Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* ESSL does not allow implicit conversions */
295 if (state->es_shader)
296 return false;
297
298 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
299 *
300 * "There are no implicit array or structure conversions. For
301 * example, an array of int cannot be implicitly converted to an
302 * array of float.
303 */
304 if (!to->is_numeric() || !from->type->is_numeric())
305 return false;
306
307 /* We don't actually want the specific type `to`, we want a type
308 * with the same base type as `to`, but the same vector width as
309 * `from`.
310 */
311 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
312 from->type->matrix_columns);
313
314 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
315 if (op) {
316 from = new(ctx) ir_expression(op, to, from, NULL);
317 return true;
318 } else {
319 return false;
320 }
321 }
322
323
324 static const struct glsl_type *
325 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
326 bool multiply,
327 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
328 {
329 const glsl_type *type_a = value_a->type;
330 const glsl_type *type_b = value_b->type;
331
332 /* From GLSL 1.50 spec, page 56:
333 *
334 * "The arithmetic binary operators add (+), subtract (-),
335 * multiply (*), and divide (/) operate on integer and
336 * floating-point scalars, vectors, and matrices."
337 */
338 if (!type_a->is_numeric() || !type_b->is_numeric()) {
339 _mesa_glsl_error(loc, state,
340 "operands to arithmetic operators must be numeric");
341 return glsl_type::error_type;
342 }
343
344
345 /* "If one operand is floating-point based and the other is
346 * not, then the conversions from Section 4.1.10 "Implicit
347 * Conversions" are applied to the non-floating-point-based operand."
348 */
349 if (!apply_implicit_conversion(type_a, value_b, state)
350 && !apply_implicit_conversion(type_b, value_a, state)) {
351 _mesa_glsl_error(loc, state,
352 "could not implicitly convert operands to "
353 "arithmetic operator");
354 return glsl_type::error_type;
355 }
356 type_a = value_a->type;
357 type_b = value_b->type;
358
359 /* "If the operands are integer types, they must both be signed or
360 * both be unsigned."
361 *
362 * From this rule and the preceeding conversion it can be inferred that
363 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
364 * The is_numeric check above already filtered out the case where either
365 * type is not one of these, so now the base types need only be tested for
366 * equality.
367 */
368 if (type_a->base_type != type_b->base_type) {
369 _mesa_glsl_error(loc, state,
370 "base type mismatch for arithmetic operator");
371 return glsl_type::error_type;
372 }
373
374 /* "All arithmetic binary operators result in the same fundamental type
375 * (signed integer, unsigned integer, or floating-point) as the
376 * operands they operate on, after operand type conversion. After
377 * conversion, the following cases are valid
378 *
379 * * The two operands are scalars. In this case the operation is
380 * applied, resulting in a scalar."
381 */
382 if (type_a->is_scalar() && type_b->is_scalar())
383 return type_a;
384
385 /* "* One operand is a scalar, and the other is a vector or matrix.
386 * In this case, the scalar operation is applied independently to each
387 * component of the vector or matrix, resulting in the same size
388 * vector or matrix."
389 */
390 if (type_a->is_scalar()) {
391 if (!type_b->is_scalar())
392 return type_b;
393 } else if (type_b->is_scalar()) {
394 return type_a;
395 }
396
397 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
398 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
399 * handled.
400 */
401 assert(!type_a->is_scalar());
402 assert(!type_b->is_scalar());
403
404 /* "* The two operands are vectors of the same size. In this case, the
405 * operation is done component-wise resulting in the same size
406 * vector."
407 */
408 if (type_a->is_vector() && type_b->is_vector()) {
409 if (type_a == type_b) {
410 return type_a;
411 } else {
412 _mesa_glsl_error(loc, state,
413 "vector size mismatch for arithmetic operator");
414 return glsl_type::error_type;
415 }
416 }
417
418 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
419 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
420 * <vector, vector> have been handled. At least one of the operands must
421 * be matrix. Further, since there are no integer matrix types, the base
422 * type of both operands must be float.
423 */
424 assert(type_a->is_matrix() || type_b->is_matrix());
425 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
426 type_a->base_type == GLSL_TYPE_DOUBLE);
427 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
428 type_b->base_type == GLSL_TYPE_DOUBLE);
429
430 /* "* The operator is add (+), subtract (-), or divide (/), and the
431 * operands are matrices with the same number of rows and the same
432 * number of columns. In this case, the operation is done component-
433 * wise resulting in the same size matrix."
434 * * The operator is multiply (*), where both operands are matrices or
435 * one operand is a vector and the other a matrix. A right vector
436 * operand is treated as a column vector and a left vector operand as a
437 * row vector. In all these cases, it is required that the number of
438 * columns of the left operand is equal to the number of rows of the
439 * right operand. Then, the multiply (*) operation does a linear
440 * algebraic multiply, yielding an object that has the same number of
441 * rows as the left operand and the same number of columns as the right
442 * operand. Section 5.10 "Vector and Matrix Operations" explains in
443 * more detail how vectors and matrices are operated on."
444 */
445 if (! multiply) {
446 if (type_a == type_b)
447 return type_a;
448 } else {
449 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
450
451 if (type == glsl_type::error_type) {
452 _mesa_glsl_error(loc, state,
453 "size mismatch for matrix multiplication");
454 }
455
456 return type;
457 }
458
459
460 /* "All other cases are illegal."
461 */
462 _mesa_glsl_error(loc, state, "type mismatch");
463 return glsl_type::error_type;
464 }
465
466
467 static const struct glsl_type *
468 unary_arithmetic_result_type(const struct glsl_type *type,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 /* From GLSL 1.50 spec, page 57:
472 *
473 * "The arithmetic unary operators negate (-), post- and pre-increment
474 * and decrement (-- and ++) operate on integer or floating-point
475 * values (including vectors and matrices). All unary operators work
476 * component-wise on their operands. These result with the same type
477 * they operated on."
478 */
479 if (!type->is_numeric()) {
480 _mesa_glsl_error(loc, state,
481 "operands to arithmetic operators must be numeric");
482 return glsl_type::error_type;
483 }
484
485 return type;
486 }
487
488 /**
489 * \brief Return the result type of a bit-logic operation.
490 *
491 * If the given types to the bit-logic operator are invalid, return
492 * glsl_type::error_type.
493 *
494 * \param value_a LHS of bit-logic op
495 * \param value_b RHS of bit-logic op
496 */
497 static const struct glsl_type *
498 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
499 ast_operators op,
500 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
501 {
502 const glsl_type *type_a = value_a->type;
503 const glsl_type *type_b = value_b->type;
504
505 if (!state->check_bitwise_operations_allowed(loc)) {
506 return glsl_type::error_type;
507 }
508
509 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
510 *
511 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
512 * (|). The operands must be of type signed or unsigned integers or
513 * integer vectors."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
517 ast_expression::operator_string(op));
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
522 ast_expression::operator_string(op));
523 return glsl_type::error_type;
524 }
525
526 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
527 * make sense for bitwise operations, as they don't operate on floats.
528 *
529 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
530 * here. It wasn't clear whether or not we should apply them to bitwise
531 * operations. However, Khronos has decided that they should in future
532 * language revisions. Applications also rely on this behavior. We opt
533 * to apply them in general, but issue a portability warning.
534 *
535 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
536 */
537 if (type_a->base_type != type_b->base_type) {
538 if (!apply_implicit_conversion(type_a, value_b, state)
539 && !apply_implicit_conversion(type_b, value_a, state)) {
540 _mesa_glsl_error(loc, state,
541 "could not implicitly convert operands to "
542 "`%s` operator",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 } else {
546 _mesa_glsl_warning(loc, state,
547 "some implementations may not support implicit "
548 "int -> uint conversions for `%s' operators; "
549 "consider casting explicitly for portability",
550 ast_expression::operator_string(op));
551 }
552 type_a = value_a->type;
553 type_b = value_b->type;
554 }
555
556 /* "The fundamental types of the operands (signed or unsigned) must
557 * match,"
558 */
559 if (type_a->base_type != type_b->base_type) {
560 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
561 "base type", ast_expression::operator_string(op));
562 return glsl_type::error_type;
563 }
564
565 /* "The operands cannot be vectors of differing size." */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
570 "different sizes", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If one operand is a scalar and the other a vector, the scalar is
575 * applied component-wise to the vector, resulting in the same type as
576 * the vector. The fundamental types of the operands [...] will be the
577 * resulting fundamental type."
578 */
579 if (type_a->is_scalar())
580 return type_b;
581 else
582 return type_a;
583 }
584
585 static const struct glsl_type *
586 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
587 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
588 {
589 const glsl_type *type_a = value_a->type;
590 const glsl_type *type_b = value_b->type;
591
592 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
593 return glsl_type::error_type;
594 }
595
596 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
597 *
598 * "The operator modulus (%) operates on signed or unsigned integers or
599 * integer vectors."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605 if (!type_b->is_integer()) {
606 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
607 return glsl_type::error_type;
608 }
609
610 /* "If the fundamental types in the operands do not match, then the
611 * conversions from section 4.1.10 "Implicit Conversions" are applied
612 * to create matching types."
613 *
614 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
615 * int -> uint conversion rules. Prior to that, there were no implicit
616 * conversions. So it's harmless to apply them universally - no implicit
617 * conversions will exist. If the types don't match, we'll receive false,
618 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
619 *
620 * "The operand types must both be signed or unsigned."
621 */
622 if (!apply_implicit_conversion(type_a, value_b, state) &&
623 !apply_implicit_conversion(type_b, value_a, state)) {
624 _mesa_glsl_error(loc, state,
625 "could not implicitly convert operands to "
626 "modulus (%%) operator");
627 return glsl_type::error_type;
628 }
629 type_a = value_a->type;
630 type_b = value_b->type;
631
632 /* "The operands cannot be vectors of differing size. If one operand is
633 * a scalar and the other vector, then the scalar is applied component-
634 * wise to the vector, resulting in the same type as the vector. If both
635 * are vectors of the same size, the result is computed component-wise."
636 */
637 if (type_a->is_vector()) {
638 if (!type_b->is_vector()
639 || (type_a->vector_elements == type_b->vector_elements))
640 return type_a;
641 } else
642 return type_b;
643
644 /* "The operator modulus (%) is not defined for any other data types
645 * (non-integer types)."
646 */
647 _mesa_glsl_error(loc, state, "type mismatch");
648 return glsl_type::error_type;
649 }
650
651
652 static const struct glsl_type *
653 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
654 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
655 {
656 const glsl_type *type_a = value_a->type;
657 const glsl_type *type_b = value_b->type;
658
659 /* From GLSL 1.50 spec, page 56:
660 * "The relational operators greater than (>), less than (<), greater
661 * than or equal (>=), and less than or equal (<=) operate only on
662 * scalar integer and scalar floating-point expressions."
663 */
664 if (!type_a->is_numeric()
665 || !type_b->is_numeric()
666 || !type_a->is_scalar()
667 || !type_b->is_scalar()) {
668 _mesa_glsl_error(loc, state,
669 "operands to relational operators must be scalar and "
670 "numeric");
671 return glsl_type::error_type;
672 }
673
674 /* "Either the operands' types must match, or the conversions from
675 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
676 * operand, after which the types must match."
677 */
678 if (!apply_implicit_conversion(type_a, value_b, state)
679 && !apply_implicit_conversion(type_b, value_a, state)) {
680 _mesa_glsl_error(loc, state,
681 "could not implicitly convert operands to "
682 "relational operator");
683 return glsl_type::error_type;
684 }
685 type_a = value_a->type;
686 type_b = value_b->type;
687
688 if (type_a->base_type != type_b->base_type) {
689 _mesa_glsl_error(loc, state, "base type mismatch");
690 return glsl_type::error_type;
691 }
692
693 /* "The result is scalar Boolean."
694 */
695 return glsl_type::bool_type;
696 }
697
698 /**
699 * \brief Return the result type of a bit-shift operation.
700 *
701 * If the given types to the bit-shift operator are invalid, return
702 * glsl_type::error_type.
703 *
704 * \param type_a Type of LHS of bit-shift op
705 * \param type_b Type of RHS of bit-shift op
706 */
707 static const struct glsl_type *
708 shift_result_type(const struct glsl_type *type_a,
709 const struct glsl_type *type_b,
710 ast_operators op,
711 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
712 {
713 if (!state->check_bitwise_operations_allowed(loc)) {
714 return glsl_type::error_type;
715 }
716
717 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
718 *
719 * "The shift operators (<<) and (>>). For both operators, the operands
720 * must be signed or unsigned integers or integer vectors. One operand
721 * can be signed while the other is unsigned."
722 */
723 if (!type_a->is_integer()) {
724 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
725 "integer vector", ast_expression::operator_string(op));
726 return glsl_type::error_type;
727
728 }
729 if (!type_b->is_integer()) {
730 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
731 "integer vector", ast_expression::operator_string(op));
732 return glsl_type::error_type;
733 }
734
735 /* "If the first operand is a scalar, the second operand has to be
736 * a scalar as well."
737 */
738 if (type_a->is_scalar() && !type_b->is_scalar()) {
739 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
740 "second must be scalar as well",
741 ast_expression::operator_string(op));
742 return glsl_type::error_type;
743 }
744
745 /* If both operands are vectors, check that they have same number of
746 * elements.
747 */
748 if (type_a->is_vector() &&
749 type_b->is_vector() &&
750 type_a->vector_elements != type_b->vector_elements) {
751 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
752 "have same number of elements",
753 ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "In all cases, the resulting type will be the same type as the left
758 * operand."
759 */
760 return type_a;
761 }
762
763 /**
764 * Returns the innermost array index expression in an rvalue tree.
765 * This is the largest indexing level -- if an array of blocks, then
766 * it is the block index rather than an indexing expression for an
767 * array-typed member of an array of blocks.
768 */
769 static ir_rvalue *
770 find_innermost_array_index(ir_rvalue *rv)
771 {
772 ir_dereference_array *last = NULL;
773 while (rv) {
774 if (rv->as_dereference_array()) {
775 last = rv->as_dereference_array();
776 rv = last->array;
777 } else if (rv->as_dereference_record())
778 rv = rv->as_dereference_record()->record;
779 else if (rv->as_swizzle())
780 rv = rv->as_swizzle()->val;
781 else
782 rv = NULL;
783 }
784
785 if (last)
786 return last->array_index;
787
788 return NULL;
789 }
790
791 /**
792 * Validates that a value can be assigned to a location with a specified type
793 *
794 * Validates that \c rhs can be assigned to some location. If the types are
795 * not an exact match but an automatic conversion is possible, \c rhs will be
796 * converted.
797 *
798 * \return
799 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
800 * Otherwise the actual RHS to be assigned will be returned. This may be
801 * \c rhs, or it may be \c rhs after some type conversion.
802 *
803 * \note
804 * In addition to being used for assignments, this function is used to
805 * type-check return values.
806 */
807 static ir_rvalue *
808 validate_assignment(struct _mesa_glsl_parse_state *state,
809 YYLTYPE loc, ir_rvalue *lhs,
810 ir_rvalue *rhs, bool is_initializer)
811 {
812 /* If there is already some error in the RHS, just return it. Anything
813 * else will lead to an avalanche of error message back to the user.
814 */
815 if (rhs->type->is_error())
816 return rhs;
817
818 /* In the Tessellation Control Shader:
819 * If a per-vertex output variable is used as an l-value, it is an error
820 * if the expression indicating the vertex number is not the identifier
821 * `gl_InvocationID`.
822 */
823 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
824 ir_variable *var = lhs->variable_referenced();
825 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
826 ir_rvalue *index = find_innermost_array_index(lhs);
827 ir_variable *index_var = index ? index->variable_referenced() : NULL;
828 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
829 _mesa_glsl_error(&loc, state,
830 "Tessellation control shader outputs can only "
831 "be indexed by gl_InvocationID");
832 return NULL;
833 }
834 }
835 }
836
837 /* If the types are identical, the assignment can trivially proceed.
838 */
839 if (rhs->type == lhs->type)
840 return rhs;
841
842 /* If the array element types are the same and the LHS is unsized,
843 * the assignment is okay for initializers embedded in variable
844 * declarations.
845 *
846 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
847 * is handled by ir_dereference::is_lvalue.
848 */
849 const glsl_type *lhs_t = lhs->type;
850 const glsl_type *rhs_t = rhs->type;
851 bool unsized_array = false;
852 while(lhs_t->is_array()) {
853 if (rhs_t == lhs_t)
854 break; /* the rest of the inner arrays match so break out early */
855 if (!rhs_t->is_array()) {
856 unsized_array = false;
857 break; /* number of dimensions mismatch */
858 }
859 if (lhs_t->length == rhs_t->length) {
860 lhs_t = lhs_t->fields.array;
861 rhs_t = rhs_t->fields.array;
862 continue;
863 } else if (lhs_t->is_unsized_array()) {
864 unsized_array = true;
865 } else {
866 unsized_array = false;
867 break; /* sized array mismatch */
868 }
869 lhs_t = lhs_t->fields.array;
870 rhs_t = rhs_t->fields.array;
871 }
872 if (unsized_array) {
873 if (is_initializer) {
874 return rhs;
875 } else {
876 _mesa_glsl_error(&loc, state,
877 "implicitly sized arrays cannot be assigned");
878 return NULL;
879 }
880 }
881
882 /* Check for implicit conversion in GLSL 1.20 */
883 if (apply_implicit_conversion(lhs->type, rhs, state)) {
884 if (rhs->type == lhs->type)
885 return rhs;
886 }
887
888 _mesa_glsl_error(&loc, state,
889 "%s of type %s cannot be assigned to "
890 "variable of type %s",
891 is_initializer ? "initializer" : "value",
892 rhs->type->name, lhs->type->name);
893
894 return NULL;
895 }
896
897 static void
898 mark_whole_array_access(ir_rvalue *access)
899 {
900 ir_dereference_variable *deref = access->as_dereference_variable();
901
902 if (deref && deref->var) {
903 deref->var->data.max_array_access = deref->type->length - 1;
904 }
905 }
906
907 static bool
908 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
909 const char *non_lvalue_description,
910 ir_rvalue *lhs, ir_rvalue *rhs,
911 ir_rvalue **out_rvalue, bool needs_rvalue,
912 bool is_initializer,
913 YYLTYPE lhs_loc)
914 {
915 void *ctx = state;
916 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
917
918 ir_variable *lhs_var = lhs->variable_referenced();
919 if (lhs_var)
920 lhs_var->data.assigned = true;
921
922 if (!error_emitted) {
923 if (non_lvalue_description != NULL) {
924 _mesa_glsl_error(&lhs_loc, state,
925 "assignment to %s",
926 non_lvalue_description);
927 error_emitted = true;
928 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
929 (lhs_var->data.mode == ir_var_shader_storage &&
930 lhs_var->data.image_read_only))) {
931 /* We can have image_read_only set on both images and buffer variables,
932 * but in the former there is a distinction between assignments to
933 * the variable itself (read_only) and to the memory they point to
934 * (image_read_only), while in the case of buffer variables there is
935 * no such distinction, that is why this check here is limited to
936 * buffer variables alone.
937 */
938 _mesa_glsl_error(&lhs_loc, state,
939 "assignment to read-only variable '%s'",
940 lhs_var->name);
941 error_emitted = true;
942 } else if (lhs->type->is_array() &&
943 !state->check_version(120, 300, &lhs_loc,
944 "whole array assignment forbidden")) {
945 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
946 *
947 * "Other binary or unary expressions, non-dereferenced
948 * arrays, function names, swizzles with repeated fields,
949 * and constants cannot be l-values."
950 *
951 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
952 */
953 error_emitted = true;
954 } else if (!lhs->is_lvalue()) {
955 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
956 error_emitted = true;
957 }
958 }
959
960 ir_rvalue *new_rhs =
961 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
962 if (new_rhs != NULL) {
963 rhs = new_rhs;
964
965 /* If the LHS array was not declared with a size, it takes it size from
966 * the RHS. If the LHS is an l-value and a whole array, it must be a
967 * dereference of a variable. Any other case would require that the LHS
968 * is either not an l-value or not a whole array.
969 */
970 if (lhs->type->is_unsized_array()) {
971 ir_dereference *const d = lhs->as_dereference();
972
973 assert(d != NULL);
974
975 ir_variable *const var = d->variable_referenced();
976
977 assert(var != NULL);
978
979 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
980 /* FINISHME: This should actually log the location of the RHS. */
981 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
982 "previous access",
983 var->data.max_array_access);
984 }
985
986 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
987 rhs->type->array_size());
988 d->type = var->type;
989 }
990 if (lhs->type->is_array()) {
991 mark_whole_array_access(rhs);
992 mark_whole_array_access(lhs);
993 }
994 }
995
996 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
997 * but not post_inc) need the converted assigned value as an rvalue
998 * to handle things like:
999 *
1000 * i = j += 1;
1001 */
1002 if (needs_rvalue) {
1003 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1004 ir_var_temporary);
1005 instructions->push_tail(var);
1006 instructions->push_tail(assign(var, rhs));
1007
1008 if (!error_emitted) {
1009 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1010 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1011 }
1012 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1013
1014 *out_rvalue = rvalue;
1015 } else {
1016 if (!error_emitted)
1017 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1018 *out_rvalue = NULL;
1019 }
1020
1021 return error_emitted;
1022 }
1023
1024 static ir_rvalue *
1025 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1026 {
1027 void *ctx = ralloc_parent(lvalue);
1028 ir_variable *var;
1029
1030 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1031 ir_var_temporary);
1032 instructions->push_tail(var);
1033
1034 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1035 lvalue));
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 ir_rvalue *
1042 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1043 {
1044 (void) instructions;
1045 (void) state;
1046
1047 return NULL;
1048 }
1049
1050 bool
1051 ast_node::has_sequence_subexpression() const
1052 {
1053 return false;
1054 }
1055
1056 void
1057 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1058 struct _mesa_glsl_parse_state *state)
1059 {
1060 (void)hir(instructions, state);
1061 }
1062
1063 void
1064 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1065 struct _mesa_glsl_parse_state *state)
1066 {
1067 (void)hir(instructions, state);
1068 }
1069
1070 static ir_rvalue *
1071 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1072 {
1073 int join_op;
1074 ir_rvalue *cmp = NULL;
1075
1076 if (operation == ir_binop_all_equal)
1077 join_op = ir_binop_logic_and;
1078 else
1079 join_op = ir_binop_logic_or;
1080
1081 switch (op0->type->base_type) {
1082 case GLSL_TYPE_FLOAT:
1083 case GLSL_TYPE_UINT:
1084 case GLSL_TYPE_INT:
1085 case GLSL_TYPE_BOOL:
1086 case GLSL_TYPE_DOUBLE:
1087 return new(mem_ctx) ir_expression(operation, op0, op1);
1088
1089 case GLSL_TYPE_ARRAY: {
1090 for (unsigned int i = 0; i < op0->type->length; i++) {
1091 ir_rvalue *e0, *e1, *result;
1092
1093 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1094 new(mem_ctx) ir_constant(i));
1095 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1096 new(mem_ctx) ir_constant(i));
1097 result = do_comparison(mem_ctx, operation, e0, e1);
1098
1099 if (cmp) {
1100 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1101 } else {
1102 cmp = result;
1103 }
1104 }
1105
1106 mark_whole_array_access(op0);
1107 mark_whole_array_access(op1);
1108 break;
1109 }
1110
1111 case GLSL_TYPE_STRUCT: {
1112 for (unsigned int i = 0; i < op0->type->length; i++) {
1113 ir_rvalue *e0, *e1, *result;
1114 const char *field_name = op0->type->fields.structure[i].name;
1115
1116 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1117 field_name);
1118 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1119 field_name);
1120 result = do_comparison(mem_ctx, operation, e0, e1);
1121
1122 if (cmp) {
1123 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1124 } else {
1125 cmp = result;
1126 }
1127 }
1128 break;
1129 }
1130
1131 case GLSL_TYPE_ERROR:
1132 case GLSL_TYPE_VOID:
1133 case GLSL_TYPE_SAMPLER:
1134 case GLSL_TYPE_IMAGE:
1135 case GLSL_TYPE_INTERFACE:
1136 case GLSL_TYPE_ATOMIC_UINT:
1137 case GLSL_TYPE_SUBROUTINE:
1138 case GLSL_TYPE_FUNCTION:
1139 /* I assume a comparison of a struct containing a sampler just
1140 * ignores the sampler present in the type.
1141 */
1142 break;
1143 }
1144
1145 if (cmp == NULL)
1146 cmp = new(mem_ctx) ir_constant(true);
1147
1148 return cmp;
1149 }
1150
1151 /* For logical operations, we want to ensure that the operands are
1152 * scalar booleans. If it isn't, emit an error and return a constant
1153 * boolean to avoid triggering cascading error messages.
1154 */
1155 ir_rvalue *
1156 get_scalar_boolean_operand(exec_list *instructions,
1157 struct _mesa_glsl_parse_state *state,
1158 ast_expression *parent_expr,
1159 int operand,
1160 const char *operand_name,
1161 bool *error_emitted)
1162 {
1163 ast_expression *expr = parent_expr->subexpressions[operand];
1164 void *ctx = state;
1165 ir_rvalue *val = expr->hir(instructions, state);
1166
1167 if (val->type->is_boolean() && val->type->is_scalar())
1168 return val;
1169
1170 if (!*error_emitted) {
1171 YYLTYPE loc = expr->get_location();
1172 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1173 operand_name,
1174 parent_expr->operator_string(parent_expr->oper));
1175 *error_emitted = true;
1176 }
1177
1178 return new(ctx) ir_constant(true);
1179 }
1180
1181 /**
1182 * If name refers to a builtin array whose maximum allowed size is less than
1183 * size, report an error and return true. Otherwise return false.
1184 */
1185 void
1186 check_builtin_array_max_size(const char *name, unsigned size,
1187 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1188 {
1189 if ((strcmp("gl_TexCoord", name) == 0)
1190 && (size > state->Const.MaxTextureCoords)) {
1191 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1192 *
1193 * "The size [of gl_TexCoord] can be at most
1194 * gl_MaxTextureCoords."
1195 */
1196 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1197 "be larger than gl_MaxTextureCoords (%u)",
1198 state->Const.MaxTextureCoords);
1199 } else if (strcmp("gl_ClipDistance", name) == 0
1200 && size > state->Const.MaxClipPlanes) {
1201 /* From section 7.1 (Vertex Shader Special Variables) of the
1202 * GLSL 1.30 spec:
1203 *
1204 * "The gl_ClipDistance array is predeclared as unsized and
1205 * must be sized by the shader either redeclaring it with a
1206 * size or indexing it only with integral constant
1207 * expressions. ... The size can be at most
1208 * gl_MaxClipDistances."
1209 */
1210 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1211 "be larger than gl_MaxClipDistances (%u)",
1212 state->Const.MaxClipPlanes);
1213 }
1214 }
1215
1216 /**
1217 * Create the constant 1, of a which is appropriate for incrementing and
1218 * decrementing values of the given GLSL type. For example, if type is vec4,
1219 * this creates a constant value of 1.0 having type float.
1220 *
1221 * If the given type is invalid for increment and decrement operators, return
1222 * a floating point 1--the error will be detected later.
1223 */
1224 static ir_rvalue *
1225 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1226 {
1227 switch (type->base_type) {
1228 case GLSL_TYPE_UINT:
1229 return new(ctx) ir_constant((unsigned) 1);
1230 case GLSL_TYPE_INT:
1231 return new(ctx) ir_constant(1);
1232 default:
1233 case GLSL_TYPE_FLOAT:
1234 return new(ctx) ir_constant(1.0f);
1235 }
1236 }
1237
1238 ir_rvalue *
1239 ast_expression::hir(exec_list *instructions,
1240 struct _mesa_glsl_parse_state *state)
1241 {
1242 return do_hir(instructions, state, true);
1243 }
1244
1245 void
1246 ast_expression::hir_no_rvalue(exec_list *instructions,
1247 struct _mesa_glsl_parse_state *state)
1248 {
1249 do_hir(instructions, state, false);
1250 }
1251
1252 void
1253 ast_expression::set_is_lhs(bool new_value)
1254 {
1255 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1256 * if we lack a identifier we can just skip it.
1257 */
1258 if (this->primary_expression.identifier == NULL)
1259 return;
1260
1261 this->is_lhs = new_value;
1262
1263 /* We need to go through the subexpressions tree to cover cases like
1264 * ast_field_selection
1265 */
1266 if (this->subexpressions[0] != NULL)
1267 this->subexpressions[0]->set_is_lhs(new_value);
1268 }
1269
1270 ir_rvalue *
1271 ast_expression::do_hir(exec_list *instructions,
1272 struct _mesa_glsl_parse_state *state,
1273 bool needs_rvalue)
1274 {
1275 void *ctx = state;
1276 static const int operations[AST_NUM_OPERATORS] = {
1277 -1, /* ast_assign doesn't convert to ir_expression. */
1278 -1, /* ast_plus doesn't convert to ir_expression. */
1279 ir_unop_neg,
1280 ir_binop_add,
1281 ir_binop_sub,
1282 ir_binop_mul,
1283 ir_binop_div,
1284 ir_binop_mod,
1285 ir_binop_lshift,
1286 ir_binop_rshift,
1287 ir_binop_less,
1288 ir_binop_greater,
1289 ir_binop_lequal,
1290 ir_binop_gequal,
1291 ir_binop_all_equal,
1292 ir_binop_any_nequal,
1293 ir_binop_bit_and,
1294 ir_binop_bit_xor,
1295 ir_binop_bit_or,
1296 ir_unop_bit_not,
1297 ir_binop_logic_and,
1298 ir_binop_logic_xor,
1299 ir_binop_logic_or,
1300 ir_unop_logic_not,
1301
1302 /* Note: The following block of expression types actually convert
1303 * to multiple IR instructions.
