glsl/types: Add support for function types
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* ESSL does not allow implicit conversions */
295 if (state->es_shader)
296 return false;
297
298 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
299 *
300 * "There are no implicit array or structure conversions. For
301 * example, an array of int cannot be implicitly converted to an
302 * array of float.
303 */
304 if (!to->is_numeric() || !from->type->is_numeric())
305 return false;
306
307 /* We don't actually want the specific type `to`, we want a type
308 * with the same base type as `to`, but the same vector width as
309 * `from`.
310 */
311 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
312 from->type->matrix_columns);
313
314 ir_expression_operation op = get_conversion_operation(to, from->type, state);
315 if (op) {
316 from = new(ctx) ir_expression(op, to, from, NULL);
317 return true;
318 } else {
319 return false;
320 }
321 }
322
323
324 static const struct glsl_type *
325 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
326 bool multiply,
327 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
328 {
329 const glsl_type *type_a = value_a->type;
330 const glsl_type *type_b = value_b->type;
331
332 /* From GLSL 1.50 spec, page 56:
333 *
334 * "The arithmetic binary operators add (+), subtract (-),
335 * multiply (*), and divide (/) operate on integer and
336 * floating-point scalars, vectors, and matrices."
337 */
338 if (!type_a->is_numeric() || !type_b->is_numeric()) {
339 _mesa_glsl_error(loc, state,
340 "operands to arithmetic operators must be numeric");
341 return glsl_type::error_type;
342 }
343
344
345 /* "If one operand is floating-point based and the other is
346 * not, then the conversions from Section 4.1.10 "Implicit
347 * Conversions" are applied to the non-floating-point-based operand."
348 */
349 if (!apply_implicit_conversion(type_a, value_b, state)
350 && !apply_implicit_conversion(type_b, value_a, state)) {
351 _mesa_glsl_error(loc, state,
352 "could not implicitly convert operands to "
353 "arithmetic operator");
354 return glsl_type::error_type;
355 }
356 type_a = value_a->type;
357 type_b = value_b->type;
358
359 /* "If the operands are integer types, they must both be signed or
360 * both be unsigned."
361 *
362 * From this rule and the preceeding conversion it can be inferred that
363 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
364 * The is_numeric check above already filtered out the case where either
365 * type is not one of these, so now the base types need only be tested for
366 * equality.
367 */
368 if (type_a->base_type != type_b->base_type) {
369 _mesa_glsl_error(loc, state,
370 "base type mismatch for arithmetic operator");
371 return glsl_type::error_type;
372 }
373
374 /* "All arithmetic binary operators result in the same fundamental type
375 * (signed integer, unsigned integer, or floating-point) as the
376 * operands they operate on, after operand type conversion. After
377 * conversion, the following cases are valid
378 *
379 * * The two operands are scalars. In this case the operation is
380 * applied, resulting in a scalar."
381 */
382 if (type_a->is_scalar() && type_b->is_scalar())
383 return type_a;
384
385 /* "* One operand is a scalar, and the other is a vector or matrix.
386 * In this case, the scalar operation is applied independently to each
387 * component of the vector or matrix, resulting in the same size
388 * vector or matrix."
389 */
390 if (type_a->is_scalar()) {
391 if (!type_b->is_scalar())
392 return type_b;
393 } else if (type_b->is_scalar()) {
394 return type_a;
395 }
396
397 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
398 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
399 * handled.
400 */
401 assert(!type_a->is_scalar());
402 assert(!type_b->is_scalar());
403
404 /* "* The two operands are vectors of the same size. In this case, the
405 * operation is done component-wise resulting in the same size
406 * vector."
407 */
408 if (type_a->is_vector() && type_b->is_vector()) {
409 if (type_a == type_b) {
410 return type_a;
411 } else {
412 _mesa_glsl_error(loc, state,
413 "vector size mismatch for arithmetic operator");
414 return glsl_type::error_type;
415 }
416 }
417
418 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
419 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
420 * <vector, vector> have been handled. At least one of the operands must
421 * be matrix. Further, since there are no integer matrix types, the base
422 * type of both operands must be float.
423 */
424 assert(type_a->is_matrix() || type_b->is_matrix());
425 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
426 type_a->base_type == GLSL_TYPE_DOUBLE);
427 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
428 type_b->base_type == GLSL_TYPE_DOUBLE);
429
430 /* "* The operator is add (+), subtract (-), or divide (/), and the
431 * operands are matrices with the same number of rows and the same
432 * number of columns. In this case, the operation is done component-
433 * wise resulting in the same size matrix."
434 * * The operator is multiply (*), where both operands are matrices or
435 * one operand is a vector and the other a matrix. A right vector
436 * operand is treated as a column vector and a left vector operand as a
437 * row vector. In all these cases, it is required that the number of
438 * columns of the left operand is equal to the number of rows of the
439 * right operand. Then, the multiply (*) operation does a linear
440 * algebraic multiply, yielding an object that has the same number of
441 * rows as the left operand and the same number of columns as the right
442 * operand. Section 5.10 "Vector and Matrix Operations" explains in
443 * more detail how vectors and matrices are operated on."
444 */
445 if (! multiply) {
446 if (type_a == type_b)
447 return type_a;
448 } else {
449 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
450
451 if (type == glsl_type::error_type) {
452 _mesa_glsl_error(loc, state,
453 "size mismatch for matrix multiplication");
454 }
455
456 return type;
457 }
458
459
460 /* "All other cases are illegal."
461 */
462 _mesa_glsl_error(loc, state, "type mismatch");
463 return glsl_type::error_type;
464 }
465
466
467 static const struct glsl_type *
468 unary_arithmetic_result_type(const struct glsl_type *type,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 /* From GLSL 1.50 spec, page 57:
472 *
473 * "The arithmetic unary operators negate (-), post- and pre-increment
474 * and decrement (-- and ++) operate on integer or floating-point
475 * values (including vectors and matrices). All unary operators work
476 * component-wise on their operands. These result with the same type
477 * they operated on."
478 */
479 if (!type->is_numeric()) {
480 _mesa_glsl_error(loc, state,
481 "operands to arithmetic operators must be numeric");
482 return glsl_type::error_type;
483 }
484
485 return type;
486 }
487
488 /**
489 * \brief Return the result type of a bit-logic operation.
490 *
491 * If the given types to the bit-logic operator are invalid, return
492 * glsl_type::error_type.
493 *
494 * \param value_a LHS of bit-logic op
495 * \param value_b RHS of bit-logic op
496 */
497 static const struct glsl_type *
498 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
499 ast_operators op,
500 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
501 {
502 const glsl_type *type_a = value_a->type;
503 const glsl_type *type_b = value_b->type;
504
505 if (!state->check_bitwise_operations_allowed(loc)) {
506 return glsl_type::error_type;
507 }
508
509 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
510 *
511 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
512 * (|). The operands must be of type signed or unsigned integers or
513 * integer vectors."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
517 ast_expression::operator_string(op));
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
522 ast_expression::operator_string(op));
523 return glsl_type::error_type;
524 }
525
526 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
527 * make sense for bitwise operations, as they don't operate on floats.
528 *
529 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
530 * here. It wasn't clear whether or not we should apply them to bitwise
531 * operations. However, Khronos has decided that they should in future
532 * language revisions. Applications also rely on this behavior. We opt
533 * to apply them in general, but issue a portability warning.
534 *
535 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
536 */
537 if (type_a->base_type != type_b->base_type) {
538 if (!apply_implicit_conversion(type_a, value_b, state)
539 && !apply_implicit_conversion(type_b, value_a, state)) {
540 _mesa_glsl_error(loc, state,
541 "could not implicitly convert operands to "
542 "`%s` operator",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 } else {
546 _mesa_glsl_warning(loc, state,
547 "some implementations may not support implicit "
548 "int -> uint conversions for `%s' operators; "
549 "consider casting explicitly for portability",
550 ast_expression::operator_string(op));
551 }
552 type_a = value_a->type;
553 type_b = value_b->type;
554 }
555
556 /* "The fundamental types of the operands (signed or unsigned) must
557 * match,"
558 */
559 if (type_a->base_type != type_b->base_type) {
560 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
561 "base type", ast_expression::operator_string(op));
562 return glsl_type::error_type;
563 }
564
565 /* "The operands cannot be vectors of differing size." */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
570 "different sizes", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If one operand is a scalar and the other a vector, the scalar is
575 * applied component-wise to the vector, resulting in the same type as
576 * the vector. The fundamental types of the operands [...] will be the
577 * resulting fundamental type."
578 */
579 if (type_a->is_scalar())
580 return type_b;
581 else
582 return type_a;
583 }
584
585 static const struct glsl_type *
586 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
587 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
588 {
589 const glsl_type *type_a = value_a->type;
590 const glsl_type *type_b = value_b->type;
591
592 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
593 return glsl_type::error_type;
594 }
595
596 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
597 *
598 * "The operator modulus (%) operates on signed or unsigned integers or
599 * integer vectors."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605 if (!type_b->is_integer()) {
606 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
607 return glsl_type::error_type;
608 }
609
610 /* "If the fundamental types in the operands do not match, then the
611 * conversions from section 4.1.10 "Implicit Conversions" are applied
612 * to create matching types."
613 *
614 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
615 * int -> uint conversion rules. Prior to that, there were no implicit
616 * conversions. So it's harmless to apply them universally - no implicit
617 * conversions will exist. If the types don't match, we'll receive false,
618 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
619 *
620 * "The operand types must both be signed or unsigned."
621 */
622 if (!apply_implicit_conversion(type_a, value_b, state) &&
623 !apply_implicit_conversion(type_b, value_a, state)) {
624 _mesa_glsl_error(loc, state,
625 "could not implicitly convert operands to "
626 "modulus (%%) operator");
627 return glsl_type::error_type;
628 }
629 type_a = value_a->type;
630 type_b = value_b->type;
631
632 /* "The operands cannot be vectors of differing size. If one operand is
633 * a scalar and the other vector, then the scalar is applied component-
634 * wise to the vector, resulting in the same type as the vector. If both
635 * are vectors of the same size, the result is computed component-wise."
636 */
637 if (type_a->is_vector()) {
638 if (!type_b->is_vector()
639 || (type_a->vector_elements == type_b->vector_elements))
640 return type_a;
641 } else
642 return type_b;
643
644 /* "The operator modulus (%) is not defined for any other data types
645 * (non-integer types)."
646 */
647 _mesa_glsl_error(loc, state, "type mismatch");
648 return glsl_type::error_type;
649 }
650
651
652 static const struct glsl_type *
653 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
654 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
655 {
656 const glsl_type *type_a = value_a->type;
657 const glsl_type *type_b = value_b->type;
658
659 /* From GLSL 1.50 spec, page 56:
660 * "The relational operators greater than (>), less than (<), greater
661 * than or equal (>=), and less than or equal (<=) operate only on
662 * scalar integer and scalar floating-point expressions."
663 */
664 if (!type_a->is_numeric()
665 || !type_b->is_numeric()
666 || !type_a->is_scalar()
667 || !type_b->is_scalar()) {
668 _mesa_glsl_error(loc, state,
669 "operands to relational operators must be scalar and "
670 "numeric");
671 return glsl_type::error_type;
672 }
673
674 /* "Either the operands' types must match, or the conversions from
675 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
676 * operand, after which the types must match."
677 */
678 if (!apply_implicit_conversion(type_a, value_b, state)
679 && !apply_implicit_conversion(type_b, value_a, state)) {
680 _mesa_glsl_error(loc, state,
681 "could not implicitly convert operands to "
682 "relational operator");
683 return glsl_type::error_type;
684 }
685 type_a = value_a->type;
686 type_b = value_b->type;
687
688 if (type_a->base_type != type_b->base_type) {
689 _mesa_glsl_error(loc, state, "base type mismatch");
690 return glsl_type::error_type;
691 }
692
693 /* "The result is scalar Boolean."
694 */
695 return glsl_type::bool_type;
696 }
697
698 /**
699 * \brief Return the result type of a bit-shift operation.
700 *
701 * If the given types to the bit-shift operator are invalid, return
702 * glsl_type::error_type.
703 *
704 * \param type_a Type of LHS of bit-shift op
705 * \param type_b Type of RHS of bit-shift op
706 */
707 static const struct glsl_type *
708 shift_result_type(const struct glsl_type *type_a,
709 const struct glsl_type *type_b,
710 ast_operators op,
711 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
712 {
713 if (!state->check_bitwise_operations_allowed(loc)) {
714 return glsl_type::error_type;
715 }
716
717 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
718 *
719 * "The shift operators (<<) and (>>). For both operators, the operands
720 * must be signed or unsigned integers or integer vectors. One operand
721 * can be signed while the other is unsigned."
722 */
723 if (!type_a->is_integer()) {
724 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
725 "integer vector", ast_expression::operator_string(op));
726 return glsl_type::error_type;
727
728 }
729 if (!type_b->is_integer()) {
730 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
731 "integer vector", ast_expression::operator_string(op));
732 return glsl_type::error_type;
733 }
734
735 /* "If the first operand is a scalar, the second operand has to be
736 * a scalar as well."
737 */
738 if (type_a->is_scalar() && !type_b->is_scalar()) {
739 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
740 "second must be scalar as well",
741 ast_expression::operator_string(op));
742 return glsl_type::error_type;
743 }
744
745 /* If both operands are vectors, check that they have same number of
746 * elements.
747 */
748 if (type_a->is_vector() &&
749 type_b->is_vector() &&
750 type_a->vector_elements != type_b->vector_elements) {
751 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
752 "have same number of elements",
753 ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "In all cases, the resulting type will be the same type as the left
758 * operand."
759 */
760 return type_a;
761 }
762
763 /**
764 * Returns the innermost array index expression in an rvalue tree.
765 * This is the largest indexing level -- if an array of blocks, then
766 * it is the block index rather than an indexing expression for an
767 * array-typed member of an array of blocks.
768 */
769 static ir_rvalue *
770 find_innermost_array_index(ir_rvalue *rv)
771 {
772 ir_dereference_array *last = NULL;
773 while (rv) {
774 if (rv->as_dereference_array()) {
775 last = rv->as_dereference_array();
776 rv = last->array;
777 } else if (rv->as_dereference_record())
778 rv = rv->as_dereference_record()->record;
779 else if (rv->as_swizzle())
780 rv = rv->as_swizzle()->val;
781 else
782 rv = NULL;
783 }
784
785 if (last)
786 return last->array_index;
787
788 return NULL;
789 }
790
791 /**
792 * Validates that a value can be assigned to a location with a specified type
793 *
794 * Validates that \c rhs can be assigned to some location. If the types are
795 * not an exact match but an automatic conversion is possible, \c rhs will be
796 * converted.
797 *
798 * \return
799 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
800 * Otherwise the actual RHS to be assigned will be returned. This may be
801 * \c rhs, or it may be \c rhs after some type conversion.
802 *
803 * \note
804 * In addition to being used for assignments, this function is used to
805 * type-check return values.
806 */
807 static ir_rvalue *
808 validate_assignment(struct _mesa_glsl_parse_state *state,
809 YYLTYPE loc, ir_rvalue *lhs,
810 ir_rvalue *rhs, bool is_initializer)
811 {
812 /* If there is already some error in the RHS, just return it. Anything
813 * else will lead to an avalanche of error message back to the user.
814 */
815 if (rhs->type->is_error())
816 return rhs;
817
818 /* In the Tessellation Control Shader:
819 * If a per-vertex output variable is used as an l-value, it is an error
820 * if the expression indicating the vertex number is not the identifier
821 * `gl_InvocationID`.
822 */
823 if (state->stage == MESA_SHADER_TESS_CTRL) {
824 ir_variable *var = lhs->variable_referenced();
825 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
826 ir_rvalue *index = find_innermost_array_index(lhs);
827 ir_variable *index_var = index ? index->variable_referenced() : NULL;
828 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
829 _mesa_glsl_error(&loc, state,
830 "Tessellation control shader outputs can only "
831 "be indexed by gl_InvocationID");
832 return NULL;
833 }
834 }
835 }
836
837 /* If the types are identical, the assignment can trivially proceed.
838 */
839 if (rhs->type == lhs->type)
840 return rhs;
841
842 /* If the array element types are the same and the LHS is unsized,
843 * the assignment is okay for initializers embedded in variable
844 * declarations.
845 *
846 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
847 * is handled by ir_dereference::is_lvalue.
848 */
849 const glsl_type *lhs_t = lhs->type;
850 const glsl_type *rhs_t = rhs->type;
851 bool unsized_array = false;
852 while(lhs_t->is_array()) {
853 if (rhs_t == lhs_t)
854 break; /* the rest of the inner arrays match so break out early */
855 if (!rhs_t->is_array()) {
856 unsized_array = false;
857 break; /* number of dimensions mismatch */
858 }
859 if (lhs_t->length == rhs_t->length) {
860 lhs_t = lhs_t->fields.array;
861 rhs_t = rhs_t->fields.array;
862 continue;
863 } else if (lhs_t->is_unsized_array()) {
864 unsized_array = true;
865 } else {
866 unsized_array = false;
867 break; /* sized array mismatch */
868 }
869 lhs_t = lhs_t->fields.array;
870 rhs_t = rhs_t->fields.array;
871 }
872 if (unsized_array) {
873 if (is_initializer) {
874 return rhs;
875 } else {
876 _mesa_glsl_error(&loc, state,
877 "implicitly sized arrays cannot be assigned");
878 return NULL;
879 }
880 }
881
882 /* Check for implicit conversion in GLSL 1.20 */
883 if (apply_implicit_conversion(lhs->type, rhs, state)) {
884 if (rhs->type == lhs->type)
885 return rhs;
886 }
887
888 _mesa_glsl_error(&loc, state,
889 "%s of type %s cannot be assigned to "
890 "variable of type %s",
891 is_initializer ? "initializer" : "value",
892 rhs->type->name, lhs->type->name);
893
894 return NULL;
895 }
896
897 static void
898 mark_whole_array_access(ir_rvalue *access)
899 {
900 ir_dereference_variable *deref = access->as_dereference_variable();
901
902 if (deref && deref->var) {
903 deref->var->data.max_array_access = deref->type->length - 1;
904 }
905 }
906
907 static bool
908 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
909 const char *non_lvalue_description,
910 ir_rvalue *lhs, ir_rvalue *rhs,
911 ir_rvalue **out_rvalue, bool needs_rvalue,
912 bool is_initializer,
913 YYLTYPE lhs_loc)
914 {
915 void *ctx = state;
916 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
917
918 ir_variable *lhs_var = lhs->variable_referenced();
919 if (lhs_var)
920 lhs_var->data.assigned = true;
921
922 if (!error_emitted) {
923 if (non_lvalue_description != NULL) {
924 _mesa_glsl_error(&lhs_loc, state,
925 "assignment to %s",
926 non_lvalue_description);
927 error_emitted = true;
928 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
929 (lhs_var->data.mode == ir_var_shader_storage &&
930 lhs_var->data.image_read_only))) {
931 /* We can have image_read_only set on both images and buffer variables,
932 * but in the former there is a distinction between assignments to
933 * the variable itself (read_only) and to the memory they point to
934 * (image_read_only), while in the case of buffer variables there is
935 * no such distinction, that is why this check here is limited to
936 * buffer variables alone.
937 */
938 _mesa_glsl_error(&lhs_loc, state,
939 "assignment to read-only variable '%s'",
940 lhs_var->name);
941 error_emitted = true;
942 } else if (lhs->type->is_array() &&
943 !state->check_version(120, 300, &lhs_loc,
944 "whole array assignment forbidden")) {
945 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
946 *
947 * "Other binary or unary expressions, non-dereferenced
948 * arrays, function names, swizzles with repeated fields,
949 * and constants cannot be l-values."
950 *
951 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
952 */
953 error_emitted = true;
954 } else if (!lhs->is_lvalue()) {
955 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
956 error_emitted = true;
957 }
958 }
959
960 ir_rvalue *new_rhs =
961 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
962 if (new_rhs != NULL) {
963 rhs = new_rhs;
964
965 /* If the LHS array was not declared with a size, it takes it size from
966 * the RHS. If the LHS is an l-value and a whole array, it must be a
967 * dereference of a variable. Any other case would require that the LHS
968 * is either not an l-value or not a whole array.
969 */
970 if (lhs->type->is_unsized_array()) {
971 ir_dereference *const d = lhs->as_dereference();
972
973 assert(d != NULL);
974
975 ir_variable *const var = d->variable_referenced();
976
977 assert(var != NULL);
978
979 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
980 /* FINISHME: This should actually log the location of the RHS. */
981 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
982 "previous access",
983 var->data.max_array_access);
984 }
985
986 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
987 rhs->type->array_size());
988 d->type = var->type;
989 }
990 if (lhs->type->is_array()) {
991 mark_whole_array_access(rhs);
992 mark_whole_array_access(lhs);
993 }
994 }
995
996 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
997 * but not post_inc) need the converted assigned value as an rvalue
998 * to handle things like:
999 *
1000 * i = j += 1;
1001 */
1002 if (needs_rvalue) {
1003 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1004 ir_var_temporary);
1005 instructions->push_tail(var);
1006 instructions->push_tail(assign(var, rhs));
1007
1008 if (!error_emitted) {
1009 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1010 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1011 }
1012 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1013
1014 *out_rvalue = rvalue;
1015 } else {
1016 if (!error_emitted)
1017 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1018 *out_rvalue = NULL;
1019 }
1020
1021 return error_emitted;
1022 }
1023
1024 static ir_rvalue *
1025 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1026 {
1027 void *ctx = ralloc_parent(lvalue);
1028 ir_variable *var;
1029
1030 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1031 ir_var_temporary);
1032 instructions->push_tail(var);
1033
1034 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1035 lvalue));
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 ir_rvalue *
1042 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1043 {
1044 (void) instructions;
1045 (void) state;
1046
1047 return NULL;
1048 }
1049
1050 bool
1051 ast_node::has_sequence_subexpression() const
1052 {
1053 return false;
1054 }
1055
1056 void
1057 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1058 struct _mesa_glsl_parse_state *state)
1059 {
1060 (void)hir(instructions, state);
1061 }
1062
1063 void
1064 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1065 struct _mesa_glsl_parse_state *state)
1066 {
1067 (void)hir(instructions, state);
1068 }
1069
1070 static ir_rvalue *
1071 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1072 {
1073 int join_op;
1074 ir_rvalue *cmp = NULL;
1075
1076 if (operation == ir_binop_all_equal)
1077 join_op = ir_binop_logic_and;
1078 else
1079 join_op = ir_binop_logic_or;
1080
1081 switch (op0->type->base_type) {
1082 case GLSL_TYPE_FLOAT:
1083 case GLSL_TYPE_UINT:
1084 case GLSL_TYPE_INT:
1085 case GLSL_TYPE_BOOL:
1086 case GLSL_TYPE_DOUBLE:
1087 return new(mem_ctx) ir_expression(operation, op0, op1);
1088
1089 case GLSL_TYPE_ARRAY: {
1090 for (unsigned int i = 0; i < op0->type->length; i++) {
1091 ir_rvalue *e0, *e1, *result;
1092
1093 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1094 new(mem_ctx) ir_constant(i));
1095 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1096 new(mem_ctx) ir_constant(i));
1097 result = do_comparison(mem_ctx, operation, e0, e1);
1098
1099 if (cmp) {
1100 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1101 } else {
1102 cmp = result;
1103 }
1104 }
1105
1106 mark_whole_array_access(op0);
1107 mark_whole_array_access(op1);
1108 break;
1109 }
1110
1111 case GLSL_TYPE_STRUCT: {
1112 for (unsigned int i = 0; i < op0->type->length; i++) {
1113 ir_rvalue *e0, *e1, *result;
1114 const char *field_name = op0->type->fields.structure[i].name;
1115
1116 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1117 field_name);
1118 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1119 field_name);
1120 result = do_comparison(mem_ctx, operation, e0, e1);
1121
1122 if (cmp) {
1123 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1124 } else {
1125 cmp = result;
1126 }
1127 }
1128 break;
1129 }
1130
1131 case GLSL_TYPE_ERROR:
1132 case GLSL_TYPE_VOID:
1133 case GLSL_TYPE_SAMPLER:
1134 case GLSL_TYPE_IMAGE:
1135 case GLSL_TYPE_INTERFACE:
1136 case GLSL_TYPE_ATOMIC_UINT:
1137 case GLSL_TYPE_SUBROUTINE:
1138 case GLSL_TYPE_FUNCTION:
1139 /* I assume a comparison of a struct containing a sampler just
1140 * ignores the sampler present in the type.
1141 */
1142 break;
1143 }
1144
1145 if (cmp == NULL)
1146 cmp = new(mem_ctx) ir_constant(true);
1147
1148 return cmp;
1149 }
1150
1151 /* For logical operations, we want to ensure that the operands are
1152 * scalar booleans. If it isn't, emit an error and return a constant
1153 * boolean to avoid triggering cascading error messages.
1154 */
1155 ir_rvalue *
1156 get_scalar_boolean_operand(exec_list *instructions,
1157 struct _mesa_glsl_parse_state *state,
1158 ast_expression *parent_expr,
1159 int operand,
1160 const char *operand_name,
1161 bool *error_emitted)
1162 {
1163 ast_expression *expr = parent_expr->subexpressions[operand];
1164 void *ctx = state;
1165 ir_rvalue *val = expr->hir(instructions, state);
1166
1167 if (val->type->is_boolean() && val->type->is_scalar())
1168 return val;
1169
1170 if (!*error_emitted) {
1171 YYLTYPE loc = expr->get_location();
1172 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1173 operand_name,
1174 parent_expr->operator_string(parent_expr->oper));
1175 *error_emitted = true;
1176 }
1177
1178 return new(ctx) ir_constant(true);
1179 }
1180
1181 /**
1182 * If name refers to a builtin array whose maximum allowed size is less than
1183 * size, report an error and return true. Otherwise return false.
1184 */
1185 void
1186 check_builtin_array_max_size(const char *name, unsigned size,
1187 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1188 {
1189 if ((strcmp("gl_TexCoord", name) == 0)
1190 && (size > state->Const.MaxTextureCoords)) {
1191 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1192 *
1193 * "The size [of gl_TexCoord] can be at most
1194 * gl_MaxTextureCoords."
1195 */
1196 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1197 "be larger than gl_MaxTextureCoords (%u)",
1198 state->Const.MaxTextureCoords);
1199 } else if (strcmp("gl_ClipDistance", name) == 0
1200 && size > state->Const.MaxClipPlanes) {
1201 /* From section 7.1 (Vertex Shader Special Variables) of the
1202 * GLSL 1.30 spec:
1203 *
1204 * "The gl_ClipDistance array is predeclared as unsized and
1205 * must be sized by the shader either redeclaring it with a
1206 * size or indexing it only with integral constant
1207 * expressions. ... The size can be at most
1208 * gl_MaxClipDistances."
1209 */
1210 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1211 "be larger than gl_MaxClipDistances (%u)",
1212 state->Const.MaxClipPlanes);
1213 }
1214 }
1215
1216 /**
1217 * Create the constant 1, of a which is appropriate for incrementing and
1218 * decrementing values of the given GLSL type. For example, if type is vec4,
1219 * this creates a constant value of 1.0 having type float.
1220 *
1221 * If the given type is invalid for increment and decrement operators, return
1222 * a floating point 1--the error will be detected later.
1223 */
1224 static ir_rvalue *
1225 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1226 {
1227 switch (type->base_type) {
1228 case GLSL_TYPE_UINT:
1229 return new(ctx) ir_constant((unsigned) 1);
1230 case GLSL_TYPE_INT:
1231 return new(ctx) ir_constant(1);
1232 default:
1233 case GLSL_TYPE_FLOAT:
1234 return new(ctx) ir_constant(1.0f);
1235 }
1236 }
1237
1238 ir_rvalue *
1239 ast_expression::hir(exec_list *instructions,
1240 struct _mesa_glsl_parse_state *state)
1241 {
1242 return do_hir(instructions, state, true);
1243 }
1244
1245 void
1246 ast_expression::hir_no_rvalue(exec_list *instructions,
1247 struct _mesa_glsl_parse_state *state)
1248 {
1249 do_hir(instructions, state, false);
1250 }
1251
1252 ir_rvalue *
1253 ast_expression::do_hir(exec_list *instructions,
1254 struct _mesa_glsl_parse_state *state,
1255 bool needs_rvalue)
1256 {
1257 void *ctx = state;
1258 static const int operations[AST_NUM_OPERATORS] = {
1259 -1, /* ast_assign doesn't convert to ir_expression. */
1260 -1, /* ast_plus doesn't convert to ir_expression. */
1261 ir_unop_neg,
1262 ir_binop_add,
1263 ir_binop_sub,
1264 ir_binop_mul,
1265 ir_binop_div,
1266 ir_binop_mod,
1267 ir_binop_lshift,
1268 ir_binop_rshift,
1269 ir_binop_less,
1270 ir_binop_greater,
1271 ir_binop_lequal,
1272 ir_binop_gequal,
1273 ir_binop_all_equal,
1274 ir_binop_any_nequal,
1275 ir_binop_bit_and,
1276 ir_binop_bit_xor,
1277 ir_binop_bit_or,
1278 ir_unop_bit_not,
1279 ir_binop_logic_and,
1280 ir_binop_logic_xor,
1281 ir_binop_logic_or,
1282 ir_unop_logic_not,
1283
1284 /* Note: The following block of expression types actually convert
1285 * to multiple IR instructions.
