_type_specified) {
4320 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4321 }
4322
4323 /* Geometry shader input variables must be arrays. Caller should have
4324 * reported an error for this.
4325 */
4326 if (!var->type->is_array()) {
4327 assert(state->error);
4328
4329 /* To avoid cascading failures, short circuit the checks below. */
4330 return;
4331 }
4332
4333 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4334 &state->gs_input_size,
4335 "geometry shader input");
4336 }
4337
4338 void
4339 validate_identifier(const char *identifier, YYLTYPE loc,
4340 struct _mesa_glsl_parse_state *state)
4341 {
4342 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4343 *
4344 * "Identifiers starting with "gl_" are reserved for use by
4345 * OpenGL, and may not be declared in a shader as either a
4346 * variable or a function."
4347 */
4348 if (is_gl_identifier(identifier)) {
4349 _mesa_glsl_error(&loc, state,
4350 "identifier `%s' uses reserved `gl_' prefix",
4351 identifier);
4352 } else if (strstr(identifier, "__")) {
4353 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4354 * spec:
4355 *
4356 * "In addition, all identifiers containing two
4357 * consecutive underscores (__) are reserved as
4358 * possible future keywords."
4359 *
4360 * The intention is that names containing __ are reserved for internal
4361 * use by the implementation, and names prefixed with GL_ are reserved
4362 * for use by Khronos. Names simply containing __ are dangerous to use,
4363 * but should be allowed.
4364 *
4365 * A future version of the GLSL specification will clarify this.
4366 */
4367 _mesa_glsl_warning(&loc, state,
4368 "identifier `%s' uses reserved `__' string",
4369 identifier);
4370 }
4371 }
4372
4373 ir_rvalue *
4374 ast_declarator_list::hir(exec_list *instructions,
4375 struct _mesa_glsl_parse_state *state)
4376 {
4377 void *ctx = state;
4378 const struct glsl_type *decl_type;
4379 const char *type_name = NULL;
4380 ir_rvalue *result = NULL;
4381 YYLTYPE loc = this->get_location();
4382
4383 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4384 *
4385 * "To ensure that a particular output variable is invariant, it is
4386 * necessary to use the invariant qualifier. It can either be used to
4387 * qualify a previously declared variable as being invariant
4388 *
4389 * invariant gl_Position; // make existing gl_Position be invariant"
4390 *
4391 * In these cases the parser will set the 'invariant' flag in the declarator
4392 * list, and the type will be NULL.
4393 */
4394 if (this->invariant) {
4395 assert(this->type == NULL);
4396
4397 if (state->current_function != NULL) {
4398 _mesa_glsl_error(& loc, state,
4399 "all uses of `invariant' keyword must be at global "
4400 "scope");
4401 }
4402
4403 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4404 assert(decl->array_specifier == NULL);
4405 assert(decl->initializer == NULL);
4406
4407 ir_variable *const earlier =
4408 state->symbols->get_variable(decl->identifier);
4409 if (earlier == NULL) {
4410 _mesa_glsl_error(& loc, state,
4411 "undeclared variable `%s' cannot be marked "
4412 "invariant", decl->identifier);
4413 } else if (!is_varying_var(earlier, state->stage)) {
4414 _mesa_glsl_error(&loc, state,
4415 "`%s' cannot be marked invariant; interfaces between "
4416 "shader stages only.", decl->identifier);
4417 } else if (earlier->data.used) {
4418 _mesa_glsl_error(& loc, state,
4419 "variable `%s' may not be redeclared "
4420 "`invariant' after being used",
4421 earlier->name);
4422 } else {
4423 earlier->data.invariant = true;
4424 }
4425 }
4426
4427 /* Invariant redeclarations do not have r-values.
4428 */
4429 return NULL;
4430 }
4431
4432 if (this->precise) {
4433 assert(this->type == NULL);
4434
4435 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4436 assert(decl->array_specifier == NULL);
4437 assert(decl->initializer == NULL);
4438
4439 ir_variable *const earlier =
4440 state->symbols->get_variable(decl->identifier);
4441 if (earlier == NULL) {
4442 _mesa_glsl_error(& loc, state,
4443 "undeclared variable `%s' cannot be marked "
4444 "precise", decl->identifier);
4445 } else if (state->current_function != NULL &&
4446 !state->symbols->name_declared_this_scope(decl->identifier)) {
4447 /* Note: we have to check if we're in a function, since
4448 * builtins are treated as having come from another scope.
4449 */
4450 _mesa_glsl_error(& loc, state,
4451 "variable `%s' from an outer scope may not be "
4452 "redeclared `precise' in this scope",
4453 earlier->name);
4454 } else if (earlier->data.used) {
4455 _mesa_glsl_error(& loc, state,
4456 "variable `%s' may not be redeclared "
4457 "`precise' after being used",
4458 earlier->name);
4459 } else {
4460 earlier->data.precise = true;
4461 }
4462 }
4463
4464 /* Precise redeclarations do not have r-values either. */
4465 return NULL;
4466 }
4467
4468 assert(this->type != NULL);
4469 assert(!this->invariant);
4470 assert(!this->precise);
4471
4472 /* The type specifier may contain a structure definition. Process that
4473 * before any of the variable declarations.
4474 */
4475 (void) this->type->specifier->hir(instructions, state);
4476
4477 decl_type = this->type->glsl_type(& type_name, state);
4478
4479 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4480 * "Buffer variables may only be declared inside interface blocks
4481 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4482 * shader storage blocks. It is a compile-time error to declare buffer
4483 * variables at global scope (outside a block)."
4484 */
4485 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4486 _mesa_glsl_error(&loc, state,
4487 "buffer variables cannot be declared outside "
4488 "interface blocks");
4489 }
4490
4491 /* An offset-qualified atomic counter declaration sets the default
4492 * offset for the next declaration within the same atomic counter
4493 * buffer.
4494 */
4495 if (decl_type && decl_type->contains_atomic()) {
4496 if (type->qualifier.flags.q.explicit_binding &&
4497 type->qualifier.flags.q.explicit_offset) {
4498 unsigned qual_binding;
4499 unsigned qual_offset;
4500 if (process_qualifier_constant(state, &loc, "binding",
4501 type->qualifier.binding,
4502 &qual_binding)
4503 && process_qualifier_constant(state, &loc, "offset",
4504 type->qualifier.offset,
4505 &qual_offset)) {
4506 state->atomic_counter_offsets[qual_binding] = qual_offset;
4507 }
4508 }
4509
4510 ast_type_qualifier allowed_atomic_qual_mask;
4511 allowed_atomic_qual_mask.flags.i = 0;
4512 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4513 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4514 allowed_atomic_qual_mask.flags.q.uniform = 1;
4515
4516 type->qualifier.validate_flags(&loc, state,
4517 "invalid layout qualifier for "
4518 "atomic_uint",
4519 allowed_atomic_qual_mask);
4520 }
4521
4522 if (this->declarations.is_empty()) {
4523 /* If there is no structure involved in the program text, there are two
4524 * possible scenarios:
4525 *
4526 * - The program text contained something like 'vec4;'. This is an
4527 * empty declaration. It is valid but weird. Emit a warning.
4528 *
4529 * - The program text contained something like 'S;' and 'S' is not the
4530 * name of a known structure type. This is both invalid and weird.
4531 * Emit an error.
4532 *
4533 * - The program text contained something like 'mediump float;'
4534 * when the programmer probably meant 'precision mediump
4535 * float;' Emit a warning with a description of what they
4536 * probably meant to do.
4537 *
4538 * Note that if decl_type is NULL and there is a structure involved,
4539 * there must have been some sort of error with the structure. In this
4540 * case we assume that an error was already generated on this line of
4541 * code for the structure. There is no need to generate an additional,
4542 * confusing error.
4543 */
4544 assert(this->type->specifier->structure == NULL || decl_type != NULL
4545 || state->error);
4546
4547 if (decl_type == NULL) {
4548 _mesa_glsl_error(&loc, state,
4549 "invalid type `%s' in empty declaration",
4550 type_name);
4551 } else {
4552 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4553 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4554 * spec:
4555 *
4556 * "... any declaration that leaves the size undefined is
4557 * disallowed as this would add complexity and there are no
4558 * use-cases."
4559 */
4560 if (state->es_shader && decl_type->is_unsized_array()) {
4561 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4562 "or implicitly defined");
4563 }
4564
4565 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4566 *
4567 * "The combinations of types and qualifiers that cause
4568 * compile-time or link-time errors are the same whether or not
4569 * the declaration is empty."
4570 */
4571 validate_array_dimensions(decl_type, state, &loc);
4572 }
4573
4574 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4575 /* Empty atomic counter declarations are allowed and useful
4576 * to set the default offset qualifier.
4577 */
4578 return NULL;
4579 } else if (this->type->qualifier.precision != ast_precision_none) {
4580 if (this->type->specifier->structure != NULL) {
4581 _mesa_glsl_error(&loc, state,
4582 "precision qualifiers can't be applied "
4583 "to structures");
4584 } else {
4585 static const char *const precision_names[] = {
4586 "highp",
4587 "highp",
4588 "mediump",
4589 "lowp"
4590 };
4591
4592 _mesa_glsl_warning(&loc, state,
4593 "empty declaration with precision "
4594 "qualifier, to set the default precision, "
4595 "use `precision %s %s;'",
4596 precision_names[this->type->
4597 qualifier.precision],
4598 type_name);
4599 }
4600 } else if (this->type->specifier->structure == NULL) {
4601 _mesa_glsl_warning(&loc, state, "empty declaration");
4602 }
4603 }
4604 }
4605
4606 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4607 const struct glsl_type *var_type;
4608 ir_variable *var;
4609 const char *identifier = decl->identifier;
4610 /* FINISHME: Emit a warning if a variable declaration shadows a
4611 * FINISHME: declaration at a higher scope.
4612 */
4613
4614 if ((decl_type == NULL) || decl_type->is_void()) {
4615 if (type_name != NULL) {
4616 _mesa_glsl_error(& loc, state,
4617 "invalid type `%s' in declaration of `%s'",
4618 type_name, decl->identifier);
4619 } else {
4620 _mesa_glsl_error(& loc, state,
4621 "invalid type in declaration of `%s'",
4622 decl->identifier);
4623 }
4624 continue;
4625 }
4626
4627 if (this->type->qualifier.flags.q.subroutine) {
4628 const glsl_type *t;
4629 const char *name;
4630
4631 t = state->symbols->get_type(this->type->specifier->type_name);
4632 if (!t)
4633 _mesa_glsl_error(& loc, state,
4634 "invalid type in declaration of `%s'",
4635 decl->identifier);
4636 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4637
4638 identifier = name;
4639
4640 }
4641 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4642 state);
4643
4644 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4645
4646 /* The 'varying in' and 'varying out' qualifiers can only be used with
4647 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4648 * yet.
4649 */
4650 if (this->type->qualifier.flags.q.varying) {
4651 if (this->type->qualifier.flags.q.in) {
4652 _mesa_glsl_error(& loc, state,
4653 "`varying in' qualifier in declaration of "
4654 "`%s' only valid for geometry shaders using "
4655 "ARB_geometry_shader4 or EXT_geometry_shader4",
4656 decl->identifier);
4657 } else if (this->type->qualifier.flags.q.out) {
4658 _mesa_glsl_error(& loc, state,
4659 "`varying out' qualifier in declaration of "
4660 "`%s' only valid for geometry shaders using "
4661 "ARB_geometry_shader4 or EXT_geometry_shader4",
4662 decl->identifier);
4663 }
4664 }
4665
4666 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4667 *
4668 * "Global variables can only use the qualifiers const,
4669 * attribute, uniform, or varying. Only one may be
4670 * specified.
4671 *
4672 * Local variables can only use the qualifier const."
4673 *
4674 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4675 * any extension that adds the 'layout' keyword.
4676 */
4677 if (!state->is_version(130, 300)
4678 && !state->has_explicit_attrib_location()
4679 && !state->has_separate_shader_objects()
4680 && !state->ARB_fragment_coord_conventions_enable) {
4681 if (this->type->qualifier.flags.q.out) {
4682 _mesa_glsl_error(& loc, state,
4683 "`out' qualifier in declaration of `%s' "
4684 "only valid for function parameters in %s",
4685 decl->identifier, state->get_version_string());
4686 }
4687 if (this->type->qualifier.flags.q.in) {
4688 _mesa_glsl_error(& loc, state,
4689 "`in' qualifier in declaration of `%s' "
4690 "only valid for function parameters in %s",
4691 decl->identifier, state->get_version_string());
4692 }
4693 /* FINISHME: Test for other invalid qualifiers. */
4694 }
4695
4696 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4697 & loc, false);
4698 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4699 &loc);
4700
4701 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4702 && (var->type->is_numeric() || var->type->is_boolean())
4703 && state->zero_init) {
4704 const ir_constant_data data = {0};
4705 var->data.has_initializer = true;
4706 var->constant_initializer = new(var) ir_constant(var->type, &data);
4707 }
4708
4709 if (this->type->qualifier.flags.q.invariant) {
4710 if (!is_varying_var(var, state->stage)) {
4711 _mesa_glsl_error(&loc, state,
4712 "`%s' cannot be marked invariant; interfaces between "
4713 "shader stages only", var->name);
4714 }
4715 }
4716
4717 if (state->current_function != NULL) {
4718 const char *mode = NULL;
4719 const char *extra = "";
4720
4721 /* There is no need to check for 'inout' here because the parser will
4722 * only allow that in function parameter lists.
4723 */
4724 if (this->type->qualifier.flags.q.attribute) {
4725 mode = "attribute";
4726 } else if (this->type->qualifier.flags.q.subroutine) {
4727 mode = "subroutine uniform";
4728 } else if (this->type->qualifier.flags.q.uniform) {
4729 mode = "uniform";
4730 } else if (this->type->qualifier.flags.q.varying) {
4731 mode = "varying";
4732 } else if (this->type->qualifier.flags.q.in) {
4733 mode = "in";
4734 extra = " or in function parameter list";
4735 } else if (this->type->qualifier.flags.q.out) {
4736 mode = "out";
4737 extra = " or in function parameter list";
4738 }
4739
4740 if (mode) {
4741 _mesa_glsl_error(& loc, state,
4742 "%s variable `%s' must be declared at "
4743 "global scope%s",
4744 mode, var->name, extra);
4745 }
4746 } else if (var->data.mode == ir_var_shader_in) {
4747 var->data.read_only = true;
4748
4749 if (state->stage == MESA_SHADER_VERTEX) {
4750 bool error_emitted = false;
4751
4752 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4753 *
4754 * "Vertex shader inputs can only be float, floating-point
4755 * vectors, matrices, signed and unsigned integers and integer
4756 * vectors. Vertex shader inputs can also form arrays of these
4757 * types, but not structures."
4758 *
4759 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4760 *
4761 * "Vertex shader inputs can only be float, floating-point
4762 * vectors, matrices, signed and unsigned integers and integer
4763 * vectors. They cannot be arrays or structures."
4764 *
4765 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4766 *
4767 * "The attribute qualifier can be used only with float,
4768 * floating-point vectors, and matrices. Attribute variables
4769 * cannot be declared as arrays or structures."