1304 */
1305 ir_binop_mul, /* ast_mul_assign */
1306 ir_binop_div, /* ast_div_assign */
1307 ir_binop_mod, /* ast_mod_assign */
1308 ir_binop_add, /* ast_add_assign */
1309 ir_binop_sub, /* ast_sub_assign */
1310 ir_binop_lshift, /* ast_ls_assign */
1311 ir_binop_rshift, /* ast_rs_assign */
1312 ir_binop_bit_and, /* ast_and_assign */
1313 ir_binop_bit_xor, /* ast_xor_assign */
1314 ir_binop_bit_or, /* ast_or_assign */
1315
1316 -1, /* ast_conditional doesn't convert to ir_expression. */
1317 ir_binop_add, /* ast_pre_inc. */
1318 ir_binop_sub, /* ast_pre_dec. */
1319 ir_binop_add, /* ast_post_inc. */
1320 ir_binop_sub, /* ast_post_dec. */
1321 -1, /* ast_field_selection doesn't conv to ir_expression. */
1322 -1, /* ast_array_index doesn't convert to ir_expression. */
1323 -1, /* ast_function_call doesn't conv to ir_expression. */
1324 -1, /* ast_identifier doesn't convert to ir_expression. */
1325 -1, /* ast_int_constant doesn't convert to ir_expression. */
1326 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1327 -1, /* ast_float_constant doesn't conv to ir_expression. */
1328 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1329 -1, /* ast_sequence doesn't convert to ir_expression. */
1330 };
1331 ir_rvalue *result = NULL;
1332 ir_rvalue *op[3];
1333 const struct glsl_type *type; /* a temporary variable for switch cases */
1334 bool error_emitted = false;
1335 YYLTYPE loc;
1336
1337 loc = this->get_location();
1338
1339 switch (this->oper) {
1340 case ast_aggregate:
1341 assert(!"ast_aggregate: Should never get here.");
1342 break;
1343
1344 case ast_assign: {
1345 this->subexpressions[0]->set_is_lhs(true);
1346 op[0] = this->subexpressions[0]->hir(instructions, state);
1347 op[1] = this->subexpressions[1]->hir(instructions, state);
1348
1349 error_emitted =
1350 do_assignment(instructions, state,
1351 this->subexpressions[0]->non_lvalue_description,
1352 op[0], op[1], &result, needs_rvalue, false,
1353 this->subexpressions[0]->get_location());
1354 break;
1355 }
1356
1357 case ast_plus:
1358 op[0] = this->subexpressions[0]->hir(instructions, state);
1359
1360 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1361
1362 error_emitted = type->is_error();
1363
1364 result = op[0];
1365 break;
1366
1367 case ast_neg:
1368 op[0] = this->subexpressions[0]->hir(instructions, state);
1369
1370 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1371
1372 error_emitted = type->is_error();
1373
1374 result = new(ctx) ir_expression(operations[this->oper], type,
1375 op[0], NULL);
1376 break;
1377
1378 case ast_add:
1379 case ast_sub:
1380 case ast_mul:
1381 case ast_div:
1382 op[0] = this->subexpressions[0]->hir(instructions, state);
1383 op[1] = this->subexpressions[1]->hir(instructions, state);
1384
1385 type = arithmetic_result_type(op[0], op[1],
1386 (this->oper == ast_mul),
1387 state, & loc);
1388 error_emitted = type->is_error();
1389
1390 result = new(ctx) ir_expression(operations[this->oper], type,
1391 op[0], op[1]);
1392 break;
1393
1394 case ast_mod:
1395 op[0] = this->subexpressions[0]->hir(instructions, state);
1396 op[1] = this->subexpressions[1]->hir(instructions, state);
1397
1398 type = modulus_result_type(op[0], op[1], state, &loc);
1399
1400 assert(operations[this->oper] == ir_binop_mod);
1401
1402 result = new(ctx) ir_expression(operations[this->oper], type,
1403 op[0], op[1]);
1404 error_emitted = type->is_error();
1405 break;
1406
1407 case ast_lshift:
1408 case ast_rshift:
1409 if (!state->check_bitwise_operations_allowed(&loc)) {
1410 error_emitted = true;
1411 }
1412
1413 op[0] = this->subexpressions[0]->hir(instructions, state);
1414 op[1] = this->subexpressions[1]->hir(instructions, state);
1415 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1416 &loc);
1417 result = new(ctx) ir_expression(operations[this->oper], type,
1418 op[0], op[1]);
1419 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1420 break;
1421
1422 case ast_less:
1423 case ast_greater:
1424 case ast_lequal:
1425 case ast_gequal:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428
1429 type = relational_result_type(op[0], op[1], state, & loc);
1430
1431 /* The relational operators must either generate an error or result
1432 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1433 */
1434 assert(type->is_error()
1435 || ((type->base_type == GLSL_TYPE_BOOL)
1436 && type->is_scalar()));
1437
1438 result = new(ctx) ir_expression(operations[this->oper], type,
1439 op[0], op[1]);
1440 error_emitted = type->is_error();
1441 break;
1442
1443 case ast_nequal:
1444 case ast_equal:
1445 op[0] = this->subexpressions[0]->hir(instructions, state);
1446 op[1] = this->subexpressions[1]->hir(instructions, state);
1447
1448 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1449 *
1450 * "The equality operators equal (==), and not equal (!=)
1451 * operate on all types. They result in a scalar Boolean. If
1452 * the operand types do not match, then there must be a
1453 * conversion from Section 4.1.10 "Implicit Conversions"
1454 * applied to one operand that can make them match, in which
1455 * case this conversion is done."
1456 */
1457
1458 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1459 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1460 "no operation `%1$s' exists that takes a left-hand "
1461 "operand of type 'void' or a right operand of type "
1462 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1463 error_emitted = true;
1464 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1465 && !apply_implicit_conversion(op[1]->type, op[0], state))
1466 || (op[0]->type != op[1]->type)) {
1467 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1468 "type", (this->oper == ast_equal) ? "==" : "!=");
1469 error_emitted = true;
1470 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1471 !state->check_version(120, 300, &loc,
1472 "array comparisons forbidden")) {
1473 error_emitted = true;
1474 } else if ((op[0]->type->contains_opaque() ||
1475 op[1]->type->contains_opaque())) {
1476 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1477 error_emitted = true;
1478 }
1479
1480 if (error_emitted) {
1481 result = new(ctx) ir_constant(false);
1482 } else {
1483 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1484 assert(result->type == glsl_type::bool_type);
1485 }
1486 break;
1487
1488 case ast_bit_and:
1489 case ast_bit_xor:
1490 case ast_bit_or:
1491 op[0] = this->subexpressions[0]->hir(instructions, state);
1492 op[1] = this->subexpressions[1]->hir(instructions, state);
1493 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1494 result = new(ctx) ir_expression(operations[this->oper], type,
1495 op[0], op[1]);
1496 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1497 break;
1498
1499 case ast_bit_not:
1500 op[0] = this->subexpressions[0]->hir(instructions, state);
1501
1502 if (!state->check_bitwise_operations_allowed(&loc)) {
1503 error_emitted = true;
1504 }
1505
1506 if (!op[0]->type->is_integer()) {
1507 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1508 error_emitted = true;
1509 }
1510
1511 type = error_emitted ? glsl_type::error_type : op[0]->type;
1512 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1513 break;
1514
1515 case ast_logic_and: {
1516 exec_list rhs_instructions;
1517 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1518 "LHS", &error_emitted);
1519 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1520 "RHS", &error_emitted);
1521
1522 if (rhs_instructions.is_empty()) {
1523 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1524 type = result->type;
1525 } else {
1526 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1527 "and_tmp",
1528 ir_var_temporary);
1529 instructions->push_tail(tmp);
1530
1531 ir_if *const stmt = new(ctx) ir_if(op[0]);
1532 instructions->push_tail(stmt);
1533
1534 stmt->then_instructions.append_list(&rhs_instructions);
1535 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1536 ir_assignment *const then_assign =
1537 new(ctx) ir_assignment(then_deref, op[1]);
1538 stmt->then_instructions.push_tail(then_assign);
1539
1540 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1541 ir_assignment *const else_assign =
1542 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1543 stmt->else_instructions.push_tail(else_assign);
1544
1545 result = new(ctx) ir_dereference_variable(tmp);
1546 type = tmp->type;
1547 }
1548 break;
1549 }
1550
1551 case ast_logic_or: {
1552 exec_list rhs_instructions;
1553 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1554 "LHS", &error_emitted);
1555 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1556 "RHS", &error_emitted);
1557
1558 if (rhs_instructions.is_empty()) {
1559 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1560 type = result->type;
1561 } else {
1562 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1563 "or_tmp",
1564 ir_var_temporary);
1565 instructions->push_tail(tmp);
1566
1567 ir_if *const stmt = new(ctx) ir_if(op[0]);
1568 instructions->push_tail(stmt);
1569
1570 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1571 ir_assignment *const then_assign =
1572 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1573 stmt->then_instructions.push_tail(then_assign);
1574
1575 stmt->else_instructions.append_list(&rhs_instructions);
1576 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1577 ir_assignment *const else_assign =
1578 new(ctx) ir_assignment(else_deref, op[1]);
1579 stmt->else_instructions.push_tail(else_assign);
1580
1581 result = new(ctx) ir_dereference_variable(tmp);
1582 type = tmp->type;
1583 }
1584 break;
1585 }
1586
1587 case ast_logic_xor:
1588 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1589 *
1590 * "The logical binary operators and (&&), or ( | | ), and
1591 * exclusive or (^^). They operate only on two Boolean
1592 * expressions and result in a Boolean expression."
1593 */
1594 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1595 &error_emitted);
1596 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1597 &error_emitted);
1598
1599 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1600 op[0], op[1]);
1601 break;
1602
1603 case ast_logic_not:
1604 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1605 "operand", &error_emitted);
1606
1607 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1608 op[0], NULL);
1609 break;
1610
1611 case ast_mul_assign:
1612 case ast_div_assign:
1613 case ast_add_assign:
1614 case ast_sub_assign: {
1615 this->subexpressions[0]->set_is_lhs(true);
1616 op[0] = this->subexpressions[0]->hir(instructions, state);
1617 op[1] = this->subexpressions[1]->hir(instructions, state);
1618
1619 type = arithmetic_result_type(op[0], op[1],
1620 (this->oper == ast_mul_assign),
1621 state, & loc);
1622
1623 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1624 op[0], op[1]);
1625
1626 error_emitted =
1627 do_assignment(instructions, state,
1628 this->subexpressions[0]->non_lvalue_description,
1629 op[0]->clone(ctx, NULL), temp_rhs,
1630 &result, needs_rvalue, false,
1631 this->subexpressions[0]->get_location());
1632
1633 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1634 * explicitly test for this because none of the binary expression
1635 * operators allow array operands either.
1636 */
1637
1638 break;
1639 }
1640
1641 case ast_mod_assign: {
1642 this->subexpressions[0]->set_is_lhs(true);
1643 op[0] = this->subexpressions[0]->hir(instructions, state);
1644 op[1] = this->subexpressions[1]->hir(instructions, state);
1645
1646 type = modulus_result_type(op[0], op[1], state, &loc);
1647
1648 assert(operations[this->oper] == ir_binop_mod);
1649
1650 ir_rvalue *temp_rhs;
1651 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1652 op[0], op[1]);
1653
1654 error_emitted =
1655 do_assignment(instructions, state,
1656 this->subexpressions[0]->non_lvalue_description,
1657 op[0]->clone(ctx, NULL), temp_rhs,
1658 &result, needs_rvalue, false,
1659 this->subexpressions[0]->get_location());
1660 break;
1661 }
1662
1663 case ast_ls_assign:
1664 case ast_rs_assign: {
1665 this->subexpressions[0]->set_is_lhs(true);
1666 op[0] = this->subexpressions[0]->hir(instructions, state);
1667 op[1] = this->subexpressions[1]->hir(instructions, state);
1668 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1669 &loc);
1670 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1671 type, op[0], op[1]);
1672 error_emitted =
1673 do_assignment(instructions, state,
1674 this->subexpressions[0]->non_lvalue_description,
1675 op[0]->clone(ctx, NULL), temp_rhs,
1676 &result, needs_rvalue, false,
1677 this->subexpressions[0]->get_location());
1678 break;
1679 }
1680
1681 case ast_and_assign:
1682 case ast_xor_assign:
1683 case ast_or_assign: {
1684 this->subexpressions[0]->set_is_lhs(true);
1685 op[0] = this->subexpressions[0]->hir(instructions, state);
1686 op[1] = this->subexpressions[1]->hir(instructions, state);
1687 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1688 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1689 type, op[0], op[1]);
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696 break;
1697 }
1698
1699 case ast_conditional: {
1700 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1701 *
1702 * "The ternary selection operator (?:). It operates on three
1703 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1704 * first expression, which must result in a scalar Boolean."
1705 */
1706 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1707 "condition", &error_emitted);
1708
1709 /* The :? operator is implemented by generating an anonymous temporary
1710 * followed by an if-statement. The last instruction in each branch of
1711 * the if-statement assigns a value to the anonymous temporary. This
1712 * temporary is the r-value of the expression.
1713 */
1714 exec_list then_instructions;
1715 exec_list else_instructions;
1716
1717 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1718 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1719
1720 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1721 *
1722 * "The second and third expressions can be any type, as
1723 * long their types match, or there is a conversion in
1724 * Section 4.1.10 "Implicit Conversions" that can be applied
1725 * to one of the expressions to make their types match. This
1726 * resulting matching type is the type of the entire
1727 * expression."
1728 */
1729 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1730 && !apply_implicit_conversion(op[2]->type, op[1], state))
1731 || (op[1]->type != op[2]->type)) {
1732 YYLTYPE loc = this->subexpressions[1]->get_location();
1733
1734 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1735 "operator must have matching types");
1736 error_emitted = true;
1737 type = glsl_type::error_type;
1738 } else {
1739 type = op[1]->type;
1740 }
1741
1742 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1743 *
1744 * "The second and third expressions must be the same type, but can
1745 * be of any type other than an array."
1746 */
1747 if (type->is_array() &&
1748 !state->check_version(120, 300, &loc,
1749 "second and third operands of ?: operator "
1750 "cannot be arrays")) {
1751 error_emitted = true;
1752 }
1753
1754 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1755 *
1756 * "Except for array indexing, structure member selection, and
1757 * parentheses, opaque variables are not allowed to be operands in
1758 * expressions; such use results in a compile-time error."
1759 */
1760 if (type->contains_opaque()) {
1761 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1762 "of the ?: operator");
1763 error_emitted = true;
1764 }
1765
1766 ir_constant *cond_val = op[0]->constant_expression_value();
1767
1768 if (then_instructions.is_empty()
1769 && else_instructions.is_empty()
1770 && cond_val != NULL) {
1771 result = cond_val->value.b[0] ? op[1] : op[2];
1772 } else {
1773 /* The copy to conditional_tmp reads the whole array. */
1774 if (type->is_array()) {
1775 mark_whole_array_access(op[1]);
1776 mark_whole_array_access(op[2]);
1777 }
1778
1779 ir_variable *const tmp =
1780 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1781 instructions->push_tail(tmp);
1782
1783 ir_if *const stmt = new(ctx) ir_if(op[0]);
1784 instructions->push_tail(stmt);
1785
1786 then_instructions.move_nodes_to(& stmt->then_instructions);
1787 ir_dereference *const then_deref =
1788 new(ctx) ir_dereference_variable(tmp);
1789 ir_assignment *const then_assign =
1790 new(ctx) ir_assignment(then_deref, op[1]);
1791 stmt->then_instructions.push_tail(then_assign);
1792
1793 else_instructions.move_nodes_to(& stmt->else_instructions);
1794 ir_dereference *const else_deref =
1795 new(ctx) ir_dereference_variable(tmp);
1796 ir_assignment *const else_assign =
1797 new(ctx) ir_assignment(else_deref, op[2]);
1798 stmt->else_instructions.push_tail(else_assign);
1799
1800 result = new(ctx) ir_dereference_variable(tmp);
1801 }
1802 break;
1803 }
1804
1805 case ast_pre_inc:
1806 case ast_pre_dec: {
1807 this->non_lvalue_description = (this->oper == ast_pre_inc)
1808 ? "pre-increment operation" : "pre-decrement operation";
1809
1810 op[0] = this->subexpressions[0]->hir(instructions, state);
1811 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1812
1813 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1814
1815 ir_rvalue *temp_rhs;
1816 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1817 op[0], op[1]);
1818
1819 error_emitted =
1820 do_assignment(instructions, state,
1821 this->subexpressions[0]->non_lvalue_description,
1822 op[0]->clone(ctx, NULL), temp_rhs,
1823 &result, needs_rvalue, false,
1824 this->subexpressions[0]->get_location());
1825 break;
1826 }
1827
1828 case ast_post_inc:
1829 case ast_post_dec: {
1830 this->non_lvalue_description = (this->oper == ast_post_inc)
1831 ? "post-increment operation" : "post-decrement operation";
1832 op[0] = this->subexpressions[0]->hir(instructions, state);
1833 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1834
1835 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1836
1837 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1838
1839 ir_rvalue *temp_rhs;
1840 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1841 op[0], op[1]);
1842
1843 /* Get a temporary of a copy of the lvalue before it's modified.
1844 * This may get thrown away later.
1845 */
1846 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1847
1848 ir_rvalue *junk_rvalue;
1849 error_emitted =
1850 do_assignment(instructions, state,
1851 this->subexpressions[0]->non_lvalue_description,
1852 op[0]->clone(ctx, NULL), temp_rhs,
1853 &junk_rvalue, false, false,
1854 this->subexpressions[0]->get_location());
1855
1856 break;
1857 }
1858
1859 case ast_field_selection:
1860 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1861 break;
1862
1863 case ast_array_index: {
1864 YYLTYPE index_loc = subexpressions[1]->get_location();
1865
1866 /* Getting if an array is being used uninitialized is beyond what we get
1867 * from ir_value.data.assigned. Setting is_lhs as true would force to
1868 * not raise a uninitialized warning when using an array
1869 */
1870 subexpressions[0]->set_is_lhs(true);
1871 op[0] = subexpressions[0]->hir(instructions, state);
1872 op[1] = subexpressions[1]->hir(instructions, state);
1873
1874 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1875 loc, index_loc);
1876
1877 if (result->type->is_error())
1878 error_emitted = true;
1879
1880 break;
1881 }
1882
1883 case ast_unsized_array_dim:
1884 assert(!"ast_unsized_array_dim: Should never get here.");
1885 break;
1886
1887 case ast_function_call:
1888 /* Should *NEVER* get here. ast_function_call should always be handled
1889 * by ast_function_expression::hir.
1890 */
1891 assert(0);
1892 break;
1893
1894 case ast_identifier: {
1895 /* ast_identifier can appear several places in a full abstract syntax
1896 * tree. This particular use must be at location specified in the grammar
1897 * as 'variable_identifier'.
1898 */
1899 ir_variable *var =
1900 state->symbols->get_variable(this->primary_expression.identifier);
1901
1902 if (var != NULL) {
1903 var->data.used = true;
1904 result = new(ctx) ir_dereference_variable(var);
1905
1906 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1907 && !this->is_lhs
1908 && result->variable_referenced()->data.assigned != true
1909 && !is_gl_identifier(var->name)) {
1910 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1911 this->primary_expression.identifier);
1912 }
1913 } else {
1914 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1915 this->primary_expression.identifier);
1916
1917 result = ir_rvalue::error_value(ctx);
1918 error_emitted = true;
1919 }
1920 break;
1921 }
1922
1923 case ast_int_constant:
1924 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1925 break;
1926
1927 case ast_uint_constant:
1928 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1929 break;
1930
1931 case ast_float_constant:
1932 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1933 break;
1934
1935 case ast_bool_constant:
1936 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1937 break;
1938
1939 case ast_double_constant:
1940 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1941 break;
1942
1943 case ast_sequence: {
1944 /* It should not be possible to generate a sequence in the AST without
1945 * any expressions in it.
1946 */
1947 assert(!this->expressions.is_empty());
1948
1949 /* The r-value of a sequence is the last expression in the sequence. If
1950 * the other expressions in the sequence do not have side-effects (and
1951 * therefore add instructions to the instruction list), they get dropped
1952 * on the floor.
1953 */
1954 exec_node *previous_tail_pred = NULL;
1955 YYLTYPE previous_operand_loc = loc;
1956
1957 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1958 /* If one of the operands of comma operator does not generate any
1959 * code, we want to emit a warning. At each pass through the loop
1960 * previous_tail_pred will point to the last instruction in the
1961 * stream *before* processing the previous operand. Naturally,
1962 * instructions->tail_pred will point to the last instruction in the
1963 * stream *after* processing the previous operand. If the two
1964 * pointers match, then the previous operand had no effect.
1965 *
1966 * The warning behavior here differs slightly from GCC. GCC will
1967 * only emit a warning if none of the left-hand operands have an
1968 * effect. However, it will emit a warning for each. I believe that
1969 * there are some cases in C (especially with GCC extensions) where
1970 * it is useful to have an intermediate step in a sequence have no
1971 * effect, but I don't think these cases exist in GLSL. Either way,
1972 * it would be a giant hassle to replicate that behavior.
1973 */
1974 if (previous_tail_pred == instructions->tail_pred) {
1975 _mesa_glsl_warning(&previous_operand_loc, state,
1976 "left-hand operand of comma expression has "
1977 "no effect");
1978 }
1979
1980 /* tail_pred is directly accessed instead of using the get_tail()
1981 * method for performance reasons. get_tail() has extra code to
1982 * return NULL when the list is empty. We don't care about that
1983 * here, so using tail_pred directly is fine.
1984 */
1985 previous_tail_pred = instructions->tail_pred;
1986 previous_operand_loc = ast->get_location();
1987
1988 result = ast->hir(instructions, state);
1989 }
1990
1991 /* Any errors should have already been emitted in the loop above.
1992 */
1993 error_emitted = true;
1994 break;
1995 }
1996 }
1997 type = NULL; /* use result->type, not type. */
1998 assert(result != NULL || !needs_rvalue);
1999
2000 if (result && result->type->is_error() && !error_emitted)
2001 _mesa_glsl_error(& loc, state, "type mismatch");
2002
2003 return result;
2004 }
2005
2006 bool
2007 ast_expression::has_sequence_subexpression() const
2008 {
2009 switch (this->oper) {
2010 case ast_plus:
2011 case ast_neg:
2012 case ast_bit_not:
2013 case ast_logic_not:
2014 case ast_pre_inc:
2015 case ast_pre_dec:
2016 case ast_post_inc:
2017 case ast_post_dec:
2018 return this->subexpressions[0]->has_sequence_subexpression();
2019
2020 case ast_assign:
2021 case ast_add:
2022 case ast_sub:
2023 case ast_mul:
2024 case ast_div:
2025 case ast_mod:
2026 case ast_lshift:
2027 case ast_rshift:
2028 case ast_less:
2029 case ast_greater:
2030 case ast_lequal:
2031 case ast_gequal:
2032 case ast_nequal:
2033 case ast_equal:
2034 case ast_bit_and:
2035 case ast_bit_xor:
2036 case ast_bit_or:
2037 case ast_logic_and:
2038 case ast_logic_or:
2039 case ast_logic_xor:
2040 case ast_array_index:
2041 case ast_mul_assign:
2042 case ast_div_assign:
2043 case ast_add_assign:
2044 case ast_sub_assign:
2045 case ast_mod_assign:
2046 case ast_ls_assign:
2047 case ast_rs_assign:
2048 case ast_and_assign:
2049 case ast_xor_assign:
2050 case ast_or_assign:
2051 return this->subexpressions[0]->has_sequence_subexpression() ||
2052 this->subexpressions[1]->has_sequence_subexpression();
2053
2054 case ast_conditional:
2055 return this->subexpressions[0]->has_sequence_subexpression() ||
2056 this->subexpressions[1]->has_sequence_subexpression() ||
2057 this->subexpressions[2]->has_sequence_subexpression();
2058
2059 case ast_sequence:
2060 return true;
2061
2062 case ast_field_selection:
2063 case ast_identifier:
2064 case ast_int_constant:
2065 case ast_uint_constant:
2066 case ast_float_constant:
2067 case ast_bool_constant:
2068 case ast_double_constant:
2069 return false;
2070
2071 case ast_aggregate:
2072 unreachable("ast_aggregate: Should never get here.");
2073
2074 case ast_function_call:
2075 unreachable("should be handled by ast_function_expression::hir");
2076
2077 case ast_unsized_array_dim:
2078 unreachable("ast_unsized_array_dim: Should never get here.");
2079 }
2080
2081 return false;
2082 }
2083
2084 ir_rvalue *
2085 ast_expression_statement::hir(exec_list *instructions,
2086 struct _mesa_glsl_parse_state *state)
2087 {
2088 /* It is possible to have expression statements that don't have an
2089 * expression. This is the solitary semicolon:
2090 *
2091 * for (i = 0; i < 5; i++)
2092 * ;
2093 *
2094 * In this case the expression will be NULL. Test for NULL and don't do
2095 * anything in that case.
2096 */
2097 if (expression != NULL)
2098 expression->hir_no_rvalue(instructions, state);
2099
2100 /* Statements do not have r-values.
2101 */
2102 return NULL;
2103 }
2104
2105
2106 ir_rvalue *
2107 ast_compound_statement::hir(exec_list *instructions,
2108 struct _mesa_glsl_parse_state *state)
2109 {
2110 if (new_scope)
2111 state->symbols->push_scope();
2112
2113 foreach_list_typed (ast_node, ast, link, &this->statements)
2114 ast->hir(instructions, state);
2115
2116 if (new_scope)
2117 state->symbols->pop_scope();
2118
2119 /* Compound statements do not have r-values.
2120 */
2121 return NULL;
2122 }
2123
2124 /**
2125 * Evaluate the given exec_node (which should be an ast_node representing
2126 * a single array dimension) and return its integer value.
2127 */
2128 static unsigned
2129 process_array_size(exec_node *node,
2130 struct _mesa_glsl_parse_state *state)
2131 {
2132 exec_list dummy_instructions;
2133
2134 ast_node *array_size = exec_node_data(ast_node, node, link);
2135
2136 /**
2137 * Dimensions other than the outermost dimension can by unsized if they
2138 * are immediately sized by a constructor or initializer.
2139 */
2140 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2141 return 0;
2142
2143 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2144 YYLTYPE loc = array_size->get_location();
2145
2146 if (ir == NULL) {
2147 _mesa_glsl_error(& loc, state,
2148 "array size could not be resolved");
2149 return 0;
2150 }
2151
2152 if (!ir->type->is_integer()) {
2153 _mesa_glsl_error(& loc, state,
2154 "array size must be integer type");
2155 return 0;
2156 }
2157
2158 if (!ir->type->is_scalar()) {
2159 _mesa_glsl_error(& loc, state,
2160 "array size must be scalar type");
2161 return 0;
2162 }
2163
2164 ir_constant *const size = ir->constant_expression_value();
2165 if (size == NULL ||
2166 (state->is_version(120, 300) &&
2167 array_size->has_sequence_subexpression())) {
2168 _mesa_glsl_error(& loc, state, "array size must be a "
2169 "constant valued expression");
2170 return 0;
2171 }
2172
2173 if (size->value.i[0] <= 0) {
2174 _mesa_glsl_error(& loc, state, "array size must be > 0");
2175 return 0;
2176 }
2177
2178 assert(size->type == ir->type);
2179
2180 /* If the array size is const (and we've verified that
2181 * it is) then no instructions should have been emitted
2182 * when we converted it to HIR. If they were emitted,
2183 * then either the array size isn't const after all, or
2184 * we are emitting unnecessary instructions.
2185 */
2186 assert(dummy_instructions.is_empty());
2187
2188 return size->value.u[0];
2189 }
2190
2191 static const glsl_type *
2192 process_array_type(YYLTYPE *loc, const glsl_type *base,
2193 ast_array_specifier *array_specifier,
2194 struct _mesa_glsl_parse_state *state)
2195 {
2196 const glsl_type *array_type = base;
2197
2198 if (array_specifier != NULL) {
2199 if (base->is_array()) {
2200
2201 /* From page 19 (page 25) of the GLSL 1.20 spec:
2202 *
2203 * "Only one-dimensional arrays may be declared."
2204 */
2205 if (!state->check_arrays_of_arrays_allowed(loc)) {
2206 return glsl_type::error_type;
2207 }
2208 }
2209
2210 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2211 !node->is_head_sentinel(); node = node->prev) {
2212 unsigned array_size = process_array_size(node, state);
2213 array_type = glsl_type::get_array_instance(array_type, array_size);
2214 }
2215 }
2216
2217 return array_type;
2218 }
2219
2220 static bool
2221 precision_qualifier_allowed(const glsl_type *type)
2222 {
2223 /* Precision qualifiers apply to floating point, integer and opaque
2224 * types.
2225 *
2226 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2227 * "Any floating point or any integer declaration can have the type
2228 * preceded by one of these precision qualifiers [...] Literal
2229 * constants do not have precision qualifiers. Neither do Boolean
2230 * variables.
2231 *
2232 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2233 * spec also says:
2234 *
2235 * "Precision qualifiers are added for code portability with OpenGL
2236 * ES, not for functionality. They have the same syntax as in OpenGL
2237 * ES."
2238 *
2239 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2240 *
2241 * "uniform lowp sampler2D sampler;
2242 * highp vec2 coord;
2243 * ...
2244 * lowp vec4 col = texture2D (sampler, coord);
2245 * // texture2D returns lowp"
2246 *
2247 * From this, we infer that GLSL 1.30 (and later) should allow precision
2248 * qualifiers on sampler types just like float and integer types.
2249 */
2250 return (type->is_float()
2251 || type->is_integer()
2252 || type->contains_opaque())
2253 && !type->without_array()->is_record();
2254 }
2255
2256 const glsl_type *
2257 ast_type_specifier::glsl_type(const char **name,
2258 struct _mesa_glsl_parse_state *state) const
2259 {
2260 const struct glsl_type *type;
2261
2262 type = state->symbols->get_type(this->type_name);
2263 *name = this->type_name;
2264
2265 YYLTYPE loc = this->get_location();
2266 type = process_array_type(&loc, type, this->array_specifier, state);
2267
2268 return type;
2269 }
2270
2271 /**
2272 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2273 *
2274 * "The precision statement
2275 *
2276 * precision precision-qualifier type;
2277 *
2278 * can be used to establish a default precision qualifier. The type field can
2279 * be either int or float or any of the sampler types, (...) If type is float,
2280 * the directive applies to non-precision-qualified floating point type
2281 * (scalar, vector, and matrix) declarations. If type is int, the directive
2282 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2283 * and unsigned) declarations."
2284 *
2285 * We use the symbol table to keep the values of the default precisions for
2286 * each 'type' in each scope and we use the 'type' string from the precision
2287 * statement as key in the symbol table. When we want to retrieve the default
2288 * precision associated with a given glsl_type we need to know the type string
2289 * associated with it. This is what this function returns.