1286 */
1287 ir_binop_mul, /* ast_mul_assign */
1288 ir_binop_div, /* ast_div_assign */
1289 ir_binop_mod, /* ast_mod_assign */
1290 ir_binop_add, /* ast_add_assign */
1291 ir_binop_sub, /* ast_sub_assign */
1292 ir_binop_lshift, /* ast_ls_assign */
1293 ir_binop_rshift, /* ast_rs_assign */
1294 ir_binop_bit_and, /* ast_and_assign */
1295 ir_binop_bit_xor, /* ast_xor_assign */
1296 ir_binop_bit_or, /* ast_or_assign */
1297
1298 -1, /* ast_conditional doesn't convert to ir_expression. */
1299 ir_binop_add, /* ast_pre_inc. */
1300 ir_binop_sub, /* ast_pre_dec. */
1301 ir_binop_add, /* ast_post_inc. */
1302 ir_binop_sub, /* ast_post_dec. */
1303 -1, /* ast_field_selection doesn't conv to ir_expression. */
1304 -1, /* ast_array_index doesn't convert to ir_expression. */
1305 -1, /* ast_function_call doesn't conv to ir_expression. */
1306 -1, /* ast_identifier doesn't convert to ir_expression. */
1307 -1, /* ast_int_constant doesn't convert to ir_expression. */
1308 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1309 -1, /* ast_float_constant doesn't conv to ir_expression. */
1310 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1311 -1, /* ast_sequence doesn't convert to ir_expression. */
1312 };
1313 ir_rvalue *result = NULL;
1314 ir_rvalue *op[3];
1315 const struct glsl_type *type; /* a temporary variable for switch cases */
1316 bool error_emitted = false;
1317 YYLTYPE loc;
1318
1319 loc = this->get_location();
1320
1321 switch (this->oper) {
1322 case ast_aggregate:
1323 assert(!"ast_aggregate: Should never get here.");
1324 break;
1325
1326 case ast_assign: {
1327 op[0] = this->subexpressions[0]->hir(instructions, state);
1328 op[1] = this->subexpressions[1]->hir(instructions, state);
1329
1330 error_emitted =
1331 do_assignment(instructions, state,
1332 this->subexpressions[0]->non_lvalue_description,
1333 op[0], op[1], &result, needs_rvalue, false,
1334 this->subexpressions[0]->get_location());
1335 break;
1336 }
1337
1338 case ast_plus:
1339 op[0] = this->subexpressions[0]->hir(instructions, state);
1340
1341 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1342
1343 error_emitted = type->is_error();
1344
1345 result = op[0];
1346 break;
1347
1348 case ast_neg:
1349 op[0] = this->subexpressions[0]->hir(instructions, state);
1350
1351 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1352
1353 error_emitted = type->is_error();
1354
1355 result = new(ctx) ir_expression(operations[this->oper], type,
1356 op[0], NULL);
1357 break;
1358
1359 case ast_add:
1360 case ast_sub:
1361 case ast_mul:
1362 case ast_div:
1363 op[0] = this->subexpressions[0]->hir(instructions, state);
1364 op[1] = this->subexpressions[1]->hir(instructions, state);
1365
1366 type = arithmetic_result_type(op[0], op[1],
1367 (this->oper == ast_mul),
1368 state, & loc);
1369 error_emitted = type->is_error();
1370
1371 result = new(ctx) ir_expression(operations[this->oper], type,
1372 op[0], op[1]);
1373 break;
1374
1375 case ast_mod:
1376 op[0] = this->subexpressions[0]->hir(instructions, state);
1377 op[1] = this->subexpressions[1]->hir(instructions, state);
1378
1379 type = modulus_result_type(op[0], op[1], state, &loc);
1380
1381 assert(operations[this->oper] == ir_binop_mod);
1382
1383 result = new(ctx) ir_expression(operations[this->oper], type,
1384 op[0], op[1]);
1385 error_emitted = type->is_error();
1386 break;
1387
1388 case ast_lshift:
1389 case ast_rshift:
1390 if (!state->check_bitwise_operations_allowed(&loc)) {
1391 error_emitted = true;
1392 }
1393
1394 op[0] = this->subexpressions[0]->hir(instructions, state);
1395 op[1] = this->subexpressions[1]->hir(instructions, state);
1396 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1397 &loc);
1398 result = new(ctx) ir_expression(operations[this->oper], type,
1399 op[0], op[1]);
1400 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1401 break;
1402
1403 case ast_less:
1404 case ast_greater:
1405 case ast_lequal:
1406 case ast_gequal:
1407 op[0] = this->subexpressions[0]->hir(instructions, state);
1408 op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410 type = relational_result_type(op[0], op[1], state, & loc);
1411
1412 /* The relational operators must either generate an error or result
1413 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1414 */
1415 assert(type->is_error()
1416 || ((type->base_type == GLSL_TYPE_BOOL)
1417 && type->is_scalar()));
1418
1419 result = new(ctx) ir_expression(operations[this->oper], type,
1420 op[0], op[1]);
1421 error_emitted = type->is_error();
1422 break;
1423
1424 case ast_nequal:
1425 case ast_equal:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428
1429 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1430 *
1431 * "The equality operators equal (==), and not equal (!=)
1432 * operate on all types. They result in a scalar Boolean. If
1433 * the operand types do not match, then there must be a
1434 * conversion from Section 4.1.10 "Implicit Conversions"
1435 * applied to one operand that can make them match, in which
1436 * case this conversion is done."
1437 */
1438
1439 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1440 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1441 "no operation `%1$s' exists that takes a left-hand "
1442 "operand of type 'void' or a right operand of type "
1443 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1444 error_emitted = true;
1445 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1446 && !apply_implicit_conversion(op[1]->type, op[0], state))
1447 || (op[0]->type != op[1]->type)) {
1448 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1449 "type", (this->oper == ast_equal) ? "==" : "!=");
1450 error_emitted = true;
1451 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1452 !state->check_version(120, 300, &loc,
1453 "array comparisons forbidden")) {
1454 error_emitted = true;
1455 } else if ((op[0]->type->contains_opaque() ||
1456 op[1]->type->contains_opaque())) {
1457 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1458 error_emitted = true;
1459 }
1460
1461 if (error_emitted) {
1462 result = new(ctx) ir_constant(false);
1463 } else {
1464 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1465 assert(result->type == glsl_type::bool_type);
1466 }
1467 break;
1468
1469 case ast_bit_and:
1470 case ast_bit_xor:
1471 case ast_bit_or:
1472 op[0] = this->subexpressions[0]->hir(instructions, state);
1473 op[1] = this->subexpressions[1]->hir(instructions, state);
1474 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1475 result = new(ctx) ir_expression(operations[this->oper], type,
1476 op[0], op[1]);
1477 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1478 break;
1479
1480 case ast_bit_not:
1481 op[0] = this->subexpressions[0]->hir(instructions, state);
1482
1483 if (!state->check_bitwise_operations_allowed(&loc)) {
1484 error_emitted = true;
1485 }
1486
1487 if (!op[0]->type->is_integer()) {
1488 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1489 error_emitted = true;
1490 }
1491
1492 type = error_emitted ? glsl_type::error_type : op[0]->type;
1493 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1494 break;
1495
1496 case ast_logic_and: {
1497 exec_list rhs_instructions;
1498 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1499 "LHS", &error_emitted);
1500 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1501 "RHS", &error_emitted);
1502
1503 if (rhs_instructions.is_empty()) {
1504 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1505 type = result->type;
1506 } else {
1507 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1508 "and_tmp",
1509 ir_var_temporary);
1510 instructions->push_tail(tmp);
1511
1512 ir_if *const stmt = new(ctx) ir_if(op[0]);
1513 instructions->push_tail(stmt);
1514
1515 stmt->then_instructions.append_list(&rhs_instructions);
1516 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1517 ir_assignment *const then_assign =
1518 new(ctx) ir_assignment(then_deref, op[1]);
1519 stmt->then_instructions.push_tail(then_assign);
1520
1521 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1522 ir_assignment *const else_assign =
1523 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1524 stmt->else_instructions.push_tail(else_assign);
1525
1526 result = new(ctx) ir_dereference_variable(tmp);
1527 type = tmp->type;
1528 }
1529 break;
1530 }
1531
1532 case ast_logic_or: {
1533 exec_list rhs_instructions;
1534 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1535 "LHS", &error_emitted);
1536 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1537 "RHS", &error_emitted);
1538
1539 if (rhs_instructions.is_empty()) {
1540 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1541 type = result->type;
1542 } else {
1543 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1544 "or_tmp",
1545 ir_var_temporary);
1546 instructions->push_tail(tmp);
1547
1548 ir_if *const stmt = new(ctx) ir_if(op[0]);
1549 instructions->push_tail(stmt);
1550
1551 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1552 ir_assignment *const then_assign =
1553 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1554 stmt->then_instructions.push_tail(then_assign);
1555
1556 stmt->else_instructions.append_list(&rhs_instructions);
1557 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1558 ir_assignment *const else_assign =
1559 new(ctx) ir_assignment(else_deref, op[1]);
1560 stmt->else_instructions.push_tail(else_assign);
1561
1562 result = new(ctx) ir_dereference_variable(tmp);
1563 type = tmp->type;
1564 }
1565 break;
1566 }
1567
1568 case ast_logic_xor:
1569 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1570 *
1571 * "The logical binary operators and (&&), or ( | | ), and
1572 * exclusive or (^^). They operate only on two Boolean
1573 * expressions and result in a Boolean expression."
1574 */
1575 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1576 &error_emitted);
1577 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1578 &error_emitted);
1579
1580 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1581 op[0], op[1]);
1582 break;
1583
1584 case ast_logic_not:
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "operand", &error_emitted);
1587
1588 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1589 op[0], NULL);
1590 break;
1591
1592 case ast_mul_assign:
1593 case ast_div_assign:
1594 case ast_add_assign:
1595 case ast_sub_assign: {
1596 op[0] = this->subexpressions[0]->hir(instructions, state);
1597 op[1] = this->subexpressions[1]->hir(instructions, state);
1598
1599 type = arithmetic_result_type(op[0], op[1],
1600 (this->oper == ast_mul_assign),
1601 state, & loc);
1602
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1604 op[0], op[1]);
1605
1606 error_emitted =
1607 do_assignment(instructions, state,
1608 this->subexpressions[0]->non_lvalue_description,
1609 op[0]->clone(ctx, NULL), temp_rhs,
1610 &result, needs_rvalue, false,
1611 this->subexpressions[0]->get_location());
1612
1613 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1614 * explicitly test for this because none of the binary expression
1615 * operators allow array operands either.
1616 */
1617
1618 break;
1619 }
1620
1621 case ast_mod_assign: {
1622 op[0] = this->subexpressions[0]->hir(instructions, state);
1623 op[1] = this->subexpressions[1]->hir(instructions, state);
1624
1625 type = modulus_result_type(op[0], op[1], state, &loc);
1626
1627 assert(operations[this->oper] == ir_binop_mod);
1628
1629 ir_rvalue *temp_rhs;
1630 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1631 op[0], op[1]);
1632
1633 error_emitted =
1634 do_assignment(instructions, state,
1635 this->subexpressions[0]->non_lvalue_description,
1636 op[0]->clone(ctx, NULL), temp_rhs,
1637 &result, needs_rvalue, false,
1638 this->subexpressions[0]->get_location());
1639 break;
1640 }
1641
1642 case ast_ls_assign:
1643 case ast_rs_assign: {
1644 op[0] = this->subexpressions[0]->hir(instructions, state);
1645 op[1] = this->subexpressions[1]->hir(instructions, state);
1646 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1647 &loc);
1648 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1649 type, op[0], op[1]);
1650 error_emitted =
1651 do_assignment(instructions, state,
1652 this->subexpressions[0]->non_lvalue_description,
1653 op[0]->clone(ctx, NULL), temp_rhs,
1654 &result, needs_rvalue, false,
1655 this->subexpressions[0]->get_location());
1656 break;
1657 }
1658
1659 case ast_and_assign:
1660 case ast_xor_assign:
1661 case ast_or_assign: {
1662 op[0] = this->subexpressions[0]->hir(instructions, state);
1663 op[1] = this->subexpressions[1]->hir(instructions, state);
1664 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1665 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1666 type, op[0], op[1]);
1667 error_emitted =
1668 do_assignment(instructions, state,
1669 this->subexpressions[0]->non_lvalue_description,
1670 op[0]->clone(ctx, NULL), temp_rhs,
1671 &result, needs_rvalue, false,
1672 this->subexpressions[0]->get_location());
1673 break;
1674 }
1675
1676 case ast_conditional: {
1677 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1678 *
1679 * "The ternary selection operator (?:). It operates on three
1680 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1681 * first expression, which must result in a scalar Boolean."
1682 */
1683 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1684 "condition", &error_emitted);
1685
1686 /* The :? operator is implemented by generating an anonymous temporary
1687 * followed by an if-statement. The last instruction in each branch of
1688 * the if-statement assigns a value to the anonymous temporary. This
1689 * temporary is the r-value of the expression.
1690 */
1691 exec_list then_instructions;
1692 exec_list else_instructions;
1693
1694 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1695 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1696
1697 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1698 *
1699 * "The second and third expressions can be any type, as
1700 * long their types match, or there is a conversion in
1701 * Section 4.1.10 "Implicit Conversions" that can be applied
1702 * to one of the expressions to make their types match. This
1703 * resulting matching type is the type of the entire
1704 * expression."
1705 */
1706 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1707 && !apply_implicit_conversion(op[2]->type, op[1], state))
1708 || (op[1]->type != op[2]->type)) {
1709 YYLTYPE loc = this->subexpressions[1]->get_location();
1710
1711 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1712 "operator must have matching types");
1713 error_emitted = true;
1714 type = glsl_type::error_type;
1715 } else {
1716 type = op[1]->type;
1717 }
1718
1719 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1720 *
1721 * "The second and third expressions must be the same type, but can
1722 * be of any type other than an array."
1723 */
1724 if (type->is_array() &&
1725 !state->check_version(120, 300, &loc,
1726 "second and third operands of ?: operator "
1727 "cannot be arrays")) {
1728 error_emitted = true;
1729 }
1730
1731 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1732 *
1733 * "Except for array indexing, structure member selection, and
1734 * parentheses, opaque variables are not allowed to be operands in
1735 * expressions; such use results in a compile-time error."
1736 */
1737 if (type->contains_opaque()) {
1738 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1739 "of the ?: operator");
1740 error_emitted = true;
1741 }
1742
1743 ir_constant *cond_val = op[0]->constant_expression_value();
1744
1745 if (then_instructions.is_empty()
1746 && else_instructions.is_empty()
1747 && cond_val != NULL) {
1748 result = cond_val->value.b[0] ? op[1] : op[2];
1749 } else {
1750 /* The copy to conditional_tmp reads the whole array. */
1751 if (type->is_array()) {
1752 mark_whole_array_access(op[1]);
1753 mark_whole_array_access(op[2]);
1754 }
1755
1756 ir_variable *const tmp =
1757 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1758 instructions->push_tail(tmp);
1759
1760 ir_if *const stmt = new(ctx) ir_if(op[0]);
1761 instructions->push_tail(stmt);
1762
1763 then_instructions.move_nodes_to(& stmt->then_instructions);
1764 ir_dereference *const then_deref =
1765 new(ctx) ir_dereference_variable(tmp);
1766 ir_assignment *const then_assign =
1767 new(ctx) ir_assignment(then_deref, op[1]);
1768 stmt->then_instructions.push_tail(then_assign);
1769
1770 else_instructions.move_nodes_to(& stmt->else_instructions);
1771 ir_dereference *const else_deref =
1772 new(ctx) ir_dereference_variable(tmp);
1773 ir_assignment *const else_assign =
1774 new(ctx) ir_assignment(else_deref, op[2]);
1775 stmt->else_instructions.push_tail(else_assign);
1776
1777 result = new(ctx) ir_dereference_variable(tmp);
1778 }
1779 break;
1780 }
1781
1782 case ast_pre_inc:
1783 case ast_pre_dec: {
1784 this->non_lvalue_description = (this->oper == ast_pre_inc)
1785 ? "pre-increment operation" : "pre-decrement operation";
1786
1787 op[0] = this->subexpressions[0]->hir(instructions, state);
1788 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1789
1790 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1791
1792 ir_rvalue *temp_rhs;
1793 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1794 op[0], op[1]);
1795
1796 error_emitted =
1797 do_assignment(instructions, state,
1798 this->subexpressions[0]->non_lvalue_description,
1799 op[0]->clone(ctx, NULL), temp_rhs,
1800 &result, needs_rvalue, false,
1801 this->subexpressions[0]->get_location());
1802 break;
1803 }
1804
1805 case ast_post_inc:
1806 case ast_post_dec: {
1807 this->non_lvalue_description = (this->oper == ast_post_inc)
1808 ? "post-increment operation" : "post-decrement operation";
1809 op[0] = this->subexpressions[0]->hir(instructions, state);
1810 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1811
1812 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1813
1814 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1815
1816 ir_rvalue *temp_rhs;
1817 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1818 op[0], op[1]);
1819
1820 /* Get a temporary of a copy of the lvalue before it's modified.
1821 * This may get thrown away later.
1822 */
1823 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1824
1825 ir_rvalue *junk_rvalue;
1826 error_emitted =
1827 do_assignment(instructions, state,
1828 this->subexpressions[0]->non_lvalue_description,
1829 op[0]->clone(ctx, NULL), temp_rhs,
1830 &junk_rvalue, false, false,
1831 this->subexpressions[0]->get_location());
1832
1833 break;
1834 }
1835
1836 case ast_field_selection:
1837 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1838 break;
1839
1840 case ast_array_index: {
1841 YYLTYPE index_loc = subexpressions[1]->get_location();
1842
1843 op[0] = subexpressions[0]->hir(instructions, state);
1844 op[1] = subexpressions[1]->hir(instructions, state);
1845
1846 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1847 loc, index_loc);
1848
1849 if (result->type->is_error())
1850 error_emitted = true;
1851
1852 break;
1853 }
1854
1855 case ast_unsized_array_dim:
1856 assert(!"ast_unsized_array_dim: Should never get here.");
1857 break;
1858
1859 case ast_function_call:
1860 /* Should *NEVER* get here. ast_function_call should always be handled
1861 * by ast_function_expression::hir.
1862 */
1863 assert(0);
1864 break;
1865
1866 case ast_identifier: {
1867 /* ast_identifier can appear several places in a full abstract syntax
1868 * tree. This particular use must be at location specified in the grammar
1869 * as 'variable_identifier'.
1870 */
1871 ir_variable *var =
1872 state->symbols->get_variable(this->primary_expression.identifier);
1873
1874 if (var != NULL) {
1875 var->data.used = true;
1876 result = new(ctx) ir_dereference_variable(var);
1877 } else {
1878 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1879 this->primary_expression.identifier);
1880
1881 result = ir_rvalue::error_value(ctx);
1882 error_emitted = true;
1883 }
1884 break;
1885 }
1886
1887 case ast_int_constant:
1888 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1889 break;
1890
1891 case ast_uint_constant:
1892 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1893 break;
1894
1895 case ast_float_constant:
1896 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1897 break;
1898
1899 case ast_bool_constant:
1900 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1901 break;
1902
1903 case ast_double_constant:
1904 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1905 break;
1906
1907 case ast_sequence: {
1908 /* It should not be possible to generate a sequence in the AST without
1909 * any expressions in it.
1910 */
1911 assert(!this->expressions.is_empty());
1912
1913 /* The r-value of a sequence is the last expression in the sequence. If
1914 * the other expressions in the sequence do not have side-effects (and
1915 * therefore add instructions to the instruction list), they get dropped
1916 * on the floor.
1917 */
1918 exec_node *previous_tail_pred = NULL;
1919 YYLTYPE previous_operand_loc = loc;
1920
1921 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1922 /* If one of the operands of comma operator does not generate any
1923 * code, we want to emit a warning. At each pass through the loop
1924 * previous_tail_pred will point to the last instruction in the
1925 * stream *before* processing the previous operand. Naturally,
1926 * instructions->tail_pred will point to the last instruction in the
1927 * stream *after* processing the previous operand. If the two
1928 * pointers match, then the previous operand had no effect.
1929 *
1930 * The warning behavior here differs slightly from GCC. GCC will
1931 * only emit a warning if none of the left-hand operands have an
1932 * effect. However, it will emit a warning for each. I believe that
1933 * there are some cases in C (especially with GCC extensions) where
1934 * it is useful to have an intermediate step in a sequence have no
1935 * effect, but I don't think these cases exist in GLSL. Either way,
1936 * it would be a giant hassle to replicate that behavior.
1937 */
1938 if (previous_tail_pred == instructions->tail_pred) {
1939 _mesa_glsl_warning(&previous_operand_loc, state,
1940 "left-hand operand of comma expression has "
1941 "no effect");
1942 }
1943
1944 /* tail_pred is directly accessed instead of using the get_tail()
1945 * method for performance reasons. get_tail() has extra code to
1946 * return NULL when the list is empty. We don't care about that
1947 * here, so using tail_pred directly is fine.
1948 */
1949 previous_tail_pred = instructions->tail_pred;
1950 previous_operand_loc = ast->get_location();
1951
1952 result = ast->hir(instructions, state);
1953 }
1954
1955 /* Any errors should have already been emitted in the loop above.
1956 */
1957 error_emitted = true;
1958 break;
1959 }
1960 }
1961 type = NULL; /* use result->type, not type. */
1962 assert(result != NULL || !needs_rvalue);
1963
1964 if (result && result->type->is_error() && !error_emitted)
1965 _mesa_glsl_error(& loc, state, "type mismatch");
1966
1967 return result;
1968 }
1969
1970 bool
1971 ast_expression::has_sequence_subexpression() const
1972 {
1973 switch (this->oper) {
1974 case ast_plus:
1975 case ast_neg:
1976 case ast_bit_not:
1977 case ast_logic_not:
1978 case ast_pre_inc:
1979 case ast_pre_dec:
1980 case ast_post_inc:
1981 case ast_post_dec:
1982 return this->subexpressions[0]->has_sequence_subexpression();
1983
1984 case ast_assign:
1985 case ast_add:
1986 case ast_sub:
1987 case ast_mul:
1988 case ast_div:
1989 case ast_mod:
1990 case ast_lshift:
1991 case ast_rshift:
1992 case ast_less:
1993 case ast_greater:
1994 case ast_lequal:
1995 case ast_gequal:
1996 case ast_nequal:
1997 case ast_equal:
1998 case ast_bit_and:
1999 case ast_bit_xor:
2000 case ast_bit_or:
2001 case ast_logic_and:
2002 case ast_logic_or:
2003 case ast_logic_xor:
2004 case ast_array_index:
2005 case ast_mul_assign:
2006 case ast_div_assign:
2007 case ast_add_assign:
2008 case ast_sub_assign:
2009 case ast_mod_assign:
2010 case ast_ls_assign:
2011 case ast_rs_assign:
2012 case ast_and_assign:
2013 case ast_xor_assign:
2014 case ast_or_assign:
2015 return this->subexpressions[0]->has_sequence_subexpression() ||
2016 this->subexpressions[1]->has_sequence_subexpression();
2017
2018 case ast_conditional:
2019 return this->subexpressions[0]->has_sequence_subexpression() ||
2020 this->subexpressions[1]->has_sequence_subexpression() ||
2021 this->subexpressions[2]->has_sequence_subexpression();
2022
2023 case ast_sequence:
2024 return true;
2025
2026 case ast_field_selection:
2027 case ast_identifier:
2028 case ast_int_constant:
2029 case ast_uint_constant:
2030 case ast_float_constant:
2031 case ast_bool_constant:
2032 case ast_double_constant:
2033 return false;
2034
2035 case ast_aggregate:
2036 unreachable("ast_aggregate: Should never get here.");
2037
2038 case ast_function_call:
2039 unreachable("should be handled by ast_function_expression::hir");
2040
2041 case ast_unsized_array_dim:
2042 unreachable("ast_unsized_array_dim: Should never get here.");
2043 }
2044
2045 return false;
2046 }
2047
2048 ir_rvalue *
2049 ast_expression_statement::hir(exec_list *instructions,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 /* It is possible to have expression statements that don't have an
2053 * expression. This is the solitary semicolon:
2054 *
2055 * for (i = 0; i < 5; i++)
2056 * ;
2057 *
2058 * In this case the expression will be NULL. Test for NULL and don't do
2059 * anything in that case.
2060 */
2061 if (expression != NULL)
2062 expression->hir_no_rvalue(instructions, state);
2063
2064 /* Statements do not have r-values.
2065 */
2066 return NULL;
2067 }
2068
2069
2070 ir_rvalue *
2071 ast_compound_statement::hir(exec_list *instructions,
2072 struct _mesa_glsl_parse_state *state)
2073 {
2074 if (new_scope)
2075 state->symbols->push_scope();
2076
2077 foreach_list_typed (ast_node, ast, link, &this->statements)
2078 ast->hir(instructions, state);
2079
2080 if (new_scope)
2081 state->symbols->pop_scope();
2082
2083 /* Compound statements do not have r-values.
2084 */
2085 return NULL;
2086 }
2087
2088 /**
2089 * Evaluate the given exec_node (which should be an ast_node representing
2090 * a single array dimension) and return its integer value.
2091 */
2092 static unsigned
2093 process_array_size(exec_node *node,
2094 struct _mesa_glsl_parse_state *state)
2095 {
2096 exec_list dummy_instructions;
2097
2098 ast_node *array_size = exec_node_data(ast_node, node, link);
2099
2100 /**
2101 * Dimensions other than the outermost dimension can by unsized if they
2102 * are immediately sized by a constructor or initializer.
2103 */
2104 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2105 return 0;
2106
2107 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2108 YYLTYPE loc = array_size->get_location();
2109
2110 if (ir == NULL) {
2111 _mesa_glsl_error(& loc, state,
2112 "array size could not be resolved");
2113 return 0;
2114 }
2115
2116 if (!ir->type->is_integer()) {
2117 _mesa_glsl_error(& loc, state,
2118 "array size must be integer type");
2119 return 0;
2120 }
2121
2122 if (!ir->type->is_scalar()) {
2123 _mesa_glsl_error(& loc, state,
2124 "array size must be scalar type");
2125 return 0;
2126 }
2127
2128 ir_constant *const size = ir->constant_expression_value();
2129 if (size == NULL || array_size->has_sequence_subexpression()) {
2130 _mesa_glsl_error(& loc, state, "array size must be a "
2131 "constant valued expression");
2132 return 0;
2133 }
2134
2135 if (size->value.i[0] <= 0) {
2136 _mesa_glsl_error(& loc, state, "array size must be > 0");
2137 return 0;
2138 }
2139
2140 assert(size->type == ir->type);
2141
2142 /* If the array size is const (and we've verified that
2143 * it is) then no instructions should have been emitted
2144 * when we converted it to HIR. If they were emitted,
2145 * then either the array size isn't const after all, or
2146 * we are emitting unnecessary instructions.
2147 */
2148 assert(dummy_instructions.is_empty());
2149
2150 return size->value.u[0];
2151 }
2152
2153 static const glsl_type *
2154 process_array_type(YYLTYPE *loc, const glsl_type *base,
2155 ast_array_specifier *array_specifier,
2156 struct _mesa_glsl_parse_state *state)
2157 {
2158 const glsl_type *array_type = base;
2159
2160 if (array_specifier != NULL) {
2161 if (base->is_array()) {
2162
2163 /* From page 19 (page 25) of the GLSL 1.20 spec:
2164 *
2165 * "Only one-dimensional arrays may be declared."
2166 */
2167 if (!state->check_arrays_of_arrays_allowed(loc)) {
2168 return glsl_type::error_type;
2169 }
2170 }
2171
2172 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2173 !node->is_head_sentinel(); node = node->prev) {
2174 unsigned array_size = process_array_size(node, state);
2175 array_type = glsl_type::get_array_instance(array_type, array_size);
2176 }
2177 }
2178
2179 return array_type;
2180 }
2181
2182 static bool
2183 precision_qualifier_allowed(const glsl_type *type)
2184 {
2185 /* Precision qualifiers apply to floating point, integer and opaque
2186 * types.
2187 *
2188 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2189 * "Any floating point or any integer declaration can have the type
2190 * preceded by one of these precision qualifiers [...] Literal
2191 * constants do not have precision qualifiers. Neither do Boolean
2192 * variables.
2193 *
2194 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2195 * spec also says:
2196 *
2197 * "Precision qualifiers are added for code portability with OpenGL
2198 * ES, not for functionality. They have the same syntax as in OpenGL
2199 * ES."
