glsl: Fix assert fails when assignment expressions are in array sizes.
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 static bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_rvalue *rvalue;
1005 if (!error_emitted) {
1006 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1007 ir_var_temporary);
1008 instructions->push_tail(var);
1009 instructions->push_tail(assign(var, rhs));
1010
1011 ir_dereference_variable *deref_var =
1012 new(ctx) ir_dereference_variable(var);
1013 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1014 rvalue = new(ctx) ir_dereference_variable(var);
1015 } else {
1016 rvalue = ir_rvalue::error_value(ctx);
1017 }
1018 *out_rvalue = rvalue;
1019 } else {
1020 if (!error_emitted)
1021 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1022 *out_rvalue = NULL;
1023 }
1024
1025 return error_emitted;
1026 }
1027
1028 static ir_rvalue *
1029 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1030 {
1031 void *ctx = ralloc_parent(lvalue);
1032 ir_variable *var;
1033
1034 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1035 ir_var_temporary);
1036 instructions->push_tail(var);
1037
1038 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1039 lvalue));
1040
1041 return new(ctx) ir_dereference_variable(var);
1042 }
1043
1044
1045 ir_rvalue *
1046 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1047 {
1048 (void) instructions;
1049 (void) state;
1050
1051 return NULL;
1052 }
1053
1054 bool
1055 ast_node::has_sequence_subexpression() const
1056 {
1057 return false;
1058 }
1059
1060 void
1061 ast_node::set_is_lhs(bool /* new_value */)
1062 {
1063 }
1064
1065 void
1066 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1067 struct _mesa_glsl_parse_state *state)
1068 {
1069 (void)hir(instructions, state);
1070 }
1071
1072 void
1073 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1074 struct _mesa_glsl_parse_state *state)
1075 {
1076 (void)hir(instructions, state);
1077 }
1078
1079 static ir_rvalue *
1080 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1081 {
1082 int join_op;
1083 ir_rvalue *cmp = NULL;
1084
1085 if (operation == ir_binop_all_equal)
1086 join_op = ir_binop_logic_and;
1087 else
1088 join_op = ir_binop_logic_or;
1089
1090 switch (op0->type->base_type) {
1091 case GLSL_TYPE_FLOAT:
1092 case GLSL_TYPE_UINT:
1093 case GLSL_TYPE_INT:
1094 case GLSL_TYPE_BOOL:
1095 case GLSL_TYPE_DOUBLE:
1096 return new(mem_ctx) ir_expression(operation, op0, op1);
1097
1098 case GLSL_TYPE_ARRAY: {
1099 for (unsigned int i = 0; i < op0->type->length; i++) {
1100 ir_rvalue *e0, *e1, *result;
1101
1102 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1103 new(mem_ctx) ir_constant(i));
1104 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1105 new(mem_ctx) ir_constant(i));
1106 result = do_comparison(mem_ctx, operation, e0, e1);
1107
1108 if (cmp) {
1109 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1110 } else {
1111 cmp = result;
1112 }
1113 }
1114
1115 mark_whole_array_access(op0);
1116 mark_whole_array_access(op1);
1117 break;
1118 }
1119
1120 case GLSL_TYPE_STRUCT: {
1121 for (unsigned int i = 0; i < op0->type->length; i++) {
1122 ir_rvalue *e0, *e1, *result;
1123 const char *field_name = op0->type->fields.structure[i].name;
1124
1125 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1126 field_name);
1127 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1128 field_name);
1129 result = do_comparison(mem_ctx, operation, e0, e1);
1130
1131 if (cmp) {
1132 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1133 } else {
1134 cmp = result;
1135 }
1136 }
1137 break;
1138 }
1139
1140 case GLSL_TYPE_ERROR:
1141 case GLSL_TYPE_VOID:
1142 case GLSL_TYPE_SAMPLER:
1143 case GLSL_TYPE_IMAGE:
1144 case GLSL_TYPE_INTERFACE:
1145 case GLSL_TYPE_ATOMIC_UINT:
1146 case GLSL_TYPE_SUBROUTINE:
1147 case GLSL_TYPE_FUNCTION:
1148 /* I assume a comparison of a struct containing a sampler just
1149 * ignores the sampler present in the type.
1150 */
1151 break;
1152 }
1153
1154 if (cmp == NULL)
1155 cmp = new(mem_ctx) ir_constant(true);
1156
1157 return cmp;
1158 }
1159
1160 /* For logical operations, we want to ensure that the operands are
1161 * scalar booleans. If it isn't, emit an error and return a constant
1162 * boolean to avoid triggering cascading error messages.
1163 */
1164 ir_rvalue *
1165 get_scalar_boolean_operand(exec_list *instructions,
1166 struct _mesa_glsl_parse_state *state,
1167 ast_expression *parent_expr,
1168 int operand,
1169 const char *operand_name,
1170 bool *error_emitted)
1171 {
1172 ast_expression *expr = parent_expr->subexpressions[operand];
1173 void *ctx = state;
1174 ir_rvalue *val = expr->hir(instructions, state);
1175
1176 if (val->type->is_boolean() && val->type->is_scalar())
1177 return val;
1178
1179 if (!*error_emitted) {
1180 YYLTYPE loc = expr->get_location();
1181 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1182 operand_name,
1183 parent_expr->operator_string(parent_expr->oper));
1184 *error_emitted = true;
1185 }
1186
1187 return new(ctx) ir_constant(true);
1188 }
1189
1190 /**
1191 * If name refers to a builtin array whose maximum allowed size is less than
1192 * size, report an error and return true. Otherwise return false.
1193 */
1194 void
1195 check_builtin_array_max_size(const char *name, unsigned size,
1196 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1197 {
1198 if ((strcmp("gl_TexCoord", name) == 0)
1199 && (size > state->Const.MaxTextureCoords)) {
1200 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1201 *
1202 * "The size [of gl_TexCoord] can be at most
1203 * gl_MaxTextureCoords."
1204 */
1205 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1206 "be larger than gl_MaxTextureCoords (%u)",
1207 state->Const.MaxTextureCoords);
1208 } else if (strcmp("gl_ClipDistance", name) == 0) {
1209 state->clip_dist_size = size;
1210 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1211 /* From section 7.1 (Vertex Shader Special Variables) of the
1212 * GLSL 1.30 spec:
1213 *
1214 * "The gl_ClipDistance array is predeclared as unsized and
1215 * must be sized by the shader either redeclaring it with a
1216 * size or indexing it only with integral constant
1217 * expressions. ... The size can be at most
1218 * gl_MaxClipDistances."
1219 */
1220 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1221 "be larger than gl_MaxClipDistances (%u)",
1222 state->Const.MaxClipPlanes);
1223 }
1224 } else if (strcmp("gl_CullDistance", name) == 0) {
1225 state->cull_dist_size = size;
1226 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1227 /* From the ARB_cull_distance spec:
1228 *
1229 * "The gl_CullDistance array is predeclared as unsized and
1230 * must be sized by the shader either redeclaring it with
1231 * a size or indexing it only with integral constant
1232 * expressions. The size determines the number and set of
1233 * enabled cull distances and can be at most
1234 * gl_MaxCullDistances."
1235 */
1236 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1237 "be larger than gl_MaxCullDistances (%u)",
1238 state->Const.MaxClipPlanes);
1239 }
1240 }
1241 }
1242
1243 /**
1244 * Create the constant 1, of a which is appropriate for incrementing and
1245 * decrementing values of the given GLSL type. For example, if type is vec4,
1246 * this creates a constant value of 1.0 having type float.
1247 *
1248 * If the given type is invalid for increment and decrement operators, return
1249 * a floating point 1--the error will be detected later.
1250 */
1251 static ir_rvalue *
1252 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1253 {
1254 switch (type->base_type) {
1255 case GLSL_TYPE_UINT:
1256 return new(ctx) ir_constant((unsigned) 1);
1257 case GLSL_TYPE_INT:
1258 return new(ctx) ir_constant(1);
1259 default:
1260 case GLSL_TYPE_FLOAT:
1261 return new(ctx) ir_constant(1.0f);
1262 }
1263 }
1264
1265 ir_rvalue *
1266 ast_expression::hir(exec_list *instructions,
1267 struct _mesa_glsl_parse_state *state)
1268 {
1269 return do_hir(instructions, state, true);
1270 }
1271
1272 void
1273 ast_expression::hir_no_rvalue(exec_list *instructions,
1274 struct _mesa_glsl_parse_state *state)
1275 {
1276 do_hir(instructions, state, false);
1277 }
1278
1279 void
1280 ast_expression::set_is_lhs(bool new_value)
1281 {
1282 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1283 * if we lack an identifier we can just skip it.
1284 */
1285 if (this->primary_expression.identifier == NULL)
1286 return;
1287
1288 this->is_lhs = new_value;
1289
1290 /* We need to go through the subexpressions tree to cover cases like
1291 * ast_field_selection
1292 */
1293 if (this->subexpressions[0] != NULL)
1294 this->subexpressions[0]->set_is_lhs(new_value);
1295 }
1296
1297 ir_rvalue *
1298 ast_expression::do_hir(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state,
1300 bool needs_rvalue)
1301 {
1302 void *ctx = state;
1303 static const int operations[AST_NUM_OPERATORS] = {
1304 -1, /* ast_assign doesn't convert to ir_expression. */
1305 -1, /* ast_plus doesn't convert to ir_expression. */
1306 ir_unop_neg,
1307 ir_binop_add,
1308 ir_binop_sub,
1309 ir_binop_mul,
1310 ir_binop_div,
1311 ir_binop_mod,
1312 ir_binop_lshift,
1313 ir_binop_rshift,
1314 ir_binop_less,
1315 ir_binop_greater,
1316 ir_binop_lequal,
1317 ir_binop_gequal,
1318 ir_binop_all_equal,
1319 ir_binop_any_nequal,
1320 ir_binop_bit_and,
1321 ir_binop_bit_xor,
1322 ir_binop_bit_or,
1323 ir_unop_bit_not,
1324 ir_binop_logic_and,
1325 ir_binop_logic_xor,
1326 ir_binop_logic_or,
1327 ir_unop_logic_not,
1328
1329 /* Note: The following block of expression types actually convert
1330 * to multiple IR instructions.
1331 */
1332 ir_binop_mul, /* ast_mul_assign */
1333 ir_binop_div, /* ast_div_assign */
1334 ir_binop_mod, /* ast_mod_assign */
1335 ir_binop_add, /* ast_add_assign */
1336 ir_binop_sub, /* ast_sub_assign */
1337 ir_binop_lshift, /* ast_ls_assign */
1338 ir_binop_rshift, /* ast_rs_assign */
1339 ir_binop_bit_and, /* ast_and_assign */
1340 ir_binop_bit_xor, /* ast_xor_assign */
1341 ir_binop_bit_or, /* ast_or_assign */
1342
1343 -1, /* ast_conditional doesn't convert to ir_expression. */
1344 ir_binop_add, /* ast_pre_inc. */
1345 ir_binop_sub, /* ast_pre_dec. */
1346 ir_binop_add, /* ast_post_inc. */
1347 ir_binop_sub, /* ast_post_dec. */
1348 -1, /* ast_field_selection doesn't conv to ir_expression. */
1349 -1, /* ast_array_index doesn't convert to ir_expression. */
1350 -1, /* ast_function_call doesn't conv to ir_expression. */
1351 -1, /* ast_identifier doesn't convert to ir_expression. */
1352 -1, /* ast_int_constant doesn't convert to ir_expression. */
1353 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1354 -1, /* ast_float_constant doesn't conv to ir_expression. */
1355 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1356 -1, /* ast_sequence doesn't convert to ir_expression. */
1357 -1, /* ast_aggregate shouldn't ever even get here. */
1358 };
1359 ir_rvalue *result = NULL;
1360 ir_rvalue *op[3];
1361 const struct glsl_type *type, *orig_type;
1362 bool error_emitted = false;
1363 YYLTYPE loc;
1364
1365 loc = this->get_location();
1366
1367 switch (this->oper) {
1368 case ast_aggregate:
1369 assert(!"ast_aggregate: Should never get here.");
1370 break;
1371
1372 case ast_assign: {
1373 this->subexpressions[0]->set_is_lhs(true);
1374 op[0] = this->subexpressions[0]->hir(instructions, state);
1375 op[1] = this->subexpressions[1]->hir(instructions, state);
1376
1377 error_emitted =
1378 do_assignment(instructions, state,
1379 this->subexpressions[0]->non_lvalue_description,
1380 op[0], op[1], &result, needs_rvalue, false,
1381 this->subexpressions[0]->get_location());
1382 break;
1383 }
1384
1385 case ast_plus:
1386 op[0] = this->subexpressions[0]->hir(instructions, state);
1387
1388 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1389
1390 error_emitted = type->is_error();
1391
1392 result = op[0];
1393 break;
1394
1395 case ast_neg:
1396 op[0] = this->subexpressions[0]->hir(instructions, state);
1397
1398 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1399
1400 error_emitted = type->is_error();
1401
1402 result = new(ctx) ir_expression(operations[this->oper], type,
1403 op[0], NULL);
1404 break;
1405
1406 case ast_add:
1407 case ast_sub:
1408 case ast_mul:
1409 case ast_div:
1410 op[0] = this->subexpressions[0]->hir(instructions, state);
1411 op[1] = this->subexpressions[1]->hir(instructions, state);
1412
1413 type = arithmetic_result_type(op[0], op[1],
1414 (this->oper == ast_mul),
1415 state, & loc);
1416 error_emitted = type->is_error();
1417
1418 result = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420 break;
1421
1422 case ast_mod:
1423 op[0] = this->subexpressions[0]->hir(instructions, state);
1424 op[1] = this->subexpressions[1]->hir(instructions, state);
1425
1426 type = modulus_result_type(op[0], op[1], state, &loc);
1427
1428 assert(operations[this->oper] == ir_binop_mod);
1429
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = type->is_error();
1433 break;
1434
1435 case ast_lshift:
1436 case ast_rshift:
1437 if (!state->check_bitwise_operations_allowed(&loc)) {
1438 error_emitted = true;
1439 }
1440
1441 op[0] = this->subexpressions[0]->hir(instructions, state);
1442 op[1] = this->subexpressions[1]->hir(instructions, state);
1443 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1444 &loc);
1445 result = new(ctx) ir_expression(operations[this->oper], type,
1446 op[0], op[1]);
1447 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1448 break;
1449
1450 case ast_less:
1451 case ast_greater:
1452 case ast_lequal:
1453 case ast_gequal:
1454 op[0] = this->subexpressions[0]->hir(instructions, state);
1455 op[1] = this->subexpressions[1]->hir(instructions, state);
1456
1457 type = relational_result_type(op[0], op[1], state, & loc);
1458
1459 /* The relational operators must either generate an error or result
1460 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1461 */
1462 assert(type->is_error()
1463 || ((type->base_type == GLSL_TYPE_BOOL)
1464 && type->is_scalar()));
1465
1466 result = new(ctx) ir_expression(operations[this->oper], type,
1467 op[0], op[1]);
1468 error_emitted = type->is_error();
1469 break;
1470
1471 case ast_nequal:
1472 case ast_equal:
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475
1476 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1477 *
1478 * "The equality operators equal (==), and not equal (!=)
1479 * operate on all types. They result in a scalar Boolean. If
1480 * the operand types do not match, then there must be a
1481 * conversion from Section 4.1.10 "Implicit Conversions"
1482 * applied to one operand that can make them match, in which
1483 * case this conversion is done."
1484 */
1485
1486 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1487 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1488 "no operation `%1$s' exists that takes a left-hand "
1489 "operand of type 'void' or a right operand of type "
1490 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1491 error_emitted = true;
1492 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1493 && !apply_implicit_conversion(op[1]->type, op[0], state))
1494 || (op[0]->type != op[1]->type)) {
1495 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1496 "type", (this->oper == ast_equal) ? "==" : "!=");
1497 error_emitted = true;
1498 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1499 !state->check_version(120, 300, &loc,
1500 "array comparisons forbidden")) {
1501 error_emitted = true;
1502 } else if ((op[0]->type->contains_subroutine() ||
1503 op[1]->type->contains_subroutine())) {
1504 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1505 error_emitted = true;
1506 } else if ((op[0]->type->contains_opaque() ||
1507 op[1]->type->contains_opaque())) {
1508 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1509 error_emitted = true;
1510 }
1511
1512 if (error_emitted) {
1513 result = new(ctx) ir_constant(false);
1514 } else {
1515 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1516 assert(result->type == glsl_type::bool_type);
1517 }
1518 break;
1519
1520 case ast_bit_and:
1521 case ast_bit_xor:
1522 case ast_bit_or:
1523 op[0] = this->subexpressions[0]->hir(instructions, state);
1524 op[1] = this->subexpressions[1]->hir(instructions, state);
1525 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1526 result = new(ctx) ir_expression(operations[this->oper], type,
1527 op[0], op[1]);
1528 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1529 break;
1530
1531 case ast_bit_not:
1532 op[0] = this->subexpressions[0]->hir(instructions, state);
1533
1534 if (!state->check_bitwise_operations_allowed(&loc)) {
1535 error_emitted = true;
1536 }
1537
1538 if (!op[0]->type->is_integer()) {
1539 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1540 error_emitted = true;
1541 }
1542
1543 type = error_emitted ? glsl_type::error_type : op[0]->type;
1544 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1545 break;
1546
1547 case ast_logic_and: {
1548 exec_list rhs_instructions;
1549 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1550 "LHS", &error_emitted);
1551 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1552 "RHS", &error_emitted);
1553
1554 if (rhs_instructions.is_empty()) {
1555 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1556 type = result->type;
1557 } else {
1558 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1559 "and_tmp",
1560 ir_var_temporary);
1561 instructions->push_tail(tmp);
1562
1563 ir_if *const stmt = new(ctx) ir_if(op[0]);
1564 instructions->push_tail(stmt);
1565
1566 stmt->then_instructions.append_list(&rhs_instructions);
1567 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1568 ir_assignment *const then_assign =
1569 new(ctx) ir_assignment(then_deref, op[1]);
1570 stmt->then_instructions.push_tail(then_assign);
1571
1572 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1573 ir_assignment *const else_assign =
1574 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1575 stmt->else_instructions.push_tail(else_assign);
1576
1577 result = new(ctx) ir_dereference_variable(tmp);
1578 type = tmp->type;
1579 }
1580 break;
1581 }
1582
1583 case ast_logic_or: {
1584 exec_list rhs_instructions;
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "LHS", &error_emitted);
1587 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1588 "RHS", &error_emitted);
1589
1590 if (rhs_instructions.is_empty()) {
1591 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1592 type = result->type;
1593 } else {
1594 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1595 "or_tmp",
1596 ir_var_temporary);
1597 instructions->push_tail(tmp);
1598
1599 ir_if *const stmt = new(ctx) ir_if(op[0]);
1600 instructions->push_tail(stmt);
1601
1602 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const then_assign =
1604 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1605 stmt->then_instructions.push_tail(then_assign);
1606
1607 stmt->else_instructions.append_list(&rhs_instructions);
1608 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1609 ir_assignment *const else_assign =
1610 new(ctx) ir_assignment(else_deref, op[1]);
1611 stmt->else_instructions.push_tail(else_assign);
1612
1613 result = new(ctx) ir_dereference_variable(tmp);
1614 type = tmp->type;
1615 }
1616 break;
1617 }
1618
1619 case ast_logic_xor:
1620 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1621 *
1622 * "The logical binary operators and (&&), or ( | | ), and
1623 * exclusive or (^^). They operate only on two Boolean
1624 * expressions and result in a Boolean expression."
1625 */
1626 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1627 &error_emitted);
1628 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1629 &error_emitted);
1630
1631 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1632 op[0], op[1]);
1633 break;
1634
1635 case ast_logic_not:
1636 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1637 "operand", &error_emitted);
1638
1639 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1640 op[0], NULL);
1641 break;
1642
1643 case ast_mul_assign:
1644 case ast_div_assign:
1645 case ast_add_assign:
1646 case ast_sub_assign: {
1647 this->subexpressions[0]->set_is_lhs(true);
1648 op[0] = this->subexpressions[0]->hir(instructions, state);
1649 op[1] = this->subexpressions[1]->hir(instructions, state);
1650
1651 orig_type = op[0]->type;
1652 type = arithmetic_result_type(op[0], op[1],
1653 (this->oper == ast_mul_assign),
1654 state, & loc);
1655
1656 if (type != orig_type) {
1657 _mesa_glsl_error(& loc, state,
1658 "could not implicitly convert "
1659 "%s to %s", type->name, orig_type->name);
1660 type = glsl_type::error_type;
1661 }
1662
1663 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1664 op[0], op[1]);
1665
1666 error_emitted =
1667 do_assignment(instructions, state,
1668 this->subexpressions[0]->non_lvalue_description,
1669 op[0]->clone(ctx, NULL), temp_rhs,
1670 &result, needs_rvalue, false,
1671 this->subexpressions[0]->get_location());
1672
1673 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1674 * explicitly test for this because none of the binary expression
1675 * operators allow array operands either.