2290 */
2291 static const char *
2292 get_type_name_for_precision_qualifier(const glsl_type *type)
2293 {
2294 switch (type->base_type) {
2295 case GLSL_TYPE_FLOAT:
2296 return "float";
2297 case GLSL_TYPE_UINT:
2298 case GLSL_TYPE_INT:
2299 return "int";
2300 case GLSL_TYPE_ATOMIC_UINT:
2301 return "atomic_uint";
2302 case GLSL_TYPE_IMAGE:
2303 /* fallthrough */
2304 case GLSL_TYPE_SAMPLER: {
2305 const unsigned type_idx =
2306 type->sampler_array + 2 * type->sampler_shadow;
2307 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2308 assert(type_idx < 4);
2309 switch (type->sampled_type) {
2310 case GLSL_TYPE_FLOAT:
2311 switch (type->sampler_dimensionality) {
2312 case GLSL_SAMPLER_DIM_1D: {
2313 assert(type->base_type == GLSL_TYPE_SAMPLER);
2314 static const char *const names[4] = {
2315 "sampler1D", "sampler1DArray",
2316 "sampler1DShadow", "sampler1DArrayShadow"
2317 };
2318 return names[type_idx];
2319 }
2320 case GLSL_SAMPLER_DIM_2D: {
2321 static const char *const names[8] = {
2322 "sampler2D", "sampler2DArray",
2323 "sampler2DShadow", "sampler2DArrayShadow",
2324 "image2D", "image2DArray", NULL, NULL
2325 };
2326 return names[offset + type_idx];
2327 }
2328 case GLSL_SAMPLER_DIM_3D: {
2329 static const char *const names[8] = {
2330 "sampler3D", NULL, NULL, NULL,
2331 "image3D", NULL, NULL, NULL
2332 };
2333 return names[offset + type_idx];
2334 }
2335 case GLSL_SAMPLER_DIM_CUBE: {
2336 static const char *const names[8] = {
2337 "samplerCube", "samplerCubeArray",
2338 "samplerCubeShadow", "samplerCubeArrayShadow",
2339 "imageCube", NULL, NULL, NULL
2340 };
2341 return names[offset + type_idx];
2342 }
2343 case GLSL_SAMPLER_DIM_MS: {
2344 assert(type->base_type == GLSL_TYPE_SAMPLER);
2345 static const char *const names[4] = {
2346 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2347 };
2348 return names[type_idx];
2349 }
2350 case GLSL_SAMPLER_DIM_RECT: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "samplerRect", NULL, "samplerRectShadow", NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_BUF: {
2358 static const char *const names[8] = {
2359 "samplerBuffer", NULL, NULL, NULL,
2360 "imageBuffer", NULL, NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_EXTERNAL: {
2365 assert(type->base_type == GLSL_TYPE_SAMPLER);
2366 static const char *const names[4] = {
2367 "samplerExternalOES", NULL, NULL, NULL
2368 };
2369 return names[type_idx];
2370 }
2371 default:
2372 unreachable("Unsupported sampler/image dimensionality");
2373 } /* sampler/image float dimensionality */
2374 break;
2375 case GLSL_TYPE_INT:
2376 switch (type->sampler_dimensionality) {
2377 case GLSL_SAMPLER_DIM_1D: {
2378 assert(type->base_type == GLSL_TYPE_SAMPLER);
2379 static const char *const names[4] = {
2380 "isampler1D", "isampler1DArray", NULL, NULL
2381 };
2382 return names[type_idx];
2383 }
2384 case GLSL_SAMPLER_DIM_2D: {
2385 static const char *const names[8] = {
2386 "isampler2D", "isampler2DArray", NULL, NULL,
2387 "iimage2D", "iimage2DArray", NULL, NULL
2388 };
2389 return names[offset + type_idx];
2390 }
2391 case GLSL_SAMPLER_DIM_3D: {
2392 static const char *const names[8] = {
2393 "isampler3D", NULL, NULL, NULL,
2394 "iimage3D", NULL, NULL, NULL
2395 };
2396 return names[offset + type_idx];
2397 }
2398 case GLSL_SAMPLER_DIM_CUBE: {
2399 static const char *const names[8] = {
2400 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2401 "iimageCube", NULL, NULL, NULL
2402 };
2403 return names[offset + type_idx];
2404 }
2405 case GLSL_SAMPLER_DIM_MS: {
2406 assert(type->base_type == GLSL_TYPE_SAMPLER);
2407 static const char *const names[4] = {
2408 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2409 };
2410 return names[type_idx];
2411 }
2412 case GLSL_SAMPLER_DIM_RECT: {
2413 assert(type->base_type == GLSL_TYPE_SAMPLER);
2414 static const char *const names[4] = {
2415 "isamplerRect", NULL, "isamplerRectShadow", NULL
2416 };
2417 return names[type_idx];
2418 }
2419 case GLSL_SAMPLER_DIM_BUF: {
2420 static const char *const names[8] = {
2421 "isamplerBuffer", NULL, NULL, NULL,
2422 "iimageBuffer", NULL, NULL, NULL
2423 };
2424 return names[offset + type_idx];
2425 }
2426 default:
2427 unreachable("Unsupported isampler/iimage dimensionality");
2428 } /* sampler/image int dimensionality */
2429 break;
2430 case GLSL_TYPE_UINT:
2431 switch (type->sampler_dimensionality) {
2432 case GLSL_SAMPLER_DIM_1D: {
2433 assert(type->base_type == GLSL_TYPE_SAMPLER);
2434 static const char *const names[4] = {
2435 "usampler1D", "usampler1DArray", NULL, NULL
2436 };
2437 return names[type_idx];
2438 }
2439 case GLSL_SAMPLER_DIM_2D: {
2440 static const char *const names[8] = {
2441 "usampler2D", "usampler2DArray", NULL, NULL,
2442 "uimage2D", "uimage2DArray", NULL, NULL
2443 };
2444 return names[offset + type_idx];
2445 }
2446 case GLSL_SAMPLER_DIM_3D: {
2447 static const char *const names[8] = {
2448 "usampler3D", NULL, NULL, NULL,
2449 "uimage3D", NULL, NULL, NULL
2450 };
2451 return names[offset + type_idx];
2452 }
2453 case GLSL_SAMPLER_DIM_CUBE: {
2454 static const char *const names[8] = {
2455 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2456 "uimageCube", NULL, NULL, NULL
2457 };
2458 return names[offset + type_idx];
2459 }
2460 case GLSL_SAMPLER_DIM_MS: {
2461 assert(type->base_type == GLSL_TYPE_SAMPLER);
2462 static const char *const names[4] = {
2463 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2464 };
2465 return names[type_idx];
2466 }
2467 case GLSL_SAMPLER_DIM_RECT: {
2468 assert(type->base_type == GLSL_TYPE_SAMPLER);
2469 static const char *const names[4] = {
2470 "usamplerRect", NULL, "usamplerRectShadow", NULL
2471 };
2472 return names[type_idx];
2473 }
2474 case GLSL_SAMPLER_DIM_BUF: {
2475 static const char *const names[8] = {
2476 "usamplerBuffer", NULL, NULL, NULL,
2477 "uimageBuffer", NULL, NULL, NULL
2478 };
2479 return names[offset + type_idx];
2480 }
2481 default:
2482 unreachable("Unsupported usampler/uimage dimensionality");
2483 } /* sampler/image uint dimensionality */
2484 break;
2485 default:
2486 unreachable("Unsupported sampler/image type");
2487 } /* sampler/image type */
2488 break;
2489 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2490 break;
2491 default:
2492 unreachable("Unsupported type");
2493 } /* base type */
2494 }
2495
2496 static unsigned
2497 select_gles_precision(unsigned qual_precision,
2498 const glsl_type *type,
2499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2500 {
2501 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2502 * In GLES we take the precision from the type qualifier if present,
2503 * otherwise, if the type of the variable allows precision qualifiers at
2504 * all, we look for the default precision qualifier for that type in the
2505 * current scope.
2506 */
2507 assert(state->es_shader);
2508
2509 unsigned precision = GLSL_PRECISION_NONE;
2510 if (qual_precision) {
2511 precision = qual_precision;
2512 } else if (precision_qualifier_allowed(type)) {
2513 const char *type_name =
2514 get_type_name_for_precision_qualifier(type->without_array());
2515 assert(type_name != NULL);
2516
2517 precision =
2518 state->symbols->get_default_precision_qualifier(type_name);
2519 if (precision == ast_precision_none) {
2520 _mesa_glsl_error(loc, state,
2521 "No precision specified in this scope for type `%s'",
2522 type->name);
2523 }
2524 }
2525 return precision;
2526 }
2527
2528 const glsl_type *
2529 ast_fully_specified_type::glsl_type(const char **name,
2530 struct _mesa_glsl_parse_state *state) const
2531 {
2532 return this->specifier->glsl_type(name, state);
2533 }
2534
2535 /**
2536 * Determine whether a toplevel variable declaration declares a varying. This
2537 * function operates by examining the variable's mode and the shader target,
2538 * so it correctly identifies linkage variables regardless of whether they are
2539 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2540 *
2541 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2542 * this function will produce undefined results.
2543 */
2544 static bool
2545 is_varying_var(ir_variable *var, gl_shader_stage target)
2546 {
2547 switch (target) {
2548 case MESA_SHADER_VERTEX:
2549 return var->data.mode == ir_var_shader_out;
2550 case MESA_SHADER_FRAGMENT:
2551 return var->data.mode == ir_var_shader_in;
2552 default:
2553 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2554 }
2555 }
2556
2557
2558 /**
2559 * Matrix layout qualifiers are only allowed on certain types
2560 */
2561 static void
2562 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2563 YYLTYPE *loc,
2564 const glsl_type *type,
2565 ir_variable *var)
2566 {
2567 if (var && !var->is_in_buffer_block()) {
2568 /* Layout qualifiers may only apply to interface blocks and fields in
2569 * them.
2570 */
2571 _mesa_glsl_error(loc, state,
2572 "uniform block layout qualifiers row_major and "
2573 "column_major may not be applied to variables "
2574 "outside of uniform blocks");
2575 } else if (!type->without_array()->is_matrix()) {
2576 /* The OpenGL ES 3.0 conformance tests did not originally allow
2577 * matrix layout qualifiers on non-matrices. However, the OpenGL
2578 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2579 * amended to specifically allow these layouts on all types. Emit
2580 * a warning so that people know their code may not be portable.
2581 */
2582 _mesa_glsl_warning(loc, state,
2583 "uniform block layout qualifiers row_major and "
2584 "column_major applied to non-matrix types may "
2585 "be rejected by older compilers");
2586 }
2587 }
2588
2589 static bool
2590 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2591 struct _mesa_glsl_parse_state *state,
2592 unsigned xfb_buffer) {
2593 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2594 _mesa_glsl_error(loc, state,
2595 "invalid xfb_buffer specified %d is larger than "
2596 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2597 xfb_buffer,
2598 state->Const.MaxTransformFeedbackBuffers - 1);
2599 return false;
2600 }
2601
2602 return true;
2603 }
2604
2605 /* From the ARB_enhanced_layouts spec:
2606 *
2607 * "Variables and block members qualified with *xfb_offset* can be
2608 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2609 * The offset must be a multiple of the size of the first component of
2610 * the first qualified variable or block member, or a compile-time error
2611 * results. Further, if applied to an aggregate containing a double,
2612 * the offset must also be a multiple of 8, and the space taken in the
2613 * buffer will be a multiple of 8.
2614 */
2615 static bool
2616 validate_xfb_offset_qualifier(YYLTYPE *loc,
2617 struct _mesa_glsl_parse_state *state,
2618 int xfb_offset, const glsl_type *type,
2619 unsigned component_size) {
2620 const glsl_type *t_without_array = type->without_array();
2621
2622 if (xfb_offset != -1 && type->is_unsized_array()) {
2623 _mesa_glsl_error(loc, state,
2624 "xfb_offset can't be used with unsized arrays.");
2625 return false;
2626 }
2627
2628 /* Make sure nested structs don't contain unsized arrays, and validate
2629 * any xfb_offsets on interface members.
2630 */
2631 if (t_without_array->is_record() || t_without_array->is_interface())
2632 for (unsigned int i = 0; i < t_without_array->length; i++) {
2633 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2634
2635 /* When the interface block doesn't have an xfb_offset qualifier then
2636 * we apply the component size rules at the member level.
2637 */
2638 if (xfb_offset == -1)
2639 component_size = member_t->contains_double() ? 8 : 4;
2640
2641 int xfb_offset = t_without_array->fields.structure[i].offset;
2642 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2643 component_size);
2644 }
2645
2646 /* Nested structs or interface block without offset may not have had an
2647 * offset applied yet so return.
2648 */
2649 if (xfb_offset == -1) {
2650 return true;
2651 }
2652
2653 if (xfb_offset % component_size) {
2654 _mesa_glsl_error(loc, state,
2655 "invalid qualifier xfb_offset=%d must be a multiple "
2656 "of the first component size of the first qualified "
2657 "variable or block member. Or double if an aggregate "
2658 "that contains a double (%d).",
2659 xfb_offset, component_size);
2660 return false;
2661 }
2662
2663 return true;
2664 }
2665
2666 static bool
2667 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2668 unsigned stream)
2669 {
2670 if (stream >= state->ctx->Const.MaxVertexStreams) {
2671 _mesa_glsl_error(loc, state,
2672 "invalid stream specified %d is larger than "
2673 "MAX_VERTEX_STREAMS - 1 (%d).",
2674 stream, state->ctx->Const.MaxVertexStreams - 1);
2675 return false;
2676 }
2677
2678 return true;
2679 }
2680
2681 static void
2682 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2683 YYLTYPE *loc,
2684 ir_variable *var,
2685 const glsl_type *type,
2686 const ast_type_qualifier *qual)
2687 {
2688 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2689 _mesa_glsl_error(loc, state,
2690 "the \"binding\" qualifier only applies to uniforms and "
2691 "shader storage buffer objects");
2692 return;
2693 }
2694
2695 unsigned qual_binding;
2696 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2697 &qual_binding)) {
2698 return;
2699 }
2700
2701 const struct gl_context *const ctx = state->ctx;
2702 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2703 unsigned max_index = qual_binding + elements - 1;
2704 const glsl_type *base_type = type->without_array();
2705
2706 if (base_type->is_interface()) {
2707 /* UBOs. From page 60 of the GLSL 4.20 specification:
2708 * "If the binding point for any uniform block instance is less than zero,
2709 * or greater than or equal to the implementation-dependent maximum
2710 * number of uniform buffer bindings, a compilation error will occur.
2711 * When the binding identifier is used with a uniform block instanced as
2712 * an array of size N, all elements of the array from binding through
2713 * binding + N – 1 must be within this range."
2714 *
2715 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2716 */
2717 if (qual->flags.q.uniform &&
2718 max_index >= ctx->Const.MaxUniformBufferBindings) {
2719 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2720 "the maximum number of UBO binding points (%d)",
2721 qual_binding, elements,
2722 ctx->Const.MaxUniformBufferBindings);
2723 return;
2724 }
2725
2726 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2727 * "If the binding point for any uniform or shader storage block instance
2728 * is less than zero, or greater than or equal to the
2729 * implementation-dependent maximum number of uniform buffer bindings, a
2730 * compile-time error will occur. When the binding identifier is used
2731 * with a uniform or shader storage block instanced as an array of size
2732 * N, all elements of the array from binding through binding + N – 1 must
2733 * be within this range."
2734 */
2735 if (qual->flags.q.buffer &&
2736 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2737 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2738 "the maximum number of SSBO binding points (%d)",
2739 qual_binding, elements,
2740 ctx->Const.MaxShaderStorageBufferBindings);
2741 return;
2742 }
2743 } else if (base_type->is_sampler()) {
2744 /* Samplers. From page 63 of the GLSL 4.20 specification:
2745 * "If the binding is less than zero, or greater than or equal to the
2746 * implementation-dependent maximum supported number of units, a
2747 * compilation error will occur. When the binding identifier is used
2748 * with an array of size N, all elements of the array from binding
2749 * through binding + N - 1 must be within this range."
2750 */
2751 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2752
2753 if (max_index >= limit) {
2754 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2755 "exceeds the maximum number of texture image units "
2756 "(%u)", qual_binding, elements, limit);
2757
2758 return;
2759 }
2760 } else if (base_type->contains_atomic()) {
2761 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2762 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2763 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2764 " maximum number of atomic counter buffer bindings"
2765 "(%u)", qual_binding,
2766 ctx->Const.MaxAtomicBufferBindings);
2767
2768 return;
2769 }
2770 } else if ((state->is_version(420, 310) ||
2771 state->ARB_shading_language_420pack_enable) &&
2772 base_type->is_image()) {
2773 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2774 if (max_index >= ctx->Const.MaxImageUnits) {
2775 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2776 " maximum number of image units (%d)", max_index,
2777 ctx->Const.MaxImageUnits);
2778 return;
2779 }
2780
2781 } else {
2782 _mesa_glsl_error(loc, state,
2783 "the \"binding\" qualifier only applies to uniform "
2784 "blocks, opaque variables, or arrays thereof");
2785 return;
2786 }
2787
2788 var->data.explicit_binding = true;
2789 var->data.binding = qual_binding;
2790
2791 return;
2792 }
2793
2794
2795 static glsl_interp_qualifier
2796 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2797 ir_variable_mode mode,
2798 struct _mesa_glsl_parse_state *state,
2799 YYLTYPE *loc)
2800 {
2801 glsl_interp_qualifier interpolation;
2802 if (qual->flags.q.flat)
2803 interpolation = INTERP_QUALIFIER_FLAT;
2804 else if (qual->flags.q.noperspective)
2805 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2806 else if (qual->flags.q.smooth)
2807 interpolation = INTERP_QUALIFIER_SMOOTH;
2808 else
2809 interpolation = INTERP_QUALIFIER_NONE;
2810
2811 if (interpolation != INTERP_QUALIFIER_NONE) {
2812 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2813 _mesa_glsl_error(loc, state,
2814 "interpolation qualifier `%s' can only be applied to "
2815 "shader inputs or outputs.",
2816 interpolation_string(interpolation));
2817
2818 }
2819
2820 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2821 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2822 _mesa_glsl_error(loc, state,
2823 "interpolation qualifier `%s' cannot be applied to "
2824 "vertex shader inputs or fragment shader outputs",
2825 interpolation_string(interpolation));
2826 }
2827 } else if (state->es_shader &&
2828 ((mode == ir_var_shader_in &&
2829 state->stage != MESA_SHADER_VERTEX) ||
2830 (mode == ir_var_shader_out &&
2831 state->stage != MESA_SHADER_FRAGMENT))) {
2832 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2833 *
2834 * "When no interpolation qualifier is present, smooth interpolation
2835 * is used."
2836 */
2837 interpolation = INTERP_QUALIFIER_SMOOTH;
2838 }
2839
2840 return interpolation;
2841 }
2842
2843
2844 static void
2845 apply_explicit_location(const struct ast_type_qualifier *qual,
2846 ir_variable *var,
2847 struct _mesa_glsl_parse_state *state,
2848 YYLTYPE *loc)
2849 {
2850 bool fail = false;
2851
2852 unsigned qual_location;
2853 if (!process_qualifier_constant(state, loc, "location", qual->location,
2854 &qual_location)) {
2855 return;
2856 }
2857
2858 /* Checks for GL_ARB_explicit_uniform_location. */
2859 if (qual->flags.q.uniform) {
2860 if (!state->check_explicit_uniform_location_allowed(loc, var))
2861 return;
2862
2863 const struct gl_context *const ctx = state->ctx;
2864 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2865
2866 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2867 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2868 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2869 ctx->Const.MaxUserAssignableUniformLocations);
2870 return;
2871 }
2872
2873 var->data.explicit_location = true;
2874 var->data.location = qual_location;
2875 return;
2876 }
2877
2878 /* Between GL_ARB_explicit_attrib_location an
2879 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2880 * stage can be assigned explicit locations. The checking here associates
2881 * the correct extension with the correct stage's input / output:
2882 *
2883 * input output
2884 * ----- ------
2885 * vertex explicit_loc sso
2886 * tess control sso sso
2887 * tess eval sso sso
2888 * geometry sso sso
2889 * fragment sso explicit_loc
2890 */
2891 switch (state->stage) {
2892 case MESA_SHADER_VERTEX:
2893 if (var->data.mode == ir_var_shader_in) {
2894 if (!state->check_explicit_attrib_location_allowed(loc, var))
2895 return;
2896
2897 break;
2898 }
2899
2900 if (var->data.mode == ir_var_shader_out) {
2901 if (!state->check_separate_shader_objects_allowed(loc, var))
2902 return;
2903
2904 break;
2905 }
2906
2907 fail = true;
2908 break;
2909
2910 case MESA_SHADER_TESS_CTRL:
2911 case MESA_SHADER_TESS_EVAL:
2912 case MESA_SHADER_GEOMETRY:
2913 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2914 if (!state->check_separate_shader_objects_allowed(loc, var))
2915 return;
2916
2917 break;
2918 }
2919
2920 fail = true;
2921 break;
2922
2923 case MESA_SHADER_FRAGMENT:
2924 if (var->data.mode == ir_var_shader_in) {
2925 if (!state->check_separate_shader_objects_allowed(loc, var))
2926 return;
2927
2928 break;
2929 }
2930
2931 if (var->data.mode == ir_var_shader_out) {
2932 if (!state->check_explicit_attrib_location_allowed(loc, var))
2933 return;
2934
2935 break;
2936 }
2937
2938 fail = true;
2939 break;
2940
2941 case MESA_SHADER_COMPUTE:
2942 _mesa_glsl_error(loc, state,
2943 "compute shader variables cannot be given "
2944 "explicit locations");
2945 return;
2946 };
2947
2948 if (fail) {
2949 _mesa_glsl_error(loc, state,
2950 "%s cannot be given an explicit location in %s shader",
2951 mode_string(var),
2952 _mesa_shader_stage_to_string(state->stage));
2953 } else {
2954 var->data.explicit_location = true;
2955
2956 switch (state->stage) {
2957 case MESA_SHADER_VERTEX:
2958 var->data.location = (var->data.mode == ir_var_shader_in)
2959 ? (qual_location + VERT_ATTRIB_GENERIC0)
2960 : (qual_location + VARYING_SLOT_VAR0);
2961 break;
2962
2963 case MESA_SHADER_TESS_CTRL:
2964 case MESA_SHADER_TESS_EVAL:
2965 case MESA_SHADER_GEOMETRY:
2966 if (var->data.patch)
2967 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2968 else
2969 var->data.location = qual_location + VARYING_SLOT_VAR0;
2970 break;
2971
2972 case MESA_SHADER_FRAGMENT:
2973 var->data.location = (var->data.mode == ir_var_shader_out)
2974 ? (qual_location + FRAG_RESULT_DATA0)
2975 : (qual_location + VARYING_SLOT_VAR0);
2976 break;
2977 case MESA_SHADER_COMPUTE:
2978 assert(!"Unexpected shader type");
2979 break;
2980 }
2981
2982 /* Check if index was set for the uniform instead of the function */
2983 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2984 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2985 "used with subroutine functions");
2986 return;
2987 }
2988
2989 unsigned qual_index;
2990 if (qual->flags.q.explicit_index &&
2991 process_qualifier_constant(state, loc, "index", qual->index,
2992 &qual_index)) {
2993 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2994 * Layout Qualifiers):
2995 *
2996 * "It is also a compile-time error if a fragment shader
2997 * sets a layout index to less than 0 or greater than 1."
2998 *
2999 * Older specifications don't mandate a behavior; we take
3000 * this as a clarification and always generate the error.
3001 */
3002 if (qual_index > 1) {
3003 _mesa_glsl_error(loc, state,
3004 "explicit index may only be 0 or 1");
3005 } else {
3006 var->data.explicit_index = true;
3007 var->data.index = qual_index;
3008 }
3009 }
3010 }
3011 }
3012
3013 static void
3014 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3015 ir_variable *var,
3016 struct _mesa_glsl_parse_state *state,
3017 YYLTYPE *loc)
3018 {
3019 const glsl_type *base_type = var->type->without_array();
3020
3021 if (base_type->is_image()) {
3022 if (var->data.mode != ir_var_uniform &&
3023 var->data.mode != ir_var_function_in) {
3024 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3025 "function parameters or uniform-qualified "
3026 "global variables");
3027 }
3028
3029 var->data.image_read_only |= qual->flags.q.read_only;
3030 var->data.image_write_only |= qual->flags.q.write_only;
3031 var->data.image_coherent |= qual->flags.q.coherent;
3032 var->data.image_volatile |= qual->flags.q._volatile;
3033 var->data.image_restrict |= qual->flags.q.restrict_flag;
3034 var->data.read_only = true;
3035
3036 if (qual->flags.q.explicit_image_format) {
3037 if (var->data.mode == ir_var_function_in) {
3038 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3039 "used on image function parameters");
3040 }
3041
3042 if (qual->image_base_type != base_type->sampled_type) {
3043 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3044 "base data type of the image");
3045 }
3046
3047 var->data.image_format = qual->image_format;
3048 } else {
3049 if (var->data.mode == ir_var_uniform) {
3050 if (state->es_shader) {
3051 _mesa_glsl_error(loc, state, "all image uniforms "
3052 "must have a format layout qualifier");
3053
3054 } else if (!qual->flags.q.write_only) {
3055 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3056 "`writeonly' must have a format layout "
3057 "qualifier");
3058 }
3059 }
3060
3061 var->data.image_format = GL_NONE;
3062 }
3063
3064 /* From page 70 of the GLSL ES 3.1 specification:
3065 *
3066 * "Except for image variables qualified with the format qualifiers
3067 * r32f, r32i, and r32ui, image variables must specify either memory
3068 * qualifier readonly or the memory qualifier writeonly."
3069 */
3070 if (state->es_shader &&
3071 var->data.image_format != GL_R32F &&
3072 var->data.image_format != GL_R32I &&
3073 var->data.image_format != GL_R32UI &&
3074 !var->data.image_read_only &&
3075 !var->data.image_write_only) {
3076 _mesa_glsl_error(loc, state, "image variables of format other than "
3077 "r32f, r32i or r32ui must be qualified `readonly' or "
3078 "`writeonly'");
3079 }
3080
3081 } else if (qual->flags.q.read_only ||
3082 qual->flags.q.write_only ||
3083 qual->flags.q.coherent ||
3084 qual->flags.q._volatile ||
3085 qual->flags.q.restrict_flag ||
3086 qual->flags.q.explicit_image_format) {
3087 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3088 "images");
3089 }
3090 }
3091
3092 static inline const char*
3093 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3094 {
3095 if (origin_upper_left && pixel_center_integer)
3096 return "origin_upper_left, pixel_center_integer";
3097 else if (origin_upper_left)
3098 return "origin_upper_left";
3099 else if (pixel_center_integer)
3100 return "pixel_center_integer";
3101 else
3102 return " ";
3103 }
3104
3105 static inline bool
3106 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3107 const struct ast_type_qualifier *qual)
3108 {
3109 /* If gl_FragCoord was previously declared, and the qualifiers were
3110 * different in any way, return true.
3111 */
3112 if (state->fs_redeclares_gl_fragcoord) {
3113 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3114 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3115 }
3116
3117 return false;
3118 }
3119
3120 static inline void
3121 validate_array_dimensions(const glsl_type *t,
3122 struct _mesa_glsl_parse_state *state,
3123 YYLTYPE *loc) {
3124 if (t->is_array()) {
3125 t = t->fields.array;
3126 while (t->is_array()) {
3127 if (t->is_unsized_array()) {
3128 _mesa_glsl_error(loc, state,
3129 "only the outermost array dimension can "
3130 "be unsized",
3131 t->name);
3132 break;
3133 }
3134 t = t->fields.array;
3135 }
3136 }
3137 }
3138
3139 static void
3140 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3141 ir_variable *var,
3142 struct _mesa_glsl_parse_state *state,
3143 YYLTYPE *loc)
3144 {
3145 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3146
3147 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3148 *
3149 * "Within any shader, the first redeclarations of gl_FragCoord
3150 * must appear before any use of gl_FragCoord."
3151 *
3152 * Generate a compiler error if above condition is not met by the
3153 * fragment shader.
3154 */
3155 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3156 if (earlier != NULL &&
3157 earlier->data.used &&
3158 !state->fs_redeclares_gl_fragcoord) {
3159 _mesa_glsl_error(loc, state,
3160 "gl_FragCoord used before its first redeclaration "
3161 "in fragment shader");
3162 }
3163
3164 /* Make sure all gl_FragCoord redeclarations specify the same layout
3165 * qualifiers.