4770 *
4771 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4772 *
4773 * "Vertex shader inputs can only be float, floating-point
4774 * vectors, matrices, signed and unsigned integers and integer
4775 * vectors. Vertex shader inputs cannot be arrays or
4776 * structures."
4777 */
4778 const glsl_type *check_type = var->type->without_array();
4779
4780 switch (check_type->base_type) {
4781 case GLSL_TYPE_FLOAT:
4782 break;
4783 case GLSL_TYPE_UINT:
4784 case GLSL_TYPE_INT:
4785 if (state->is_version(120, 300))
4786 break;
4787 case GLSL_TYPE_DOUBLE:
4788 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4789 break;
4790 /* FALLTHROUGH */
4791 default:
4792 _mesa_glsl_error(& loc, state,
4793 "vertex shader input / attribute cannot have "
4794 "type %s`%s'",
4795 var->type->is_array() ? "array of " : "",
4796 check_type->name);
4797 error_emitted = true;
4798 }
4799
4800 if (!error_emitted && var->type->is_array() &&
4801 !state->check_version(150, 0, &loc,
4802 "vertex shader input / attribute "
4803 "cannot have array type")) {
4804 error_emitted = true;
4805 }
4806 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4807 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4808 *
4809 * Geometry shader input variables get the per-vertex values
4810 * written out by vertex shader output variables of the same
4811 * names. Since a geometry shader operates on a set of
4812 * vertices, each input varying variable (or input block, see
4813 * interface blocks below) needs to be declared as an array.
4814 */
4815 if (!var->type->is_array()) {
4816 _mesa_glsl_error(&loc, state,
4817 "geometry shader inputs must be arrays");
4818 }
4819
4820 handle_geometry_shader_input_decl(state, loc, var);
4821 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4822 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4823 *
4824 * It is a compile-time error to declare a fragment shader
4825 * input with, or that contains, any of the following types:
4826 *
4827 * * A boolean type
4828 * * An opaque type
4829 * * An array of arrays
4830 * * An array of structures
4831 * * A structure containing an array
4832 * * A structure containing a structure
4833 */
4834 if (state->es_shader) {
4835 const glsl_type *check_type = var->type->without_array();
4836 if (check_type->is_boolean() ||
4837 check_type->contains_opaque()) {
4838 _mesa_glsl_error(&loc, state,
4839 "fragment shader input cannot have type %s",
4840 check_type->name);
4841 }
4842 if (var->type->is_array() &&
4843 var->type->fields.array->is_array()) {
4844 _mesa_glsl_error(&loc, state,
4845 "%s shader output "
4846 "cannot have an array of arrays",
4847 _mesa_shader_stage_to_string(state->stage));
4848 }
4849 if (var->type->is_array() &&
4850 var->type->fields.array->is_record()) {
4851 _mesa_glsl_error(&loc, state,
4852 "fragment shader input "
4853 "cannot have an array of structs");
4854 }
4855 if (var->type->is_record()) {
4856 for (unsigned i = 0; i < var->type->length; i++) {
4857 if (var->type->fields.structure[i].type->is_array() ||
4858 var->type->fields.structure[i].type->is_record())
4859 _mesa_glsl_error(&loc, state,
4860 "fragement shader input cannot have "
4861 "a struct that contains an "
4862 "array or struct");
4863 }
4864 }
4865 }
4866 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4867 state->stage == MESA_SHADER_TESS_EVAL) {
4868 handle_tess_shader_input_decl(state, loc, var);
4869 }
4870 } else if (var->data.mode == ir_var_shader_out) {
4871 const glsl_type *check_type = var->type->without_array();
4872
4873 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4874 *
4875 * It is a compile-time error to declare a vertex, tessellation
4876 * evaluation, tessellation control, or geometry shader output
4877 * that contains any of the following:
4878 *
4879 * * A Boolean type (bool, bvec2 ...)
4880 * * An opaque type
4881 */
4882 if (check_type->is_boolean() || check_type->contains_opaque())
4883 _mesa_glsl_error(&loc, state,
4884 "%s shader output cannot have type %s",
4885 _mesa_shader_stage_to_string(state->stage),
4886 check_type->name);
4887
4888 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4889 *
4890 * It is a compile-time error to declare a fragment shader output
4891 * that contains any of the following:
4892 *
4893 * * A Boolean type (bool, bvec2 ...)
4894 * * A double-precision scalar or vector (double, dvec2 ...)
4895 * * An opaque type
4896 * * Any matrix type
4897 * * A structure
4898 */
4899 if (state->stage == MESA_SHADER_FRAGMENT) {
4900 if (check_type->is_record() || check_type->is_matrix())
4901 _mesa_glsl_error(&loc, state,
4902 "fragment shader output "
4903 "cannot have struct or matrix type");
4904 switch (check_type->base_type) {
4905 case GLSL_TYPE_UINT:
4906 case GLSL_TYPE_INT:
4907 case GLSL_TYPE_FLOAT:
4908 break;
4909 default:
4910 _mesa_glsl_error(&loc, state,
4911 "fragment shader output cannot have "
4912 "type %s", check_type->name);
4913 }
4914 }
4915
4916 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4917 *
4918 * It is a compile-time error to declare a vertex shader output
4919 * with, or that contains, any of the following types:
4920 *
4921 * * A boolean type
4922 * * An opaque type
4923 * * An array of arrays
4924 * * An array of structures
4925 * * A structure containing an array
4926 * * A structure containing a structure
4927 *
4928 * It is a compile-time error to declare a fragment shader output
4929 * with, or that contains, any of the following types:
4930 *
4931 * * A boolean type
4932 * * An opaque type
4933 * * A matrix
4934 * * A structure
4935 * * An array of array
4936 */
4937 if (state->es_shader) {
4938 if (var->type->is_array() &&
4939 var->type->fields.array->is_array()) {
4940 _mesa_glsl_error(&loc, state,
4941 "%s shader output "
4942 "cannot have an array of arrays",
4943 _mesa_shader_stage_to_string(state->stage));
4944 }
4945 if (state->stage == MESA_SHADER_VERTEX) {
4946 if (var->type->is_array() &&
4947 var->type->fields.array->is_record()) {
4948 _mesa_glsl_error(&loc, state,
4949 "vertex shader output "
4950 "cannot have an array of structs");
4951 }
4952 if (var->type->is_record()) {
4953 for (unsigned i = 0; i < var->type->length; i++) {
4954 if (var->type->fields.structure[i].type->is_array() ||
4955 var->type->fields.structure[i].type->is_record())
4956 _mesa_glsl_error(&loc, state,
4957 "vertex shader output cannot have a "
4958 "struct that contains an "
4959 "array or struct");
4960 }
4961 }
4962 }
4963 }
4964
4965 if (state->stage == MESA_SHADER_TESS_CTRL) {
4966 handle_tess_ctrl_shader_output_decl(state, loc, var);
4967 }
4968 } else if (var->type->contains_subroutine()) {
4969 /* declare subroutine uniforms as hidden */
4970 var->data.how_declared = ir_var_hidden;
4971 }
4972
4973 /* From section 4.3.4 of the GLSL 4.00 spec:
4974 * "Input variables may not be declared using the patch in qualifier
4975 * in tessellation control or geometry shaders."
4976 *
4977 * From section 4.3.6 of the GLSL 4.00 spec:
4978 * "It is an error to use patch out in a vertex, tessellation
4979 * evaluation, or geometry shader."
4980 *
4981 * This doesn't explicitly forbid using them in a fragment shader, but
4982 * that's probably just an oversight.
4983 */
4984 if (state->stage != MESA_SHADER_TESS_EVAL
4985 && this->type->qualifier.flags.q.patch
4986 && this->type->qualifier.flags.q.in) {
4987
4988 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4989 "tessellation evaluation shader");
4990 }
4991
4992 if (state->stage != MESA_SHADER_TESS_CTRL
4993 && this->type->qualifier.flags.q.patch
4994 && this->type->qualifier.flags.q.out) {
4995
4996 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4997 "tessellation control shader");
4998 }
4999
5000 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5001 */
5002 if (this->type->qualifier.precision != ast_precision_none) {
5003 state->check_precision_qualifiers_allowed(&loc);
5004 }
5005
5006 if (this->type->qualifier.precision != ast_precision_none &&
5007 !precision_qualifier_allowed(var->type)) {
5008 _mesa_glsl_error(&loc, state,
5009 "precision qualifiers apply only to floating point"
5010 ", integer and opaque types");
5011 }
5012
5013 /* From section 4.1.7 of the GLSL 4.40 spec:
5014 *
5015 * "[Opaque types] can only be declared as function
5016 * parameters or uniform-qualified variables."
5017 */
5018 if (var_type->contains_opaque() &&
5019 !this->type->qualifier.flags.q.uniform) {
5020 _mesa_glsl_error(&loc, state,
5021 "opaque variables must be declared uniform");
5022 }
5023
5024 /* Process the initializer and add its instructions to a temporary
5025 * list. This list will be added to the instruction stream (below) after
5026 * the declaration is added. This is done because in some cases (such as
5027 * redeclarations) the declaration may not actually be added to the
5028 * instruction stream.
5029 */
5030 exec_list initializer_instructions;
5031
5032 /* Examine var name here since var may get deleted in the next call */
5033 bool var_is_gl_id = is_gl_identifier(var->name);
5034
5035 ir_variable *earlier =
5036 get_variable_being_redeclared(var, decl->get_location(), state,
5037 false /* allow_all_redeclarations */);
5038 if (earlier != NULL) {
5039 if (var_is_gl_id &&
5040 earlier->data.how_declared == ir_var_declared_in_block) {
5041 _mesa_glsl_error(&loc, state,
5042 "`%s' has already been redeclared using "
5043 "gl_PerVertex", earlier->name);
5044 }
5045 earlier->data.how_declared = ir_var_declared_normally;
5046 }
5047
5048 if (decl->initializer != NULL) {
5049 result = process_initializer((earlier == NULL) ? var : earlier,
5050 decl, this->type,
5051 &initializer_instructions, state);
5052 } else {
5053 validate_array_dimensions(var_type, state, &loc);
5054 }
5055
5056 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5057 *
5058 * "It is an error to write to a const variable outside of
5059 * its declaration, so they must be initialized when
5060 * declared."
5061 */
5062 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5063 _mesa_glsl_error(& loc, state,
5064 "const declaration of `%s' must be initialized",
5065 decl->identifier);
5066 }
5067
5068 if (state->es_shader) {
5069 const glsl_type *const t = (earlier == NULL)
5070 ? var->type : earlier->type;
5071
5072 if (t->is_unsized_array())
5073 /* Section 10.17 of the GLSL ES 1.00 specification states that
5074 * unsized array declarations have been removed from the language.
5075 * Arrays that are sized using an initializer are still explicitly
5076 * sized. However, GLSL ES 1.00 does not allow array
5077 * initializers. That is only allowed in GLSL ES 3.00.
5078 *
5079 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5080 *
5081 * "An array type can also be formed without specifying a size
5082 * if the definition includes an initializer:
5083 *
5084 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5085 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5086 *
5087 * float a[5];
5088 * float b[] = a;"
5089 */
5090 _mesa_glsl_error(& loc, state,
5091 "unsized array declarations are not allowed in "
5092 "GLSL ES");
5093 }
5094
5095 /* If the declaration is not a redeclaration, there are a few additional
5096 * semantic checks that must be applied. In addition, variable that was
5097 * created for the declaration should be added to the IR stream.
5098 */
5099 if (earlier == NULL) {
5100 validate_identifier(decl->identifier, loc, state);
5101
5102 /* Add the variable to the symbol table. Note that the initializer's
5103 * IR was already processed earlier (though it hasn't been emitted
5104 * yet), without the variable in scope.
5105 *
5106 * This differs from most C-like languages, but it follows the GLSL
5107 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5108 * spec:
5109 *
5110 * "Within a declaration, the scope of a name starts immediately
5111 * after the initializer if present or immediately after the name
5112 * being declared if not."
5113 */
5114 if (!state->symbols->add_variable(var)) {
5115 YYLTYPE loc = this->get_location();
5116 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5117 "current scope", decl->identifier);
5118 continue;
5119 }
5120
5121 /* Push the variable declaration to the top. It means that all the
5122 * variable declarations will appear in a funny last-to-first order,
5123 * but otherwise we run into trouble if a function is prototyped, a
5124 * global var is decled, then the function is defined with usage of
5125 * the global var. See glslparsertest's CorrectModule.frag.
5126 */
5127 instructions->push_head(var);
5128 }
5129
5130 instructions->append_list(&initializer_instructions);
5131 }
5132
5133
5134 /* Generally, variable declarations do not have r-values. However,
5135 * one is used for the declaration in
5136 *
5137 * while (bool b = some_condition()) {
5138 * ...
5139 * }
5140 *
5141 * so we return the rvalue from the last seen declaration here.
5142 */
5143 return result;
5144 }
5145
5146
5147 ir_rvalue *
5148 ast_parameter_declarator::hir(exec_list *instructions,
5149 struct _mesa_glsl_parse_state *state)
5150 {
5151 void *ctx = state;
5152 const struct glsl_type *type;
5153 const char *name = NULL;
5154 YYLTYPE loc = this->get_location();
5155
5156 type = this->type->glsl_type(& name, state);
5157
5158 if (type == NULL) {
5159 if (name != NULL) {
5160 _mesa_glsl_error(& loc, state,
5161 "invalid type `%s' in declaration of `%s'",
5162 name, this->identifier);
5163 } else {
5164 _mesa_glsl_error(& loc, state,
5165 "invalid type in declaration of `%s'",
5166 this->identifier);
5167 }
5168
5169 type = glsl_type::error_type;
5170 }
5171
5172 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5173 *
5174 * "Functions that accept no input arguments need not use void in the
5175 * argument list because prototypes (or definitions) are required and
5176 * therefore there is no ambiguity when an empty argument list "( )" is
5177 * declared. The idiom "(void)" as a parameter list is provided for
5178 * convenience."
5179 *
5180 * Placing this check here prevents a void parameter being set up
5181 * for a function, which avoids tripping up checks for main taking
5182 * parameters and lookups of an unnamed symbol.
5183 */
5184 if (type->is_void()) {
5185 if (this->identifier != NULL)
5186 _mesa_glsl_error(& loc, state,
5187 "named parameter cannot have type `void'");
5188
5189 is_void = true;
5190 return NULL;
5191 }
5192
5193 if (formal_parameter && (this->identifier == NULL)) {
5194 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5195 return NULL;
5196 }
5197
5198 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5199 * call already handled the "vec4[..] foo" case.
5200 */
5201 type = process_array_type(&loc, type, this->array_specifier, state);
5202
5203 if (!type->is_error() && type->is_unsized_array()) {
5204 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5205 "a declared size");
5206 type = glsl_type::error_type;
5207 }
5208
5209 is_void = false;
5210 ir_variable *var = new(ctx)
5211 ir_variable(type, this->identifier, ir_var_function_in);
5212
5213 /* Apply any specified qualifiers to the parameter declaration. Note that
5214 * for function parameters the default mode is 'in'.