1676 */
1677
1678 break;
1679 }
1680
1681 case ast_mod_assign: {
1682 this->subexpressions[0]->set_is_lhs(true);
1683 op[0] = this->subexpressions[0]->hir(instructions, state);
1684 op[1] = this->subexpressions[1]->hir(instructions, state);
1685
1686 orig_type = op[0]->type;
1687 type = modulus_result_type(op[0], op[1], state, &loc);
1688
1689 if (type != orig_type) {
1690 _mesa_glsl_error(& loc, state,
1691 "could not implicitly convert "
1692 "%s to %s", type->name, orig_type->name);
1693 type = glsl_type::error_type;
1694 }
1695
1696 assert(operations[this->oper] == ir_binop_mod);
1697
1698 ir_rvalue *temp_rhs;
1699 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1700 op[0], op[1]);
1701
1702 error_emitted =
1703 do_assignment(instructions, state,
1704 this->subexpressions[0]->non_lvalue_description,
1705 op[0]->clone(ctx, NULL), temp_rhs,
1706 &result, needs_rvalue, false,
1707 this->subexpressions[0]->get_location());
1708 break;
1709 }
1710
1711 case ast_ls_assign:
1712 case ast_rs_assign: {
1713 this->subexpressions[0]->set_is_lhs(true);
1714 op[0] = this->subexpressions[0]->hir(instructions, state);
1715 op[1] = this->subexpressions[1]->hir(instructions, state);
1716 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1717 &loc);
1718 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1719 type, op[0], op[1]);
1720 error_emitted =
1721 do_assignment(instructions, state,
1722 this->subexpressions[0]->non_lvalue_description,
1723 op[0]->clone(ctx, NULL), temp_rhs,
1724 &result, needs_rvalue, false,
1725 this->subexpressions[0]->get_location());
1726 break;
1727 }
1728
1729 case ast_and_assign:
1730 case ast_xor_assign:
1731 case ast_or_assign: {
1732 this->subexpressions[0]->set_is_lhs(true);
1733 op[0] = this->subexpressions[0]->hir(instructions, state);
1734 op[1] = this->subexpressions[1]->hir(instructions, state);
1735
1736 orig_type = op[0]->type;
1737 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1738
1739 if (type != orig_type) {
1740 _mesa_glsl_error(& loc, state,
1741 "could not implicitly convert "
1742 "%s to %s", type->name, orig_type->name);
1743 type = glsl_type::error_type;
1744 }
1745
1746 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1747 type, op[0], op[1]);
1748 error_emitted =
1749 do_assignment(instructions, state,
1750 this->subexpressions[0]->non_lvalue_description,
1751 op[0]->clone(ctx, NULL), temp_rhs,
1752 &result, needs_rvalue, false,
1753 this->subexpressions[0]->get_location());
1754 break;
1755 }
1756
1757 case ast_conditional: {
1758 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1759 *
1760 * "The ternary selection operator (?:). It operates on three
1761 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1762 * first expression, which must result in a scalar Boolean."
1763 */
1764 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1765 "condition", &error_emitted);
1766
1767 /* The :? operator is implemented by generating an anonymous temporary
1768 * followed by an if-statement. The last instruction in each branch of
1769 * the if-statement assigns a value to the anonymous temporary. This
1770 * temporary is the r-value of the expression.
1771 */
1772 exec_list then_instructions;
1773 exec_list else_instructions;
1774
1775 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1776 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1777
1778 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1779 *
1780 * "The second and third expressions can be any type, as
1781 * long their types match, or there is a conversion in
1782 * Section 4.1.10 "Implicit Conversions" that can be applied
1783 * to one of the expressions to make their types match. This
1784 * resulting matching type is the type of the entire
1785 * expression."
1786 */
1787 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1788 && !apply_implicit_conversion(op[2]->type, op[1], state))
1789 || (op[1]->type != op[2]->type)) {
1790 YYLTYPE loc = this->subexpressions[1]->get_location();
1791
1792 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1793 "operator must have matching types");
1794 error_emitted = true;
1795 type = glsl_type::error_type;
1796 } else {
1797 type = op[1]->type;
1798 }
1799
1800 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1801 *
1802 * "The second and third expressions must be the same type, but can
1803 * be of any type other than an array."
1804 */
1805 if (type->is_array() &&
1806 !state->check_version(120, 300, &loc,
1807 "second and third operands of ?: operator "
1808 "cannot be arrays")) {
1809 error_emitted = true;
1810 }
1811
1812 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1813 *
1814 * "Except for array indexing, structure member selection, and
1815 * parentheses, opaque variables are not allowed to be operands in
1816 * expressions; such use results in a compile-time error."
1817 */
1818 if (type->contains_opaque()) {
1819 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1820 "of the ?: operator");
1821 error_emitted = true;
1822 }
1823
1824 ir_constant *cond_val = op[0]->constant_expression_value();
1825
1826 if (then_instructions.is_empty()
1827 && else_instructions.is_empty()
1828 && cond_val != NULL) {
1829 result = cond_val->value.b[0] ? op[1] : op[2];
1830 } else {
1831 /* The copy to conditional_tmp reads the whole array. */
1832 if (type->is_array()) {
1833 mark_whole_array_access(op[1]);
1834 mark_whole_array_access(op[2]);
1835 }
1836
1837 ir_variable *const tmp =
1838 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1839 instructions->push_tail(tmp);
1840
1841 ir_if *const stmt = new(ctx) ir_if(op[0]);
1842 instructions->push_tail(stmt);
1843
1844 then_instructions.move_nodes_to(& stmt->then_instructions);
1845 ir_dereference *const then_deref =
1846 new(ctx) ir_dereference_variable(tmp);
1847 ir_assignment *const then_assign =
1848 new(ctx) ir_assignment(then_deref, op[1]);
1849 stmt->then_instructions.push_tail(then_assign);
1850
1851 else_instructions.move_nodes_to(& stmt->else_instructions);
1852 ir_dereference *const else_deref =
1853 new(ctx) ir_dereference_variable(tmp);
1854 ir_assignment *const else_assign =
1855 new(ctx) ir_assignment(else_deref, op[2]);
1856 stmt->else_instructions.push_tail(else_assign);
1857
1858 result = new(ctx) ir_dereference_variable(tmp);
1859 }
1860 break;
1861 }
1862
1863 case ast_pre_inc:
1864 case ast_pre_dec: {
1865 this->non_lvalue_description = (this->oper == ast_pre_inc)
1866 ? "pre-increment operation" : "pre-decrement operation";
1867
1868 op[0] = this->subexpressions[0]->hir(instructions, state);
1869 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1870
1871 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1872
1873 ir_rvalue *temp_rhs;
1874 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1875 op[0], op[1]);
1876
1877 error_emitted =
1878 do_assignment(instructions, state,
1879 this->subexpressions[0]->non_lvalue_description,
1880 op[0]->clone(ctx, NULL), temp_rhs,
1881 &result, needs_rvalue, false,
1882 this->subexpressions[0]->get_location());
1883 break;
1884 }
1885
1886 case ast_post_inc:
1887 case ast_post_dec: {
1888 this->non_lvalue_description = (this->oper == ast_post_inc)
1889 ? "post-increment operation" : "post-decrement operation";
1890 op[0] = this->subexpressions[0]->hir(instructions, state);
1891 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1892
1893 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 /* Get a temporary of a copy of the lvalue before it's modified.
1902 * This may get thrown away later.
1903 */
1904 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1905
1906 ir_rvalue *junk_rvalue;
1907 error_emitted =
1908 do_assignment(instructions, state,
1909 this->subexpressions[0]->non_lvalue_description,
1910 op[0]->clone(ctx, NULL), temp_rhs,
1911 &junk_rvalue, false, false,
1912 this->subexpressions[0]->get_location());
1913
1914 break;
1915 }
1916
1917 case ast_field_selection:
1918 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1919 break;
1920
1921 case ast_array_index: {
1922 YYLTYPE index_loc = subexpressions[1]->get_location();
1923
1924 /* Getting if an array is being used uninitialized is beyond what we get
1925 * from ir_value.data.assigned. Setting is_lhs as true would force to
1926 * not raise a uninitialized warning when using an array
1927 */
1928 subexpressions[0]->set_is_lhs(true);
1929 op[0] = subexpressions[0]->hir(instructions, state);
1930 op[1] = subexpressions[1]->hir(instructions, state);
1931
1932 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1933 loc, index_loc);
1934
1935 if (result->type->is_error())
1936 error_emitted = true;
1937
1938 break;
1939 }
1940
1941 case ast_unsized_array_dim:
1942 assert(!"ast_unsized_array_dim: Should never get here.");
1943 break;
1944
1945 case ast_function_call:
1946 /* Should *NEVER* get here. ast_function_call should always be handled
1947 * by ast_function_expression::hir.
1948 */
1949 assert(0);
1950 break;
1951
1952 case ast_identifier: {
1953 /* ast_identifier can appear several places in a full abstract syntax
1954 * tree. This particular use must be at location specified in the grammar
1955 * as 'variable_identifier'.
1956 */
1957 ir_variable *var =
1958 state->symbols->get_variable(this->primary_expression.identifier);
1959
1960 if (var == NULL) {
1961 /* the identifier might be a subroutine name */
1962 char *sub_name;
1963 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1964 var = state->symbols->get_variable(sub_name);
1965 ralloc_free(sub_name);
1966 }
1967
1968 if (var != NULL) {
1969 var->data.used = true;
1970 result = new(ctx) ir_dereference_variable(var);
1971
1972 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1973 && !this->is_lhs
1974 && result->variable_referenced()->data.assigned != true
1975 && !is_gl_identifier(var->name)) {
1976 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1977 this->primary_expression.identifier);
1978 }
1979 } else {
1980 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1981 this->primary_expression.identifier);
1982
1983 result = ir_rvalue::error_value(ctx);
1984 error_emitted = true;
1985 }
1986 break;
1987 }
1988
1989 case ast_int_constant:
1990 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1991 break;
1992
1993 case ast_uint_constant:
1994 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1995 break;
1996
1997 case ast_float_constant:
1998 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1999 break;
2000
2001 case ast_bool_constant:
2002 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2003 break;
2004
2005 case ast_double_constant:
2006 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2007 break;
2008
2009 case ast_sequence: {
2010 /* It should not be possible to generate a sequence in the AST without
2011 * any expressions in it.
2012 */
2013 assert(!this->expressions.is_empty());
2014
2015 /* The r-value of a sequence is the last expression in the sequence. If
2016 * the other expressions in the sequence do not have side-effects (and
2017 * therefore add instructions to the instruction list), they get dropped
2018 * on the floor.
2019 */
2020 exec_node *previous_tail = NULL;
2021 YYLTYPE previous_operand_loc = loc;
2022
2023 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2024 /* If one of the operands of comma operator does not generate any
2025 * code, we want to emit a warning. At each pass through the loop
2026 * previous_tail will point to the last instruction in the stream
2027 * *before* processing the previous operand. Naturally,
2028 * instructions->get_tail_raw() will point to the last instruction in
2029 * the stream *after* processing the previous operand. If the two
2030 * pointers match, then the previous operand had no effect.
2031 *
2032 * The warning behavior here differs slightly from GCC. GCC will
2033 * only emit a warning if none of the left-hand operands have an
2034 * effect. However, it will emit a warning for each. I believe that
2035 * there are some cases in C (especially with GCC extensions) where
2036 * it is useful to have an intermediate step in a sequence have no
2037 * effect, but I don't think these cases exist in GLSL. Either way,
2038 * it would be a giant hassle to replicate that behavior.
2039 */
2040 if (previous_tail == instructions->get_tail_raw()) {
2041 _mesa_glsl_warning(&previous_operand_loc, state,
2042 "left-hand operand of comma expression has "
2043 "no effect");
2044 }
2045
2046 /* The tail is directly accessed instead of using the get_tail()
2047 * method for performance reasons. get_tail() has extra code to
2048 * return NULL when the list is empty. We don't care about that
2049 * here, so using get_tail_raw() is fine.
2050 */
2051 previous_tail = instructions->get_tail_raw();
2052 previous_operand_loc = ast->get_location();
2053
2054 result = ast->hir(instructions, state);
2055 }
2056
2057 /* Any errors should have already been emitted in the loop above.
2058 */
2059 error_emitted = true;
2060 break;
2061 }
2062 }
2063 type = NULL; /* use result->type, not type. */
2064 assert(result != NULL || !needs_rvalue);
2065
2066 if (result && result->type->is_error() && !error_emitted)
2067 _mesa_glsl_error(& loc, state, "type mismatch");
2068
2069 return result;
2070 }
2071
2072 bool
2073 ast_expression::has_sequence_subexpression() const
2074 {
2075 switch (this->oper) {
2076 case ast_plus:
2077 case ast_neg:
2078 case ast_bit_not:
2079 case ast_logic_not:
2080 case ast_pre_inc:
2081 case ast_pre_dec:
2082 case ast_post_inc:
2083 case ast_post_dec:
2084 return this->subexpressions[0]->has_sequence_subexpression();
2085
2086 case ast_assign:
2087 case ast_add:
2088 case ast_sub:
2089 case ast_mul:
2090 case ast_div:
2091 case ast_mod:
2092 case ast_lshift:
2093 case ast_rshift:
2094 case ast_less:
2095 case ast_greater:
2096 case ast_lequal:
2097 case ast_gequal:
2098 case ast_nequal:
2099 case ast_equal:
2100 case ast_bit_and:
2101 case ast_bit_xor:
2102 case ast_bit_or:
2103 case ast_logic_and:
2104 case ast_logic_or:
2105 case ast_logic_xor:
2106 case ast_array_index:
2107 case ast_mul_assign:
2108 case ast_div_assign:
2109 case ast_add_assign:
2110 case ast_sub_assign:
2111 case ast_mod_assign:
2112 case ast_ls_assign:
2113 case ast_rs_assign:
2114 case ast_and_assign:
2115 case ast_xor_assign:
2116 case ast_or_assign:
2117 return this->subexpressions[0]->has_sequence_subexpression() ||
2118 this->subexpressions[1]->has_sequence_subexpression();
2119
2120 case ast_conditional:
2121 return this->subexpressions[0]->has_sequence_subexpression() ||
2122 this->subexpressions[1]->has_sequence_subexpression() ||
2123 this->subexpressions[2]->has_sequence_subexpression();
2124
2125 case ast_sequence:
2126 return true;
2127
2128 case ast_field_selection:
2129 case ast_identifier:
2130 case ast_int_constant:
2131 case ast_uint_constant:
2132 case ast_float_constant:
2133 case ast_bool_constant:
2134 case ast_double_constant:
2135 return false;
2136
2137 case ast_aggregate:
2138 return false;
2139
2140 case ast_function_call:
2141 unreachable("should be handled by ast_function_expression::hir");
2142
2143 case ast_unsized_array_dim:
2144 unreachable("ast_unsized_array_dim: Should never get here.");
2145 }
2146
2147 return false;
2148 }
2149
2150 ir_rvalue *
2151 ast_expression_statement::hir(exec_list *instructions,
2152 struct _mesa_glsl_parse_state *state)
2153 {
2154 /* It is possible to have expression statements that don't have an
2155 * expression. This is the solitary semicolon:
2156 *
2157 * for (i = 0; i < 5; i++)
2158 * ;
2159 *
2160 * In this case the expression will be NULL. Test for NULL and don't do
2161 * anything in that case.
2162 */
2163 if (expression != NULL)
2164 expression->hir_no_rvalue(instructions, state);
2165
2166 /* Statements do not have r-values.
2167 */
2168 return NULL;
2169 }
2170
2171
2172 ir_rvalue *
2173 ast_compound_statement::hir(exec_list *instructions,
2174 struct _mesa_glsl_parse_state *state)
2175 {
2176 if (new_scope)
2177 state->symbols->push_scope();
2178
2179 foreach_list_typed (ast_node, ast, link, &this->statements)
2180 ast->hir(instructions, state);
2181
2182 if (new_scope)
2183 state->symbols->pop_scope();
2184
2185 /* Compound statements do not have r-values.
2186 */
2187 return NULL;
2188 }
2189
2190 /**
2191 * Evaluate the given exec_node (which should be an ast_node representing
2192 * a single array dimension) and return its integer value.
2193 */
2194 static unsigned
2195 process_array_size(exec_node *node,
2196 struct _mesa_glsl_parse_state *state)
2197 {
2198 exec_list dummy_instructions;
2199
2200 ast_node *array_size = exec_node_data(ast_node, node, link);
2201
2202 /**
2203 * Dimensions other than the outermost dimension can by unsized if they
2204 * are immediately sized by a constructor or initializer.
2205 */
2206 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2207 return 0;
2208
2209 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2210 YYLTYPE loc = array_size->get_location();
2211
2212 if (ir == NULL) {
2213 _mesa_glsl_error(& loc, state,
2214 "array size could not be resolved");
2215 return 0;
2216 }
2217
2218 if (!ir->type->is_integer()) {
2219 _mesa_glsl_error(& loc, state,
2220 "array size must be integer type");
2221 return 0;
2222 }
2223
2224 if (!ir->type->is_scalar()) {
2225 _mesa_glsl_error(& loc, state,
2226 "array size must be scalar type");
2227 return 0;
2228 }
2229
2230 ir_constant *const size = ir->constant_expression_value();
2231 if (size == NULL ||
2232 (state->is_version(120, 300) &&
2233 array_size->has_sequence_subexpression())) {
2234 _mesa_glsl_error(& loc, state, "array size must be a "
2235 "constant valued expression");
2236 return 0;
2237 }
2238
2239 if (size->value.i[0] <= 0) {
2240 _mesa_glsl_error(& loc, state, "array size must be > 0");
2241 return 0;
2242 }
2243
2244 assert(size->type == ir->type);
2245
2246 /* If the array size is const (and we've verified that
2247 * it is) then no instructions should have been emitted
2248 * when we converted it to HIR. If they were emitted,
2249 * then either the array size isn't const after all, or
2250 * we are emitting unnecessary instructions.
2251 */
2252 assert(dummy_instructions.is_empty());
2253
2254 return size->value.u[0];
2255 }
2256
2257 static const glsl_type *
2258 process_array_type(YYLTYPE *loc, const glsl_type *base,
2259 ast_array_specifier *array_specifier,
2260 struct _mesa_glsl_parse_state *state)
2261 {
2262 const glsl_type *array_type = base;
2263
2264 if (array_specifier != NULL) {
2265 if (base->is_array()) {
2266
2267 /* From page 19 (page 25) of the GLSL 1.20 spec:
2268 *
2269 * "Only one-dimensional arrays may be declared."
2270 */
2271 if (!state->check_arrays_of_arrays_allowed(loc)) {
2272 return glsl_type::error_type;
2273 }
2274 }
2275
2276 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2277 !node->is_head_sentinel(); node = node->prev) {
2278 unsigned array_size = process_array_size(node, state);
2279 array_type = glsl_type::get_array_instance(array_type, array_size);
2280 }
2281 }
2282
2283 return array_type;
2284 }
2285
2286 static bool
2287 precision_qualifier_allowed(const glsl_type *type)
2288 {
2289 /* Precision qualifiers apply to floating point, integer and opaque
2290 * types.
2291 *
2292 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2293 * "Any floating point or any integer declaration can have the type
2294 * preceded by one of these precision qualifiers [...] Literal
2295 * constants do not have precision qualifiers. Neither do Boolean
2296 * variables.
2297 *
2298 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2299 * spec also says:
2300 *
2301 * "Precision qualifiers are added for code portability with OpenGL
2302 * ES, not for functionality. They have the same syntax as in OpenGL
2303 * ES."
2304 *
2305 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2306 *
2307 * "uniform lowp sampler2D sampler;
2308 * highp vec2 coord;
2309 * ...
2310 * lowp vec4 col = texture2D (sampler, coord);
2311 * // texture2D returns lowp"
2312 *
2313 * From this, we infer that GLSL 1.30 (and later) should allow precision
2314 * qualifiers on sampler types just like float and integer types.
2315 */
2316 const glsl_type *const t = type->without_array();
2317
2318 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2319 !t->is_record();
2320 }
2321
2322 const glsl_type *
2323 ast_type_specifier::glsl_type(const char **name,
2324 struct _mesa_glsl_parse_state *state) const
2325 {
2326 const struct glsl_type *type;
2327
2328 type = state->symbols->get_type(this->type_name);
2329 *name = this->type_name;
2330
2331 YYLTYPE loc = this->get_location();
2332 type = process_array_type(&loc, type, this->array_specifier, state);
2333
2334 return type;
2335 }
2336
2337 /**
2338 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2339 *
2340 * "The precision statement
2341 *
2342 * precision precision-qualifier type;
2343 *
2344 * can be used to establish a default precision qualifier. The type field can
2345 * be either int or float or any of the sampler types, (...) If type is float,
2346 * the directive applies to non-precision-qualified floating point type
2347 * (scalar, vector, and matrix) declarations. If type is int, the directive
2348 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2349 * and unsigned) declarations."
2350 *
2351 * We use the symbol table to keep the values of the default precisions for
2352 * each 'type' in each scope and we use the 'type' string from the precision
2353 * statement as key in the symbol table. When we want to retrieve the default
2354 * precision associated with a given glsl_type we need to know the type string
2355 * associated with it. This is what this function returns.