2200 *
2201 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2202 *
2203 * "uniform lowp sampler2D sampler;
2204 * highp vec2 coord;
2205 * ...
2206 * lowp vec4 col = texture2D (sampler, coord);
2207 * // texture2D returns lowp"
2208 *
2209 * From this, we infer that GLSL 1.30 (and later) should allow precision
2210 * qualifiers on sampler types just like float and integer types.
2211 */
2212 return (type->is_float()
2213 || type->is_integer()
2214 || type->contains_opaque())
2215 && !type->without_array()->is_record();
2216 }
2217
2218 const glsl_type *
2219 ast_type_specifier::glsl_type(const char **name,
2220 struct _mesa_glsl_parse_state *state) const
2221 {
2222 const struct glsl_type *type;
2223
2224 type = state->symbols->get_type(this->type_name);
2225 *name = this->type_name;
2226
2227 YYLTYPE loc = this->get_location();
2228 type = process_array_type(&loc, type, this->array_specifier, state);
2229
2230 return type;
2231 }
2232
2233 /**
2234 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2235 *
2236 * "The precision statement
2237 *
2238 * precision precision-qualifier type;
2239 *
2240 * can be used to establish a default precision qualifier. The type field can
2241 * be either int or float or any of the sampler types, (...) If type is float,
2242 * the directive applies to non-precision-qualified floating point type
2243 * (scalar, vector, and matrix) declarations. If type is int, the directive
2244 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2245 * and unsigned) declarations."
2246 *
2247 * We use the symbol table to keep the values of the default precisions for
2248 * each 'type' in each scope and we use the 'type' string from the precision
2249 * statement as key in the symbol table. When we want to retrieve the default
2250 * precision associated with a given glsl_type we need to know the type string
2251 * associated with it. This is what this function returns.
2252 */
2253 static const char *
2254 get_type_name_for_precision_qualifier(const glsl_type *type)
2255 {
2256 switch (type->base_type) {
2257 case GLSL_TYPE_FLOAT:
2258 return "float";
2259 case GLSL_TYPE_UINT:
2260 case GLSL_TYPE_INT:
2261 return "int";
2262 case GLSL_TYPE_ATOMIC_UINT:
2263 return "atomic_uint";
2264 case GLSL_TYPE_IMAGE:
2265 /* fallthrough */
2266 case GLSL_TYPE_SAMPLER: {
2267 const unsigned type_idx =
2268 type->sampler_array + 2 * type->sampler_shadow;
2269 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2270 assert(type_idx < 4);
2271 switch (type->sampled_type) {
2272 case GLSL_TYPE_FLOAT:
2273 switch (type->sampler_dimensionality) {
2274 case GLSL_SAMPLER_DIM_1D: {
2275 assert(type->base_type == GLSL_TYPE_SAMPLER);
2276 static const char *const names[4] = {
2277 "sampler1D", "sampler1DArray",
2278 "sampler1DShadow", "sampler1DArrayShadow"
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_2D: {
2283 static const char *const names[8] = {
2284 "sampler2D", "sampler2DArray",
2285 "sampler2DShadow", "sampler2DArrayShadow",
2286 "image2D", "image2DArray", NULL, NULL
2287 };
2288 return names[offset + type_idx];
2289 }
2290 case GLSL_SAMPLER_DIM_3D: {
2291 static const char *const names[8] = {
2292 "sampler3D", NULL, NULL, NULL,
2293 "image3D", NULL, NULL, NULL
2294 };
2295 return names[offset + type_idx];
2296 }
2297 case GLSL_SAMPLER_DIM_CUBE: {
2298 static const char *const names[8] = {
2299 "samplerCube", "samplerCubeArray",
2300 "samplerCubeShadow", "samplerCubeArrayShadow",
2301 "imageCube", NULL, NULL, NULL
2302 };
2303 return names[offset + type_idx];
2304 }
2305 case GLSL_SAMPLER_DIM_MS: {
2306 assert(type->base_type == GLSL_TYPE_SAMPLER);
2307 static const char *const names[4] = {
2308 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2309 };
2310 return names[type_idx];
2311 }
2312 case GLSL_SAMPLER_DIM_RECT: {
2313 assert(type->base_type == GLSL_TYPE_SAMPLER);
2314 static const char *const names[4] = {
2315 "samplerRect", NULL, "samplerRectShadow", NULL
2316 };
2317 return names[type_idx];
2318 }
2319 case GLSL_SAMPLER_DIM_BUF: {
2320 assert(type->base_type == GLSL_TYPE_SAMPLER);
2321 static const char *const names[4] = {
2322 "samplerBuffer", NULL, NULL, NULL
2323 };
2324 return names[type_idx];
2325 }
2326 case GLSL_SAMPLER_DIM_EXTERNAL: {
2327 assert(type->base_type == GLSL_TYPE_SAMPLER);
2328 static const char *const names[4] = {
2329 "samplerExternalOES", NULL, NULL, NULL
2330 };
2331 return names[type_idx];
2332 }
2333 default:
2334 unreachable("Unsupported sampler/image dimensionality");
2335 } /* sampler/image float dimensionality */
2336 break;
2337 case GLSL_TYPE_INT:
2338 switch (type->sampler_dimensionality) {
2339 case GLSL_SAMPLER_DIM_1D: {
2340 assert(type->base_type == GLSL_TYPE_SAMPLER);
2341 static const char *const names[4] = {
2342 "isampler1D", "isampler1DArray", NULL, NULL
2343 };
2344 return names[type_idx];
2345 }
2346 case GLSL_SAMPLER_DIM_2D: {
2347 static const char *const names[8] = {
2348 "isampler2D", "isampler2DArray", NULL, NULL,
2349 "iimage2D", "iimage2DArray", NULL, NULL
2350 };
2351 return names[offset + type_idx];
2352 }
2353 case GLSL_SAMPLER_DIM_3D: {
2354 static const char *const names[8] = {
2355 "isampler3D", NULL, NULL, NULL,
2356 "iimage3D", NULL, NULL, NULL
2357 };
2358 return names[offset + type_idx];
2359 }
2360 case GLSL_SAMPLER_DIM_CUBE: {
2361 static const char *const names[8] = {
2362 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2363 "iimageCube", NULL, NULL, NULL
2364 };
2365 return names[offset + type_idx];
2366 }
2367 case GLSL_SAMPLER_DIM_MS: {
2368 assert(type->base_type == GLSL_TYPE_SAMPLER);
2369 static const char *const names[4] = {
2370 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2371 };
2372 return names[type_idx];
2373 }
2374 case GLSL_SAMPLER_DIM_RECT: {
2375 assert(type->base_type == GLSL_TYPE_SAMPLER);
2376 static const char *const names[4] = {
2377 "isamplerRect", NULL, "isamplerRectShadow", NULL
2378 };
2379 return names[type_idx];
2380 }
2381 case GLSL_SAMPLER_DIM_BUF: {
2382 assert(type->base_type == GLSL_TYPE_SAMPLER);
2383 static const char *const names[4] = {
2384 "isamplerBuffer", NULL, NULL, NULL
2385 };
2386 return names[type_idx];
2387 }
2388 default:
2389 unreachable("Unsupported isampler/iimage dimensionality");
2390 } /* sampler/image int dimensionality */
2391 break;
2392 case GLSL_TYPE_UINT:
2393 switch (type->sampler_dimensionality) {
2394 case GLSL_SAMPLER_DIM_1D: {
2395 assert(type->base_type == GLSL_TYPE_SAMPLER);
2396 static const char *const names[4] = {
2397 "usampler1D", "usampler1DArray", NULL, NULL
2398 };
2399 return names[type_idx];
2400 }
2401 case GLSL_SAMPLER_DIM_2D: {
2402 static const char *const names[8] = {
2403 "usampler2D", "usampler2DArray", NULL, NULL,
2404 "uimage2D", "uimage2DArray", NULL, NULL
2405 };
2406 return names[offset + type_idx];
2407 }
2408 case GLSL_SAMPLER_DIM_3D: {
2409 static const char *const names[8] = {
2410 "usampler3D", NULL, NULL, NULL,
2411 "uimage3D", NULL, NULL, NULL
2412 };
2413 return names[offset + type_idx];
2414 }
2415 case GLSL_SAMPLER_DIM_CUBE: {
2416 static const char *const names[8] = {
2417 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2418 "uimageCube", NULL, NULL, NULL
2419 };
2420 return names[offset + type_idx];
2421 }
2422 case GLSL_SAMPLER_DIM_MS: {
2423 assert(type->base_type == GLSL_TYPE_SAMPLER);
2424 static const char *const names[4] = {
2425 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2426 };
2427 return names[type_idx];
2428 }
2429 case GLSL_SAMPLER_DIM_RECT: {
2430 assert(type->base_type == GLSL_TYPE_SAMPLER);
2431 static const char *const names[4] = {
2432 "usamplerRect", NULL, "usamplerRectShadow", NULL
2433 };
2434 return names[type_idx];
2435 }
2436 case GLSL_SAMPLER_DIM_BUF: {
2437 assert(type->base_type == GLSL_TYPE_SAMPLER);
2438 static const char *const names[4] = {
2439 "usamplerBuffer", NULL, NULL, NULL
2440 };
2441 return names[type_idx];
2442 }
2443 default:
2444 unreachable("Unsupported usampler/uimage dimensionality");
2445 } /* sampler/image uint dimensionality */
2446 break;
2447 default:
2448 unreachable("Unsupported sampler/image type");
2449 } /* sampler/image type */
2450 break;
2451 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2452 break;
2453 default:
2454 unreachable("Unsupported type");
2455 } /* base type */
2456 }
2457
2458 static unsigned
2459 select_gles_precision(unsigned qual_precision,
2460 const glsl_type *type,
2461 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2462 {
2463 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2464 * In GLES we take the precision from the type qualifier if present,
2465 * otherwise, if the type of the variable allows precision qualifiers at
2466 * all, we look for the default precision qualifier for that type in the
2467 * current scope.
2468 */
2469 assert(state->es_shader);
2470
2471 unsigned precision = GLSL_PRECISION_NONE;
2472 if (qual_precision) {
2473 precision = qual_precision;
2474 } else if (precision_qualifier_allowed(type)) {
2475 const char *type_name =
2476 get_type_name_for_precision_qualifier(type->without_array());
2477 assert(type_name != NULL);
2478
2479 precision =
2480 state->symbols->get_default_precision_qualifier(type_name);
2481 if (precision == ast_precision_none) {
2482 _mesa_glsl_error(loc, state,
2483 "No precision specified in this scope for type `%s'",
2484 type->name);
2485 }
2486 }
2487 return precision;
2488 }
2489
2490 const glsl_type *
2491 ast_fully_specified_type::glsl_type(const char **name,
2492 struct _mesa_glsl_parse_state *state) const
2493 {
2494 return this->specifier->glsl_type(name, state);
2495 }
2496
2497 /**
2498 * Determine whether a toplevel variable declaration declares a varying. This
2499 * function operates by examining the variable's mode and the shader target,
2500 * so it correctly identifies linkage variables regardless of whether they are
2501 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2502 *
2503 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2504 * this function will produce undefined results.
2505 */
2506 static bool
2507 is_varying_var(ir_variable *var, gl_shader_stage target)
2508 {
2509 switch (target) {
2510 case MESA_SHADER_VERTEX:
2511 return var->data.mode == ir_var_shader_out;
2512 case MESA_SHADER_FRAGMENT:
2513 return var->data.mode == ir_var_shader_in;
2514 default:
2515 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2516 }
2517 }
2518
2519
2520 /**
2521 * Matrix layout qualifiers are only allowed on certain types
2522 */
2523 static void
2524 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2525 YYLTYPE *loc,
2526 const glsl_type *type,
2527 ir_variable *var)
2528 {
2529 if (var && !var->is_in_buffer_block()) {
2530 /* Layout qualifiers may only apply to interface blocks and fields in
2531 * them.
2532 */
2533 _mesa_glsl_error(loc, state,
2534 "uniform block layout qualifiers row_major and "
2535 "column_major may not be applied to variables "
2536 "outside of uniform blocks");
2537 } else if (!type->without_array()->is_matrix()) {
2538 /* The OpenGL ES 3.0 conformance tests did not originally allow
2539 * matrix layout qualifiers on non-matrices. However, the OpenGL
2540 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2541 * amended to specifically allow these layouts on all types. Emit
2542 * a warning so that people know their code may not be portable.
2543 */
2544 _mesa_glsl_warning(loc, state,
2545 "uniform block layout qualifiers row_major and "
2546 "column_major applied to non-matrix types may "
2547 "be rejected by older compilers");
2548 }
2549 }
2550
2551 static bool
2552 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2553 YYLTYPE *loc,
2554 const char *qual_indentifier,
2555 ast_expression *const_expression,
2556 unsigned *value)
2557 {
2558 exec_list dummy_instructions;
2559
2560 if (const_expression == NULL) {
2561 *value = 0;
2562 return true;
2563 }
2564
2565 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2566
2567 ir_constant *const const_int = ir->constant_expression_value();
2568 if (const_int == NULL || !const_int->type->is_integer()) {
2569 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2570 "expression", qual_indentifier);
2571 return false;
2572 }
2573
2574 if (const_int->value.i[0] < 0) {
2575 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2576 qual_indentifier, const_int->value.u[0]);
2577 return false;
2578 }
2579
2580 /* If the location is const (and we've verified that
2581 * it is) then no instructions should have been emitted
2582 * when we converted it to HIR. If they were emitted,
2583 * then either the location isn't const after all, or
2584 * we are emitting unnecessary instructions.
2585 */
2586 assert(dummy_instructions.is_empty());
2587
2588 *value = const_int->value.u[0];
2589 return true;
2590 }
2591
2592 static bool
2593 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2594 unsigned stream)
2595 {
2596 if (stream >= state->ctx->Const.MaxVertexStreams) {
2597 _mesa_glsl_error(loc, state,
2598 "invalid stream specified %d is larger than "
2599 "MAX_VERTEX_STREAMS - 1 (%d).",
2600 stream, state->ctx->Const.MaxVertexStreams - 1);
2601 return false;
2602 }
2603
2604 return true;
2605 }
2606
2607 static void
2608 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2609 YYLTYPE *loc,
2610 ir_variable *var,
2611 const glsl_type *type,
2612 const ast_type_qualifier *qual)
2613 {
2614 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2615 _mesa_glsl_error(loc, state,
2616 "the \"binding\" qualifier only applies to uniforms and "
2617 "shader storage buffer objects");
2618 return;
2619 }
2620
2621 unsigned qual_binding;
2622 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2623 &qual_binding)) {
2624 return;
2625 }
2626
2627 const struct gl_context *const ctx = state->ctx;
2628 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2629 unsigned max_index = qual_binding + elements - 1;
2630 const glsl_type *base_type = type->without_array();
2631
2632 if (base_type->is_interface()) {
2633 /* UBOs. From page 60 of the GLSL 4.20 specification:
2634 * "If the binding point for any uniform block instance is less than zero,
2635 * or greater than or equal to the implementation-dependent maximum
2636 * number of uniform buffer bindings, a compilation error will occur.
2637 * When the binding identifier is used with a uniform block instanced as
2638 * an array of size N, all elements of the array from binding through
2639 * binding + N – 1 must be within this range."
2640 *
2641 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2642 */
2643 if (qual->flags.q.uniform &&
2644 max_index >= ctx->Const.MaxUniformBufferBindings) {
2645 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2646 "the maximum number of UBO binding points (%d)",
2647 qual_binding, elements,
2648 ctx->Const.MaxUniformBufferBindings);
2649 return;
2650 }
2651
2652 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2653 * "If the binding point for any uniform or shader storage block instance
2654 * is less than zero, or greater than or equal to the
2655 * implementation-dependent maximum number of uniform buffer bindings, a
2656 * compile-time error will occur. When the binding identifier is used
2657 * with a uniform or shader storage block instanced as an array of size
2658 * N, all elements of the array from binding through binding + N – 1 must
2659 * be within this range."
2660 */
2661 if (qual->flags.q.buffer &&
2662 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2663 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2664 "the maximum number of SSBO binding points (%d)",
2665 qual_binding, elements,
2666 ctx->Const.MaxShaderStorageBufferBindings);
2667 return;
2668 }
2669 } else if (base_type->is_sampler()) {
2670 /* Samplers. From page 63 of the GLSL 4.20 specification:
2671 * "If the binding is less than zero, or greater than or equal to the
2672 * implementation-dependent maximum supported number of units, a
2673 * compilation error will occur. When the binding identifier is used
2674 * with an array of size N, all elements of the array from binding
2675 * through binding + N - 1 must be within this range."
2676 */
2677 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2678
2679 if (max_index >= limit) {
2680 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2681 "exceeds the maximum number of texture image units "
2682 "(%u)", qual_binding, elements, limit);
2683
2684 return;
2685 }
2686 } else if (base_type->contains_atomic()) {
2687 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2688 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2689 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2690 " maximum number of atomic counter buffer bindings"
2691 "(%u)", qual_binding,
2692 ctx->Const.MaxAtomicBufferBindings);
2693
2694 return;
2695 }
2696 } else if ((state->is_version(420, 310) ||
2697 state->ARB_shading_language_420pack_enable) &&
2698 base_type->is_image()) {
2699 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2700 if (max_index >= ctx->Const.MaxImageUnits) {
2701 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2702 " maximum number of image units (%d)", max_index,
2703 ctx->Const.MaxImageUnits);
2704 return;
2705 }
2706
2707 } else {
2708 _mesa_glsl_error(loc, state,
2709 "the \"binding\" qualifier only applies to uniform "
2710 "blocks, opaque variables, or arrays thereof");
2711 return;
2712 }
2713
2714 var->data.explicit_binding = true;
2715 var->data.binding = qual_binding;
2716
2717 return;
2718 }
2719
2720
2721 static glsl_interp_qualifier
2722 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2723 ir_variable_mode mode,
2724 struct _mesa_glsl_parse_state *state,
2725 YYLTYPE *loc)
2726 {
2727 glsl_interp_qualifier interpolation;
2728 if (qual->flags.q.flat)
2729 interpolation = INTERP_QUALIFIER_FLAT;
2730 else if (qual->flags.q.noperspective)
2731 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2732 else if (qual->flags.q.smooth)
2733 interpolation = INTERP_QUALIFIER_SMOOTH;
2734 else
2735 interpolation = INTERP_QUALIFIER_NONE;
2736
2737 if (interpolation != INTERP_QUALIFIER_NONE) {
2738 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2739 _mesa_glsl_error(loc, state,
2740 "interpolation qualifier `%s' can only be applied to "
2741 "shader inputs or outputs.",
2742 interpolation_string(interpolation));
2743
2744 }
2745
2746 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2747 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2748 _mesa_glsl_error(loc, state,
2749 "interpolation qualifier `%s' cannot be applied to "
2750 "vertex shader inputs or fragment shader outputs",
2751 interpolation_string(interpolation));
2752 }
2753 }
2754
2755 return interpolation;
2756 }
2757
2758
2759 static void
2760 apply_explicit_location(const struct ast_type_qualifier *qual,
2761 ir_variable *var,
2762 struct _mesa_glsl_parse_state *state,
2763 YYLTYPE *loc)
2764 {
2765 bool fail = false;
2766
2767 unsigned qual_location;
2768 if (!process_qualifier_constant(state, loc, "location", qual->location,
2769 &qual_location)) {
2770 return;
2771 }
2772
2773 /* Checks for GL_ARB_explicit_uniform_location. */
2774 if (qual->flags.q.uniform) {
2775 if (!state->check_explicit_uniform_location_allowed(loc, var))
2776 return;
2777
2778 const struct gl_context *const ctx = state->ctx;
2779 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2780
2781 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2782 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2783 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2784 ctx->Const.MaxUserAssignableUniformLocations);
2785 return;
2786 }
2787
2788 var->data.explicit_location = true;
2789 var->data.location = qual_location;
2790 return;
2791 }
2792
2793 /* Between GL_ARB_explicit_attrib_location an
2794 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2795 * stage can be assigned explicit locations. The checking here associates
2796 * the correct extension with the correct stage's input / output:
2797 *
2798 * input output
2799 * ----- ------
2800 * vertex explicit_loc sso
2801 * tess control sso sso
2802 * tess eval sso sso
2803 * geometry sso sso
2804 * fragment sso explicit_loc
2805 */
2806 switch (state->stage) {
2807 case MESA_SHADER_VERTEX:
2808 if (var->data.mode == ir_var_shader_in) {
2809 if (!state->check_explicit_attrib_location_allowed(loc, var))
2810 return;
2811
2812 break;
2813 }
2814
2815 if (var->data.mode == ir_var_shader_out) {
2816 if (!state->check_separate_shader_objects_allowed(loc, var))
2817 return;
2818
2819 break;
2820 }
2821
2822 fail = true;
2823 break;
2824
2825 case MESA_SHADER_TESS_CTRL:
2826 case MESA_SHADER_TESS_EVAL:
2827 case MESA_SHADER_GEOMETRY:
2828 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2829 if (!state->check_separate_shader_objects_allowed(loc, var))
2830 return;
2831
2832 break;
2833 }
2834
2835 fail = true;
2836 break;
2837
2838 case MESA_SHADER_FRAGMENT:
2839 if (var->data.mode == ir_var_shader_in) {
2840 if (!state->check_separate_shader_objects_allowed(loc, var))
2841 return;
2842
2843 break;
2844 }
2845
2846 if (var->data.mode == ir_var_shader_out) {
2847 if (!state->check_explicit_attrib_location_allowed(loc, var))
2848 return;
2849
2850 break;
2851 }
2852
2853 fail = true;
2854 break;
2855
2856 case MESA_SHADER_COMPUTE:
2857 _mesa_glsl_error(loc, state,
2858 "compute shader variables cannot be given "
2859 "explicit locations");
2860 return;
2861 };
2862
2863 if (fail) {
2864 _mesa_glsl_error(loc, state,
2865 "%s cannot be given an explicit location in %s shader",
2866 mode_string(var),
2867 _mesa_shader_stage_to_string(state->stage));
2868 } else {
2869 var->data.explicit_location = true;
2870
2871 switch (state->stage) {
2872 case MESA_SHADER_VERTEX:
2873 var->data.location = (var->data.mode == ir_var_shader_in)
2874 ? (qual_location + VERT_ATTRIB_GENERIC0)
2875 : (qual_location + VARYING_SLOT_VAR0);
2876 break;
2877
2878 case MESA_SHADER_TESS_CTRL:
2879 case MESA_SHADER_TESS_EVAL:
2880 case MESA_SHADER_GEOMETRY:
2881 if (var->data.patch)
2882 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2883 else
2884 var->data.location = qual_location + VARYING_SLOT_VAR0;
2885 break;
2886
2887 case MESA_SHADER_FRAGMENT:
2888 var->data.location = (var->data.mode == ir_var_shader_out)
2889 ? (qual_location + FRAG_RESULT_DATA0)
2890 : (qual_location + VARYING_SLOT_VAR0);
2891 break;
2892 case MESA_SHADER_COMPUTE:
2893 assert(!"Unexpected shader type");
2894 break;
2895 }
2896
2897 /* Check if index was set for the uniform instead of the function */
2898 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2899 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2900 "used with subroutine functions");
2901 return;
2902 }
2903
2904 unsigned qual_index;
2905 if (qual->flags.q.explicit_index &&
2906 process_qualifier_constant(state, loc, "index", qual->index,
2907 &qual_index)) {
2908 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2909 * Layout Qualifiers):
2910 *
2911 * "It is also a compile-time error if a fragment shader
2912 * sets a layout index to less than 0 or greater than 1."
2913 *
2914 * Older specifications don't mandate a behavior; we take
2915 * this as a clarification and always generate the error.
2916 */
2917 if (qual_index > 1) {
2918 _mesa_glsl_error(loc, state,
2919 "explicit index may only be 0 or 1");
2920 } else {
2921 var->data.explicit_index = true;
2922 var->data.index = qual_index;
2923 }
2924 }
2925 }
2926 }
2927
2928 static void
2929 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2930 ir_variable *var,
2931 struct _mesa_glsl_parse_state *state,
2932 YYLTYPE *loc)
2933 {
2934 const glsl_type *base_type = var->type->without_array();
2935
2936 if (base_type->is_image()) {
2937 if (var->data.mode != ir_var_uniform &&
2938 var->data.mode != ir_var_function_in) {
2939 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2940 "function parameters or uniform-qualified "
2941 "global variables");
2942 }
2943
2944 var->data.image_read_only |= qual->flags.q.read_only;
2945 var->data.image_write_only |= qual->flags.q.write_only;
2946 var->data.image_coherent |= qual->flags.q.coherent;
2947 var->data.image_volatile |= qual->flags.q._volatile;
2948 var->data.image_restrict |= qual->flags.q.restrict_flag;
2949 var->data.read_only = true;
2950
2951 if (qual->flags.q.explicit_image_format) {
2952 if (var->data.mode == ir_var_function_in) {
2953 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2954 "used on image function parameters");
2955 }
2956
2957 if (qual->image_base_type != base_type->sampled_type) {
2958 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2959 "base data type of the image");
2960 }
2961
2962 var->data.image_format = qual->image_format;
2963 } else {
2964 if (var->data.mode == ir_var_uniform) {
2965 if (state->es_shader) {
2966 _mesa_glsl_error(loc, state, "all image uniforms "
2967 "must have a format layout qualifier");
2968
2969 } else if (!qual->flags.q.write_only) {
2970 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2971 "`writeonly' must have a format layout "
2972 "qualifier");
2973 }
2974 }
2975
2976 var->data.image_format = GL_NONE;
2977 }
2978
2979 /* From page 70 of the GLSL ES 3.1 specification:
2980 *
2981 * "Except for image variables qualified with the format qualifiers
2982 * r32f, r32i, and r32ui, image variables must specify either memory
2983 * qualifier readonly or the memory qualifier writeonly."
2984 */
2985 if (state->es_shader &&
2986 var->data.image_format != GL_R32F &&
2987 var->data.image_format != GL_R32I &&
2988 var->data.image_format != GL_R32UI &&
2989 !var->data.image_read_only &&
2990 !var->data.image_write_only) {
2991 _mesa_glsl_error(loc, state, "image variables of format other than "
2992 "r32f, r32i or r32ui must be qualified `readonly' or "
2993 "`writeonly'");
2994 }
2995
2996 } else if (qual->flags.q.read_only ||
2997 qual->flags.q.write_only ||
2998 qual->flags.q.coherent ||
2999 qual->flags.q._volatile ||
3000 qual->flags.q.restrict_flag ||
3001 qual->flags.q.explicit_image_format) {
3002 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3003 "images");
3004 }
3005 }
3006
3007 static inline const char*
3008 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3009 {
3010 if (origin_upper_left && pixel_center_integer)
3011 return "origin_upper_left, pixel_center_integer";
3012 else if (origin_upper_left)
3013 return "origin_upper_left";
3014 else if (pixel_center_integer)
3015 return "pixel_center_integer";
3016 else
3017 return " ";
3018 }
3019
3020 static inline bool
3021 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3022 const struct ast_type_qualifier *qual)
3023 {
3024 /* If gl_FragCoord was previously declared, and the qualifiers were
3025 * different in any way, return true.
3026 */
3027 if (state->fs_redeclares_gl_fragcoord) {
3028 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3029 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3030 }
3031
3032 return false;
3033 }
3034
3035 static inline void
3036 validate_array_dimensions(const glsl_type *t,
3037 struct _mesa_glsl_parse_state *state,
3038 YYLTYPE *loc) {
3039 if (t->is_array()) {
3040 t = t->fields.array;
3041 while (t->is_array()) {
3042 if (t->is_unsized_array()) {
3043 _mesa_glsl_error(loc, state,
3044 "only the outermost array dimension can "
3045 "be unsized",
3046 t->name);
3047 break;
3048 }
3049 t = t->fields.array;
3050 }
3051 }
3052 }
3053
3054 static void
3055 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3056 ir_variable *var,
3057 struct _mesa_glsl_parse_state *state,
3058 YYLTYPE *loc)
3059 {
3060 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3061
3062 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3063 *
3064 * "Within any shader, the first redeclarations of gl_FragCoord
3065 * must appear before any use of gl_FragCoord."
3066 *
3067 * Generate a compiler error if above condition is not met by the
3068 * fragment shader.
3069 */
3070 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3071 if (earlier != NULL &&
3072 earlier->data.used &&
3073 !state->fs_redeclares_gl_fragcoord) {
3074 _mesa_glsl_error(loc, state,
3075 "gl_FragCoord used before its first redeclaration "
3076 "in fragment shader");
3077 }
3078
3079 /* Make sure all gl_FragCoord redeclarations specify the same layout
3080 * qualifiers.