3166 */
3167 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3168 const char *const qual_string =
3169 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3170 qual->flags.q.pixel_center_integer);
3171
3172 const char *const state_string =
3173 get_layout_qualifier_string(state->fs_origin_upper_left,
3174 state->fs_pixel_center_integer);
3175
3176 _mesa_glsl_error(loc, state,
3177 "gl_FragCoord redeclared with different layout "
3178 "qualifiers (%s) and (%s) ",
3179 state_string,
3180 qual_string);
3181 }
3182 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3183 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3184 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3185 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3186 state->fs_redeclares_gl_fragcoord =
3187 state->fs_origin_upper_left ||
3188 state->fs_pixel_center_integer ||
3189 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3190 }
3191
3192 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3193 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3194 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3195 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3196 const char *const qual_string = (qual->flags.q.origin_upper_left)
3197 ? "origin_upper_left" : "pixel_center_integer";
3198
3199 _mesa_glsl_error(loc, state,
3200 "layout qualifier `%s' can only be applied to "
3201 "fragment shader input `gl_FragCoord'",
3202 qual_string);
3203 }
3204
3205 if (qual->flags.q.explicit_location) {
3206 apply_explicit_location(qual, var, state, loc);
3207 } else if (qual->flags.q.explicit_index) {
3208 if (!qual->flags.q.subroutine_def)
3209 _mesa_glsl_error(loc, state,
3210 "explicit index requires explicit location");
3211 }
3212
3213 if (qual->flags.q.explicit_binding) {
3214 apply_explicit_binding(state, loc, var, var->type, qual);
3215 }
3216
3217 if (state->stage == MESA_SHADER_GEOMETRY &&
3218 qual->flags.q.out && qual->flags.q.stream) {
3219 unsigned qual_stream;
3220 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3221 &qual_stream) &&
3222 validate_stream_qualifier(loc, state, qual_stream)) {
3223 var->data.stream = qual_stream;
3224 }
3225 }
3226
3227 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3228 unsigned qual_xfb_buffer;
3229 if (process_qualifier_constant(state, loc, "xfb_buffer",
3230 qual->xfb_buffer, &qual_xfb_buffer) &&
3231 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3232 var->data.xfb_buffer = qual_xfb_buffer;
3233 if (qual->flags.q.explicit_xfb_buffer)
3234 var->data.explicit_xfb_buffer = true;
3235 }
3236 }
3237
3238 if (qual->flags.q.explicit_xfb_offset) {
3239 unsigned qual_xfb_offset;
3240 unsigned component_size = var->type->contains_double() ? 8 : 4;
3241
3242 if (process_qualifier_constant(state, loc, "xfb_offset",
3243 qual->offset, &qual_xfb_offset) &&
3244 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3245 var->type, component_size)) {
3246 var->data.offset = qual_xfb_offset;
3247 var->data.explicit_xfb_offset = true;
3248 }
3249 }
3250
3251 if (qual->flags.q.explicit_xfb_stride) {
3252 unsigned qual_xfb_stride;
3253 if (process_qualifier_constant(state, loc, "xfb_stride",
3254 qual->xfb_stride, &qual_xfb_stride)) {
3255 var->data.xfb_stride = qual_xfb_stride;
3256 var->data.explicit_xfb_stride = true;
3257 }
3258 }
3259
3260 if (var->type->contains_atomic()) {
3261 if (var->data.mode == ir_var_uniform) {
3262 if (var->data.explicit_binding) {
3263 unsigned *offset =
3264 &state->atomic_counter_offsets[var->data.binding];
3265
3266 if (*offset % ATOMIC_COUNTER_SIZE)
3267 _mesa_glsl_error(loc, state,
3268 "misaligned atomic counter offset");
3269
3270 var->data.offset = *offset;
3271 *offset += var->type->atomic_size();
3272
3273 } else {
3274 _mesa_glsl_error(loc, state,
3275 "atomic counters require explicit binding point");
3276 }
3277 } else if (var->data.mode != ir_var_function_in) {
3278 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3279 "function parameters or uniform-qualified "
3280 "global variables");
3281 }
3282 }
3283
3284 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3285 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3286 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3287 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3288 * These extensions and all following extensions that add the 'layout'
3289 * keyword have been modified to require the use of 'in' or 'out'.
3290 *
3291 * The following extension do not allow the deprecated keywords:
3292 *
3293 * GL_AMD_conservative_depth
3294 * GL_ARB_conservative_depth
3295 * GL_ARB_gpu_shader5
3296 * GL_ARB_separate_shader_objects
3297 * GL_ARB_tessellation_shader
3298 * GL_ARB_transform_feedback3
3299 * GL_ARB_uniform_buffer_object
3300 *
3301 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3302 * allow layout with the deprecated keywords.
3303 */
3304 const bool relaxed_layout_qualifier_checking =
3305 state->ARB_fragment_coord_conventions_enable;
3306
3307 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3308 || qual->flags.q.varying;
3309 if (qual->has_layout() && uses_deprecated_qualifier) {
3310 if (relaxed_layout_qualifier_checking) {
3311 _mesa_glsl_warning(loc, state,
3312 "`layout' qualifier may not be used with "
3313 "`attribute' or `varying'");
3314 } else {
3315 _mesa_glsl_error(loc, state,
3316 "`layout' qualifier may not be used with "
3317 "`attribute' or `varying'");
3318 }
3319 }
3320
3321 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3322 * AMD_conservative_depth.
3323 */
3324 int depth_layout_count = qual->flags.q.depth_any
3325 + qual->flags.q.depth_greater
3326 + qual->flags.q.depth_less
3327 + qual->flags.q.depth_unchanged;
3328 if (depth_layout_count > 0
3329 && !state->AMD_conservative_depth_enable
3330 && !state->ARB_conservative_depth_enable) {
3331 _mesa_glsl_error(loc, state,
3332 "extension GL_AMD_conservative_depth or "
3333 "GL_ARB_conservative_depth must be enabled "
3334 "to use depth layout qualifiers");
3335 } else if (depth_layout_count > 0
3336 && strcmp(var->name, "gl_FragDepth") != 0) {
3337 _mesa_glsl_error(loc, state,
3338 "depth layout qualifiers can be applied only to "
3339 "gl_FragDepth");
3340 } else if (depth_layout_count > 1
3341 && strcmp(var->name, "gl_FragDepth") == 0) {
3342 _mesa_glsl_error(loc, state,
3343 "at most one depth layout qualifier can be applied to "
3344 "gl_FragDepth");
3345 }
3346 if (qual->flags.q.depth_any)
3347 var->data.depth_layout = ir_depth_layout_any;
3348 else if (qual->flags.q.depth_greater)
3349 var->data.depth_layout = ir_depth_layout_greater;
3350 else if (qual->flags.q.depth_less)
3351 var->data.depth_layout = ir_depth_layout_less;
3352 else if (qual->flags.q.depth_unchanged)
3353 var->data.depth_layout = ir_depth_layout_unchanged;
3354 else
3355 var->data.depth_layout = ir_depth_layout_none;
3356
3357 if (qual->flags.q.std140 ||
3358 qual->flags.q.std430 ||
3359 qual->flags.q.packed ||
3360 qual->flags.q.shared) {
3361 _mesa_glsl_error(loc, state,
3362 "uniform and shader storage block layout qualifiers "
3363 "std140, std430, packed, and shared can only be "
3364 "applied to uniform or shader storage blocks, not "
3365 "members");
3366 }
3367
3368 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3369 validate_matrix_layout_for_type(state, loc, var->type, var);
3370 }
3371
3372 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3373 * Inputs):
3374 *
3375 * "Fragment shaders also allow the following layout qualifier on in only
3376 * (not with variable declarations)
3377 * layout-qualifier-id
3378 * early_fragment_tests
3379 * [...]"
3380 */
3381 if (qual->flags.q.early_fragment_tests) {
3382 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3383 "valid in fragment shader input layout declaration.");
3384 }
3385 }
3386
3387 static void
3388 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3389 ir_variable *var,
3390 struct _mesa_glsl_parse_state *state,
3391 YYLTYPE *loc,
3392 bool is_parameter)
3393 {
3394 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3395
3396 if (qual->flags.q.invariant) {
3397 if (var->data.used) {
3398 _mesa_glsl_error(loc, state,
3399 "variable `%s' may not be redeclared "
3400 "`invariant' after being used",
3401 var->name);
3402 } else {
3403 var->data.invariant = 1;
3404 }
3405 }
3406
3407 if (qual->flags.q.precise) {
3408 if (var->data.used) {
3409 _mesa_glsl_error(loc, state,
3410 "variable `%s' may not be redeclared "
3411 "`precise' after being used",
3412 var->name);
3413 } else {
3414 var->data.precise = 1;
3415 }
3416 }
3417
3418 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3419 _mesa_glsl_error(loc, state,
3420 "`subroutine' may only be applied to uniforms, "
3421 "subroutine type declarations, or function definitions");
3422 }
3423
3424 if (qual->flags.q.constant || qual->flags.q.attribute
3425 || qual->flags.q.uniform
3426 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3427 var->data.read_only = 1;
3428
3429 if (qual->flags.q.centroid)
3430 var->data.centroid = 1;
3431
3432 if (qual->flags.q.sample)
3433 var->data.sample = 1;
3434
3435 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3436 if (state->es_shader) {
3437 var->data.precision =
3438 select_gles_precision(qual->precision, var->type, state, loc);
3439 }
3440
3441 if (qual->flags.q.patch)
3442 var->data.patch = 1;
3443
3444 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3445 var->type = glsl_type::error_type;
3446 _mesa_glsl_error(loc, state,
3447 "`attribute' variables may not be declared in the "
3448 "%s shader",
3449 _mesa_shader_stage_to_string(state->stage));
3450 }
3451
3452 /* Disallow layout qualifiers which may only appear on layout declarations. */
3453 if (qual->flags.q.prim_type) {
3454 _mesa_glsl_error(loc, state,
3455 "Primitive type may only be specified on GS input or output "
3456 "layout declaration, not on variables.");
3457 }
3458
3459 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3460 *
3461 * "However, the const qualifier cannot be used with out or inout."
3462 *
3463 * The same section of the GLSL 4.40 spec further clarifies this saying:
3464 *
3465 * "The const qualifier cannot be used with out or inout, or a
3466 * compile-time error results."
3467 */
3468 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3469 _mesa_glsl_error(loc, state,
3470 "`const' may not be applied to `out' or `inout' "
3471 "function parameters");
3472 }
3473
3474 /* If there is no qualifier that changes the mode of the variable, leave
3475 * the setting alone.
3476 */
3477 assert(var->data.mode != ir_var_temporary);
3478 if (qual->flags.q.in && qual->flags.q.out)
3479 var->data.mode = ir_var_function_inout;
3480 else if (qual->flags.q.in)
3481 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3482 else if (qual->flags.q.attribute
3483 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3484 var->data.mode = ir_var_shader_in;
3485 else if (qual->flags.q.out)
3486 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3487 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3488 var->data.mode = ir_var_shader_out;
3489 else if (qual->flags.q.uniform)
3490 var->data.mode = ir_var_uniform;
3491 else if (qual->flags.q.buffer)
3492 var->data.mode = ir_var_shader_storage;
3493 else if (qual->flags.q.shared_storage)
3494 var->data.mode = ir_var_shader_shared;
3495
3496 if (!is_parameter && is_varying_var(var, state->stage)) {
3497 /* User-defined ins/outs are not permitted in compute shaders. */
3498 if (state->stage == MESA_SHADER_COMPUTE) {
3499 _mesa_glsl_error(loc, state,
3500 "user-defined input and output variables are not "
3501 "permitted in compute shaders");
3502 }
3503
3504 /* This variable is being used to link data between shader stages (in
3505 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3506 * that is allowed for such purposes.
3507 *
3508 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3509 *
3510 * "The varying qualifier can be used only with the data types
3511 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3512 * these."
3513 *
3514 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3515 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3516 *
3517 * "Fragment inputs can only be signed and unsigned integers and
3518 * integer vectors, float, floating-point vectors, matrices, or
3519 * arrays of these. Structures cannot be input.
3520 *
3521 * Similar text exists in the section on vertex shader outputs.
3522 *
3523 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3524 * 3.00 spec allows structs as well. Varying structs are also allowed
3525 * in GLSL 1.50.
3526 */
3527 switch (var->type->get_scalar_type()->base_type) {
3528 case GLSL_TYPE_FLOAT:
3529 /* Ok in all GLSL versions */
3530 break;
3531 case GLSL_TYPE_UINT:
3532 case GLSL_TYPE_INT:
3533 if (state->is_version(130, 300))
3534 break;
3535 _mesa_glsl_error(loc, state,
3536 "varying variables must be of base type float in %s",
3537 state->get_version_string());
3538 break;
3539 case GLSL_TYPE_STRUCT:
3540 if (state->is_version(150, 300))
3541 break;
3542 _mesa_glsl_error(loc, state,
3543 "varying variables may not be of type struct");
3544 break;
3545 case GLSL_TYPE_DOUBLE:
3546 break;
3547 default:
3548 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3549 break;
3550 }
3551 }
3552
3553 if (state->all_invariant && (state->current_function == NULL)) {
3554 switch (state->stage) {
3555 case MESA_SHADER_VERTEX:
3556 if (var->data.mode == ir_var_shader_out)
3557 var->data.invariant = true;
3558 break;
3559 case MESA_SHADER_TESS_CTRL:
3560 case MESA_SHADER_TESS_EVAL:
3561 case MESA_SHADER_GEOMETRY:
3562 if ((var->data.mode == ir_var_shader_in)
3563 || (var->data.mode == ir_var_shader_out))
3564 var->data.invariant = true;
3565 break;
3566 case MESA_SHADER_FRAGMENT:
3567 if (var->data.mode == ir_var_shader_in)
3568 var->data.invariant = true;
3569 break;
3570 case MESA_SHADER_COMPUTE:
3571 /* Invariance isn't meaningful in compute shaders. */
3572 break;
3573 }
3574 }
3575
3576 var->data.interpolation =
3577 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3578 state, loc);
3579
3580 /* Does the declaration use the deprecated 'attribute' or 'varying'
3581 * keywords?
3582 */
3583 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3584 || qual->flags.q.varying;
3585
3586
3587 /* Validate auxiliary storage qualifiers */
3588
3589 /* From section 4.3.4 of the GLSL 1.30 spec:
3590 * "It is an error to use centroid in in a vertex shader."
3591 *
3592 * From section 4.3.4 of the GLSL ES 3.00 spec:
3593 * "It is an error to use centroid in or interpolation qualifiers in
3594 * a vertex shader input."
3595 */
3596
3597 /* Section 4.3.6 of the GLSL 1.30 specification states:
3598 * "It is an error to use centroid out in a fragment shader."
3599 *
3600 * The GL_ARB_shading_language_420pack extension specification states:
3601 * "It is an error to use auxiliary storage qualifiers or interpolation
3602 * qualifiers on an output in a fragment shader."
3603 */
3604 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3605 _mesa_glsl_error(loc, state,
3606 "sample qualifier may only be used on `in` or `out` "
3607 "variables between shader stages");
3608 }
3609 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3610 _mesa_glsl_error(loc, state,
3611 "centroid qualifier may only be used with `in', "
3612 "`out' or `varying' variables between shader stages");
3613 }
3614
3615 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3616 _mesa_glsl_error(loc, state,
3617 "the shared storage qualifiers can only be used with "
3618 "compute shaders");
3619 }
3620
3621 apply_image_qualifier_to_variable(qual, var, state, loc);
3622 }
3623
3624 /**
3625 * Get the variable that is being redeclared by this declaration
3626 *
3627 * Semantic checks to verify the validity of the redeclaration are also
3628 * performed. If semantic checks fail, compilation error will be emitted via
3629 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3630 *
3631 * \returns
3632 * A pointer to an existing variable in the current scope if the declaration
3633 * is a redeclaration, \c NULL otherwise.
3634 */
3635 static ir_variable *
3636 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3637 struct _mesa_glsl_parse_state *state,
3638 bool allow_all_redeclarations)
3639 {
3640 /* Check if this declaration is actually a re-declaration, either to
3641 * resize an array or add qualifiers to an existing variable.
3642 *
3643 * This is allowed for variables in the current scope, or when at
3644 * global scope (for built-ins in the implicit outer scope).
3645 */
3646 ir_variable *earlier = state->symbols->get_variable(var->name);
3647 if (earlier == NULL ||
3648 (state->current_function != NULL &&
3649 !state->symbols->name_declared_this_scope(var->name))) {
3650 return NULL;
3651 }
3652
3653
3654 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3655 *
3656 * "It is legal to declare an array without a size and then
3657 * later re-declare the same name as an array of the same
3658 * type and specify a size."
3659 */
3660 if (earlier->type->is_unsized_array() && var->type->is_array()
3661 && (var->type->fields.array == earlier->type->fields.array)) {
3662 /* FINISHME: This doesn't match the qualifiers on the two
3663 * FINISHME: declarations. It's not 100% clear whether this is
3664 * FINISHME: required or not.
3665 */
3666
3667 const unsigned size = unsigned(var->type->array_size());
3668 check_builtin_array_max_size(var->name, size, loc, state);
3669 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3670 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3671 "previous access",
3672 earlier->data.max_array_access);
3673 }
3674
3675 earlier->type = var->type;
3676 delete var;
3677 var = NULL;
3678 } else if ((state->ARB_fragment_coord_conventions_enable ||
3679 state->is_version(150, 0))
3680 && strcmp(var->name, "gl_FragCoord") == 0
3681 && earlier->type == var->type
3682 && var->data.mode == ir_var_shader_in) {
3683 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3684 * qualifiers.
3685 */
3686 earlier->data.origin_upper_left = var->data.origin_upper_left;
3687 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3688
3689 /* According to section 4.3.7 of the GLSL 1.30 spec,
3690 * the following built-in varaibles can be redeclared with an
3691 * interpolation qualifier:
3692 * * gl_FrontColor
3693 * * gl_BackColor
3694 * * gl_FrontSecondaryColor
3695 * * gl_BackSecondaryColor
3696 * * gl_Color
3697 * * gl_SecondaryColor
3698 */
3699 } else if (state->is_version(130, 0)
3700 && (strcmp(var->name, "gl_FrontColor") == 0
3701 || strcmp(var->name, "gl_BackColor") == 0
3702 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3703 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3704 || strcmp(var->name, "gl_Color") == 0
3705 || strcmp(var->name, "gl_SecondaryColor") == 0)
3706 && earlier->type == var->type
3707 && earlier->data.mode == var->data.mode) {
3708 earlier->data.interpolation = var->data.interpolation;
3709
3710 /* Layout qualifiers for gl_FragDepth. */
3711 } else if ((state->AMD_conservative_depth_enable ||
3712 state->ARB_conservative_depth_enable)
3713 && strcmp(var->name, "gl_FragDepth") == 0
3714 && earlier->type == var->type
3715 && earlier->data.mode == var->data.mode) {
3716
3717 /** From the AMD_conservative_depth spec:
3718 * Within any shader, the first redeclarations of gl_FragDepth
3719 * must appear before any use of gl_FragDepth.
3720 */
3721 if (earlier->data.used) {
3722 _mesa_glsl_error(&loc, state,
3723 "the first redeclaration of gl_FragDepth "
3724 "must appear before any use of gl_FragDepth");
3725 }
3726
3727 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3728 if (earlier->data.depth_layout != ir_depth_layout_none
3729 && earlier->data.depth_layout != var->data.depth_layout) {
3730 _mesa_glsl_error(&loc, state,
3731 "gl_FragDepth: depth layout is declared here "
3732 "as '%s, but it was previously declared as "
3733 "'%s'",
3734 depth_layout_string(var->data.depth_layout),
3735 depth_layout_string(earlier->data.depth_layout));
3736 }
3737
3738 earlier->data.depth_layout = var->data.depth_layout;
3739
3740 } else if (allow_all_redeclarations) {
3741 if (earlier->data.mode != var->data.mode) {
3742 _mesa_glsl_error(&loc, state,
3743 "redeclaration of `%s' with incorrect qualifiers",
3744 var->name);
3745 } else if (earlier->type != var->type) {
3746 _mesa_glsl_error(&loc, state,
3747 "redeclaration of `%s' has incorrect type",
3748 var->name);
3749 }
3750 } else {
3751 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3752 }
3753
3754 return earlier;
3755 }
3756
3757 /**
3758 * Generate the IR for an initializer in a variable declaration
3759 */
3760 ir_rvalue *
3761 process_initializer(ir_variable *var, ast_declaration *decl,
3762 ast_fully_specified_type *type,
3763 exec_list *initializer_instructions,
3764 struct _mesa_glsl_parse_state *state)
3765 {
3766 ir_rvalue *result = NULL;
3767
3768 YYLTYPE initializer_loc = decl->initializer->get_location();
3769
3770 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3771 *
3772 * "All uniform variables are read-only and are initialized either
3773 * directly by an application via API commands, or indirectly by
3774 * OpenGL."
3775 */
3776 if (var->data.mode == ir_var_uniform) {
3777 state->check_version(120, 0, &initializer_loc,
3778 "cannot initialize uniform %s",
3779 var->name);
3780 }
3781
3782 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3783 *
3784 * "Buffer variables cannot have initializers."
3785 */
3786 if (var->data.mode == ir_var_shader_storage) {
3787 _mesa_glsl_error(&initializer_loc, state,
3788 "cannot initialize buffer variable %s",
3789 var->name);
3790 }
3791
3792 /* From section 4.1.7 of the GLSL 4.40 spec:
3793 *
3794 * "Opaque variables [...] are initialized only through the
3795 * OpenGL API; they cannot be declared with an initializer in a
3796 * shader."
3797 */
3798 if (var->type->contains_opaque()) {
3799 _mesa_glsl_error(&initializer_loc, state,
3800 "cannot initialize opaque variable %s",
3801 var->name);
3802 }
3803
3804 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3805 _mesa_glsl_error(&initializer_loc, state,
3806 "cannot initialize %s shader input / %s %s",
3807 _mesa_shader_stage_to_string(state->stage),
3808 (state->stage == MESA_SHADER_VERTEX)
3809 ? "attribute" : "varying",
3810 var->name);
3811 }
3812
3813 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3814 _mesa_glsl_error(&initializer_loc, state,
3815 "cannot initialize %s shader output %s",
3816 _mesa_shader_stage_to_string(state->stage),
3817 var->name);
3818 }
3819
3820 /* If the initializer is an ast_aggregate_initializer, recursively store
3821 * type information from the LHS into it, so that its hir() function can do
3822 * type checking.
3823 */
3824 if (decl->initializer->oper == ast_aggregate)
3825 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3826
3827 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3828 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3829
3830 /* Calculate the constant value if this is a const or uniform
3831 * declaration.
3832 *
3833 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3834 *
3835 * "Declarations of globals without a storage qualifier, or with
3836 * just the const qualifier, may include initializers, in which case
3837 * they will be initialized before the first line of main() is
3838 * executed. Such initializers must be a constant expression."
3839 *
3840 * The same section of the GLSL ES 3.00.4 spec has similar language.
3841 */
3842 if (type->qualifier.flags.q.constant
3843 || type->qualifier.flags.q.uniform
3844 || (state->es_shader && state->current_function == NULL)) {
3845 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3846 lhs, rhs, true);
3847 if (new_rhs != NULL) {
3848 rhs = new_rhs;
3849
3850 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3851 * says:
3852 *
3853 * "A constant expression is one of
3854 *
3855 * ...
3856 *
3857 * - an expression formed by an operator on operands that are
3858 * all constant expressions, including getting an element of
3859 * a constant array, or a field of a constant structure, or
3860 * components of a constant vector. However, the sequence
3861 * operator ( , ) and the assignment operators ( =, +=, ...)
3862 * are not included in the operators that can create a
3863 * constant expression."
3864 *
3865 * Section 12.43 (Sequence operator and constant expressions) says:
3866 *
3867 * "Should the following construct be allowed?
3868 *
3869 * float a[2,3];
3870 *
3871 * The expression within the brackets uses the sequence operator
3872 * (',') and returns the integer 3 so the construct is declaring
3873 * a single-dimensional array of size 3. In some languages, the
3874 * construct declares a two-dimensional array. It would be
3875 * preferable to make this construct illegal to avoid confusion.
3876 *
3877 * One possibility is to change the definition of the sequence
3878 * operator so that it does not return a constant-expression and
3879 * hence cannot be used to declare an array size.
3880 *
3881 * RESOLUTION: The result of a sequence operator is not a
3882 * constant-expression."
3883 *
3884 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3885 * contains language almost identical to the section 4.3.3 in the
3886 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3887 * versions.
3888 */
3889 ir_constant *constant_value = rhs->constant_expression_value();
3890 if (!constant_value ||
3891 (state->is_version(430, 300) &&
3892 decl->initializer->has_sequence_subexpression())) {
3893 const char *const variable_mode =
3894 (type->qualifier.flags.q.constant)
3895 ? "const"
3896 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3897
3898 /* If ARB_shading_language_420pack is enabled, initializers of
3899 * const-qualified local variables do not have to be constant
3900 * expressions. Const-qualified global variables must still be
3901 * initialized with constant expressions.
3902 */
3903 if (!state->has_420pack()
3904 || state->current_function == NULL) {
3905 _mesa_glsl_error(& initializer_loc, state,
3906 "initializer of %s variable `%s' must be a "
3907 "constant expression",
3908 variable_mode,
3909 decl->identifier);
3910 if (var->type->is_numeric()) {
3911 /* Reduce cascading errors. */
3912 var->constant_value = type->qualifier.flags.q.constant
3913 ? ir_constant::zero(state, var->type) : NULL;
3914 }
3915 }
3916 } else {
3917 rhs = constant_value;
3918 var->constant_value = type->qualifier.flags.q.constant
3919 ? constant_value : NULL;
3920 }
3921 } else {
3922 if (var->type->is_numeric()) {
3923 /* Reduce cascading errors. */
3924 var->constant_value = type->qualifier.flags.q.constant
3925 ? ir_constant::zero(state, var->type) : NULL;
3926 }
3927 }
3928 }
3929
3930 if (rhs && !rhs->type->is_error()) {
3931 bool temp = var->data.read_only;
3932 if (type->qualifier.flags.q.constant)
3933 var->data.read_only = false;
3934
3935 /* Never emit code to initialize a uniform.
3936 */
3937 const glsl_type *initializer_type;
3938 if (!type->qualifier.flags.q.uniform) {
3939 do_assignment(initializer_instructions, state,
3940 NULL,
3941 lhs, rhs,
3942 &result, true,
3943 true,
3944 type->get_location());
3945 initializer_type = result->type;
3946 } else
3947 initializer_type = rhs->type;
3948
3949 var->constant_initializer = rhs->constant_expression_value();
3950 var->data.has_initializer = true;
3951
3952 /* If the declared variable is an unsized array, it must inherrit
3953 * its full type from the initializer. A declaration such as
3954 *
3955 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3956 *
3957 * becomes
3958 *
3959 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3960 *
3961 * The assignment generated in the if-statement (below) will also
3962 * automatically handle this case for non-uniforms.
3963 *
3964 * If the declared variable is not an array, the types must
3965 * already match exactly. As a result, the type assignment
3966 * here can be done unconditionally. For non-uniforms the call
3967 * to do_assignment can change the type of the initializer (via
3968 * the implicit conversion rules). For uniforms the initializer
3969 * must be a constant expression, and the type of that expression
3970 * was validated above.
3971 */
3972 var->type = initializer_type;
3973
3974 var->data.read_only = temp;
3975 }
3976
3977 return result;
3978 }
3979
3980 static void
3981 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3982 YYLTYPE loc, ir_variable *var,
3983 unsigned num_vertices,
3984 unsigned *size,
3985 const char *var_category)
3986 {
3987 if (var->type->is_unsized_array()) {
3988 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3989 *
3990 * All geometry shader input unsized array declarations will be
3991 * sized by an earlier input layout qualifier, when present, as per
3992 * the following table.
3993 *
3994 * Followed by a table mapping each allowed input layout qualifier to
3995 * the corresponding input length.
3996 *
3997 * Similarly for tessellation control shader outputs.
3998 */
3999 if (num_vertices != 0)
4000 var->type = glsl_type::get_array_instance(var->type->fields.array,
4001 num_vertices);
4002 } else {
4003 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4004 * includes the following examples of compile-time errors:
4005 *
4006 * // code sequence within one shader...
4007 * in vec4 Color1[]; // size unknown
4008 * ...Color1.length()...// illegal, length() unknown
4009 * in vec4 Color2[2]; // size is 2
4010 * ...Color1.length()...// illegal, Color1 still has no size
4011 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4012 * layout(lines) in; // legal, input size is 2, matching
4013 * in vec4 Color4[3]; // illegal, contradicts layout
4014 * ...
4015 *
4016 * To detect the case illustrated by Color3, we verify that the size of
4017 * an explicitly-sized array matches the size of any previously declared
4018 * explicitly-sized array. To detect the case illustrated by Color4, we
4019 * verify that the size of an explicitly-sized array is consistent with
4020 * any previously declared input layout.
4021 */
4022 if (num_vertices != 0 && var->type->length != num_vertices) {
4023 _mesa_glsl_error(&loc, state,
4024 "%s size contradicts previously declared layout "
4025 "(size is %u, but layout requires a size of %u)",
4026 var_category, var->type->length, num_vertices);
4027 } else if (*size != 0 && var->type->length != *size) {
4028 _mesa_glsl_error(&loc, state,
4029 "%s sizes are inconsistent (size is %u, but a "
4030 "previous declaration has size %u)",
4031 var_category, var->type->length, *size);
4032 } else {
4033 *size = var->type->length;
4034 }
4035 }
4036 }
4037
4038 static void
4039 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4040 YYLTYPE loc, ir_variable *var)
4041 {
4042 unsigned num_vertices = 0;
4043
4044 if (state->tcs_output_vertices_specified) {
4045 if (!state->out_qualifier->vertices->
4046 process_qualifier_constant(state, "vertices",
4047 &num_vertices, false)) {
4048 return;
4049 }
4050
4051 if (num_vertices > state->Const.MaxPatchVertices) {
4052 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4053 "GL_MAX_PATCH_VERTICES", num_vertices);
4054 return;
4055 }
4056 }
4057
4058 if (!var->type->is_array() && !var->data.patch) {
4059 _mesa_glsl_error(&loc, state,
4060 "tessellation control shader outputs must be arrays");
4061
4062 /* To avoid cascading failures, short circuit the checks below. */
4063 return;
4064 }
4065
4066 if (var->data.patch)
4067 return;
4068
4069 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4070 &state->tcs_output_size,
4071 "tessellation control shader output");
4072 }
4073
4074 /**
4075 * Do additional processing necessary for tessellation control/evaluation shader
4076 * input declarations. This covers both interface block arrays and bare input
4077 * variables.
4078 */
4079 static void
4080 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4081 YYLTYPE loc, ir_variable *var)
4082 {
4083 if (!var->type->is_array() && !var->data.patch) {
4084 _mesa_glsl_error(&loc, state,
4085 "per-vertex tessellation shader inputs must be arrays");
4086 /* Avoid cascading failures. */
4087 return;
4088 }
4089
4090 if (var->data.patch)
4091 return;
4092
4093 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4094 if (var->type->is_unsized_array()) {
4095 var->type = glsl_type::get_array_instance(var->type->fields.array,
4096 state->Const.MaxPatchVertices);
4097 }
4098 }
4099
4100
4101 /**
4102 * Do additional processing necessary for geometry shader input declarations
4103 * (this covers both interface blocks arrays and bare input variables).
4104 */
4105 static void
4106 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4107 YYLTYPE loc, ir_variable *var)
4108 {
4109 unsigned num_vertices = 0;
4110
4111 if (state->gs_input_prim_type_specified) {
4112 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4113 }
4114
4115 /* Geometry shader input variables must be arrays. Caller should have
4116 * reported an error for this.
4117 */
4118 if (!var->type->is_array()) {
4119 assert(state->error);
4120
4121 /* To avoid cascading failures, short circuit the checks below. */
4122 return;
4123 }
4124
4125 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4126 &state->gs_input_size,
4127 "geometry shader input");
4128 }
4129
4130 void
4131 validate_identifier(const char *identifier, YYLTYPE loc,
4132 struct _mesa_glsl_parse_state *state)
4133 {
4134 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4135 *
4136 * "Identifiers starting with "gl_" are reserved for use by
4137 * OpenGL, and may not be declared in a shader as either a
4138 * variable or a function."