2356 */
2357 static const char *
2358 get_type_name_for_precision_qualifier(const glsl_type *type)
2359 {
2360 switch (type->base_type) {
2361 case GLSL_TYPE_FLOAT:
2362 return "float";
2363 case GLSL_TYPE_UINT:
2364 case GLSL_TYPE_INT:
2365 return "int";
2366 case GLSL_TYPE_ATOMIC_UINT:
2367 return "atomic_uint";
2368 case GLSL_TYPE_IMAGE:
2369 /* fallthrough */
2370 case GLSL_TYPE_SAMPLER: {
2371 const unsigned type_idx =
2372 type->sampler_array + 2 * type->sampler_shadow;
2373 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2374 assert(type_idx < 4);
2375 switch (type->sampled_type) {
2376 case GLSL_TYPE_FLOAT:
2377 switch (type->sampler_dimensionality) {
2378 case GLSL_SAMPLER_DIM_1D: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "sampler1D", "sampler1DArray",
2382 "sampler1DShadow", "sampler1DArrayShadow"
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_2D: {
2387 static const char *const names[8] = {
2388 "sampler2D", "sampler2DArray",
2389 "sampler2DShadow", "sampler2DArrayShadow",
2390 "image2D", "image2DArray", NULL, NULL
2391 };
2392 return names[offset + type_idx];
2393 }
2394 case GLSL_SAMPLER_DIM_3D: {
2395 static const char *const names[8] = {
2396 "sampler3D", NULL, NULL, NULL,
2397 "image3D", NULL, NULL, NULL
2398 };
2399 return names[offset + type_idx];
2400 }
2401 case GLSL_SAMPLER_DIM_CUBE: {
2402 static const char *const names[8] = {
2403 "samplerCube", "samplerCubeArray",
2404 "samplerCubeShadow", "samplerCubeArrayShadow",
2405 "imageCube", NULL, NULL, NULL
2406 };
2407 return names[offset + type_idx];
2408 }
2409 case GLSL_SAMPLER_DIM_MS: {
2410 assert(type->base_type == GLSL_TYPE_SAMPLER);
2411 static const char *const names[4] = {
2412 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2413 };
2414 return names[type_idx];
2415 }
2416 case GLSL_SAMPLER_DIM_RECT: {
2417 assert(type->base_type == GLSL_TYPE_SAMPLER);
2418 static const char *const names[4] = {
2419 "samplerRect", NULL, "samplerRectShadow", NULL
2420 };
2421 return names[type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_BUF: {
2424 static const char *const names[8] = {
2425 "samplerBuffer", NULL, NULL, NULL,
2426 "imageBuffer", NULL, NULL, NULL
2427 };
2428 return names[offset + type_idx];
2429 }
2430 case GLSL_SAMPLER_DIM_EXTERNAL: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "samplerExternalOES", NULL, NULL, NULL
2434 };
2435 return names[type_idx];
2436 }
2437 default:
2438 unreachable("Unsupported sampler/image dimensionality");
2439 } /* sampler/image float dimensionality */
2440 break;
2441 case GLSL_TYPE_INT:
2442 switch (type->sampler_dimensionality) {
2443 case GLSL_SAMPLER_DIM_1D: {
2444 assert(type->base_type == GLSL_TYPE_SAMPLER);
2445 static const char *const names[4] = {
2446 "isampler1D", "isampler1DArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_2D: {
2451 static const char *const names[8] = {
2452 "isampler2D", "isampler2DArray", NULL, NULL,
2453 "iimage2D", "iimage2DArray", NULL, NULL
2454 };
2455 return names[offset + type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_3D: {
2458 static const char *const names[8] = {
2459 "isampler3D", NULL, NULL, NULL,
2460 "iimage3D", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_CUBE: {
2465 static const char *const names[8] = {
2466 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2467 "iimageCube", NULL, NULL, NULL
2468 };
2469 return names[offset + type_idx];
2470 }
2471 case GLSL_SAMPLER_DIM_MS: {
2472 assert(type->base_type == GLSL_TYPE_SAMPLER);
2473 static const char *const names[4] = {
2474 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2475 };
2476 return names[type_idx];
2477 }
2478 case GLSL_SAMPLER_DIM_RECT: {
2479 assert(type->base_type == GLSL_TYPE_SAMPLER);
2480 static const char *const names[4] = {
2481 "isamplerRect", NULL, "isamplerRectShadow", NULL
2482 };
2483 return names[type_idx];
2484 }
2485 case GLSL_SAMPLER_DIM_BUF: {
2486 static const char *const names[8] = {
2487 "isamplerBuffer", NULL, NULL, NULL,
2488 "iimageBuffer", NULL, NULL, NULL
2489 };
2490 return names[offset + type_idx];
2491 }
2492 default:
2493 unreachable("Unsupported isampler/iimage dimensionality");
2494 } /* sampler/image int dimensionality */
2495 break;
2496 case GLSL_TYPE_UINT:
2497 switch (type->sampler_dimensionality) {
2498 case GLSL_SAMPLER_DIM_1D: {
2499 assert(type->base_type == GLSL_TYPE_SAMPLER);
2500 static const char *const names[4] = {
2501 "usampler1D", "usampler1DArray", NULL, NULL
2502 };
2503 return names[type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_2D: {
2506 static const char *const names[8] = {
2507 "usampler2D", "usampler2DArray", NULL, NULL,
2508 "uimage2D", "uimage2DArray", NULL, NULL
2509 };
2510 return names[offset + type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_3D: {
2513 static const char *const names[8] = {
2514 "usampler3D", NULL, NULL, NULL,
2515 "uimage3D", NULL, NULL, NULL
2516 };
2517 return names[offset + type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_CUBE: {
2520 static const char *const names[8] = {
2521 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2522 "uimageCube", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 case GLSL_SAMPLER_DIM_MS: {
2527 assert(type->base_type == GLSL_TYPE_SAMPLER);
2528 static const char *const names[4] = {
2529 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2530 };
2531 return names[type_idx];
2532 }
2533 case GLSL_SAMPLER_DIM_RECT: {
2534 assert(type->base_type == GLSL_TYPE_SAMPLER);
2535 static const char *const names[4] = {
2536 "usamplerRect", NULL, "usamplerRectShadow", NULL
2537 };
2538 return names[type_idx];
2539 }
2540 case GLSL_SAMPLER_DIM_BUF: {
2541 static const char *const names[8] = {
2542 "usamplerBuffer", NULL, NULL, NULL,
2543 "uimageBuffer", NULL, NULL, NULL
2544 };
2545 return names[offset + type_idx];
2546 }
2547 default:
2548 unreachable("Unsupported usampler/uimage dimensionality");
2549 } /* sampler/image uint dimensionality */
2550 break;
2551 default:
2552 unreachable("Unsupported sampler/image type");
2553 } /* sampler/image type */
2554 break;
2555 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2556 break;
2557 default:
2558 unreachable("Unsupported type");
2559 } /* base type */
2560 }
2561
2562 static unsigned
2563 select_gles_precision(unsigned qual_precision,
2564 const glsl_type *type,
2565 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2566 {
2567 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2568 * In GLES we take the precision from the type qualifier if present,
2569 * otherwise, if the type of the variable allows precision qualifiers at
2570 * all, we look for the default precision qualifier for that type in the
2571 * current scope.
2572 */
2573 assert(state->es_shader);
2574
2575 unsigned precision = GLSL_PRECISION_NONE;
2576 if (qual_precision) {
2577 precision = qual_precision;
2578 } else if (precision_qualifier_allowed(type)) {
2579 const char *type_name =
2580 get_type_name_for_precision_qualifier(type->without_array());
2581 assert(type_name != NULL);
2582
2583 precision =
2584 state->symbols->get_default_precision_qualifier(type_name);
2585 if (precision == ast_precision_none) {
2586 _mesa_glsl_error(loc, state,
2587 "No precision specified in this scope for type `%s'",
2588 type->name);
2589 }
2590 }
2591
2592
2593 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2594 *
2595 * "The default precision of all atomic types is highp. It is an error to
2596 * declare an atomic type with a different precision or to specify the
2597 * default precision for an atomic type to be lowp or mediump."
2598 */
2599 if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2600 precision != ast_precision_high) {
2601 _mesa_glsl_error(loc, state,
2602 "atomic_uint can only have highp precision qualifier");
2603 }
2604
2605 return precision;
2606 }
2607
2608 const glsl_type *
2609 ast_fully_specified_type::glsl_type(const char **name,
2610 struct _mesa_glsl_parse_state *state) const
2611 {
2612 return this->specifier->glsl_type(name, state);
2613 }
2614
2615 /**
2616 * Determine whether a toplevel variable declaration declares a varying. This
2617 * function operates by examining the variable's mode and the shader target,
2618 * so it correctly identifies linkage variables regardless of whether they are
2619 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2620 *
2621 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2622 * this function will produce undefined results.
2623 */
2624 static bool
2625 is_varying_var(ir_variable *var, gl_shader_stage target)
2626 {
2627 switch (target) {
2628 case MESA_SHADER_VERTEX:
2629 return var->data.mode == ir_var_shader_out;
2630 case MESA_SHADER_FRAGMENT:
2631 return var->data.mode == ir_var_shader_in;
2632 default:
2633 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2634 }
2635 }
2636
2637
2638 /**
2639 * Matrix layout qualifiers are only allowed on certain types
2640 */
2641 static void
2642 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2643 YYLTYPE *loc,
2644 const glsl_type *type,
2645 ir_variable *var)
2646 {
2647 if (var && !var->is_in_buffer_block()) {
2648 /* Layout qualifiers may only apply to interface blocks and fields in
2649 * them.
2650 */
2651 _mesa_glsl_error(loc, state,
2652 "uniform block layout qualifiers row_major and "
2653 "column_major may not be applied to variables "
2654 "outside of uniform blocks");
2655 } else if (!type->without_array()->is_matrix()) {
2656 /* The OpenGL ES 3.0 conformance tests did not originally allow
2657 * matrix layout qualifiers on non-matrices. However, the OpenGL
2658 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2659 * amended to specifically allow these layouts on all types. Emit
2660 * a warning so that people know their code may not be portable.
2661 */
2662 _mesa_glsl_warning(loc, state,
2663 "uniform block layout qualifiers row_major and "
2664 "column_major applied to non-matrix types may "
2665 "be rejected by older compilers");
2666 }
2667 }
2668
2669 static bool
2670 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2671 struct _mesa_glsl_parse_state *state,
2672 unsigned xfb_buffer) {
2673 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2674 _mesa_glsl_error(loc, state,
2675 "invalid xfb_buffer specified %d is larger than "
2676 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2677 xfb_buffer,
2678 state->Const.MaxTransformFeedbackBuffers - 1);
2679 return false;
2680 }
2681
2682 return true;
2683 }
2684
2685 /* From the ARB_enhanced_layouts spec:
2686 *
2687 * "Variables and block members qualified with *xfb_offset* can be
2688 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2689 * The offset must be a multiple of the size of the first component of
2690 * the first qualified variable or block member, or a compile-time error
2691 * results. Further, if applied to an aggregate containing a double,
2692 * the offset must also be a multiple of 8, and the space taken in the
2693 * buffer will be a multiple of 8.
2694 */
2695 static bool
2696 validate_xfb_offset_qualifier(YYLTYPE *loc,
2697 struct _mesa_glsl_parse_state *state,
2698 int xfb_offset, const glsl_type *type,
2699 unsigned component_size) {
2700 const glsl_type *t_without_array = type->without_array();
2701
2702 if (xfb_offset != -1 && type->is_unsized_array()) {
2703 _mesa_glsl_error(loc, state,
2704 "xfb_offset can't be used with unsized arrays.");
2705 return false;
2706 }
2707
2708 /* Make sure nested structs don't contain unsized arrays, and validate
2709 * any xfb_offsets on interface members.
2710 */
2711 if (t_without_array->is_record() || t_without_array->is_interface())
2712 for (unsigned int i = 0; i < t_without_array->length; i++) {
2713 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2714
2715 /* When the interface block doesn't have an xfb_offset qualifier then
2716 * we apply the component size rules at the member level.
2717 */
2718 if (xfb_offset == -1)
2719 component_size = member_t->contains_double() ? 8 : 4;
2720
2721 int xfb_offset = t_without_array->fields.structure[i].offset;
2722 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2723 component_size);
2724 }
2725
2726 /* Nested structs or interface block without offset may not have had an
2727 * offset applied yet so return.
2728 */
2729 if (xfb_offset == -1) {
2730 return true;
2731 }
2732
2733 if (xfb_offset % component_size) {
2734 _mesa_glsl_error(loc, state,
2735 "invalid qualifier xfb_offset=%d must be a multiple "
2736 "of the first component size of the first qualified "
2737 "variable or block member. Or double if an aggregate "
2738 "that contains a double (%d).",
2739 xfb_offset, component_size);
2740 return false;
2741 }
2742
2743 return true;
2744 }
2745
2746 static bool
2747 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2748 unsigned stream)
2749 {
2750 if (stream >= state->ctx->Const.MaxVertexStreams) {
2751 _mesa_glsl_error(loc, state,
2752 "invalid stream specified %d is larger than "
2753 "MAX_VERTEX_STREAMS - 1 (%d).",
2754 stream, state->ctx->Const.MaxVertexStreams - 1);
2755 return false;
2756 }
2757
2758 return true;
2759 }
2760
2761 static void
2762 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2763 YYLTYPE *loc,
2764 ir_variable *var,
2765 const glsl_type *type,
2766 const ast_type_qualifier *qual)
2767 {
2768 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2769 _mesa_glsl_error(loc, state,
2770 "the \"binding\" qualifier only applies to uniforms and "
2771 "shader storage buffer objects");
2772 return;
2773 }
2774
2775 unsigned qual_binding;
2776 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2777 &qual_binding)) {
2778 return;
2779 }
2780
2781 const struct gl_context *const ctx = state->ctx;
2782 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2783 unsigned max_index = qual_binding + elements - 1;
2784 const glsl_type *base_type = type->without_array();
2785
2786 if (base_type->is_interface()) {
2787 /* UBOs. From page 60 of the GLSL 4.20 specification:
2788 * "If the binding point for any uniform block instance is less than zero,
2789 * or greater than or equal to the implementation-dependent maximum
2790 * number of uniform buffer bindings, a compilation error will occur.
2791 * When the binding identifier is used with a uniform block instanced as
2792 * an array of size N, all elements of the array from binding through
2793 * binding + N – 1 must be within this range."
2794 *
2795 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2796 */
2797 if (qual->flags.q.uniform &&
2798 max_index >= ctx->Const.MaxUniformBufferBindings) {
2799 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2800 "the maximum number of UBO binding points (%d)",
2801 qual_binding, elements,
2802 ctx->Const.MaxUniformBufferBindings);
2803 return;
2804 }
2805
2806 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2807 * "If the binding point for any uniform or shader storage block instance
2808 * is less than zero, or greater than or equal to the
2809 * implementation-dependent maximum number of uniform buffer bindings, a
2810 * compile-time error will occur. When the binding identifier is used
2811 * with a uniform or shader storage block instanced as an array of size
2812 * N, all elements of the array from binding through binding + N – 1 must
2813 * be within this range."
2814 */
2815 if (qual->flags.q.buffer &&
2816 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2817 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2818 "the maximum number of SSBO binding points (%d)",
2819 qual_binding, elements,
2820 ctx->Const.MaxShaderStorageBufferBindings);
2821 return;
2822 }
2823 } else if (base_type->is_sampler()) {
2824 /* Samplers. From page 63 of the GLSL 4.20 specification:
2825 * "If the binding is less than zero, or greater than or equal to the
2826 * implementation-dependent maximum supported number of units, a
2827 * compilation error will occur. When the binding identifier is used
2828 * with an array of size N, all elements of the array from binding
2829 * through binding + N - 1 must be within this range."
2830 */
2831 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2832
2833 if (max_index >= limit) {
2834 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2835 "exceeds the maximum number of texture image units "
2836 "(%u)", qual_binding, elements, limit);
2837
2838 return;
2839 }
2840 } else if (base_type->contains_atomic()) {
2841 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2842 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2843 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2844 " maximum number of atomic counter buffer bindings"
2845 "(%u)", qual_binding,
2846 ctx->Const.MaxAtomicBufferBindings);
2847
2848 return;
2849 }
2850 } else if ((state->is_version(420, 310) ||
2851 state->ARB_shading_language_420pack_enable) &&
2852 base_type->is_image()) {
2853 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2854 if (max_index >= ctx->Const.MaxImageUnits) {
2855 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2856 " maximum number of image units (%d)", max_index,
2857 ctx->Const.MaxImageUnits);
2858 return;
2859 }
2860
2861 } else {
2862 _mesa_glsl_error(loc, state,
2863 "the \"binding\" qualifier only applies to uniform "
2864 "blocks, opaque variables, or arrays thereof");
2865 return;
2866 }
2867
2868 var->data.explicit_binding = true;
2869 var->data.binding = qual_binding;
2870
2871 return;
2872 }
2873
2874
2875 static void
2876 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2877 YYLTYPE *loc,
2878 const glsl_interp_mode interpolation,
2879 const struct ast_type_qualifier *qual,
2880 const struct glsl_type *var_type,
2881 ir_variable_mode mode)
2882 {
2883 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2884 * not to vertex shader inputs nor fragment shader outputs.
2885 *
2886 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2887 * "Outputs from a vertex shader (out) and inputs to a fragment
2888 * shader (in) can be further qualified with one or more of these
2889 * interpolation qualifiers"
2890 * ...
2891 * "These interpolation qualifiers may only precede the qualifiers in,
2892 * centroid in, out, or centroid out in a declaration. They do not apply
2893 * to the deprecated storage qualifiers varying or centroid
2894 * varying. They also do not apply to inputs into a vertex shader or
2895 * outputs from a fragment shader."
2896 *
2897 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2898 * "Outputs from a shader (out) and inputs to a shader (in) can be
2899 * further qualified with one of these interpolation qualifiers."
2900 * ...
2901 * "These interpolation qualifiers may only precede the qualifiers
2902 * in, centroid in, out, or centroid out in a declaration. They do
2903 * not apply to inputs into a vertex shader or outputs from a
2904 * fragment shader."
2905 */
2906 if (state->is_version(130, 300)
2907 && interpolation != INTERP_MODE_NONE) {
2908 const char *i = interpolation_string(interpolation);
2909 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2910 _mesa_glsl_error(loc, state,
2911 "interpolation qualifier `%s' can only be applied to "
2912 "shader inputs or outputs.", i);
2913
2914 switch (state->stage) {
2915 case MESA_SHADER_VERTEX:
2916 if (mode == ir_var_shader_in) {
2917 _mesa_glsl_error(loc, state,
2918 "interpolation qualifier '%s' cannot be applied to "
2919 "vertex shader inputs", i);
2920 }
2921 break;
2922 case MESA_SHADER_FRAGMENT:
2923 if (mode == ir_var_shader_out) {
2924 _mesa_glsl_error(loc, state,
2925 "interpolation qualifier '%s' cannot be applied to "
2926 "fragment shader outputs", i);
2927 }
2928 break;
2929 default:
2930 break;
2931 }
2932 }
2933
2934 /* Interpolation qualifiers cannot be applied to 'centroid' and
2935 * 'centroid varying'.
2936 *
2937 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2938 * "interpolation qualifiers may only precede the qualifiers in,
2939 * centroid in, out, or centroid out in a declaration. They do not apply
2940 * to the deprecated storage qualifiers varying or centroid varying."
2941 *
2942 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2943 */
2944 if (state->is_version(130, 0)
2945 && interpolation != INTERP_MODE_NONE
2946 && qual->flags.q.varying) {
2947
2948 const char *i = interpolation_string(interpolation);
2949 const char *s;
2950 if (qual->flags.q.centroid)
2951 s = "centroid varying";
2952 else
2953 s = "varying";
2954
2955 _mesa_glsl_error(loc, state,
2956 "qualifier '%s' cannot be applied to the "
2957 "deprecated storage qualifier '%s'", i, s);
2958 }
2959
2960 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2961 * so must integer vertex outputs.
2962 *
2963 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2964 * "Fragment shader inputs that are signed or unsigned integers or
2965 * integer vectors must be qualified with the interpolation qualifier
2966 * flat."
2967 *
2968 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2969 * "Fragment shader inputs that are, or contain, signed or unsigned
2970 * integers or integer vectors must be qualified with the
2971 * interpolation qualifier flat."
2972 *
2973 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2974 * "Vertex shader outputs that are, or contain, signed or unsigned
2975 * integers or integer vectors must be qualified with the
2976 * interpolation qualifier flat."
2977 *
2978 * Note that prior to GLSL 1.50, this requirement applied to vertex
2979 * outputs rather than fragment inputs. That creates problems in the
2980 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2981 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2982 * apply the restriction to both vertex outputs and fragment inputs.
2983 *
2984 * Note also that the desktop GLSL specs are missing the text "or
2985 * contain"; this is presumably an oversight, since there is no
2986 * reasonable way to interpolate a fragment shader input that contains
2987 * an integer. See Khronos bug #15671.
2988 */
2989 if (state->is_version(130, 300)
2990 && var_type->contains_integer()
2991 && interpolation != INTERP_MODE_FLAT
2992 && state->stage == MESA_SHADER_FRAGMENT
2993 && mode == ir_var_shader_in) {
2994 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2995 "an integer, then it must be qualified with 'flat'");
2996 }
2997
2998 /* Double fragment inputs must be qualified with 'flat'.
2999 *
3000 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3001 * "This extension does not support interpolation of double-precision
3002 * values; doubles used as fragment shader inputs must be qualified as
3003 * "flat"."
3004 *
3005 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3006 * "Fragment shader inputs that are signed or unsigned integers, integer
3007 * vectors, or any double-precision floating-point type must be
3008 * qualified with the interpolation qualifier flat."
3009 *
3010 * Note that the GLSL specs are missing the text "or contain"; this is
3011 * presumably an oversight. See Khronos bug #15671.
3012 *
3013 * The 'double' type does not exist in GLSL ES so far.
3014 */
3015 if (state->has_double()
3016 && var_type->contains_double()
3017 && interpolation != INTERP_MODE_FLAT
3018 && state->stage == MESA_SHADER_FRAGMENT
3019 && mode == ir_var_shader_in) {
3020 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3021 "a double, then it must be qualified with 'flat'");
3022 }
3023 }
3024
3025 static glsl_interp_mode
3026 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3027 const struct glsl_type *var_type,
3028 ir_variable_mode mode,
3029 struct _mesa_glsl_parse_state *state,
3030 YYLTYPE *loc)
3031 {
3032 glsl_interp_mode interpolation;
3033 if (qual->flags.q.flat)
3034 interpolation = INTERP_MODE_FLAT;
3035 else if (qual->flags.q.noperspective)
3036 interpolation = INTERP_MODE_NOPERSPECTIVE;
3037 else if (qual->flags.q.smooth)
3038 interpolation = INTERP_MODE_SMOOTH;
3039 else if (state->es_shader &&
3040 ((mode == ir_var_shader_in &&
3041 state->stage != MESA_SHADER_VERTEX) ||
3042 (mode == ir_var_shader_out &&
3043 state->stage != MESA_SHADER_FRAGMENT)))
3044 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3045 *
3046 * "When no interpolation qualifier is present, smooth interpolation
3047 * is used."