3081 */
3082 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3083 const char *const qual_string =
3084 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3085 qual->flags.q.pixel_center_integer);
3086
3087 const char *const state_string =
3088 get_layout_qualifier_string(state->fs_origin_upper_left,
3089 state->fs_pixel_center_integer);
3090
3091 _mesa_glsl_error(loc, state,
3092 "gl_FragCoord redeclared with different layout "
3093 "qualifiers (%s) and (%s) ",
3094 state_string,
3095 qual_string);
3096 }
3097 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3098 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3099 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3100 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3101 state->fs_redeclares_gl_fragcoord =
3102 state->fs_origin_upper_left ||
3103 state->fs_pixel_center_integer ||
3104 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3105 }
3106
3107 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3108 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3109 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3110 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3111 const char *const qual_string = (qual->flags.q.origin_upper_left)
3112 ? "origin_upper_left" : "pixel_center_integer";
3113
3114 _mesa_glsl_error(loc, state,
3115 "layout qualifier `%s' can only be applied to "
3116 "fragment shader input `gl_FragCoord'",
3117 qual_string);
3118 }
3119
3120 if (qual->flags.q.explicit_location) {
3121 apply_explicit_location(qual, var, state, loc);
3122 } else if (qual->flags.q.explicit_index) {
3123 if (!qual->flags.q.subroutine_def)
3124 _mesa_glsl_error(loc, state,
3125 "explicit index requires explicit location");
3126 }
3127
3128 if (qual->flags.q.explicit_binding) {
3129 apply_explicit_binding(state, loc, var, var->type, qual);
3130 }
3131
3132 if (state->stage == MESA_SHADER_GEOMETRY &&
3133 qual->flags.q.out && qual->flags.q.stream) {
3134 unsigned qual_stream;
3135 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3136 &qual_stream) &&
3137 validate_stream_qualifier(loc, state, qual_stream)) {
3138 var->data.stream = qual_stream;
3139 }
3140 }
3141
3142 if (var->type->contains_atomic()) {
3143 if (var->data.mode == ir_var_uniform) {
3144 if (var->data.explicit_binding) {
3145 unsigned *offset =
3146 &state->atomic_counter_offsets[var->data.binding];
3147
3148 if (*offset % ATOMIC_COUNTER_SIZE)
3149 _mesa_glsl_error(loc, state,
3150 "misaligned atomic counter offset");
3151
3152 var->data.offset = *offset;
3153 *offset += var->type->atomic_size();
3154
3155 } else {
3156 _mesa_glsl_error(loc, state,
3157 "atomic counters require explicit binding point");
3158 }
3159 } else if (var->data.mode != ir_var_function_in) {
3160 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3161 "function parameters or uniform-qualified "
3162 "global variables");
3163 }
3164 }
3165
3166 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3167 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3168 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3169 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3170 * These extensions and all following extensions that add the 'layout'
3171 * keyword have been modified to require the use of 'in' or 'out'.
3172 *
3173 * The following extension do not allow the deprecated keywords:
3174 *
3175 * GL_AMD_conservative_depth
3176 * GL_ARB_conservative_depth
3177 * GL_ARB_gpu_shader5
3178 * GL_ARB_separate_shader_objects
3179 * GL_ARB_tessellation_shader
3180 * GL_ARB_transform_feedback3
3181 * GL_ARB_uniform_buffer_object
3182 *
3183 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3184 * allow layout with the deprecated keywords.
3185 */
3186 const bool relaxed_layout_qualifier_checking =
3187 state->ARB_fragment_coord_conventions_enable;
3188
3189 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3190 || qual->flags.q.varying;
3191 if (qual->has_layout() && uses_deprecated_qualifier) {
3192 if (relaxed_layout_qualifier_checking) {
3193 _mesa_glsl_warning(loc, state,
3194 "`layout' qualifier may not be used with "
3195 "`attribute' or `varying'");
3196 } else {
3197 _mesa_glsl_error(loc, state,
3198 "`layout' qualifier may not be used with "
3199 "`attribute' or `varying'");
3200 }
3201 }
3202
3203 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3204 * AMD_conservative_depth.
3205 */
3206 int depth_layout_count = qual->flags.q.depth_any
3207 + qual->flags.q.depth_greater
3208 + qual->flags.q.depth_less
3209 + qual->flags.q.depth_unchanged;
3210 if (depth_layout_count > 0
3211 && !state->AMD_conservative_depth_enable
3212 && !state->ARB_conservative_depth_enable) {
3213 _mesa_glsl_error(loc, state,
3214 "extension GL_AMD_conservative_depth or "
3215 "GL_ARB_conservative_depth must be enabled "
3216 "to use depth layout qualifiers");
3217 } else if (depth_layout_count > 0
3218 && strcmp(var->name, "gl_FragDepth") != 0) {
3219 _mesa_glsl_error(loc, state,
3220 "depth layout qualifiers can be applied only to "
3221 "gl_FragDepth");
3222 } else if (depth_layout_count > 1
3223 && strcmp(var->name, "gl_FragDepth") == 0) {
3224 _mesa_glsl_error(loc, state,
3225 "at most one depth layout qualifier can be applied to "
3226 "gl_FragDepth");
3227 }
3228 if (qual->flags.q.depth_any)
3229 var->data.depth_layout = ir_depth_layout_any;
3230 else if (qual->flags.q.depth_greater)
3231 var->data.depth_layout = ir_depth_layout_greater;
3232 else if (qual->flags.q.depth_less)
3233 var->data.depth_layout = ir_depth_layout_less;
3234 else if (qual->flags.q.depth_unchanged)
3235 var->data.depth_layout = ir_depth_layout_unchanged;
3236 else
3237 var->data.depth_layout = ir_depth_layout_none;
3238
3239 if (qual->flags.q.std140 ||
3240 qual->flags.q.std430 ||
3241 qual->flags.q.packed ||
3242 qual->flags.q.shared) {
3243 _mesa_glsl_error(loc, state,
3244 "uniform and shader storage block layout qualifiers "
3245 "std140, std430, packed, and shared can only be "
3246 "applied to uniform or shader storage blocks, not "
3247 "members");
3248 }
3249
3250 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3251 validate_matrix_layout_for_type(state, loc, var->type, var);
3252 }
3253
3254 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3255 * Inputs):
3256 *
3257 * "Fragment shaders also allow the following layout qualifier on in only
3258 * (not with variable declarations)
3259 * layout-qualifier-id
3260 * early_fragment_tests
3261 * [...]"
3262 */
3263 if (qual->flags.q.early_fragment_tests) {
3264 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3265 "valid in fragment shader input layout declaration.");
3266 }
3267 }
3268
3269 static void
3270 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3271 ir_variable *var,
3272 struct _mesa_glsl_parse_state *state,
3273 YYLTYPE *loc,
3274 bool is_parameter)
3275 {
3276 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3277
3278 if (qual->flags.q.invariant) {
3279 if (var->data.used) {
3280 _mesa_glsl_error(loc, state,
3281 "variable `%s' may not be redeclared "
3282 "`invariant' after being used",
3283 var->name);
3284 } else {
3285 var->data.invariant = 1;
3286 }
3287 }
3288
3289 if (qual->flags.q.precise) {
3290 if (var->data.used) {
3291 _mesa_glsl_error(loc, state,
3292 "variable `%s' may not be redeclared "
3293 "`precise' after being used",
3294 var->name);
3295 } else {
3296 var->data.precise = 1;
3297 }
3298 }
3299
3300 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3301 _mesa_glsl_error(loc, state,
3302 "`subroutine' may only be applied to uniforms, "
3303 "subroutine type declarations, or function definitions");
3304 }
3305
3306 if (qual->flags.q.constant || qual->flags.q.attribute
3307 || qual->flags.q.uniform
3308 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3309 var->data.read_only = 1;
3310
3311 if (qual->flags.q.centroid)
3312 var->data.centroid = 1;
3313
3314 if (qual->flags.q.sample)
3315 var->data.sample = 1;
3316
3317 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3318 if (state->es_shader) {
3319 var->data.precision =
3320 select_gles_precision(qual->precision, var->type, state, loc);
3321 }
3322
3323 if (qual->flags.q.patch)
3324 var->data.patch = 1;
3325
3326 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3327 var->type = glsl_type::error_type;
3328 _mesa_glsl_error(loc, state,
3329 "`attribute' variables may not be declared in the "
3330 "%s shader",
3331 _mesa_shader_stage_to_string(state->stage));
3332 }
3333
3334 /* Disallow layout qualifiers which may only appear on layout declarations. */
3335 if (qual->flags.q.prim_type) {
3336 _mesa_glsl_error(loc, state,
3337 "Primitive type may only be specified on GS input or output "
3338 "layout declaration, not on variables.");
3339 }
3340
3341 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3342 *
3343 * "However, the const qualifier cannot be used with out or inout."
3344 *
3345 * The same section of the GLSL 4.40 spec further clarifies this saying:
3346 *
3347 * "The const qualifier cannot be used with out or inout, or a
3348 * compile-time error results."
3349 */
3350 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3351 _mesa_glsl_error(loc, state,
3352 "`const' may not be applied to `out' or `inout' "
3353 "function parameters");
3354 }
3355
3356 /* If there is no qualifier that changes the mode of the variable, leave
3357 * the setting alone.
3358 */
3359 assert(var->data.mode != ir_var_temporary);
3360 if (qual->flags.q.in && qual->flags.q.out)
3361 var->data.mode = ir_var_function_inout;
3362 else if (qual->flags.q.in)
3363 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3364 else if (qual->flags.q.attribute
3365 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3366 var->data.mode = ir_var_shader_in;
3367 else if (qual->flags.q.out)
3368 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3369 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3370 var->data.mode = ir_var_shader_out;
3371 else if (qual->flags.q.uniform)
3372 var->data.mode = ir_var_uniform;
3373 else if (qual->flags.q.buffer)
3374 var->data.mode = ir_var_shader_storage;
3375 else if (qual->flags.q.shared_storage)
3376 var->data.mode = ir_var_shader_shared;
3377
3378 if (!is_parameter && is_varying_var(var, state->stage)) {
3379 /* User-defined ins/outs are not permitted in compute shaders. */
3380 if (state->stage == MESA_SHADER_COMPUTE) {
3381 _mesa_glsl_error(loc, state,
3382 "user-defined input and output variables are not "
3383 "permitted in compute shaders");
3384 }
3385
3386 /* This variable is being used to link data between shader stages (in
3387 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3388 * that is allowed for such purposes.
3389 *
3390 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3391 *
3392 * "The varying qualifier can be used only with the data types
3393 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3394 * these."
3395 *
3396 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3397 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3398 *
3399 * "Fragment inputs can only be signed and unsigned integers and
3400 * integer vectors, float, floating-point vectors, matrices, or
3401 * arrays of these. Structures cannot be input.
3402 *
3403 * Similar text exists in the section on vertex shader outputs.
3404 *
3405 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3406 * 3.00 spec allows structs as well. Varying structs are also allowed
3407 * in GLSL 1.50.
3408 */
3409 switch (var->type->get_scalar_type()->base_type) {
3410 case GLSL_TYPE_FLOAT:
3411 /* Ok in all GLSL versions */
3412 break;
3413 case GLSL_TYPE_UINT:
3414 case GLSL_TYPE_INT:
3415 if (state->is_version(130, 300))
3416 break;
3417 _mesa_glsl_error(loc, state,
3418 "varying variables must be of base type float in %s",
3419 state->get_version_string());
3420 break;
3421 case GLSL_TYPE_STRUCT:
3422 if (state->is_version(150, 300))
3423 break;
3424 _mesa_glsl_error(loc, state,
3425 "varying variables may not be of type struct");
3426 break;
3427 case GLSL_TYPE_DOUBLE:
3428 break;
3429 default:
3430 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3431 break;
3432 }
3433 }
3434
3435 if (state->all_invariant && (state->current_function == NULL)) {
3436 switch (state->stage) {
3437 case MESA_SHADER_VERTEX:
3438 if (var->data.mode == ir_var_shader_out)
3439 var->data.invariant = true;
3440 break;
3441 case MESA_SHADER_TESS_CTRL:
3442 case MESA_SHADER_TESS_EVAL:
3443 case MESA_SHADER_GEOMETRY:
3444 if ((var->data.mode == ir_var_shader_in)
3445 || (var->data.mode == ir_var_shader_out))
3446 var->data.invariant = true;
3447 break;
3448 case MESA_SHADER_FRAGMENT:
3449 if (var->data.mode == ir_var_shader_in)
3450 var->data.invariant = true;
3451 break;
3452 case MESA_SHADER_COMPUTE:
3453 /* Invariance isn't meaningful in compute shaders. */
3454 break;
3455 }
3456 }
3457
3458 var->data.interpolation =
3459 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3460 state, loc);
3461
3462 /* Does the declaration use the deprecated 'attribute' or 'varying'
3463 * keywords?
3464 */
3465 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3466 || qual->flags.q.varying;
3467
3468
3469 /* Validate auxiliary storage qualifiers */
3470
3471 /* From section 4.3.4 of the GLSL 1.30 spec:
3472 * "It is an error to use centroid in in a vertex shader."
3473 *
3474 * From section 4.3.4 of the GLSL ES 3.00 spec:
3475 * "It is an error to use centroid in or interpolation qualifiers in
3476 * a vertex shader input."
3477 */
3478
3479 /* Section 4.3.6 of the GLSL 1.30 specification states:
3480 * "It is an error to use centroid out in a fragment shader."
3481 *
3482 * The GL_ARB_shading_language_420pack extension specification states:
3483 * "It is an error to use auxiliary storage qualifiers or interpolation
3484 * qualifiers on an output in a fragment shader."
3485 */
3486 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3487 _mesa_glsl_error(loc, state,
3488 "sample qualifier may only be used on `in` or `out` "
3489 "variables between shader stages");
3490 }
3491 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3492 _mesa_glsl_error(loc, state,
3493 "centroid qualifier may only be used with `in', "
3494 "`out' or `varying' variables between shader stages");
3495 }
3496
3497 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3498 _mesa_glsl_error(loc, state,
3499 "the shared storage qualifiers can only be used with "
3500 "compute shaders");
3501 }
3502
3503 apply_image_qualifier_to_variable(qual, var, state, loc);
3504 }
3505
3506 /**
3507 * Get the variable that is being redeclared by this declaration
3508 *
3509 * Semantic checks to verify the validity of the redeclaration are also
3510 * performed. If semantic checks fail, compilation error will be emitted via
3511 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3512 *
3513 * \returns
3514 * A pointer to an existing variable in the current scope if the declaration
3515 * is a redeclaration, \c NULL otherwise.
3516 */
3517 static ir_variable *
3518 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3519 struct _mesa_glsl_parse_state *state,
3520 bool allow_all_redeclarations)
3521 {
3522 /* Check if this declaration is actually a re-declaration, either to
3523 * resize an array or add qualifiers to an existing variable.
3524 *
3525 * This is allowed for variables in the current scope, or when at
3526 * global scope (for built-ins in the implicit outer scope).
3527 */
3528 ir_variable *earlier = state->symbols->get_variable(var->name);
3529 if (earlier == NULL ||
3530 (state->current_function != NULL &&
3531 !state->symbols->name_declared_this_scope(var->name))) {
3532 return NULL;
3533 }
3534
3535
3536 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3537 *
3538 * "It is legal to declare an array without a size and then
3539 * later re-declare the same name as an array of the same
3540 * type and specify a size."
3541 */
3542 if (earlier->type->is_unsized_array() && var->type->is_array()
3543 && (var->type->fields.array == earlier->type->fields.array)) {
3544 /* FINISHME: This doesn't match the qualifiers on the two
3545 * FINISHME: declarations. It's not 100% clear whether this is
3546 * FINISHME: required or not.
3547 */
3548
3549 const unsigned size = unsigned(var->type->array_size());
3550 check_builtin_array_max_size(var->name, size, loc, state);
3551 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3552 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3553 "previous access",
3554 earlier->data.max_array_access);
3555 }
3556
3557 earlier->type = var->type;
3558 delete var;
3559 var = NULL;
3560 } else if ((state->ARB_fragment_coord_conventions_enable ||
3561 state->is_version(150, 0))
3562 && strcmp(var->name, "gl_FragCoord") == 0
3563 && earlier->type == var->type
3564 && var->data.mode == ir_var_shader_in) {
3565 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3566 * qualifiers.
3567 */
3568 earlier->data.origin_upper_left = var->data.origin_upper_left;
3569 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3570
3571 /* According to section 4.3.7 of the GLSL 1.30 spec,
3572 * the following built-in varaibles can be redeclared with an
3573 * interpolation qualifier:
3574 * * gl_FrontColor
3575 * * gl_BackColor
3576 * * gl_FrontSecondaryColor
3577 * * gl_BackSecondaryColor
3578 * * gl_Color
3579 * * gl_SecondaryColor
3580 */
3581 } else if (state->is_version(130, 0)
3582 && (strcmp(var->name, "gl_FrontColor") == 0
3583 || strcmp(var->name, "gl_BackColor") == 0
3584 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3585 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3586 || strcmp(var->name, "gl_Color") == 0
3587 || strcmp(var->name, "gl_SecondaryColor") == 0)
3588 && earlier->type == var->type
3589 && earlier->data.mode == var->data.mode) {
3590 earlier->data.interpolation = var->data.interpolation;
3591
3592 /* Layout qualifiers for gl_FragDepth. */
3593 } else if ((state->AMD_conservative_depth_enable ||
3594 state->ARB_conservative_depth_enable)
3595 && strcmp(var->name, "gl_FragDepth") == 0
3596 && earlier->type == var->type
3597 && earlier->data.mode == var->data.mode) {
3598
3599 /** From the AMD_conservative_depth spec:
3600 * Within any shader, the first redeclarations of gl_FragDepth
3601 * must appear before any use of gl_FragDepth.
3602 */
3603 if (earlier->data.used) {
3604 _mesa_glsl_error(&loc, state,
3605 "the first redeclaration of gl_FragDepth "
3606 "must appear before any use of gl_FragDepth");
3607 }
3608
3609 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3610 if (earlier->data.depth_layout != ir_depth_layout_none
3611 && earlier->data.depth_layout != var->data.depth_layout) {
3612 _mesa_glsl_error(&loc, state,
3613 "gl_FragDepth: depth layout is declared here "
3614 "as '%s, but it was previously declared as "
3615 "'%s'",
3616 depth_layout_string(var->data.depth_layout),
3617 depth_layout_string(earlier->data.depth_layout));
3618 }
3619
3620 earlier->data.depth_layout = var->data.depth_layout;
3621
3622 } else if (allow_all_redeclarations) {
3623 if (earlier->data.mode != var->data.mode) {
3624 _mesa_glsl_error(&loc, state,
3625 "redeclaration of `%s' with incorrect qualifiers",
3626 var->name);
3627 } else if (earlier->type != var->type) {
3628 _mesa_glsl_error(&loc, state,
3629 "redeclaration of `%s' has incorrect type",
3630 var->name);
3631 }
3632 } else {
3633 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3634 }
3635
3636 return earlier;
3637 }
3638
3639 /**
3640 * Generate the IR for an initializer in a variable declaration
3641 */
3642 ir_rvalue *
3643 process_initializer(ir_variable *var, ast_declaration *decl,
3644 ast_fully_specified_type *type,
3645 exec_list *initializer_instructions,
3646 struct _mesa_glsl_parse_state *state)
3647 {
3648 ir_rvalue *result = NULL;
3649
3650 YYLTYPE initializer_loc = decl->initializer->get_location();
3651
3652 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3653 *
3654 * "All uniform variables are read-only and are initialized either
3655 * directly by an application via API commands, or indirectly by
3656 * OpenGL."
3657 */
3658 if (var->data.mode == ir_var_uniform) {
3659 state->check_version(120, 0, &initializer_loc,
3660 "cannot initialize uniform %s",
3661 var->name);
3662 }
3663
3664 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3665 *
3666 * "Buffer variables cannot have initializers."
3667 */
3668 if (var->data.mode == ir_var_shader_storage) {
3669 _mesa_glsl_error(&initializer_loc, state,
3670 "cannot initialize buffer variable %s",
3671 var->name);
3672 }
3673
3674 /* From section 4.1.7 of the GLSL 4.40 spec:
3675 *
3676 * "Opaque variables [...] are initialized only through the
3677 * OpenGL API; they cannot be declared with an initializer in a
3678 * shader."
3679 */
3680 if (var->type->contains_opaque()) {
3681 _mesa_glsl_error(&initializer_loc, state,
3682 "cannot initialize opaque variable %s",
3683 var->name);
3684 }
3685
3686 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3687 _mesa_glsl_error(&initializer_loc, state,
3688 "cannot initialize %s shader input / %s %s",
3689 _mesa_shader_stage_to_string(state->stage),
3690 (state->stage == MESA_SHADER_VERTEX)
3691 ? "attribute" : "varying",
3692 var->name);
3693 }
3694
3695 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3696 _mesa_glsl_error(&initializer_loc, state,
3697 "cannot initialize %s shader output %s",
3698 _mesa_shader_stage_to_string(state->stage),
3699 var->name);
3700 }
3701
3702 /* If the initializer is an ast_aggregate_initializer, recursively store
3703 * type information from the LHS into it, so that its hir() function can do
3704 * type checking.
3705 */
3706 if (decl->initializer->oper == ast_aggregate)
3707 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3708
3709 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3710 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3711
3712 /* Calculate the constant value if this is a const or uniform
3713 * declaration.
3714 *
3715 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3716 *
3717 * "Declarations of globals without a storage qualifier, or with
3718 * just the const qualifier, may include initializers, in which case
3719 * they will be initialized before the first line of main() is
3720 * executed. Such initializers must be a constant expression."
3721 *
3722 * The same section of the GLSL ES 3.00.4 spec has similar language.
3723 */
3724 if (type->qualifier.flags.q.constant
3725 || type->qualifier.flags.q.uniform
3726 || (state->es_shader && state->current_function == NULL)) {
3727 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3728 lhs, rhs, true);
3729 if (new_rhs != NULL) {
3730 rhs = new_rhs;
3731
3732 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3733 * says:
3734 *
3735 * "A constant expression is one of
3736 *
3737 * ...
3738 *
3739 * - an expression formed by an operator on operands that are
3740 * all constant expressions, including getting an element of
3741 * a constant array, or a field of a constant structure, or
3742 * components of a constant vector. However, the sequence
3743 * operator ( , ) and the assignment operators ( =, +=, ...)
3744 * are not included in the operators that can create a
3745 * constant expression."
3746 *
3747 * Section 12.43 (Sequence operator and constant expressions) says:
3748 *
3749 * "Should the following construct be allowed?
3750 *
3751 * float a[2,3];
3752 *
3753 * The expression within the brackets uses the sequence operator
3754 * (',') and returns the integer 3 so the construct is declaring
3755 * a single-dimensional array of size 3. In some languages, the
3756 * construct declares a two-dimensional array. It would be
3757 * preferable to make this construct illegal to avoid confusion.
3758 *
3759 * One possibility is to change the definition of the sequence
3760 * operator so that it does not return a constant-expression and
3761 * hence cannot be used to declare an array size.
3762 *
3763 * RESOLUTION: The result of a sequence operator is not a
3764 * constant-expression."
3765 *
3766 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3767 * contains language almost identical to the section 4.3.3 in the
3768 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3769 * versions.
3770 */
3771 ir_constant *constant_value = rhs->constant_expression_value();
3772 if (!constant_value ||
3773 (state->is_version(430, 300) &&
3774 decl->initializer->has_sequence_subexpression())) {
3775 const char *const variable_mode =
3776 (type->qualifier.flags.q.constant)
3777 ? "const"
3778 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3779
3780 /* If ARB_shading_language_420pack is enabled, initializers of
3781 * const-qualified local variables do not have to be constant
3782 * expressions. Const-qualified global variables must still be
3783 * initialized with constant expressions.
3784 */
3785 if (!state->has_420pack()
3786 || state->current_function == NULL) {
3787 _mesa_glsl_error(& initializer_loc, state,
3788 "initializer of %s variable `%s' must be a "
3789 "constant expression",
3790 variable_mode,
3791 decl->identifier);
3792 if (var->type->is_numeric()) {
3793 /* Reduce cascading errors. */
3794 var->constant_value = type->qualifier.flags.q.constant
3795 ? ir_constant::zero(state, var->type) : NULL;
3796 }
3797 }
3798 } else {
3799 rhs = constant_value;
3800 var->constant_value = type->qualifier.flags.q.constant
3801 ? constant_value : NULL;
3802 }
3803 } else {
3804 if (var->type->is_numeric()) {
3805 /* Reduce cascading errors. */
3806 var->constant_value = type->qualifier.flags.q.constant
3807 ? ir_constant::zero(state, var->type) : NULL;
3808 }
3809 }
3810 }
3811
3812 if (rhs && !rhs->type->is_error()) {
3813 bool temp = var->data.read_only;
3814 if (type->qualifier.flags.q.constant)
3815 var->data.read_only = false;
3816
3817 /* Never emit code to initialize a uniform.
3818 */
3819 const glsl_type *initializer_type;
3820 if (!type->qualifier.flags.q.uniform) {
3821 do_assignment(initializer_instructions, state,
3822 NULL,
3823 lhs, rhs,
3824 &result, true,
3825 true,
3826 type->get_location());
3827 initializer_type = result->type;
3828 } else
3829 initializer_type = rhs->type;
3830
3831 var->constant_initializer = rhs->constant_expression_value();
3832 var->data.has_initializer = true;
3833
3834 /* If the declared variable is an unsized array, it must inherrit
3835 * its full type from the initializer. A declaration such as
3836 *
3837 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3838 *
3839 * becomes
3840 *
3841 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3842 *
3843 * The assignment generated in the if-statement (below) will also
3844 * automatically handle this case for non-uniforms.
3845 *
3846 * If the declared variable is not an array, the types must
3847 * already match exactly. As a result, the type assignment
3848 * here can be done unconditionally. For non-uniforms the call
3849 * to do_assignment can change the type of the initializer (via
3850 * the implicit conversion rules). For uniforms the initializer
3851 * must be a constant expression, and the type of that expression
3852 * was validated above.
3853 */
3854 var->type = initializer_type;
3855
3856 var->data.read_only = temp;
3857 }
3858
3859 return result;
3860 }
3861
3862 static void
3863 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3864 YYLTYPE loc, ir_variable *var,
3865 unsigned num_vertices,
3866 unsigned *size,
3867 const char *var_category)
3868 {
3869 if (var->type->is_unsized_array()) {
3870 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3871 *
3872 * All geometry shader input unsized array declarations will be
3873 * sized by an earlier input layout qualifier, when present, as per
3874 * the following table.
3875 *
3876 * Followed by a table mapping each allowed input layout qualifier to
3877 * the corresponding input length.
3878 *
3879 * Similarly for tessellation control shader outputs.
3880 */
3881 if (num_vertices != 0)
3882 var->type = glsl_type::get_array_instance(var->type->fields.array,
3883 num_vertices);
3884 } else {
3885 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3886 * includes the following examples of compile-time errors:
3887 *
3888 * // code sequence within one shader...
3889 * in vec4 Color1[]; // size unknown
3890 * ...Color1.length()...// illegal, length() unknown
3891 * in vec4 Color2[2]; // size is 2
3892 * ...Color1.length()...// illegal, Color1 still has no size
3893 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3894 * layout(lines) in; // legal, input size is 2, matching
3895 * in vec4 Color4[3]; // illegal, contradicts layout
3896 * ...
3897 *
3898 * To detect the case illustrated by Color3, we verify that the size of
3899 * an explicitly-sized array matches the size of any previously declared
3900 * explicitly-sized array. To detect the case illustrated by Color4, we
3901 * verify that the size of an explicitly-sized array is consistent with
3902 * any previously declared input layout.
3903 */
3904 if (num_vertices != 0 && var->type->length != num_vertices) {
3905 _mesa_glsl_error(&loc, state,
3906 "%s size contradicts previously declared layout "
3907 "(size is %u, but layout requires a size of %u)",
3908 var_category, var->type->length, num_vertices);
3909 } else if (*size != 0 && var->type->length != *size) {
3910 _mesa_glsl_error(&loc, state,
3911 "%s sizes are inconsistent (size is %u, but a "
3912 "previous declaration has size %u)",
3913 var_category, var->type->length, *size);
3914 } else {
3915 *size = var->type->length;
3916 }
3917 }
3918 }
3919
3920 static void
3921 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3922 YYLTYPE loc, ir_variable *var)
3923 {
3924 unsigned num_vertices = 0;
3925
3926 if (state->tcs_output_vertices_specified) {
3927 if (!state->out_qualifier->vertices->
3928 process_qualifier_constant(state, "vertices",
3929 &num_vertices, false)) {
3930 return;
3931 }
3932
3933 if (num_vertices > state->Const.MaxPatchVertices) {
3934 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3935 "GL_MAX_PATCH_VERTICES", num_vertices);
3936 return;
3937 }
3938 }
3939
3940 if (!var->type->is_array() && !var->data.patch) {
3941 _mesa_glsl_error(&loc, state,
3942 "tessellation control shader outputs must be arrays");
3943
3944 /* To avoid cascading failures, short circuit the checks below. */
3945 return;
3946 }
3947
3948 if (var->data.patch)
3949 return;
3950
3951 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3952 &state->tcs_output_size,
3953 "tessellation control shader output");
3954 }
3955
3956 /**
3957 * Do additional processing necessary for tessellation control/evaluation shader
3958 * input declarations. This covers both interface block arrays and bare input
3959 * variables.