5215 */
5216 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5217 true);
5218
5219 /* From section 4.1.7 of the GLSL 4.40 spec:
5220 *
5221 * "Opaque variables cannot be treated as l-values; hence cannot
5222 * be used as out or inout function parameters, nor can they be
5223 * assigned into."
5224 */
5225 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5226 && type->contains_opaque()) {
5227 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5228 "contain opaque variables");
5229 type = glsl_type::error_type;
5230 }
5231
5232 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5233 *
5234 * "When calling a function, expressions that do not evaluate to
5235 * l-values cannot be passed to parameters declared as out or inout."
5236 *
5237 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5238 *
5239 * "Other binary or unary expressions, non-dereferenced arrays,
5240 * function names, swizzles with repeated fields, and constants
5241 * cannot be l-values."
5242 *
5243 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5244 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5245 */
5246 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5247 && type->is_array()
5248 && !state->check_version(120, 100, &loc,
5249 "arrays cannot be out or inout parameters")) {
5250 type = glsl_type::error_type;
5251 }
5252
5253 instructions->push_tail(var);
5254
5255 /* Parameter declarations do not have r-values.
5256 */
5257 return NULL;
5258 }
5259
5260
5261 void
5262 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5263 bool formal,
5264 exec_list *ir_parameters,
5265 _mesa_glsl_parse_state *state)
5266 {
5267 ast_parameter_declarator *void_param = NULL;
5268 unsigned count = 0;
5269
5270 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5271 param->formal_parameter = formal;
5272 param->hir(ir_parameters, state);
5273
5274 if (param->is_void)
5275 void_param = param;
5276
5277 count++;
5278 }
5279
5280 if ((void_param != NULL) && (count > 1)) {
5281 YYLTYPE loc = void_param->get_location();
5282
5283 _mesa_glsl_error(& loc, state,
5284 "`void' parameter must be only parameter");
5285 }
5286 }
5287
5288
5289 void
5290 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5291 {
5292 /* IR invariants disallow function declarations or definitions
5293 * nested within other function definitions. But there is no
5294 * requirement about the relative order of function declarations
5295 * and definitions with respect to one another. So simply insert
5296 * the new ir_function block at the end of the toplevel instruction
5297 * list.
5298 */
5299 state->toplevel_ir->push_tail(f);
5300 }
5301
5302
5303 ir_rvalue *
5304 ast_function::hir(exec_list *instructions,
5305 struct _mesa_glsl_parse_state *state)
5306 {
5307 void *ctx = state;
5308 ir_function *f = NULL;
5309 ir_function_signature *sig = NULL;
5310 exec_list hir_parameters;
5311 YYLTYPE loc = this->get_location();
5312
5313 const char *const name = identifier;
5314
5315 /* New functions are always added to the top-level IR instruction stream,
5316 * so this instruction list pointer is ignored. See also emit_function
5317 * (called below).
5318 */
5319 (void) instructions;
5320
5321 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5322 *
5323 * "Function declarations (prototypes) cannot occur inside of functions;
5324 * they must be at global scope, or for the built-in functions, outside
5325 * the global scope."
5326 *
5327 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5328 *
5329 * "User defined functions may only be defined within the global scope."
5330 *
5331 * Note that this language does not appear in GLSL 1.10.
5332 */
5333 if ((state->current_function != NULL) &&
5334 state->is_version(120, 100)) {
5335 YYLTYPE loc = this->get_location();
5336 _mesa_glsl_error(&loc, state,
5337 "declaration of function `%s' not allowed within "
5338 "function body", name);
5339 }
5340
5341 validate_identifier(name, this->get_location(), state);
5342
5343 /* Convert the list of function parameters to HIR now so that they can be
5344 * used below to compare this function's signature with previously seen
5345 * signatures for functions with the same name.
5346 */
5347 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5348 is_definition,
5349 & hir_parameters, state);
5350
5351 const char *return_type_name;
5352 const glsl_type *return_type =
5353 this->return_type->glsl_type(& return_type_name, state);
5354
5355 if (!return_type) {
5356 YYLTYPE loc = this->get_location();
5357 _mesa_glsl_error(&loc, state,
5358 "function `%s' has undeclared return type `%s'",
5359 name, return_type_name);
5360 return_type = glsl_type::error_type;
5361 }
5362
5363 /* ARB_shader_subroutine states:
5364 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5365 * subroutine(...) to a function declaration."
5366 */
5367 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5368 YYLTYPE loc = this->get_location();
5369 _mesa_glsl_error(&loc, state,
5370 "function declaration `%s' cannot have subroutine prepended",
5371 name);
5372 }
5373
5374 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5375 * "No qualifier is allowed on the return type of a function."
5376 */
5377 if (this->return_type->has_qualifiers(state)) {
5378 YYLTYPE loc = this->get_location();
5379 _mesa_glsl_error(& loc, state,
5380 "function `%s' return type has qualifiers", name);
5381 }
5382
5383 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5384 *
5385 * "Arrays are allowed as arguments and as the return type. In both
5386 * cases, the array must be explicitly sized."
5387 */
5388 if (return_type->is_unsized_array()) {
5389 YYLTYPE loc = this->get_location();
5390 _mesa_glsl_error(& loc, state,
5391 "function `%s' return type array must be explicitly "
5392 "sized", name);
5393 }
5394
5395 /* From section 4.1.7 of the GLSL 4.40 spec:
5396 *
5397 * "[Opaque types] can only be declared as function parameters
5398 * or uniform-qualified variables."
5399 */
5400 if (return_type->contains_opaque()) {
5401 YYLTYPE loc = this->get_location();
5402 _mesa_glsl_error(&loc, state,
5403 "function `%s' return type can't contain an opaque type",
5404 name);
5405 }
5406
5407 /**/
5408 if (return_type->is_subroutine()) {
5409 YYLTYPE loc = this->get_location();
5410 _mesa_glsl_error(&loc, state,
5411 "function `%s' return type can't be a subroutine type",
5412 name);
5413 }
5414
5415
5416 /* Create an ir_function if one doesn't already exist. */
5417 f = state->symbols->get_function(name);
5418 if (f == NULL) {
5419 f = new(ctx) ir_function(name);
5420 if (!this->return_type->qualifier.flags.q.subroutine) {
5421 if (!state->symbols->add_function(f)) {
5422 /* This function name shadows a non-function use of the same name. */
5423 YYLTYPE loc = this->get_location();
5424 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5425 "non-function", name);
5426 return NULL;
5427 }
5428 }
5429 emit_function(state, f);
5430 }
5431
5432 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5433 *
5434 * "A shader cannot redefine or overload built-in functions."
5435 *
5436 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5437 *
5438 * "User code can overload the built-in functions but cannot redefine
5439 * them."
5440 */
5441 if (state->es_shader && state->language_version >= 300) {
5442 /* Local shader has no exact candidates; check the built-ins. */
5443 _mesa_glsl_initialize_builtin_functions();
5444 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5445 YYLTYPE loc = this->get_location();
5446 _mesa_glsl_error(& loc, state,
5447 "A shader cannot redefine or overload built-in "
5448 "function `%s' in GLSL ES 3.00", name);
5449 return NULL;
5450 }
5451 }
5452
5453 /* Verify that this function's signature either doesn't match a previously
5454 * seen signature for a function with the same name, or, if a match is found,
5455 * that the previously seen signature does not have an associated definition.
5456 */
5457 if (state->es_shader || f->has_user_signature()) {
5458 sig = f->exact_matching_signature(state, &hir_parameters);
5459 if (sig != NULL) {
5460 const char *badvar = sig->qualifiers_match(&hir_parameters);
5461 if (badvar != NULL) {
5462 YYLTYPE loc = this->get_location();
5463
5464 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5465 "qualifiers don't match prototype", name, badvar);
5466 }
5467
5468 if (sig->return_type != return_type) {
5469 YYLTYPE loc = this->get_location();
5470
5471 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5472 "match prototype", name);
5473 }
5474
5475 if (sig->is_defined) {
5476 if (is_definition) {
5477 YYLTYPE loc = this->get_location();
5478 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5479 } else {
5480 /* We just encountered a prototype that exactly matches a
5481 * function that's already been defined. This is redundant,
5482 * and we should ignore it.
5483 */
5484 return NULL;
5485 }
5486 }
5487 }
5488 }
5489
5490 /* Verify the return type of main() */
5491 if (strcmp(name, "main") == 0) {
5492 if (! return_type->is_void()) {
5493 YYLTYPE loc = this->get_location();
5494
5495 _mesa_glsl_error(& loc, state, "main() must return void");
5496 }
5497
5498 if (!hir_parameters.is_empty()) {
5499 YYLTYPE loc = this->get_location();
5500
5501 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5502 }
5503 }
5504
5505 /* Finish storing the information about this new function in its signature.
5506 */
5507 if (sig == NULL) {
5508 sig = new(ctx) ir_function_signature(return_type);
5509 f->add_signature(sig);
5510 }
5511
5512 sig->replace_parameters(&hir_parameters);
5513 signature = sig;
5514
5515 if (this->return_type->qualifier.flags.q.subroutine_def) {
5516 int idx;
5517
5518 if (this->return_type->qualifier.flags.q.explicit_index) {
5519 unsigned qual_index;
5520 if (process_qualifier_constant(state, &loc, "index",
5521 this->return_type->qualifier.index,
5522 &qual_index)) {
5523 if (!state->has_explicit_uniform_location()) {
5524 _mesa_glsl_error(&loc, state, "subroutine index requires "
5525 "GL_ARB_explicit_uniform_location or "
5526 "GLSL 4.30");
5527 } else if (qual_index >= MAX_SUBROUTINES) {
5528 _mesa_glsl_error(&loc, state,
5529 "invalid subroutine index (%d) index must "
5530 "be a number between 0 and "
5531 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5532 MAX_SUBROUTINES - 1);
5533 } else {
5534 f->subroutine_index = qual_index;
5535 }
5536 }
5537 }
5538
5539 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5540 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5541 f->num_subroutine_types);
5542 idx = 0;
5543 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5544 const struct glsl_type *type;
5545 /* the subroutine type must be already declared */
5546 type = state->symbols->get_type(decl->identifier);
5547 if (!type) {
5548 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5549 }
5550
5551 for (int i = 0; i < state->num_subroutine_types; i++) {
5552 ir_function *fn = state->subroutine_types[i];
5553 ir_function_signature *tsig = NULL;
5554
5555 if (strcmp(fn->name, decl->identifier))
5556 continue;
5557
5558 tsig = fn->matching_signature(state, &sig->parameters,
5559 false);
5560 if (!tsig) {
5561 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5562 } else {
5563 if (tsig->return_type != sig->return_type) {
5564 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5565 }
5566 }
5567 }
5568 f->subroutine_types[idx++] = type;
5569 }
5570 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5571 ir_function *,
5572 state->num_subroutines + 1);
5573 state->subroutines[state->num_subroutines] = f;
5574 state->num_subroutines++;
5575
5576 }
5577
5578 if (this->return_type->qualifier.flags.q.subroutine) {
5579 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5580 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5581 return NULL;
5582 }
5583 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5584 ir_function *,
5585 state->num_subroutine_types + 1);
5586 state->subroutine_types[state->num_subroutine_types] = f;
5587 state->num_subroutine_types++;
5588
5589 f->is_subroutine = true;
5590 }
5591
5592 /* Function declarations (prototypes) do not have r-values.
5593 */
5594 return NULL;
5595 }
5596
5597
5598 ir_rvalue *
5599 ast_function_definition::hir(exec_list *instructions,
5600 struct _mesa_glsl_parse_state *state)
5601 {
5602 prototype->is_definition = true;
5603 prototype->hir(instructions, state);
5604
5605 ir_function_signature *signature = prototype->signature;
5606 if (signature == NULL)
5607 return NULL;
5608
5609 assert(state->current_function == NULL);
5610 state->current_function = signature;
5611 state->found_return = false;
5612
5613 /* Duplicate parameters declared in the prototype as concrete variables.
5614 * Add these to the symbol table.
5615 */
5616 state->symbols->push_scope();
5617 foreach_in_list(ir_variable, var, &signature->parameters) {
5618 assert(var->as_variable() != NULL);
5619
5620 /* The only way a parameter would "exist" is if two parameters have
5621 * the same name.
5622 */
5623 if (state->symbols->name_declared_this_scope(var->name)) {
5624 YYLTYPE loc = this->get_location();
5625
5626 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5627 } else {
5628 state->symbols->add_variable(var);
5629 }
5630 }
5631
5632 /* Convert the body of the function to HIR. */
5633 this->body->hir(&signature->body, state);
5634 signature->is_defined = true;
5635
5636 state->symbols->pop_scope();
5637
5638 assert(state->current_function == signature);
5639 state->current_function = NULL;
5640
5641 if (!signature->return_type->is_void() && !state->found_return) {
5642 YYLTYPE loc = this->get_location();
5643 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5644 "%s, but no return statement",
5645 signature->function_name(),
5646 signature->return_type->name);
5647 }
5648
5649 /* Function definitions do not have r-values.
5650 */
5651 return NULL;
5652 }
5653
5654
5655 ir_rvalue *
5656 ast_jump_statement::hir(exec_list *instructions,
5657 struct _mesa_glsl_parse_state *state)
5658 {
5659 void *ctx = state;
5660
5661 switch (mode) {
5662 case ast_return: {
5663 ir_return *inst;
5664 assert(state->current_function);
5665
5666 if (opt_return_value) {
5667 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5668
5669 /* The value of the return type can be NULL if the shader says
5670 * 'return foo();' and foo() is a function that returns void.
5671 *
5672 * NOTE: The GLSL spec doesn't say that this is an error. The type
5673 * of the return value is void. If the return type of the function is
5674 * also void, then this should compile without error. Seriously.
5675 */
5676 const glsl_type *const ret_type =
5677 (ret == NULL) ? glsl_type::void_type : ret->type;
5678
5679 /* Implicit conversions are not allowed for return values prior to
5680 * ARB_shading_language_420pack.