3048 */
3049 interpolation = INTERP_MODE_SMOOTH;
3050 else
3051 interpolation = INTERP_MODE_NONE;
3052
3053 validate_interpolation_qualifier(state, loc,
3054 interpolation,
3055 qual, var_type, mode);
3056
3057 return interpolation;
3058 }
3059
3060
3061 static void
3062 apply_explicit_location(const struct ast_type_qualifier *qual,
3063 ir_variable *var,
3064 struct _mesa_glsl_parse_state *state,
3065 YYLTYPE *loc)
3066 {
3067 bool fail = false;
3068
3069 unsigned qual_location;
3070 if (!process_qualifier_constant(state, loc, "location", qual->location,
3071 &qual_location)) {
3072 return;
3073 }
3074
3075 /* Checks for GL_ARB_explicit_uniform_location. */
3076 if (qual->flags.q.uniform) {
3077 if (!state->check_explicit_uniform_location_allowed(loc, var))
3078 return;
3079
3080 const struct gl_context *const ctx = state->ctx;
3081 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3082
3083 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3084 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3085 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3086 ctx->Const.MaxUserAssignableUniformLocations);
3087 return;
3088 }
3089
3090 var->data.explicit_location = true;
3091 var->data.location = qual_location;
3092 return;
3093 }
3094
3095 /* Between GL_ARB_explicit_attrib_location an
3096 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3097 * stage can be assigned explicit locations. The checking here associates
3098 * the correct extension with the correct stage's input / output:
3099 *
3100 * input output
3101 * ----- ------
3102 * vertex explicit_loc sso
3103 * tess control sso sso
3104 * tess eval sso sso
3105 * geometry sso sso
3106 * fragment sso explicit_loc
3107 */
3108 switch (state->stage) {
3109 case MESA_SHADER_VERTEX:
3110 if (var->data.mode == ir_var_shader_in) {
3111 if (!state->check_explicit_attrib_location_allowed(loc, var))
3112 return;
3113
3114 break;
3115 }
3116
3117 if (var->data.mode == ir_var_shader_out) {
3118 if (!state->check_separate_shader_objects_allowed(loc, var))
3119 return;
3120
3121 break;
3122 }
3123
3124 fail = true;
3125 break;
3126
3127 case MESA_SHADER_TESS_CTRL:
3128 case MESA_SHADER_TESS_EVAL:
3129 case MESA_SHADER_GEOMETRY:
3130 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3131 if (!state->check_separate_shader_objects_allowed(loc, var))
3132 return;
3133
3134 break;
3135 }
3136
3137 fail = true;
3138 break;
3139
3140 case MESA_SHADER_FRAGMENT:
3141 if (var->data.mode == ir_var_shader_in) {
3142 if (!state->check_separate_shader_objects_allowed(loc, var))
3143 return;
3144
3145 break;
3146 }
3147
3148 if (var->data.mode == ir_var_shader_out) {
3149 if (!state->check_explicit_attrib_location_allowed(loc, var))
3150 return;
3151
3152 break;
3153 }
3154
3155 fail = true;
3156 break;
3157
3158 case MESA_SHADER_COMPUTE:
3159 _mesa_glsl_error(loc, state,
3160 "compute shader variables cannot be given "
3161 "explicit locations");
3162 return;
3163 };
3164
3165 if (fail) {
3166 _mesa_glsl_error(loc, state,
3167 "%s cannot be given an explicit location in %s shader",
3168 mode_string(var),
3169 _mesa_shader_stage_to_string(state->stage));
3170 } else {
3171 var->data.explicit_location = true;
3172
3173 switch (state->stage) {
3174 case MESA_SHADER_VERTEX:
3175 var->data.location = (var->data.mode == ir_var_shader_in)
3176 ? (qual_location + VERT_ATTRIB_GENERIC0)
3177 : (qual_location + VARYING_SLOT_VAR0);
3178 break;
3179
3180 case MESA_SHADER_TESS_CTRL:
3181 case MESA_SHADER_TESS_EVAL:
3182 case MESA_SHADER_GEOMETRY:
3183 if (var->data.patch)
3184 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3185 else
3186 var->data.location = qual_location + VARYING_SLOT_VAR0;
3187 break;
3188
3189 case MESA_SHADER_FRAGMENT:
3190 var->data.location = (var->data.mode == ir_var_shader_out)
3191 ? (qual_location + FRAG_RESULT_DATA0)
3192 : (qual_location + VARYING_SLOT_VAR0);
3193 break;
3194 case MESA_SHADER_COMPUTE:
3195 assert(!"Unexpected shader type");
3196 break;
3197 }
3198
3199 /* Check if index was set for the uniform instead of the function */
3200 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3201 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3202 "used with subroutine functions");
3203 return;
3204 }
3205
3206 unsigned qual_index;
3207 if (qual->flags.q.explicit_index &&
3208 process_qualifier_constant(state, loc, "index", qual->index,
3209 &qual_index)) {
3210 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3211 * Layout Qualifiers):
3212 *
3213 * "It is also a compile-time error if a fragment shader
3214 * sets a layout index to less than 0 or greater than 1."
3215 *
3216 * Older specifications don't mandate a behavior; we take
3217 * this as a clarification and always generate the error.
3218 */
3219 if (qual_index > 1) {
3220 _mesa_glsl_error(loc, state,
3221 "explicit index may only be 0 or 1");
3222 } else {
3223 var->data.explicit_index = true;
3224 var->data.index = qual_index;
3225 }
3226 }
3227 }
3228 }
3229
3230 static void
3231 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3232 ir_variable *var,
3233 struct _mesa_glsl_parse_state *state,
3234 YYLTYPE *loc)
3235 {
3236 const glsl_type *base_type = var->type->without_array();
3237
3238 if (base_type->is_image()) {
3239 if (var->data.mode != ir_var_uniform &&
3240 var->data.mode != ir_var_function_in) {
3241 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3242 "function parameters or uniform-qualified "
3243 "global variables");
3244 }
3245
3246 var->data.image_read_only |= qual->flags.q.read_only;
3247 var->data.image_write_only |= qual->flags.q.write_only;
3248 var->data.image_coherent |= qual->flags.q.coherent;
3249 var->data.image_volatile |= qual->flags.q._volatile;
3250 var->data.image_restrict |= qual->flags.q.restrict_flag;
3251 var->data.read_only = true;
3252
3253 if (qual->flags.q.explicit_image_format) {
3254 if (var->data.mode == ir_var_function_in) {
3255 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3256 "used on image function parameters");
3257 }
3258
3259 if (qual->image_base_type != base_type->sampled_type) {
3260 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3261 "base data type of the image");
3262 }
3263
3264 var->data.image_format = qual->image_format;
3265 } else {
3266 if (var->data.mode == ir_var_uniform) {
3267 if (state->es_shader) {
3268 _mesa_glsl_error(loc, state, "all image uniforms "
3269 "must have a format layout qualifier");
3270
3271 } else if (!qual->flags.q.write_only) {
3272 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3273 "`writeonly' must have a format layout "
3274 "qualifier");
3275 }
3276 }
3277
3278 var->data.image_format = GL_NONE;
3279 }
3280
3281 /* From page 70 of the GLSL ES 3.1 specification:
3282 *
3283 * "Except for image variables qualified with the format qualifiers
3284 * r32f, r32i, and r32ui, image variables must specify either memory
3285 * qualifier readonly or the memory qualifier writeonly."
3286 */
3287 if (state->es_shader &&
3288 var->data.image_format != GL_R32F &&
3289 var->data.image_format != GL_R32I &&
3290 var->data.image_format != GL_R32UI &&
3291 !var->data.image_read_only &&
3292 !var->data.image_write_only) {
3293 _mesa_glsl_error(loc, state, "image variables of format other than "
3294 "r32f, r32i or r32ui must be qualified `readonly' or "
3295 "`writeonly'");
3296 }
3297
3298 } else if (qual->flags.q.read_only ||
3299 qual->flags.q.write_only ||
3300 qual->flags.q.coherent ||
3301 qual->flags.q._volatile ||
3302 qual->flags.q.restrict_flag ||
3303 qual->flags.q.explicit_image_format) {
3304 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3305 "images");
3306 }
3307 }
3308
3309 static inline const char*
3310 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3311 {
3312 if (origin_upper_left && pixel_center_integer)
3313 return "origin_upper_left, pixel_center_integer";
3314 else if (origin_upper_left)
3315 return "origin_upper_left";
3316 else if (pixel_center_integer)
3317 return "pixel_center_integer";
3318 else
3319 return " ";
3320 }
3321
3322 static inline bool
3323 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3324 const struct ast_type_qualifier *qual)
3325 {
3326 /* If gl_FragCoord was previously declared, and the qualifiers were
3327 * different in any way, return true.
3328 */
3329 if (state->fs_redeclares_gl_fragcoord) {
3330 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3331 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3332 }
3333
3334 return false;
3335 }
3336
3337 static inline void
3338 validate_array_dimensions(const glsl_type *t,
3339 struct _mesa_glsl_parse_state *state,
3340 YYLTYPE *loc) {
3341 if (t->is_array()) {
3342 t = t->fields.array;
3343 while (t->is_array()) {
3344 if (t->is_unsized_array()) {
3345 _mesa_glsl_error(loc, state,
3346 "only the outermost array dimension can "
3347 "be unsized",
3348 t->name);
3349 break;
3350 }
3351 t = t->fields.array;
3352 }
3353 }
3354 }
3355
3356 static void
3357 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3358 ir_variable *var,
3359 struct _mesa_glsl_parse_state *state,
3360 YYLTYPE *loc)
3361 {
3362 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3363
3364 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3365 *
3366 * "Within any shader, the first redeclarations of gl_FragCoord
3367 * must appear before any use of gl_FragCoord."
3368 *
3369 * Generate a compiler error if above condition is not met by the
3370 * fragment shader.
3371 */
3372 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3373 if (earlier != NULL &&
3374 earlier->data.used &&
3375 !state->fs_redeclares_gl_fragcoord) {
3376 _mesa_glsl_error(loc, state,
3377 "gl_FragCoord used before its first redeclaration "
3378 "in fragment shader");
3379 }
3380
3381 /* Make sure all gl_FragCoord redeclarations specify the same layout
3382 * qualifiers.
3383 */
3384 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3385 const char *const qual_string =
3386 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3387 qual->flags.q.pixel_center_integer);
3388
3389 const char *const state_string =
3390 get_layout_qualifier_string(state->fs_origin_upper_left,
3391 state->fs_pixel_center_integer);
3392
3393 _mesa_glsl_error(loc, state,
3394 "gl_FragCoord redeclared with different layout "
3395 "qualifiers (%s) and (%s) ",
3396 state_string,
3397 qual_string);
3398 }
3399 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3400 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3401 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3402 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3403 state->fs_redeclares_gl_fragcoord =
3404 state->fs_origin_upper_left ||
3405 state->fs_pixel_center_integer ||
3406 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3407 }
3408
3409 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3410 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3411 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3412 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3413 const char *const qual_string = (qual->flags.q.origin_upper_left)
3414 ? "origin_upper_left" : "pixel_center_integer";
3415
3416 _mesa_glsl_error(loc, state,
3417 "layout qualifier `%s' can only be applied to "
3418 "fragment shader input `gl_FragCoord'",
3419 qual_string);
3420 }
3421
3422 if (qual->flags.q.explicit_location) {
3423 apply_explicit_location(qual, var, state, loc);
3424
3425 if (qual->flags.q.explicit_component) {
3426 unsigned qual_component;
3427 if (process_qualifier_constant(state, loc, "component",
3428 qual->component, &qual_component)) {
3429 const glsl_type *type = var->type->without_array();
3430 unsigned components = type->component_slots();
3431
3432 if (type->is_matrix() || type->is_record()) {
3433 _mesa_glsl_error(loc, state, "component layout qualifier "
3434 "cannot be applied to a matrix, a structure, "
3435 "a block, or an array containing any of "
3436 "these.");
3437 } else if (qual_component != 0 &&
3438 (qual_component + components - 1) > 3) {
3439 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3440 (qual_component + components - 1));
3441 } else if (qual_component == 1 && type->is_64bit()) {
3442 /* We don't bother checking for 3 as it should be caught by the
3443 * overflow check above.
3444 */
3445 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3446 "component 1 or 3");
3447 } else {
3448 var->data.explicit_component = true;
3449 var->data.location_frac = qual_component;
3450 }
3451 }
3452 }
3453 } else if (qual->flags.q.explicit_index) {
3454 if (!qual->flags.q.subroutine_def)
3455 _mesa_glsl_error(loc, state,
3456 "explicit index requires explicit location");
3457 } else if (qual->flags.q.explicit_component) {
3458 _mesa_glsl_error(loc, state,
3459 "explicit component requires explicit location");
3460 }
3461
3462 if (qual->flags.q.explicit_binding) {
3463 apply_explicit_binding(state, loc, var, var->type, qual);
3464 }
3465
3466 if (state->stage == MESA_SHADER_GEOMETRY &&
3467 qual->flags.q.out && qual->flags.q.stream) {
3468 unsigned qual_stream;
3469 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3470 &qual_stream) &&
3471 validate_stream_qualifier(loc, state, qual_stream)) {
3472 var->data.stream = qual_stream;
3473 }
3474 }
3475
3476 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3477 unsigned qual_xfb_buffer;
3478 if (process_qualifier_constant(state, loc, "xfb_buffer",
3479 qual->xfb_buffer, &qual_xfb_buffer) &&
3480 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3481 var->data.xfb_buffer = qual_xfb_buffer;
3482 if (qual->flags.q.explicit_xfb_buffer)
3483 var->data.explicit_xfb_buffer = true;
3484 }
3485 }
3486
3487 if (qual->flags.q.explicit_xfb_offset) {
3488 unsigned qual_xfb_offset;
3489 unsigned component_size = var->type->contains_double() ? 8 : 4;
3490
3491 if (process_qualifier_constant(state, loc, "xfb_offset",
3492 qual->offset, &qual_xfb_offset) &&
3493 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3494 var->type, component_size)) {
3495 var->data.offset = qual_xfb_offset;
3496 var->data.explicit_xfb_offset = true;
3497 }
3498 }
3499
3500 if (qual->flags.q.explicit_xfb_stride) {
3501 unsigned qual_xfb_stride;
3502 if (process_qualifier_constant(state, loc, "xfb_stride",
3503 qual->xfb_stride, &qual_xfb_stride)) {
3504 var->data.xfb_stride = qual_xfb_stride;
3505 var->data.explicit_xfb_stride = true;
3506 }
3507 }
3508
3509 if (var->type->contains_atomic()) {
3510 if (var->data.mode == ir_var_uniform) {
3511 if (var->data.explicit_binding) {
3512 unsigned *offset =
3513 &state->atomic_counter_offsets[var->data.binding];
3514
3515 if (*offset % ATOMIC_COUNTER_SIZE)
3516 _mesa_glsl_error(loc, state,
3517 "misaligned atomic counter offset");
3518
3519 var->data.offset = *offset;
3520 *offset += var->type->atomic_size();
3521
3522 } else {
3523 _mesa_glsl_error(loc, state,
3524 "atomic counters require explicit binding point");
3525 }
3526 } else if (var->data.mode != ir_var_function_in) {
3527 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3528 "function parameters or uniform-qualified "
3529 "global variables");
3530 }
3531 }
3532
3533 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3534 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3535 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3536 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3537 * These extensions and all following extensions that add the 'layout'
3538 * keyword have been modified to require the use of 'in' or 'out'.
3539 *
3540 * The following extension do not allow the deprecated keywords:
3541 *
3542 * GL_AMD_conservative_depth
3543 * GL_ARB_conservative_depth
3544 * GL_ARB_gpu_shader5
3545 * GL_ARB_separate_shader_objects
3546 * GL_ARB_tessellation_shader
3547 * GL_ARB_transform_feedback3
3548 * GL_ARB_uniform_buffer_object
3549 *
3550 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3551 * allow layout with the deprecated keywords.
3552 */
3553 const bool relaxed_layout_qualifier_checking =
3554 state->ARB_fragment_coord_conventions_enable;
3555
3556 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3557 || qual->flags.q.varying;
3558 if (qual->has_layout() && uses_deprecated_qualifier) {
3559 if (relaxed_layout_qualifier_checking) {
3560 _mesa_glsl_warning(loc, state,
3561 "`layout' qualifier may not be used with "
3562 "`attribute' or `varying'");
3563 } else {
3564 _mesa_glsl_error(loc, state,
3565 "`layout' qualifier may not be used with "
3566 "`attribute' or `varying'");
3567 }
3568 }
3569
3570 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3571 * AMD_conservative_depth.
3572 */
3573 int depth_layout_count = qual->flags.q.depth_any
3574 + qual->flags.q.depth_greater
3575 + qual->flags.q.depth_less
3576 + qual->flags.q.depth_unchanged;
3577 if (depth_layout_count > 0
3578 && !state->is_version(420, 0)
3579 && !state->AMD_conservative_depth_enable
3580 && !state->ARB_conservative_depth_enable) {
3581 _mesa_glsl_error(loc, state,
3582 "extension GL_AMD_conservative_depth or "
3583 "GL_ARB_conservative_depth must be enabled "
3584 "to use depth layout qualifiers");
3585 } else if (depth_layout_count > 0
3586 && strcmp(var->name, "gl_FragDepth") != 0) {
3587 _mesa_glsl_error(loc, state,
3588 "depth layout qualifiers can be applied only to "
3589 "gl_FragDepth");
3590 } else if (depth_layout_count > 1
3591 && strcmp(var->name, "gl_FragDepth") == 0) {
3592 _mesa_glsl_error(loc, state,
3593 "at most one depth layout qualifier can be applied to "
3594 "gl_FragDepth");
3595 }
3596 if (qual->flags.q.depth_any)
3597 var->data.depth_layout = ir_depth_layout_any;
3598 else if (qual->flags.q.depth_greater)
3599 var->data.depth_layout = ir_depth_layout_greater;
3600 else if (qual->flags.q.depth_less)
3601 var->data.depth_layout = ir_depth_layout_less;
3602 else if (qual->flags.q.depth_unchanged)
3603 var->data.depth_layout = ir_depth_layout_unchanged;
3604 else
3605 var->data.depth_layout = ir_depth_layout_none;
3606
3607 if (qual->flags.q.std140 ||
3608 qual->flags.q.std430 ||
3609 qual->flags.q.packed ||
3610 qual->flags.q.shared) {
3611 _mesa_glsl_error(loc, state,
3612 "uniform and shader storage block layout qualifiers "
3613 "std140, std430, packed, and shared can only be "
3614 "applied to uniform or shader storage blocks, not "
3615 "members");
3616 }
3617
3618 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3619 validate_matrix_layout_for_type(state, loc, var->type, var);
3620 }
3621
3622 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3623 * Inputs):
3624 *
3625 * "Fragment shaders also allow the following layout qualifier on in only
3626 * (not with variable declarations)
3627 * layout-qualifier-id
3628 * early_fragment_tests
3629 * [...]"
3630 */
3631 if (qual->flags.q.early_fragment_tests) {
3632 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3633 "valid in fragment shader input layout declaration.");
3634 }
3635 }
3636
3637 static void
3638 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3639 ir_variable *var,
3640 struct _mesa_glsl_parse_state *state,
3641 YYLTYPE *loc,
3642 bool is_parameter)
3643 {
3644 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3645
3646 if (qual->flags.q.invariant) {
3647 if (var->data.used) {
3648 _mesa_glsl_error(loc, state,
3649 "variable `%s' may not be redeclared "
3650 "`invariant' after being used",
3651 var->name);
3652 } else {
3653 var->data.invariant = 1;
3654 }
3655 }
3656
3657 if (qual->flags.q.precise) {
3658 if (var->data.used) {
3659 _mesa_glsl_error(loc, state,
3660 "variable `%s' may not be redeclared "
3661 "`precise' after being used",
3662 var->name);
3663 } else {
3664 var->data.precise = 1;
3665 }
3666 }
3667
3668 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3669 _mesa_glsl_error(loc, state,
3670 "`subroutine' may only be applied to uniforms, "
3671 "subroutine type declarations, or function definitions");
3672 }
3673
3674 if (qual->flags.q.constant || qual->flags.q.attribute
3675 || qual->flags.q.uniform
3676 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3677 var->data.read_only = 1;
3678
3679 if (qual->flags.q.centroid)
3680 var->data.centroid = 1;
3681
3682 if (qual->flags.q.sample)
3683 var->data.sample = 1;
3684
3685 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3686 if (state->es_shader) {
3687 var->data.precision =
3688 select_gles_precision(qual->precision, var->type, state, loc);
3689 }
3690
3691 if (qual->flags.q.patch)
3692 var->data.patch = 1;
3693
3694 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3695 var->type = glsl_type::error_type;
3696 _mesa_glsl_error(loc, state,
3697 "`attribute' variables may not be declared in the "
3698 "%s shader",
3699 _mesa_shader_stage_to_string(state->stage));
3700 }
3701
3702 /* Disallow layout qualifiers which may only appear on layout declarations. */
3703 if (qual->flags.q.prim_type) {
3704 _mesa_glsl_error(loc, state,
3705 "Primitive type may only be specified on GS input or output "
3706 "layout declaration, not on variables.");
3707 }
3708
3709 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3710 *
3711 * "However, the const qualifier cannot be used with out or inout."
3712 *
3713 * The same section of the GLSL 4.40 spec further clarifies this saying:
3714 *
3715 * "The const qualifier cannot be used with out or inout, or a
3716 * compile-time error results."
3717 */
3718 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3719 _mesa_glsl_error(loc, state,
3720 "`const' may not be applied to `out' or `inout' "
3721 "function parameters");
3722 }
3723
3724 /* If there is no qualifier that changes the mode of the variable, leave
3725 * the setting alone.
3726 */
3727 assert(var->data.mode != ir_var_temporary);
3728 if (qual->flags.q.in && qual->flags.q.out)
3729 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3730 else if (qual->flags.q.in)
3731 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3732 else if (qual->flags.q.attribute
3733 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3734 var->data.mode = ir_var_shader_in;
3735 else if (qual->flags.q.out)
3736 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3737 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3738 var->data.mode = ir_var_shader_out;
3739 else if (qual->flags.q.uniform)
3740 var->data.mode = ir_var_uniform;
3741 else if (qual->flags.q.buffer)
3742 var->data.mode = ir_var_shader_storage;
3743 else if (qual->flags.q.shared_storage)
3744 var->data.mode = ir_var_shader_shared;
3745
3746 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3747 qual->flags.q.in && qual->flags.q.out;
3748
3749 if (!is_parameter && is_varying_var(var, state->stage)) {
3750 /* User-defined ins/outs are not permitted in compute shaders. */
3751 if (state->stage == MESA_SHADER_COMPUTE) {
3752 _mesa_glsl_error(loc, state,
3753 "user-defined input and output variables are not "
3754 "permitted in compute shaders");
3755 }
3756
3757 /* This variable is being used to link data between shader stages (in
3758 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3759 * that is allowed for such purposes.
3760 *
3761 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3762 *
3763 * "The varying qualifier can be used only with the data types
3764 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3765 * these."
3766 *
3767 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3768 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3769 *
3770 * "Fragment inputs can only be signed and unsigned integers and
3771 * integer vectors, float, floating-point vectors, matrices, or
3772 * arrays of these. Structures cannot be input.
3773 *
3774 * Similar text exists in the section on vertex shader outputs.
3775 *
3776 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3777 * 3.00 spec allows structs as well. Varying structs are also allowed
3778 * in GLSL 1.50.