4139 */
4140 if (is_gl_identifier(identifier)) {
4141 _mesa_glsl_error(&loc, state,
4142 "identifier `%s' uses reserved `gl_' prefix",
4143 identifier);
4144 } else if (strstr(identifier, "__")) {
4145 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4146 * spec:
4147 *
4148 * "In addition, all identifiers containing two
4149 * consecutive underscores (__) are reserved as
4150 * possible future keywords."
4151 *
4152 * The intention is that names containing __ are reserved for internal
4153 * use by the implementation, and names prefixed with GL_ are reserved
4154 * for use by Khronos. Names simply containing __ are dangerous to use,
4155 * but should be allowed.
4156 *
4157 * A future version of the GLSL specification will clarify this.
4158 */
4159 _mesa_glsl_warning(&loc, state,
4160 "identifier `%s' uses reserved `__' string",
4161 identifier);
4162 }
4163 }
4164
4165 ir_rvalue *
4166 ast_declarator_list::hir(exec_list *instructions,
4167 struct _mesa_glsl_parse_state *state)
4168 {
4169 void *ctx = state;
4170 const struct glsl_type *decl_type;
4171 const char *type_name = NULL;
4172 ir_rvalue *result = NULL;
4173 YYLTYPE loc = this->get_location();
4174
4175 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4176 *
4177 * "To ensure that a particular output variable is invariant, it is
4178 * necessary to use the invariant qualifier. It can either be used to
4179 * qualify a previously declared variable as being invariant
4180 *
4181 * invariant gl_Position; // make existing gl_Position be invariant"
4182 *
4183 * In these cases the parser will set the 'invariant' flag in the declarator
4184 * list, and the type will be NULL.
4185 */
4186 if (this->invariant) {
4187 assert(this->type == NULL);
4188
4189 if (state->current_function != NULL) {
4190 _mesa_glsl_error(& loc, state,
4191 "all uses of `invariant' keyword must be at global "
4192 "scope");
4193 }
4194
4195 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4196 assert(decl->array_specifier == NULL);
4197 assert(decl->initializer == NULL);
4198
4199 ir_variable *const earlier =
4200 state->symbols->get_variable(decl->identifier);
4201 if (earlier == NULL) {
4202 _mesa_glsl_error(& loc, state,
4203 "undeclared variable `%s' cannot be marked "
4204 "invariant", decl->identifier);
4205 } else if (!is_varying_var(earlier, state->stage)) {
4206 _mesa_glsl_error(&loc, state,
4207 "`%s' cannot be marked invariant; interfaces between "
4208 "shader stages only.", decl->identifier);
4209 } else if (earlier->data.used) {
4210 _mesa_glsl_error(& loc, state,
4211 "variable `%s' may not be redeclared "
4212 "`invariant' after being used",
4213 earlier->name);
4214 } else {
4215 earlier->data.invariant = true;
4216 }
4217 }
4218
4219 /* Invariant redeclarations do not have r-values.
4220 */
4221 return NULL;
4222 }
4223
4224 if (this->precise) {
4225 assert(this->type == NULL);
4226
4227 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4228 assert(decl->array_specifier == NULL);
4229 assert(decl->initializer == NULL);
4230
4231 ir_variable *const earlier =
4232 state->symbols->get_variable(decl->identifier);
4233 if (earlier == NULL) {
4234 _mesa_glsl_error(& loc, state,
4235 "undeclared variable `%s' cannot be marked "
4236 "precise", decl->identifier);
4237 } else if (state->current_function != NULL &&
4238 !state->symbols->name_declared_this_scope(decl->identifier)) {
4239 /* Note: we have to check if we're in a function, since
4240 * builtins are treated as having come from another scope.
4241 */
4242 _mesa_glsl_error(& loc, state,
4243 "variable `%s' from an outer scope may not be "
4244 "redeclared `precise' in this scope",
4245 earlier->name);
4246 } else if (earlier->data.used) {
4247 _mesa_glsl_error(& loc, state,
4248 "variable `%s' may not be redeclared "
4249 "`precise' after being used",
4250 earlier->name);
4251 } else {
4252 earlier->data.precise = true;
4253 }
4254 }
4255
4256 /* Precise redeclarations do not have r-values either. */
4257 return NULL;
4258 }
4259
4260 assert(this->type != NULL);
4261 assert(!this->invariant);
4262 assert(!this->precise);
4263
4264 /* The type specifier may contain a structure definition. Process that
4265 * before any of the variable declarations.
4266 */
4267 (void) this->type->specifier->hir(instructions, state);
4268
4269 decl_type = this->type->glsl_type(& type_name, state);
4270
4271 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4272 * "Buffer variables may only be declared inside interface blocks
4273 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4274 * shader storage blocks. It is a compile-time error to declare buffer
4275 * variables at global scope (outside a block)."
4276 */
4277 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4278 _mesa_glsl_error(&loc, state,
4279 "buffer variables cannot be declared outside "
4280 "interface blocks");
4281 }
4282
4283 /* An offset-qualified atomic counter declaration sets the default
4284 * offset for the next declaration within the same atomic counter
4285 * buffer.
4286 */
4287 if (decl_type && decl_type->contains_atomic()) {
4288 if (type->qualifier.flags.q.explicit_binding &&
4289 type->qualifier.flags.q.explicit_offset) {
4290 unsigned qual_binding;
4291 unsigned qual_offset;
4292 if (process_qualifier_constant(state, &loc, "binding",
4293 type->qualifier.binding,
4294 &qual_binding)
4295 && process_qualifier_constant(state, &loc, "offset",
4296 type->qualifier.offset,
4297 &qual_offset)) {
4298 state->atomic_counter_offsets[qual_binding] = qual_offset;
4299 }
4300 }
4301 }
4302
4303 if (this->declarations.is_empty()) {
4304 /* If there is no structure involved in the program text, there are two
4305 * possible scenarios:
4306 *
4307 * - The program text contained something like 'vec4;'. This is an
4308 * empty declaration. It is valid but weird. Emit a warning.
4309 *
4310 * - The program text contained something like 'S;' and 'S' is not the
4311 * name of a known structure type. This is both invalid and weird.
4312 * Emit an error.
4313 *
4314 * - The program text contained something like 'mediump float;'
4315 * when the programmer probably meant 'precision mediump
4316 * float;' Emit a warning with a description of what they
4317 * probably meant to do.
4318 *
4319 * Note that if decl_type is NULL and there is a structure involved,
4320 * there must have been some sort of error with the structure. In this
4321 * case we assume that an error was already generated on this line of
4322 * code for the structure. There is no need to generate an additional,
4323 * confusing error.
4324 */
4325 assert(this->type->specifier->structure == NULL || decl_type != NULL
4326 || state->error);
4327
4328 if (decl_type == NULL) {
4329 _mesa_glsl_error(&loc, state,
4330 "invalid type `%s' in empty declaration",
4331 type_name);
4332 } else {
4333 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4334 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4335 * spec:
4336 *
4337 * "... any declaration that leaves the size undefined is
4338 * disallowed as this would add complexity and there are no
4339 * use-cases."
4340 */
4341 if (state->es_shader && decl_type->is_unsized_array()) {
4342 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4343 "or implicitly defined");
4344 }
4345
4346 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4347 *
4348 * "The combinations of types and qualifiers that cause
4349 * compile-time or link-time errors are the same whether or not
4350 * the declaration is empty."
4351 */
4352 validate_array_dimensions(decl_type, state, &loc);
4353 }
4354
4355 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4356 /* Empty atomic counter declarations are allowed and useful
4357 * to set the default offset qualifier.
4358 */
4359 return NULL;
4360 } else if (this->type->qualifier.precision != ast_precision_none) {
4361 if (this->type->specifier->structure != NULL) {
4362 _mesa_glsl_error(&loc, state,
4363 "precision qualifiers can't be applied "
4364 "to structures");
4365 } else {
4366 static const char *const precision_names[] = {
4367 "highp",
4368 "highp",
4369 "mediump",
4370 "lowp"
4371 };
4372
4373 _mesa_glsl_warning(&loc, state,
4374 "empty declaration with precision "
4375 "qualifier, to set the default precision, "
4376 "use `precision %s %s;'",
4377 precision_names[this->type->
4378 qualifier.precision],
4379 type_name);
4380 }
4381 } else if (this->type->specifier->structure == NULL) {
4382 _mesa_glsl_warning(&loc, state, "empty declaration");
4383 }
4384 }
4385 }
4386
4387 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4388 const struct glsl_type *var_type;
4389 ir_variable *var;
4390 const char *identifier = decl->identifier;
4391 /* FINISHME: Emit a warning if a variable declaration shadows a
4392 * FINISHME: declaration at a higher scope.
4393 */
4394
4395 if ((decl_type == NULL) || decl_type->is_void()) {
4396 if (type_name != NULL) {
4397 _mesa_glsl_error(& loc, state,
4398 "invalid type `%s' in declaration of `%s'",
4399 type_name, decl->identifier);
4400 } else {
4401 _mesa_glsl_error(& loc, state,
4402 "invalid type in declaration of `%s'",
4403 decl->identifier);
4404 }
4405 continue;
4406 }
4407
4408 if (this->type->qualifier.flags.q.subroutine) {
4409 const glsl_type *t;
4410 const char *name;
4411
4412 t = state->symbols->get_type(this->type->specifier->type_name);
4413 if (!t)
4414 _mesa_glsl_error(& loc, state,
4415 "invalid type in declaration of `%s'",
4416 decl->identifier);
4417 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4418
4419 identifier = name;
4420
4421 }
4422 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4423 state);
4424
4425 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4426
4427 /* The 'varying in' and 'varying out' qualifiers can only be used with
4428 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4429 * yet.
4430 */
4431 if (this->type->qualifier.flags.q.varying) {
4432 if (this->type->qualifier.flags.q.in) {
4433 _mesa_glsl_error(& loc, state,
4434 "`varying in' qualifier in declaration of "
4435 "`%s' only valid for geometry shaders using "
4436 "ARB_geometry_shader4 or EXT_geometry_shader4",
4437 decl->identifier);
4438 } else if (this->type->qualifier.flags.q.out) {
4439 _mesa_glsl_error(& loc, state,
4440 "`varying out' qualifier in declaration of "
4441 "`%s' only valid for geometry shaders using "
4442 "ARB_geometry_shader4 or EXT_geometry_shader4",
4443 decl->identifier);
4444 }
4445 }
4446
4447 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4448 *
4449 * "Global variables can only use the qualifiers const,
4450 * attribute, uniform, or varying. Only one may be
4451 * specified.
4452 *
4453 * Local variables can only use the qualifier const."
4454 *
4455 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4456 * any extension that adds the 'layout' keyword.
4457 */
4458 if (!state->is_version(130, 300)
4459 && !state->has_explicit_attrib_location()
4460 && !state->has_separate_shader_objects()
4461 && !state->ARB_fragment_coord_conventions_enable) {
4462 if (this->type->qualifier.flags.q.out) {
4463 _mesa_glsl_error(& loc, state,
4464 "`out' qualifier in declaration of `%s' "
4465 "only valid for function parameters in %s",
4466 decl->identifier, state->get_version_string());
4467 }
4468 if (this->type->qualifier.flags.q.in) {
4469 _mesa_glsl_error(& loc, state,
4470 "`in' qualifier in declaration of `%s' "
4471 "only valid for function parameters in %s",
4472 decl->identifier, state->get_version_string());
4473 }
4474 /* FINISHME: Test for other invalid qualifiers. */
4475 }
4476
4477 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4478 & loc, false);
4479 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4480 &loc);
4481
4482 if (this->type->qualifier.flags.q.invariant) {
4483 if (!is_varying_var(var, state->stage)) {
4484 _mesa_glsl_error(&loc, state,
4485 "`%s' cannot be marked invariant; interfaces between "
4486 "shader stages only", var->name);
4487 }
4488 }
4489
4490 if (state->current_function != NULL) {
4491 const char *mode = NULL;
4492 const char *extra = "";
4493
4494 /* There is no need to check for 'inout' here because the parser will
4495 * only allow that in function parameter lists.
4496 */
4497 if (this->type->qualifier.flags.q.attribute) {
4498 mode = "attribute";
4499 } else if (this->type->qualifier.flags.q.subroutine) {
4500 mode = "subroutine uniform";
4501 } else if (this->type->qualifier.flags.q.uniform) {
4502 mode = "uniform";
4503 } else if (this->type->qualifier.flags.q.varying) {
4504 mode = "varying";
4505 } else if (this->type->qualifier.flags.q.in) {
4506 mode = "in";
4507 extra = " or in function parameter list";
4508 } else if (this->type->qualifier.flags.q.out) {
4509 mode = "out";
4510 extra = " or in function parameter list";
4511 }
4512
4513 if (mode) {
4514 _mesa_glsl_error(& loc, state,
4515 "%s variable `%s' must be declared at "
4516 "global scope%s",
4517 mode, var->name, extra);
4518 }
4519 } else if (var->data.mode == ir_var_shader_in) {
4520 var->data.read_only = true;
4521
4522 if (state->stage == MESA_SHADER_VERTEX) {
4523 bool error_emitted = false;
4524
4525 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4526 *
4527 * "Vertex shader inputs can only be float, floating-point
4528 * vectors, matrices, signed and unsigned integers and integer
4529 * vectors. Vertex shader inputs can also form arrays of these
4530 * types, but not structures."
4531 *
4532 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4533 *
4534 * "Vertex shader inputs can only be float, floating-point
4535 * vectors, matrices, signed and unsigned integers and integer
4536 * vectors. They cannot be arrays or structures."
4537 *
4538 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4539 *
4540 * "The attribute qualifier can be used only with float,
4541 * floating-point vectors, and matrices. Attribute variables
4542 * cannot be declared as arrays or structures."
4543 *
4544 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4545 *
4546 * "Vertex shader inputs can only be float, floating-point
4547 * vectors, matrices, signed and unsigned integers and integer
4548 * vectors. Vertex shader inputs cannot be arrays or
4549 * structures."
4550 */
4551 const glsl_type *check_type = var->type->without_array();
4552
4553 switch (check_type->base_type) {
4554 case GLSL_TYPE_FLOAT:
4555 break;
4556 case GLSL_TYPE_UINT:
4557 case GLSL_TYPE_INT:
4558 if (state->is_version(120, 300))
4559 break;
4560 case GLSL_TYPE_DOUBLE:
4561 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4562 break;
4563 /* FALLTHROUGH */
4564 default:
4565 _mesa_glsl_error(& loc, state,
4566 "vertex shader input / attribute cannot have "
4567 "type %s`%s'",
4568 var->type->is_array() ? "array of " : "",
4569 check_type->name);
4570 error_emitted = true;
4571 }
4572
4573 if (!error_emitted && var->type->is_array() &&
4574 !state->check_version(150, 0, &loc,
4575 "vertex shader input / attribute "
4576 "cannot have array type")) {
4577 error_emitted = true;
4578 }
4579 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4580 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4581 *
4582 * Geometry shader input variables get the per-vertex values
4583 * written out by vertex shader output variables of the same
4584 * names. Since a geometry shader operates on a set of
4585 * vertices, each input varying variable (or input block, see
4586 * interface blocks below) needs to be declared as an array.
4587 */
4588 if (!var->type->is_array()) {
4589 _mesa_glsl_error(&loc, state,
4590 "geometry shader inputs must be arrays");
4591 }
4592
4593 handle_geometry_shader_input_decl(state, loc, var);
4594 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4595 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4596 *
4597 * It is a compile-time error to declare a fragment shader
4598 * input with, or that contains, any of the following types:
4599 *
4600 * * A boolean type
4601 * * An opaque type
4602 * * An array of arrays
4603 * * An array of structures
4604 * * A structure containing an array
4605 * * A structure containing a structure
4606 */
4607 if (state->es_shader) {
4608 const glsl_type *check_type = var->type->without_array();
4609 if (check_type->is_boolean() ||
4610 check_type->contains_opaque()) {
4611 _mesa_glsl_error(&loc, state,
4612 "fragment shader input cannot have type %s",
4613 check_type->name);
4614 }
4615 if (var->type->is_array() &&
4616 var->type->fields.array->is_array()) {
4617 _mesa_glsl_error(&loc, state,
4618 "%s shader output "
4619 "cannot have an array of arrays",
4620 _mesa_shader_stage_to_string(state->stage));
4621 }
4622 if (var->type->is_array() &&
4623 var->type->fields.array->is_record()) {
4624 _mesa_glsl_error(&loc, state,
4625 "fragment shader input "
4626 "cannot have an array of structs");
4627 }
4628 if (var->type->is_record()) {
4629 for (unsigned i = 0; i < var->type->length; i++) {
4630 if (var->type->fields.structure[i].type->is_array() ||
4631 var->type->fields.structure[i].type->is_record())
4632 _mesa_glsl_error(&loc, state,
4633 "fragement shader input cannot have "
4634 "a struct that contains an "
4635 "array or struct");
4636 }
4637 }
4638 }
4639 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4640 state->stage == MESA_SHADER_TESS_EVAL) {
4641 handle_tess_shader_input_decl(state, loc, var);
4642 }
4643 } else if (var->data.mode == ir_var_shader_out) {
4644 const glsl_type *check_type = var->type->without_array();
4645
4646 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4647 *
4648 * It is a compile-time error to declare a vertex, tessellation
4649 * evaluation, tessellation control, or geometry shader output
4650 * that contains any of the following:
4651 *
4652 * * A Boolean type (bool, bvec2 ...)
4653 * * An opaque type
4654 */
4655 if (check_type->is_boolean() || check_type->contains_opaque())
4656 _mesa_glsl_error(&loc, state,
4657 "%s shader output cannot have type %s",
4658 _mesa_shader_stage_to_string(state->stage),
4659 check_type->name);
4660
4661 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4662 *
4663 * It is a compile-time error to declare a fragment shader output
4664 * that contains any of the following:
4665 *
4666 * * A Boolean type (bool, bvec2 ...)
4667 * * A double-precision scalar or vector (double, dvec2 ...)
4668 * * An opaque type
4669 * * Any matrix type
4670 * * A structure
4671 */
4672 if (state->stage == MESA_SHADER_FRAGMENT) {
4673 if (check_type->is_record() || check_type->is_matrix())
4674 _mesa_glsl_error(&loc, state,
4675 "fragment shader output "
4676 "cannot have struct or matrix type");
4677 switch (check_type->base_type) {
4678 case GLSL_TYPE_UINT:
4679 case GLSL_TYPE_INT:
4680 case GLSL_TYPE_FLOAT:
4681 break;
4682 default:
4683 _mesa_glsl_error(&loc, state,
4684 "fragment shader output cannot have "
4685 "type %s", check_type->name);
4686 }
4687 }
4688
4689 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4690 *
4691 * It is a compile-time error to declare a vertex shader output
4692 * with, or that contains, any of the following types:
4693 *
4694 * * A boolean type
4695 * * An opaque type
4696 * * An array of arrays
4697 * * An array of structures
4698 * * A structure containing an array
4699 * * A structure containing a structure
4700 *
4701 * It is a compile-time error to declare a fragment shader output
4702 * with, or that contains, any of the following types:
4703 *
4704 * * A boolean type
4705 * * An opaque type
4706 * * A matrix
4707 * * A structure
4708 * * An array of array
4709 */
4710 if (state->es_shader) {
4711 if (var->type->is_array() &&
4712 var->type->fields.array->is_array()) {
4713 _mesa_glsl_error(&loc, state,
4714 "%s shader output "
4715 "cannot have an array of arrays",
4716 _mesa_shader_stage_to_string(state->stage));
4717 }
4718 if (state->stage == MESA_SHADER_VERTEX) {
4719 if (var->type->is_array() &&
4720 var->type->fields.array->is_record()) {
4721 _mesa_glsl_error(&loc, state,
4722 "vertex shader output "
4723 "cannot have an array of structs");
4724 }
4725 if (var->type->is_record()) {
4726 for (unsigned i = 0; i < var->type->length; i++) {
4727 if (var->type->fields.structure[i].type->is_array() ||
4728 var->type->fields.structure[i].type->is_record())
4729 _mesa_glsl_error(&loc, state,
4730 "vertex shader output cannot have a "
4731 "struct that contains an "
4732 "array or struct");
4733 }
4734 }
4735 }
4736 }
4737
4738 if (state->stage == MESA_SHADER_TESS_CTRL) {
4739 handle_tess_ctrl_shader_output_decl(state, loc, var);
4740 }
4741 } else if (var->type->contains_subroutine()) {
4742 /* declare subroutine uniforms as hidden */
4743 var->data.how_declared = ir_var_hidden;
4744 }
4745
4746 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4747 * so must integer vertex outputs.
4748 *
4749 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4750 * "Fragment shader inputs that are signed or unsigned integers or
4751 * integer vectors must be qualified with the interpolation qualifier
4752 * flat."
4753 *
4754 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4755 * "Fragment shader inputs that are, or contain, signed or unsigned
4756 * integers or integer vectors must be qualified with the
4757 * interpolation qualifier flat."
4758 *
4759 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4760 * "Vertex shader outputs that are, or contain, signed or unsigned
4761 * integers or integer vectors must be qualified with the
4762 * interpolation qualifier flat."
4763 *
4764 * Note that prior to GLSL 1.50, this requirement applied to vertex
4765 * outputs rather than fragment inputs. That creates problems in the
4766 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4767 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4768 * apply the restriction to both vertex outputs and fragment inputs.
4769 *
4770 * Note also that the desktop GLSL specs are missing the text "or
4771 * contain"; this is presumably an oversight, since there is no
4772 * reasonable way to interpolate a fragment shader input that contains
4773 * an integer.
4774 */
4775 if (state->is_version(130, 300) &&
4776 var->type->contains_integer() &&
4777 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4778 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4779 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4780 && state->es_shader))) {
4781 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4782 "vertex output" : "fragment input";
4783 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4784 "an integer, then it must be qualified with 'flat'",
4785 var_type);
4786 }
4787
4788 /* Double fragment inputs must be qualified with 'flat'. */
4789 if (var->type->contains_double() &&
4790 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4791 state->stage == MESA_SHADER_FRAGMENT &&
4792 var->data.mode == ir_var_shader_in) {
4793 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4794 "a double, then it must be qualified with 'flat'",
4795 var_type);
4796 }
4797
4798 /* Interpolation qualifiers cannot be applied to 'centroid' and
4799 * 'centroid varying'.
4800 *
4801 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4802 * "interpolation qualifiers may only precede the qualifiers in,
4803 * centroid in, out, or centroid out in a declaration. They do not apply
4804 * to the deprecated storage qualifiers varying or centroid varying."
4805 *
4806 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4807 */
4808 if (state->is_version(130, 0)
4809 && this->type->qualifier.has_interpolation()
4810 && this->type->qualifier.flags.q.varying) {
4811
4812 const char *i = interpolation_string(var->data.interpolation);
4813 const char *s;
4814 if (this->type->qualifier.flags.q.centroid)
4815 s = "centroid varying";
4816 else
4817 s = "varying";
4818
4819 _mesa_glsl_error(&loc, state,
4820 "qualifier '%s' cannot be applied to the "
4821 "deprecated storage qualifier '%s'", i, s);
4822 }
4823
4824
4825 /* Interpolation qualifiers can only apply to vertex shader outputs and
4826 * fragment shader inputs.
4827 *
4828 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4829 * "Outputs from a vertex shader (out) and inputs to a fragment
4830 * shader (in) can be further qualified with one or more of these
4831 * interpolation qualifiers"
4832 *
4833 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4834 * "These interpolation qualifiers may only precede the qualifiers
4835 * in, centroid in, out, or centroid out in a declaration. They do
4836 * not apply to inputs into a vertex shader or outputs from a
4837 * fragment shader."
4838 */
4839 if (state->is_version(130, 300)
4840 && this->type->qualifier.has_interpolation()) {
4841
4842 const char *i = interpolation_string(var->data.interpolation);
4843 switch (state->stage) {
4844 case MESA_SHADER_VERTEX:
4845 if (this->type->qualifier.flags.q.in) {
4846 _mesa_glsl_error(&loc, state,
4847 "qualifier '%s' cannot be applied to vertex "
4848 "shader inputs", i);
4849 }
4850 break;
4851 case MESA_SHADER_FRAGMENT:
4852 if (this->type->qualifier.flags.q.out) {
4853 _mesa_glsl_error(&loc, state,
4854 "qualifier '%s' cannot be applied to fragment "
4855 "shader outputs", i);
4856 }
4857 break;
4858 default:
4859 break;
4860 }
4861 }
4862
4863
4864 /* From section 4.3.4 of the GLSL 4.00 spec:
4865 * "Input variables may not be declared using the patch in qualifier
4866 * in tessellation control or geometry shaders."
4867 *
4868 * From section 4.3.6 of the GLSL 4.00 spec:
4869 * "It is an error to use patch out in a vertex, tessellation
4870 * evaluation, or geometry shader."
4871 *
4872 * This doesn't explicitly forbid using them in a fragment shader, but
4873 * that's probably just an oversight.
4874 */
4875 if (state->stage != MESA_SHADER_TESS_EVAL
4876 && this->type->qualifier.flags.q.patch
4877 && this->type->qualifier.flags.q.in) {
4878
4879 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4880 "tessellation evaluation shader");
4881 }
4882
4883 if (state->stage != MESA_SHADER_TESS_CTRL
4884 && this->type->qualifier.flags.q.patch
4885 && this->type->qualifier.flags.q.out) {
4886
4887 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4888 "tessellation control shader");
4889 }
4890
4891 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4892 */
4893 if (this->type->qualifier.precision != ast_precision_none) {
4894 state->check_precision_qualifiers_allowed(&loc);
4895 }
4896
4897
4898 /* If a precision qualifier is allowed on a type, it is allowed on
4899 * an array of that type.
4900 */
4901 if (!(this->type->qualifier.precision == ast_precision_none
4902 || precision_qualifier_allowed(var->type->without_array()))) {
4903
4904 _mesa_glsl_error(&loc, state,
4905 "precision qualifiers apply only to floating point"
4906 ", integer and opaque types");
4907 }
4908
4909 /* From section 4.1.7 of the GLSL 4.40 spec:
4910 *
4911 * "[Opaque types] can only be declared as function
4912 * parameters or uniform-qualified variables."
4913 */
4914 if (var_type->contains_opaque() &&
4915 !this->type->qualifier.flags.q.uniform) {
4916 _mesa_glsl_error(&loc, state,
4917 "opaque variables must be declared uniform");
4918 }
4919
4920 /* Process the initializer and add its instructions to a temporary
4921 * list. This list will be added to the instruction stream (below) after
4922 * the declaration is added. This is done because in some cases (such as
4923 * redeclarations) the declaration may not actually be added to the
4924 * instruction stream.
4925 */
4926 exec_list initializer_instructions;
4927
4928 /* Examine var name here since var may get deleted in the next call */
4929 bool var_is_gl_id = is_gl_identifier(var->name);
4930
4931 ir_variable *earlier =
4932 get_variable_being_redeclared(var, decl->get_location(), state,
4933 false /* allow_all_redeclarations */);
4934 if (earlier != NULL) {
4935 if (var_is_gl_id &&
4936 earlier->data.how_declared == ir_var_declared_in_block) {
4937 _mesa_glsl_error(&loc, state,
4938 "`%s' has already been redeclared using "
4939 "gl_PerVertex", earlier->name);
4940 }
4941 earlier->data.how_declared = ir_var_declared_normally;
4942 }
4943
4944 if (decl->initializer != NULL) {
4945 result = process_initializer((earlier == NULL) ? var : earlier,
4946 decl, this->type,
4947 &initializer_instructions, state);
4948 } else {
4949 validate_array_dimensions(var_type, state, &loc);
4950 }
4951
4952 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4953 *
4954 * "It is an error to write to a const variable outside of
4955 * its declaration, so they must be initialized when
4956 * declared."
4957 */
4958 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4959 _mesa_glsl_error(& loc, state,
4960 "const declaration of `%s' must be initialized",
4961 decl->identifier);
4962 }
4963
4964 if (state->es_shader) {
4965 const glsl_type *const t = (earlier == NULL)
4966 ? var->type : earlier->type;
4967
4968 if (t->is_unsized_array())
4969 /* Section 10.17 of the GLSL ES 1.00 specification states that
4970 * unsized array declarations have been removed from the language.
4971 * Arrays that are sized using an initializer are still explicitly
4972 * sized. However, GLSL ES 1.00 does not allow array
4973 * initializers. That is only allowed in GLSL ES 3.00.
4974 *
4975 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4976 *
4977 * "An array type can also be formed without specifying a size
4978 * if the definition includes an initializer:
4979 *
4980 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4981 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4982 *
4983 * float a[5];
4984 * float b[] = a;"
4985 */
4986 _mesa_glsl_error(& loc, state,
4987 "unsized array declarations are not allowed in "
4988 "GLSL ES");
4989 }
4990
4991 /* If the declaration is not a redeclaration, there are a few additional
4992 * semantic checks that must be applied. In addition, variable that was
4993 * created for the declaration should be added to the IR stream.
4994 */
4995 if (earlier == NULL) {
4996 validate_identifier(decl->identifier, loc, state);
4997
4998 /* Add the variable to the symbol table. Note that the initializer's
4999 * IR was already processed earlier (though it hasn't been emitted
5000 * yet), without the variable in scope.
5001 *
5002 * This differs from most C-like languages, but it follows the GLSL
5003 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5004 * spec:
5005 *
5006 * "Within a declaration, the scope of a name starts immediately
5007 * after the initializer if present or immediately after the name
5008 * being declared if not."
5009 */
5010 if (!state->symbols->add_variable(var)) {
5011 YYLTYPE loc = this->get_location();
5012 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5013 "current scope", decl->identifier);
5014 continue;
5015 }
5016
5017 /* Push the variable declaration to the top. It means that all the
5018 * variable declarations will appear in a funny last-to-first order,
5019 * but otherwise we run into trouble if a function is prototyped, a
5020 * global var is decled, then the function is defined with usage of
5021 * the global var. See glslparsertest's CorrectModule.frag.
5022 */
5023 instructions->push_head(var);
5024 }
5025
5026 instructions->append_list(&initializer_instructions);
5027 }
5028
5029
5030 /* Generally, variable declarations do not have r-values. However,
5031 * one is used for the declaration in
5032 *
5033 * while (bool b = some_condition()) {
5034 * ...
5035 * }
5036 *
5037 * so we return the rvalue from the last seen declaration here.