5681 */
5682 if (state->current_function->return_type != ret_type) {
5683 YYLTYPE loc = this->get_location();
5684
5685 if (state->has_420pack()) {
5686 if (!apply_implicit_conversion(state->current_function->return_type,
5687 ret, state)) {
5688 _mesa_glsl_error(& loc, state,
5689 "could not implicitly convert return value "
5690 "to %s, in function `%s'",
5691 state->current_function->return_type->name,
5692 state->current_function->function_name());
5693 }
5694 } else {
5695 _mesa_glsl_error(& loc, state,
5696 "`return' with wrong type %s, in function `%s' "
5697 "returning %s",
5698 ret_type->name,
5699 state->current_function->function_name(),
5700 state->current_function->return_type->name);
5701 }
5702 } else if (state->current_function->return_type->base_type ==
5703 GLSL_TYPE_VOID) {
5704 YYLTYPE loc = this->get_location();
5705
5706 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5707 * specs add a clarification:
5708 *
5709 * "A void function can only use return without a return argument, even if
5710 * the return argument has void type. Return statements only accept values:
5711 *
5712 * void func1() { }
5713 * void func2() { return func1(); } // illegal return statement"
5714 */
5715 _mesa_glsl_error(& loc, state,
5716 "void functions can only use `return' without a "
5717 "return argument");
5718 }
5719
5720 inst = new(ctx) ir_return(ret);
5721 } else {
5722 if (state->current_function->return_type->base_type !=
5723 GLSL_TYPE_VOID) {
5724 YYLTYPE loc = this->get_location();
5725
5726 _mesa_glsl_error(& loc, state,
5727 "`return' with no value, in function %s returning "
5728 "non-void",
5729 state->current_function->function_name());
5730 }
5731 inst = new(ctx) ir_return;
5732 }
5733
5734 state->found_return = true;
5735 instructions->push_tail(inst);
5736 break;
5737 }
5738
5739 case ast_discard:
5740 if (state->stage != MESA_SHADER_FRAGMENT) {
5741 YYLTYPE loc = this->get_location();
5742
5743 _mesa_glsl_error(& loc, state,
5744 "`discard' may only appear in a fragment shader");
5745 }
5746 instructions->push_tail(new(ctx) ir_discard);
5747 break;
5748
5749 case ast_break:
5750 case ast_continue:
5751 if (mode == ast_continue &&
5752 state->loop_nesting_ast == NULL) {
5753 YYLTYPE loc = this->get_location();
5754
5755 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5756 } else if (mode == ast_break &&
5757 state->loop_nesting_ast == NULL &&
5758 state->switch_state.switch_nesting_ast == NULL) {
5759 YYLTYPE loc = this->get_location();
5760
5761 _mesa_glsl_error(& loc, state,
5762 "break may only appear in a loop or a switch");
5763 } else {
5764 /* For a loop, inline the for loop expression again, since we don't
5765 * know where near the end of the loop body the normal copy of it is
5766 * going to be placed. Same goes for the condition for a do-while
5767 * loop.
5768 */
5769 if (state->loop_nesting_ast != NULL &&
5770 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5771 if (state->loop_nesting_ast->rest_expression) {
5772 state->loop_nesting_ast->rest_expression->hir(instructions,
5773 state);
5774 }
5775 if (state->loop_nesting_ast->mode ==
5776 ast_iteration_statement::ast_do_while) {
5777 state->loop_nesting_ast->condition_to_hir(instructions, state);
5778 }
5779 }
5780
5781 if (state->switch_state.is_switch_innermost &&
5782 mode == ast_continue) {
5783 /* Set 'continue_inside' to true. */
5784 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5785 ir_dereference_variable *deref_continue_inside_var =
5786 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5787 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5788 true_val));
5789
5790 /* Break out from the switch, continue for the loop will
5791 * be called right after switch. */
5792 ir_loop_jump *const jump =
5793 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5794 instructions->push_tail(jump);
5795
5796 } else if (state->switch_state.is_switch_innermost &&
5797 mode == ast_break) {
5798 /* Force break out of switch by inserting a break. */
5799 ir_loop_jump *const jump =
5800 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5801 instructions->push_tail(jump);
5802 } else {
5803 ir_loop_jump *const jump =
5804 new(ctx) ir_loop_jump((mode == ast_break)
5805 ? ir_loop_jump::jump_break
5806 : ir_loop_jump::jump_continue);
5807 instructions->push_tail(jump);
5808 }
5809 }
5810
5811 break;
5812 }
5813
5814 /* Jump instructions do not have r-values.
5815 */
5816 return NULL;
5817 }
5818
5819
5820 ir_rvalue *
5821 ast_selection_statement::hir(exec_list *instructions,
5822 struct _mesa_glsl_parse_state *state)
5823 {
5824 void *ctx = state;
5825
5826 ir_rvalue *const condition = this->condition->hir(instructions, state);
5827
5828 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5829 *
5830 * "Any expression whose type evaluates to a Boolean can be used as the
5831 * conditional expression bool-expression. Vector types are not accepted
5832 * as the expression to if."
5833 *
5834 * The checks are separated so that higher quality diagnostics can be
5835 * generated for cases where both rules are violated.
5836 */
5837 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5838 YYLTYPE loc = this->condition->get_location();
5839
5840 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5841 "boolean");
5842 }
5843
5844 ir_if *const stmt = new(ctx) ir_if(condition);
5845
5846 if (then_statement != NULL) {
5847 state->symbols->push_scope();
5848 then_statement->hir(& stmt->then_instructions, state);
5849 state->symbols->pop_scope();
5850 }
5851
5852 if (else_statement != NULL) {
5853 state->symbols->push_scope();
5854 else_statement->hir(& stmt->else_instructions, state);
5855 state->symbols->pop_scope();
5856 }
5857
5858 instructions->push_tail(stmt);
5859
5860 /* if-statements do not have r-values.
5861 */
5862 return NULL;
5863 }
5864
5865
5866 ir_rvalue *
5867 ast_switch_statement::hir(exec_list *instructions,
5868 struct _mesa_glsl_parse_state *state)
5869 {
5870 void *ctx = state;
5871
5872 ir_rvalue *const test_expression =
5873 this->test_expression->hir(instructions, state);
5874
5875 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5876 *
5877 * "The type of init-expression in a switch statement must be a
5878 * scalar integer."
5879 */
5880 if (!test_expression->type->is_scalar() ||
5881 !test_expression->type->is_integer()) {
5882 YYLTYPE loc = this->test_expression->get_location();
5883
5884 _mesa_glsl_error(& loc,
5885 state,
5886 "switch-statement expression must be scalar "
5887 "integer");
5888 }
5889
5890 /* Track the switch-statement nesting in a stack-like manner.
5891 */
5892 struct glsl_switch_state saved = state->switch_state;
5893
5894 state->switch_state.is_switch_innermost = true;
5895 state->switch_state.switch_nesting_ast = this;
5896 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5897 hash_table_pointer_compare);
5898 state->switch_state.previous_default = NULL;
5899
5900 /* Initalize is_fallthru state to false.
5901 */
5902 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5903 state->switch_state.is_fallthru_var =
5904 new(ctx) ir_variable(glsl_type::bool_type,
5905 "switch_is_fallthru_tmp",
5906 ir_var_temporary);
5907 instructions->push_tail(state->switch_state.is_fallthru_var);
5908
5909 ir_dereference_variable *deref_is_fallthru_var =
5910 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5911 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5912 is_fallthru_val));
5913
5914 /* Initialize continue_inside state to false.
5915 */
5916 state->switch_state.continue_inside =
5917 new(ctx) ir_variable(glsl_type::bool_type,
5918 "continue_inside_tmp",
5919 ir_var_temporary);
5920 instructions->push_tail(state->switch_state.continue_inside);
5921
5922 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5923 ir_dereference_variable *deref_continue_inside_var =
5924 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5925 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5926 false_val));
5927
5928 state->switch_state.run_default =
5929 new(ctx) ir_variable(glsl_type::bool_type,
5930 "run_default_tmp",
5931 ir_var_temporary);
5932 instructions->push_tail(state->switch_state.run_default);
5933
5934 /* Loop around the switch is used for flow control. */
5935 ir_loop * loop = new(ctx) ir_loop();
5936 instructions->push_tail(loop);
5937
5938 /* Cache test expression.
5939 */
5940 test_to_hir(&loop->body_instructions, state);
5941
5942 /* Emit code for body of switch stmt.
5943 */
5944 body->hir(&loop->body_instructions, state);
5945
5946 /* Insert a break at the end to exit loop. */
5947 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5948 loop->body_instructions.push_tail(jump);
5949
5950 /* If we are inside loop, check if continue got called inside switch. */
5951 if (state->loop_nesting_ast != NULL) {
5952 ir_dereference_variable *deref_continue_inside =
5953 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5954 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5955 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5956
5957 if (state->loop_nesting_ast != NULL) {
5958 if (state->loop_nesting_ast->rest_expression) {
5959 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5960 state);
5961 }
5962 if (state->loop_nesting_ast->mode ==
5963 ast_iteration_statement::ast_do_while) {
5964 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5965 }
5966 }
5967 irif->then_instructions.push_tail(jump);
5968 instructions->push_tail(irif);
5969 }
5970
5971 hash_table_dtor(state->switch_state.labels_ht);
5972
5973 state->switch_state = saved;
5974
5975 /* Switch statements do not have r-values. */
5976 return NULL;
5977 }
5978
5979
5980 void
5981 ast_switch_statement::test_to_hir(exec_list *instructions,
5982 struct _mesa_glsl_parse_state *state)
5983 {
5984 void *ctx = state;
5985
5986 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5987 * on the switch test case. The first one would be already raised when
5988 * getting the test_expression at ast_switch_statement::hir
5989 */
5990 test_expression->set_is_lhs(true);
5991 /* Cache value of test expression. */
5992 ir_rvalue *const test_val =
5993 test_expression->hir(instructions,
5994 state);
5995
5996 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5997 "switch_test_tmp",
5998 ir_var_temporary);
5999 ir_dereference_variable *deref_test_var =
6000 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6001
6002 instructions->push_tail(state->switch_state.test_var);
6003 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6004 }
6005
6006
6007 ir_rvalue *
6008 ast_switch_body::hir(exec_list *instructions,
6009 struct _mesa_glsl_parse_state *state)
6010 {
6011 if (stmts != NULL)
6012 stmts->hir(instructions, state);
6013
6014 /* Switch bodies do not have r-values. */
6015 return NULL;
6016 }
6017
6018 ir_rvalue *
6019 ast_case_statement_list::hir(exec_list *instructions,
6020 struct _mesa_glsl_parse_state *state)
6021 {
6022 exec_list default_case, after_default, tmp;
6023
6024 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6025 case_stmt->hir(&tmp, state);
6026
6027 /* Default case. */
6028 if (state->switch_state.previous_default && default_case.is_empty()) {
6029 default_case.append_list(&tmp);
6030 continue;
6031 }
6032
6033 /* If default case found, append 'after_default' list. */
6034 if (!default_case.is_empty())
6035 after_default.append_list(&tmp);
6036 else
6037 instructions->append_list(&tmp);
6038 }
6039
6040 /* Handle the default case. This is done here because default might not be
6041 * the last case. We need to add checks against following cases first to see
6042 * if default should be chosen or not.
6043 */
6044 if (!default_case.is_empty()) {
6045
6046 ir_rvalue *const true_val = new (state) ir_constant(true);
6047 ir_dereference_variable *deref_run_default_var =
6048 new(state) ir_dereference_variable(state->switch_state.run_default);
6049
6050 /* Choose to run default case initially, following conditional
6051 * assignments might change this.
6052 */
6053 ir_assignment *const init_var =
6054 new(state) ir_assignment(deref_run_default_var, true_val);
6055 instructions->push_tail(init_var);
6056
6057 /* Default case was the last one, no checks required. */
6058 if (after_default.is_empty()) {
6059 instructions->append_list(&default_case);
6060 return NULL;
6061 }
6062
6063 foreach_in_list(ir_instruction, ir, &after_default) {
6064 ir_assignment *assign = ir->as_assignment();
6065
6066 if (!assign)
6067 continue;
6068
6069 /* Clone the check between case label and init expression. */
6070 ir_expression *exp = (ir_expression*) assign->condition;
6071 ir_expression *clone = exp->clone(state, NULL);
6072
6073 ir_dereference_variable *deref_var =
6074 new(state) ir_dereference_variable(state->switch_state.run_default);
6075 ir_rvalue *const false_val = new (state) ir_constant(false);
6076
6077 ir_assignment *const set_false =
6078 new(state) ir_assignment(deref_var, false_val, clone);
6079
6080 instructions->push_tail(set_false);
6081 }
6082
6083 /* Append default case and all cases after it. */
6084 instructions->append_list(&default_case);
6085 instructions->append_list(&after_default);
6086 }
6087
6088 /* Case statements do not have r-values. */
6089 return NULL;
6090 }
6091
6092 ir_rvalue *
6093 ast_case_statement::hir(exec_list *instructions,
6094 struct _mesa_glsl_parse_state *state)
6095 {
6096 labels->hir(instructions, state);
6097
6098 /* Guard case statements depending on fallthru state. */
6099 ir_dereference_variable *const deref_fallthru_guard =
6100 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6101 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6102
6103 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6104 stmt->hir(& test_fallthru->then_instructions, state);
6105
6106 instructions->push_tail(test_fallthru);
6107
6108 /* Case statements do not have r-values. */
6109 return NULL;
6110 }
6111
6112
6113 ir_rvalue *
6114 ast_case_label_list::hir(exec_list *instructions,
6115 struct _mesa_glsl_parse_state *state)
6116 {
6117 foreach_list_typed (ast_case_label, label, link, & this->labels)
6118 label->hir(instructions, state);
6119
6120 /* Case labels do not have r-values. */
6121 return NULL;
6122 }
6123
6124 ir_rvalue *
6125 ast_case_label::hir(exec_list *instructions,
6126 struct _mesa_glsl_parse_state *state)
6127 {
6128 void *ctx = state;
6129
6130 ir_dereference_variable *deref_fallthru_var =
6131 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6132
6133 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6134
6135 /* If not default case, ... */
6136 if (this->test_value != NULL) {
6137 /* Conditionally set fallthru state based on
6138 * comparison of cached test expression value to case label.
6139 */
6140 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6141 ir_constant *label_const = label_rval->constant_expression_value();
6142
6143 if (!label_const) {
6144 YYLTYPE loc = this->test_value->get_location();
6145
6146 _mesa_glsl_error(& loc, state,
6147 "switch statement case label must be a "
6148 "constant expression");
6149
6150 /* Stuff a dummy value in to allow processing to continue. */
6151 label_const = new(ctx) ir_constant(0);
6152 } else {
6153 ast_expression *previous_label = (ast_expression *)
6154 hash_table_find(state->switch_state.labels_ht,
6155 (void *)(uintptr_t)label_const->value.u[0]);
6156
6157 if (previous_label) {
6158 YYLTYPE loc = this->test_value->get_location();
6159 _mesa_glsl_error(& loc, state, "duplicate case value");
6160
6161 loc = previous_label->get_location();
6162 _mesa_glsl_error(& loc, state, "this is the previous case label");
6163 } else {
6164 hash_table_insert(state->switch_state.labels_ht,
6165 this->test_value,
6166 (void *)(uintptr_t)label_const->value.u[0]);
6167 }
6168 }
6169
6170 ir_dereference_variable *deref_test_var =
6171 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6172
6173 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6174 label_const,
6175 deref_test_var);
6176
6177 /*
6178 * From GLSL 4.40 specification section 6.2 ("Selection"):
6179 *
6180 * "The type of the init-expression value in a switch statement must
6181 * be a scalar int or uint. The type of the constant-expression value
6182 * in a case label also must be a scalar int or uint. When any pair
6183 * of these values is tested for "equal value" and the types do not
6184 * match, an implicit conversion will be done to convert the int to a
6185 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6186 * is done."