3779 */
3780 switch (var->type->get_scalar_type()->base_type) {
3781 case GLSL_TYPE_FLOAT:
3782 /* Ok in all GLSL versions */
3783 break;
3784 case GLSL_TYPE_UINT:
3785 case GLSL_TYPE_INT:
3786 if (state->is_version(130, 300))
3787 break;
3788 _mesa_glsl_error(loc, state,
3789 "varying variables must be of base type float in %s",
3790 state->get_version_string());
3791 break;
3792 case GLSL_TYPE_STRUCT:
3793 if (state->is_version(150, 300))
3794 break;
3795 _mesa_glsl_error(loc, state,
3796 "varying variables may not be of type struct");
3797 break;
3798 case GLSL_TYPE_DOUBLE:
3799 break;
3800 default:
3801 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3802 break;
3803 }
3804 }
3805
3806 if (state->all_invariant && (state->current_function == NULL)) {
3807 switch (state->stage) {
3808 case MESA_SHADER_VERTEX:
3809 if (var->data.mode == ir_var_shader_out)
3810 var->data.invariant = true;
3811 break;
3812 case MESA_SHADER_TESS_CTRL:
3813 case MESA_SHADER_TESS_EVAL:
3814 case MESA_SHADER_GEOMETRY:
3815 if ((var->data.mode == ir_var_shader_in)
3816 || (var->data.mode == ir_var_shader_out))
3817 var->data.invariant = true;
3818 break;
3819 case MESA_SHADER_FRAGMENT:
3820 if (var->data.mode == ir_var_shader_in)
3821 var->data.invariant = true;
3822 break;
3823 case MESA_SHADER_COMPUTE:
3824 /* Invariance isn't meaningful in compute shaders. */
3825 break;
3826 }
3827 }
3828
3829 var->data.interpolation =
3830 interpret_interpolation_qualifier(qual, var->type,
3831 (ir_variable_mode) var->data.mode,
3832 state, loc);
3833
3834 /* Does the declaration use the deprecated 'attribute' or 'varying'
3835 * keywords?
3836 */
3837 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3838 || qual->flags.q.varying;
3839
3840
3841 /* Validate auxiliary storage qualifiers */
3842
3843 /* From section 4.3.4 of the GLSL 1.30 spec:
3844 * "It is an error to use centroid in in a vertex shader."
3845 *
3846 * From section 4.3.4 of the GLSL ES 3.00 spec:
3847 * "It is an error to use centroid in or interpolation qualifiers in
3848 * a vertex shader input."
3849 */
3850
3851 /* Section 4.3.6 of the GLSL 1.30 specification states:
3852 * "It is an error to use centroid out in a fragment shader."
3853 *
3854 * The GL_ARB_shading_language_420pack extension specification states:
3855 * "It is an error to use auxiliary storage qualifiers or interpolation
3856 * qualifiers on an output in a fragment shader."
3857 */
3858 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3859 _mesa_glsl_error(loc, state,
3860 "sample qualifier may only be used on `in` or `out` "
3861 "variables between shader stages");
3862 }
3863 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3864 _mesa_glsl_error(loc, state,
3865 "centroid qualifier may only be used with `in', "
3866 "`out' or `varying' variables between shader stages");
3867 }
3868
3869 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3870 _mesa_glsl_error(loc, state,
3871 "the shared storage qualifiers can only be used with "
3872 "compute shaders");
3873 }
3874
3875 apply_image_qualifier_to_variable(qual, var, state, loc);
3876 }
3877
3878 /**
3879 * Get the variable that is being redeclared by this declaration
3880 *
3881 * Semantic checks to verify the validity of the redeclaration are also
3882 * performed. If semantic checks fail, compilation error will be emitted via
3883 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3884 *
3885 * \returns
3886 * A pointer to an existing variable in the current scope if the declaration
3887 * is a redeclaration, \c NULL otherwise.
3888 */
3889 static ir_variable *
3890 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3891 struct _mesa_glsl_parse_state *state,
3892 bool allow_all_redeclarations)
3893 {
3894 /* Check if this declaration is actually a re-declaration, either to
3895 * resize an array or add qualifiers to an existing variable.
3896 *
3897 * This is allowed for variables in the current scope, or when at
3898 * global scope (for built-ins in the implicit outer scope).
3899 */
3900 ir_variable *earlier = state->symbols->get_variable(var->name);
3901 if (earlier == NULL ||
3902 (state->current_function != NULL &&
3903 !state->symbols->name_declared_this_scope(var->name))) {
3904 return NULL;
3905 }
3906
3907
3908 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3909 *
3910 * "It is legal to declare an array without a size and then
3911 * later re-declare the same name as an array of the same
3912 * type and specify a size."
3913 */
3914 if (earlier->type->is_unsized_array() && var->type->is_array()
3915 && (var->type->fields.array == earlier->type->fields.array)) {
3916 /* FINISHME: This doesn't match the qualifiers on the two
3917 * FINISHME: declarations. It's not 100% clear whether this is
3918 * FINISHME: required or not.
3919 */
3920
3921 const int size = var->type->array_size();
3922 check_builtin_array_max_size(var->name, size, loc, state);
3923 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3924 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3925 "previous access",
3926 earlier->data.max_array_access);
3927 }
3928
3929 earlier->type = var->type;
3930 delete var;
3931 var = NULL;
3932 } else if ((state->ARB_fragment_coord_conventions_enable ||
3933 state->is_version(150, 0))
3934 && strcmp(var->name, "gl_FragCoord") == 0
3935 && earlier->type == var->type
3936 && var->data.mode == ir_var_shader_in) {
3937 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3938 * qualifiers.
3939 */
3940 earlier->data.origin_upper_left = var->data.origin_upper_left;
3941 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3942
3943 /* According to section 4.3.7 of the GLSL 1.30 spec,
3944 * the following built-in varaibles can be redeclared with an
3945 * interpolation qualifier:
3946 * * gl_FrontColor
3947 * * gl_BackColor
3948 * * gl_FrontSecondaryColor
3949 * * gl_BackSecondaryColor
3950 * * gl_Color
3951 * * gl_SecondaryColor
3952 */
3953 } else if (state->is_version(130, 0)
3954 && (strcmp(var->name, "gl_FrontColor") == 0
3955 || strcmp(var->name, "gl_BackColor") == 0
3956 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3957 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3958 || strcmp(var->name, "gl_Color") == 0
3959 || strcmp(var->name, "gl_SecondaryColor") == 0)
3960 && earlier->type == var->type
3961 && earlier->data.mode == var->data.mode) {
3962 earlier->data.interpolation = var->data.interpolation;
3963
3964 /* Layout qualifiers for gl_FragDepth. */
3965 } else if ((state->is_version(420, 0) ||
3966 state->AMD_conservative_depth_enable ||
3967 state->ARB_conservative_depth_enable)
3968 && strcmp(var->name, "gl_FragDepth") == 0
3969 && earlier->type == var->type
3970 && earlier->data.mode == var->data.mode) {
3971
3972 /** From the AMD_conservative_depth spec:
3973 * Within any shader, the first redeclarations of gl_FragDepth
3974 * must appear before any use of gl_FragDepth.
3975 */
3976 if (earlier->data.used) {
3977 _mesa_glsl_error(&loc, state,
3978 "the first redeclaration of gl_FragDepth "
3979 "must appear before any use of gl_FragDepth");
3980 }
3981
3982 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3983 if (earlier->data.depth_layout != ir_depth_layout_none
3984 && earlier->data.depth_layout != var->data.depth_layout) {
3985 _mesa_glsl_error(&loc, state,
3986 "gl_FragDepth: depth layout is declared here "
3987 "as '%s, but it was previously declared as "
3988 "'%s'",
3989 depth_layout_string(var->data.depth_layout),
3990 depth_layout_string(earlier->data.depth_layout));
3991 }
3992
3993 earlier->data.depth_layout = var->data.depth_layout;
3994
3995 } else if (state->has_framebuffer_fetch() &&
3996 strcmp(var->name, "gl_LastFragData") == 0 &&
3997 var->type == earlier->type &&
3998 var->data.mode == ir_var_auto) {
3999 /* According to the EXT_shader_framebuffer_fetch spec:
4000 *
4001 * "By default, gl_LastFragData is declared with the mediump precision
4002 * qualifier. This can be changed by redeclaring the corresponding
4003 * variables with the desired precision qualifier."
4004 */
4005 earlier->data.precision = var->data.precision;
4006
4007 } else if (allow_all_redeclarations) {
4008 if (earlier->data.mode != var->data.mode) {
4009 _mesa_glsl_error(&loc, state,
4010 "redeclaration of `%s' with incorrect qualifiers",
4011 var->name);
4012 } else if (earlier->type != var->type) {
4013 _mesa_glsl_error(&loc, state,
4014 "redeclaration of `%s' has incorrect type",
4015 var->name);
4016 }
4017 } else {
4018 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4019 }
4020
4021 return earlier;
4022 }
4023
4024 /**
4025 * Generate the IR for an initializer in a variable declaration
4026 */
4027 ir_rvalue *
4028 process_initializer(ir_variable *var, ast_declaration *decl,
4029 ast_fully_specified_type *type,
4030 exec_list *initializer_instructions,
4031 struct _mesa_glsl_parse_state *state)
4032 {
4033 ir_rvalue *result = NULL;
4034
4035 YYLTYPE initializer_loc = decl->initializer->get_location();
4036
4037 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4038 *
4039 * "All uniform variables are read-only and are initialized either
4040 * directly by an application via API commands, or indirectly by
4041 * OpenGL."
4042 */
4043 if (var->data.mode == ir_var_uniform) {
4044 state->check_version(120, 0, &initializer_loc,
4045 "cannot initialize uniform %s",
4046 var->name);
4047 }
4048
4049 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4050 *
4051 * "Buffer variables cannot have initializers."
4052 */
4053 if (var->data.mode == ir_var_shader_storage) {
4054 _mesa_glsl_error(&initializer_loc, state,
4055 "cannot initialize buffer variable %s",
4056 var->name);
4057 }
4058
4059 /* From section 4.1.7 of the GLSL 4.40 spec:
4060 *
4061 * "Opaque variables [...] are initialized only through the
4062 * OpenGL API; they cannot be declared with an initializer in a
4063 * shader."
4064 */
4065 if (var->type->contains_opaque()) {
4066 _mesa_glsl_error(&initializer_loc, state,
4067 "cannot initialize opaque variable %s",
4068 var->name);
4069 }
4070
4071 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4072 _mesa_glsl_error(&initializer_loc, state,
4073 "cannot initialize %s shader input / %s %s",
4074 _mesa_shader_stage_to_string(state->stage),
4075 (state->stage == MESA_SHADER_VERTEX)
4076 ? "attribute" : "varying",
4077 var->name);
4078 }
4079
4080 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4081 _mesa_glsl_error(&initializer_loc, state,
4082 "cannot initialize %s shader output %s",
4083 _mesa_shader_stage_to_string(state->stage),
4084 var->name);
4085 }
4086
4087 /* If the initializer is an ast_aggregate_initializer, recursively store
4088 * type information from the LHS into it, so that its hir() function can do
4089 * type checking.
4090 */
4091 if (decl->initializer->oper == ast_aggregate)
4092 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4093
4094 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4095 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4096
4097 /* Calculate the constant value if this is a const or uniform
4098 * declaration.
4099 *
4100 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4101 *
4102 * "Declarations of globals without a storage qualifier, or with
4103 * just the const qualifier, may include initializers, in which case
4104 * they will be initialized before the first line of main() is
4105 * executed. Such initializers must be a constant expression."
4106 *
4107 * The same section of the GLSL ES 3.00.4 spec has similar language.
4108 */
4109 if (type->qualifier.flags.q.constant
4110 || type->qualifier.flags.q.uniform
4111 || (state->es_shader && state->current_function == NULL)) {
4112 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4113 lhs, rhs, true);
4114 if (new_rhs != NULL) {
4115 rhs = new_rhs;
4116
4117 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4118 * says:
4119 *
4120 * "A constant expression is one of
4121 *
4122 * ...
4123 *
4124 * - an expression formed by an operator on operands that are
4125 * all constant expressions, including getting an element of
4126 * a constant array, or a field of a constant structure, or
4127 * components of a constant vector. However, the sequence
4128 * operator ( , ) and the assignment operators ( =, +=, ...)
4129 * are not included in the operators that can create a
4130 * constant expression."
4131 *
4132 * Section 12.43 (Sequence operator and constant expressions) says:
4133 *
4134 * "Should the following construct be allowed?
4135 *
4136 * float a[2,3];
4137 *
4138 * The expression within the brackets uses the sequence operator
4139 * (',') and returns the integer 3 so the construct is declaring
4140 * a single-dimensional array of size 3. In some languages, the
4141 * construct declares a two-dimensional array. It would be
4142 * preferable to make this construct illegal to avoid confusion.
4143 *
4144 * One possibility is to change the definition of the sequence
4145 * operator so that it does not return a constant-expression and
4146 * hence cannot be used to declare an array size.
4147 *
4148 * RESOLUTION: The result of a sequence operator is not a
4149 * constant-expression."
4150 *
4151 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4152 * contains language almost identical to the section 4.3.3 in the
4153 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4154 * versions.
4155 */
4156 ir_constant *constant_value = rhs->constant_expression_value();
4157 if (!constant_value ||
4158 (state->is_version(430, 300) &&
4159 decl->initializer->has_sequence_subexpression())) {
4160 const char *const variable_mode =
4161 (type->qualifier.flags.q.constant)
4162 ? "const"
4163 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4164
4165 /* If ARB_shading_language_420pack is enabled, initializers of
4166 * const-qualified local variables do not have to be constant
4167 * expressions. Const-qualified global variables must still be
4168 * initialized with constant expressions.
4169 */
4170 if (!state->has_420pack()
4171 || state->current_function == NULL) {
4172 _mesa_glsl_error(& initializer_loc, state,
4173 "initializer of %s variable `%s' must be a "
4174 "constant expression",
4175 variable_mode,
4176 decl->identifier);
4177 if (var->type->is_numeric()) {
4178 /* Reduce cascading errors. */
4179 var->constant_value = type->qualifier.flags.q.constant
4180 ? ir_constant::zero(state, var->type) : NULL;
4181 }
4182 }
4183 } else {
4184 rhs = constant_value;
4185 var->constant_value = type->qualifier.flags.q.constant
4186 ? constant_value : NULL;
4187 }
4188 } else {
4189 if (var->type->is_numeric()) {
4190 /* Reduce cascading errors. */
4191 var->constant_value = type->qualifier.flags.q.constant
4192 ? ir_constant::zero(state, var->type) : NULL;
4193 }
4194 }
4195 }
4196
4197 if (rhs && !rhs->type->is_error()) {
4198 bool temp = var->data.read_only;
4199 if (type->qualifier.flags.q.constant)
4200 var->data.read_only = false;
4201
4202 /* Never emit code to initialize a uniform.
4203 */
4204 const glsl_type *initializer_type;
4205 if (!type->qualifier.flags.q.uniform) {
4206 do_assignment(initializer_instructions, state,
4207 NULL,
4208 lhs, rhs,
4209 &result, true,
4210 true,
4211 type->get_location());
4212 initializer_type = result->type;
4213 } else
4214 initializer_type = rhs->type;
4215
4216 var->constant_initializer = rhs->constant_expression_value();
4217 var->data.has_initializer = true;
4218
4219 /* If the declared variable is an unsized array, it must inherrit
4220 * its full type from the initializer. A declaration such as
4221 *
4222 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4223 *
4224 * becomes
4225 *
4226 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4227 *
4228 * The assignment generated in the if-statement (below) will also
4229 * automatically handle this case for non-uniforms.
4230 *
4231 * If the declared variable is not an array, the types must
4232 * already match exactly. As a result, the type assignment
4233 * here can be done unconditionally. For non-uniforms the call
4234 * to do_assignment can change the type of the initializer (via
4235 * the implicit conversion rules). For uniforms the initializer
4236 * must be a constant expression, and the type of that expression
4237 * was validated above.
4238 */
4239 var->type = initializer_type;
4240
4241 var->data.read_only = temp;
4242 }
4243
4244 return result;
4245 }
4246
4247 static void
4248 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4249 YYLTYPE loc, ir_variable *var,
4250 unsigned num_vertices,
4251 unsigned *size,
4252 const char *var_category)
4253 {
4254 if (var->type->is_unsized_array()) {
4255 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4256 *
4257 * All geometry shader input unsized array declarations will be
4258 * sized by an earlier input layout qualifier, when present, as per
4259 * the following table.
4260 *
4261 * Followed by a table mapping each allowed input layout qualifier to
4262 * the corresponding input length.
4263 *
4264 * Similarly for tessellation control shader outputs.
4265 */
4266 if (num_vertices != 0)
4267 var->type = glsl_type::get_array_instance(var->type->fields.array,
4268 num_vertices);
4269 } else {
4270 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4271 * includes the following examples of compile-time errors:
4272 *
4273 * // code sequence within one shader...
4274 * in vec4 Color1[]; // size unknown
4275 * ...Color1.length()...// illegal, length() unknown
4276 * in vec4 Color2[2]; // size is 2
4277 * ...Color1.length()...// illegal, Color1 still has no size
4278 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4279 * layout(lines) in; // legal, input size is 2, matching
4280 * in vec4 Color4[3]; // illegal, contradicts layout
4281 * ...
4282 *
4283 * To detect the case illustrated by Color3, we verify that the size of
4284 * an explicitly-sized array matches the size of any previously declared
4285 * explicitly-sized array. To detect the case illustrated by Color4, we
4286 * verify that the size of an explicitly-sized array is consistent with
4287 * any previously declared input layout.
4288 */
4289 if (num_vertices != 0 && var->type->length != num_vertices) {
4290 _mesa_glsl_error(&loc, state,
4291 "%s size contradicts previously declared layout "
4292 "(size is %u, but layout requires a size of %u)",
4293 var_category, var->type->length, num_vertices);
4294 } else if (*size != 0 && var->type->length != *size) {
4295 _mesa_glsl_error(&loc, state,
4296 "%s sizes are inconsistent (size is %u, but a "
4297 "previous declaration has size %u)",
4298 var_category, var->type->length, *size);
4299 } else {
4300 *size = var->type->length;
4301 }
4302 }
4303 }
4304
4305 static void
4306 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4307 YYLTYPE loc, ir_variable *var)
4308 {
4309 unsigned num_vertices = 0;
4310
4311 if (state->tcs_output_vertices_specified) {
4312 if (!state->out_qualifier->vertices->
4313 process_qualifier_constant(state, "vertices",
4314 &num_vertices, false)) {
4315 return;
4316 }
4317
4318 if (num_vertices > state->Const.MaxPatchVertices) {
4319 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4320 "GL_MAX_PATCH_VERTICES", num_vertices);
4321 return;
4322 }
4323 }
4324
4325 if (!var->type->is_array() && !var->data.patch) {
4326 _mesa_glsl_error(&loc, state,
4327 "tessellation control shader outputs must be arrays");
4328
4329 /* To avoid cascading failures, short circuit the checks below. */
4330 return;
4331 }
4332
4333 if (var->data.patch)
4334 return;
4335
4336 var->data.tess_varying_implicit_sized_array = var->type->is_unsized_array();
4337
4338 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4339 &state->tcs_output_size,
4340 "tessellation control shader output");
4341 }
4342
4343 /**
4344 * Do additional processing necessary for tessellation control/evaluation shader
4345 * input declarations. This covers both interface block arrays and bare input
4346 * variables.
4347 */
4348 static void
4349 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4350 YYLTYPE loc, ir_variable *var)
4351 {
4352 if (!var->type->is_array() && !var->data.patch) {
4353 _mesa_glsl_error(&loc, state,
4354 "per-vertex tessellation shader inputs must be arrays");
4355 /* Avoid cascading failures. */
4356 return;
4357 }
4358
4359 if (var->data.patch)
4360 return;
4361
4362 /* The ARB_tessellation_shader spec says:
4363 *
4364 * "Declaring an array size is optional. If no size is specified, it
4365 * will be taken from the implementation-dependent maximum patch size
4366 * (gl_MaxPatchVertices). If a size is specified, it must match the
4367 * maximum patch size; otherwise, a compile or link error will occur."
4368 *
4369 * This text appears twice, once for TCS inputs, and again for TES inputs.
4370 */
4371 if (var->type->is_unsized_array()) {
4372 var->type = glsl_type::get_array_instance(var->type->fields.array,
4373 state->Const.MaxPatchVertices);
4374 var->data.tess_varying_implicit_sized_array = true;
4375 } else if (var->type->length != state->Const.MaxPatchVertices) {
4376 _mesa_glsl_error(&loc, state,
4377 "per-vertex tessellation shader input arrays must be "
4378 "sized to gl_MaxPatchVertices (%d).",
4379 state->Const.MaxPatchVertices);
4380 }
4381 }
4382
4383
4384 /**
4385 * Do additional processing necessary for geometry shader input declarations
4386 * (this covers both interface blocks arrays and bare input variables).
4387 */
4388 static void
4389 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4390 YYLTYPE loc, ir_variable *var)
4391 {
4392 unsigned num_vertices = 0;
4393
4394 if (state->gs_input_prim_type_specified) {
4395 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4396 }
4397
4398 /* Geometry shader input variables must be arrays. Caller should have
4399 * reported an error for this.
4400 */
4401 if (!var->type->is_array()) {
4402 assert(state->error);
4403
4404 /* To avoid cascading failures, short circuit the checks below. */
4405 return;
4406 }
4407
4408 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4409 &state->gs_input_size,
4410 "geometry shader input");
4411 }
4412
4413 void
4414 validate_identifier(const char *identifier, YYLTYPE loc,
4415 struct _mesa_glsl_parse_state *state)
4416 {
4417 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4418 *
4419 * "Identifiers starting with "gl_" are reserved for use by
4420 * OpenGL, and may not be declared in a shader as either a
4421 * variable or a function."
4422 */
4423 if (is_gl_identifier(identifier)) {
4424 _mesa_glsl_error(&loc, state,
4425 "identifier `%s' uses reserved `gl_' prefix",
4426 identifier);
4427 } else if (strstr(identifier, "__")) {
4428 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4429 * spec:
4430 *
4431 * "In addition, all identifiers containing two
4432 * consecutive underscores (__) are reserved as
4433 * possible future keywords."
4434 *
4435 * The intention is that names containing __ are reserved for internal
4436 * use by the implementation, and names prefixed with GL_ are reserved
4437 * for use by Khronos. Names simply containing __ are dangerous to use,
4438 * but should be allowed.
4439 *
4440 * A future version of the GLSL specification will clarify this.