5038 */
5039 return result;
5040 }
5041
5042
5043 ir_rvalue *
5044 ast_parameter_declarator::hir(exec_list *instructions,
5045 struct _mesa_glsl_parse_state *state)
5046 {
5047 void *ctx = state;
5048 const struct glsl_type *type;
5049 const char *name = NULL;
5050 YYLTYPE loc = this->get_location();
5051
5052 type = this->type->glsl_type(& name, state);
5053
5054 if (type == NULL) {
5055 if (name != NULL) {
5056 _mesa_glsl_error(& loc, state,
5057 "invalid type `%s' in declaration of `%s'",
5058 name, this->identifier);
5059 } else {
5060 _mesa_glsl_error(& loc, state,
5061 "invalid type in declaration of `%s'",
5062 this->identifier);
5063 }
5064
5065 type = glsl_type::error_type;
5066 }
5067
5068 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5069 *
5070 * "Functions that accept no input arguments need not use void in the
5071 * argument list because prototypes (or definitions) are required and
5072 * therefore there is no ambiguity when an empty argument list "( )" is
5073 * declared. The idiom "(void)" as a parameter list is provided for
5074 * convenience."
5075 *
5076 * Placing this check here prevents a void parameter being set up
5077 * for a function, which avoids tripping up checks for main taking
5078 * parameters and lookups of an unnamed symbol.
5079 */
5080 if (type->is_void()) {
5081 if (this->identifier != NULL)
5082 _mesa_glsl_error(& loc, state,
5083 "named parameter cannot have type `void'");
5084
5085 is_void = true;
5086 return NULL;
5087 }
5088
5089 if (formal_parameter && (this->identifier == NULL)) {
5090 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5091 return NULL;
5092 }
5093
5094 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5095 * call already handled the "vec4[..] foo" case.
5096 */
5097 type = process_array_type(&loc, type, this->array_specifier, state);
5098
5099 if (!type->is_error() && type->is_unsized_array()) {
5100 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5101 "a declared size");
5102 type = glsl_type::error_type;
5103 }
5104
5105 is_void = false;
5106 ir_variable *var = new(ctx)
5107 ir_variable(type, this->identifier, ir_var_function_in);
5108
5109 /* Apply any specified qualifiers to the parameter declaration. Note that
5110 * for function parameters the default mode is 'in'.
5111 */
5112 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5113 true);
5114
5115 /* From section 4.1.7 of the GLSL 4.40 spec:
5116 *
5117 * "Opaque variables cannot be treated as l-values; hence cannot
5118 * be used as out or inout function parameters, nor can they be
5119 * assigned into."
5120 */
5121 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5122 && type->contains_opaque()) {
5123 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5124 "contain opaque variables");
5125 type = glsl_type::error_type;
5126 }
5127
5128 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5129 *
5130 * "When calling a function, expressions that do not evaluate to
5131 * l-values cannot be passed to parameters declared as out or inout."
5132 *
5133 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5134 *
5135 * "Other binary or unary expressions, non-dereferenced arrays,
5136 * function names, swizzles with repeated fields, and constants
5137 * cannot be l-values."
5138 *
5139 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5140 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5141 */
5142 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5143 && type->is_array()
5144 && !state->check_version(120, 100, &loc,
5145 "arrays cannot be out or inout parameters")) {
5146 type = glsl_type::error_type;
5147 }
5148
5149 instructions->push_tail(var);
5150
5151 /* Parameter declarations do not have r-values.
5152 */
5153 return NULL;
5154 }
5155
5156
5157 void
5158 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5159 bool formal,
5160 exec_list *ir_parameters,
5161 _mesa_glsl_parse_state *state)
5162 {
5163 ast_parameter_declarator *void_param = NULL;
5164 unsigned count = 0;
5165
5166 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5167 param->formal_parameter = formal;
5168 param->hir(ir_parameters, state);
5169
5170 if (param->is_void)
5171 void_param = param;
5172
5173 count++;
5174 }
5175
5176 if ((void_param != NULL) && (count > 1)) {
5177 YYLTYPE loc = void_param->get_location();
5178
5179 _mesa_glsl_error(& loc, state,
5180 "`void' parameter must be only parameter");
5181 }
5182 }
5183
5184
5185 void
5186 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5187 {
5188 /* IR invariants disallow function declarations or definitions
5189 * nested within other function definitions. But there is no
5190 * requirement about the relative order of function declarations
5191 * and definitions with respect to one another. So simply insert
5192 * the new ir_function block at the end of the toplevel instruction
5193 * list.
5194 */
5195 state->toplevel_ir->push_tail(f);
5196 }
5197
5198
5199 ir_rvalue *
5200 ast_function::hir(exec_list *instructions,
5201 struct _mesa_glsl_parse_state *state)
5202 {
5203 void *ctx = state;
5204 ir_function *f = NULL;
5205 ir_function_signature *sig = NULL;
5206 exec_list hir_parameters;
5207 YYLTYPE loc = this->get_location();
5208
5209 const char *const name = identifier;
5210
5211 /* New functions are always added to the top-level IR instruction stream,
5212 * so this instruction list pointer is ignored. See also emit_function
5213 * (called below).
5214 */
5215 (void) instructions;
5216
5217 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5218 *
5219 * "Function declarations (prototypes) cannot occur inside of functions;
5220 * they must be at global scope, or for the built-in functions, outside
5221 * the global scope."
5222 *
5223 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5224 *
5225 * "User defined functions may only be defined within the global scope."
5226 *
5227 * Note that this language does not appear in GLSL 1.10.
5228 */
5229 if ((state->current_function != NULL) &&
5230 state->is_version(120, 100)) {
5231 YYLTYPE loc = this->get_location();
5232 _mesa_glsl_error(&loc, state,
5233 "declaration of function `%s' not allowed within "
5234 "function body", name);
5235 }
5236
5237 validate_identifier(name, this->get_location(), state);
5238
5239 /* Convert the list of function parameters to HIR now so that they can be
5240 * used below to compare this function's signature with previously seen
5241 * signatures for functions with the same name.
5242 */
5243 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5244 is_definition,
5245 & hir_parameters, state);
5246
5247 const char *return_type_name;
5248 const glsl_type *return_type =
5249 this->return_type->glsl_type(& return_type_name, state);
5250
5251 if (!return_type) {
5252 YYLTYPE loc = this->get_location();
5253 _mesa_glsl_error(&loc, state,
5254 "function `%s' has undeclared return type `%s'",
5255 name, return_type_name);
5256 return_type = glsl_type::error_type;
5257 }
5258
5259 /* ARB_shader_subroutine states:
5260 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5261 * subroutine(...) to a function declaration."
5262 */
5263 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5264 YYLTYPE loc = this->get_location();
5265 _mesa_glsl_error(&loc, state,
5266 "function declaration `%s' cannot have subroutine prepended",
5267 name);
5268 }
5269
5270 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5271 * "No qualifier is allowed on the return type of a function."
5272 */
5273 if (this->return_type->has_qualifiers(state)) {
5274 YYLTYPE loc = this->get_location();
5275 _mesa_glsl_error(& loc, state,
5276 "function `%s' return type has qualifiers", name);
5277 }
5278
5279 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5280 *
5281 * "Arrays are allowed as arguments and as the return type. In both
5282 * cases, the array must be explicitly sized."
5283 */
5284 if (return_type->is_unsized_array()) {
5285 YYLTYPE loc = this->get_location();
5286 _mesa_glsl_error(& loc, state,
5287 "function `%s' return type array must be explicitly "
5288 "sized", name);
5289 }
5290
5291 /* From section 4.1.7 of the GLSL 4.40 spec:
5292 *
5293 * "[Opaque types] can only be declared as function parameters
5294 * or uniform-qualified variables."
5295 */
5296 if (return_type->contains_opaque()) {
5297 YYLTYPE loc = this->get_location();
5298 _mesa_glsl_error(&loc, state,
5299 "function `%s' return type can't contain an opaque type",
5300 name);
5301 }
5302
5303 /* Create an ir_function if one doesn't already exist. */
5304 f = state->symbols->get_function(name);
5305 if (f == NULL) {
5306 f = new(ctx) ir_function(name);
5307 if (!this->return_type->qualifier.flags.q.subroutine) {
5308 if (!state->symbols->add_function(f)) {
5309 /* This function name shadows a non-function use of the same name. */
5310 YYLTYPE loc = this->get_location();
5311 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5312 "non-function", name);
5313 return NULL;
5314 }
5315 }
5316 emit_function(state, f);
5317 }
5318
5319 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5320 *
5321 * "A shader cannot redefine or overload built-in functions."
5322 *
5323 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5324 *
5325 * "User code can overload the built-in functions but cannot redefine
5326 * them."
5327 */
5328 if (state->es_shader && state->language_version >= 300) {
5329 /* Local shader has no exact candidates; check the built-ins. */
5330 _mesa_glsl_initialize_builtin_functions();
5331 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5332 YYLTYPE loc = this->get_location();
5333 _mesa_glsl_error(& loc, state,
5334 "A shader cannot redefine or overload built-in "
5335 "function `%s' in GLSL ES 3.00", name);
5336 return NULL;
5337 }
5338 }
5339
5340 /* Verify that this function's signature either doesn't match a previously
5341 * seen signature for a function with the same name, or, if a match is found,
5342 * that the previously seen signature does not have an associated definition.
5343 */
5344 if (state->es_shader || f->has_user_signature()) {
5345 sig = f->exact_matching_signature(state, &hir_parameters);
5346 if (sig != NULL) {
5347 const char *badvar = sig->qualifiers_match(&hir_parameters);
5348 if (badvar != NULL) {
5349 YYLTYPE loc = this->get_location();
5350
5351 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5352 "qualifiers don't match prototype", name, badvar);
5353 }
5354
5355 if (sig->return_type != return_type) {
5356 YYLTYPE loc = this->get_location();
5357
5358 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5359 "match prototype", name);
5360 }
5361
5362 if (sig->is_defined) {
5363 if (is_definition) {
5364 YYLTYPE loc = this->get_location();
5365 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5366 } else {
5367 /* We just encountered a prototype that exactly matches a
5368 * function that's already been defined. This is redundant,
5369 * and we should ignore it.
5370 */
5371 return NULL;
5372 }
5373 }
5374 }
5375 }
5376
5377 /* Verify the return type of main() */
5378 if (strcmp(name, "main") == 0) {
5379 if (! return_type->is_void()) {
5380 YYLTYPE loc = this->get_location();
5381
5382 _mesa_glsl_error(& loc, state, "main() must return void");
5383 }
5384
5385 if (!hir_parameters.is_empty()) {
5386 YYLTYPE loc = this->get_location();
5387
5388 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5389 }
5390 }
5391
5392 /* Finish storing the information about this new function in its signature.
5393 */
5394 if (sig == NULL) {
5395 sig = new(ctx) ir_function_signature(return_type);
5396 f->add_signature(sig);
5397 }
5398
5399 sig->replace_parameters(&hir_parameters);
5400 signature = sig;
5401
5402 if (this->return_type->qualifier.flags.q.subroutine_def) {
5403 int idx;
5404
5405 if (this->return_type->qualifier.flags.q.explicit_index) {
5406 unsigned qual_index;
5407 if (process_qualifier_constant(state, &loc, "index",
5408 this->return_type->qualifier.index,
5409 &qual_index)) {
5410 if (!state->has_explicit_uniform_location()) {
5411 _mesa_glsl_error(&loc, state, "subroutine index requires "
5412 "GL_ARB_explicit_uniform_location or "
5413 "GLSL 4.30");
5414 } else if (qual_index >= MAX_SUBROUTINES) {
5415 _mesa_glsl_error(&loc, state,
5416 "invalid subroutine index (%d) index must "
5417 "be a number between 0 and "
5418 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5419 MAX_SUBROUTINES - 1);
5420 } else {
5421 f->subroutine_index = qual_index;
5422 }
5423 }
5424 }
5425
5426 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5427 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5428 f->num_subroutine_types);
5429 idx = 0;
5430 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5431 const struct glsl_type *type;
5432 /* the subroutine type must be already declared */
5433 type = state->symbols->get_type(decl->identifier);
5434 if (!type) {
5435 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5436 }
5437 f->subroutine_types[idx++] = type;
5438 }
5439 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5440 ir_function *,
5441 state->num_subroutines + 1);
5442 state->subroutines[state->num_subroutines] = f;
5443 state->num_subroutines++;
5444
5445 }
5446
5447 if (this->return_type->qualifier.flags.q.subroutine) {
5448 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5449 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5450 return NULL;
5451 }
5452 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5453 ir_function *,
5454 state->num_subroutine_types + 1);
5455 state->subroutine_types[state->num_subroutine_types] = f;
5456 state->num_subroutine_types++;
5457
5458 f->is_subroutine = true;
5459 }
5460
5461 /* Function declarations (prototypes) do not have r-values.
5462 */
5463 return NULL;
5464 }
5465
5466
5467 ir_rvalue *
5468 ast_function_definition::hir(exec_list *instructions,
5469 struct _mesa_glsl_parse_state *state)
5470 {
5471 prototype->is_definition = true;
5472 prototype->hir(instructions, state);
5473
5474 ir_function_signature *signature = prototype->signature;
5475 if (signature == NULL)
5476 return NULL;
5477
5478 assert(state->current_function == NULL);
5479 state->current_function = signature;
5480 state->found_return = false;
5481
5482 /* Duplicate parameters declared in the prototype as concrete variables.
5483 * Add these to the symbol table.
5484 */
5485 state->symbols->push_scope();
5486 foreach_in_list(ir_variable, var, &signature->parameters) {
5487 assert(var->as_variable() != NULL);
5488
5489 /* The only way a parameter would "exist" is if two parameters have
5490 * the same name.
5491 */
5492 if (state->symbols->name_declared_this_scope(var->name)) {
5493 YYLTYPE loc = this->get_location();
5494
5495 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5496 } else {
5497 state->symbols->add_variable(var);
5498 }
5499 }
5500
5501 /* Convert the body of the function to HIR. */
5502 this->body->hir(&signature->body, state);
5503 signature->is_defined = true;
5504
5505 state->symbols->pop_scope();
5506
5507 assert(state->current_function == signature);
5508 state->current_function = NULL;
5509
5510 if (!signature->return_type->is_void() && !state->found_return) {
5511 YYLTYPE loc = this->get_location();
5512 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5513 "%s, but no return statement",
5514 signature->function_name(),
5515 signature->return_type->name);
5516 }
5517
5518 /* Function definitions do not have r-values.
5519 */
5520 return NULL;
5521 }
5522
5523
5524 ir_rvalue *
5525 ast_jump_statement::hir(exec_list *instructions,
5526 struct _mesa_glsl_parse_state *state)
5527 {
5528 void *ctx = state;
5529
5530 switch (mode) {
5531 case ast_return: {
5532 ir_return *inst;
5533 assert(state->current_function);
5534
5535 if (opt_return_value) {
5536 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5537
5538 /* The value of the return type can be NULL if the shader says
5539 * 'return foo();' and foo() is a function that returns void.
5540 *
5541 * NOTE: The GLSL spec doesn't say that this is an error. The type
5542 * of the return value is void. If the return type of the function is
5543 * also void, then this should compile without error. Seriously.
5544 */
5545 const glsl_type *const ret_type =
5546 (ret == NULL) ? glsl_type::void_type : ret->type;
5547
5548 /* Implicit conversions are not allowed for return values prior to
5549 * ARB_shading_language_420pack.
5550 */
5551 if (state->current_function->return_type != ret_type) {
5552 YYLTYPE loc = this->get_location();
5553
5554 if (state->has_420pack()) {
5555 if (!apply_implicit_conversion(state->current_function->return_type,
5556 ret, state)) {
5557 _mesa_glsl_error(& loc, state,
5558 "could not implicitly convert return value "
5559 "to %s, in function `%s'",
5560 state->current_function->return_type->name,
5561 state->current_function->function_name());
5562 }
5563 } else {
5564 _mesa_glsl_error(& loc, state,
5565 "`return' with wrong type %s, in function `%s' "
5566 "returning %s",
5567 ret_type->name,
5568 state->current_function->function_name(),
5569 state->current_function->return_type->name);
5570 }
5571 } else if (state->current_function->return_type->base_type ==
5572 GLSL_TYPE_VOID) {
5573 YYLTYPE loc = this->get_location();
5574
5575 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5576 * specs add a clarification:
5577 *
5578 * "A void function can only use return without a return argument, even if
5579 * the return argument has void type. Return statements only accept values:
5580 *
5581 * void func1() { }
5582 * void func2() { return func1(); } // illegal return statement"
5583 */
5584 _mesa_glsl_error(& loc, state,
5585 "void functions can only use `return' without a "
5586 "return argument");
5587 }
5588
5589 inst = new(ctx) ir_return(ret);
5590 } else {
5591 if (state->current_function->return_type->base_type !=
5592 GLSL_TYPE_VOID) {
5593 YYLTYPE loc = this->get_location();
5594
5595 _mesa_glsl_error(& loc, state,
5596 "`return' with no value, in function %s returning "
5597 "non-void",
5598 state->current_function->function_name());
5599 }
5600 inst = new(ctx) ir_return;
5601 }
5602
5603 state->found_return = true;
5604 instructions->push_tail(inst);
5605 break;
5606 }
5607
5608 case ast_discard:
5609 if (state->stage != MESA_SHADER_FRAGMENT) {
5610 YYLTYPE loc = this->get_location();
5611
5612 _mesa_glsl_error(& loc, state,
5613 "`discard' may only appear in a fragment shader");
5614 }
5615 instructions->push_tail(new(ctx) ir_discard);
5616 break;
5617
5618 case ast_break:
5619 case ast_continue:
5620 if (mode == ast_continue &&
5621 state->loop_nesting_ast == NULL) {
5622 YYLTYPE loc = this->get_location();
5623
5624 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5625 } else if (mode == ast_break &&
5626 state->loop_nesting_ast == NULL &&
5627 state->switch_state.switch_nesting_ast == NULL) {
5628 YYLTYPE loc = this->get_location();
5629
5630 _mesa_glsl_error(& loc, state,
5631 "break may only appear in a loop or a switch");
5632 } else {
5633 /* For a loop, inline the for loop expression again, since we don't
5634 * know where near the end of the loop body the normal copy of it is
5635 * going to be placed. Same goes for the condition for a do-while
5636 * loop.
5637 */
5638 if (state->loop_nesting_ast != NULL &&
5639 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5640 if (state->loop_nesting_ast->rest_expression) {
5641 state->loop_nesting_ast->rest_expression->hir(instructions,
5642 state);
5643 }
5644 if (state->loop_nesting_ast->mode ==
5645 ast_iteration_statement::ast_do_while) {
5646 state->loop_nesting_ast->condition_to_hir(instructions, state);
5647 }
5648 }
5649
5650 if (state->switch_state.is_switch_innermost &&
5651 mode == ast_continue) {
5652 /* Set 'continue_inside' to true. */
5653 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5654 ir_dereference_variable *deref_continue_inside_var =
5655 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5656 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5657 true_val));
5658
5659 /* Break out from the switch, continue for the loop will
5660 * be called right after switch. */
5661 ir_loop_jump *const jump =
5662 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5663 instructions->push_tail(jump);
5664
5665 } else if (state->switch_state.is_switch_innermost &&
5666 mode == ast_break) {
5667 /* Force break out of switch by inserting a break. */
5668 ir_loop_jump *const jump =
5669 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5670 instructions->push_tail(jump);
5671 } else {
5672 ir_loop_jump *const jump =
5673 new(ctx) ir_loop_jump((mode == ast_break)
5674 ? ir_loop_jump::jump_break
5675 : ir_loop_jump::jump_continue);
5676 instructions->push_tail(jump);
5677 }
5678 }
5679
5680 break;
5681 }
5682
5683 /* Jump instructions do not have r-values.
5684 */
5685 return NULL;
5686 }
5687
5688
5689 ir_rvalue *
5690 ast_selection_statement::hir(exec_list *instructions,
5691 struct _mesa_glsl_parse_state *state)
5692 {
5693 void *ctx = state;
5694
5695 ir_rvalue *const condition = this->condition->hir(instructions, state);
5696
5697 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5698 *
5699 * "Any expression whose type evaluates to a Boolean can be used as the
5700 * conditional expression bool-expression. Vector types are not accepted
5701 * as the expression to if."
5702 *
5703 * The checks are separated so that higher quality diagnostics can be
5704 * generated for cases where both rules are violated.
5705 */
5706 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5707 YYLTYPE loc = this->condition->get_location();
5708
5709 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5710 "boolean");
5711 }
5712
5713 ir_if *const stmt = new(ctx) ir_if(condition);
5714
5715 if (then_statement != NULL) {
5716 state->symbols->push_scope();
5717 then_statement->hir(& stmt->then_instructions, state);
5718 state->symbols->pop_scope();
5719 }
5720
5721 if (else_statement != NULL) {
5722 state->symbols->push_scope();
5723 else_statement->hir(& stmt->else_instructions, state);
5724 state->symbols->pop_scope();
5725 }
5726
5727 instructions->push_tail(stmt);
5728
5729 /* if-statements do not have r-values.
5730 */
5731 return NULL;
5732 }
5733
5734
5735 ir_rvalue *
5736 ast_switch_statement::hir(exec_list *instructions,
5737 struct _mesa_glsl_parse_state *state)
5738 {
5739 void *ctx = state;
5740
5741 ir_rvalue *const test_expression =
5742 this->test_expression->hir(instructions, state);
5743
5744 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5745 *
5746 * "The type of init-expression in a switch statement must be a
5747 * scalar integer."
5748 */
5749 if (!test_expression->type->is_scalar() ||
5750 !test_expression->type->is_integer()) {
5751 YYLTYPE loc = this->test_expression->get_location();
5752
5753 _mesa_glsl_error(& loc,
5754 state,
5755 "switch-statement expression must be scalar "
5756 "integer");
5757 }
5758
5759 /* Track the switch-statement nesting in a stack-like manner.
5760 */
5761 struct glsl_switch_state saved = state->switch_state;
5762
5763 state->switch_state.is_switch_innermost = true;
5764 state->switch_state.switch_nesting_ast = this;
5765 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5766 hash_table_pointer_compare);
5767 state->switch_state.previous_default = NULL;
5768
5769 /* Initalize is_fallthru state to false.
5770 */
5771 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5772 state->switch_state.is_fallthru_var =
5773 new(ctx) ir_variable(glsl_type::bool_type,
5774 "switch_is_fallthru_tmp",
5775 ir_var_temporary);
5776 instructions->push_tail(state->switch_state.is_fallthru_var);
5777
5778 ir_dereference_variable *deref_is_fallthru_var =
5779 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5780 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5781 is_fallthru_val));
5782
5783 /* Initialize continue_inside state to false.
5784 */
5785 state->switch_state.continue_inside =
5786 new(ctx) ir_variable(glsl_type::bool_type,
5787 "continue_inside_tmp",
5788 ir_var_temporary);
5789 instructions->push_tail(state->switch_state.continue_inside);
5790
5791 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5792 ir_dereference_variable *deref_continue_inside_var =
5793 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5794 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5795 false_val));
5796
5797 state->switch_state.run_default =
5798 new(ctx) ir_variable(glsl_type::bool_type,
5799 "run_default_tmp",
5800 ir_var_temporary);
5801 instructions->push_tail(state->switch_state.run_default);
5802
5803 /* Loop around the switch is used for flow control. */
5804 ir_loop * loop = new(ctx) ir_loop();
5805 instructions->push_tail(loop);
5806
5807 /* Cache test expression.
5808 */
5809 test_to_hir(&loop->body_instructions, state);
5810
5811 /* Emit code for body of switch stmt.
5812 */
5813 body->hir(&loop->body_instructions, state);
5814
5815 /* Insert a break at the end to exit loop. */
5816 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5817 loop->body_instructions.push_tail(jump);
5818
5819 /* If we are inside loop, check if continue got called inside switch. */
5820 if (state->loop_nesting_ast != NULL) {
5821 ir_dereference_variable *deref_continue_inside =
5822 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5823 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5824 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5825
5826 if (state->loop_nesting_ast != NULL) {
5827 if (state->loop_nesting_ast->rest_expression) {
5828 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5829 state);
5830 }
5831 if (state->loop_nesting_ast->mode ==
5832 ast_iteration_statement::ast_do_while) {
5833 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5834 }
5835 }
5836 irif->then_instructions.push_tail(jump);
5837 instructions->push_tail(irif);
5838 }
5839
5840 hash_table_dtor(state->switch_state.labels_ht);
5841
5842 state->switch_state = saved;
5843
5844 /* Switch statements do not have r-values. */
5845 return NULL;
5846 }
5847
5848
5849 void
5850 ast_switch_statement::test_to_hir(exec_list *instructions,
5851 struct _mesa_glsl_parse_state *state)
5852 {
5853 void *ctx = state;
5854
5855 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5856 * on the switch test case. The first one would be already raised when
5857 * getting the test_expression at ast_switch_statement::hir
5858 */
5859 test_expression->set_is_lhs(true);
5860 /* Cache value of test expression. */
5861 ir_rvalue *const test_val =
5862 test_expression->hir(instructions,
5863 state);
5864
5865 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5866 "switch_test_tmp",
5867 ir_var_temporary);
5868 ir_dereference_variable *deref_test_var =
5869 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5870
5871 instructions->push_tail(state->switch_state.test_var);
5872 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5873 }
5874
5875
5876 ir_rvalue *
5877 ast_switch_body::hir(exec_list *instructions,
5878 struct _mesa_glsl_parse_state *state)
5879 {
5880 if (stmts != NULL)
5881 stmts->hir(instructions, state);
5882
5883 /* Switch bodies do not have r-values. */
5884 return NULL;
5885 }
5886
5887 ir_rvalue *
5888 ast_case_statement_list::hir(exec_list *instructions,
5889 struct _mesa_glsl_parse_state *state)
5890 {
5891 exec_list default_case, after_default, tmp;
5892
5893 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5894 case_stmt->hir(&tmp, state);
5895
5896 /* Default case. */
5897 if (state->switch_state.previous_default && default_case.is_empty()) {
5898 default_case.append_list(&tmp);
5899 continue;
5900 }
5901
5902 /* If default case found, append 'after_default' list. */
5903 if (!default_case.is_empty())
5904 after_default.append_list(&tmp);
5905 else
5906 instructions->append_list(&tmp);
5907 }
5908
5909 /* Handle the default case. This is done here because default might not be
5910 * the last case. We need to add checks against following cases first to see
5911 * if default should be chosen or not.
5912 */
5913 if (!default_case.is_empty()) {
5914
5915 ir_rvalue *const true_val = new (state) ir_constant(true);
5916 ir_dereference_variable *deref_run_default_var =
5917 new(state) ir_dereference_variable(state->switch_state.run_default);
5918
5919 /* Choose to run default case initially, following conditional
5920 * assignments might change this.
5921 */
5922 ir_assignment *const init_var =
5923 new(state) ir_assignment(deref_run_default_var, true_val);
5924 instructions->push_tail(init_var);
5925
5926 /* Default case was the last one, no checks required. */
5927 if (after_default.is_empty()) {
5928 instructions->append_list(&default_case);
5929 return NULL;
5930 }
5931
5932 foreach_in_list(ir_instruction, ir, &after_default) {
5933 ir_assignment *assign = ir->as_assignment();
5934
5935 if (!assign)
5936 continue;
5937
5938 /* Clone the check between case label and init expression. */
5939 ir_expression *exp = (ir_expression*) assign->condition;
5940 ir_expression *clone = exp->clone(state, NULL);
5941
5942 ir_dereference_variable *deref_var =
5943 new(state) ir_dereference_variable(state->switch_state.run_default);
5944 ir_rvalue *const false_val = new (state) ir_constant(false);
5945
5946 ir_assignment *const set_false =
5947 new(state) ir_assignment(deref_var, false_val, clone);
5948
5949 instructions->push_tail(set_false);
5950 }
5951
5952 /* Append default case and all cases after it. */
5953 instructions->append_list(&default_case);
5954 instructions->append_list(&after_default);
5955 }
5956
5957 /* Case statements do not have r-values. */
5958 return NULL;
5959 }
5960
5961 ir_rvalue *
5962 ast_case_statement::hir(exec_list *instructions,
5963 struct _mesa_glsl_parse_state *state)
5964 {
5965 labels->hir(instructions, state);
5966
5967 /* Guard case statements depending on fallthru state. */
5968 ir_dereference_variable *const deref_fallthru_guard =
5969 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5970 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5971
5972 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5973 stmt->hir(& test_fallthru->then_instructions, state);
5974
5975 instructions->push_tail(test_fallthru);
5976
5977 /* Case statements do not have r-values. */
5978 return NULL;
5979 }
5980
5981
5982 ir_rvalue *
5983 ast_case_label_list::hir(exec_list *instructions,
5984 struct _mesa_glsl_parse_state *state)
5985 {
5986 foreach_list_typed (ast_case_label, label, link, & this->labels)
5987 label->hir(instructions, state);
5988
5989 /* Case labels do not have r-values. */
5990 return NULL;
5991 }
5992
5993 ir_rvalue *
5994 ast_case_label::hir(exec_list *instructions,
5995 struct _mesa_glsl_parse_state *state)
5996 {
5997 void *ctx = state;
5998
5999 ir_dereference_variable *deref_fallthru_var =
6000 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6001
6002 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6003
6004 /* If not default case, ... */
6005 if (this->test_value != NULL) {
6006 /* Conditionally set fallthru state based on
6007 * comparison of cached test expression value to case label.
6008 */
6009 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6010 ir_constant *label_const = label_rval->constant_expression_value();
6011
6012 if (!label_const) {
6013 YYLTYPE loc = this->test_value->get_location();
6014
6015 _mesa_glsl_error(& loc, state,
6016 "switch statement case label must be a "
6017 "constant expression");
6018
6019 /* Stuff a dummy value in to allow processing to continue. */
6020 label_const = new(ctx) ir_constant(0);
6021 } else {
6022 ast_expression *previous_label = (ast_expression *)
6023 hash_table_find(state->switch_state.labels_ht,
6024 (void *)(uintptr_t)label_const->value.u[0]);
6025
6026 if (previous_label) {
6027 YYLTYPE loc = this->test_value->get_location();
6028 _mesa_glsl_error(& loc, state, "duplicate case value");
6029
6030 loc = previous_label->get_location();
6031 _mesa_glsl_error(& loc, state, "this is the previous case label");
6032 } else {
6033 hash_table_insert(state->switch_state.labels_ht,
6034 this->test_value,
6035 (void *)(uintptr_t)label_const->value.u[0]);
6036 }
6037 }
6038
6039 ir_dereference_variable *deref_test_var =
6040 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6041
6042 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6043 label_const,
6044 deref_test_var);
6045
6046 /*
6047 * From GLSL 4.40 specification section 6.2 ("Selection"):
6048 *
6049 * "The type of the init-expression value in a switch statement must
6050 * be a scalar int or uint. The type of the constant-expression value
6051 * in a case label also must be a scalar int or uint. When any pair
6052 * of these values is tested for "equal value" and the types do not
6053 * match, an implicit conversion will be done to convert the int to a
6054 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6055 * is done."