6187 */
6188 if (label_const->type != state->switch_state.test_var->type) {
6189 YYLTYPE loc = this->test_value->get_location();
6190
6191 const glsl_type *type_a = label_const->type;
6192 const glsl_type *type_b = state->switch_state.test_var->type;
6193
6194 /* Check if int->uint implicit conversion is supported. */
6195 bool integer_conversion_supported =
6196 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6197 state);
6198
6199 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6200 !integer_conversion_supported) {
6201 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6202 "init-expression and case label (%s != %s)",
6203 type_a->name, type_b->name);
6204 } else {
6205 /* Conversion of the case label. */
6206 if (type_a->base_type == GLSL_TYPE_INT) {
6207 if (!apply_implicit_conversion(glsl_type::uint_type,
6208 test_cond->operands[0], state))
6209 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6210 } else {
6211 /* Conversion of the init-expression value. */
6212 if (!apply_implicit_conversion(glsl_type::uint_type,
6213 test_cond->operands[1], state))
6214 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6215 }
6216 }
6217 }
6218
6219 ir_assignment *set_fallthru_on_test =
6220 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6221
6222 instructions->push_tail(set_fallthru_on_test);
6223 } else { /* default case */
6224 if (state->switch_state.previous_default) {
6225 YYLTYPE loc = this->get_location();
6226 _mesa_glsl_error(& loc, state,
6227 "multiple default labels in one switch");
6228
6229 loc = state->switch_state.previous_default->get_location();
6230 _mesa_glsl_error(& loc, state, "this is the first default label");
6231 }
6232 state->switch_state.previous_default = this;
6233
6234 /* Set fallthru condition on 'run_default' bool. */
6235 ir_dereference_variable *deref_run_default =
6236 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6237 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6238 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6239 cond_true,
6240 deref_run_default);
6241
6242 /* Set falltrhu state. */
6243 ir_assignment *set_fallthru =
6244 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6245
6246 instructions->push_tail(set_fallthru);
6247 }
6248
6249 /* Case statements do not have r-values. */
6250 return NULL;
6251 }
6252
6253 void
6254 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6255 struct _mesa_glsl_parse_state *state)
6256 {
6257 void *ctx = state;
6258
6259 if (condition != NULL) {
6260 ir_rvalue *const cond =
6261 condition->hir(instructions, state);
6262
6263 if ((cond == NULL)
6264 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6265 YYLTYPE loc = condition->get_location();
6266
6267 _mesa_glsl_error(& loc, state,
6268 "loop condition must be scalar boolean");
6269 } else {
6270 /* As the first code in the loop body, generate a block that looks
6271 * like 'if (!condition) break;' as the loop termination condition.
6272 */
6273 ir_rvalue *const not_cond =
6274 new(ctx) ir_expression(ir_unop_logic_not, cond);
6275
6276 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6277
6278 ir_jump *const break_stmt =
6279 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6280
6281 if_stmt->then_instructions.push_tail(break_stmt);
6282 instructions->push_tail(if_stmt);
6283 }
6284 }
6285 }
6286
6287
6288 ir_rvalue *
6289 ast_iteration_statement::hir(exec_list *instructions,
6290 struct _mesa_glsl_parse_state *state)
6291 {
6292 void *ctx = state;
6293
6294 /* For-loops and while-loops start a new scope, but do-while loops do not.
6295 */
6296 if (mode != ast_do_while)
6297 state->symbols->push_scope();
6298
6299 if (init_statement != NULL)
6300 init_statement->hir(instructions, state);
6301
6302 ir_loop *const stmt = new(ctx) ir_loop();
6303 instructions->push_tail(stmt);
6304
6305 /* Track the current loop nesting. */
6306 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6307
6308 state->loop_nesting_ast = this;
6309
6310 /* Likewise, indicate that following code is closest to a loop,
6311 * NOT closest to a switch.
6312 */
6313 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6314 state->switch_state.is_switch_innermost = false;
6315
6316 if (mode != ast_do_while)
6317 condition_to_hir(&stmt->body_instructions, state);
6318
6319 if (body != NULL)
6320 body->hir(& stmt->body_instructions, state);
6321
6322 if (rest_expression != NULL)
6323 rest_expression->hir(& stmt->body_instructions, state);
6324
6325 if (mode == ast_do_while)
6326 condition_to_hir(&stmt->body_instructions, state);
6327
6328 if (mode != ast_do_while)
6329 state->symbols->pop_scope();
6330
6331 /* Restore previous nesting before returning. */
6332 state->loop_nesting_ast = nesting_ast;
6333 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6334
6335 /* Loops do not have r-values.
6336 */
6337 return NULL;
6338 }
6339
6340
6341 /**
6342 * Determine if the given type is valid for establishing a default precision
6343 * qualifier.
6344 *
6345 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6346 *
6347 * "The precision statement
6348 *
6349 * precision precision-qualifier type;
6350 *
6351 * can be used to establish a default precision qualifier. The type field
6352 * can be either int or float or any of the sampler types, and the
6353 * precision-qualifier can be lowp, mediump, or highp."
6354 *
6355 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6356 * qualifiers on sampler types, but this seems like an oversight (since the
6357 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6358 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6359 * version.
6360 */
6361 static bool
6362 is_valid_default_precision_type(const struct glsl_type *const type)
6363 {
6364 if (type == NULL)
6365 return false;
6366
6367 switch (type->base_type) {
6368 case GLSL_TYPE_INT:
6369 case GLSL_TYPE_FLOAT:
6370 /* "int" and "float" are valid, but vectors and matrices are not. */
6371 return type->vector_elements == 1 && type->matrix_columns == 1;
6372 case GLSL_TYPE_SAMPLER:
6373 case GLSL_TYPE_IMAGE:
6374 case GLSL_TYPE_ATOMIC_UINT:
6375 return true;
6376 default:
6377 return false;
6378 }
6379 }
6380
6381
6382 ir_rvalue *
6383 ast_type_specifier::hir(exec_list *instructions,
6384 struct _mesa_glsl_parse_state *state)
6385 {
6386 if (this->default_precision == ast_precision_none && this->structure == NULL)
6387 return NULL;
6388
6389 YYLTYPE loc = this->get_location();
6390
6391 /* If this is a precision statement, check that the type to which it is
6392 * applied is either float or int.
6393 *
6394 * From section 4.5.3 of the GLSL 1.30 spec:
6395 * "The precision statement
6396 * precision precision-qualifier type;
6397 * can be used to establish a default precision qualifier. The type
6398 * field can be either int or float [...]. Any other types or
6399 * qualifiers will result in an error.
6400 */
6401 if (this->default_precision != ast_precision_none) {
6402 if (!state->check_precision_qualifiers_allowed(&loc))
6403 return NULL;
6404
6405 if (this->structure != NULL) {
6406 _mesa_glsl_error(&loc, state,
6407 "precision qualifiers do not apply to structures");
6408 return NULL;
6409 }
6410
6411 if (this->array_specifier != NULL) {
6412 _mesa_glsl_error(&loc, state,
6413 "default precision statements do not apply to "
6414 "arrays");
6415 return NULL;
6416 }
6417
6418 const struct glsl_type *const type =
6419 state->symbols->get_type(this->type_name);
6420 if (!is_valid_default_precision_type(type)) {
6421 _mesa_glsl_error(&loc, state,
6422 "default precision statements apply only to "
6423 "float, int, and opaque types");
6424 return NULL;
6425 }
6426
6427 if (state->es_shader) {
6428 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6429 * spec says:
6430 *
6431 * "Non-precision qualified declarations will use the precision
6432 * qualifier specified in the most recent precision statement
6433 * that is still in scope. The precision statement has the same
6434 * scoping rules as variable declarations. If it is declared
6435 * inside a compound statement, its effect stops at the end of
6436 * the innermost statement it was declared in. Precision
6437 * statements in nested scopes override precision statements in
6438 * outer scopes. Multiple precision statements for the same basic
6439 * type can appear inside the same scope, with later statements
6440 * overriding earlier statements within that scope."
6441 *
6442 * Default precision specifications follow the same scope rules as
6443 * variables. So, we can track the state of the default precision
6444 * qualifiers in the symbol table, and the rules will just work. This
6445 * is a slight abuse of the symbol table, but it has the semantics
6446 * that we want.
6447 */
6448 state->symbols->add_default_precision_qualifier(this->type_name,
6449 this->default_precision);
6450 }
6451
6452 /* FINISHME: Translate precision statements into IR. */
6453 return NULL;
6454 }
6455
6456 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6457 * process_record_constructor() can do type-checking on C-style initializer
6458 * expressions of structs, but ast_struct_specifier should only be translated
6459 * to HIR if it is declaring the type of a structure.
6460 *
6461 * The ->is_declaration field is false for initializers of variables
6462 * declared separately from the struct's type definition.
6463 *
6464 * struct S { ... }; (is_declaration = true)
6465 * struct T { ... } t = { ... }; (is_declaration = true)
6466 * S s = { ... }; (is_declaration = false)
6467 */
6468 if (this->structure != NULL && this->structure->is_declaration)
6469 return this->structure->hir(instructions, state);
6470
6471 return NULL;
6472 }
6473
6474
6475 /**
6476 * Process a structure or interface block tree into an array of structure fields
6477 *
6478 * After parsing, where there are some syntax differnces, structures and
6479 * interface blocks are almost identical. They are similar enough that the
6480 * AST for each can be processed the same way into a set of
6481 * \c glsl_struct_field to describe the members.
6482 *
6483 * If we're processing an interface block, var_mode should be the type of the
6484 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6485 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6486 * ir_var_auto.
6487 *
6488 * \return
6489 * The number of fields processed. A pointer to the array structure fields is
6490 * stored in \c *fields_ret.
6491 */
6492 static unsigned
6493 ast_process_struct_or_iface_block_members(exec_list *instructions,
6494 struct _mesa_glsl_parse_state *state,
6495 exec_list *declarations,
6496 glsl_struct_field **fields_ret,
6497 bool is_interface,
6498 enum glsl_matrix_layout matrix_layout,
6499 bool allow_reserved_names,
6500 ir_variable_mode var_mode,
6501 ast_type_qualifier *layout,
6502 unsigned block_stream,
6503 unsigned block_xfb_buffer,
6504 unsigned block_xfb_offset,
6505 unsigned expl_location,
6506 unsigned expl_align)
6507 {
6508 unsigned decl_count = 0;
6509 unsigned next_offset = 0;
6510
6511 /* Make an initial pass over the list of fields to determine how
6512 * many there are. Each element in this list is an ast_declarator_list.
6513 * This means that we actually need to count the number of elements in the
6514 * 'declarations' list in each of the elements.
6515 */
6516 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6517 decl_count += decl_list->declarations.length();
6518 }
6519
6520 /* Allocate storage for the fields and process the field
6521 * declarations. As the declarations are processed, try to also convert
6522 * the types to HIR. This ensures that structure definitions embedded in
6523 * other structure definitions or in interface blocks are processed.
6524 */
6525 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6526 decl_count);
6527
6528 bool first_member = true;
6529 bool first_member_has_explicit_location = false;
6530
6531 unsigned i = 0;
6532 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6533 const char *type_name;
6534 YYLTYPE loc = decl_list->get_location();
6535
6536 decl_list->type->specifier->hir(instructions, state);
6537
6538 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6539 *
6540 * "Anonymous structures are not supported; so embedded structures
6541 * must have a declarator. A name given to an embedded struct is
6542 * scoped at the same level as the struct it is embedded in."
6543 *
6544 * The same section of the GLSL 1.20 spec says:
6545 *
6546 * "Anonymous structures are not supported. Embedded structures are
6547 * not supported."
6548 *
6549 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6550 * embedded structures in 1.10 only.
6551 */
6552 if (state->language_version != 110 &&
6553 decl_list->type->specifier->structure != NULL)
6554 _mesa_glsl_error(&loc, state,
6555 "embedded structure declarations are not allowed");
6556
6557 const glsl_type *decl_type =
6558 decl_list->type->glsl_type(& type_name, state);
6559
6560 const struct ast_type_qualifier *const qual =
6561 &decl_list->type->qualifier;
6562
6563 /* From section 4.3.9 of the GLSL 4.40 spec:
6564 *
6565 * "[In interface blocks] opaque types are not allowed."
6566 *
6567 * It should be impossible for decl_type to be NULL here. Cases that
6568 * might naturally lead to decl_type being NULL, especially for the
6569 * is_interface case, will have resulted in compilation having
6570 * already halted due to a syntax error.
6571 */
6572 assert(decl_type);
6573
6574 if (is_interface) {
6575 if (decl_type->contains_opaque()) {
6576 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6577 "interface block contains opaque variable");
6578 }
6579 } else {
6580 if (decl_type->contains_atomic()) {
6581 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6582 *
6583 * "Members of structures cannot be declared as atomic counter
6584 * types."
6585 */
6586 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6587 }
6588
6589 if (decl_type->contains_image()) {
6590 /* FINISHME: Same problem as with atomic counters.
6591 * FINISHME: Request clarification from Khronos and add
6592 * FINISHME: spec quotation here.
6593 */
6594 _mesa_glsl_error(&loc, state, "image in structure");
6595 }
6596 }
6597
6598 if (qual->flags.q.explicit_binding) {
6599 _mesa_glsl_error(&loc, state,
6600 "binding layout qualifier cannot be applied "
6601 "to struct or interface block members");
6602 }
6603
6604 if (is_interface) {
6605 if (!first_member) {
6606 if (!layout->flags.q.explicit_location &&
6607 ((first_member_has_explicit_location &&
6608 !qual->flags.q.explicit_location) ||
6609 (!first_member_has_explicit_location &&
6610 qual->flags.q.explicit_location))) {
6611 _mesa_glsl_error(&loc, state,
6612 "when block-level location layout qualifier "
6613 "is not supplied either all members must "
6614 "have a location layout qualifier or all "
6615 "members must not have a location layout "
6616 "qualifier");
6617 }
6618 } else {
6619 first_member = false;
6620 first_member_has_explicit_location =
6621 qual->flags.q.explicit_location;
6622 }
6623 }
6624
6625 if (qual->flags.q.std140 ||
6626 qual->flags.q.std430 ||
6627 qual->flags.q.packed ||
6628 qual->flags.q.shared) {
6629 _mesa_glsl_error(&loc, state,
6630 "uniform/shader storage block layout qualifiers "
6631 "std140, std430, packed, and shared can only be "
6632 "applied to uniform/shader storage blocks, not "
6633 "members");
6634 }
6635
6636 if (qual->flags.q.constant) {
6637 _mesa_glsl_error(&loc, state,
6638 "const storage qualifier cannot be applied "
6639 "to struct or interface block members");
6640 }
6641
6642 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6643 *
6644 * "A block member may be declared with a stream identifier, but
6645 * the specified stream must match the stream associated with the
6646 * containing block."