4441 */
4442 _mesa_glsl_warning(&loc, state,
4443 "identifier `%s' uses reserved `__' string",
4444 identifier);
4445 }
4446 }
4447
4448 ir_rvalue *
4449 ast_declarator_list::hir(exec_list *instructions,
4450 struct _mesa_glsl_parse_state *state)
4451 {
4452 void *ctx = state;
4453 const struct glsl_type *decl_type;
4454 const char *type_name = NULL;
4455 ir_rvalue *result = NULL;
4456 YYLTYPE loc = this->get_location();
4457
4458 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4459 *
4460 * "To ensure that a particular output variable is invariant, it is
4461 * necessary to use the invariant qualifier. It can either be used to
4462 * qualify a previously declared variable as being invariant
4463 *
4464 * invariant gl_Position; // make existing gl_Position be invariant"
4465 *
4466 * In these cases the parser will set the 'invariant' flag in the declarator
4467 * list, and the type will be NULL.
4468 */
4469 if (this->invariant) {
4470 assert(this->type == NULL);
4471
4472 if (state->current_function != NULL) {
4473 _mesa_glsl_error(& loc, state,
4474 "all uses of `invariant' keyword must be at global "
4475 "scope");
4476 }
4477
4478 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4479 assert(decl->array_specifier == NULL);
4480 assert(decl->initializer == NULL);
4481
4482 ir_variable *const earlier =
4483 state->symbols->get_variable(decl->identifier);
4484 if (earlier == NULL) {
4485 _mesa_glsl_error(& loc, state,
4486 "undeclared variable `%s' cannot be marked "
4487 "invariant", decl->identifier);
4488 } else if (!is_varying_var(earlier, state->stage)) {
4489 _mesa_glsl_error(&loc, state,
4490 "`%s' cannot be marked invariant; interfaces between "
4491 "shader stages only.", decl->identifier);
4492 } else if (earlier->data.used) {
4493 _mesa_glsl_error(& loc, state,
4494 "variable `%s' may not be redeclared "
4495 "`invariant' after being used",
4496 earlier->name);
4497 } else {
4498 earlier->data.invariant = true;
4499 }
4500 }
4501
4502 /* Invariant redeclarations do not have r-values.
4503 */
4504 return NULL;
4505 }
4506
4507 if (this->precise) {
4508 assert(this->type == NULL);
4509
4510 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4511 assert(decl->array_specifier == NULL);
4512 assert(decl->initializer == NULL);
4513
4514 ir_variable *const earlier =
4515 state->symbols->get_variable(decl->identifier);
4516 if (earlier == NULL) {
4517 _mesa_glsl_error(& loc, state,
4518 "undeclared variable `%s' cannot be marked "
4519 "precise", decl->identifier);
4520 } else if (state->current_function != NULL &&
4521 !state->symbols->name_declared_this_scope(decl->identifier)) {
4522 /* Note: we have to check if we're in a function, since
4523 * builtins are treated as having come from another scope.
4524 */
4525 _mesa_glsl_error(& loc, state,
4526 "variable `%s' from an outer scope may not be "
4527 "redeclared `precise' in this scope",
4528 earlier->name);
4529 } else if (earlier->data.used) {
4530 _mesa_glsl_error(& loc, state,
4531 "variable `%s' may not be redeclared "
4532 "`precise' after being used",
4533 earlier->name);
4534 } else {
4535 earlier->data.precise = true;
4536 }
4537 }
4538
4539 /* Precise redeclarations do not have r-values either. */
4540 return NULL;
4541 }
4542
4543 assert(this->type != NULL);
4544 assert(!this->invariant);
4545 assert(!this->precise);
4546
4547 /* The type specifier may contain a structure definition. Process that
4548 * before any of the variable declarations.
4549 */
4550 (void) this->type->specifier->hir(instructions, state);
4551
4552 decl_type = this->type->glsl_type(& type_name, state);
4553
4554 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4555 * "Buffer variables may only be declared inside interface blocks
4556 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4557 * shader storage blocks. It is a compile-time error to declare buffer
4558 * variables at global scope (outside a block)."
4559 */
4560 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4561 _mesa_glsl_error(&loc, state,
4562 "buffer variables cannot be declared outside "
4563 "interface blocks");
4564 }
4565
4566 /* An offset-qualified atomic counter declaration sets the default
4567 * offset for the next declaration within the same atomic counter
4568 * buffer.
4569 */
4570 if (decl_type && decl_type->contains_atomic()) {
4571 if (type->qualifier.flags.q.explicit_binding &&
4572 type->qualifier.flags.q.explicit_offset) {
4573 unsigned qual_binding;
4574 unsigned qual_offset;
4575 if (process_qualifier_constant(state, &loc, "binding",
4576 type->qualifier.binding,
4577 &qual_binding)
4578 && process_qualifier_constant(state, &loc, "offset",
4579 type->qualifier.offset,
4580 &qual_offset)) {
4581 state->atomic_counter_offsets[qual_binding] = qual_offset;
4582 }
4583 }
4584
4585 ast_type_qualifier allowed_atomic_qual_mask;
4586 allowed_atomic_qual_mask.flags.i = 0;
4587 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4588 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4589 allowed_atomic_qual_mask.flags.q.uniform = 1;
4590
4591 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4592 "invalid layout qualifier for",
4593 "atomic_uint");
4594 }
4595
4596 if (this->declarations.is_empty()) {
4597 /* If there is no structure involved in the program text, there are two
4598 * possible scenarios:
4599 *
4600 * - The program text contained something like 'vec4;'. This is an
4601 * empty declaration. It is valid but weird. Emit a warning.
4602 *
4603 * - The program text contained something like 'S;' and 'S' is not the
4604 * name of a known structure type. This is both invalid and weird.
4605 * Emit an error.
4606 *
4607 * - The program text contained something like 'mediump float;'
4608 * when the programmer probably meant 'precision mediump
4609 * float;' Emit a warning with a description of what they
4610 * probably meant to do.
4611 *
4612 * Note that if decl_type is NULL and there is a structure involved,
4613 * there must have been some sort of error with the structure. In this
4614 * case we assume that an error was already generated on this line of
4615 * code for the structure. There is no need to generate an additional,
4616 * confusing error.
4617 */
4618 assert(this->type->specifier->structure == NULL || decl_type != NULL
4619 || state->error);
4620
4621 if (decl_type == NULL) {
4622 _mesa_glsl_error(&loc, state,
4623 "invalid type `%s' in empty declaration",
4624 type_name);
4625 } else {
4626 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4627 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4628 * spec:
4629 *
4630 * "... any declaration that leaves the size undefined is
4631 * disallowed as this would add complexity and there are no
4632 * use-cases."
4633 */
4634 if (state->es_shader && decl_type->is_unsized_array()) {
4635 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4636 "or implicitly defined");
4637 }
4638
4639 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4640 *
4641 * "The combinations of types and qualifiers that cause
4642 * compile-time or link-time errors are the same whether or not
4643 * the declaration is empty."
4644 */
4645 validate_array_dimensions(decl_type, state, &loc);
4646 }
4647
4648 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4649 /* Empty atomic counter declarations are allowed and useful
4650 * to set the default offset qualifier.
4651 */
4652 return NULL;
4653 } else if (this->type->qualifier.precision != ast_precision_none) {
4654 if (this->type->specifier->structure != NULL) {
4655 _mesa_glsl_error(&loc, state,
4656 "precision qualifiers can't be applied "
4657 "to structures");
4658 } else {
4659 static const char *const precision_names[] = {
4660 "highp",
4661 "highp",
4662 "mediump",
4663 "lowp"
4664 };
4665
4666 _mesa_glsl_warning(&loc, state,
4667 "empty declaration with precision "
4668 "qualifier, to set the default precision, "
4669 "use `precision %s %s;'",
4670 precision_names[this->type->
4671 qualifier.precision],
4672 type_name);
4673 }
4674 } else if (this->type->specifier->structure == NULL) {
4675 _mesa_glsl_warning(&loc, state, "empty declaration");
4676 }
4677 }
4678 }
4679
4680 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4681 const struct glsl_type *var_type;
4682 ir_variable *var;
4683 const char *identifier = decl->identifier;
4684 /* FINISHME: Emit a warning if a variable declaration shadows a
4685 * FINISHME: declaration at a higher scope.
4686 */
4687
4688 if ((decl_type == NULL) || decl_type->is_void()) {
4689 if (type_name != NULL) {
4690 _mesa_glsl_error(& loc, state,
4691 "invalid type `%s' in declaration of `%s'",
4692 type_name, decl->identifier);
4693 } else {
4694 _mesa_glsl_error(& loc, state,
4695 "invalid type in declaration of `%s'",
4696 decl->identifier);
4697 }
4698 continue;
4699 }
4700
4701 if (this->type->qualifier.flags.q.subroutine) {
4702 const glsl_type *t;
4703 const char *name;
4704
4705 t = state->symbols->get_type(this->type->specifier->type_name);
4706 if (!t)
4707 _mesa_glsl_error(& loc, state,
4708 "invalid type in declaration of `%s'",
4709 decl->identifier);
4710 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4711
4712 identifier = name;
4713
4714 }
4715 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4716 state);
4717
4718 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4719
4720 /* The 'varying in' and 'varying out' qualifiers can only be used with
4721 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4722 * yet.
4723 */
4724 if (this->type->qualifier.flags.q.varying) {
4725 if (this->type->qualifier.flags.q.in) {
4726 _mesa_glsl_error(& loc, state,
4727 "`varying in' qualifier in declaration of "
4728 "`%s' only valid for geometry shaders using "
4729 "ARB_geometry_shader4 or EXT_geometry_shader4",
4730 decl->identifier);
4731 } else if (this->type->qualifier.flags.q.out) {
4732 _mesa_glsl_error(& loc, state,
4733 "`varying out' qualifier in declaration of "
4734 "`%s' only valid for geometry shaders using "
4735 "ARB_geometry_shader4 or EXT_geometry_shader4",
4736 decl->identifier);
4737 }
4738 }
4739
4740 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4741 *
4742 * "Global variables can only use the qualifiers const,
4743 * attribute, uniform, or varying. Only one may be
4744 * specified.
4745 *
4746 * Local variables can only use the qualifier const."
4747 *
4748 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4749 * any extension that adds the 'layout' keyword.
4750 */
4751 if (!state->is_version(130, 300)
4752 && !state->has_explicit_attrib_location()
4753 && !state->has_separate_shader_objects()
4754 && !state->ARB_fragment_coord_conventions_enable) {
4755 if (this->type->qualifier.flags.q.out) {
4756 _mesa_glsl_error(& loc, state,
4757 "`out' qualifier in declaration of `%s' "
4758 "only valid for function parameters in %s",
4759 decl->identifier, state->get_version_string());
4760 }
4761 if (this->type->qualifier.flags.q.in) {
4762 _mesa_glsl_error(& loc, state,
4763 "`in' qualifier in declaration of `%s' "
4764 "only valid for function parameters in %s",
4765 decl->identifier, state->get_version_string());
4766 }
4767 /* FINISHME: Test for other invalid qualifiers. */
4768 }
4769
4770 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4771 & loc, false);
4772 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4773 &loc);
4774
4775 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4776 && (var->type->is_numeric() || var->type->is_boolean())
4777 && state->zero_init) {
4778 const ir_constant_data data = {0};
4779 var->data.has_initializer = true;
4780 var->constant_initializer = new(var) ir_constant(var->type, &data);
4781 }
4782
4783 if (this->type->qualifier.flags.q.invariant) {
4784 if (!is_varying_var(var, state->stage)) {
4785 _mesa_glsl_error(&loc, state,
4786 "`%s' cannot be marked invariant; interfaces between "
4787 "shader stages only", var->name);
4788 }
4789 }
4790
4791 if (state->current_function != NULL) {
4792 const char *mode = NULL;
4793 const char *extra = "";
4794
4795 /* There is no need to check for 'inout' here because the parser will
4796 * only allow that in function parameter lists.
4797 */
4798 if (this->type->qualifier.flags.q.attribute) {
4799 mode = "attribute";
4800 } else if (this->type->qualifier.flags.q.subroutine) {
4801 mode = "subroutine uniform";
4802 } else if (this->type->qualifier.flags.q.uniform) {
4803 mode = "uniform";
4804 } else if (this->type->qualifier.flags.q.varying) {
4805 mode = "varying";
4806 } else if (this->type->qualifier.flags.q.in) {
4807 mode = "in";
4808 extra = " or in function parameter list";
4809 } else if (this->type->qualifier.flags.q.out) {
4810 mode = "out";
4811 extra = " or in function parameter list";
4812 }
4813
4814 if (mode) {
4815 _mesa_glsl_error(& loc, state,
4816 "%s variable `%s' must be declared at "
4817 "global scope%s",
4818 mode, var->name, extra);
4819 }
4820 } else if (var->data.mode == ir_var_shader_in) {
4821 var->data.read_only = true;
4822
4823 if (state->stage == MESA_SHADER_VERTEX) {
4824 bool error_emitted = false;
4825
4826 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4827 *
4828 * "Vertex shader inputs can only be float, floating-point
4829 * vectors, matrices, signed and unsigned integers and integer
4830 * vectors. Vertex shader inputs can also form arrays of these
4831 * types, but not structures."
4832 *
4833 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4834 *
4835 * "Vertex shader inputs can only be float, floating-point
4836 * vectors, matrices, signed and unsigned integers and integer
4837 * vectors. They cannot be arrays or structures."
4838 *
4839 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4840 *
4841 * "The attribute qualifier can be used only with float,
4842 * floating-point vectors, and matrices. Attribute variables
4843 * cannot be declared as arrays or structures."
4844 *
4845 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4846 *
4847 * "Vertex shader inputs can only be float, floating-point
4848 * vectors, matrices, signed and unsigned integers and integer
4849 * vectors. Vertex shader inputs cannot be arrays or
4850 * structures."
4851 */
4852 const glsl_type *check_type = var->type->without_array();
4853
4854 switch (check_type->base_type) {
4855 case GLSL_TYPE_FLOAT:
4856 break;
4857 case GLSL_TYPE_UINT:
4858 case GLSL_TYPE_INT:
4859 if (state->is_version(120, 300))
4860 break;
4861 case GLSL_TYPE_DOUBLE:
4862 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4863 break;
4864 /* FALLTHROUGH */
4865 default:
4866 _mesa_glsl_error(& loc, state,
4867 "vertex shader input / attribute cannot have "
4868 "type %s`%s'",
4869 var->type->is_array() ? "array of " : "",
4870 check_type->name);
4871 error_emitted = true;
4872 }
4873
4874 if (!error_emitted && var->type->is_array() &&
4875 !state->check_version(150, 0, &loc,
4876 "vertex shader input / attribute "
4877 "cannot have array type")) {
4878 error_emitted = true;
4879 }
4880 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4881 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4882 *
4883 * Geometry shader input variables get the per-vertex values
4884 * written out by vertex shader output variables of the same
4885 * names. Since a geometry shader operates on a set of
4886 * vertices, each input varying variable (or input block, see
4887 * interface blocks below) needs to be declared as an array.
4888 */
4889 if (!var->type->is_array()) {
4890 _mesa_glsl_error(&loc, state,
4891 "geometry shader inputs must be arrays");
4892 }
4893
4894 handle_geometry_shader_input_decl(state, loc, var);
4895 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4896 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4897 *
4898 * It is a compile-time error to declare a fragment shader
4899 * input with, or that contains, any of the following types:
4900 *
4901 * * A boolean type
4902 * * An opaque type
4903 * * An array of arrays
4904 * * An array of structures
4905 * * A structure containing an array
4906 * * A structure containing a structure
4907 */
4908 if (state->es_shader) {
4909 const glsl_type *check_type = var->type->without_array();
4910 if (check_type->is_boolean() ||
4911 check_type->contains_opaque()) {
4912 _mesa_glsl_error(&loc, state,
4913 "fragment shader input cannot have type %s",
4914 check_type->name);
4915 }
4916 if (var->type->is_array() &&
4917 var->type->fields.array->is_array()) {
4918 _mesa_glsl_error(&loc, state,
4919 "%s shader output "
4920 "cannot have an array of arrays",
4921 _mesa_shader_stage_to_string(state->stage));
4922 }
4923 if (var->type->is_array() &&
4924 var->type->fields.array->is_record()) {
4925 _mesa_glsl_error(&loc, state,
4926 "fragment shader input "
4927 "cannot have an array of structs");
4928 }
4929 if (var->type->is_record()) {
4930 for (unsigned i = 0; i < var->type->length; i++) {
4931 if (var->type->fields.structure[i].type->is_array() ||
4932 var->type->fields.structure[i].type->is_record())
4933 _mesa_glsl_error(&loc, state,
4934 "fragement shader input cannot have "
4935 "a struct that contains an "
4936 "array or struct");
4937 }
4938 }
4939 }
4940 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4941 state->stage == MESA_SHADER_TESS_EVAL) {
4942 handle_tess_shader_input_decl(state, loc, var);
4943 }
4944 } else if (var->data.mode == ir_var_shader_out) {
4945 const glsl_type *check_type = var->type->without_array();
4946
4947 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4948 *
4949 * It is a compile-time error to declare a vertex, tessellation
4950 * evaluation, tessellation control, or geometry shader output
4951 * that contains any of the following:
4952 *
4953 * * A Boolean type (bool, bvec2 ...)
4954 * * An opaque type
4955 */
4956 if (check_type->is_boolean() || check_type->contains_opaque())
4957 _mesa_glsl_error(&loc, state,
4958 "%s shader output cannot have type %s",
4959 _mesa_shader_stage_to_string(state->stage),
4960 check_type->name);
4961
4962 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4963 *
4964 * It is a compile-time error to declare a fragment shader output
4965 * that contains any of the following:
4966 *
4967 * * A Boolean type (bool, bvec2 ...)
4968 * * A double-precision scalar or vector (double, dvec2 ...)
4969 * * An opaque type
4970 * * Any matrix type
4971 * * A structure
4972 */
4973 if (state->stage == MESA_SHADER_FRAGMENT) {
4974 if (check_type->is_record() || check_type->is_matrix())
4975 _mesa_glsl_error(&loc, state,
4976 "fragment shader output "
4977 "cannot have struct or matrix type");
4978 switch (check_type->base_type) {
4979 case GLSL_TYPE_UINT:
4980 case GLSL_TYPE_INT:
4981 case GLSL_TYPE_FLOAT:
4982 break;
4983 default:
4984 _mesa_glsl_error(&loc, state,
4985 "fragment shader output cannot have "
4986 "type %s", check_type->name);
4987 }
4988 }
4989
4990 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4991 *
4992 * It is a compile-time error to declare a vertex shader output
4993 * with, or that contains, any of the following types:
4994 *
4995 * * A boolean type
4996 * * An opaque type
4997 * * An array of arrays
4998 * * An array of structures
4999 * * A structure containing an array
5000 * * A structure containing a structure
5001 *
5002 * It is a compile-time error to declare a fragment shader output
5003 * with, or that contains, any of the following types:
5004 *
5005 * * A boolean type
5006 * * An opaque type
5007 * * A matrix
5008 * * A structure
5009 * * An array of array
5010 */
5011 if (state->es_shader) {
5012 if (var->type->is_array() &&
5013 var->type->fields.array->is_array()) {
5014 _mesa_glsl_error(&loc, state,
5015 "%s shader output "
5016 "cannot have an array of arrays",
5017 _mesa_shader_stage_to_string(state->stage));
5018 }
5019 if (state->stage == MESA_SHADER_VERTEX) {
5020 if (var->type->is_array() &&
5021 var->type->fields.array->is_record()) {
5022 _mesa_glsl_error(&loc, state,
5023 "vertex shader output "
5024 "cannot have an array of structs");
5025 }
5026 if (var->type->is_record()) {
5027 for (unsigned i = 0; i < var->type->length; i++) {
5028 if (var->type->fields.structure[i].type->is_array() ||
5029 var->type->fields.structure[i].type->is_record())
5030 _mesa_glsl_error(&loc, state,
5031 "vertex shader output cannot have a "
5032 "struct that contains an "
5033 "array or struct");
5034 }
5035 }
5036 }
5037 }
5038
5039 if (state->stage == MESA_SHADER_TESS_CTRL) {
5040 handle_tess_ctrl_shader_output_decl(state, loc, var);
5041 }
5042 } else if (var->type->contains_subroutine()) {
5043 /* declare subroutine uniforms as hidden */
5044 var->data.how_declared = ir_var_hidden;
5045 }
5046
5047 /* From section 4.3.4 of the GLSL 4.00 spec:
5048 * "Input variables may not be declared using the patch in qualifier
5049 * in tessellation control or geometry shaders."
5050 *
5051 * From section 4.3.6 of the GLSL 4.00 spec:
5052 * "It is an error to use patch out in a vertex, tessellation
5053 * evaluation, or geometry shader."
5054 *
5055 * This doesn't explicitly forbid using them in a fragment shader, but
5056 * that's probably just an oversight.
5057 */
5058 if (state->stage != MESA_SHADER_TESS_EVAL
5059 && this->type->qualifier.flags.q.patch
5060 && this->type->qualifier.flags.q.in) {
5061
5062 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5063 "tessellation evaluation shader");
5064 }
5065
5066 if (state->stage != MESA_SHADER_TESS_CTRL
5067 && this->type->qualifier.flags.q.patch
5068 && this->type->qualifier.flags.q.out) {
5069
5070 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5071 "tessellation control shader");
5072 }
5073
5074 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5075 */
5076 if (this->type->qualifier.precision != ast_precision_none) {
5077 state->check_precision_qualifiers_allowed(&loc);
5078 }
5079
5080 if (this->type->qualifier.precision != ast_precision_none &&
5081 !precision_qualifier_allowed(var->type)) {
5082 _mesa_glsl_error(&loc, state,
5083 "precision qualifiers apply only to floating point"
5084 ", integer and opaque types");
5085 }
5086
5087 /* From section 4.1.7 of the GLSL 4.40 spec:
5088 *
5089 * "[Opaque types] can only be declared as function
5090 * parameters or uniform-qualified variables."
5091 */
5092 if (var_type->contains_opaque() &&
5093 !this->type->qualifier.flags.q.uniform) {
5094 _mesa_glsl_error(&loc, state,
5095 "opaque variables must be declared uniform");
5096 }
5097
5098 /* Process the initializer and add its instructions to a temporary
5099 * list. This list will be added to the instruction stream (below) after
5100 * the declaration is added. This is done because in some cases (such as
5101 * redeclarations) the declaration may not actually be added to the
5102 * instruction stream.