3960 */
3961 static void
3962 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3963 YYLTYPE loc, ir_variable *var)
3964 {
3965 if (!var->type->is_array() && !var->data.patch) {
3966 _mesa_glsl_error(&loc, state,
3967 "per-vertex tessellation shader inputs must be arrays");
3968 /* Avoid cascading failures. */
3969 return;
3970 }
3971
3972 if (var->data.patch)
3973 return;
3974
3975 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3976 if (var->type->is_unsized_array()) {
3977 var->type = glsl_type::get_array_instance(var->type->fields.array,
3978 state->Const.MaxPatchVertices);
3979 }
3980 }
3981
3982
3983 /**
3984 * Do additional processing necessary for geometry shader input declarations
3985 * (this covers both interface blocks arrays and bare input variables).
3986 */
3987 static void
3988 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3989 YYLTYPE loc, ir_variable *var)
3990 {
3991 unsigned num_vertices = 0;
3992
3993 if (state->gs_input_prim_type_specified) {
3994 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3995 }
3996
3997 /* Geometry shader input variables must be arrays. Caller should have
3998 * reported an error for this.
3999 */
4000 if (!var->type->is_array()) {
4001 assert(state->error);
4002
4003 /* To avoid cascading failures, short circuit the checks below. */
4004 return;
4005 }
4006
4007 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4008 &state->gs_input_size,
4009 "geometry shader input");
4010 }
4011
4012 void
4013 validate_identifier(const char *identifier, YYLTYPE loc,
4014 struct _mesa_glsl_parse_state *state)
4015 {
4016 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4017 *
4018 * "Identifiers starting with "gl_" are reserved for use by
4019 * OpenGL, and may not be declared in a shader as either a
4020 * variable or a function."
4021 */
4022 if (is_gl_identifier(identifier)) {
4023 _mesa_glsl_error(&loc, state,
4024 "identifier `%s' uses reserved `gl_' prefix",
4025 identifier);
4026 } else if (strstr(identifier, "__")) {
4027 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4028 * spec:
4029 *
4030 * "In addition, all identifiers containing two
4031 * consecutive underscores (__) are reserved as
4032 * possible future keywords."
4033 *
4034 * The intention is that names containing __ are reserved for internal
4035 * use by the implementation, and names prefixed with GL_ are reserved
4036 * for use by Khronos. Names simply containing __ are dangerous to use,
4037 * but should be allowed.
4038 *
4039 * A future version of the GLSL specification will clarify this.
4040 */
4041 _mesa_glsl_warning(&loc, state,
4042 "identifier `%s' uses reserved `__' string",
4043 identifier);
4044 }
4045 }
4046
4047 ir_rvalue *
4048 ast_declarator_list::hir(exec_list *instructions,
4049 struct _mesa_glsl_parse_state *state)
4050 {
4051 void *ctx = state;
4052 const struct glsl_type *decl_type;
4053 const char *type_name = NULL;
4054 ir_rvalue *result = NULL;
4055 YYLTYPE loc = this->get_location();
4056
4057 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4058 *
4059 * "To ensure that a particular output variable is invariant, it is
4060 * necessary to use the invariant qualifier. It can either be used to
4061 * qualify a previously declared variable as being invariant
4062 *
4063 * invariant gl_Position; // make existing gl_Position be invariant"
4064 *
4065 * In these cases the parser will set the 'invariant' flag in the declarator
4066 * list, and the type will be NULL.
4067 */
4068 if (this->invariant) {
4069 assert(this->type == NULL);
4070
4071 if (state->current_function != NULL) {
4072 _mesa_glsl_error(& loc, state,
4073 "all uses of `invariant' keyword must be at global "
4074 "scope");
4075 }
4076
4077 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4078 assert(decl->array_specifier == NULL);
4079 assert(decl->initializer == NULL);
4080
4081 ir_variable *const earlier =
4082 state->symbols->get_variable(decl->identifier);
4083 if (earlier == NULL) {
4084 _mesa_glsl_error(& loc, state,
4085 "undeclared variable `%s' cannot be marked "
4086 "invariant", decl->identifier);
4087 } else if (!is_varying_var(earlier, state->stage)) {
4088 _mesa_glsl_error(&loc, state,
4089 "`%s' cannot be marked invariant; interfaces between "
4090 "shader stages only.", decl->identifier);
4091 } else if (earlier->data.used) {
4092 _mesa_glsl_error(& loc, state,
4093 "variable `%s' may not be redeclared "
4094 "`invariant' after being used",
4095 earlier->name);
4096 } else {
4097 earlier->data.invariant = true;
4098 }
4099 }
4100
4101 /* Invariant redeclarations do not have r-values.
4102 */
4103 return NULL;
4104 }
4105
4106 if (this->precise) {
4107 assert(this->type == NULL);
4108
4109 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4110 assert(decl->array_specifier == NULL);
4111 assert(decl->initializer == NULL);
4112
4113 ir_variable *const earlier =
4114 state->symbols->get_variable(decl->identifier);
4115 if (earlier == NULL) {
4116 _mesa_glsl_error(& loc, state,
4117 "undeclared variable `%s' cannot be marked "
4118 "precise", decl->identifier);
4119 } else if (state->current_function != NULL &&
4120 !state->symbols->name_declared_this_scope(decl->identifier)) {
4121 /* Note: we have to check if we're in a function, since
4122 * builtins are treated as having come from another scope.
4123 */
4124 _mesa_glsl_error(& loc, state,
4125 "variable `%s' from an outer scope may not be "
4126 "redeclared `precise' in this scope",
4127 earlier->name);
4128 } else if (earlier->data.used) {
4129 _mesa_glsl_error(& loc, state,
4130 "variable `%s' may not be redeclared "
4131 "`precise' after being used",
4132 earlier->name);
4133 } else {
4134 earlier->data.precise = true;
4135 }
4136 }
4137
4138 /* Precise redeclarations do not have r-values either. */
4139 return NULL;
4140 }
4141
4142 assert(this->type != NULL);
4143 assert(!this->invariant);
4144 assert(!this->precise);
4145
4146 /* The type specifier may contain a structure definition. Process that
4147 * before any of the variable declarations.
4148 */
4149 (void) this->type->specifier->hir(instructions, state);
4150
4151 decl_type = this->type->glsl_type(& type_name, state);
4152
4153 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4154 * "Buffer variables may only be declared inside interface blocks
4155 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4156 * shader storage blocks. It is a compile-time error to declare buffer
4157 * variables at global scope (outside a block)."
4158 */
4159 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4160 _mesa_glsl_error(&loc, state,
4161 "buffer variables cannot be declared outside "
4162 "interface blocks");
4163 }
4164
4165 /* An offset-qualified atomic counter declaration sets the default
4166 * offset for the next declaration within the same atomic counter
4167 * buffer.
4168 */
4169 if (decl_type && decl_type->contains_atomic()) {
4170 if (type->qualifier.flags.q.explicit_binding &&
4171 type->qualifier.flags.q.explicit_offset) {
4172 unsigned qual_binding;
4173 unsigned qual_offset;
4174 if (process_qualifier_constant(state, &loc, "binding",
4175 type->qualifier.binding,
4176 &qual_binding)
4177 && process_qualifier_constant(state, &loc, "offset",
4178 type->qualifier.offset,
4179 &qual_offset)) {
4180 state->atomic_counter_offsets[qual_binding] = qual_offset;
4181 }
4182 }
4183 }
4184
4185 if (this->declarations.is_empty()) {
4186 /* If there is no structure involved in the program text, there are two
4187 * possible scenarios:
4188 *
4189 * - The program text contained something like 'vec4;'. This is an
4190 * empty declaration. It is valid but weird. Emit a warning.
4191 *
4192 * - The program text contained something like 'S;' and 'S' is not the
4193 * name of a known structure type. This is both invalid and weird.
4194 * Emit an error.
4195 *
4196 * - The program text contained something like 'mediump float;'
4197 * when the programmer probably meant 'precision mediump
4198 * float;' Emit a warning with a description of what they
4199 * probably meant to do.
4200 *
4201 * Note that if decl_type is NULL and there is a structure involved,
4202 * there must have been some sort of error with the structure. In this
4203 * case we assume that an error was already generated on this line of
4204 * code for the structure. There is no need to generate an additional,
4205 * confusing error.
4206 */
4207 assert(this->type->specifier->structure == NULL || decl_type != NULL
4208 || state->error);
4209
4210 if (decl_type == NULL) {
4211 _mesa_glsl_error(&loc, state,
4212 "invalid type `%s' in empty declaration",
4213 type_name);
4214 } else {
4215 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4216 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4217 *
4218 * "The combinations of types and qualifiers that cause
4219 * compile-time or link-time errors are the same whether or not
4220 * the declaration is empty."
4221 */
4222 validate_array_dimensions(decl_type, state, &loc);
4223 }
4224
4225 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4226 /* Empty atomic counter declarations are allowed and useful
4227 * to set the default offset qualifier.
4228 */
4229 return NULL;
4230 } else if (this->type->qualifier.precision != ast_precision_none) {
4231 if (this->type->specifier->structure != NULL) {
4232 _mesa_glsl_error(&loc, state,
4233 "precision qualifiers can't be applied "
4234 "to structures");
4235 } else {
4236 static const char *const precision_names[] = {
4237 "highp",
4238 "highp",
4239 "mediump",
4240 "lowp"
4241 };
4242
4243 _mesa_glsl_warning(&loc, state,
4244 "empty declaration with precision "
4245 "qualifier, to set the default precision, "
4246 "use `precision %s %s;'",
4247 precision_names[this->type->
4248 qualifier.precision],
4249 type_name);
4250 }
4251 } else if (this->type->specifier->structure == NULL) {
4252 _mesa_glsl_warning(&loc, state, "empty declaration");
4253 }
4254 }
4255 }
4256
4257 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4258 const struct glsl_type *var_type;
4259 ir_variable *var;
4260 const char *identifier = decl->identifier;
4261 /* FINISHME: Emit a warning if a variable declaration shadows a
4262 * FINISHME: declaration at a higher scope.
4263 */
4264
4265 if ((decl_type == NULL) || decl_type->is_void()) {
4266 if (type_name != NULL) {
4267 _mesa_glsl_error(& loc, state,
4268 "invalid type `%s' in declaration of `%s'",
4269 type_name, decl->identifier);
4270 } else {
4271 _mesa_glsl_error(& loc, state,
4272 "invalid type in declaration of `%s'",
4273 decl->identifier);
4274 }
4275 continue;
4276 }
4277
4278 if (this->type->qualifier.flags.q.subroutine) {
4279 const glsl_type *t;
4280 const char *name;
4281
4282 t = state->symbols->get_type(this->type->specifier->type_name);
4283 if (!t)
4284 _mesa_glsl_error(& loc, state,
4285 "invalid type in declaration of `%s'",
4286 decl->identifier);
4287 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4288
4289 identifier = name;
4290
4291 }
4292 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4293 state);
4294
4295 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4296
4297 /* The 'varying in' and 'varying out' qualifiers can only be used with
4298 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4299 * yet.
4300 */
4301 if (this->type->qualifier.flags.q.varying) {
4302 if (this->type->qualifier.flags.q.in) {
4303 _mesa_glsl_error(& loc, state,
4304 "`varying in' qualifier in declaration of "
4305 "`%s' only valid for geometry shaders using "
4306 "ARB_geometry_shader4 or EXT_geometry_shader4",
4307 decl->identifier);
4308 } else if (this->type->qualifier.flags.q.out) {
4309 _mesa_glsl_error(& loc, state,
4310 "`varying out' qualifier in declaration of "
4311 "`%s' only valid for geometry shaders using "
4312 "ARB_geometry_shader4 or EXT_geometry_shader4",
4313 decl->identifier);
4314 }
4315 }
4316
4317 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4318 *
4319 * "Global variables can only use the qualifiers const,
4320 * attribute, uniform, or varying. Only one may be
4321 * specified.
4322 *
4323 * Local variables can only use the qualifier const."
4324 *
4325 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4326 * any extension that adds the 'layout' keyword.
4327 */
4328 if (!state->is_version(130, 300)
4329 && !state->has_explicit_attrib_location()
4330 && !state->has_separate_shader_objects()
4331 && !state->ARB_fragment_coord_conventions_enable) {
4332 if (this->type->qualifier.flags.q.out) {
4333 _mesa_glsl_error(& loc, state,
4334 "`out' qualifier in declaration of `%s' "
4335 "only valid for function parameters in %s",
4336 decl->identifier, state->get_version_string());
4337 }
4338 if (this->type->qualifier.flags.q.in) {
4339 _mesa_glsl_error(& loc, state,
4340 "`in' qualifier in declaration of `%s' "
4341 "only valid for function parameters in %s",
4342 decl->identifier, state->get_version_string());
4343 }
4344 /* FINISHME: Test for other invalid qualifiers. */
4345 }
4346
4347 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4348 & loc, false);
4349 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4350 &loc);
4351
4352 if (this->type->qualifier.flags.q.invariant) {
4353 if (!is_varying_var(var, state->stage)) {
4354 _mesa_glsl_error(&loc, state,
4355 "`%s' cannot be marked invariant; interfaces between "
4356 "shader stages only", var->name);
4357 }
4358 }
4359
4360 if (state->current_function != NULL) {
4361 const char *mode = NULL;
4362 const char *extra = "";
4363
4364 /* There is no need to check for 'inout' here because the parser will
4365 * only allow that in function parameter lists.
4366 */
4367 if (this->type->qualifier.flags.q.attribute) {
4368 mode = "attribute";
4369 } else if (this->type->qualifier.flags.q.subroutine) {
4370 mode = "subroutine uniform";
4371 } else if (this->type->qualifier.flags.q.uniform) {
4372 mode = "uniform";
4373 } else if (this->type->qualifier.flags.q.varying) {
4374 mode = "varying";
4375 } else if (this->type->qualifier.flags.q.in) {
4376 mode = "in";
4377 extra = " or in function parameter list";
4378 } else if (this->type->qualifier.flags.q.out) {
4379 mode = "out";
4380 extra = " or in function parameter list";
4381 }
4382
4383 if (mode) {
4384 _mesa_glsl_error(& loc, state,
4385 "%s variable `%s' must be declared at "
4386 "global scope%s",
4387 mode, var->name, extra);
4388 }
4389 } else if (var->data.mode == ir_var_shader_in) {
4390 var->data.read_only = true;
4391
4392 if (state->stage == MESA_SHADER_VERTEX) {
4393 bool error_emitted = false;
4394
4395 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4396 *
4397 * "Vertex shader inputs can only be float, floating-point
4398 * vectors, matrices, signed and unsigned integers and integer
4399 * vectors. Vertex shader inputs can also form arrays of these
4400 * types, but not structures."
4401 *
4402 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4403 *
4404 * "Vertex shader inputs can only be float, floating-point
4405 * vectors, matrices, signed and unsigned integers and integer
4406 * vectors. They cannot be arrays or structures."
4407 *
4408 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4409 *
4410 * "The attribute qualifier can be used only with float,
4411 * floating-point vectors, and matrices. Attribute variables
4412 * cannot be declared as arrays or structures."
4413 *
4414 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4415 *
4416 * "Vertex shader inputs can only be float, floating-point
4417 * vectors, matrices, signed and unsigned integers and integer
4418 * vectors. Vertex shader inputs cannot be arrays or
4419 * structures."
4420 */
4421 const glsl_type *check_type = var->type->without_array();
4422
4423 switch (check_type->base_type) {
4424 case GLSL_TYPE_FLOAT:
4425 break;
4426 case GLSL_TYPE_UINT:
4427 case GLSL_TYPE_INT:
4428 if (state->is_version(120, 300))
4429 break;
4430 case GLSL_TYPE_DOUBLE:
4431 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4432 break;
4433 /* FALLTHROUGH */
4434 default:
4435 _mesa_glsl_error(& loc, state,
4436 "vertex shader input / attribute cannot have "
4437 "type %s`%s'",
4438 var->type->is_array() ? "array of " : "",
4439 check_type->name);
4440 error_emitted = true;
4441 }
4442
4443 if (!error_emitted && var->type->is_array() &&
4444 !state->check_version(150, 0, &loc,
4445 "vertex shader input / attribute "
4446 "cannot have array type")) {
4447 error_emitted = true;
4448 }
4449 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4450 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4451 *
4452 * Geometry shader input variables get the per-vertex values
4453 * written out by vertex shader output variables of the same
4454 * names. Since a geometry shader operates on a set of
4455 * vertices, each input varying variable (or input block, see
4456 * interface blocks below) needs to be declared as an array.
4457 */
4458 if (!var->type->is_array()) {
4459 _mesa_glsl_error(&loc, state,
4460 "geometry shader inputs must be arrays");
4461 }
4462
4463 handle_geometry_shader_input_decl(state, loc, var);
4464 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4465 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4466 *
4467 * It is a compile-time error to declare a fragment shader
4468 * input with, or that contains, any of the following types:
4469 *
4470 * * A boolean type
4471 * * An opaque type
4472 * * An array of arrays
4473 * * An array of structures
4474 * * A structure containing an array
4475 * * A structure containing a structure
4476 */
4477 if (state->es_shader) {
4478 const glsl_type *check_type = var->type->without_array();
4479 if (check_type->is_boolean() ||
4480 check_type->contains_opaque()) {
4481 _mesa_glsl_error(&loc, state,
4482 "fragment shader input cannot have type %s",
4483 check_type->name);
4484 }
4485 if (var->type->is_array() &&
4486 var->type->fields.array->is_array()) {
4487 _mesa_glsl_error(&loc, state,
4488 "%s shader output "
4489 "cannot have an array of arrays",
4490 _mesa_shader_stage_to_string(state->stage));
4491 }
4492 if (var->type->is_array() &&
4493 var->type->fields.array->is_record()) {
4494 _mesa_glsl_error(&loc, state,
4495 "fragment shader input "
4496 "cannot have an array of structs");
4497 }
4498 if (var->type->is_record()) {
4499 for (unsigned i = 0; i < var->type->length; i++) {
4500 if (var->type->fields.structure[i].type->is_array() ||
4501 var->type->fields.structure[i].type->is_record())
4502 _mesa_glsl_error(&loc, state,
4503 "fragement shader input cannot have "
4504 "a struct that contains an "
4505 "array or struct");
4506 }
4507 }
4508 }
4509 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4510 state->stage == MESA_SHADER_TESS_EVAL) {
4511 handle_tess_shader_input_decl(state, loc, var);
4512 }
4513 } else if (var->data.mode == ir_var_shader_out) {
4514 const glsl_type *check_type = var->type->without_array();
4515
4516 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4517 *
4518 * It is a compile-time error to declare a vertex, tessellation
4519 * evaluation, tessellation control, or geometry shader output
4520 * that contains any of the following:
4521 *
4522 * * A Boolean type (bool, bvec2 ...)
4523 * * An opaque type
4524 */
4525 if (check_type->is_boolean() || check_type->contains_opaque())
4526 _mesa_glsl_error(&loc, state,
4527 "%s shader output cannot have type %s",
4528 _mesa_shader_stage_to_string(state->stage),
4529 check_type->name);
4530
4531 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4532 *
4533 * It is a compile-time error to declare a fragment shader output
4534 * that contains any of the following:
4535 *
4536 * * A Boolean type (bool, bvec2 ...)
4537 * * A double-precision scalar or vector (double, dvec2 ...)
4538 * * An opaque type
4539 * * Any matrix type
4540 * * A structure
4541 */
4542 if (state->stage == MESA_SHADER_FRAGMENT) {
4543 if (check_type->is_record() || check_type->is_matrix())
4544 _mesa_glsl_error(&loc, state,
4545 "fragment shader output "
4546 "cannot have struct or matrix type");
4547 switch (check_type->base_type) {
4548 case GLSL_TYPE_UINT:
4549 case GLSL_TYPE_INT:
4550 case GLSL_TYPE_FLOAT:
4551 break;
4552 default:
4553 _mesa_glsl_error(&loc, state,
4554 "fragment shader output cannot have "
4555 "type %s", check_type->name);
4556 }
4557 }
4558
4559 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4560 *
4561 * It is a compile-time error to declare a vertex shader output
4562 * with, or that contains, any of the following types:
4563 *
4564 * * A boolean type
4565 * * An opaque type
4566 * * An array of arrays
4567 * * An array of structures
4568 * * A structure containing an array
4569 * * A structure containing a structure
4570 *
4571 * It is a compile-time error to declare a fragment shader output
4572 * with, or that contains, any of the following types:
4573 *
4574 * * A boolean type
4575 * * An opaque type
4576 * * A matrix
4577 * * A structure
4578 * * An array of array
4579 */
4580 if (state->es_shader) {
4581 if (var->type->is_array() &&
4582 var->type->fields.array->is_array()) {
4583 _mesa_glsl_error(&loc, state,
4584 "%s shader output "
4585 "cannot have an array of arrays",
4586 _mesa_shader_stage_to_string(state->stage));
4587 }
4588 if (state->stage == MESA_SHADER_VERTEX) {
4589 if (var->type->is_array() &&
4590 var->type->fields.array->is_record()) {
4591 _mesa_glsl_error(&loc, state,
4592 "vertex shader output "
4593 "cannot have an array of structs");
4594 }
4595 if (var->type->is_record()) {
4596 for (unsigned i = 0; i < var->type->length; i++) {
4597 if (var->type->fields.structure[i].type->is_array() ||
4598 var->type->fields.structure[i].type->is_record())
4599 _mesa_glsl_error(&loc, state,
4600 "vertex shader output cannot have a "
4601 "struct that contains an "
4602 "array or struct");
4603 }
4604 }
4605 }
4606 }
4607
4608 if (state->stage == MESA_SHADER_TESS_CTRL) {
4609 handle_tess_ctrl_shader_output_decl(state, loc, var);
4610 }
4611 } else if (var->type->contains_subroutine()) {
4612 /* declare subroutine uniforms as hidden */
4613 var->data.how_declared = ir_var_hidden;
4614 }
4615
4616 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4617 * so must integer vertex outputs.
4618 *
4619 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4620 * "Fragment shader inputs that are signed or unsigned integers or
4621 * integer vectors must be qualified with the interpolation qualifier
4622 * flat."
4623 *
4624 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4625 * "Fragment shader inputs that are, or contain, signed or unsigned
4626 * integers or integer vectors must be qualified with the
4627 * interpolation qualifier flat."
4628 *
4629 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4630 * "Vertex shader outputs that are, or contain, signed or unsigned
4631 * integers or integer vectors must be qualified with the
4632 * interpolation qualifier flat."
4633 *
4634 * Note that prior to GLSL 1.50, this requirement applied to vertex
4635 * outputs rather than fragment inputs. That creates problems in the
4636 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4637 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4638 * apply the restriction to both vertex outputs and fragment inputs.
4639 *
4640 * Note also that the desktop GLSL specs are missing the text "or
4641 * contain"; this is presumably an oversight, since there is no
4642 * reasonable way to interpolate a fragment shader input that contains
4643 * an integer.
4644 */
4645 if (state->is_version(130, 300) &&
4646 var->type->contains_integer() &&
4647 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4648 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4649 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4650 && state->es_shader))) {
4651 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4652 "vertex output" : "fragment input";
4653 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4654 "an integer, then it must be qualified with 'flat'",
4655 var_type);
4656 }
4657
4658 /* Double fragment inputs must be qualified with 'flat'. */
4659 if (var->type->contains_double() &&
4660 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4661 state->stage == MESA_SHADER_FRAGMENT &&
4662 var->data.mode == ir_var_shader_in) {
4663 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4664 "a double, then it must be qualified with 'flat'",
4665 var_type);
4666 }
4667
4668 /* Interpolation qualifiers cannot be applied to 'centroid' and
4669 * 'centroid varying'.
4670 *
4671 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4672 * "interpolation qualifiers may only precede the qualifiers in,
4673 * centroid in, out, or centroid out in a declaration. They do not apply
4674 * to the deprecated storage qualifiers varying or centroid varying."
4675 *
4676 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4677 */
4678 if (state->is_version(130, 0)
4679 && this->type->qualifier.has_interpolation()
4680 && this->type->qualifier.flags.q.varying) {
4681
4682 const char *i = this->type->qualifier.interpolation_string();
4683 assert(i != NULL);
4684 const char *s;
4685 if (this->type->qualifier.flags.q.centroid)
4686 s = "centroid varying";
4687 else
4688 s = "varying";
4689
4690 _mesa_glsl_error(&loc, state,
4691 "qualifier '%s' cannot be applied to the "
4692 "deprecated storage qualifier '%s'", i, s);
4693 }
4694
4695
4696 /* Interpolation qualifiers can only apply to vertex shader outputs and
4697 * fragment shader inputs.
4698 *
4699 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4700 * "Outputs from a vertex shader (out) and inputs to a fragment
4701 * shader (in) can be further qualified with one or more of these
4702 * interpolation qualifiers"
4703 *
4704 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4705 * "These interpolation qualifiers may only precede the qualifiers
4706 * in, centroid in, out, or centroid out in a declaration. They do
4707 * not apply to inputs into a vertex shader or outputs from a
4708 * fragment shader."
4709 */
4710 if (state->is_version(130, 300)
4711 && this->type->qualifier.has_interpolation()) {
4712
4713 const char *i = this->type->qualifier.interpolation_string();
4714 assert(i != NULL);
4715
4716 switch (state->stage) {
4717 case MESA_SHADER_VERTEX:
4718 if (this->type->qualifier.flags.q.in) {
4719 _mesa_glsl_error(&loc, state,
4720 "qualifier '%s' cannot be applied to vertex "
4721 "shader inputs", i);
4722 }
4723 break;
4724 case MESA_SHADER_FRAGMENT:
4725 if (this->type->qualifier.flags.q.out) {
4726 _mesa_glsl_error(&loc, state,
4727 "qualifier '%s' cannot be applied to fragment "
4728 "shader outputs", i);
4729 }
4730 break;
4731 default:
4732 break;
4733 }
4734 }
4735
4736
4737 /* From section 4.3.4 of the GLSL 4.00 spec:
4738 * "Input variables may not be declared using the patch in qualifier
4739 * in tessellation control or geometry shaders."
4740 *
4741 * From section 4.3.6 of the GLSL 4.00 spec:
4742 * "It is an error to use patch out in a vertex, tessellation
4743 * evaluation, or geometry shader."
4744 *
4745 * This doesn't explicitly forbid using them in a fragment shader, but
4746 * that's probably just an oversight.
4747 */
4748 if (state->stage != MESA_SHADER_TESS_EVAL
4749 && this->type->qualifier.flags.q.patch
4750 && this->type->qualifier.flags.q.in) {
4751
4752 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4753 "tessellation evaluation shader");
4754 }
4755
4756 if (state->stage != MESA_SHADER_TESS_CTRL
4757 && this->type->qualifier.flags.q.patch
4758 && this->type->qualifier.flags.q.out) {
4759
4760 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4761 "tessellation control shader");
4762 }
4763
4764 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4765 */
4766 if (this->type->qualifier.precision != ast_precision_none) {
4767 state->check_precision_qualifiers_allowed(&loc);
4768 }
4769
4770
4771 /* If a precision qualifier is allowed on a type, it is allowed on
4772 * an array of that type.
4773 */
4774 if (!(this->type->qualifier.precision == ast_precision_none
4775 || precision_qualifier_allowed(var->type->without_array()))) {
4776
4777 _mesa_glsl_error(&loc, state,
4778 "precision qualifiers apply only to floating point"
4779 ", integer and opaque types");
4780 }
4781
4782 /* From section 4.1.7 of the GLSL 4.40 spec:
4783 *
4784 * "[Opaque types] can only be declared as function
4785 * parameters or uniform-qualified variables."
4786 */
4787 if (var_type->contains_opaque() &&
4788 !this->type->qualifier.flags.q.uniform) {
4789 _mesa_glsl_error(&loc, state,
4790 "opaque variables must be declared uniform");
4791 }
4792
4793 /* Process the initializer and add its instructions to a temporary
4794 * list. This list will be added to the instruction stream (below) after
4795 * the declaration is added. This is done because in some cases (such as
4796 * redeclarations) the declaration may not actually be added to the
4797 * instruction stream.
4798 */
4799 exec_list initializer_instructions;
4800
4801 /* Examine var name here since var may get deleted in the next call */
4802 bool var_is_gl_id = is_gl_identifier(var->name);
4803
4804 ir_variable *earlier =
4805 get_variable_being_redeclared(var, decl->get_location(), state,
4806 false /* allow_all_redeclarations */);
4807 if (earlier != NULL) {
4808 if (var_is_gl_id &&
4809 earlier->data.how_declared == ir_var_declared_in_block) {
4810 _mesa_glsl_error(&loc, state,
4811 "`%s' has already been redeclared using "
4812 "gl_PerVertex", earlier->name);
4813 }
4814 earlier->data.how_declared = ir_var_declared_normally;
4815 }
4816
4817 if (decl->initializer != NULL) {
4818 result = process_initializer((earlier == NULL) ? var : earlier,
4819 decl, this->type,
4820 &initializer_instructions, state);
4821 } else {
4822 validate_array_dimensions(var_type, state, &loc);
4823 }
4824
4825 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4826 *
4827 * "It is an error to write to a const variable outside of
4828 * its declaration, so they must be initialized when
4829 * declared."