6647 */
6648 if (qual->flags.q.explicit_stream) {
6649 unsigned qual_stream;
6650 if (process_qualifier_constant(state, &loc, "stream",
6651 qual->stream, &qual_stream) &&
6652 qual_stream != block_stream) {
6653 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6654 "interface block member does not match "
6655 "the interface block (%u vs %u)", qual_stream,
6656 block_stream);
6657 }
6658 }
6659
6660 int xfb_buffer;
6661 unsigned explicit_xfb_buffer = 0;
6662 if (qual->flags.q.explicit_xfb_buffer) {
6663 unsigned qual_xfb_buffer;
6664 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6665 qual->xfb_buffer, &qual_xfb_buffer)) {
6666 explicit_xfb_buffer = 1;
6667 if (qual_xfb_buffer != block_xfb_buffer)
6668 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6669 "interface block member does not match "
6670 "the interface block (%u vs %u)",
6671 qual_xfb_buffer, block_xfb_buffer);
6672 }
6673 xfb_buffer = (int) qual_xfb_buffer;
6674 } else {
6675 if (layout)
6676 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6677 xfb_buffer = (int) block_xfb_buffer;
6678 }
6679
6680 int xfb_stride = -1;
6681 if (qual->flags.q.explicit_xfb_stride) {
6682 unsigned qual_xfb_stride;
6683 if (process_qualifier_constant(state, &loc, "xfb_stride",
6684 qual->xfb_stride, &qual_xfb_stride)) {
6685 xfb_stride = (int) qual_xfb_stride;
6686 }
6687 }
6688
6689 if (qual->flags.q.uniform && qual->has_interpolation()) {
6690 _mesa_glsl_error(&loc, state,
6691 "interpolation qualifiers cannot be used "
6692 "with uniform interface blocks");
6693 }
6694
6695 if ((qual->flags.q.uniform || !is_interface) &&
6696 qual->has_auxiliary_storage()) {
6697 _mesa_glsl_error(&loc, state,
6698 "auxiliary storage qualifiers cannot be used "
6699 "in uniform blocks or structures.");
6700 }
6701
6702 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6703 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6704 _mesa_glsl_error(&loc, state,
6705 "row_major and column_major can only be "
6706 "applied to interface blocks");
6707 } else
6708 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6709 }
6710
6711 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6712 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6713 "readonly and writeonly.");
6714 }
6715
6716 foreach_list_typed (ast_declaration, decl, link,
6717 &decl_list->declarations) {
6718 YYLTYPE loc = decl->get_location();
6719
6720 if (!allow_reserved_names)
6721 validate_identifier(decl->identifier, loc, state);
6722
6723 const struct glsl_type *field_type =
6724 process_array_type(&loc, decl_type, decl->array_specifier, state);
6725 validate_array_dimensions(field_type, state, &loc);
6726 fields[i].type = field_type;
6727 fields[i].name = decl->identifier;
6728 fields[i].interpolation =
6729 interpret_interpolation_qualifier(qual, field_type,
6730 var_mode, state, &loc);
6731 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6732 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6733 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6734 fields[i].precision = qual->precision;
6735 fields[i].offset = -1;
6736 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6737 fields[i].xfb_buffer = xfb_buffer;
6738 fields[i].xfb_stride = xfb_stride;
6739
6740 if (qual->flags.q.explicit_location) {
6741 unsigned qual_location;
6742 if (process_qualifier_constant(state, &loc, "location",
6743 qual->location, &qual_location)) {
6744 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6745 expl_location = fields[i].location +
6746 fields[i].type->count_attribute_slots(false);
6747 }
6748 } else {
6749 if (layout && layout->flags.q.explicit_location) {
6750 fields[i].location = expl_location;
6751 expl_location += fields[i].type->count_attribute_slots(false);
6752 } else {
6753 fields[i].location = -1;
6754 }
6755 }
6756
6757 /* Offset can only be used with std430 and std140 layouts an initial
6758 * value of 0 is used for error detection.
6759 */
6760 unsigned align = 0;
6761 unsigned size = 0;
6762 if (layout) {
6763 bool row_major;
6764 if (qual->flags.q.row_major ||
6765 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6766 row_major = true;
6767 } else {
6768 row_major = false;
6769 }
6770
6771 if(layout->flags.q.std140) {
6772 align = field_type->std140_base_alignment(row_major);
6773 size = field_type->std140_size(row_major);
6774 } else if (layout->flags.q.std430) {
6775 align = field_type->std430_base_alignment(row_major);
6776 size = field_type->std430_size(row_major);
6777 }
6778 }
6779
6780 if (qual->flags.q.explicit_offset) {
6781 unsigned qual_offset;
6782 if (process_qualifier_constant(state, &loc, "offset",
6783 qual->offset, &qual_offset)) {
6784 if (align != 0 && size != 0) {
6785 if (next_offset > qual_offset)
6786 _mesa_glsl_error(&loc, state, "layout qualifier "
6787 "offset overlaps previous member");
6788
6789 if (qual_offset % align) {
6790 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6791 "must be a multiple of the base "
6792 "alignment of %s", field_type->name);
6793 }
6794 fields[i].offset = qual_offset;
6795 next_offset = glsl_align(qual_offset + size, align);
6796 } else {
6797 _mesa_glsl_error(&loc, state, "offset can only be used "
6798 "with std430 and std140 layouts");
6799 }
6800 }
6801 }
6802
6803 if (qual->flags.q.explicit_align || expl_align != 0) {
6804 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6805 next_offset;
6806 if (align == 0 || size == 0) {
6807 _mesa_glsl_error(&loc, state, "align can only be used with "
6808 "std430 and std140 layouts");
6809 } else if (qual->flags.q.explicit_align) {
6810 unsigned member_align;
6811 if (process_qualifier_constant(state, &loc, "align",
6812 qual->align, &member_align)) {
6813 if (member_align == 0 ||
6814 member_align & (member_align - 1)) {
6815 _mesa_glsl_error(&loc, state, "align layout qualifier "
6816 "in not a power of 2");
6817 } else {
6818 fields[i].offset = glsl_align(offset, member_align);
6819 next_offset = glsl_align(fields[i].offset + size, align);
6820 }
6821 }
6822 } else {
6823 fields[i].offset = glsl_align(offset, expl_align);
6824 next_offset = glsl_align(fields[i].offset + size, align);
6825 }
6826 } else if (!qual->flags.q.explicit_offset) {
6827 if (align != 0 && size != 0)
6828 next_offset = glsl_align(next_offset + size, align);
6829 }
6830
6831 /* From the ARB_enhanced_layouts spec:
6832 *
6833 * "The given offset applies to the first component of the first
6834 * member of the qualified entity. Then, within the qualified
6835 * entity, subsequent components are each assigned, in order, to
6836 * the next available offset aligned to a multiple of that
6837 * component's size. Aggregate types are flattened down to the
6838 * component level to get this sequence of components."
6839 */
6840 if (qual->flags.q.explicit_xfb_offset) {
6841 unsigned xfb_offset;
6842 if (process_qualifier_constant(state, &loc, "xfb_offset",
6843 qual->offset, &xfb_offset)) {
6844 fields[i].offset = xfb_offset;
6845 block_xfb_offset = fields[i].offset +
6846 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6847 }
6848 } else {
6849 if (layout && layout->flags.q.explicit_xfb_offset) {
6850 unsigned align = field_type->is_64bit() ? 8 : 4;
6851 fields[i].offset = glsl_align(block_xfb_offset, align);
6852 block_xfb_offset +=
6853 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6854 }
6855 }
6856
6857 /* Propogate row- / column-major information down the fields of the
6858 * structure or interface block. Structures need this data because
6859 * the structure may contain a structure that contains ... a matrix
6860 * that need the proper layout.
6861 */
6862 if (is_interface && layout &&
6863 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6864 (field_type->without_array()->is_matrix()
6865 || field_type->without_array()->is_record())) {
6866 /* If no layout is specified for the field, inherit the layout
6867 * from the block.
6868 */
6869 fields[i].matrix_layout = matrix_layout;
6870
6871 if (qual->flags.q.row_major)
6872 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6873 else if (qual->flags.q.column_major)
6874 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6875
6876 /* If we're processing an uniform or buffer block, the matrix
6877 * layout must be decided by this point.
6878 */
6879 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6880 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6881 }
6882
6883 /* Image qualifiers are allowed on buffer variables, which can only
6884 * be defined inside shader storage buffer objects
6885 */
6886 if (layout && var_mode == ir_var_shader_storage) {
6887 /* For readonly and writeonly qualifiers the field definition,
6888 * if set, overwrites the layout qualifier.
6889 */
6890 if (qual->flags.q.read_only) {
6891 fields[i].image_read_only = true;
6892 fields[i].image_write_only = false;
6893 } else if (qual->flags.q.write_only) {
6894 fields[i].image_read_only = false;
6895 fields[i].image_write_only = true;
6896 } else {
6897 fields[i].image_read_only = layout->flags.q.read_only;
6898 fields[i].image_write_only = layout->flags.q.write_only;
6899 }
6900
6901 /* For other qualifiers, we set the flag if either the layout
6902 * qualifier or the field qualifier are set
6903 */
6904 fields[i].image_coherent = qual->flags.q.coherent ||
6905 layout->flags.q.coherent;
6906 fields[i].image_volatile = qual->flags.q._volatile ||
6907 layout->flags.q._volatile;
6908 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6909 layout->flags.q.restrict_flag;
6910 }
6911
6912 i++;
6913 }
6914 }
6915
6916 assert(i == decl_count);
6917
6918 *fields_ret = fields;
6919 return decl_count;
6920 }
6921
6922
6923 ir_rvalue *
6924 ast_struct_specifier::hir(exec_list *instructions,
6925 struct _mesa_glsl_parse_state *state)
6926 {
6927 YYLTYPE loc = this->get_location();
6928
6929 unsigned expl_location = 0;
6930 if (layout && layout->flags.q.explicit_location) {
6931 if (!process_qualifier_constant(state, &loc, "location",
6932 layout->location, &expl_location)) {
6933 return NULL;
6934 } else {
6935 expl_location = VARYING_SLOT_VAR0 + expl_location;
6936 }
6937 }
6938
6939 glsl_struct_field *fields;
6940 unsigned decl_count =
6941 ast_process_struct_or_iface_block_members(instructions,
6942 state,
6943 &this->declarations,
6944 &fields,
6945 false,
6946 GLSL_MATRIX_LAYOUT_INHERITED,
6947 false /* allow_reserved_names */,
6948 ir_var_auto,
6949 layout,
6950 0, /* for interface only */
6951 0, /* for interface only */
6952 0, /* for interface only */
6953 expl_location,
6954 0 /* for interface only */);
6955
6956 validate_identifier(this->name, loc, state);
6957
6958 const glsl_type *t =
6959 glsl_type::get_record_instance(fields, decl_count, this->name);
6960
6961 if (!state->symbols->add_type(name, t)) {
6962 const glsl_type *match = state->symbols->get_type(name);
6963 /* allow struct matching for desktop GL - older UE4 does this */
6964 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
6965 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
6966 else
6967 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6968 } else {
6969 const glsl_type **s = reralloc(state, state->user_structures,
6970 const glsl_type *,
6971 state->num_user_structures + 1);
6972 if (s != NULL) {
6973 s[state->num_user_structures] = t;
6974 state->user_structures = s;
6975 state->num_user_structures++;
6976 }
6977 }
6978
6979 /* Structure type definitions do not have r-values.
6980 */
6981 return NULL;
6982 }
6983
6984
6985 /**
6986 * Visitor class which detects whether a given interface block has been used.
6987 */
6988 class interface_block_usage_visitor : public ir_hierarchical_visitor
6989 {
6990 public:
6991 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6992 : mode(mode), block(block), found(false)
6993 {
6994 }
6995
6996 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6997 {
6998 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6999 found = true;
7000 return visit_stop;
7001 }
7002 return visit_continue;
7003 }
7004
7005 bool usage_found() const
7006 {
7007 return this->found;
7008 }
7009
7010 private:
7011 ir_variable_mode mode;
7012 const glsl_type *block;
7013 bool found;
7014 };
7015
7016 static bool
7017 is_unsized_array_last_element(ir_variable *v)
7018 {
7019 const glsl_type *interface_type = v->get_interface_type();
7020 int length = interface_type->length;
7021
7022 assert(v->type->is_unsized_array());
7023
7024 /* Check if it is the last element of the interface */
7025 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7026 return true;
7027 return false;
7028 }
7029
7030 static void
7031 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7032 {
7033 var->data.image_read_only = field.image_read_only;
7034 var->data.image_write_only = field.image_write_only;
7035 var->data.image_coherent = field.image_coherent;
7036 var->data.image_volatile = field.image_volatile;
7037 var->data.image_restrict = field.image_restrict;
7038 }
7039
7040 ir_rvalue *
7041 ast_interface_block::hir(exec_list *instructions,
7042 struct _mesa_glsl_parse_state *state)
7043 {
7044 YYLTYPE loc = this->get_location();
7045
7046 /* Interface blocks must be declared at global scope */
7047 if (state->current_function != NULL) {
7048 _mesa_glsl_error(&loc, state,
7049 "Interface block `%s' must be declared "
7050 "at global scope",
7051 this->block_name);
7052 }
7053
7054 if (!this->layout.flags.q.buffer &&
7055 this->layout.flags.q.std430) {
7056 _mesa_glsl_error(&loc, state,
7057 "std430 storage block layout qualifier is supported "
7058 "only for shader storage blocks");
7059 }
7060
7061 /* The ast_interface_block has a list of ast_declarator_lists. We
7062 * need to turn those into ir_variables with an association
7063 * with this uniform block.
7064 */
7065 enum glsl_interface_packing packing;
7066 if (this->layout.flags.q.shared) {
7067 packing = GLSL_INTERFACE_PACKING_SHARED;
7068 } else if (this->layout.flags.q.packed) {
7069 packing = GLSL_INTERFACE_PACKING_PACKED;
7070 } else if (this->layout.flags.q.std430) {
7071 packing = GLSL_INTERFACE_PACKING_STD430;
7072 } else {
7073 /* The default layout is std140.
7074 */
7075 packing = GLSL_INTERFACE_PACKING_STD140;
7076 }
7077
7078 ir_variable_mode var_mode;
7079 const char *iface_type_name;
7080 if (this->layout.flags.q.in) {
7081 var_mode = ir_var_shader_in;
7082 iface_type_name = "in";
7083 } else if (this->layout.flags.q.out) {
7084 var_mode = ir_var_shader_out;
7085 iface_type_name = "out";
7086 } else if (this->layout.flags.q.uniform) {
7087 var_mode = ir_var_uniform;
7088 iface_type_name = "uniform";
7089 } else if (this->layout.flags.q.buffer) {
7090 var_mode = ir_var_shader_storage;
7091 iface_type_name = "buffer";
7092 } else {
7093 var_mode = ir_var_auto;
7094 iface_type_name = "UNKNOWN";
7095 assert(!"interface block layout qualifier not found!");
7096 }
7097
7098 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7099 if (this->layout.flags.q.row_major)
7100 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7101 else if (this->layout.flags.q.column_major)
7102 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7103
7104 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7105 exec_list declared_variables;
7106 glsl_struct_field *fields;
7107
7108 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7109 * that we don't have incompatible qualifiers
7110 */
7111 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7112 _mesa_glsl_error(&loc, state,
7113 "Interface block sets both readonly and writeonly");
7114 }
7115
7116 if (this->layout.flags.q.explicit_component) {
7117 _mesa_glsl_error(&loc, state, "component layout qualifier cannot be "
7118 "applied to a matrix, a structure, a block, or an "
7119 "array containing any of these.");
7120 }
7121
7122 unsigned qual_stream;
7123 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7124 &qual_stream) ||
7125 !validate_stream_qualifier(&loc, state, qual_stream)) {
7126 /* If the stream qualifier is invalid it doesn't make sense to continue
7127 * on and try to compare stream layouts on member variables against it
7128 * so just return early.