5103 */
5104 exec_list initializer_instructions;
5105
5106 /* Examine var name here since var may get deleted in the next call */
5107 bool var_is_gl_id = is_gl_identifier(var->name);
5108
5109 ir_variable *earlier =
5110 get_variable_being_redeclared(var, decl->get_location(), state,
5111 false /* allow_all_redeclarations */);
5112 if (earlier != NULL) {
5113 if (var_is_gl_id &&
5114 earlier->data.how_declared == ir_var_declared_in_block) {
5115 _mesa_glsl_error(&loc, state,
5116 "`%s' has already been redeclared using "
5117 "gl_PerVertex", earlier->name);
5118 }
5119 earlier->data.how_declared = ir_var_declared_normally;
5120 }
5121
5122 if (decl->initializer != NULL) {
5123 result = process_initializer((earlier == NULL) ? var : earlier,
5124 decl, this->type,
5125 &initializer_instructions, state);
5126 } else {
5127 validate_array_dimensions(var_type, state, &loc);
5128 }
5129
5130 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5131 *
5132 * "It is an error to write to a const variable outside of
5133 * its declaration, so they must be initialized when
5134 * declared."
5135 */
5136 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5137 _mesa_glsl_error(& loc, state,
5138 "const declaration of `%s' must be initialized",
5139 decl->identifier);
5140 }
5141
5142 if (state->es_shader) {
5143 const glsl_type *const t = (earlier == NULL)
5144 ? var->type : earlier->type;
5145
5146 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5147 *
5148 * The GL_OES_tessellation_shader spec says about inputs:
5149 *
5150 * "Declaring an array size is optional. If no size is specified,
5151 * it will be taken from the implementation-dependent maximum
5152 * patch size (gl_MaxPatchVertices)."
5153 *
5154 * and about TCS outputs:
5155 *
5156 * "If no size is specified, it will be taken from output patch
5157 * size declared in the shader."
5158 *
5159 * The GL_OES_geometry_shader spec says:
5160 *
5161 * "All geometry shader input unsized array declarations will be
5162 * sized by an earlier input primitive layout qualifier, when
5163 * present, as per the following table."
5164 */
5165 const bool implicitly_sized =
5166 (var->data.mode == ir_var_shader_in &&
5167 state->stage >= MESA_SHADER_TESS_CTRL &&
5168 state->stage <= MESA_SHADER_GEOMETRY) ||
5169 (var->data.mode == ir_var_shader_out &&
5170 state->stage == MESA_SHADER_TESS_CTRL);
5171
5172 if (t->is_unsized_array() && !implicitly_sized)
5173 /* Section 10.17 of the GLSL ES 1.00 specification states that
5174 * unsized array declarations have been removed from the language.
5175 * Arrays that are sized using an initializer are still explicitly
5176 * sized. However, GLSL ES 1.00 does not allow array
5177 * initializers. That is only allowed in GLSL ES 3.00.
5178 *
5179 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5180 *
5181 * "An array type can also be formed without specifying a size
5182 * if the definition includes an initializer:
5183 *
5184 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5185 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5186 *
5187 * float a[5];
5188 * float b[] = a;"
5189 */
5190 _mesa_glsl_error(& loc, state,
5191 "unsized array declarations are not allowed in "
5192 "GLSL ES");
5193 }
5194
5195 /* If the declaration is not a redeclaration, there are a few additional
5196 * semantic checks that must be applied. In addition, variable that was
5197 * created for the declaration should be added to the IR stream.
5198 */
5199 if (earlier == NULL) {
5200 validate_identifier(decl->identifier, loc, state);
5201
5202 /* Add the variable to the symbol table. Note that the initializer's
5203 * IR was already processed earlier (though it hasn't been emitted
5204 * yet), without the variable in scope.
5205 *
5206 * This differs from most C-like languages, but it follows the GLSL
5207 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5208 * spec:
5209 *
5210 * "Within a declaration, the scope of a name starts immediately
5211 * after the initializer if present or immediately after the name
5212 * being declared if not."
5213 */
5214 if (!state->symbols->add_variable(var)) {
5215 YYLTYPE loc = this->get_location();
5216 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5217 "current scope", decl->identifier);
5218 continue;
5219 }
5220
5221 /* Push the variable declaration to the top. It means that all the
5222 * variable declarations will appear in a funny last-to-first order,
5223 * but otherwise we run into trouble if a function is prototyped, a
5224 * global var is decled, then the function is defined with usage of
5225 * the global var. See glslparsertest's CorrectModule.frag.
5226 */
5227 instructions->push_head(var);
5228 }
5229
5230 instructions->append_list(&initializer_instructions);
5231 }
5232
5233
5234 /* Generally, variable declarations do not have r-values. However,
5235 * one is used for the declaration in
5236 *
5237 * while (bool b = some_condition()) {
5238 * ...
5239 * }
5240 *
5241 * so we return the rvalue from the last seen declaration here.
5242 */
5243 return result;
5244 }
5245
5246
5247 ir_rvalue *
5248 ast_parameter_declarator::hir(exec_list *instructions,
5249 struct _mesa_glsl_parse_state *state)
5250 {
5251 void *ctx = state;
5252 const struct glsl_type *type;
5253 const char *name = NULL;
5254 YYLTYPE loc = this->get_location();
5255
5256 type = this->type->glsl_type(& name, state);
5257
5258 if (type == NULL) {
5259 if (name != NULL) {
5260 _mesa_glsl_error(& loc, state,
5261 "invalid type `%s' in declaration of `%s'",
5262 name, this->identifier);
5263 } else {
5264 _mesa_glsl_error(& loc, state,
5265 "invalid type in declaration of `%s'",
5266 this->identifier);
5267 }
5268
5269 type = glsl_type::error_type;
5270 }
5271
5272 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5273 *
5274 * "Functions that accept no input arguments need not use void in the
5275 * argument list because prototypes (or definitions) are required and
5276 * therefore there is no ambiguity when an empty argument list "( )" is
5277 * declared. The idiom "(void)" as a parameter list is provided for
5278 * convenience."
5279 *
5280 * Placing this check here prevents a void parameter being set up
5281 * for a function, which avoids tripping up checks for main taking
5282 * parameters and lookups of an unnamed symbol.
5283 */
5284 if (type->is_void()) {
5285 if (this->identifier != NULL)
5286 _mesa_glsl_error(& loc, state,
5287 "named parameter cannot have type `void'");
5288
5289 is_void = true;
5290 return NULL;
5291 }
5292
5293 if (formal_parameter && (this->identifier == NULL)) {
5294 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5295 return NULL;
5296 }
5297
5298 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5299 * call already handled the "vec4[..] foo" case.
5300 */
5301 type = process_array_type(&loc, type, this->array_specifier, state);
5302
5303 if (!type->is_error() && type->is_unsized_array()) {
5304 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5305 "a declared size");
5306 type = glsl_type::error_type;
5307 }
5308
5309 is_void = false;
5310 ir_variable *var = new(ctx)
5311 ir_variable(type, this->identifier, ir_var_function_in);
5312
5313 /* Apply any specified qualifiers to the parameter declaration. Note that
5314 * for function parameters the default mode is 'in'.
5315 */
5316 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5317 true);
5318
5319 /* From section 4.1.7 of the GLSL 4.40 spec:
5320 *
5321 * "Opaque variables cannot be treated as l-values; hence cannot
5322 * be used as out or inout function parameters, nor can they be
5323 * assigned into."
5324 */
5325 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5326 && type->contains_opaque()) {
5327 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5328 "contain opaque variables");
5329 type = glsl_type::error_type;
5330 }
5331
5332 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5333 *
5334 * "When calling a function, expressions that do not evaluate to
5335 * l-values cannot be passed to parameters declared as out or inout."
5336 *
5337 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5338 *
5339 * "Other binary or unary expressions, non-dereferenced arrays,
5340 * function names, swizzles with repeated fields, and constants
5341 * cannot be l-values."
5342 *
5343 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5344 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5345 */
5346 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5347 && type->is_array()
5348 && !state->check_version(120, 100, &loc,
5349 "arrays cannot be out or inout parameters")) {
5350 type = glsl_type::error_type;
5351 }
5352
5353 instructions->push_tail(var);
5354
5355 /* Parameter declarations do not have r-values.
5356 */
5357 return NULL;
5358 }
5359
5360
5361 void
5362 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5363 bool formal,
5364 exec_list *ir_parameters,
5365 _mesa_glsl_parse_state *state)
5366 {
5367 ast_parameter_declarator *void_param = NULL;
5368 unsigned count = 0;
5369
5370 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5371 param->formal_parameter = formal;
5372 param->hir(ir_parameters, state);
5373
5374 if (param->is_void)
5375 void_param = param;
5376
5377 count++;
5378 }
5379
5380 if ((void_param != NULL) && (count > 1)) {
5381 YYLTYPE loc = void_param->get_location();
5382
5383 _mesa_glsl_error(& loc, state,
5384 "`void' parameter must be only parameter");
5385 }
5386 }
5387
5388
5389 void
5390 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5391 {
5392 /* IR invariants disallow function declarations or definitions
5393 * nested within other function definitions. But there is no
5394 * requirement about the relative order of function declarations
5395 * and definitions with respect to one another. So simply insert
5396 * the new ir_function block at the end of the toplevel instruction
5397 * list.
5398 */
5399 state->toplevel_ir->push_tail(f);
5400 }
5401
5402
5403 ir_rvalue *
5404 ast_function::hir(exec_list *instructions,
5405 struct _mesa_glsl_parse_state *state)
5406 {
5407 void *ctx = state;
5408 ir_function *f = NULL;
5409 ir_function_signature *sig = NULL;
5410 exec_list hir_parameters;
5411 YYLTYPE loc = this->get_location();
5412
5413 const char *const name = identifier;
5414
5415 /* New functions are always added to the top-level IR instruction stream,
5416 * so this instruction list pointer is ignored. See also emit_function
5417 * (called below).
5418 */
5419 (void) instructions;
5420
5421 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5422 *
5423 * "Function declarations (prototypes) cannot occur inside of functions;
5424 * they must be at global scope, or for the built-in functions, outside
5425 * the global scope."
5426 *
5427 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5428 *
5429 * "User defined functions may only be defined within the global scope."
5430 *
5431 * Note that this language does not appear in GLSL 1.10.
5432 */
5433 if ((state->current_function != NULL) &&
5434 state->is_version(120, 100)) {
5435 YYLTYPE loc = this->get_location();
5436 _mesa_glsl_error(&loc, state,
5437 "declaration of function `%s' not allowed within "
5438 "function body", name);
5439 }
5440
5441 validate_identifier(name, this->get_location(), state);
5442
5443 /* Convert the list of function parameters to HIR now so that they can be
5444 * used below to compare this function's signature with previously seen
5445 * signatures for functions with the same name.
5446 */
5447 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5448 is_definition,
5449 & hir_parameters, state);
5450
5451 const char *return_type_name;
5452 const glsl_type *return_type =
5453 this->return_type->glsl_type(& return_type_name, state);
5454
5455 if (!return_type) {
5456 YYLTYPE loc = this->get_location();
5457 _mesa_glsl_error(&loc, state,
5458 "function `%s' has undeclared return type `%s'",
5459 name, return_type_name);
5460 return_type = glsl_type::error_type;
5461 }
5462
5463 /* ARB_shader_subroutine states:
5464 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5465 * subroutine(...) to a function declaration."
5466 */
5467 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5468 YYLTYPE loc = this->get_location();
5469 _mesa_glsl_error(&loc, state,
5470 "function declaration `%s' cannot have subroutine prepended",
5471 name);
5472 }
5473
5474 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5475 * "No qualifier is allowed on the return type of a function."
5476 */
5477 if (this->return_type->has_qualifiers(state)) {
5478 YYLTYPE loc = this->get_location();
5479 _mesa_glsl_error(& loc, state,
5480 "function `%s' return type has qualifiers", name);
5481 }
5482
5483 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5484 *
5485 * "Arrays are allowed as arguments and as the return type. In both
5486 * cases, the array must be explicitly sized."
5487 */
5488 if (return_type->is_unsized_array()) {
5489 YYLTYPE loc = this->get_location();
5490 _mesa_glsl_error(& loc, state,
5491 "function `%s' return type array must be explicitly "
5492 "sized", name);
5493 }
5494
5495 /* From section 4.1.7 of the GLSL 4.40 spec:
5496 *
5497 * "[Opaque types] can only be declared as function parameters
5498 * or uniform-qualified variables."
5499 */
5500 if (return_type->contains_opaque()) {
5501 YYLTYPE loc = this->get_location();
5502 _mesa_glsl_error(&loc, state,
5503 "function `%s' return type can't contain an opaque type",
5504 name);
5505 }
5506
5507 /**/
5508 if (return_type->is_subroutine()) {
5509 YYLTYPE loc = this->get_location();
5510 _mesa_glsl_error(&loc, state,
5511 "function `%s' return type can't be a subroutine type",
5512 name);
5513 }
5514
5515
5516 /* Create an ir_function if one doesn't already exist. */
5517 f = state->symbols->get_function(name);
5518 if (f == NULL) {
5519 f = new(ctx) ir_function(name);
5520 if (!this->return_type->qualifier.flags.q.subroutine) {
5521 if (!state->symbols->add_function(f)) {
5522 /* This function name shadows a non-function use of the same name. */
5523 YYLTYPE loc = this->get_location();
5524 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5525 "non-function", name);
5526 return NULL;
5527 }
5528 }
5529 emit_function(state, f);
5530 }
5531
5532 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5533 *
5534 * "A shader cannot redefine or overload built-in functions."
5535 *
5536 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5537 *
5538 * "User code can overload the built-in functions but cannot redefine
5539 * them."
5540 */
5541 if (state->es_shader && state->language_version >= 300) {
5542 /* Local shader has no exact candidates; check the built-ins. */
5543 _mesa_glsl_initialize_builtin_functions();
5544 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5545 YYLTYPE loc = this->get_location();
5546 _mesa_glsl_error(& loc, state,
5547 "A shader cannot redefine or overload built-in "
5548 "function `%s' in GLSL ES 3.00", name);
5549 return NULL;
5550 }
5551 }
5552
5553 /* Verify that this function's signature either doesn't match a previously
5554 * seen signature for a function with the same name, or, if a match is found,
5555 * that the previously seen signature does not have an associated definition.
5556 */
5557 if (state->es_shader || f->has_user_signature()) {
5558 sig = f->exact_matching_signature(state, &hir_parameters);
5559 if (sig != NULL) {
5560 const char *badvar = sig->qualifiers_match(&hir_parameters);
5561 if (badvar != NULL) {
5562 YYLTYPE loc = this->get_location();
5563
5564 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5565 "qualifiers don't match prototype", name, badvar);
5566 }
5567
5568 if (sig->return_type != return_type) {
5569 YYLTYPE loc = this->get_location();
5570
5571 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5572 "match prototype", name);
5573 }
5574
5575 if (sig->is_defined) {
5576 if (is_definition) {
5577 YYLTYPE loc = this->get_location();
5578 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5579 } else {
5580 /* We just encountered a prototype that exactly matches a
5581 * function that's already been defined. This is redundant,
5582 * and we should ignore it.
5583 */
5584 return NULL;
5585 }
5586 }
5587 }
5588 }
5589
5590 /* Verify the return type of main() */
5591 if (strcmp(name, "main") == 0) {
5592 if (! return_type->is_void()) {
5593 YYLTYPE loc = this->get_location();
5594
5595 _mesa_glsl_error(& loc, state, "main() must return void");
5596 }
5597
5598 if (!hir_parameters.is_empty()) {
5599 YYLTYPE loc = this->get_location();
5600
5601 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5602 }
5603 }
5604
5605 /* Finish storing the information about this new function in its signature.
5606 */
5607 if (sig == NULL) {
5608 sig = new(ctx) ir_function_signature(return_type);
5609 f->add_signature(sig);
5610 }
5611
5612 sig->replace_parameters(&hir_parameters);
5613 signature = sig;
5614
5615 if (this->return_type->qualifier.flags.q.subroutine_def) {
5616 int idx;
5617
5618 if (this->return_type->qualifier.flags.q.explicit_index) {
5619 unsigned qual_index;
5620 if (process_qualifier_constant(state, &loc, "index",
5621 this->return_type->qualifier.index,
5622 &qual_index)) {
5623 if (!state->has_explicit_uniform_location()) {
5624 _mesa_glsl_error(&loc, state, "subroutine index requires "
5625 "GL_ARB_explicit_uniform_location or "
5626 "GLSL 4.30");
5627 } else if (qual_index >= MAX_SUBROUTINES) {
5628 _mesa_glsl_error(&loc, state,
5629 "invalid subroutine index (%d) index must "
5630 "be a number between 0 and "
5631 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5632 MAX_SUBROUTINES - 1);
5633 } else {
5634 f->subroutine_index = qual_index;
5635 }
5636 }
5637 }
5638
5639 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5640 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5641 f->num_subroutine_types);
5642 idx = 0;
5643 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5644 const struct glsl_type *type;
5645 /* the subroutine type must be already declared */
5646 type = state->symbols->get_type(decl->identifier);
5647 if (!type) {
5648 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5649 }
5650
5651 for (int i = 0; i < state->num_subroutine_types; i++) {
5652 ir_function *fn = state->subroutine_types[i];
5653 ir_function_signature *tsig = NULL;
5654
5655 if (strcmp(fn->name, decl->identifier))
5656 continue;
5657
5658 tsig = fn->matching_signature(state, &sig->parameters,
5659 false);
5660 if (!tsig) {
5661 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5662 } else {
5663 if (tsig->return_type != sig->return_type) {
5664 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5665 }
5666 }
5667 }
5668 f->subroutine_types[idx++] = type;
5669 }
5670 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5671 ir_function *,
5672 state->num_subroutines + 1);
5673 state->subroutines[state->num_subroutines] = f;
5674 state->num_subroutines++;
5675
5676 }
5677
5678 if (this->return_type->qualifier.flags.q.subroutine) {
5679 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5680 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5681 return NULL;
5682 }
5683 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5684 ir_function *,
5685 state->num_subroutine_types + 1);
5686 state->subroutine_types[state->num_subroutine_types] = f;
5687 state->num_subroutine_types++;
5688
5689 f->is_subroutine = true;
5690 }
5691
5692 /* Function declarations (prototypes) do not have r-values.
5693 */
5694 return NULL;
5695 }
5696
5697
5698 ir_rvalue *
5699 ast_function_definition::hir(exec_list *instructions,
5700 struct _mesa_glsl_parse_state *state)
5701 {
5702 prototype->is_definition = true;
5703 prototype->hir(instructions, state);
5704
5705 ir_function_signature *signature = prototype->signature;
5706 if (signature == NULL)
5707 return NULL;
5708
5709 assert(state->current_function == NULL);
5710 state->current_function = signature;
5711 state->found_return = false;
5712
5713 /* Duplicate parameters declared in the prototype as concrete variables.
5714 * Add these to the symbol table.
5715 */
5716 state->symbols->push_scope();
5717 foreach_in_list(ir_variable, var, &signature->parameters) {
5718 assert(var->as_variable() != NULL);
5719
5720 /* The only way a parameter would "exist" is if two parameters have
5721 * the same name.
5722 */
5723 if (state->symbols->name_declared_this_scope(var->name)) {
5724 YYLTYPE loc = this->get_location();
5725
5726 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5727 } else {
5728 state->symbols->add_variable(var);
5729 }
5730 }
5731
5732 /* Convert the body of the function to HIR. */
5733 this->body->hir(&signature->body, state);
5734 signature->is_defined = true;
5735
5736 state->symbols->pop_scope();
5737
5738 assert(state->current_function == signature);
5739 state->current_function = NULL;
5740
5741 if (!signature->return_type->is_void() && !state->found_return) {
5742 YYLTYPE loc = this->get_location();
5743 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5744 "%s, but no return statement",
5745 signature->function_name(),
5746 signature->return_type->name);
5747 }
5748
5749 /* Function definitions do not have r-values.
5750 */
5751 return NULL;
5752 }
5753
5754
5755 ir_rvalue *
5756 ast_jump_statement::hir(exec_list *instructions,
5757 struct _mesa_glsl_parse_state *state)
5758 {
5759 void *ctx = state;
5760
5761 switch (mode) {
5762 case ast_return: {
5763 ir_return *inst;
5764 assert(state->current_function);
5765
5766 if (opt_return_value) {
5767 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5768
5769 /* The value of the return type can be NULL if the shader says
5770 * 'return foo();' and foo() is a function that returns void.
5771 *
5772 * NOTE: The GLSL spec doesn't say that this is an error. The type
5773 * of the return value is void. If the return type of the function is
5774 * also void, then this should compile without error. Seriously.
5775 */
5776 const glsl_type *const ret_type =
5777 (ret == NULL) ? glsl_type::void_type : ret->type;
5778
5779 /* Implicit conversions are not allowed for return values prior to
5780 * ARB_shading_language_420pack.
5781 */
5782 if (state->current_function->return_type != ret_type) {
5783 YYLTYPE loc = this->get_location();
5784
5785 if (state->has_420pack()) {
5786 if (!apply_implicit_conversion(state->current_function->return_type,
5787 ret, state)) {
5788 _mesa_glsl_error(& loc, state,
5789 "could not implicitly convert return value "
5790 "to %s, in function `%s'",
5791 state->current_function->return_type->name,
5792 state->current_function->function_name());
5793 }
5794 } else {
5795 _mesa_glsl_error(& loc, state,
5796 "`return' with wrong type %s, in function `%s' "
5797 "returning %s",
5798 ret_type->name,
5799 state->current_function->function_name(),
5800 state->current_function->return_type->name);
5801 }
5802 } else if (state->current_function->return_type->base_type ==
5803 GLSL_TYPE_VOID) {
5804 YYLTYPE loc = this->get_location();
5805
5806 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5807 * specs add a clarification:
5808 *
5809 * "A void function can only use return without a return argument, even if
5810 * the return argument has void type. Return statements only accept values:
5811 *
5812 * void func1() { }
5813 * void func2() { return func1(); } // illegal return statement"
5814 */
5815 _mesa_glsl_error(& loc, state,
5816 "void functions can only use `return' without a "
5817 "return argument");
5818 }
5819
5820 inst = new(ctx) ir_return(ret);
5821 } else {
5822 if (state->current_function->return_type->base_type !=
5823 GLSL_TYPE_VOID) {
5824 YYLTYPE loc = this->get_location();
5825
5826 _mesa_glsl_error(& loc, state,
5827 "`return' with no value, in function %s returning "
5828 "non-void",
5829 state->current_function->function_name());
5830 }
5831 inst = new(ctx) ir_return;
5832 }
5833
5834 state->found_return = true;
5835 instructions->push_tail(inst);
5836 break;
5837 }
5838
5839 case ast_discard:
5840 if (state->stage != MESA_SHADER_FRAGMENT) {
5841 YYLTYPE loc = this->get_location();
5842
5843 _mesa_glsl_error(& loc, state,
5844 "`discard' may only appear in a fragment shader");
5845 }
5846 instructions->push_tail(new(ctx) ir_discard);
5847 break;
5848
5849 case ast_break:
5850 case ast_continue:
5851 if (mode == ast_continue &&
5852 state->loop_nesting_ast == NULL) {
5853 YYLTYPE loc = this->get_location();
5854
5855 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5856 } else if (mode == ast_break &&
5857 state->loop_nesting_ast == NULL &&
5858 state->switch_state.switch_nesting_ast == NULL) {
5859 YYLTYPE loc = this->get_location();
5860
5861 _mesa_glsl_error(& loc, state,
5862 "break may only appear in a loop or a switch");
5863 } else {
5864 /* For a loop, inline the for loop expression again, since we don't
5865 * know where near the end of the loop body the normal copy of it is
5866 * going to be placed. Same goes for the condition for a do-while
5867 * loop.