4830 */
4831 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4832 _mesa_glsl_error(& loc, state,
4833 "const declaration of `%s' must be initialized",
4834 decl->identifier);
4835 }
4836
4837 if (state->es_shader) {
4838 const glsl_type *const t = (earlier == NULL)
4839 ? var->type : earlier->type;
4840
4841 if (t->is_unsized_array())
4842 /* Section 10.17 of the GLSL ES 1.00 specification states that
4843 * unsized array declarations have been removed from the language.
4844 * Arrays that are sized using an initializer are still explicitly
4845 * sized. However, GLSL ES 1.00 does not allow array
4846 * initializers. That is only allowed in GLSL ES 3.00.
4847 *
4848 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4849 *
4850 * "An array type can also be formed without specifying a size
4851 * if the definition includes an initializer:
4852 *
4853 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4854 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4855 *
4856 * float a[5];
4857 * float b[] = a;"
4858 */
4859 _mesa_glsl_error(& loc, state,
4860 "unsized array declarations are not allowed in "
4861 "GLSL ES");
4862 }
4863
4864 /* If the declaration is not a redeclaration, there are a few additional
4865 * semantic checks that must be applied. In addition, variable that was
4866 * created for the declaration should be added to the IR stream.
4867 */
4868 if (earlier == NULL) {
4869 validate_identifier(decl->identifier, loc, state);
4870
4871 /* Add the variable to the symbol table. Note that the initializer's
4872 * IR was already processed earlier (though it hasn't been emitted
4873 * yet), without the variable in scope.
4874 *
4875 * This differs from most C-like languages, but it follows the GLSL
4876 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4877 * spec:
4878 *
4879 * "Within a declaration, the scope of a name starts immediately
4880 * after the initializer if present or immediately after the name
4881 * being declared if not."
4882 */
4883 if (!state->symbols->add_variable(var)) {
4884 YYLTYPE loc = this->get_location();
4885 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4886 "current scope", decl->identifier);
4887 continue;
4888 }
4889
4890 /* Push the variable declaration to the top. It means that all the
4891 * variable declarations will appear in a funny last-to-first order,
4892 * but otherwise we run into trouble if a function is prototyped, a
4893 * global var is decled, then the function is defined with usage of
4894 * the global var. See glslparsertest's CorrectModule.frag.
4895 */
4896 instructions->push_head(var);
4897 }
4898
4899 instructions->append_list(&initializer_instructions);
4900 }
4901
4902
4903 /* Generally, variable declarations do not have r-values. However,
4904 * one is used for the declaration in
4905 *
4906 * while (bool b = some_condition()) {
4907 * ...
4908 * }
4909 *
4910 * so we return the rvalue from the last seen declaration here.
4911 */
4912 return result;
4913 }
4914
4915
4916 ir_rvalue *
4917 ast_parameter_declarator::hir(exec_list *instructions,
4918 struct _mesa_glsl_parse_state *state)
4919 {
4920 void *ctx = state;
4921 const struct glsl_type *type;
4922 const char *name = NULL;
4923 YYLTYPE loc = this->get_location();
4924
4925 type = this->type->glsl_type(& name, state);
4926
4927 if (type == NULL) {
4928 if (name != NULL) {
4929 _mesa_glsl_error(& loc, state,
4930 "invalid type `%s' in declaration of `%s'",
4931 name, this->identifier);
4932 } else {
4933 _mesa_glsl_error(& loc, state,
4934 "invalid type in declaration of `%s'",
4935 this->identifier);
4936 }
4937
4938 type = glsl_type::error_type;
4939 }
4940
4941 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4942 *
4943 * "Functions that accept no input arguments need not use void in the
4944 * argument list because prototypes (or definitions) are required and
4945 * therefore there is no ambiguity when an empty argument list "( )" is
4946 * declared. The idiom "(void)" as a parameter list is provided for
4947 * convenience."
4948 *
4949 * Placing this check here prevents a void parameter being set up
4950 * for a function, which avoids tripping up checks for main taking
4951 * parameters and lookups of an unnamed symbol.
4952 */
4953 if (type->is_void()) {
4954 if (this->identifier != NULL)
4955 _mesa_glsl_error(& loc, state,
4956 "named parameter cannot have type `void'");
4957
4958 is_void = true;
4959 return NULL;
4960 }
4961
4962 if (formal_parameter && (this->identifier == NULL)) {
4963 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4964 return NULL;
4965 }
4966
4967 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4968 * call already handled the "vec4[..] foo" case.
4969 */
4970 type = process_array_type(&loc, type, this->array_specifier, state);
4971
4972 if (!type->is_error() && type->is_unsized_array()) {
4973 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4974 "a declared size");
4975 type = glsl_type::error_type;
4976 }
4977
4978 is_void = false;
4979 ir_variable *var = new(ctx)
4980 ir_variable(type, this->identifier, ir_var_function_in);
4981
4982 /* Apply any specified qualifiers to the parameter declaration. Note that
4983 * for function parameters the default mode is 'in'.
4984 */
4985 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4986 true);
4987
4988 /* From section 4.1.7 of the GLSL 4.40 spec:
4989 *
4990 * "Opaque variables cannot be treated as l-values; hence cannot
4991 * be used as out or inout function parameters, nor can they be
4992 * assigned into."
4993 */
4994 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4995 && type->contains_opaque()) {
4996 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4997 "contain opaque variables");
4998 type = glsl_type::error_type;
4999 }
5000
5001 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5002 *
5003 * "When calling a function, expressions that do not evaluate to
5004 * l-values cannot be passed to parameters declared as out or inout."
5005 *
5006 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5007 *
5008 * "Other binary or unary expressions, non-dereferenced arrays,
5009 * function names, swizzles with repeated fields, and constants
5010 * cannot be l-values."
5011 *
5012 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5013 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5014 */
5015 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5016 && type->is_array()
5017 && !state->check_version(120, 100, &loc,
5018 "arrays cannot be out or inout parameters")) {
5019 type = glsl_type::error_type;
5020 }
5021
5022 instructions->push_tail(var);
5023
5024 /* Parameter declarations do not have r-values.
5025 */
5026 return NULL;
5027 }
5028
5029
5030 void
5031 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5032 bool formal,
5033 exec_list *ir_parameters,
5034 _mesa_glsl_parse_state *state)
5035 {
5036 ast_parameter_declarator *void_param = NULL;
5037 unsigned count = 0;
5038
5039 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5040 param->formal_parameter = formal;
5041 param->hir(ir_parameters, state);
5042
5043 if (param->is_void)
5044 void_param = param;
5045
5046 count++;
5047 }
5048
5049 if ((void_param != NULL) && (count > 1)) {
5050 YYLTYPE loc = void_param->get_location();
5051
5052 _mesa_glsl_error(& loc, state,
5053 "`void' parameter must be only parameter");
5054 }
5055 }
5056
5057
5058 void
5059 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5060 {
5061 /* IR invariants disallow function declarations or definitions
5062 * nested within other function definitions. But there is no
5063 * requirement about the relative order of function declarations
5064 * and definitions with respect to one another. So simply insert
5065 * the new ir_function block at the end of the toplevel instruction
5066 * list.
5067 */
5068 state->toplevel_ir->push_tail(f);
5069 }
5070
5071
5072 ir_rvalue *
5073 ast_function::hir(exec_list *instructions,
5074 struct _mesa_glsl_parse_state *state)
5075 {
5076 void *ctx = state;
5077 ir_function *f = NULL;
5078 ir_function_signature *sig = NULL;
5079 exec_list hir_parameters;
5080 YYLTYPE loc = this->get_location();
5081
5082 const char *const name = identifier;
5083
5084 /* New functions are always added to the top-level IR instruction stream,
5085 * so this instruction list pointer is ignored. See also emit_function
5086 * (called below).
5087 */
5088 (void) instructions;
5089
5090 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5091 *
5092 * "Function declarations (prototypes) cannot occur inside of functions;
5093 * they must be at global scope, or for the built-in functions, outside
5094 * the global scope."
5095 *
5096 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5097 *
5098 * "User defined functions may only be defined within the global scope."
5099 *
5100 * Note that this language does not appear in GLSL 1.10.
5101 */
5102 if ((state->current_function != NULL) &&
5103 state->is_version(120, 100)) {
5104 YYLTYPE loc = this->get_location();
5105 _mesa_glsl_error(&loc, state,
5106 "declaration of function `%s' not allowed within "
5107 "function body", name);
5108 }
5109
5110 validate_identifier(name, this->get_location(), state);
5111
5112 /* Convert the list of function parameters to HIR now so that they can be
5113 * used below to compare this function's signature with previously seen
5114 * signatures for functions with the same name.
5115 */
5116 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5117 is_definition,
5118 & hir_parameters, state);
5119
5120 const char *return_type_name;
5121 const glsl_type *return_type =
5122 this->return_type->glsl_type(& return_type_name, state);
5123
5124 if (!return_type) {
5125 YYLTYPE loc = this->get_location();
5126 _mesa_glsl_error(&loc, state,
5127 "function `%s' has undeclared return type `%s'",
5128 name, return_type_name);
5129 return_type = glsl_type::error_type;
5130 }
5131
5132 /* ARB_shader_subroutine states:
5133 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5134 * subroutine(...) to a function declaration."
5135 */
5136 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5137 YYLTYPE loc = this->get_location();
5138 _mesa_glsl_error(&loc, state,
5139 "function declaration `%s' cannot have subroutine prepended",
5140 name);
5141 }
5142
5143 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5144 * "No qualifier is allowed on the return type of a function."
5145 */
5146 if (this->return_type->has_qualifiers(state)) {
5147 YYLTYPE loc = this->get_location();
5148 _mesa_glsl_error(& loc, state,
5149 "function `%s' return type has qualifiers", name);
5150 }
5151
5152 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5153 *
5154 * "Arrays are allowed as arguments and as the return type. In both
5155 * cases, the array must be explicitly sized."
5156 */
5157 if (return_type->is_unsized_array()) {
5158 YYLTYPE loc = this->get_location();
5159 _mesa_glsl_error(& loc, state,
5160 "function `%s' return type array must be explicitly "
5161 "sized", name);
5162 }
5163
5164 /* From section 4.1.7 of the GLSL 4.40 spec:
5165 *
5166 * "[Opaque types] can only be declared as function parameters
5167 * or uniform-qualified variables."
5168 */
5169 if (return_type->contains_opaque()) {
5170 YYLTYPE loc = this->get_location();
5171 _mesa_glsl_error(&loc, state,
5172 "function `%s' return type can't contain an opaque type",
5173 name);
5174 }
5175
5176 /* Create an ir_function if one doesn't already exist. */
5177 f = state->symbols->get_function(name);
5178 if (f == NULL) {
5179 f = new(ctx) ir_function(name);
5180 if (!this->return_type->qualifier.flags.q.subroutine) {
5181 if (!state->symbols->add_function(f)) {
5182 /* This function name shadows a non-function use of the same name. */
5183 YYLTYPE loc = this->get_location();
5184 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5185 "non-function", name);
5186 return NULL;
5187 }
5188 }
5189 emit_function(state, f);
5190 }
5191
5192 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5193 *
5194 * "A shader cannot redefine or overload built-in functions."
5195 *
5196 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5197 *
5198 * "User code can overload the built-in functions but cannot redefine
5199 * them."
5200 */
5201 if (state->es_shader && state->language_version >= 300) {
5202 /* Local shader has no exact candidates; check the built-ins. */
5203 _mesa_glsl_initialize_builtin_functions();
5204 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5205 YYLTYPE loc = this->get_location();
5206 _mesa_glsl_error(& loc, state,
5207 "A shader cannot redefine or overload built-in "
5208 "function `%s' in GLSL ES 3.00", name);
5209 return NULL;
5210 }
5211 }
5212
5213 /* Verify that this function's signature either doesn't match a previously
5214 * seen signature for a function with the same name, or, if a match is found,
5215 * that the previously seen signature does not have an associated definition.
5216 */
5217 if (state->es_shader || f->has_user_signature()) {
5218 sig = f->exact_matching_signature(state, &hir_parameters);
5219 if (sig != NULL) {
5220 const char *badvar = sig->qualifiers_match(&hir_parameters);
5221 if (badvar != NULL) {
5222 YYLTYPE loc = this->get_location();
5223
5224 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5225 "qualifiers don't match prototype", name, badvar);
5226 }
5227
5228 if (sig->return_type != return_type) {
5229 YYLTYPE loc = this->get_location();
5230
5231 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5232 "match prototype", name);
5233 }
5234
5235 if (sig->is_defined) {
5236 if (is_definition) {
5237 YYLTYPE loc = this->get_location();
5238 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5239 } else {
5240 /* We just encountered a prototype that exactly matches a
5241 * function that's already been defined. This is redundant,
5242 * and we should ignore it.
5243 */
5244 return NULL;
5245 }
5246 }
5247 }
5248 }
5249
5250 /* Verify the return type of main() */
5251 if (strcmp(name, "main") == 0) {
5252 if (! return_type->is_void()) {
5253 YYLTYPE loc = this->get_location();
5254
5255 _mesa_glsl_error(& loc, state, "main() must return void");
5256 }
5257
5258 if (!hir_parameters.is_empty()) {
5259 YYLTYPE loc = this->get_location();
5260
5261 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5262 }
5263 }
5264
5265 /* Finish storing the information about this new function in its signature.
5266 */
5267 if (sig == NULL) {
5268 sig = new(ctx) ir_function_signature(return_type);
5269 f->add_signature(sig);
5270 }
5271
5272 sig->replace_parameters(&hir_parameters);
5273 signature = sig;
5274
5275 if (this->return_type->qualifier.flags.q.subroutine_def) {
5276 int idx;
5277
5278 if (this->return_type->qualifier.flags.q.explicit_index) {
5279 unsigned qual_index;
5280 if (process_qualifier_constant(state, &loc, "index",
5281 this->return_type->qualifier.index,
5282 &qual_index)) {
5283 if (!state->has_explicit_uniform_location()) {
5284 _mesa_glsl_error(&loc, state, "subroutine index requires "
5285 "GL_ARB_explicit_uniform_location or "
5286 "GLSL 4.30");
5287 } else if (qual_index >= MAX_SUBROUTINES) {
5288 _mesa_glsl_error(&loc, state,
5289 "invalid subroutine index (%d) index must "
5290 "be a number between 0 and "
5291 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5292 MAX_SUBROUTINES - 1);
5293 } else {
5294 f->subroutine_index = qual_index;
5295 }
5296 }
5297 }
5298
5299 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5300 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5301 f->num_subroutine_types);
5302 idx = 0;
5303 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5304 const struct glsl_type *type;
5305 /* the subroutine type must be already declared */
5306 type = state->symbols->get_type(decl->identifier);
5307 if (!type) {
5308 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5309 }
5310 f->subroutine_types[idx++] = type;
5311 }
5312 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5313 ir_function *,
5314 state->num_subroutines + 1);
5315 state->subroutines[state->num_subroutines] = f;
5316 state->num_subroutines++;
5317
5318 }
5319
5320 if (this->return_type->qualifier.flags.q.subroutine) {
5321 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5322 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5323 return NULL;
5324 }
5325 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5326 ir_function *,
5327 state->num_subroutine_types + 1);
5328 state->subroutine_types[state->num_subroutine_types] = f;
5329 state->num_subroutine_types++;
5330
5331 f->is_subroutine = true;
5332 }
5333
5334 /* Function declarations (prototypes) do not have r-values.
5335 */
5336 return NULL;
5337 }
5338
5339
5340 ir_rvalue *
5341 ast_function_definition::hir(exec_list *instructions,
5342 struct _mesa_glsl_parse_state *state)
5343 {
5344 prototype->is_definition = true;
5345 prototype->hir(instructions, state);
5346
5347 ir_function_signature *signature = prototype->signature;
5348 if (signature == NULL)
5349 return NULL;
5350
5351 assert(state->current_function == NULL);
5352 state->current_function = signature;
5353 state->found_return = false;
5354
5355 /* Duplicate parameters declared in the prototype as concrete variables.
5356 * Add these to the symbol table.
5357 */
5358 state->symbols->push_scope();
5359 foreach_in_list(ir_variable, var, &signature->parameters) {
5360 assert(var->as_variable() != NULL);
5361
5362 /* The only way a parameter would "exist" is if two parameters have
5363 * the same name.
5364 */
5365 if (state->symbols->name_declared_this_scope(var->name)) {
5366 YYLTYPE loc = this->get_location();
5367
5368 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5369 } else {
5370 state->symbols->add_variable(var);
5371 }
5372 }
5373
5374 /* Convert the body of the function to HIR. */
5375 this->body->hir(&signature->body, state);
5376 signature->is_defined = true;
5377
5378 state->symbols->pop_scope();
5379
5380 assert(state->current_function == signature);
5381 state->current_function = NULL;
5382
5383 if (!signature->return_type->is_void() && !state->found_return) {
5384 YYLTYPE loc = this->get_location();
5385 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5386 "%s, but no return statement",
5387 signature->function_name(),
5388 signature->return_type->name);
5389 }
5390
5391 /* Function definitions do not have r-values.
5392 */
5393 return NULL;
5394 }
5395
5396
5397 ir_rvalue *
5398 ast_jump_statement::hir(exec_list *instructions,
5399 struct _mesa_glsl_parse_state *state)
5400 {
5401 void *ctx = state;
5402
5403 switch (mode) {
5404 case ast_return: {
5405 ir_return *inst;
5406 assert(state->current_function);
5407
5408 if (opt_return_value) {
5409 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5410
5411 /* The value of the return type can be NULL if the shader says
5412 * 'return foo();' and foo() is a function that returns void.
5413 *
5414 * NOTE: The GLSL spec doesn't say that this is an error. The type
5415 * of the return value is void. If the return type of the function is
5416 * also void, then this should compile without error. Seriously.
5417 */
5418 const glsl_type *const ret_type =
5419 (ret == NULL) ? glsl_type::void_type : ret->type;
5420
5421 /* Implicit conversions are not allowed for return values prior to
5422 * ARB_shading_language_420pack.
5423 */
5424 if (state->current_function->return_type != ret_type) {
5425 YYLTYPE loc = this->get_location();
5426
5427 if (state->has_420pack()) {
5428 if (!apply_implicit_conversion(state->current_function->return_type,
5429 ret, state)) {
5430 _mesa_glsl_error(& loc, state,
5431 "could not implicitly convert return value "
5432 "to %s, in function `%s'",
5433 state->current_function->return_type->name,
5434 state->current_function->function_name());
5435 }
5436 } else {
5437 _mesa_glsl_error(& loc, state,
5438 "`return' with wrong type %s, in function `%s' "
5439 "returning %s",
5440 ret_type->name,
5441 state->current_function->function_name(),
5442 state->current_function->return_type->name);
5443 }
5444 } else if (state->current_function->return_type->base_type ==
5445 GLSL_TYPE_VOID) {
5446 YYLTYPE loc = this->get_location();
5447
5448 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5449 * specs add a clarification:
5450 *
5451 * "A void function can only use return without a return argument, even if
5452 * the return argument has void type. Return statements only accept values:
5453 *
5454 * void func1() { }
5455 * void func2() { return func1(); } // illegal return statement"
5456 */
5457 _mesa_glsl_error(& loc, state,
5458 "void functions can only use `return' without a "
5459 "return argument");
5460 }
5461
5462 inst = new(ctx) ir_return(ret);
5463 } else {
5464 if (state->current_function->return_type->base_type !=
5465 GLSL_TYPE_VOID) {
5466 YYLTYPE loc = this->get_location();
5467
5468 _mesa_glsl_error(& loc, state,
5469 "`return' with no value, in function %s returning "
5470 "non-void",
5471 state->current_function->function_name());
5472 }
5473 inst = new(ctx) ir_return;
5474 }
5475
5476 state->found_return = true;
5477 instructions->push_tail(inst);
5478 break;
5479 }
5480
5481 case ast_discard:
5482 if (state->stage != MESA_SHADER_FRAGMENT) {
5483 YYLTYPE loc = this->get_location();
5484
5485 _mesa_glsl_error(& loc, state,
5486 "`discard' may only appear in a fragment shader");
5487 }
5488 instructions->push_tail(new(ctx) ir_discard);
5489 break;
5490
5491 case ast_break:
5492 case ast_continue:
5493 if (mode == ast_continue &&
5494 state->loop_nesting_ast == NULL) {
5495 YYLTYPE loc = this->get_location();
5496
5497 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5498 } else if (mode == ast_break &&
5499 state->loop_nesting_ast == NULL &&
5500 state->switch_state.switch_nesting_ast == NULL) {
5501 YYLTYPE loc = this->get_location();
5502
5503 _mesa_glsl_error(& loc, state,
5504 "break may only appear in a loop or a switch");
5505 } else {
5506 /* For a loop, inline the for loop expression again, since we don't
5507 * know where near the end of the loop body the normal copy of it is
5508 * going to be placed. Same goes for the condition for a do-while
5509 * loop.
5510 */
5511 if (state->loop_nesting_ast != NULL &&
5512 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5513 if (state->loop_nesting_ast->rest_expression) {
5514 state->loop_nesting_ast->rest_expression->hir(instructions,
5515 state);
5516 }
5517 if (state->loop_nesting_ast->mode ==
5518 ast_iteration_statement::ast_do_while) {
5519 state->loop_nesting_ast->condition_to_hir(instructions, state);
5520 }
5521 }
5522
5523 if (state->switch_state.is_switch_innermost &&
5524 mode == ast_continue) {
5525 /* Set 'continue_inside' to true. */
5526 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5527 ir_dereference_variable *deref_continue_inside_var =
5528 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5529 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5530 true_val));
5531
5532 /* Break out from the switch, continue for the loop will
5533 * be called right after switch. */
5534 ir_loop_jump *const jump =
5535 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5536 instructions->push_tail(jump);
5537
5538 } else if (state->switch_state.is_switch_innermost &&
5539 mode == ast_break) {
5540 /* Force break out of switch by inserting a break. */
5541 ir_loop_jump *const jump =
5542 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5543 instructions->push_tail(jump);
5544 } else {
5545 ir_loop_jump *const jump =
5546 new(ctx) ir_loop_jump((mode == ast_break)
5547 ? ir_loop_jump::jump_break
5548 : ir_loop_jump::jump_continue);
5549 instructions->push_tail(jump);
5550 }
5551 }
5552
5553 break;
5554 }
5555
5556 /* Jump instructions do not have r-values.
5557 */
5558 return NULL;
5559 }
5560
5561
5562 ir_rvalue *
5563 ast_selection_statement::hir(exec_list *instructions,
5564 struct _mesa_glsl_parse_state *state)
5565 {
5566 void *ctx = state;
5567
5568 ir_rvalue *const condition = this->condition->hir(instructions, state);
5569
5570 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5571 *
5572 * "Any expression whose type evaluates to a Boolean can be used as the
5573 * conditional expression bool-expression. Vector types are not accepted
5574 * as the expression to if."
5575 *
5576 * The checks are separated so that higher quality diagnostics can be
5577 * generated for cases where both rules are violated.
5578 */
5579 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5580 YYLTYPE loc = this->condition->get_location();
5581
5582 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5583 "boolean");
5584 }
5585
5586 ir_if *const stmt = new(ctx) ir_if(condition);
5587
5588 if (then_statement != NULL) {
5589 state->symbols->push_scope();
5590 then_statement->hir(& stmt->then_instructions, state);
5591 state->symbols->pop_scope();
5592 }
5593
5594 if (else_statement != NULL) {
5595 state->symbols->push_scope();
5596 else_statement->hir(& stmt->else_instructions, state);
5597 state->symbols->pop_scope();
5598 }
5599
5600 instructions->push_tail(stmt);
5601
5602 /* if-statements do not have r-values.
5603 */
5604 return NULL;
5605 }
5606
5607
5608 ir_rvalue *
5609 ast_switch_statement::hir(exec_list *instructions,
5610 struct _mesa_glsl_parse_state *state)
5611 {
5612 void *ctx = state;
5613
5614 ir_rvalue *const test_expression =
5615 this->test_expression->hir(instructions, state);
5616
5617 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5618 *
5619 * "The type of init-expression in a switch statement must be a
5620 * scalar integer."
5621 */
5622 if (!test_expression->type->is_scalar() ||
5623 !test_expression->type->is_integer()) {
5624 YYLTYPE loc = this->test_expression->get_location();
5625
5626 _mesa_glsl_error(& loc,
5627 state,
5628 "switch-statement expression must be scalar "
5629 "integer");
5630 }
5631
5632 /* Track the switch-statement nesting in a stack-like manner.
5633 */
5634 struct glsl_switch_state saved = state->switch_state;
5635
5636 state->switch_state.is_switch_innermost = true;
5637 state->switch_state.switch_nesting_ast = this;
5638 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5639 hash_table_pointer_compare);
5640 state->switch_state.previous_default = NULL;
5641
5642 /* Initalize is_fallthru state to false.
5643 */
5644 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5645 state->switch_state.is_fallthru_var =
5646 new(ctx) ir_variable(glsl_type::bool_type,
5647 "switch_is_fallthru_tmp",
5648 ir_var_temporary);
5649 instructions->push_tail(state->switch_state.is_fallthru_var);
5650
5651 ir_dereference_variable *deref_is_fallthru_var =
5652 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5653 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5654 is_fallthru_val));
5655
5656 /* Initialize continue_inside state to false.
5657 */
5658 state->switch_state.continue_inside =
5659 new(ctx) ir_variable(glsl_type::bool_type,
5660 "continue_inside_tmp",
5661 ir_var_temporary);
5662 instructions->push_tail(state->switch_state.continue_inside);
5663
5664 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5665 ir_dereference_variable *deref_continue_inside_var =
5666 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5667 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5668 false_val));
5669
5670 state->switch_state.run_default =
5671 new(ctx) ir_variable(glsl_type::bool_type,
5672 "run_default_tmp",
5673 ir_var_temporary);
5674 instructions->push_tail(state->switch_state.run_default);
5675
5676 /* Loop around the switch is used for flow control. */
5677 ir_loop * loop = new(ctx) ir_loop();
5678 instructions->push_tail(loop);
5679
5680 /* Cache test expression.
5681 */
5682 test_to_hir(&loop->body_instructions, state);
5683
5684 /* Emit code for body of switch stmt.
5685 */
5686 body->hir(&loop->body_instructions, state);
5687
5688 /* Insert a break at the end to exit loop. */
5689 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5690 loop->body_instructions.push_tail(jump);
5691
5692 /* If we are inside loop, check if continue got called inside switch. */
5693 if (state->loop_nesting_ast != NULL) {
5694 ir_dereference_variable *deref_continue_inside =
5695 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5696 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5697 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5698
5699 if (state->loop_nesting_ast != NULL) {
5700 if (state->loop_nesting_ast->rest_expression) {
5701 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5702 state);
5703 }
5704 if (state->loop_nesting_ast->mode ==
5705 ast_iteration_statement::ast_do_while) {
5706 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5707 }
5708 }
5709 irif->then_instructions.push_tail(jump);
5710 instructions->push_tail(irif);
5711 }
5712
5713 hash_table_dtor(state->switch_state.labels_ht);
5714
5715 state->switch_state = saved;
5716
5717 /* Switch statements do not have r-values. */
5718 return NULL;
5719 }
5720
5721
5722 void
5723 ast_switch_statement::test_to_hir(exec_list *instructions,
5724 struct _mesa_glsl_parse_state *state)
5725 {
5726 void *ctx = state;
5727
5728 /* Cache value of test expression. */
5729 ir_rvalue *const test_val =
5730 test_expression->hir(instructions,
5731 state);
5732
5733 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5734 "switch_test_tmp",
5735 ir_var_temporary);
5736 ir_dereference_variable *deref_test_var =
5737 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5738
5739 instructions->push_tail(state->switch_state.test_var);
5740 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5741 }
5742
5743
5744 ir_rvalue *
5745 ast_switch_body::hir(exec_list *instructions,
5746 struct _mesa_glsl_parse_state *state)
5747 {
5748 if (stmts != NULL)
5749 stmts->hir(instructions, state);
5750
5751 /* Switch bodies do not have r-values. */
5752 return NULL;
5753 }
5754
5755 ir_rvalue *
5756 ast_case_statement_list::hir(exec_list *instructions,
5757 struct _mesa_glsl_parse_state *state)
5758 {
5759 exec_list default_case, after_default, tmp;
5760
5761 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5762 case_stmt->hir(&tmp, state);
5763
5764 /* Default case. */
5765 if (state->switch_state.previous_default && default_case.is_empty()) {
5766 default_case.append_list(&tmp);
5767 continue;
5768 }
5769
5770 /* If default case found, append 'after_default' list. */
5771 if (!default_case.is_empty())
5772 after_default.append_list(&tmp);
5773 else
5774 instructions->append_list(&tmp);
5775 }
5776
5777 /* Handle the default case. This is done here because default might not be
5778 * the last case. We need to add checks against following cases first to see
5779 * if default should be chosen or not.