6056 */
6057 if (label_const->type != state->switch_state.test_var->type) {
6058 YYLTYPE loc = this->test_value->get_location();
6059
6060 const glsl_type *type_a = label_const->type;
6061 const glsl_type *type_b = state->switch_state.test_var->type;
6062
6063 /* Check if int->uint implicit conversion is supported. */
6064 bool integer_conversion_supported =
6065 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6066 state);
6067
6068 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6069 !integer_conversion_supported) {
6070 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6071 "init-expression and case label (%s != %s)",
6072 type_a->name, type_b->name);
6073 } else {
6074 /* Conversion of the case label. */
6075 if (type_a->base_type == GLSL_TYPE_INT) {
6076 if (!apply_implicit_conversion(glsl_type::uint_type,
6077 test_cond->operands[0], state))
6078 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6079 } else {
6080 /* Conversion of the init-expression value. */
6081 if (!apply_implicit_conversion(glsl_type::uint_type,
6082 test_cond->operands[1], state))
6083 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6084 }
6085 }
6086 }
6087
6088 ir_assignment *set_fallthru_on_test =
6089 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6090
6091 instructions->push_tail(set_fallthru_on_test);
6092 } else { /* default case */
6093 if (state->switch_state.previous_default) {
6094 YYLTYPE loc = this->get_location();
6095 _mesa_glsl_error(& loc, state,
6096 "multiple default labels in one switch");
6097
6098 loc = state->switch_state.previous_default->get_location();
6099 _mesa_glsl_error(& loc, state, "this is the first default label");
6100 }
6101 state->switch_state.previous_default = this;
6102
6103 /* Set fallthru condition on 'run_default' bool. */
6104 ir_dereference_variable *deref_run_default =
6105 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6106 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6107 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6108 cond_true,
6109 deref_run_default);
6110
6111 /* Set falltrhu state. */
6112 ir_assignment *set_fallthru =
6113 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6114
6115 instructions->push_tail(set_fallthru);
6116 }
6117
6118 /* Case statements do not have r-values. */
6119 return NULL;
6120 }
6121
6122 void
6123 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6124 struct _mesa_glsl_parse_state *state)
6125 {
6126 void *ctx = state;
6127
6128 if (condition != NULL) {
6129 ir_rvalue *const cond =
6130 condition->hir(instructions, state);
6131
6132 if ((cond == NULL)
6133 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6134 YYLTYPE loc = condition->get_location();
6135
6136 _mesa_glsl_error(& loc, state,
6137 "loop condition must be scalar boolean");
6138 } else {
6139 /* As the first code in the loop body, generate a block that looks
6140 * like 'if (!condition) break;' as the loop termination condition.
6141 */
6142 ir_rvalue *const not_cond =
6143 new(ctx) ir_expression(ir_unop_logic_not, cond);
6144
6145 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6146
6147 ir_jump *const break_stmt =
6148 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6149
6150 if_stmt->then_instructions.push_tail(break_stmt);
6151 instructions->push_tail(if_stmt);
6152 }
6153 }
6154 }
6155
6156
6157 ir_rvalue *
6158 ast_iteration_statement::hir(exec_list *instructions,
6159 struct _mesa_glsl_parse_state *state)
6160 {
6161 void *ctx = state;
6162
6163 /* For-loops and while-loops start a new scope, but do-while loops do not.
6164 */
6165 if (mode != ast_do_while)
6166 state->symbols->push_scope();
6167
6168 if (init_statement != NULL)
6169 init_statement->hir(instructions, state);
6170
6171 ir_loop *const stmt = new(ctx) ir_loop();
6172 instructions->push_tail(stmt);
6173
6174 /* Track the current loop nesting. */
6175 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6176
6177 state->loop_nesting_ast = this;
6178
6179 /* Likewise, indicate that following code is closest to a loop,
6180 * NOT closest to a switch.
6181 */
6182 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6183 state->switch_state.is_switch_innermost = false;
6184
6185 if (mode != ast_do_while)
6186 condition_to_hir(&stmt->body_instructions, state);
6187
6188 if (body != NULL)
6189 body->hir(& stmt->body_instructions, state);
6190
6191 if (rest_expression != NULL)
6192 rest_expression->hir(& stmt->body_instructions, state);
6193
6194 if (mode == ast_do_while)
6195 condition_to_hir(&stmt->body_instructions, state);
6196
6197 if (mode != ast_do_while)
6198 state->symbols->pop_scope();
6199
6200 /* Restore previous nesting before returning. */
6201 state->loop_nesting_ast = nesting_ast;
6202 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6203
6204 /* Loops do not have r-values.
6205 */
6206 return NULL;
6207 }
6208
6209
6210 /**
6211 * Determine if the given type is valid for establishing a default precision
6212 * qualifier.
6213 *
6214 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6215 *
6216 * "The precision statement
6217 *
6218 * precision precision-qualifier type;
6219 *
6220 * can be used to establish a default precision qualifier. The type field
6221 * can be either int or float or any of the sampler types, and the
6222 * precision-qualifier can be lowp, mediump, or highp."
6223 *
6224 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6225 * qualifiers on sampler types, but this seems like an oversight (since the
6226 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6227 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6228 * version.
6229 */
6230 static bool
6231 is_valid_default_precision_type(const struct glsl_type *const type)
6232 {
6233 if (type == NULL)
6234 return false;
6235
6236 switch (type->base_type) {
6237 case GLSL_TYPE_INT:
6238 case GLSL_TYPE_FLOAT:
6239 /* "int" and "float" are valid, but vectors and matrices are not. */
6240 return type->vector_elements == 1 && type->matrix_columns == 1;
6241 case GLSL_TYPE_SAMPLER:
6242 case GLSL_TYPE_IMAGE:
6243 case GLSL_TYPE_ATOMIC_UINT:
6244 return true;
6245 default:
6246 return false;
6247 }
6248 }
6249
6250
6251 ir_rvalue *
6252 ast_type_specifier::hir(exec_list *instructions,
6253 struct _mesa_glsl_parse_state *state)
6254 {
6255 if (this->default_precision == ast_precision_none && this->structure == NULL)
6256 return NULL;
6257
6258 YYLTYPE loc = this->get_location();
6259
6260 /* If this is a precision statement, check that the type to which it is
6261 * applied is either float or int.
6262 *
6263 * From section 4.5.3 of the GLSL 1.30 spec:
6264 * "The precision statement
6265 * precision precision-qualifier type;
6266 * can be used to establish a default precision qualifier. The type
6267 * field can be either int or float [...]. Any other types or
6268 * qualifiers will result in an error.
6269 */
6270 if (this->default_precision != ast_precision_none) {
6271 if (!state->check_precision_qualifiers_allowed(&loc))
6272 return NULL;
6273
6274 if (this->structure != NULL) {
6275 _mesa_glsl_error(&loc, state,
6276 "precision qualifiers do not apply to structures");
6277 return NULL;
6278 }
6279
6280 if (this->array_specifier != NULL) {
6281 _mesa_glsl_error(&loc, state,
6282 "default precision statements do not apply to "
6283 "arrays");
6284 return NULL;
6285 }
6286
6287 const struct glsl_type *const type =
6288 state->symbols->get_type(this->type_name);
6289 if (!is_valid_default_precision_type(type)) {
6290 _mesa_glsl_error(&loc, state,
6291 "default precision statements apply only to "
6292 "float, int, and opaque types");
6293 return NULL;
6294 }
6295
6296 if (state->es_shader) {
6297 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6298 * spec says:
6299 *
6300 * "Non-precision qualified declarations will use the precision
6301 * qualifier specified in the most recent precision statement
6302 * that is still in scope. The precision statement has the same
6303 * scoping rules as variable declarations. If it is declared
6304 * inside a compound statement, its effect stops at the end of
6305 * the innermost statement it was declared in. Precision
6306 * statements in nested scopes override precision statements in
6307 * outer scopes. Multiple precision statements for the same basic
6308 * type can appear inside the same scope, with later statements
6309 * overriding earlier statements within that scope."
6310 *
6311 * Default precision specifications follow the same scope rules as
6312 * variables. So, we can track the state of the default precision
6313 * qualifiers in the symbol table, and the rules will just work. This
6314 * is a slight abuse of the symbol table, but it has the semantics
6315 * that we want.
6316 */
6317 state->symbols->add_default_precision_qualifier(this->type_name,
6318 this->default_precision);
6319 }
6320
6321 /* FINISHME: Translate precision statements into IR. */
6322 return NULL;
6323 }
6324
6325 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6326 * process_record_constructor() can do type-checking on C-style initializer
6327 * expressions of structs, but ast_struct_specifier should only be translated
6328 * to HIR if it is declaring the type of a structure.
6329 *
6330 * The ->is_declaration field is false for initializers of variables
6331 * declared separately from the struct's type definition.
6332 *
6333 * struct S { ... }; (is_declaration = true)
6334 * struct T { ... } t = { ... }; (is_declaration = true)
6335 * S s = { ... }; (is_declaration = false)
6336 */
6337 if (this->structure != NULL && this->structure->is_declaration)
6338 return this->structure->hir(instructions, state);
6339
6340 return NULL;
6341 }
6342
6343
6344 /**
6345 * Process a structure or interface block tree into an array of structure fields
6346 *
6347 * After parsing, where there are some syntax differnces, structures and
6348 * interface blocks are almost identical. They are similar enough that the
6349 * AST for each can be processed the same way into a set of
6350 * \c glsl_struct_field to describe the members.
6351 *
6352 * If we're processing an interface block, var_mode should be the type of the
6353 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6354 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6355 * ir_var_auto.
6356 *
6357 * \return
6358 * The number of fields processed. A pointer to the array structure fields is
6359 * stored in \c *fields_ret.
6360 */
6361 static unsigned
6362 ast_process_struct_or_iface_block_members(exec_list *instructions,
6363 struct _mesa_glsl_parse_state *state,
6364 exec_list *declarations,
6365 glsl_struct_field **fields_ret,
6366 bool is_interface,
6367 enum glsl_matrix_layout matrix_layout,
6368 bool allow_reserved_names,
6369 ir_variable_mode var_mode,
6370 ast_type_qualifier *layout,
6371 unsigned block_stream,
6372 unsigned block_xfb_buffer,
6373 unsigned block_xfb_offset,
6374 unsigned expl_location,
6375 unsigned expl_align)
6376 {
6377 unsigned decl_count = 0;
6378 unsigned next_offset = 0;
6379
6380 /* Make an initial pass over the list of fields to determine how
6381 * many there are. Each element in this list is an ast_declarator_list.
6382 * This means that we actually need to count the number of elements in the
6383 * 'declarations' list in each of the elements.
6384 */
6385 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6386 decl_count += decl_list->declarations.length();
6387 }
6388
6389 /* Allocate storage for the fields and process the field
6390 * declarations. As the declarations are processed, try to also convert
6391 * the types to HIR. This ensures that structure definitions embedded in
6392 * other structure definitions or in interface blocks are processed.
6393 */
6394 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6395 decl_count);
6396
6397 bool first_member = true;
6398 bool first_member_has_explicit_location = false;
6399
6400 unsigned i = 0;
6401 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6402 const char *type_name;
6403 YYLTYPE loc = decl_list->get_location();
6404
6405 decl_list->type->specifier->hir(instructions, state);
6406
6407 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6408 *
6409 * "Anonymous structures are not supported; so embedded structures
6410 * must have a declarator. A name given to an embedded struct is
6411 * scoped at the same level as the struct it is embedded in."
6412 *
6413 * The same section of the GLSL 1.20 spec says:
6414 *
6415 * "Anonymous structures are not supported. Embedded structures are
6416 * not supported."
6417 *
6418 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6419 * embedded structures in 1.10 only.
6420 */
6421 if (state->language_version != 110 &&
6422 decl_list->type->specifier->structure != NULL)
6423 _mesa_glsl_error(&loc, state,
6424 "embedded structure declarations are not allowed");
6425
6426 const glsl_type *decl_type =
6427 decl_list->type->glsl_type(& type_name, state);
6428
6429 const struct ast_type_qualifier *const qual =
6430 &decl_list->type->qualifier;
6431
6432 /* From section 4.3.9 of the GLSL 4.40 spec:
6433 *
6434 * "[In interface blocks] opaque types are not allowed."
6435 *
6436 * It should be impossible for decl_type to be NULL here. Cases that
6437 * might naturally lead to decl_type being NULL, especially for the
6438 * is_interface case, will have resulted in compilation having
6439 * already halted due to a syntax error.
6440 */
6441 assert(decl_type);
6442
6443 if (is_interface) {
6444 if (decl_type->contains_opaque()) {
6445 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6446 "interface block contains opaque variable");
6447 }
6448 } else {
6449 if (decl_type->contains_atomic()) {
6450 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6451 *
6452 * "Members of structures cannot be declared as atomic counter
6453 * types."
6454 */
6455 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6456 }
6457
6458 if (decl_type->contains_image()) {
6459 /* FINISHME: Same problem as with atomic counters.
6460 * FINISHME: Request clarification from Khronos and add
6461 * FINISHME: spec quotation here.
6462 */
6463 _mesa_glsl_error(&loc, state, "image in structure");
6464 }
6465 }
6466
6467 if (qual->flags.q.explicit_binding) {
6468 _mesa_glsl_error(&loc, state,
6469 "binding layout qualifier cannot be applied "
6470 "to struct or interface block members");
6471 }
6472
6473 if (is_interface) {
6474 if (!first_member) {
6475 if (!layout->flags.q.explicit_location &&
6476 ((first_member_has_explicit_location &&
6477 !qual->flags.q.explicit_location) ||
6478 (!first_member_has_explicit_location &&
6479 qual->flags.q.explicit_location))) {
6480 _mesa_glsl_error(&loc, state,
6481 "when block-level location layout qualifier "
6482 "is not supplied either all members must "
6483 "have a location layout qualifier or all "
6484 "members must not have a location layout "
6485 "qualifier");
6486 }
6487 } else {
6488 first_member = false;
6489 first_member_has_explicit_location =
6490 qual->flags.q.explicit_location;
6491 }
6492 }
6493
6494 if (qual->flags.q.std140 ||
6495 qual->flags.q.std430 ||
6496 qual->flags.q.packed ||
6497 qual->flags.q.shared) {
6498 _mesa_glsl_error(&loc, state,
6499 "uniform/shader storage block layout qualifiers "
6500 "std140, std430, packed, and shared can only be "
6501 "applied to uniform/shader storage blocks, not "
6502 "members");
6503 }
6504
6505 if (qual->flags.q.constant) {
6506 _mesa_glsl_error(&loc, state,
6507 "const storage qualifier cannot be applied "
6508 "to struct or interface block members");
6509 }
6510
6511 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6512 *
6513 * "A block member may be declared with a stream identifier, but
6514 * the specified stream must match the stream associated with the
6515 * containing block."
6516 */
6517 if (qual->flags.q.explicit_stream) {
6518 unsigned qual_stream;
6519 if (process_qualifier_constant(state, &loc, "stream",
6520 qual->stream, &qual_stream) &&
6521 qual_stream != block_stream) {
6522 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6523 "interface block member does not match "
6524 "the interface block (%u vs %u)", qual_stream,
6525 block_stream);
6526 }
6527 }
6528
6529 int xfb_buffer;
6530 unsigned explicit_xfb_buffer = 0;
6531 if (qual->flags.q.explicit_xfb_buffer) {
6532 unsigned qual_xfb_buffer;
6533 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6534 qual->xfb_buffer, &qual_xfb_buffer)) {
6535 explicit_xfb_buffer = 1;
6536 if (qual_xfb_buffer != block_xfb_buffer)
6537 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6538 "interface block member does not match "
6539 "the interface block (%u vs %u)",
6540 qual_xfb_buffer, block_xfb_buffer);
6541 }
6542 xfb_buffer = (int) qual_xfb_buffer;
6543 } else {
6544 if (layout)
6545 explicit_xfb_buffer = layout->flags.q.xfb_buffer;
6546 xfb_buffer = (int) block_xfb_buffer;
6547 }
6548
6549 int xfb_stride = -1;
6550 if (qual->flags.q.explicit_xfb_stride) {
6551 unsigned qual_xfb_stride;
6552 if (process_qualifier_constant(state, &loc, "xfb_stride",
6553 qual->xfb_stride, &qual_xfb_stride)) {
6554 xfb_stride = (int) qual_xfb_stride;
6555 }
6556 }
6557
6558 if (qual->flags.q.uniform && qual->has_interpolation()) {
6559 _mesa_glsl_error(&loc, state,
6560 "interpolation qualifiers cannot be used "
6561 "with uniform interface blocks");
6562 }
6563
6564 if ((qual->flags.q.uniform || !is_interface) &&
6565 qual->has_auxiliary_storage()) {
6566 _mesa_glsl_error(&loc, state,
6567 "auxiliary storage qualifiers cannot be used "
6568 "in uniform blocks or structures.");
6569 }
6570
6571 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6572 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6573 _mesa_glsl_error(&loc, state,
6574 "row_major and column_major can only be "
6575 "applied to interface blocks");
6576 } else
6577 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6578 }
6579
6580 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6581 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6582 "readonly and writeonly.");
6583 }
6584
6585 foreach_list_typed (ast_declaration, decl, link,
6586 &decl_list->declarations) {
6587 YYLTYPE loc = decl->get_location();
6588
6589 if (!allow_reserved_names)
6590 validate_identifier(decl->identifier, loc, state);
6591
6592 const struct glsl_type *field_type =
6593 process_array_type(&loc, decl_type, decl->array_specifier, state);
6594 validate_array_dimensions(field_type, state, &loc);
6595 fields[i].type = field_type;
6596 fields[i].name = decl->identifier;
6597 fields[i].interpolation =
6598 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6599 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6600 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6601 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6602 fields[i].precision = qual->precision;
6603 fields[i].offset = -1;
6604 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6605 fields[i].xfb_buffer = xfb_buffer;
6606 fields[i].xfb_stride = xfb_stride;
6607
6608 if (qual->flags.q.explicit_location) {
6609 unsigned qual_location;
6610 if (process_qualifier_constant(state, &loc, "location",
6611 qual->location, &qual_location)) {
6612 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6613 expl_location = fields[i].location +
6614 fields[i].type->count_attribute_slots(false);
6615 }
6616 } else {
6617 if (layout && layout->flags.q.explicit_location) {
6618 fields[i].location = expl_location;
6619 expl_location += fields[i].type->count_attribute_slots(false);
6620 } else {
6621 fields[i].location = -1;
6622 }
6623 }
6624
6625 /* Offset can only be used with std430 and std140 layouts an initial
6626 * value of 0 is used for error detection.
6627 */
6628 unsigned align = 0;
6629 unsigned size = 0;
6630 if (layout) {
6631 bool row_major;
6632 if (qual->flags.q.row_major ||
6633 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6634 row_major = true;
6635 } else {
6636 row_major = false;
6637 }
6638
6639 if(layout->flags.q.std140) {
6640 align = field_type->std140_base_alignment(row_major);
6641 size = field_type->std140_size(row_major);
6642 } else if (layout->flags.q.std430) {
6643 align = field_type->std430_base_alignment(row_major);
6644 size = field_type->std430_size(row_major);
6645 }
6646 }
6647
6648 if (qual->flags.q.explicit_offset) {
6649 unsigned qual_offset;
6650 if (process_qualifier_constant(state, &loc, "offset",
6651 qual->offset, &qual_offset)) {
6652 if (align != 0 && size != 0) {
6653 if (next_offset > qual_offset)
6654 _mesa_glsl_error(&loc, state, "layout qualifier "
6655 "offset overlaps previous member");
6656
6657 if (qual_offset % align) {
6658 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6659 "must be a multiple of the base "
6660 "alignment of %s", field_type->name);
6661 }
6662 fields[i].offset = qual_offset;
6663 next_offset = glsl_align(qual_offset + size, align);
6664 } else {
6665 _mesa_glsl_error(&loc, state, "offset can only be used "
6666 "with std430 and std140 layouts");
6667 }
6668 }
6669 }
6670
6671 if (qual->flags.q.explicit_align || expl_align != 0) {
6672 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6673 next_offset;
6674 if (align == 0 || size == 0) {
6675 _mesa_glsl_error(&loc, state, "align can only be used with "
6676 "std430 and std140 layouts");
6677 } else if (qual->flags.q.explicit_align) {
6678 unsigned member_align;
6679 if (process_qualifier_constant(state, &loc, "align",
6680 qual->align, &member_align)) {
6681 if (member_align == 0 ||
6682 member_align & (member_align - 1)) {
6683 _mesa_glsl_error(&loc, state, "align layout qualifier "
6684 "in not a power of 2");
6685 } else {
6686 fields[i].offset = glsl_align(offset, member_align);
6687 next_offset = glsl_align(fields[i].offset + size, align);
6688 }
6689 }
6690 } else {
6691 fields[i].offset = glsl_align(offset, expl_align);
6692 next_offset = glsl_align(fields[i].offset + size, align);
6693 }
6694 }
6695
6696 if (!qual->flags.q.explicit_offset) {
6697 if (align != 0 && size != 0)
6698 next_offset = glsl_align(next_offset + size, align);
6699 }
6700
6701 /* From the ARB_enhanced_layouts spec:
6702 *
6703 * "The given offset applies to the first component of the first
6704 * member of the qualified entity. Then, within the qualified
6705 * entity, subsequent components are each assigned, in order, to
6706 * the next available offset aligned to a multiple of that
6707 * component's size. Aggregate types are flattened down to the
6708 * component level to get this sequence of components."
6709 */
6710 if (qual->flags.q.explicit_xfb_offset) {
6711 unsigned xfb_offset;
6712 if (process_qualifier_constant(state, &loc, "xfb_offset",
6713 qual->offset, &xfb_offset)) {
6714 fields[i].offset = xfb_offset;
6715 block_xfb_offset = fields[i].offset +
6716 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6717 }
6718 } else {
6719 if (layout && layout->flags.q.explicit_xfb_offset) {
6720 unsigned align = field_type->is_double() ? 8 : 4;
6721 fields[i].offset = glsl_align(block_xfb_offset, align);
6722 block_xfb_offset +=
6723 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6724 }
6725 }
6726
6727 /* Propogate row- / column-major information down the fields of the
6728 * structure or interface block. Structures need this data because
6729 * the structure may contain a structure that contains ... a matrix
6730 * that need the proper layout.
6731 */
6732 if (is_interface &&
6733 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6734 (field_type->without_array()->is_matrix()
6735 || field_type->without_array()->is_record())) {
6736 /* If no layout is specified for the field, inherit the layout
6737 * from the block.
6738 */
6739 fields[i].matrix_layout = matrix_layout;
6740
6741 if (qual->flags.q.row_major)
6742 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6743 else if (qual->flags.q.column_major)
6744 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6745
6746 /* If we're processing an uniform or buffer block, the matrix
6747 * layout must be decided by this point.
6748 */
6749 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6750 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6751 }
6752
6753 /* Image qualifiers are allowed on buffer variables, which can only
6754 * be defined inside shader storage buffer objects
6755 */
6756 if (layout && var_mode == ir_var_shader_storage) {
6757 /* For readonly and writeonly qualifiers the field definition,
6758 * if set, overwrites the layout qualifier.
6759 */
6760 if (qual->flags.q.read_only) {
6761 fields[i].image_read_only = true;
6762 fields[i].image_write_only = false;
6763 } else if (qual->flags.q.write_only) {
6764 fields[i].image_read_only = false;
6765 fields[i].image_write_only = true;
6766 } else {
6767 fields[i].image_read_only = layout->flags.q.read_only;
6768 fields[i].image_write_only = layout->flags.q.write_only;
6769 }
6770
6771 /* For other qualifiers, we set the flag if either the layout
6772 * qualifier or the field qualifier are set
6773 */
6774 fields[i].image_coherent = qual->flags.q.coherent ||
6775 layout->flags.q.coherent;
6776 fields[i].image_volatile = qual->flags.q._volatile ||
6777 layout->flags.q._volatile;
6778 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6779 layout->flags.q.restrict_flag;
6780 }
6781
6782 i++;
6783 }
6784 }
6785
6786 assert(i == decl_count);
6787
6788 *fields_ret = fields;
6789 return decl_count;
6790 }
6791
6792
6793 ir_rvalue *
6794 ast_struct_specifier::hir(exec_list *instructions,
6795 struct _mesa_glsl_parse_state *state)
6796 {
6797 YYLTYPE loc = this->get_location();
6798
6799 unsigned expl_location = 0;
6800 if (layout && layout->flags.q.explicit_location) {
6801 if (!process_qualifier_constant(state, &loc, "location",
6802 layout->location, &expl_location)) {
6803 return NULL;
6804 } else {
6805 expl_location = VARYING_SLOT_VAR0 + expl_location;
6806 }
6807 }
6808
6809 glsl_struct_field *fields;
6810 unsigned decl_count =
6811 ast_process_struct_or_iface_block_members(instructions,
6812 state,
6813 &this->declarations,
6814 &fields,
6815 false,
6816 GLSL_MATRIX_LAYOUT_INHERITED,
6817 false /* allow_reserved_names */,
6818 ir_var_auto,
6819 layout,
6820 0, /* for interface only */
6821 0, /* for interface only */
6822 0, /* for interface only */
6823 expl_location,
6824 0 /* for interface only */);
6825
6826 validate_identifier(this->name, loc, state);
6827
6828 const glsl_type *t =
6829 glsl_type::get_record_instance(fields, decl_count, this->name);
6830
6831 if (!state->symbols->add_type(name, t)) {
6832 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6833 } else {
6834 const glsl_type **s = reralloc(state, state->user_structures,
6835 const glsl_type *,
6836 state->num_user_structures + 1);
6837 if (s != NULL) {
6838 s[state->num_user_structures] = t;
6839 state->user_structures = s;
6840 state->num_user_structures++;
6841 }
6842 }
6843
6844 /* Structure type definitions do not have r-values.
6845 */
6846 return NULL;
6847 }
6848
6849
6850 /**
6851 * Visitor class which detects whether a given interface block has been used.
6852 */
6853 class interface_block_usage_visitor : public ir_hierarchical_visitor
6854 {
6855 public:
6856 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6857 : mode(mode), block(block), found(false)
6858 {
6859 }
6860
6861 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6862 {
6863 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6864 found = true;
6865 return visit_stop;
6866 }
6867 return visit_continue;
6868 }
6869
6870 bool usage_found() const
6871 {
6872 return this->found;
6873 }
6874
6875 private:
6876 ir_variable_mode mode;
6877 const glsl_type *block;
6878 bool found;
6879 };
6880
6881 static bool
6882 is_unsized_array_last_element(ir_variable *v)
6883 {
6884 const glsl_type *interface_type = v->get_interface_type();
6885 int length = interface_type->length;
6886
6887 assert(v->type->is_unsized_array());
6888
6889 /* Check if it is the last element of the interface */
6890 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6891 return true;
6892 return false;
6893 }
6894
6895 ir_rvalue *
6896 ast_interface_block::hir(exec_list *instructions,
6897 struct _mesa_glsl_parse_state *state)
6898 {
6899 YYLTYPE loc = this->get_location();
6900
6901 /* Interface blocks must be declared at global scope */
6902 if (state->current_function != NULL) {
6903 _mesa_glsl_error(&loc, state,
6904 "Interface block `%s' must be declared "
6905 "at global scope",
6906 this->block_name);
6907 }
6908
6909 if (!this->layout.flags.q.buffer &&
6910 this->layout.flags.q.std430) {
6911 _mesa_glsl_error(&loc, state,
6912 "std430 storage block layout qualifier is supported "
6913 "only for shader storage blocks");
6914 }
6915
6916 /* The ast_interface_block has a list of ast_declarator_lists. We
6917 * need to turn those into ir_variables with an association
6918 * with this uniform block.
6919 */
6920 enum glsl_interface_packing packing;
6921 if (this->layout.flags.q.shared) {
6922 packing = GLSL_INTERFACE_PACKING_SHARED;
6923 } else if (this->layout.flags.q.packed) {
6924 packing = GLSL_INTERFACE_PACKING_PACKED;
6925 } else if (this->layout.flags.q.std430) {
6926 packing = GLSL_INTERFACE_PACKING_STD430;
6927 } else {
6928 /* The default layout is std140.
6929 */
6930 packing = GLSL_INTERFACE_PACKING_STD140;
6931 }
6932
6933 ir_variable_mode var_mode;
6934 const char *iface_type_name;
6935 if (this->layout.flags.q.in) {
6936 var_mode = ir_var_shader_in;
6937 iface_type_name = "in";
6938 } else if (this->layout.flags.q.out) {
6939 var_mode = ir_var_shader_out;
6940 iface_type_name = "out";
6941 } else if (this->layout.flags.q.uniform) {
6942 var_mode = ir_var_uniform;
6943 iface_type_name = "uniform";
6944 } else if (this->layout.flags.q.buffer) {
6945 var_mode = ir_var_shader_storage;
6946 iface_type_name = "buffer";
6947 } else {
6948 var_mode = ir_var_auto;
6949 iface_type_name = "UNKNOWN";
6950 assert(!"interface block layout qualifier not found!");
6951 }
6952
6953 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6954 if (this->layout.flags.q.row_major)
6955 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6956 else if (this->layout.flags.q.column_major)
6957 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6958
6959 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6960 exec_list declared_variables;
6961 glsl_struct_field *fields;
6962
6963 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6964 * that we don't have incompatible qualifiers
6965 */
6966 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6967 _mesa_glsl_error(&loc, state,
6968 "Interface block sets both readonly and writeonly");
6969 }
6970
6971 unsigned qual_stream;
6972 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6973 &qual_stream) ||
6974 !validate_stream_qualifier(&loc, state, qual_stream)) {
6975 /* If the stream qualifier is invalid it doesn't make sense to continue
6976 * on and try to compare stream layouts on member variables against it
6977 * so just return early.