7129 */
7130 return NULL;
7131 }
7132
7133 unsigned qual_xfb_buffer;
7134 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7135 layout.xfb_buffer, &qual_xfb_buffer) ||
7136 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7137 return NULL;
7138 }
7139
7140 unsigned qual_xfb_offset;
7141 if (layout.flags.q.explicit_xfb_offset) {
7142 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7143 layout.offset, &qual_xfb_offset)) {
7144 return NULL;
7145 }
7146 }
7147
7148 unsigned qual_xfb_stride;
7149 if (layout.flags.q.explicit_xfb_stride) {
7150 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7151 layout.xfb_stride, &qual_xfb_stride)) {
7152 return NULL;
7153 }
7154 }
7155
7156 unsigned expl_location = 0;
7157 if (layout.flags.q.explicit_location) {
7158 if (!process_qualifier_constant(state, &loc, "location",
7159 layout.location, &expl_location)) {
7160 return NULL;
7161 } else {
7162 expl_location = VARYING_SLOT_VAR0 + expl_location;
7163 }
7164 }
7165
7166 unsigned expl_align = 0;
7167 if (layout.flags.q.explicit_align) {
7168 if (!process_qualifier_constant(state, &loc, "align",
7169 layout.align, &expl_align)) {
7170 return NULL;
7171 } else {
7172 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7173 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7174 "power of 2.");
7175 return NULL;
7176 }
7177 }
7178 }
7179
7180 unsigned int num_variables =
7181 ast_process_struct_or_iface_block_members(&declared_variables,
7182 state,
7183 &this->declarations,
7184 &fields,
7185 true,
7186 matrix_layout,
7187 redeclaring_per_vertex,
7188 var_mode,
7189 &this->layout,
7190 qual_stream,
7191 qual_xfb_buffer,
7192 qual_xfb_offset,
7193 expl_location,
7194 expl_align);
7195
7196 if (!redeclaring_per_vertex) {
7197 validate_identifier(this->block_name, loc, state);
7198
7199 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7200 *
7201 * "Block names have no other use within a shader beyond interface
7202 * matching; it is a compile-time error to use a block name at global
7203 * scope for anything other than as a block name."
7204 */
7205 ir_variable *var = state->symbols->get_variable(this->block_name);
7206 if (var && !var->type->is_interface()) {
7207 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7208 "already used in the scope.",
7209 this->block_name);
7210 }
7211 }
7212
7213 const glsl_type *earlier_per_vertex = NULL;
7214 if (redeclaring_per_vertex) {
7215 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7216 * the named interface block gl_in, we can find it by looking at the
7217 * previous declaration of gl_in. Otherwise we can find it by looking
7218 * at the previous decalartion of any of the built-in outputs,
7219 * e.g. gl_Position.
7220 *
7221 * Also check that the instance name and array-ness of the redeclaration
7222 * are correct.
7223 */
7224 switch (var_mode) {
7225 case ir_var_shader_in:
7226 if (ir_variable *earlier_gl_in =
7227 state->symbols->get_variable("gl_in")) {
7228 earlier_per_vertex = earlier_gl_in->get_interface_type();
7229 } else {
7230 _mesa_glsl_error(&loc, state,
7231 "redeclaration of gl_PerVertex input not allowed "
7232 "in the %s shader",
7233 _mesa_shader_stage_to_string(state->stage));
7234 }
7235 if (this->instance_name == NULL ||
7236 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7237 !this->array_specifier->is_single_dimension()) {
7238 _mesa_glsl_error(&loc, state,
7239 "gl_PerVertex input must be redeclared as "
7240 "gl_in[]");
7241 }
7242 break;
7243 case ir_var_shader_out:
7244 if (ir_variable *earlier_gl_Position =
7245 state->symbols->get_variable("gl_Position")) {
7246 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7247 } else if (ir_variable *earlier_gl_out =
7248 state->symbols->get_variable("gl_out")) {
7249 earlier_per_vertex = earlier_gl_out->get_interface_type();
7250 } else {
7251 _mesa_glsl_error(&loc, state,
7252 "redeclaration of gl_PerVertex output not "
7253 "allowed in the %s shader",
7254 _mesa_shader_stage_to_string(state->stage));
7255 }
7256 if (state->stage == MESA_SHADER_TESS_CTRL) {
7257 if (this->instance_name == NULL ||
7258 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7259 _mesa_glsl_error(&loc, state,
7260 "gl_PerVertex output must be redeclared as "
7261 "gl_out[]");
7262 }
7263 } else {
7264 if (this->instance_name != NULL) {
7265 _mesa_glsl_error(&loc, state,
7266 "gl_PerVertex output may not be redeclared with "
7267 "an instance name");
7268 }
7269 }
7270 break;
7271 default:
7272 _mesa_glsl_error(&loc, state,
7273 "gl_PerVertex must be declared as an input or an "
7274 "output");
7275 break;
7276 }
7277
7278 if (earlier_per_vertex == NULL) {
7279 /* An error has already been reported. Bail out to avoid null
7280 * dereferences later in this function.
7281 */
7282 return NULL;
7283 }
7284
7285 /* Copy locations from the old gl_PerVertex interface block. */
7286 for (unsigned i = 0; i < num_variables; i++) {
7287 int j = earlier_per_vertex->field_index(fields[i].name);
7288 if (j == -1) {
7289 _mesa_glsl_error(&loc, state,
7290 "redeclaration of gl_PerVertex must be a subset "
7291 "of the built-in members of gl_PerVertex");
7292 } else {
7293 fields[i].location =
7294 earlier_per_vertex->fields.structure[j].location;
7295 fields[i].offset =
7296 earlier_per_vertex->fields.structure[j].offset;
7297 fields[i].interpolation =
7298 earlier_per_vertex->fields.structure[j].interpolation;
7299 fields[i].centroid =
7300 earlier_per_vertex->fields.structure[j].centroid;
7301 fields[i].sample =
7302 earlier_per_vertex->fields.structure[j].sample;
7303 fields[i].patch =
7304 earlier_per_vertex->fields.structure[j].patch;
7305 fields[i].precision =
7306 earlier_per_vertex->fields.structure[j].precision;
7307 fields[i].explicit_xfb_buffer =
7308 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7309 fields[i].xfb_buffer =
7310 earlier_per_vertex->fields.structure[j].xfb_buffer;
7311 fields[i].xfb_stride =
7312 earlier_per_vertex->fields.structure[j].xfb_stride;
7313 }
7314 }
7315
7316 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7317 * spec:
7318 *
7319 * If a built-in interface block is redeclared, it must appear in
7320 * the shader before any use of any member included in the built-in
7321 * declaration, or a compilation error will result.
7322 *
7323 * This appears to be a clarification to the behaviour established for
7324 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7325 * regardless of GLSL version.
7326 */
7327 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7328 v.run(instructions);
7329 if (v.usage_found()) {
7330 _mesa_glsl_error(&loc, state,
7331 "redeclaration of a built-in interface block must "
7332 "appear before any use of any member of the "
7333 "interface block");
7334 }
7335 }
7336
7337 const glsl_type *block_type =
7338 glsl_type::get_interface_instance(fields,
7339 num_variables,
7340 packing,
7341 this->block_name);
7342
7343 unsigned component_size = block_type->contains_double() ? 8 : 4;
7344 int xfb_offset =
7345 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7346 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7347 component_size);
7348
7349 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7350 YYLTYPE loc = this->get_location();
7351 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7352 "already taken in the current scope",
7353 this->block_name, iface_type_name);
7354 }
7355
7356 /* Since interface blocks cannot contain statements, it should be
7357 * impossible for the block to generate any instructions.
7358 */
7359 assert(declared_variables.is_empty());
7360
7361 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7362 *
7363 * Geometry shader input variables get the per-vertex values written
7364 * out by vertex shader output variables of the same names. Since a
7365 * geometry shader operates on a set of vertices, each input varying
7366 * variable (or input block, see interface blocks below) needs to be
7367 * declared as an array.
7368 */
7369 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7370 var_mode == ir_var_shader_in) {
7371 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7372 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7373 state->stage == MESA_SHADER_TESS_EVAL) &&
7374 this->array_specifier == NULL &&
7375 var_mode == ir_var_shader_in) {
7376 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7377 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7378 this->array_specifier == NULL &&
7379 var_mode == ir_var_shader_out) {
7380 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7381 }
7382
7383
7384 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7385 * says:
7386 *
7387 * "If an instance name (instance-name) is used, then it puts all the
7388 * members inside a scope within its own name space, accessed with the
7389 * field selector ( . ) operator (analogously to structures)."
7390 */
7391 if (this->instance_name) {
7392 if (redeclaring_per_vertex) {
7393 /* When a built-in in an unnamed interface block is redeclared,
7394 * get_variable_being_redeclared() calls
7395 * check_builtin_array_max_size() to make sure that built-in array
7396 * variables aren't redeclared to illegal sizes. But we're looking
7397 * at a redeclaration of a named built-in interface block. So we
7398 * have to manually call check_builtin_array_max_size() for all parts
7399 * of the interface that are arrays.
7400 */
7401 for (unsigned i = 0; i < num_variables; i++) {
7402 if (fields[i].type->is_array()) {
7403 const unsigned size = fields[i].type->array_size();
7404 check_builtin_array_max_size(fields[i].name, size, loc, state);
7405 }
7406 }
7407 } else {
7408 validate_identifier(this->instance_name, loc, state);
7409 }
7410
7411 ir_variable *var;
7412
7413 if (this->array_specifier != NULL) {
7414 const glsl_type *block_array_type =
7415 process_array_type(&loc, block_type, this->array_specifier, state);
7416
7417 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7418 *
7419 * For uniform blocks declared an array, each individual array
7420 * element corresponds to a separate buffer object backing one
7421 * instance of the block. As the array size indicates the number
7422 * of buffer objects needed, uniform block array declarations
7423 * must specify an array size.
7424 *
7425 * And a few paragraphs later:
7426 *
7427 * Geometry shader input blocks must be declared as arrays and
7428 * follow the array declaration and linking rules for all
7429 * geometry shader inputs. All other input and output block
7430 * arrays must specify an array size.
7431 *
7432 * The same applies to tessellation shaders.
7433 *
7434 * The upshot of this is that the only circumstance where an
7435 * interface array size *doesn't* need to be specified is on a
7436 * geometry shader input, tessellation control shader input,
7437 * tessellation control shader output, and tessellation evaluation
7438 * shader input.
7439 */
7440 if (block_array_type->is_unsized_array()) {
7441 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7442 state->stage == MESA_SHADER_TESS_CTRL ||
7443 state->stage == MESA_SHADER_TESS_EVAL;
7444 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7445
7446 if (this->layout.flags.q.in) {
7447 if (!allow_inputs)
7448 _mesa_glsl_error(&loc, state,
7449 "unsized input block arrays not allowed in "
7450 "%s shader",
7451 _mesa_shader_stage_to_string(state->stage));
7452 } else if (this->layout.flags.q.out) {
7453 if (!allow_outputs)
7454 _mesa_glsl_error(&loc, state,
7455 "unsized output block arrays not allowed in "
7456 "%s shader",
7457 _mesa_shader_stage_to_string(state->stage));
7458 } else {
7459 /* by elimination, this is a uniform block array */
7460 _mesa_glsl_error(&loc, state,
7461 "unsized uniform block arrays not allowed in "
7462 "%s shader",
7463 _mesa_shader_stage_to_string(state->stage));
7464 }
7465 }
7466
7467 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7468 *
7469 * * Arrays of arrays of blocks are not allowed
7470 */
7471 if (state->es_shader && block_array_type->is_array() &&
7472 block_array_type->fields.array->is_array()) {
7473 _mesa_glsl_error(&loc, state,
7474 "arrays of arrays interface blocks are "
7475 "not allowed");
7476 }
7477
7478 var = new(state) ir_variable(block_array_type,
7479 this->instance_name,
7480 var_mode);
7481 } else {
7482 var = new(state) ir_variable(block_type,
7483 this->instance_name,
7484 var_mode);
7485 }
7486
7487 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7488 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7489
7490 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7491 var->data.read_only = true;
7492
7493 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7494 handle_geometry_shader_input_decl(state, loc, var);
7495 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7496 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7497 handle_tess_shader_input_decl(state, loc, var);
7498 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7499 handle_tess_ctrl_shader_output_decl(state, loc, var);
7500
7501 for (unsigned i = 0; i < num_variables; i++) {
7502 if (var->data.mode == ir_var_shader_storage)
7503 apply_memory_qualifiers(var, fields[i]);
7504 }
7505
7506 if (ir_variable *earlier =
7507 state->symbols->get_variable(this->instance_name)) {
7508 if (!redeclaring_per_vertex) {
7509 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7510 this->instance_name);
7511 }
7512 earlier->data.how_declared = ir_var_declared_normally;
7513 earlier->type = var->type;
7514 earlier->reinit_interface_type(block_type);
7515 delete var;
7516 } else {
7517 if (this->layout.flags.q.explicit_binding) {
7518 apply_explicit_binding(state, &loc, var, var->type,
7519 &this->layout);
7520 }
7521
7522 var->data.stream = qual_stream;
7523 if (layout.flags.q.explicit_location) {
7524 var->data.location = expl_location;
7525 var->data.explicit_location = true;
7526 }
7527
7528 state->symbols->add_variable(var);
7529 instructions->push_tail(var);
7530 }
7531 } else {
7532 /* In order to have an array size, the block must also be declared with
7533 * an instance name.
7534 */
7535 assert(this->array_specifier == NULL);
7536
7537 for (unsigned i = 0; i < num_variables; i++) {
7538 ir_variable *var =
7539 new(state) ir_variable(fields[i].type,
7540 ralloc_strdup(state, fields[i].name),
7541 var_mode);
7542 var->data.interpolation = fields[i].interpolation;
7543 var->data.centroid = fields[i].centroid;
7544 var->data.sample = fields[i].sample;
7545 var->data.patch = fields[i].patch;
7546 var->data.stream = qual_stream;
7547 var->data.location = fields[i].location;
7548
7549 if (fields[i].location != -1)
7550 var->data.explicit_location = true;
7551
7552 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7553 var->data.xfb_buffer = fields[i].xfb_buffer;
7554
7555 if (fields[i].offset != -1)
7556 var->data.explicit_xfb_offset = true;
7557 var->data.offset = fields[i].offset;
7558
7559 var->init_interface_type(block_type);
7560
7561 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7562 var->data.read_only = true;
7563
7564 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7565 if (state->es_shader) {
7566 var->data.precision =
7567 select_gles_precision(fields[i].precision, fields[i].type,
7568 state, &loc);
7569 }
7570
7571 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7572 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7573 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7574 } else {
7575 var->data.matrix_layout = fields[i].matrix_layout;
7576 }
7577
7578 if (var->data.mode == ir_var_shader_storage)
7579 apply_memory_qualifiers(var, fields[i]);
7580
7581 /* Examine var name here since var may get deleted in the next call */
7582 bool var_is_gl_id = is_gl_identifier(var->name);
7583
7584 if (redeclaring_per_vertex) {
7585 ir_variable *earlier =
7586 get_variable_being_redeclared(var, loc, state,
7587 true /* allow_all_redeclarations */);
7588 if (!var_is_gl_id || earlier == NULL) {
7589 _mesa_glsl_error(&loc, state,
7590 "redeclaration of gl_PerVertex can only "
7591 "include built-in variables");
7592 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7593 _mesa_glsl_error(&loc, state,
7594 "`%s' has already been redeclared",
7595 earlier->name);
7596 } else {
7597 earlier->data.how_declared = ir_var_declared_in_block;
7598 earlier->reinit_interface_type(block_type);
7599 }
7600 continue;
7601 }
7602
7603 if (state->symbols->get_variable(var->name) != NULL)
7604 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7605
7606 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7607 * The UBO declaration itself doesn't get an ir_variable unless it
7608 * has an instance name. This is ugly.