5780 */
5781 if (!default_case.is_empty()) {
5782
5783 ir_rvalue *const true_val = new (state) ir_constant(true);
5784 ir_dereference_variable *deref_run_default_var =
5785 new(state) ir_dereference_variable(state->switch_state.run_default);
5786
5787 /* Choose to run default case initially, following conditional
5788 * assignments might change this.
5789 */
5790 ir_assignment *const init_var =
5791 new(state) ir_assignment(deref_run_default_var, true_val);
5792 instructions->push_tail(init_var);
5793
5794 /* Default case was the last one, no checks required. */
5795 if (after_default.is_empty()) {
5796 instructions->append_list(&default_case);
5797 return NULL;
5798 }
5799
5800 foreach_in_list(ir_instruction, ir, &after_default) {
5801 ir_assignment *assign = ir->as_assignment();
5802
5803 if (!assign)
5804 continue;
5805
5806 /* Clone the check between case label and init expression. */
5807 ir_expression *exp = (ir_expression*) assign->condition;
5808 ir_expression *clone = exp->clone(state, NULL);
5809
5810 ir_dereference_variable *deref_var =
5811 new(state) ir_dereference_variable(state->switch_state.run_default);
5812 ir_rvalue *const false_val = new (state) ir_constant(false);
5813
5814 ir_assignment *const set_false =
5815 new(state) ir_assignment(deref_var, false_val, clone);
5816
5817 instructions->push_tail(set_false);
5818 }
5819
5820 /* Append default case and all cases after it. */
5821 instructions->append_list(&default_case);
5822 instructions->append_list(&after_default);
5823 }
5824
5825 /* Case statements do not have r-values. */
5826 return NULL;
5827 }
5828
5829 ir_rvalue *
5830 ast_case_statement::hir(exec_list *instructions,
5831 struct _mesa_glsl_parse_state *state)
5832 {
5833 labels->hir(instructions, state);
5834
5835 /* Guard case statements depending on fallthru state. */
5836 ir_dereference_variable *const deref_fallthru_guard =
5837 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5838 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5839
5840 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5841 stmt->hir(& test_fallthru->then_instructions, state);
5842
5843 instructions->push_tail(test_fallthru);
5844
5845 /* Case statements do not have r-values. */
5846 return NULL;
5847 }
5848
5849
5850 ir_rvalue *
5851 ast_case_label_list::hir(exec_list *instructions,
5852 struct _mesa_glsl_parse_state *state)
5853 {
5854 foreach_list_typed (ast_case_label, label, link, & this->labels)
5855 label->hir(instructions, state);
5856
5857 /* Case labels do not have r-values. */
5858 return NULL;
5859 }
5860
5861 ir_rvalue *
5862 ast_case_label::hir(exec_list *instructions,
5863 struct _mesa_glsl_parse_state *state)
5864 {
5865 void *ctx = state;
5866
5867 ir_dereference_variable *deref_fallthru_var =
5868 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5869
5870 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5871
5872 /* If not default case, ... */
5873 if (this->test_value != NULL) {
5874 /* Conditionally set fallthru state based on
5875 * comparison of cached test expression value to case label.
5876 */
5877 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5878 ir_constant *label_const = label_rval->constant_expression_value();
5879
5880 if (!label_const) {
5881 YYLTYPE loc = this->test_value->get_location();
5882
5883 _mesa_glsl_error(& loc, state,
5884 "switch statement case label must be a "
5885 "constant expression");
5886
5887 /* Stuff a dummy value in to allow processing to continue. */
5888 label_const = new(ctx) ir_constant(0);
5889 } else {
5890 ast_expression *previous_label = (ast_expression *)
5891 hash_table_find(state->switch_state.labels_ht,
5892 (void *)(uintptr_t)label_const->value.u[0]);
5893
5894 if (previous_label) {
5895 YYLTYPE loc = this->test_value->get_location();
5896 _mesa_glsl_error(& loc, state, "duplicate case value");
5897
5898 loc = previous_label->get_location();
5899 _mesa_glsl_error(& loc, state, "this is the previous case label");
5900 } else {
5901 hash_table_insert(state->switch_state.labels_ht,
5902 this->test_value,
5903 (void *)(uintptr_t)label_const->value.u[0]);
5904 }
5905 }
5906
5907 ir_dereference_variable *deref_test_var =
5908 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5909
5910 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5911 label_const,
5912 deref_test_var);
5913
5914 /*
5915 * From GLSL 4.40 specification section 6.2 ("Selection"):
5916 *
5917 * "The type of the init-expression value in a switch statement must
5918 * be a scalar int or uint. The type of the constant-expression value
5919 * in a case label also must be a scalar int or uint. When any pair
5920 * of these values is tested for "equal value" and the types do not
5921 * match, an implicit conversion will be done to convert the int to a
5922 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5923 * is done."
5924 */
5925 if (label_const->type != state->switch_state.test_var->type) {
5926 YYLTYPE loc = this->test_value->get_location();
5927
5928 const glsl_type *type_a = label_const->type;
5929 const glsl_type *type_b = state->switch_state.test_var->type;
5930
5931 /* Check if int->uint implicit conversion is supported. */
5932 bool integer_conversion_supported =
5933 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5934 state);
5935
5936 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5937 !integer_conversion_supported) {
5938 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5939 "init-expression and case label (%s != %s)",
5940 type_a->name, type_b->name);
5941 } else {
5942 /* Conversion of the case label. */
5943 if (type_a->base_type == GLSL_TYPE_INT) {
5944 if (!apply_implicit_conversion(glsl_type::uint_type,
5945 test_cond->operands[0], state))
5946 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5947 } else {
5948 /* Conversion of the init-expression value. */
5949 if (!apply_implicit_conversion(glsl_type::uint_type,
5950 test_cond->operands[1], state))
5951 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5952 }
5953 }
5954 }
5955
5956 ir_assignment *set_fallthru_on_test =
5957 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5958
5959 instructions->push_tail(set_fallthru_on_test);
5960 } else { /* default case */
5961 if (state->switch_state.previous_default) {
5962 YYLTYPE loc = this->get_location();
5963 _mesa_glsl_error(& loc, state,
5964 "multiple default labels in one switch");
5965
5966 loc = state->switch_state.previous_default->get_location();
5967 _mesa_glsl_error(& loc, state, "this is the first default label");
5968 }
5969 state->switch_state.previous_default = this;
5970
5971 /* Set fallthru condition on 'run_default' bool. */
5972 ir_dereference_variable *deref_run_default =
5973 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5974 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5975 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5976 cond_true,
5977 deref_run_default);
5978
5979 /* Set falltrhu state. */
5980 ir_assignment *set_fallthru =
5981 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5982
5983 instructions->push_tail(set_fallthru);
5984 }
5985
5986 /* Case statements do not have r-values. */
5987 return NULL;
5988 }
5989
5990 void
5991 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5992 struct _mesa_glsl_parse_state *state)
5993 {
5994 void *ctx = state;
5995
5996 if (condition != NULL) {
5997 ir_rvalue *const cond =
5998 condition->hir(instructions, state);
5999
6000 if ((cond == NULL)
6001 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6002 YYLTYPE loc = condition->get_location();
6003
6004 _mesa_glsl_error(& loc, state,
6005 "loop condition must be scalar boolean");
6006 } else {
6007 /* As the first code in the loop body, generate a block that looks
6008 * like 'if (!condition) break;' as the loop termination condition.
6009 */
6010 ir_rvalue *const not_cond =
6011 new(ctx) ir_expression(ir_unop_logic_not, cond);
6012
6013 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6014
6015 ir_jump *const break_stmt =
6016 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6017
6018 if_stmt->then_instructions.push_tail(break_stmt);
6019 instructions->push_tail(if_stmt);
6020 }
6021 }
6022 }
6023
6024
6025 ir_rvalue *
6026 ast_iteration_statement::hir(exec_list *instructions,
6027 struct _mesa_glsl_parse_state *state)
6028 {
6029 void *ctx = state;
6030
6031 /* For-loops and while-loops start a new scope, but do-while loops do not.
6032 */
6033 if (mode != ast_do_while)
6034 state->symbols->push_scope();
6035
6036 if (init_statement != NULL)
6037 init_statement->hir(instructions, state);
6038
6039 ir_loop *const stmt = new(ctx) ir_loop();
6040 instructions->push_tail(stmt);
6041
6042 /* Track the current loop nesting. */
6043 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6044
6045 state->loop_nesting_ast = this;
6046
6047 /* Likewise, indicate that following code is closest to a loop,
6048 * NOT closest to a switch.
6049 */
6050 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6051 state->switch_state.is_switch_innermost = false;
6052
6053 if (mode != ast_do_while)
6054 condition_to_hir(&stmt->body_instructions, state);
6055
6056 if (body != NULL)
6057 body->hir(& stmt->body_instructions, state);
6058
6059 if (rest_expression != NULL)
6060 rest_expression->hir(& stmt->body_instructions, state);
6061
6062 if (mode == ast_do_while)
6063 condition_to_hir(&stmt->body_instructions, state);
6064
6065 if (mode != ast_do_while)
6066 state->symbols->pop_scope();
6067
6068 /* Restore previous nesting before returning. */
6069 state->loop_nesting_ast = nesting_ast;
6070 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6071
6072 /* Loops do not have r-values.
6073 */
6074 return NULL;
6075 }
6076
6077
6078 /**
6079 * Determine if the given type is valid for establishing a default precision
6080 * qualifier.
6081 *
6082 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6083 *
6084 * "The precision statement
6085 *
6086 * precision precision-qualifier type;
6087 *
6088 * can be used to establish a default precision qualifier. The type field
6089 * can be either int or float or any of the sampler types, and the
6090 * precision-qualifier can be lowp, mediump, or highp."
6091 *
6092 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6093 * qualifiers on sampler types, but this seems like an oversight (since the
6094 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6095 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6096 * version.
6097 */
6098 static bool
6099 is_valid_default_precision_type(const struct glsl_type *const type)
6100 {
6101 if (type == NULL)
6102 return false;
6103
6104 switch (type->base_type) {
6105 case GLSL_TYPE_INT:
6106 case GLSL_TYPE_FLOAT:
6107 /* "int" and "float" are valid, but vectors and matrices are not. */
6108 return type->vector_elements == 1 && type->matrix_columns == 1;
6109 case GLSL_TYPE_SAMPLER:
6110 case GLSL_TYPE_IMAGE:
6111 case GLSL_TYPE_ATOMIC_UINT:
6112 return true;
6113 default:
6114 return false;
6115 }
6116 }
6117
6118
6119 ir_rvalue *
6120 ast_type_specifier::hir(exec_list *instructions,
6121 struct _mesa_glsl_parse_state *state)
6122 {
6123 if (this->default_precision == ast_precision_none && this->structure == NULL)
6124 return NULL;
6125
6126 YYLTYPE loc = this->get_location();
6127
6128 /* If this is a precision statement, check that the type to which it is
6129 * applied is either float or int.
6130 *
6131 * From section 4.5.3 of the GLSL 1.30 spec:
6132 * "The precision statement
6133 * precision precision-qualifier type;
6134 * can be used to establish a default precision qualifier. The type
6135 * field can be either int or float [...]. Any other types or
6136 * qualifiers will result in an error.
6137 */
6138 if (this->default_precision != ast_precision_none) {
6139 if (!state->check_precision_qualifiers_allowed(&loc))
6140 return NULL;
6141
6142 if (this->structure != NULL) {
6143 _mesa_glsl_error(&loc, state,
6144 "precision qualifiers do not apply to structures");
6145 return NULL;
6146 }
6147
6148 if (this->array_specifier != NULL) {
6149 _mesa_glsl_error(&loc, state,
6150 "default precision statements do not apply to "
6151 "arrays");
6152 return NULL;
6153 }
6154
6155 const struct glsl_type *const type =
6156 state->symbols->get_type(this->type_name);
6157 if (!is_valid_default_precision_type(type)) {
6158 _mesa_glsl_error(&loc, state,
6159 "default precision statements apply only to "
6160 "float, int, and opaque types");
6161 return NULL;
6162 }
6163
6164 if (state->es_shader) {
6165 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6166 * spec says:
6167 *
6168 * "Non-precision qualified declarations will use the precision
6169 * qualifier specified in the most recent precision statement
6170 * that is still in scope. The precision statement has the same
6171 * scoping rules as variable declarations. If it is declared
6172 * inside a compound statement, its effect stops at the end of
6173 * the innermost statement it was declared in. Precision
6174 * statements in nested scopes override precision statements in
6175 * outer scopes. Multiple precision statements for the same basic
6176 * type can appear inside the same scope, with later statements
6177 * overriding earlier statements within that scope."
6178 *
6179 * Default precision specifications follow the same scope rules as
6180 * variables. So, we can track the state of the default precision
6181 * qualifiers in the symbol table, and the rules will just work. This
6182 * is a slight abuse of the symbol table, but it has the semantics
6183 * that we want.
6184 */
6185 state->symbols->add_default_precision_qualifier(this->type_name,
6186 this->default_precision);
6187 }
6188
6189 /* FINISHME: Translate precision statements into IR. */
6190 return NULL;
6191 }
6192
6193 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6194 * process_record_constructor() can do type-checking on C-style initializer
6195 * expressions of structs, but ast_struct_specifier should only be translated
6196 * to HIR if it is declaring the type of a structure.
6197 *
6198 * The ->is_declaration field is false for initializers of variables
6199 * declared separately from the struct's type definition.
6200 *
6201 * struct S { ... }; (is_declaration = true)
6202 * struct T { ... } t = { ... }; (is_declaration = true)
6203 * S s = { ... }; (is_declaration = false)
6204 */
6205 if (this->structure != NULL && this->structure->is_declaration)
6206 return this->structure->hir(instructions, state);
6207
6208 return NULL;
6209 }
6210
6211
6212 /**
6213 * Process a structure or interface block tree into an array of structure fields
6214 *
6215 * After parsing, where there are some syntax differnces, structures and
6216 * interface blocks are almost identical. They are similar enough that the
6217 * AST for each can be processed the same way into a set of
6218 * \c glsl_struct_field to describe the members.
6219 *
6220 * If we're processing an interface block, var_mode should be the type of the
6221 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6222 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6223 * ir_var_auto.
6224 *
6225 * \return
6226 * The number of fields processed. A pointer to the array structure fields is
6227 * stored in \c *fields_ret.
6228 */
6229 static unsigned
6230 ast_process_struct_or_iface_block_members(exec_list *instructions,
6231 struct _mesa_glsl_parse_state *state,
6232 exec_list *declarations,
6233 glsl_struct_field **fields_ret,
6234 bool is_interface,
6235 enum glsl_matrix_layout matrix_layout,
6236 bool allow_reserved_names,
6237 ir_variable_mode var_mode,
6238 ast_type_qualifier *layout,
6239 unsigned block_stream,
6240 unsigned expl_location)
6241 {
6242 unsigned decl_count = 0;
6243
6244 /* Make an initial pass over the list of fields to determine how
6245 * many there are. Each element in this list is an ast_declarator_list.
6246 * This means that we actually need to count the number of elements in the
6247 * 'declarations' list in each of the elements.
6248 */
6249 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6250 decl_count += decl_list->declarations.length();
6251 }
6252
6253 /* Allocate storage for the fields and process the field
6254 * declarations. As the declarations are processed, try to also convert
6255 * the types to HIR. This ensures that structure definitions embedded in
6256 * other structure definitions or in interface blocks are processed.
6257 */
6258 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6259 decl_count);
6260
6261 bool first_member = true;
6262 bool first_member_has_explicit_location;
6263
6264 unsigned i = 0;
6265 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6266 const char *type_name;
6267 YYLTYPE loc = decl_list->get_location();
6268
6269 decl_list->type->specifier->hir(instructions, state);
6270
6271 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6272 *
6273 * "Anonymous structures are not supported; so embedded structures
6274 * must have a declarator. A name given to an embedded struct is
6275 * scoped at the same level as the struct it is embedded in."
6276 *
6277 * The same section of the GLSL 1.20 spec says:
6278 *
6279 * "Anonymous structures are not supported. Embedded structures are
6280 * not supported."
6281 *
6282 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6283 * embedded structures in 1.10 only.
6284 */
6285 if (state->language_version != 110 &&
6286 decl_list->type->specifier->structure != NULL)
6287 _mesa_glsl_error(&loc, state,
6288 "embedded structure declarations are not allowed");
6289
6290 const glsl_type *decl_type =
6291 decl_list->type->glsl_type(& type_name, state);
6292
6293 const struct ast_type_qualifier *const qual =
6294 &decl_list->type->qualifier;
6295
6296 /* From section 4.3.9 of the GLSL 4.40 spec:
6297 *
6298 * "[In interface blocks] opaque types are not allowed."
6299 *
6300 * It should be impossible for decl_type to be NULL here. Cases that
6301 * might naturally lead to decl_type being NULL, especially for the
6302 * is_interface case, will have resulted in compilation having
6303 * already halted due to a syntax error.
6304 */
6305 assert(decl_type);
6306
6307 if (is_interface) {
6308 if (decl_type->contains_opaque()) {
6309 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6310 "interface block contains opaque variable");
6311 }
6312 } else {
6313 if (decl_type->contains_atomic()) {
6314 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6315 *
6316 * "Members of structures cannot be declared as atomic counter
6317 * types."
6318 */
6319 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6320 }
6321
6322 if (decl_type->contains_image()) {
6323 /* FINISHME: Same problem as with atomic counters.
6324 * FINISHME: Request clarification from Khronos and add
6325 * FINISHME: spec quotation here.
6326 */
6327 _mesa_glsl_error(&loc, state, "image in structure");
6328 }
6329 }
6330
6331 if (qual->flags.q.explicit_binding) {
6332 _mesa_glsl_error(&loc, state,
6333 "binding layout qualifier cannot be applied "
6334 "to struct or interface block members");
6335 }
6336
6337 if (is_interface) {
6338 if (!first_member) {
6339 if (!layout->flags.q.explicit_location &&
6340 ((first_member_has_explicit_location &&
6341 !qual->flags.q.explicit_location) ||
6342 (!first_member_has_explicit_location &&
6343 qual->flags.q.explicit_location))) {
6344 _mesa_glsl_error(&loc, state,
6345 "when block-level location layout qualifier "
6346 "is not supplied either all members must "
6347 "have a location layout qualifier or all "
6348 "members must not have a location layout "
6349 "qualifier");
6350 }
6351 } else {
6352 first_member = false;
6353 first_member_has_explicit_location =
6354 qual->flags.q.explicit_location;
6355 }
6356 }
6357
6358 if (qual->flags.q.std140 ||
6359 qual->flags.q.std430 ||
6360 qual->flags.q.packed ||
6361 qual->flags.q.shared) {
6362 _mesa_glsl_error(&loc, state,
6363 "uniform/shader storage block layout qualifiers "
6364 "std140, std430, packed, and shared can only be "
6365 "applied to uniform/shader storage blocks, not "
6366 "members");
6367 }
6368
6369 if (qual->flags.q.constant) {
6370 _mesa_glsl_error(&loc, state,
6371 "const storage qualifier cannot be applied "
6372 "to struct or interface block members");
6373 }
6374
6375 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6376 *
6377 * "A block member may be declared with a stream identifier, but
6378 * the specified stream must match the stream associated with the
6379 * containing block."
6380 */
6381 if (qual->flags.q.explicit_stream) {
6382 unsigned qual_stream;
6383 if (process_qualifier_constant(state, &loc, "stream",
6384 qual->stream, &qual_stream) &&
6385 qual_stream != block_stream) {
6386 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6387 "interface block member does not match "
6388 "the interface block (%u vs %u)", qual_stream,
6389 block_stream);
6390 }
6391 }
6392
6393 if (qual->flags.q.uniform && qual->has_interpolation()) {
6394 _mesa_glsl_error(&loc, state,
6395 "interpolation qualifiers cannot be used "
6396 "with uniform interface blocks");
6397 }
6398
6399 if ((qual->flags.q.uniform || !is_interface) &&
6400 qual->has_auxiliary_storage()) {
6401 _mesa_glsl_error(&loc, state,
6402 "auxiliary storage qualifiers cannot be used "
6403 "in uniform blocks or structures.");
6404 }
6405
6406 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6407 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6408 _mesa_glsl_error(&loc, state,
6409 "row_major and column_major can only be "
6410 "applied to interface blocks");
6411 } else
6412 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6413 }
6414
6415 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6416 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6417 "readonly and writeonly.");
6418 }
6419
6420 foreach_list_typed (ast_declaration, decl, link,
6421 &decl_list->declarations) {
6422 YYLTYPE loc = decl->get_location();
6423
6424 if (!allow_reserved_names)
6425 validate_identifier(decl->identifier, loc, state);
6426
6427 const struct glsl_type *field_type =
6428 process_array_type(&loc, decl_type, decl->array_specifier, state);
6429 validate_array_dimensions(field_type, state, &loc);
6430 fields[i].type = field_type;
6431 fields[i].name = decl->identifier;
6432 fields[i].interpolation =
6433 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6434 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6435 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6436 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6437 fields[i].precision = qual->precision;
6438
6439 if (qual->flags.q.explicit_location) {
6440 unsigned qual_location;
6441 if (process_qualifier_constant(state, &loc, "location",
6442 qual->location, &qual_location)) {
6443 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6444 expl_location = fields[i].location +
6445 fields[i].type->count_attribute_slots(false);
6446 }
6447 } else {
6448 if (layout && layout->flags.q.explicit_location) {
6449 fields[i].location = expl_location;
6450 expl_location += fields[i].type->count_attribute_slots(false);
6451 } else {
6452 fields[i].location = -1;
6453 }
6454 }
6455
6456 /* Propogate row- / column-major information down the fields of the
6457 * structure or interface block. Structures need this data because
6458 * the structure may contain a structure that contains ... a matrix
6459 * that need the proper layout.
6460 */
6461 if (field_type->without_array()->is_matrix()
6462 || field_type->without_array()->is_record()) {
6463 /* If no layout is specified for the field, inherit the layout
6464 * from the block.
6465 */
6466 fields[i].matrix_layout = matrix_layout;
6467
6468 if (qual->flags.q.row_major)
6469 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6470 else if (qual->flags.q.column_major)
6471 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6472
6473 /* If we're processing an interface block, the matrix layout must
6474 * be decided by this point.
6475 */
6476 assert(!is_interface
6477 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6478 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6479 }
6480
6481 /* Image qualifiers are allowed on buffer variables, which can only
6482 * be defined inside shader storage buffer objects
6483 */
6484 if (layout && var_mode == ir_var_shader_storage) {
6485 /* For readonly and writeonly qualifiers the field definition,
6486 * if set, overwrites the layout qualifier.
6487 */
6488 if (qual->flags.q.read_only) {
6489 fields[i].image_read_only = true;
6490 fields[i].image_write_only = false;
6491 } else if (qual->flags.q.write_only) {
6492 fields[i].image_read_only = false;
6493 fields[i].image_write_only = true;
6494 } else {
6495 fields[i].image_read_only = layout->flags.q.read_only;
6496 fields[i].image_write_only = layout->flags.q.write_only;
6497 }
6498
6499 /* For other qualifiers, we set the flag if either the layout
6500 * qualifier or the field qualifier are set
6501 */
6502 fields[i].image_coherent = qual->flags.q.coherent ||
6503 layout->flags.q.coherent;
6504 fields[i].image_volatile = qual->flags.q._volatile ||
6505 layout->flags.q._volatile;
6506 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6507 layout->flags.q.restrict_flag;
6508 }
6509
6510 i++;
6511 }
6512 }
6513
6514 assert(i == decl_count);
6515
6516 *fields_ret = fields;
6517 return decl_count;
6518 }
6519
6520
6521 ir_rvalue *
6522 ast_struct_specifier::hir(exec_list *instructions,
6523 struct _mesa_glsl_parse_state *state)
6524 {
6525 YYLTYPE loc = this->get_location();
6526
6527 unsigned expl_location = 0;
6528 if (layout && layout->flags.q.explicit_location) {
6529 if (!process_qualifier_constant(state, &loc, "location",
6530 layout->location, &expl_location)) {
6531 return NULL;
6532 } else {
6533 expl_location = VARYING_SLOT_VAR0 + expl_location;
6534 }
6535 }
6536
6537 glsl_struct_field *fields;
6538 unsigned decl_count =
6539 ast_process_struct_or_iface_block_members(instructions,
6540 state,
6541 &this->declarations,
6542 &fields,
6543 false,
6544 GLSL_MATRIX_LAYOUT_INHERITED,
6545 false /* allow_reserved_names */,
6546 ir_var_auto,
6547 layout,
6548 0, /* for interface only */
6549 expl_location);
6550
6551 validate_identifier(this->name, loc, state);
6552
6553 const glsl_type *t =
6554 glsl_type::get_record_instance(fields, decl_count, this->name);
6555
6556 if (!state->symbols->add_type(name, t)) {
6557 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6558 } else {
6559 const glsl_type **s = reralloc(state, state->user_structures,
6560 const glsl_type *,
6561 state->num_user_structures + 1);
6562 if (s != NULL) {
6563 s[state->num_user_structures] = t;
6564 state->user_structures = s;
6565 state->num_user_structures++;
6566 }
6567 }
6568
6569 /* Structure type definitions do not have r-values.
6570 */
6571 return NULL;
6572 }
6573
6574
6575 /**
6576 * Visitor class which detects whether a given interface block has been used.
6577 */
6578 class interface_block_usage_visitor : public ir_hierarchical_visitor
6579 {
6580 public:
6581 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6582 : mode(mode), block(block), found(false)
6583 {
6584 }
6585
6586 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6587 {
6588 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6589 found = true;
6590 return visit_stop;
6591 }
6592 return visit_continue;
6593 }
6594
6595 bool usage_found() const
6596 {
6597 return this->found;
6598 }
6599
6600 private:
6601 ir_variable_mode mode;
6602 const glsl_type *block;
6603 bool found;
6604 };
6605
6606 static bool
6607 is_unsized_array_last_element(ir_variable *v)
6608 {
6609 const glsl_type *interface_type = v->get_interface_type();
6610 int length = interface_type->length;
6611
6612 assert(v->type->is_unsized_array());
6613
6614 /* Check if it is the last element of the interface */
6615 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6616 return true;
6617 return false;
6618 }
6619
6620 ir_rvalue *
6621 ast_interface_block::hir(exec_list *instructions,
6622 struct _mesa_glsl_parse_state *state)
6623 {
6624 YYLTYPE loc = this->get_location();
6625
6626 /* Interface blocks must be declared at global scope */
6627 if (state->current_function != NULL) {
6628 _mesa_glsl_error(&loc, state,
6629 "Interface block `%s' must be declared "
6630 "at global scope",
6631 this->block_name);
6632 }
6633
6634 if (!this->layout.flags.q.buffer &&
6635 this->layout.flags.q.std430) {
6636 _mesa_glsl_error(&loc, state,
6637 "std430 storage block layout qualifier is supported "
6638 "only for shader storage blocks");
6639 }
6640
6641 /* The ast_interface_block has a list of ast_declarator_lists. We
6642 * need to turn those into ir_variables with an association
6643 * with this uniform block.
6644 */
6645 enum glsl_interface_packing packing;
6646 if (this->layout.flags.q.shared) {
6647 packing = GLSL_INTERFACE_PACKING_SHARED;
6648 } else if (this->layout.flags.q.packed) {
6649 packing = GLSL_INTERFACE_PACKING_PACKED;
6650 } else if (this->layout.flags.q.std430) {
6651 packing = GLSL_INTERFACE_PACKING_STD430;
6652 } else {
6653 /* The default layout is std140.
6654 */
6655 packing = GLSL_INTERFACE_PACKING_STD140;
6656 }
6657
6658 ir_variable_mode var_mode;
6659 const char *iface_type_name;
6660 if (this->layout.flags.q.in) {
6661 var_mode = ir_var_shader_in;
6662 iface_type_name = "in";
6663 } else if (this->layout.flags.q.out) {
6664 var_mode = ir_var_shader_out;
6665 iface_type_name = "out";
6666 } else if (this->layout.flags.q.uniform) {
6667 var_mode = ir_var_uniform;
6668 iface_type_name = "uniform";
6669 } else if (this->layout.flags.q.buffer) {
6670 var_mode = ir_var_shader_storage;
6671 iface_type_name = "buffer";
6672 } else {
6673 var_mode = ir_var_auto;
6674 iface_type_name = "UNKNOWN";
6675 assert(!"interface block layout qualifier not found!");
6676 }
6677
6678 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6679 if (this->layout.flags.q.row_major)
6680 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6681 else if (this->layout.flags.q.column_major)
6682 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6683
6684 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6685 exec_list declared_variables;
6686 glsl_struct_field *fields;
6687
6688 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6689 * that we don't have incompatible qualifiers
6690 */
6691 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6692 _mesa_glsl_error(&loc, state,
6693 "Interface block sets both readonly and writeonly");
6694 }
6695
6696 unsigned qual_stream;
6697 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6698 &qual_stream) ||
6699 !validate_stream_qualifier(&loc, state, qual_stream)) {
6700 /* If the stream qualifier is invalid it doesn't make sense to continue
6701 * on and try to compare stream layouts on member variables against it
6702 * so just return early.