6978 */
6979 return NULL;
6980 }
6981
6982 unsigned qual_xfb_buffer;
6983 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
6984 layout.xfb_buffer, &qual_xfb_buffer) ||
6985 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
6986 return NULL;
6987 }
6988
6989 unsigned qual_xfb_offset;
6990 if (layout.flags.q.explicit_xfb_offset) {
6991 if (!process_qualifier_constant(state, &loc, "xfb_offset",
6992 layout.offset, &qual_xfb_offset)) {
6993 return NULL;
6994 }
6995 }
6996
6997 unsigned qual_xfb_stride;
6998 if (layout.flags.q.explicit_xfb_stride) {
6999 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7000 layout.xfb_stride, &qual_xfb_stride)) {
7001 return NULL;
7002 }
7003 }
7004
7005 unsigned expl_location = 0;
7006 if (layout.flags.q.explicit_location) {
7007 if (!process_qualifier_constant(state, &loc, "location",
7008 layout.location, &expl_location)) {
7009 return NULL;
7010 } else {
7011 expl_location = VARYING_SLOT_VAR0 + expl_location;
7012 }
7013 }
7014
7015 unsigned expl_align = 0;
7016 if (layout.flags.q.explicit_align) {
7017 if (!process_qualifier_constant(state, &loc, "align",
7018 layout.align, &expl_align)) {
7019 return NULL;
7020 } else {
7021 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7022 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7023 "power of 2.");
7024 return NULL;
7025 }
7026 }
7027 }
7028
7029 unsigned int num_variables =
7030 ast_process_struct_or_iface_block_members(&declared_variables,
7031 state,
7032 &this->declarations,
7033 &fields,
7034 true,
7035 matrix_layout,
7036 redeclaring_per_vertex,
7037 var_mode,
7038 &this->layout,
7039 qual_stream,
7040 qual_xfb_buffer,
7041 qual_xfb_offset,
7042 expl_location,
7043 expl_align);
7044
7045 if (!redeclaring_per_vertex) {
7046 validate_identifier(this->block_name, loc, state);
7047
7048 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7049 *
7050 * "Block names have no other use within a shader beyond interface
7051 * matching; it is a compile-time error to use a block name at global
7052 * scope for anything other than as a block name."
7053 */
7054 ir_variable *var = state->symbols->get_variable(this->block_name);
7055 if (var && !var->type->is_interface()) {
7056 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7057 "already used in the scope.",
7058 this->block_name);
7059 }
7060 }
7061
7062 const glsl_type *earlier_per_vertex = NULL;
7063 if (redeclaring_per_vertex) {
7064 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7065 * the named interface block gl_in, we can find it by looking at the
7066 * previous declaration of gl_in. Otherwise we can find it by looking
7067 * at the previous decalartion of any of the built-in outputs,
7068 * e.g. gl_Position.
7069 *
7070 * Also check that the instance name and array-ness of the redeclaration
7071 * are correct.
7072 */
7073 switch (var_mode) {
7074 case ir_var_shader_in:
7075 if (ir_variable *earlier_gl_in =
7076 state->symbols->get_variable("gl_in")) {
7077 earlier_per_vertex = earlier_gl_in->get_interface_type();
7078 } else {
7079 _mesa_glsl_error(&loc, state,
7080 "redeclaration of gl_PerVertex input not allowed "
7081 "in the %s shader",
7082 _mesa_shader_stage_to_string(state->stage));
7083 }
7084 if (this->instance_name == NULL ||
7085 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7086 !this->array_specifier->is_single_dimension()) {
7087 _mesa_glsl_error(&loc, state,
7088 "gl_PerVertex input must be redeclared as "
7089 "gl_in[]");
7090 }
7091 break;
7092 case ir_var_shader_out:
7093 if (ir_variable *earlier_gl_Position =
7094 state->symbols->get_variable("gl_Position")) {
7095 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7096 } else if (ir_variable *earlier_gl_out =
7097 state->symbols->get_variable("gl_out")) {
7098 earlier_per_vertex = earlier_gl_out->get_interface_type();
7099 } else {
7100 _mesa_glsl_error(&loc, state,
7101 "redeclaration of gl_PerVertex output not "
7102 "allowed in the %s shader",
7103 _mesa_shader_stage_to_string(state->stage));
7104 }
7105 if (state->stage == MESA_SHADER_TESS_CTRL) {
7106 if (this->instance_name == NULL ||
7107 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7108 _mesa_glsl_error(&loc, state,
7109 "gl_PerVertex output must be redeclared as "
7110 "gl_out[]");
7111 }
7112 } else {
7113 if (this->instance_name != NULL) {
7114 _mesa_glsl_error(&loc, state,
7115 "gl_PerVertex output may not be redeclared with "
7116 "an instance name");
7117 }
7118 }
7119 break;
7120 default:
7121 _mesa_glsl_error(&loc, state,
7122 "gl_PerVertex must be declared as an input or an "
7123 "output");
7124 break;
7125 }
7126
7127 if (earlier_per_vertex == NULL) {
7128 /* An error has already been reported. Bail out to avoid null
7129 * dereferences later in this function.
7130 */
7131 return NULL;
7132 }
7133
7134 /* Copy locations from the old gl_PerVertex interface block. */
7135 for (unsigned i = 0; i < num_variables; i++) {
7136 int j = earlier_per_vertex->field_index(fields[i].name);
7137 if (j == -1) {
7138 _mesa_glsl_error(&loc, state,
7139 "redeclaration of gl_PerVertex must be a subset "
7140 "of the built-in members of gl_PerVertex");
7141 } else {
7142 fields[i].location =
7143 earlier_per_vertex->fields.structure[j].location;
7144 fields[i].offset =
7145 earlier_per_vertex->fields.structure[j].offset;
7146 fields[i].interpolation =
7147 earlier_per_vertex->fields.structure[j].interpolation;
7148 fields[i].centroid =
7149 earlier_per_vertex->fields.structure[j].centroid;
7150 fields[i].sample =
7151 earlier_per_vertex->fields.structure[j].sample;
7152 fields[i].patch =
7153 earlier_per_vertex->fields.structure[j].patch;
7154 fields[i].precision =
7155 earlier_per_vertex->fields.structure[j].precision;
7156 fields[i].explicit_xfb_buffer =
7157 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7158 fields[i].xfb_buffer =
7159 earlier_per_vertex->fields.structure[j].xfb_buffer;
7160 fields[i].xfb_stride =
7161 earlier_per_vertex->fields.structure[j].xfb_stride;
7162 }
7163 }
7164
7165 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7166 * spec:
7167 *
7168 * If a built-in interface block is redeclared, it must appear in
7169 * the shader before any use of any member included in the built-in
7170 * declaration, or a compilation error will result.
7171 *
7172 * This appears to be a clarification to the behaviour established for
7173 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7174 * regardless of GLSL version.
7175 */
7176 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7177 v.run(instructions);
7178 if (v.usage_found()) {
7179 _mesa_glsl_error(&loc, state,
7180 "redeclaration of a built-in interface block must "
7181 "appear before any use of any member of the "
7182 "interface block");
7183 }
7184 }
7185
7186 const glsl_type *block_type =
7187 glsl_type::get_interface_instance(fields,
7188 num_variables,
7189 packing,
7190 this->block_name);
7191
7192 unsigned component_size = block_type->contains_double() ? 8 : 4;
7193 int xfb_offset =
7194 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7195 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7196 component_size);
7197
7198 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7199 YYLTYPE loc = this->get_location();
7200 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7201 "already taken in the current scope",
7202 this->block_name, iface_type_name);
7203 }
7204
7205 /* Since interface blocks cannot contain statements, it should be
7206 * impossible for the block to generate any instructions.
7207 */
7208 assert(declared_variables.is_empty());
7209
7210 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7211 *
7212 * Geometry shader input variables get the per-vertex values written
7213 * out by vertex shader output variables of the same names. Since a
7214 * geometry shader operates on a set of vertices, each input varying
7215 * variable (or input block, see interface blocks below) needs to be
7216 * declared as an array.
7217 */
7218 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7219 var_mode == ir_var_shader_in) {
7220 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7221 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7222 state->stage == MESA_SHADER_TESS_EVAL) &&
7223 this->array_specifier == NULL &&
7224 var_mode == ir_var_shader_in) {
7225 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7226 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7227 this->array_specifier == NULL &&
7228 var_mode == ir_var_shader_out) {
7229 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7230 }
7231
7232
7233 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7234 * says:
7235 *
7236 * "If an instance name (instance-name) is used, then it puts all the
7237 * members inside a scope within its own name space, accessed with the
7238 * field selector ( . ) operator (analogously to structures)."
7239 */
7240 if (this->instance_name) {
7241 if (redeclaring_per_vertex) {
7242 /* When a built-in in an unnamed interface block is redeclared,
7243 * get_variable_being_redeclared() calls
7244 * check_builtin_array_max_size() to make sure that built-in array
7245 * variables aren't redeclared to illegal sizes. But we're looking
7246 * at a redeclaration of a named built-in interface block. So we
7247 * have to manually call check_builtin_array_max_size() for all parts
7248 * of the interface that are arrays.
7249 */
7250 for (unsigned i = 0; i < num_variables; i++) {
7251 if (fields[i].type->is_array()) {
7252 const unsigned size = fields[i].type->array_size();
7253 check_builtin_array_max_size(fields[i].name, size, loc, state);
7254 }
7255 }
7256 } else {
7257 validate_identifier(this->instance_name, loc, state);
7258 }
7259
7260 ir_variable *var;
7261
7262 if (this->array_specifier != NULL) {
7263 const glsl_type *block_array_type =
7264 process_array_type(&loc, block_type, this->array_specifier, state);
7265
7266 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7267 *
7268 * For uniform blocks declared an array, each individual array
7269 * element corresponds to a separate buffer object backing one
7270 * instance of the block. As the array size indicates the number
7271 * of buffer objects needed, uniform block array declarations
7272 * must specify an array size.
7273 *
7274 * And a few paragraphs later:
7275 *
7276 * Geometry shader input blocks must be declared as arrays and
7277 * follow the array declaration and linking rules for all
7278 * geometry shader inputs. All other input and output block
7279 * arrays must specify an array size.
7280 *
7281 * The same applies to tessellation shaders.
7282 *
7283 * The upshot of this is that the only circumstance where an
7284 * interface array size *doesn't* need to be specified is on a
7285 * geometry shader input, tessellation control shader input,
7286 * tessellation control shader output, and tessellation evaluation
7287 * shader input.
7288 */
7289 if (block_array_type->is_unsized_array()) {
7290 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7291 state->stage == MESA_SHADER_TESS_CTRL ||
7292 state->stage == MESA_SHADER_TESS_EVAL;
7293 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7294
7295 if (this->layout.flags.q.in) {
7296 if (!allow_inputs)
7297 _mesa_glsl_error(&loc, state,
7298 "unsized input block arrays not allowed in "
7299 "%s shader",
7300 _mesa_shader_stage_to_string(state->stage));
7301 } else if (this->layout.flags.q.out) {
7302 if (!allow_outputs)
7303 _mesa_glsl_error(&loc, state,
7304 "unsized output block arrays not allowed in "
7305 "%s shader",
7306 _mesa_shader_stage_to_string(state->stage));
7307 } else {
7308 /* by elimination, this is a uniform block array */
7309 _mesa_glsl_error(&loc, state,
7310 "unsized uniform block arrays not allowed in "
7311 "%s shader",
7312 _mesa_shader_stage_to_string(state->stage));
7313 }
7314 }
7315
7316 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7317 *
7318 * * Arrays of arrays of blocks are not allowed
7319 */
7320 if (state->es_shader && block_array_type->is_array() &&
7321 block_array_type->fields.array->is_array()) {
7322 _mesa_glsl_error(&loc, state,
7323 "arrays of arrays interface blocks are "
7324 "not allowed");
7325 }
7326
7327 var = new(state) ir_variable(block_array_type,
7328 this->instance_name,
7329 var_mode);
7330 } else {
7331 var = new(state) ir_variable(block_type,
7332 this->instance_name,
7333 var_mode);
7334 }
7335
7336 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7337 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7338
7339 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7340 var->data.read_only = true;
7341
7342 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7343 handle_geometry_shader_input_decl(state, loc, var);
7344 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7345 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7346 handle_tess_shader_input_decl(state, loc, var);
7347 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7348 handle_tess_ctrl_shader_output_decl(state, loc, var);
7349
7350 for (unsigned i = 0; i < num_variables; i++) {
7351 if (fields[i].type->is_unsized_array()) {
7352 if (var_mode == ir_var_shader_storage) {
7353 if (i != (num_variables - 1)) {
7354 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7355 "only last member of a shader storage block "
7356 "can be defined as unsized array",
7357 fields[i].name);
7358 }
7359 } else {
7360 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7361 *
7362 * "If an array is declared as the last member of a shader storage
7363 * block and the size is not specified at compile-time, it is
7364 * sized at run-time. In all other cases, arrays are sized only
7365 * at compile-time."
7366 */
7367 if (state->es_shader) {
7368 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7369 "only last member of a shader storage block "
7370 "can be defined as unsized array",
7371 fields[i].name);
7372 }
7373 }
7374 }
7375 }
7376
7377 if (ir_variable *earlier =
7378 state->symbols->get_variable(this->instance_name)) {
7379 if (!redeclaring_per_vertex) {
7380 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7381 this->instance_name);
7382 }
7383 earlier->data.how_declared = ir_var_declared_normally;
7384 earlier->type = var->type;
7385 earlier->reinit_interface_type(block_type);
7386 delete var;
7387 } else {
7388 if (this->layout.flags.q.explicit_binding) {
7389 apply_explicit_binding(state, &loc, var, var->type,
7390 &this->layout);
7391 }
7392
7393 var->data.stream = qual_stream;
7394 if (layout.flags.q.explicit_location) {
7395 var->data.location = expl_location;
7396 var->data.explicit_location = true;
7397 }
7398
7399 state->symbols->add_variable(var);
7400 instructions->push_tail(var);
7401 }
7402 } else {
7403 /* In order to have an array size, the block must also be declared with
7404 * an instance name.
7405 */
7406 assert(this->array_specifier == NULL);
7407
7408 for (unsigned i = 0; i < num_variables; i++) {
7409 ir_variable *var =
7410 new(state) ir_variable(fields[i].type,
7411 ralloc_strdup(state, fields[i].name),
7412 var_mode);
7413 var->data.interpolation = fields[i].interpolation;
7414 var->data.centroid = fields[i].centroid;
7415 var->data.sample = fields[i].sample;
7416 var->data.patch = fields[i].patch;
7417 var->data.stream = qual_stream;
7418 var->data.location = fields[i].location;
7419
7420 if (fields[i].location != -1)
7421 var->data.explicit_location = true;
7422
7423 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7424 var->data.xfb_buffer = fields[i].xfb_buffer;
7425
7426 if (fields[i].offset != -1)
7427 var->data.explicit_xfb_offset = true;
7428 var->data.offset = fields[i].offset;
7429
7430 var->init_interface_type(block_type);
7431
7432 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7433 var->data.read_only = true;
7434
7435 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7436 if (state->es_shader) {
7437 var->data.precision =
7438 select_gles_precision(fields[i].precision, fields[i].type,
7439 state, &loc);
7440 }
7441
7442 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7443 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7444 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7445 } else {
7446 var->data.matrix_layout = fields[i].matrix_layout;
7447 }
7448
7449 if (var->data.mode == ir_var_shader_storage) {
7450 var->data.image_read_only = fields[i].image_read_only;
7451 var->data.image_write_only = fields[i].image_write_only;
7452 var->data.image_coherent = fields[i].image_coherent;
7453 var->data.image_volatile = fields[i].image_volatile;
7454 var->data.image_restrict = fields[i].image_restrict;
7455 }
7456
7457 /* Examine var name here since var may get deleted in the next call */
7458 bool var_is_gl_id = is_gl_identifier(var->name);
7459
7460 if (redeclaring_per_vertex) {
7461 ir_variable *earlier =
7462 get_variable_being_redeclared(var, loc, state,
7463 true /* allow_all_redeclarations */);
7464 if (!var_is_gl_id || earlier == NULL) {
7465 _mesa_glsl_error(&loc, state,
7466 "redeclaration of gl_PerVertex can only "
7467 "include built-in variables");
7468 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7469 _mesa_glsl_error(&loc, state,
7470 "`%s' has already been redeclared",
7471 earlier->name);
7472 } else {
7473 earlier->data.how_declared = ir_var_declared_in_block;
7474 earlier->reinit_interface_type(block_type);
7475 }
7476 continue;
7477 }
7478
7479 if (state->symbols->get_variable(var->name) != NULL)
7480 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7481
7482 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7483 * The UBO declaration itself doesn't get an ir_variable unless it
7484 * has an instance name. This is ugly.
7485 */
7486 if (this->layout.flags.q.explicit_binding) {
7487 apply_explicit_binding(state, &loc, var,
7488 var->get_interface_type(), &this->layout);
7489 }
7490
7491 if (var->type->is_unsized_array()) {
7492 if (var->is_in_shader_storage_block()) {
7493 if (!is_unsized_array_last_element(var)) {
7494 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7495 "only last member of a shader storage block "
7496 "can be defined as unsized array",
7497 var->name);
7498 }
7499 var->data.from_ssbo_unsized_array = true;
7500 } else {
7501 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7502 *
7503 * "If an array is declared as the last member of a shader storage
7504 * block and the size is not specified at compile-time, it is
7505 * sized at run-time. In all other cases, arrays are sized only
7506 * at compile-time."
7507 */
7508 if (state->es_shader) {
7509 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7510 "only last member of a shader storage block "
7511 "can be defined as unsized array",
7512 var->name);
7513 }
7514 }
7515 }
7516
7517 state->symbols->add_variable(var);
7518 instructions->push_tail(var);
7519 }
7520
7521 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7522 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7523 *
7524 * It is also a compilation error ... to redeclare a built-in
7525 * block and then use a member from that built-in block that was
7526 * not included in the redeclaration.
7527 *
7528 * This appears to be a clarification to the behaviour established
7529 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7530 * behaviour regardless of GLSL version.
7531 *
7532 * To prevent the shader from using a member that was not included in
7533 * the redeclaration, we disable any ir_variables that are still
7534 * associated with the old declaration of gl_PerVertex (since we've
7535 * already updated all of the variables contained in the new
7536 * gl_PerVertex to point to it).
7537 *
7538 * As a side effect this will prevent
7539 * validate_intrastage_interface_blocks() from getting confused and
7540 * thinking there are conflicting definitions of gl_PerVertex in the
7541 * shader.
7542 */
7543 foreach_in_list_safe(ir_instruction, node, instructions) {
7544 ir_variable *const var = node->as_variable();
7545 if (var != NULL &&
7546 var->get_interface_type() == earlier_per_vertex &&
7547 var->data.mode == var_mode) {
7548 if (var->data.how_declared == ir_var_declared_normally) {
7549 _mesa_glsl_error(&loc, state,
7550 "redeclaration of gl_PerVertex cannot "
7551 "follow a redeclaration of `%s'",
7552 var->name);
7553 }
7554 state->symbols->disable_variable(var->name);
7555 var->remove();
7556 }
7557 }
7558 }
7559 }
7560
7561 return NULL;
7562 }
7563
7564
7565 ir_rvalue *
7566 ast_tcs_output_layout::hir(exec_list *instructions,
7567 struct _mesa_glsl_parse_state *state)
7568 {
7569 YYLTYPE loc = this->get_location();
7570
7571 unsigned num_vertices;
7572 if (!state->out_qualifier->vertices->
7573 process_qualifier_constant(state, "vertices", &num_vertices,
7574 false)) {
7575 /* return here to stop cascading incorrect error messages */
7576 return NULL;
7577 }
7578
7579 /* If any shader outputs occurred before this declaration and specified an
7580 * array size, make sure the size they specified is consistent with the
7581 * primitive type.
7582 */
7583 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7584 _mesa_glsl_error(&loc, state,
7585 "this tessellation control shader output layout "
7586 "specifies %u vertices, but a previous output "
7587 "is declared with size %u",
7588 num_vertices, state->tcs_output_size);
7589 return NULL;
7590 }
7591
7592 state->tcs_output_vertices_specified = true;
7593
7594 /* If any shader outputs occurred before this declaration and did not
7595 * specify an array size, their size is determined now.
7596 */
7597 foreach_in_list (ir_instruction, node, instructions) {
7598 ir_variable *var = node->as_variable();
7599 if (var == NULL || var->data.mode != ir_var_shader_out)
7600 continue;
7601
7602 /* Note: Not all tessellation control shader output are arrays. */
7603 if (!var->type->is_unsized_array() || var->data.patch)
7604 continue;
7605
7606 if (var->data.max_array_access >= num_vertices) {
7607 _mesa_glsl_error(&loc, state,
7608 "this tessellation control shader output layout "
7609 "specifies %u vertices, but an access to element "
7610 "%u of output `%s' already exists", num_vertices,
7611 var->data.max_array_access, var->name);
7612 } else {
7613 var->type = glsl_type::get_array_instance(var->type->fields.array,
7614 num_vertices);
7615 }
7616 }
7617
7618 return NULL;
7619 }
7620
7621
7622 ir_rvalue *
7623 ast_gs_input_layout::hir(exec_list *instructions,
7624 struct _mesa_glsl_parse_state *state)
7625 {
7626 YYLTYPE loc = this->get_location();
7627
7628 /* If any geometry input layout declaration preceded this one, make sure it
7629 * was consistent with this one.
7630 */
7631 if (state->gs_input_prim_type_specified &&
7632 state->in_qualifier->prim_type != this->prim_type) {
7633 _mesa_glsl_error(&loc, state,
7634 "geometry shader input layout does not match"
7635 " previous declaration");
7636 return NULL;
7637 }
7638
7639 /* If any shader inputs occurred before this declaration and specified an
7640 * array size, make sure the size they specified is consistent with the
7641 * primitive type.
7642 */
7643 unsigned num_vertices = vertices_per_prim(this->prim_type);
7644 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7645 _mesa_glsl_error(&loc, state,
7646 "this geometry shader input layout implies %u vertices"
7647 " per primitive, but a previous input is declared"
7648 " with size %u", num_vertices, state->gs_input_size);
7649 return NULL;
7650 }
7651
7652 state->gs_input_prim_type_specified = true;
7653
7654 /* If any shader inputs occurred before this declaration and did not
7655 * specify an array size, their size is determined now.
7656 */
7657 foreach_in_list(ir_instruction, node, instructions) {
7658 ir_variable *var = node->as_variable();
7659 if (var == NULL || var->data.mode != ir_var_shader_in)
7660 continue;
7661
7662 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7663 * array; skip it.
7664 */
7665
7666 if (var->type->is_unsized_array()) {
7667 if (var->data.max_array_access >= num_vertices) {
7668 _mesa_glsl_error(&loc, state,
7669 "this geometry shader input layout implies %u"
7670 " vertices, but an access to element %u of input"
7671 " `%s' already exists", num_vertices,
7672 var->data.max_array_access, var->name);
7673 } else {
7674 var->type = glsl_type::get_array_instance(var->type->fields.array,
7675 num_vertices);
7676 }
7677 }
7678 }
7679
7680 return NULL;
7681 }
7682
7683
7684 ir_rvalue *
7685 ast_cs_input_layout::hir(exec_list *instructions,
7686 struct _mesa_glsl_parse_state *state)
7687 {
7688 YYLTYPE loc = this->get_location();
7689
7690 /* From the ARB_compute_shader specification:
7691 *
7692 * If the local size of the shader in any dimension is greater
7693 * than the maximum size supported by the implementation for that
7694 * dimension, a compile-time error results.
7695 *
7696 * It is not clear from the spec how the error should be reported if
7697 * the total size of the work group exceeds
7698 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7699 * report it at compile time as well.
7700 */
7701 GLuint64 total_invocations = 1;
7702 unsigned qual_local_size[3];
7703 for (int i = 0; i < 3; i++) {
7704
7705 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7706 'x' + i);
7707 /* Infer a local_size of 1 for unspecified dimensions */
7708 if (this->local_size[i] == NULL) {
7709 qual_local_size[i] = 1;
7710 } else if (!this->local_size[i]->
7711 process_qualifier_constant(state, local_size_str,
7712 &qual_local_size[i], false)) {
7713 ralloc_free(local_size_str);
7714 return NULL;
7715 }
7716 ralloc_free(local_size_str);
7717
7718 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7719 _mesa_glsl_error(&loc, state,
7720 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7721 " (%d)", 'x' + i,
7722 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7723 break;
7724 }
7725 total_invocations *= qual_local_size[i];
7726 if (total_invocations >
7727 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7728 _mesa_glsl_error(&loc, state,
7729 "product of local_sizes exceeds "
7730 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7731 state->ctx->Const.MaxComputeWorkGroupInvocations);
7732 break;
7733 }
7734 }
7735
7736 /* If any compute input layout declaration preceded this one, make sure it
7737 * was consistent with this one.
7738 */
7739 if (state->cs_input_local_size_specified) {
7740 for (int i = 0; i < 3; i++) {
7741 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7742 _mesa_glsl_error(&loc, state,
7743 "compute shader input layout does not match"
7744 " previous declaration");
7745 return NULL;
7746 }
7747 }
7748 }
7749
7750 state->cs_input_local_size_specified = true;
7751 for (int i = 0; i < 3; i++)
7752 state->cs_input_local_size[i] = qual_local_size[i];
7753
7754 /* We may now declare the built-in constant gl_WorkGroupSize (see
7755 * builtin_variable_generator::generate_constants() for why we didn't
7756 * declare it earlier).
7757 */
7758 ir_variable *var = new(state->symbols)
7759 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7760 var->data.how_declared = ir_var_declared_implicitly;
7761 var->data.read_only = true;
7762 instructions->push_tail(var);
7763 state->symbols->add_variable(var);
7764 ir_constant_data data;
7765 memset(&data, 0, sizeof(data));
7766 for (int i = 0; i < 3; i++)
7767 data.u[i] = qual_local_size[i];
7768 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7769 var->constant_initializer =
7770 new(var) ir_constant(glsl_type::uvec3_type, &data);
7771 var->data.has_initializer = true;
7772
7773 return NULL;
7774 }
7775
7776
7777 static void
7778 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7779 exec_list *instructions)
7780 {
7781 bool gl_FragColor_assigned = false;
7782 bool gl_FragData_assigned = false;
7783 bool gl_FragSecondaryColor_assigned = false;
7784 bool gl_FragSecondaryData_assigned = false;
7785 bool user_defined_fs_output_assigned = false;
7786 ir_variable *user_defined_fs_output = NULL;
7787
7788 /* It would be nice to have proper location information. */
7789 YYLTYPE loc;
7790 memset(&loc, 0, sizeof(loc));
7791
7792 foreach_in_list(ir_instruction, node, instructions) {
7793 ir_variable *var = node->as_variable();
7794
7795 if (!var || !var->data.assigned)
7796 continue;
7797
7798 if (strcmp(var->name, "gl_FragColor") == 0)
7799 gl_FragColor_assigned = true;
7800 else if (strcmp(var->name, "gl_FragData") == 0)
7801 gl_FragData_assigned = true;
7802 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7803 gl_FragSecondaryColor_assigned = true;
7804 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7805 gl_FragSecondaryData_assigned = true;
7806 else if (!is_gl_identifier(var->name)) {
7807 if (state->stage == MESA_SHADER_FRAGMENT &&
7808 var->data.mode == ir_var_shader_out) {
7809 user_defined_fs_output_assigned = true;
7810 user_defined_fs_output = var;
7811 }
7812 }
7813 }
7814
7815 /* From the GLSL 1.30 spec:
7816 *
7817 * "If a shader statically assigns a value to gl_FragColor, it
7818 * may not assign a value to any element of gl_FragData. If a
7819 * shader statically writes a value to any element of
7820 * gl_FragData, it may not assign a value to
7821 * gl_FragColor. That is, a shader may assign values to either
7822 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7823 * linked together must also consistently write just one of
7824 * these variables. Similarly, if user declared output
7825 * variables are in use (statically assigned to), then the
7826 * built-in variables gl_FragColor and gl_FragData may not be
7827 * assigned to. These incorrect usages all generate compile
7828 * time errors."
7829 */
7830 if (gl_FragColor_assigned && gl_FragData_assigned) {
7831 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7832 "`gl_FragColor' and `gl_FragData'");
7833 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7834 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7835 "`gl_FragColor' and `%s'",
7836 user_defined_fs_output->name);
7837 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7838 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7839 "`gl_FragSecondaryColorEXT' and"
7840 " `gl_FragSecondaryDataEXT'");
7841 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7842 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7843 "`gl_FragColor' and"
7844 " `gl_FragSecondaryDataEXT'");
7845 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7846 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7847 "`gl_FragData' and"
7848 " `gl_FragSecondaryColorEXT'");
7849 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7850 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7851 "`gl_FragData' and `%s'",
7852 user_defined_fs_output->name);
7853 }
7854
7855 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7856 !state->EXT_blend_func_extended_enable) {
7857 _mesa_glsl_error(&loc, state,
7858 "Dual source blending requires EXT_blend_func_extended");
7859 }
7860 }
7861
7862
7863 static void
7864 remove_per_vertex_blocks(exec_list *instructions,
7865 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7866 {
7867 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7868 * if it exists in this shader type.
7869 */
7870 const glsl_type *per_vertex = NULL;
7871 switch (mode) {
7872 case ir_var_shader_in:
7873 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7874 per_vertex = gl_in->get_interface_type();
7875 break;
7876 case ir_var_shader_out:
7877 if (ir_variable *gl_Position =
7878 state->symbols->get_variable("gl_Position")) {
7879 per_vertex = gl_Position->get_interface_type();
7880 }
7881 break;
7882 default:
7883 assert(!"Unexpected mode");
7884 break;
7885 }
7886
7887 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7888 * need to do anything.
7889 */
7890 if (per_vertex == NULL)
7891 return;
7892
7893 /* If the interface block is used by the shader, then we don't need to do
7894 * anything.
7895 */
7896 interface_block_usage_visitor v(mode, per_vertex);
7897 v.run(instructions);
7898 if (v.usage_found())
7899 return;
7900
7901 /* Remove any ir_variable declarations that refer to the interface block
7902 * we're removing.
7903 */
7904 foreach_in_list_safe(ir_instruction, node, instructions) {
7905 ir_variable *const var = node->as_variable();
7906 if (var != NULL && var->get_interface_type() == per_vertex &&
7907 var->data.mode == mode) {
7908 state->symbols->disable_variable(var->name);
7909 var->remove();
7910 }
7911 }
7912 }