7609 */
7610 if (this->layout.flags.q.explicit_binding) {
7611 apply_explicit_binding(state, &loc, var,
7612 var->get_interface_type(), &this->layout);
7613 }
7614
7615 if (var->type->is_unsized_array()) {
7616 if (var->is_in_shader_storage_block()) {
7617 if (is_unsized_array_last_element(var)) {
7618 var->data.from_ssbo_unsized_array = true;
7619 }
7620 } else {
7621 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7622 *
7623 * "If an array is declared as the last member of a shader storage
7624 * block and the size is not specified at compile-time, it is
7625 * sized at run-time. In all other cases, arrays are sized only
7626 * at compile-time."
7627 */
7628 if (state->es_shader) {
7629 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7630 "definition: only last member of a shader "
7631 "storage block can be defined as unsized "
7632 "array", fields[i].name);
7633 }
7634 }
7635 }
7636
7637 state->symbols->add_variable(var);
7638 instructions->push_tail(var);
7639 }
7640
7641 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7642 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7643 *
7644 * It is also a compilation error ... to redeclare a built-in
7645 * block and then use a member from that built-in block that was
7646 * not included in the redeclaration.
7647 *
7648 * This appears to be a clarification to the behaviour established
7649 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7650 * behaviour regardless of GLSL version.
7651 *
7652 * To prevent the shader from using a member that was not included in
7653 * the redeclaration, we disable any ir_variables that are still
7654 * associated with the old declaration of gl_PerVertex (since we've
7655 * already updated all of the variables contained in the new
7656 * gl_PerVertex to point to it).
7657 *
7658 * As a side effect this will prevent
7659 * validate_intrastage_interface_blocks() from getting confused and
7660 * thinking there are conflicting definitions of gl_PerVertex in the
7661 * shader.
7662 */
7663 foreach_in_list_safe(ir_instruction, node, instructions) {
7664 ir_variable *const var = node->as_variable();
7665 if (var != NULL &&
7666 var->get_interface_type() == earlier_per_vertex &&
7667 var->data.mode == var_mode) {
7668 if (var->data.how_declared == ir_var_declared_normally) {
7669 _mesa_glsl_error(&loc, state,
7670 "redeclaration of gl_PerVertex cannot "
7671 "follow a redeclaration of `%s'",
7672 var->name);
7673 }
7674 state->symbols->disable_variable(var->name);
7675 var->remove();
7676 }
7677 }
7678 }
7679 }
7680
7681 return NULL;
7682 }
7683
7684
7685 ir_rvalue *
7686 ast_tcs_output_layout::hir(exec_list *instructions,
7687 struct _mesa_glsl_parse_state *state)
7688 {
7689 YYLTYPE loc = this->get_location();
7690
7691 unsigned num_vertices;
7692 if (!state->out_qualifier->vertices->
7693 process_qualifier_constant(state, "vertices", &num_vertices,
7694 false)) {
7695 /* return here to stop cascading incorrect error messages */
7696 return NULL;
7697 }
7698
7699 /* If any shader outputs occurred before this declaration and specified an
7700 * array size, make sure the size they specified is consistent with the
7701 * primitive type.
7702 */
7703 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7704 _mesa_glsl_error(&loc, state,
7705 "this tessellation control shader output layout "
7706 "specifies %u vertices, but a previous output "
7707 "is declared with size %u",
7708 num_vertices, state->tcs_output_size);
7709 return NULL;
7710 }
7711
7712 state->tcs_output_vertices_specified = true;
7713
7714 /* If any shader outputs occurred before this declaration and did not
7715 * specify an array size, their size is determined now.
7716 */
7717 foreach_in_list (ir_instruction, node, instructions) {
7718 ir_variable *var = node->as_variable();
7719 if (var == NULL || var->data.mode != ir_var_shader_out)
7720 continue;
7721
7722 /* Note: Not all tessellation control shader output are arrays. */
7723 if (!var->type->is_unsized_array() || var->data.patch)
7724 continue;
7725
7726 if (var->data.max_array_access >= (int)num_vertices) {
7727 _mesa_glsl_error(&loc, state,
7728 "this tessellation control shader output layout "
7729 "specifies %u vertices, but an access to element "
7730 "%u of output `%s' already exists", num_vertices,
7731 var->data.max_array_access, var->name);
7732 } else {
7733 var->type = glsl_type::get_array_instance(var->type->fields.array,
7734 num_vertices);
7735 }
7736 }
7737
7738 return NULL;
7739 }
7740
7741
7742 ir_rvalue *
7743 ast_gs_input_layout::hir(exec_list *instructions,
7744 struct _mesa_glsl_parse_state *state)
7745 {
7746 YYLTYPE loc = this->get_location();
7747
7748 /* If any geometry input layout declaration preceded this one, make sure it
7749 * was consistent with this one.
7750 */
7751 if (state->gs_input_prim_type_specified &&
7752 state->in_qualifier->prim_type != this->prim_type) {
7753 _mesa_glsl_error(&loc, state,
7754 "geometry shader input layout does not match"
7755 " previous declaration");
7756 return NULL;
7757 }
7758
7759 /* If any shader inputs occurred before this declaration and specified an
7760 * array size, make sure the size they specified is consistent with the
7761 * primitive type.
7762 */
7763 unsigned num_vertices = vertices_per_prim(this->prim_type);
7764 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7765 _mesa_glsl_error(&loc, state,
7766 "this geometry shader input layout implies %u vertices"
7767 " per primitive, but a previous input is declared"
7768 " with size %u", num_vertices, state->gs_input_size);
7769 return NULL;
7770 }
7771
7772 state->gs_input_prim_type_specified = true;
7773
7774 /* If any shader inputs occurred before this declaration and did not
7775 * specify an array size, their size is determined now.
7776 */
7777 foreach_in_list(ir_instruction, node, instructions) {
7778 ir_variable *var = node->as_variable();
7779 if (var == NULL || var->data.mode != ir_var_shader_in)
7780 continue;
7781
7782 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7783 * array; skip it.
7784 */
7785
7786 if (var->type->is_unsized_array()) {
7787 if (var->data.max_array_access >= (int)num_vertices) {
7788 _mesa_glsl_error(&loc, state,
7789 "this geometry shader input layout implies %u"
7790 " vertices, but an access to element %u of input"
7791 " `%s' already exists", num_vertices,
7792 var->data.max_array_access, var->name);
7793 } else {
7794 var->type = glsl_type::get_array_instance(var->type->fields.array,
7795 num_vertices);
7796 }
7797 }
7798 }
7799
7800 return NULL;
7801 }
7802
7803
7804 ir_rvalue *
7805 ast_cs_input_layout::hir(exec_list *instructions,
7806 struct _mesa_glsl_parse_state *state)
7807 {
7808 YYLTYPE loc = this->get_location();
7809
7810 /* From the ARB_compute_shader specification:
7811 *
7812 * If the local size of the shader in any dimension is greater
7813 * than the maximum size supported by the implementation for that
7814 * dimension, a compile-time error results.
7815 *
7816 * It is not clear from the spec how the error should be reported if
7817 * the total size of the work group exceeds
7818 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7819 * report it at compile time as well.
7820 */
7821 GLuint64 total_invocations = 1;
7822 unsigned qual_local_size[3];
7823 for (int i = 0; i < 3; i++) {
7824
7825 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7826 'x' + i);
7827 /* Infer a local_size of 1 for unspecified dimensions */
7828 if (this->local_size[i] == NULL) {
7829 qual_local_size[i] = 1;
7830 } else if (!this->local_size[i]->
7831 process_qualifier_constant(state, local_size_str,
7832 &qual_local_size[i], false)) {
7833 ralloc_free(local_size_str);
7834 return NULL;
7835 }
7836 ralloc_free(local_size_str);
7837
7838 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7839 _mesa_glsl_error(&loc, state,
7840 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7841 " (%d)", 'x' + i,
7842 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7843 break;
7844 }
7845 total_invocations *= qual_local_size[i];
7846 if (total_invocations >
7847 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7848 _mesa_glsl_error(&loc, state,
7849 "product of local_sizes exceeds "
7850 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7851 state->ctx->Const.MaxComputeWorkGroupInvocations);
7852 break;
7853 }
7854 }
7855
7856 /* If any compute input layout declaration preceded this one, make sure it
7857 * was consistent with this one.
7858 */
7859 if (state->cs_input_local_size_specified) {
7860 for (int i = 0; i < 3; i++) {
7861 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7862 _mesa_glsl_error(&loc, state,
7863 "compute shader input layout does not match"
7864 " previous declaration");
7865 return NULL;
7866 }
7867 }
7868 }
7869
7870 state->cs_input_local_size_specified = true;
7871 for (int i = 0; i < 3; i++)
7872 state->cs_input_local_size[i] = qual_local_size[i];
7873
7874 /* We may now declare the built-in constant gl_WorkGroupSize (see
7875 * builtin_variable_generator::generate_constants() for why we didn't
7876 * declare it earlier).
7877 */
7878 ir_variable *var = new(state->symbols)
7879 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7880 var->data.how_declared = ir_var_declared_implicitly;
7881 var->data.read_only = true;
7882 instructions->push_tail(var);
7883 state->symbols->add_variable(var);
7884 ir_constant_data data;
7885 memset(&data, 0, sizeof(data));
7886 for (int i = 0; i < 3; i++)
7887 data.u[i] = qual_local_size[i];
7888 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7889 var->constant_initializer =
7890 new(var) ir_constant(glsl_type::uvec3_type, &data);
7891 var->data.has_initializer = true;
7892
7893 return NULL;
7894 }
7895
7896
7897 static void
7898 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7899 exec_list *instructions)
7900 {
7901 bool gl_FragColor_assigned = false;
7902 bool gl_FragData_assigned = false;
7903 bool gl_FragSecondaryColor_assigned = false;
7904 bool gl_FragSecondaryData_assigned = false;
7905 bool user_defined_fs_output_assigned = false;
7906 ir_variable *user_defined_fs_output = NULL;
7907
7908 /* It would be nice to have proper location information. */
7909 YYLTYPE loc;
7910 memset(&loc, 0, sizeof(loc));
7911
7912 foreach_in_list(ir_instruction, node, instructions) {
7913 ir_variable *var = node->as_variable();
7914
7915 if (!var || !var->data.assigned)
7916 continue;
7917
7918 if (strcmp(var->name, "gl_FragColor") == 0)
7919 gl_FragColor_assigned = true;
7920 else if (strcmp(var->name, "gl_FragData") == 0)
7921 gl_FragData_assigned = true;
7922 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7923 gl_FragSecondaryColor_assigned = true;
7924 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7925 gl_FragSecondaryData_assigned = true;
7926 else if (!is_gl_identifier(var->name)) {
7927 if (state->stage == MESA_SHADER_FRAGMENT &&
7928 var->data.mode == ir_var_shader_out) {
7929 user_defined_fs_output_assigned = true;
7930 user_defined_fs_output = var;
7931 }
7932 }
7933 }
7934
7935 /* From the GLSL 1.30 spec:
7936 *
7937 * "If a shader statically assigns a value to gl_FragColor, it
7938 * may not assign a value to any element of gl_FragData. If a
7939 * shader statically writes a value to any element of
7940 * gl_FragData, it may not assign a value to
7941 * gl_FragColor. That is, a shader may assign values to either
7942 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7943 * linked together must also consistently write just one of
7944 * these variables. Similarly, if user declared output
7945 * variables are in use (statically assigned to), then the
7946 * built-in variables gl_FragColor and gl_FragData may not be
7947 * assigned to. These incorrect usages all generate compile
7948 * time errors."
7949 */
7950 if (gl_FragColor_assigned && gl_FragData_assigned) {
7951 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7952 "`gl_FragColor' and `gl_FragData'");
7953 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7954 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7955 "`gl_FragColor' and `%s'",
7956 user_defined_fs_output->name);
7957 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7958 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7959 "`gl_FragSecondaryColorEXT' and"
7960 " `gl_FragSecondaryDataEXT'");
7961 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7962 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7963 "`gl_FragColor' and"
7964 " `gl_FragSecondaryDataEXT'");
7965 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7966 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7967 "`gl_FragData' and"
7968 " `gl_FragSecondaryColorEXT'");
7969 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7970 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7971 "`gl_FragData' and `%s'",
7972 user_defined_fs_output->name);
7973 }
7974
7975 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7976 !state->EXT_blend_func_extended_enable) {
7977 _mesa_glsl_error(&loc, state,
7978 "Dual source blending requires EXT_blend_func_extended");
7979 }
7980 }
7981
7982
7983 static void
7984 remove_per_vertex_blocks(exec_list *instructions,
7985 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7986 {
7987 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7988 * if it exists in this shader type.
7989 */
7990 const glsl_type *per_vertex = NULL;
7991 switch (mode) {
7992 case ir_var_shader_in:
7993 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7994 per_vertex = gl_in->get_interface_type();
7995 break;
7996 case ir_var_shader_out:
7997 if (ir_variable *gl_Position =
7998 state->symbols->get_variable("gl_Position")) {
7999 per_vertex = gl_Position->get_interface_type();
8000 }
8001 break;
8002 default:
8003 assert(!"Unexpected mode");
8004 break;
8005 }
8006
8007 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8008 * need to do anything.
8009 */
8010 if (per_vertex == NULL)
8011 return;
8012
8013 /* If the interface block is used by the shader, then we don't need to do
8014 * anything.
8015 */
8016 interface_block_usage_visitor v(mode, per_vertex);
8017 v.run(instructions);
8018 if (v.usage_found())
8019 return;
8020
8021 /* Remove any ir_variable declarations that refer to the interface block
8022 * we're removing.
8023 */
8024 foreach_in_list_safe(ir_instruction, node, instructions) {
8025 ir_variable *const var = node->as_variable();
8026 if (var != NULL && var->get_interface_type() == per_vertex &&
8027 var->data.mode == mode) {
8028 state->symbols->disable_variable(var->name);
8029 var->remove();
8030 }
8031 }
8032 }