6703 */
6704 return NULL;
6705 }
6706
6707 unsigned expl_location = 0;
6708 if (layout.flags.q.explicit_location) {
6709 if (!process_qualifier_constant(state, &loc, "location",
6710 layout.location, &expl_location)) {
6711 return NULL;
6712 } else {
6713 expl_location = VARYING_SLOT_VAR0 + expl_location;
6714 }
6715 }
6716
6717 unsigned int num_variables =
6718 ast_process_struct_or_iface_block_members(&declared_variables,
6719 state,
6720 &this->declarations,
6721 &fields,
6722 true,
6723 matrix_layout,
6724 redeclaring_per_vertex,
6725 var_mode,
6726 &this->layout,
6727 qual_stream,
6728 expl_location);
6729
6730 if (!redeclaring_per_vertex) {
6731 validate_identifier(this->block_name, loc, state);
6732
6733 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6734 *
6735 * "Block names have no other use within a shader beyond interface
6736 * matching; it is a compile-time error to use a block name at global
6737 * scope for anything other than as a block name."
6738 */
6739 ir_variable *var = state->symbols->get_variable(this->block_name);
6740 if (var && !var->type->is_interface()) {
6741 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6742 "already used in the scope.",
6743 this->block_name);
6744 }
6745 }
6746
6747 const glsl_type *earlier_per_vertex = NULL;
6748 if (redeclaring_per_vertex) {
6749 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6750 * the named interface block gl_in, we can find it by looking at the
6751 * previous declaration of gl_in. Otherwise we can find it by looking
6752 * at the previous decalartion of any of the built-in outputs,
6753 * e.g. gl_Position.
6754 *
6755 * Also check that the instance name and array-ness of the redeclaration
6756 * are correct.
6757 */
6758 switch (var_mode) {
6759 case ir_var_shader_in:
6760 if (ir_variable *earlier_gl_in =
6761 state->symbols->get_variable("gl_in")) {
6762 earlier_per_vertex = earlier_gl_in->get_interface_type();
6763 } else {
6764 _mesa_glsl_error(&loc, state,
6765 "redeclaration of gl_PerVertex input not allowed "
6766 "in the %s shader",
6767 _mesa_shader_stage_to_string(state->stage));
6768 }
6769 if (this->instance_name == NULL ||
6770 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6771 !this->array_specifier->is_single_dimension()) {
6772 _mesa_glsl_error(&loc, state,
6773 "gl_PerVertex input must be redeclared as "
6774 "gl_in[]");
6775 }
6776 break;
6777 case ir_var_shader_out:
6778 if (ir_variable *earlier_gl_Position =
6779 state->symbols->get_variable("gl_Position")) {
6780 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6781 } else if (ir_variable *earlier_gl_out =
6782 state->symbols->get_variable("gl_out")) {
6783 earlier_per_vertex = earlier_gl_out->get_interface_type();
6784 } else {
6785 _mesa_glsl_error(&loc, state,
6786 "redeclaration of gl_PerVertex output not "
6787 "allowed in the %s shader",
6788 _mesa_shader_stage_to_string(state->stage));
6789 }
6790 if (state->stage == MESA_SHADER_TESS_CTRL) {
6791 if (this->instance_name == NULL ||
6792 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6793 _mesa_glsl_error(&loc, state,
6794 "gl_PerVertex output must be redeclared as "
6795 "gl_out[]");
6796 }
6797 } else {
6798 if (this->instance_name != NULL) {
6799 _mesa_glsl_error(&loc, state,
6800 "gl_PerVertex output may not be redeclared with "
6801 "an instance name");
6802 }
6803 }
6804 break;
6805 default:
6806 _mesa_glsl_error(&loc, state,
6807 "gl_PerVertex must be declared as an input or an "
6808 "output");
6809 break;
6810 }
6811
6812 if (earlier_per_vertex == NULL) {
6813 /* An error has already been reported. Bail out to avoid null
6814 * dereferences later in this function.
6815 */
6816 return NULL;
6817 }
6818
6819 /* Copy locations from the old gl_PerVertex interface block. */
6820 for (unsigned i = 0; i < num_variables; i++) {
6821 int j = earlier_per_vertex->field_index(fields[i].name);
6822 if (j == -1) {
6823 _mesa_glsl_error(&loc, state,
6824 "redeclaration of gl_PerVertex must be a subset "
6825 "of the built-in members of gl_PerVertex");
6826 } else {
6827 fields[i].location =
6828 earlier_per_vertex->fields.structure[j].location;
6829 fields[i].interpolation =
6830 earlier_per_vertex->fields.structure[j].interpolation;
6831 fields[i].centroid =
6832 earlier_per_vertex->fields.structure[j].centroid;
6833 fields[i].sample =
6834 earlier_per_vertex->fields.structure[j].sample;
6835 fields[i].patch =
6836 earlier_per_vertex->fields.structure[j].patch;
6837 fields[i].precision =
6838 earlier_per_vertex->fields.structure[j].precision;
6839 }
6840 }
6841
6842 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6843 * spec:
6844 *
6845 * If a built-in interface block is redeclared, it must appear in
6846 * the shader before any use of any member included in the built-in
6847 * declaration, or a compilation error will result.
6848 *
6849 * This appears to be a clarification to the behaviour established for
6850 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6851 * regardless of GLSL version.
6852 */
6853 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6854 v.run(instructions);
6855 if (v.usage_found()) {
6856 _mesa_glsl_error(&loc, state,
6857 "redeclaration of a built-in interface block must "
6858 "appear before any use of any member of the "
6859 "interface block");
6860 }
6861 }
6862
6863 const glsl_type *block_type =
6864 glsl_type::get_interface_instance(fields,
6865 num_variables,
6866 packing,
6867 this->block_name);
6868
6869 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6870 YYLTYPE loc = this->get_location();
6871 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6872 "already taken in the current scope",
6873 this->block_name, iface_type_name);
6874 }
6875
6876 /* Since interface blocks cannot contain statements, it should be
6877 * impossible for the block to generate any instructions.
6878 */
6879 assert(declared_variables.is_empty());
6880
6881 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6882 *
6883 * Geometry shader input variables get the per-vertex values written
6884 * out by vertex shader output variables of the same names. Since a
6885 * geometry shader operates on a set of vertices, each input varying
6886 * variable (or input block, see interface blocks below) needs to be
6887 * declared as an array.
6888 */
6889 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6890 var_mode == ir_var_shader_in) {
6891 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6892 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6893 state->stage == MESA_SHADER_TESS_EVAL) &&
6894 this->array_specifier == NULL &&
6895 var_mode == ir_var_shader_in) {
6896 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6897 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6898 this->array_specifier == NULL &&
6899 var_mode == ir_var_shader_out) {
6900 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6901 }
6902
6903
6904 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6905 * says:
6906 *
6907 * "If an instance name (instance-name) is used, then it puts all the
6908 * members inside a scope within its own name space, accessed with the
6909 * field selector ( . ) operator (analogously to structures)."
6910 */
6911 if (this->instance_name) {
6912 if (redeclaring_per_vertex) {
6913 /* When a built-in in an unnamed interface block is redeclared,
6914 * get_variable_being_redeclared() calls
6915 * check_builtin_array_max_size() to make sure that built-in array
6916 * variables aren't redeclared to illegal sizes. But we're looking
6917 * at a redeclaration of a named built-in interface block. So we
6918 * have to manually call check_builtin_array_max_size() for all parts
6919 * of the interface that are arrays.
6920 */
6921 for (unsigned i = 0; i < num_variables; i++) {
6922 if (fields[i].type->is_array()) {
6923 const unsigned size = fields[i].type->array_size();
6924 check_builtin_array_max_size(fields[i].name, size, loc, state);
6925 }
6926 }
6927 } else {
6928 validate_identifier(this->instance_name, loc, state);
6929 }
6930
6931 ir_variable *var;
6932
6933 if (this->array_specifier != NULL) {
6934 const glsl_type *block_array_type =
6935 process_array_type(&loc, block_type, this->array_specifier, state);
6936
6937 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6938 *
6939 * For uniform blocks declared an array, each individual array
6940 * element corresponds to a separate buffer object backing one
6941 * instance of the block. As the array size indicates the number
6942 * of buffer objects needed, uniform block array declarations
6943 * must specify an array size.
6944 *
6945 * And a few paragraphs later:
6946 *
6947 * Geometry shader input blocks must be declared as arrays and
6948 * follow the array declaration and linking rules for all
6949 * geometry shader inputs. All other input and output block
6950 * arrays must specify an array size.
6951 *
6952 * The same applies to tessellation shaders.
6953 *
6954 * The upshot of this is that the only circumstance where an
6955 * interface array size *doesn't* need to be specified is on a
6956 * geometry shader input, tessellation control shader input,
6957 * tessellation control shader output, and tessellation evaluation
6958 * shader input.
6959 */
6960 if (block_array_type->is_unsized_array()) {
6961 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6962 state->stage == MESA_SHADER_TESS_CTRL ||
6963 state->stage == MESA_SHADER_TESS_EVAL;
6964 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6965
6966 if (this->layout.flags.q.in) {
6967 if (!allow_inputs)
6968 _mesa_glsl_error(&loc, state,
6969 "unsized input block arrays not allowed in "
6970 "%s shader",
6971 _mesa_shader_stage_to_string(state->stage));
6972 } else if (this->layout.flags.q.out) {
6973 if (!allow_outputs)
6974 _mesa_glsl_error(&loc, state,
6975 "unsized output block arrays not allowed in "
6976 "%s shader",
6977 _mesa_shader_stage_to_string(state->stage));
6978 } else {
6979 /* by elimination, this is a uniform block array */
6980 _mesa_glsl_error(&loc, state,
6981 "unsized uniform block arrays not allowed in "
6982 "%s shader",
6983 _mesa_shader_stage_to_string(state->stage));
6984 }
6985 }
6986
6987 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6988 *
6989 * * Arrays of arrays of blocks are not allowed
6990 */
6991 if (state->es_shader && block_array_type->is_array() &&
6992 block_array_type->fields.array->is_array()) {
6993 _mesa_glsl_error(&loc, state,
6994 "arrays of arrays interface blocks are "
6995 "not allowed");
6996 }
6997
6998 var = new(state) ir_variable(block_array_type,
6999 this->instance_name,
7000 var_mode);
7001 } else {
7002 var = new(state) ir_variable(block_type,
7003 this->instance_name,
7004 var_mode);
7005 }
7006
7007 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7008 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7009
7010 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7011 var->data.read_only = true;
7012
7013 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7014 handle_geometry_shader_input_decl(state, loc, var);
7015 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7016 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7017 handle_tess_shader_input_decl(state, loc, var);
7018 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7019 handle_tess_ctrl_shader_output_decl(state, loc, var);
7020
7021 for (unsigned i = 0; i < num_variables; i++) {
7022 if (fields[i].type->is_unsized_array()) {
7023 if (var_mode == ir_var_shader_storage) {
7024 if (i != (num_variables - 1)) {
7025 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7026 "only last member of a shader storage block "
7027 "can be defined as unsized array",
7028 fields[i].name);
7029 }
7030 } else {
7031 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7032 *
7033 * "If an array is declared as the last member of a shader storage
7034 * block and the size is not specified at compile-time, it is
7035 * sized at run-time. In all other cases, arrays are sized only
7036 * at compile-time."
7037 */
7038 if (state->es_shader) {
7039 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7040 "only last member of a shader storage block "
7041 "can be defined as unsized array",
7042 fields[i].name);
7043 }
7044 }
7045 }
7046 }
7047
7048 if (ir_variable *earlier =
7049 state->symbols->get_variable(this->instance_name)) {
7050 if (!redeclaring_per_vertex) {
7051 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7052 this->instance_name);
7053 }
7054 earlier->data.how_declared = ir_var_declared_normally;
7055 earlier->type = var->type;
7056 earlier->reinit_interface_type(block_type);
7057 delete var;
7058 } else {
7059 if (this->layout.flags.q.explicit_binding) {
7060 apply_explicit_binding(state, &loc, var, var->type,
7061 &this->layout);
7062 }
7063
7064 var->data.stream = qual_stream;
7065 if (layout.flags.q.explicit_location) {
7066 var->data.location = expl_location;
7067 var->data.explicit_location = true;
7068 }
7069
7070 state->symbols->add_variable(var);
7071 instructions->push_tail(var);
7072 }
7073 } else {
7074 /* In order to have an array size, the block must also be declared with
7075 * an instance name.
7076 */
7077 assert(this->array_specifier == NULL);
7078
7079 for (unsigned i = 0; i < num_variables; i++) {
7080 ir_variable *var =
7081 new(state) ir_variable(fields[i].type,
7082 ralloc_strdup(state, fields[i].name),
7083 var_mode);
7084 var->data.interpolation = fields[i].interpolation;
7085 var->data.centroid = fields[i].centroid;
7086 var->data.sample = fields[i].sample;
7087 var->data.patch = fields[i].patch;
7088 var->data.stream = qual_stream;
7089 var->data.location = fields[i].location;
7090 if (fields[i].location != -1)
7091 var->data.explicit_location = true;
7092 var->init_interface_type(block_type);
7093
7094 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7095 var->data.read_only = true;
7096
7097 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7098 if (state->es_shader) {
7099 var->data.precision =
7100 select_gles_precision(fields[i].precision, fields[i].type,
7101 state, &loc);
7102 }
7103
7104 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7105 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7106 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7107 } else {
7108 var->data.matrix_layout = fields[i].matrix_layout;
7109 }
7110
7111 if (var->data.mode == ir_var_shader_storage) {
7112 var->data.image_read_only = fields[i].image_read_only;
7113 var->data.image_write_only = fields[i].image_write_only;
7114 var->data.image_coherent = fields[i].image_coherent;
7115 var->data.image_volatile = fields[i].image_volatile;
7116 var->data.image_restrict = fields[i].image_restrict;
7117 }
7118
7119 /* Examine var name here since var may get deleted in the next call */
7120 bool var_is_gl_id = is_gl_identifier(var->name);
7121
7122 if (redeclaring_per_vertex) {
7123 ir_variable *earlier =
7124 get_variable_being_redeclared(var, loc, state,
7125 true /* allow_all_redeclarations */);
7126 if (!var_is_gl_id || earlier == NULL) {
7127 _mesa_glsl_error(&loc, state,
7128 "redeclaration of gl_PerVertex can only "
7129 "include built-in variables");
7130 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7131 _mesa_glsl_error(&loc, state,
7132 "`%s' has already been redeclared",
7133 earlier->name);
7134 } else {
7135 earlier->data.how_declared = ir_var_declared_in_block;
7136 earlier->reinit_interface_type(block_type);
7137 }
7138 continue;
7139 }
7140
7141 if (state->symbols->get_variable(var->name) != NULL)
7142 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7143
7144 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7145 * The UBO declaration itself doesn't get an ir_variable unless it
7146 * has an instance name. This is ugly.
7147 */
7148 if (this->layout.flags.q.explicit_binding) {
7149 apply_explicit_binding(state, &loc, var,
7150 var->get_interface_type(), &this->layout);
7151 }
7152
7153 if (var->type->is_unsized_array()) {
7154 if (var->is_in_shader_storage_block()) {
7155 if (!is_unsized_array_last_element(var)) {
7156 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7157 "only last member of a shader storage block "
7158 "can be defined as unsized array",
7159 var->name);
7160 }
7161 var->data.from_ssbo_unsized_array = true;
7162 } else {
7163 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7164 *
7165 * "If an array is declared as the last member of a shader storage
7166 * block and the size is not specified at compile-time, it is
7167 * sized at run-time. In all other cases, arrays are sized only
7168 * at compile-time."
7169 */
7170 if (state->es_shader) {
7171 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7172 "only last member of a shader storage block "
7173 "can be defined as unsized array",
7174 var->name);
7175 }
7176 }
7177 }
7178
7179 state->symbols->add_variable(var);
7180 instructions->push_tail(var);
7181 }
7182
7183 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7184 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7185 *
7186 * It is also a compilation error ... to redeclare a built-in
7187 * block and then use a member from that built-in block that was
7188 * not included in the redeclaration.
7189 *
7190 * This appears to be a clarification to the behaviour established
7191 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7192 * behaviour regardless of GLSL version.
7193 *
7194 * To prevent the shader from using a member that was not included in
7195 * the redeclaration, we disable any ir_variables that are still
7196 * associated with the old declaration of gl_PerVertex (since we've
7197 * already updated all of the variables contained in the new
7198 * gl_PerVertex to point to it).
7199 *
7200 * As a side effect this will prevent
7201 * validate_intrastage_interface_blocks() from getting confused and
7202 * thinking there are conflicting definitions of gl_PerVertex in the
7203 * shader.
7204 */
7205 foreach_in_list_safe(ir_instruction, node, instructions) {
7206 ir_variable *const var = node->as_variable();
7207 if (var != NULL &&
7208 var->get_interface_type() == earlier_per_vertex &&
7209 var->data.mode == var_mode) {
7210 if (var->data.how_declared == ir_var_declared_normally) {
7211 _mesa_glsl_error(&loc, state,
7212 "redeclaration of gl_PerVertex cannot "
7213 "follow a redeclaration of `%s'",
7214 var->name);
7215 }
7216 state->symbols->disable_variable(var->name);
7217 var->remove();
7218 }
7219 }
7220 }
7221 }
7222
7223 return NULL;
7224 }
7225
7226
7227 ir_rvalue *
7228 ast_tcs_output_layout::hir(exec_list *instructions,
7229 struct _mesa_glsl_parse_state *state)
7230 {
7231 YYLTYPE loc = this->get_location();
7232
7233 unsigned num_vertices;
7234 if (!state->out_qualifier->vertices->
7235 process_qualifier_constant(state, "vertices", &num_vertices,
7236 false)) {
7237 /* return here to stop cascading incorrect error messages */
7238 return NULL;
7239 }
7240
7241 /* If any shader outputs occurred before this declaration and specified an
7242 * array size, make sure the size they specified is consistent with the
7243 * primitive type.
7244 */
7245 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7246 _mesa_glsl_error(&loc, state,
7247 "this tessellation control shader output layout "
7248 "specifies %u vertices, but a previous output "
7249 "is declared with size %u",
7250 num_vertices, state->tcs_output_size);
7251 return NULL;
7252 }
7253
7254 state->tcs_output_vertices_specified = true;
7255
7256 /* If any shader outputs occurred before this declaration and did not
7257 * specify an array size, their size is determined now.
7258 */
7259 foreach_in_list (ir_instruction, node, instructions) {
7260 ir_variable *var = node->as_variable();
7261 if (var == NULL || var->data.mode != ir_var_shader_out)
7262 continue;
7263
7264 /* Note: Not all tessellation control shader output are arrays. */
7265 if (!var->type->is_unsized_array() || var->data.patch)
7266 continue;
7267
7268 if (var->data.max_array_access >= num_vertices) {
7269 _mesa_glsl_error(&loc, state,
7270 "this tessellation control shader output layout "
7271 "specifies %u vertices, but an access to element "
7272 "%u of output `%s' already exists", num_vertices,
7273 var->data.max_array_access, var->name);
7274 } else {
7275 var->type = glsl_type::get_array_instance(var->type->fields.array,
7276 num_vertices);
7277 }
7278 }
7279
7280 return NULL;
7281 }
7282
7283
7284 ir_rvalue *
7285 ast_gs_input_layout::hir(exec_list *instructions,
7286 struct _mesa_glsl_parse_state *state)
7287 {
7288 YYLTYPE loc = this->get_location();
7289
7290 /* If any geometry input layout declaration preceded this one, make sure it
7291 * was consistent with this one.
7292 */
7293 if (state->gs_input_prim_type_specified &&
7294 state->in_qualifier->prim_type != this->prim_type) {
7295 _mesa_glsl_error(&loc, state,
7296 "geometry shader input layout does not match"
7297 " previous declaration");
7298 return NULL;
7299 }
7300
7301 /* If any shader inputs occurred before this declaration and specified an
7302 * array size, make sure the size they specified is consistent with the
7303 * primitive type.
7304 */
7305 unsigned num_vertices = vertices_per_prim(this->prim_type);
7306 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7307 _mesa_glsl_error(&loc, state,
7308 "this geometry shader input layout implies %u vertices"
7309 " per primitive, but a previous input is declared"
7310 " with size %u", num_vertices, state->gs_input_size);
7311 return NULL;
7312 }
7313
7314 state->gs_input_prim_type_specified = true;
7315
7316 /* If any shader inputs occurred before this declaration and did not
7317 * specify an array size, their size is determined now.
7318 */
7319 foreach_in_list(ir_instruction, node, instructions) {
7320 ir_variable *var = node->as_variable();
7321 if (var == NULL || var->data.mode != ir_var_shader_in)
7322 continue;
7323
7324 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7325 * array; skip it.
7326 */
7327
7328 if (var->type->is_unsized_array()) {
7329 if (var->data.max_array_access >= num_vertices) {
7330 _mesa_glsl_error(&loc, state,
7331 "this geometry shader input layout implies %u"
7332 " vertices, but an access to element %u of input"
7333 " `%s' already exists", num_vertices,
7334 var->data.max_array_access, var->name);
7335 } else {
7336 var->type = glsl_type::get_array_instance(var->type->fields.array,
7337 num_vertices);
7338 }
7339 }
7340 }
7341
7342 return NULL;
7343 }
7344
7345
7346 ir_rvalue *
7347 ast_cs_input_layout::hir(exec_list *instructions,
7348 struct _mesa_glsl_parse_state *state)
7349 {
7350 YYLTYPE loc = this->get_location();
7351
7352 /* From the ARB_compute_shader specification:
7353 *
7354 * If the local size of the shader in any dimension is greater
7355 * than the maximum size supported by the implementation for that
7356 * dimension, a compile-time error results.
7357 *
7358 * It is not clear from the spec how the error should be reported if
7359 * the total size of the work group exceeds
7360 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7361 * report it at compile time as well.
7362 */
7363 GLuint64 total_invocations = 1;
7364 unsigned qual_local_size[3];
7365 for (int i = 0; i < 3; i++) {
7366
7367 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7368 'x' + i);
7369 /* Infer a local_size of 1 for unspecified dimensions */
7370 if (this->local_size[i] == NULL) {
7371 qual_local_size[i] = 1;
7372 } else if (!this->local_size[i]->
7373 process_qualifier_constant(state, local_size_str,
7374 &qual_local_size[i], false)) {
7375 ralloc_free(local_size_str);
7376 return NULL;
7377 }
7378 ralloc_free(local_size_str);
7379
7380 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7381 _mesa_glsl_error(&loc, state,
7382 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7383 " (%d)", 'x' + i,
7384 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7385 break;
7386 }
7387 total_invocations *= qual_local_size[i];
7388 if (total_invocations >
7389 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7390 _mesa_glsl_error(&loc, state,
7391 "product of local_sizes exceeds "
7392 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7393 state->ctx->Const.MaxComputeWorkGroupInvocations);
7394 break;
7395 }
7396 }
7397
7398 /* If any compute input layout declaration preceded this one, make sure it
7399 * was consistent with this one.
7400 */
7401 if (state->cs_input_local_size_specified) {
7402 for (int i = 0; i < 3; i++) {
7403 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7404 _mesa_glsl_error(&loc, state,
7405 "compute shader input layout does not match"
7406 " previous declaration");
7407 return NULL;
7408 }
7409 }
7410 }
7411
7412 state->cs_input_local_size_specified = true;
7413 for (int i = 0; i < 3; i++)
7414 state->cs_input_local_size[i] = qual_local_size[i];
7415
7416 /* We may now declare the built-in constant gl_WorkGroupSize (see
7417 * builtin_variable_generator::generate_constants() for why we didn't
7418 * declare it earlier).
7419 */
7420 ir_variable *var = new(state->symbols)
7421 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7422 var->data.how_declared = ir_var_declared_implicitly;
7423 var->data.read_only = true;
7424 instructions->push_tail(var);
7425 state->symbols->add_variable(var);
7426 ir_constant_data data;
7427 memset(&data, 0, sizeof(data));
7428 for (int i = 0; i < 3; i++)
7429 data.u[i] = qual_local_size[i];
7430 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7431 var->constant_initializer =
7432 new(var) ir_constant(glsl_type::uvec3_type, &data);
7433 var->data.has_initializer = true;
7434
7435 return NULL;
7436 }
7437
7438
7439 static void
7440 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7441 exec_list *instructions)
7442 {
7443 bool gl_FragColor_assigned = false;
7444 bool gl_FragData_assigned = false;
7445 bool gl_FragSecondaryColor_assigned = false;
7446 bool gl_FragSecondaryData_assigned = false;
7447 bool user_defined_fs_output_assigned = false;
7448 ir_variable *user_defined_fs_output = NULL;
7449
7450 /* It would be nice to have proper location information. */
7451 YYLTYPE loc;
7452 memset(&loc, 0, sizeof(loc));
7453
7454 foreach_in_list(ir_instruction, node, instructions) {
7455 ir_variable *var = node->as_variable();
7456
7457 if (!var || !var->data.assigned)
7458 continue;
7459
7460 if (strcmp(var->name, "gl_FragColor") == 0)
7461 gl_FragColor_assigned = true;
7462 else if (strcmp(var->name, "gl_FragData") == 0)
7463 gl_FragData_assigned = true;
7464 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7465 gl_FragSecondaryColor_assigned = true;
7466 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7467 gl_FragSecondaryData_assigned = true;
7468 else if (!is_gl_identifier(var->name)) {
7469 if (state->stage == MESA_SHADER_FRAGMENT &&
7470 var->data.mode == ir_var_shader_out) {
7471 user_defined_fs_output_assigned = true;
7472 user_defined_fs_output = var;
7473 }
7474 }
7475 }
7476
7477 /* From the GLSL 1.30 spec:
7478 *
7479 * "If a shader statically assigns a value to gl_FragColor, it
7480 * may not assign a value to any element of gl_FragData. If a
7481 * shader statically writes a value to any element of
7482 * gl_FragData, it may not assign a value to
7483 * gl_FragColor. That is, a shader may assign values to either
7484 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7485 * linked together must also consistently write just one of
7486 * these variables. Similarly, if user declared output
7487 * variables are in use (statically assigned to), then the
7488 * built-in variables gl_FragColor and gl_FragData may not be
7489 * assigned to. These incorrect usages all generate compile
7490 * time errors."
7491 */
7492 if (gl_FragColor_assigned && gl_FragData_assigned) {
7493 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7494 "`gl_FragColor' and `gl_FragData'");
7495 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7496 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7497 "`gl_FragColor' and `%s'",
7498 user_defined_fs_output->name);
7499 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7500 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7501 "`gl_FragSecondaryColorEXT' and"
7502 " `gl_FragSecondaryDataEXT'");
7503 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7504 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7505 "`gl_FragColor' and"
7506 " `gl_FragSecondaryDataEXT'");
7507 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7508 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7509 "`gl_FragData' and"
7510 " `gl_FragSecondaryColorEXT'");
7511 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7512 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7513 "`gl_FragData' and `%s'",
7514 user_defined_fs_output->name);
7515 }
7516
7517 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7518 !state->EXT_blend_func_extended_enable) {
7519 _mesa_glsl_error(&loc, state,
7520 "Dual source blending requires EXT_blend_func_extended");
7521 }
7522 }
7523
7524
7525 static void
7526 remove_per_vertex_blocks(exec_list *instructions,
7527 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7528 {
7529 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7530 * if it exists in this shader type.
7531 */
7532 const glsl_type *per_vertex = NULL;
7533 switch (mode) {
7534 case ir_var_shader_in:
7535 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7536 per_vertex = gl_in->get_interface_type();
7537 break;
7538 case ir_var_shader_out:
7539 if (ir_variable *gl_Position =
7540 state->symbols->get_variable("gl_Position")) {
7541 per_vertex = gl_Position->get_interface_type();
7542 }
7543 break;
7544 default:
7545 assert(!"Unexpected mode");
7546 break;
7547 }
7548
7549 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7550 * need to do anything.
7551 */
7552 if (per_vertex == NULL)
7553 return;
7554
7555 /* If the interface block is used by the shader, then we don't need to do
7556 * anything.
7557 */
7558 interface_block_usage_visitor v(mode, per_vertex);
7559 v.run(instructions);
7560 if (v.usage_found())
7561 return;
7562
7563 /* Remove any ir_variable declarations that refer to the interface block
7564 * we're removing.
7565 */
7566 foreach_in_list_safe(ir_instruction, node, instructions) {
7567 ir_variable *const var = node->as_variable();
7568 if (var != NULL && var->get_interface_type() == per_vertex &&
7569 var->data.mode == mode) {
7570 state->symbols->disable_variable(var->name);
7571 var->remove();
7572 }
7573 }
7574 }