5868 */
5869 if (state->loop_nesting_ast != NULL &&
5870 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5871 if (state->loop_nesting_ast->rest_expression) {
5872 state->loop_nesting_ast->rest_expression->hir(instructions,
5873 state);
5874 }
5875 if (state->loop_nesting_ast->mode ==
5876 ast_iteration_statement::ast_do_while) {
5877 state->loop_nesting_ast->condition_to_hir(instructions, state);
5878 }
5879 }
5880
5881 if (state->switch_state.is_switch_innermost &&
5882 mode == ast_continue) {
5883 /* Set 'continue_inside' to true. */
5884 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5885 ir_dereference_variable *deref_continue_inside_var =
5886 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5887 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5888 true_val));
5889
5890 /* Break out from the switch, continue for the loop will
5891 * be called right after switch. */
5892 ir_loop_jump *const jump =
5893 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5894 instructions->push_tail(jump);
5895
5896 } else if (state->switch_state.is_switch_innermost &&
5897 mode == ast_break) {
5898 /* Force break out of switch by inserting a break. */
5899 ir_loop_jump *const jump =
5900 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5901 instructions->push_tail(jump);
5902 } else {
5903 ir_loop_jump *const jump =
5904 new(ctx) ir_loop_jump((mode == ast_break)
5905 ? ir_loop_jump::jump_break
5906 : ir_loop_jump::jump_continue);
5907 instructions->push_tail(jump);
5908 }
5909 }
5910
5911 break;
5912 }
5913
5914 /* Jump instructions do not have r-values.
5915 */
5916 return NULL;
5917 }
5918
5919
5920 ir_rvalue *
5921 ast_selection_statement::hir(exec_list *instructions,
5922 struct _mesa_glsl_parse_state *state)
5923 {
5924 void *ctx = state;
5925
5926 ir_rvalue *const condition = this->condition->hir(instructions, state);
5927
5928 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5929 *
5930 * "Any expression whose type evaluates to a Boolean can be used as the
5931 * conditional expression bool-expression. Vector types are not accepted
5932 * as the expression to if."
5933 *
5934 * The checks are separated so that higher quality diagnostics can be
5935 * generated for cases where both rules are violated.
5936 */
5937 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5938 YYLTYPE loc = this->condition->get_location();
5939
5940 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5941 "boolean");
5942 }
5943
5944 ir_if *const stmt = new(ctx) ir_if(condition);
5945
5946 if (then_statement != NULL) {
5947 state->symbols->push_scope();
5948 then_statement->hir(& stmt->then_instructions, state);
5949 state->symbols->pop_scope();
5950 }
5951
5952 if (else_statement != NULL) {
5953 state->symbols->push_scope();
5954 else_statement->hir(& stmt->else_instructions, state);
5955 state->symbols->pop_scope();
5956 }
5957
5958 instructions->push_tail(stmt);
5959
5960 /* if-statements do not have r-values.
5961 */
5962 return NULL;
5963 }
5964
5965
5966 /* Used for detection of duplicate case values, compare
5967 * given contents directly.
5968 */
5969 static bool
5970 compare_case_value(const void *a, const void *b)
5971 {
5972 return *(unsigned *) a == *(unsigned *) b;
5973 }
5974
5975
5976 /* Used for detection of duplicate case values, just
5977 * returns key contents as is.
5978 */
5979 static unsigned
5980 key_contents(const void *key)
5981 {
5982 return *(unsigned *) key;
5983 }
5984
5985
5986 ir_rvalue *
5987 ast_switch_statement::hir(exec_list *instructions,
5988 struct _mesa_glsl_parse_state *state)
5989 {
5990 void *ctx = state;
5991
5992 ir_rvalue *const test_expression =
5993 this->test_expression->hir(instructions, state);
5994
5995 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5996 *
5997 * "The type of init-expression in a switch statement must be a
5998 * scalar integer."
5999 */
6000 if (!test_expression->type->is_scalar() ||
6001 !test_expression->type->is_integer()) {
6002 YYLTYPE loc = this->test_expression->get_location();
6003
6004 _mesa_glsl_error(& loc,
6005 state,
6006 "switch-statement expression must be scalar "
6007 "integer");
6008 }
6009
6010 /* Track the switch-statement nesting in a stack-like manner.
6011 */
6012 struct glsl_switch_state saved = state->switch_state;
6013
6014 state->switch_state.is_switch_innermost = true;
6015 state->switch_state.switch_nesting_ast = this;
6016 state->switch_state.labels_ht =
6017 _mesa_hash_table_create(NULL, key_contents,
6018 compare_case_value);
6019 state->switch_state.previous_default = NULL;
6020
6021 /* Initalize is_fallthru state to false.
6022 */
6023 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6024 state->switch_state.is_fallthru_var =
6025 new(ctx) ir_variable(glsl_type::bool_type,
6026 "switch_is_fallthru_tmp",
6027 ir_var_temporary);
6028 instructions->push_tail(state->switch_state.is_fallthru_var);
6029
6030 ir_dereference_variable *deref_is_fallthru_var =
6031 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6032 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6033 is_fallthru_val));
6034
6035 /* Initialize continue_inside state to false.
6036 */
6037 state->switch_state.continue_inside =
6038 new(ctx) ir_variable(glsl_type::bool_type,
6039 "continue_inside_tmp",
6040 ir_var_temporary);
6041 instructions->push_tail(state->switch_state.continue_inside);
6042
6043 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6044 ir_dereference_variable *deref_continue_inside_var =
6045 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6046 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6047 false_val));
6048
6049 state->switch_state.run_default =
6050 new(ctx) ir_variable(glsl_type::bool_type,
6051 "run_default_tmp",
6052 ir_var_temporary);
6053 instructions->push_tail(state->switch_state.run_default);
6054
6055 /* Loop around the switch is used for flow control. */
6056 ir_loop * loop = new(ctx) ir_loop();
6057 instructions->push_tail(loop);
6058
6059 /* Cache test expression.
6060 */
6061 test_to_hir(&loop->body_instructions, state);
6062
6063 /* Emit code for body of switch stmt.
6064 */
6065 body->hir(&loop->body_instructions, state);
6066
6067 /* Insert a break at the end to exit loop. */
6068 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6069 loop->body_instructions.push_tail(jump);
6070
6071 /* If we are inside loop, check if continue got called inside switch. */
6072 if (state->loop_nesting_ast != NULL) {
6073 ir_dereference_variable *deref_continue_inside =
6074 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6075 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6076 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6077
6078 if (state->loop_nesting_ast != NULL) {
6079 if (state->loop_nesting_ast->rest_expression) {
6080 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6081 state);
6082 }
6083 if (state->loop_nesting_ast->mode ==
6084 ast_iteration_statement::ast_do_while) {
6085 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6086 }
6087 }
6088 irif->then_instructions.push_tail(jump);
6089 instructions->push_tail(irif);
6090 }
6091
6092 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6093
6094 state->switch_state = saved;
6095
6096 /* Switch statements do not have r-values. */
6097 return NULL;
6098 }
6099
6100
6101 void
6102 ast_switch_statement::test_to_hir(exec_list *instructions,
6103 struct _mesa_glsl_parse_state *state)
6104 {
6105 void *ctx = state;
6106
6107 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6108 * on the switch test case. The first one would be already raised when
6109 * getting the test_expression at ast_switch_statement::hir
6110 */
6111 test_expression->set_is_lhs(true);
6112 /* Cache value of test expression. */
6113 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6114
6115 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6116 "switch_test_tmp",
6117 ir_var_temporary);
6118 ir_dereference_variable *deref_test_var =
6119 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6120
6121 instructions->push_tail(state->switch_state.test_var);
6122 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6123 }
6124
6125
6126 ir_rvalue *
6127 ast_switch_body::hir(exec_list *instructions,
6128 struct _mesa_glsl_parse_state *state)
6129 {
6130 if (stmts != NULL)
6131 stmts->hir(instructions, state);
6132
6133 /* Switch bodies do not have r-values. */
6134 return NULL;
6135 }
6136
6137 ir_rvalue *
6138 ast_case_statement_list::hir(exec_list *instructions,
6139 struct _mesa_glsl_parse_state *state)
6140 {
6141 exec_list default_case, after_default, tmp;
6142
6143 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6144 case_stmt->hir(&tmp, state);
6145
6146 /* Default case. */
6147 if (state->switch_state.previous_default && default_case.is_empty()) {
6148 default_case.append_list(&tmp);
6149 continue;
6150 }
6151
6152 /* If default case found, append 'after_default' list. */
6153 if (!default_case.is_empty())
6154 after_default.append_list(&tmp);
6155 else
6156 instructions->append_list(&tmp);
6157 }
6158
6159 /* Handle the default case. This is done here because default might not be
6160 * the last case. We need to add checks against following cases first to see
6161 * if default should be chosen or not.
6162 */
6163 if (!default_case.is_empty()) {
6164
6165 ir_rvalue *const true_val = new (state) ir_constant(true);
6166 ir_dereference_variable *deref_run_default_var =
6167 new(state) ir_dereference_variable(state->switch_state.run_default);
6168
6169 /* Choose to run default case initially, following conditional
6170 * assignments might change this.
6171 */
6172 ir_assignment *const init_var =
6173 new(state) ir_assignment(deref_run_default_var, true_val);
6174 instructions->push_tail(init_var);
6175
6176 /* Default case was the last one, no checks required. */
6177 if (after_default.is_empty()) {
6178 instructions->append_list(&default_case);
6179 return NULL;
6180 }
6181
6182 foreach_in_list(ir_instruction, ir, &after_default) {
6183 ir_assignment *assign = ir->as_assignment();
6184
6185 if (!assign)
6186 continue;
6187
6188 /* Clone the check between case label and init expression. */
6189 ir_expression *exp = (ir_expression*) assign->condition;
6190 ir_expression *clone = exp->clone(state, NULL);
6191
6192 ir_dereference_variable *deref_var =
6193 new(state) ir_dereference_variable(state->switch_state.run_default);
6194 ir_rvalue *const false_val = new (state) ir_constant(false);
6195
6196 ir_assignment *const set_false =
6197 new(state) ir_assignment(deref_var, false_val, clone);
6198
6199 instructions->push_tail(set_false);
6200 }
6201
6202 /* Append default case and all cases after it. */
6203 instructions->append_list(&default_case);
6204 instructions->append_list(&after_default);
6205 }
6206
6207 /* Case statements do not have r-values. */
6208 return NULL;
6209 }
6210
6211 ir_rvalue *
6212 ast_case_statement::hir(exec_list *instructions,
6213 struct _mesa_glsl_parse_state *state)
6214 {
6215 labels->hir(instructions, state);
6216
6217 /* Guard case statements depending on fallthru state. */
6218 ir_dereference_variable *const deref_fallthru_guard =
6219 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6220 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6221
6222 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6223 stmt->hir(& test_fallthru->then_instructions, state);
6224
6225 instructions->push_tail(test_fallthru);
6226
6227 /* Case statements do not have r-values. */
6228 return NULL;
6229 }
6230
6231
6232 ir_rvalue *
6233 ast_case_label_list::hir(exec_list *instructions,
6234 struct _mesa_glsl_parse_state *state)
6235 {
6236 foreach_list_typed (ast_case_label, label, link, & this->labels)
6237 label->hir(instructions, state);
6238
6239 /* Case labels do not have r-values. */
6240 return NULL;
6241 }
6242
6243 ir_rvalue *
6244 ast_case_label::hir(exec_list *instructions,
6245 struct _mesa_glsl_parse_state *state)
6246 {
6247 void *ctx = state;
6248
6249 ir_dereference_variable *deref_fallthru_var =
6250 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6251
6252 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6253
6254 /* If not default case, ... */
6255 if (this->test_value != NULL) {
6256 /* Conditionally set fallthru state based on
6257 * comparison of cached test expression value to case label.
6258 */
6259 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6260 ir_constant *label_const = label_rval->constant_expression_value();
6261
6262 if (!label_const) {
6263 YYLTYPE loc = this->test_value->get_location();
6264
6265 _mesa_glsl_error(& loc, state,
6266 "switch statement case label must be a "
6267 "constant expression");
6268
6269 /* Stuff a dummy value in to allow processing to continue. */
6270 label_const = new(ctx) ir_constant(0);
6271 } else {
6272 hash_entry *entry =
6273 _mesa_hash_table_search(state->switch_state.labels_ht,
6274 (void *)(uintptr_t)&label_const->value.u[0]);
6275
6276 if (entry) {
6277 ast_expression *previous_label = (ast_expression *) entry->data;
6278 YYLTYPE loc = this->test_value->get_location();
6279 _mesa_glsl_error(& loc, state, "duplicate case value");
6280
6281 loc = previous_label->get_location();
6282 _mesa_glsl_error(& loc, state, "this is the previous case label");
6283 } else {
6284 _mesa_hash_table_insert(state->switch_state.labels_ht,
6285 (void *)(uintptr_t)&label_const->value.u[0],
6286 this->test_value);
6287 }
6288 }
6289
6290 ir_dereference_variable *deref_test_var =
6291 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6292
6293 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6294 label_const,
6295 deref_test_var);
6296
6297 /*
6298 * From GLSL 4.40 specification section 6.2 ("Selection"):
6299 *
6300 * "The type of the init-expression value in a switch statement must
6301 * be a scalar int or uint. The type of the constant-expression value
6302 * in a case label also must be a scalar int or uint. When any pair
6303 * of these values is tested for "equal value" and the types do not
6304 * match, an implicit conversion will be done to convert the int to a
6305 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6306 * is done."
6307 */
6308 if (label_const->type != state->switch_state.test_var->type) {
6309 YYLTYPE loc = this->test_value->get_location();
6310
6311 const glsl_type *type_a = label_const->type;
6312 const glsl_type *type_b = state->switch_state.test_var->type;
6313
6314 /* Check if int->uint implicit conversion is supported. */
6315 bool integer_conversion_supported =
6316 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6317 state);
6318
6319 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6320 !integer_conversion_supported) {
6321 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6322 "init-expression and case label (%s != %s)",
6323 type_a->name, type_b->name);
6324 } else {
6325 /* Conversion of the case label. */
6326 if (type_a->base_type == GLSL_TYPE_INT) {
6327 if (!apply_implicit_conversion(glsl_type::uint_type,
6328 test_cond->operands[0], state))
6329 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6330 } else {
6331 /* Conversion of the init-expression value. */
6332 if (!apply_implicit_conversion(glsl_type::uint_type,
6333 test_cond->operands[1], state))
6334 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6335 }
6336 }
6337 }
6338
6339 ir_assignment *set_fallthru_on_test =
6340 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6341
6342 instructions->push_tail(set_fallthru_on_test);
6343 } else { /* default case */
6344 if (state->switch_state.previous_default) {
6345 YYLTYPE loc = this->get_location();
6346 _mesa_glsl_error(& loc, state,
6347 "multiple default labels in one switch");
6348
6349 loc = state->switch_state.previous_default->get_location();
6350 _mesa_glsl_error(& loc, state, "this is the first default label");
6351 }
6352 state->switch_state.previous_default = this;
6353
6354 /* Set fallthru condition on 'run_default' bool. */
6355 ir_dereference_variable *deref_run_default =
6356 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6357 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6358 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6359 cond_true,
6360 deref_run_default);
6361
6362 /* Set falltrhu state. */
6363 ir_assignment *set_fallthru =
6364 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6365
6366 instructions->push_tail(set_fallthru);
6367 }
6368
6369 /* Case statements do not have r-values. */
6370 return NULL;
6371 }
6372
6373 void
6374 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6375 struct _mesa_glsl_parse_state *state)
6376 {
6377 void *ctx = state;
6378
6379 if (condition != NULL) {
6380 ir_rvalue *const cond =
6381 condition->hir(instructions, state);
6382
6383 if ((cond == NULL)
6384 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6385 YYLTYPE loc = condition->get_location();
6386
6387 _mesa_glsl_error(& loc, state,
6388 "loop condition must be scalar boolean");
6389 } else {
6390 /* As the first code in the loop body, generate a block that looks
6391 * like 'if (!condition) break;' as the loop termination condition.
6392 */
6393 ir_rvalue *const not_cond =
6394 new(ctx) ir_expression(ir_unop_logic_not, cond);
6395
6396 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6397
6398 ir_jump *const break_stmt =
6399 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6400
6401 if_stmt->then_instructions.push_tail(break_stmt);
6402 instructions->push_tail(if_stmt);
6403 }
6404 }
6405 }
6406
6407
6408 ir_rvalue *
6409 ast_iteration_statement::hir(exec_list *instructions,
6410 struct _mesa_glsl_parse_state *state)
6411 {
6412 void *ctx = state;
6413
6414 /* For-loops and while-loops start a new scope, but do-while loops do not.
6415 */
6416 if (mode != ast_do_while)
6417 state->symbols->push_scope();
6418
6419 if (init_statement != NULL)
6420 init_statement->hir(instructions, state);
6421
6422 ir_loop *const stmt = new(ctx) ir_loop();
6423 instructions->push_tail(stmt);
6424
6425 /* Track the current loop nesting. */
6426 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6427
6428 state->loop_nesting_ast = this;
6429
6430 /* Likewise, indicate that following code is closest to a loop,
6431 * NOT closest to a switch.
6432 */
6433 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6434 state->switch_state.is_switch_innermost = false;
6435
6436 if (mode != ast_do_while)
6437 condition_to_hir(&stmt->body_instructions, state);
6438
6439 if (body != NULL)
6440 body->hir(& stmt->body_instructions, state);
6441
6442 if (rest_expression != NULL)
6443 rest_expression->hir(& stmt->body_instructions, state);
6444
6445 if (mode == ast_do_while)
6446 condition_to_hir(&stmt->body_instructions, state);
6447
6448 if (mode != ast_do_while)
6449 state->symbols->pop_scope();
6450
6451 /* Restore previous nesting before returning. */
6452 state->loop_nesting_ast = nesting_ast;
6453 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6454
6455 /* Loops do not have r-values.
6456 */
6457 return NULL;
6458 }
6459
6460
6461 /**
6462 * Determine if the given type is valid for establishing a default precision
6463 * qualifier.
6464 *
6465 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6466 *
6467 * "The precision statement
6468 *
6469 * precision precision-qualifier type;
6470 *
6471 * can be used to establish a default precision qualifier. The type field
6472 * can be either int or float or any of the sampler types, and the
6473 * precision-qualifier can be lowp, mediump, or highp."
6474 *
6475 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6476 * qualifiers on sampler types, but this seems like an oversight (since the
6477 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6478 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6479 * version.
6480 */
6481 static bool
6482 is_valid_default_precision_type(const struct glsl_type *const type)
6483 {
6484 if (type == NULL)
6485 return false;
6486
6487 switch (type->base_type) {
6488 case GLSL_TYPE_INT:
6489 case GLSL_TYPE_FLOAT:
6490 /* "int" and "float" are valid, but vectors and matrices are not. */
6491 return type->vector_elements == 1 && type->matrix_columns == 1;
6492 case GLSL_TYPE_SAMPLER:
6493 case GLSL_TYPE_IMAGE:
6494 case GLSL_TYPE_ATOMIC_UINT:
6495 return true;
6496 default:
6497 return false;
6498 }
6499 }
6500
6501
6502 ir_rvalue *
6503 ast_type_specifier::hir(exec_list *instructions,
6504 struct _mesa_glsl_parse_state *state)
6505 {
6506 if (this->default_precision == ast_precision_none && this->structure == NULL)
6507 return NULL;
6508
6509 YYLTYPE loc = this->get_location();
6510
6511 /* If this is a precision statement, check that the type to which it is
6512 * applied is either float or int.
6513 *
6514 * From section 4.5.3 of the GLSL 1.30 spec:
6515 * "The precision statement
6516 * precision precision-qualifier type;
6517 * can be used to establish a default precision qualifier. The type
6518 * field can be either int or float [...]. Any other types or
6519 * qualifiers will result in an error.
6520 */
6521 if (this->default_precision != ast_precision_none) {
6522 if (!state->check_precision_qualifiers_allowed(&loc))
6523 return NULL;
6524
6525 if (this->structure != NULL) {
6526 _mesa_glsl_error(&loc, state,
6527 "precision qualifiers do not apply to structures");
6528 return NULL;
6529 }
6530
6531 if (this->array_specifier != NULL) {
6532 _mesa_glsl_error(&loc, state,
6533 "default precision statements do not apply to "
6534 "arrays");
6535 return NULL;
6536 }
6537
6538 const struct glsl_type *const type =
6539 state->symbols->get_type(this->type_name);
6540 if (!is_valid_default_precision_type(type)) {
6541 _mesa_glsl_error(&loc, state,
6542 "default precision statements apply only to "
6543 "float, int, and opaque types");
6544 return NULL;
6545 }
6546
6547 if (state->es_shader) {
6548 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6549 * spec says:
6550 *
6551 * "Non-precision qualified declarations will use the precision
6552 * qualifier specified in the most recent precision statement
6553 * that is still in scope. The precision statement has the same
6554 * scoping rules as variable declarations. If it is declared
6555 * inside a compound statement, its effect stops at the end of
6556 * the innermost statement it was declared in. Precision
6557 * statements in nested scopes override precision statements in
6558 * outer scopes. Multiple precision statements for the same basic
6559 * type can appear inside the same scope, with later statements
6560 * overriding earlier statements within that scope."
6561 *
6562 * Default precision specifications follow the same scope rules as
6563 * variables. So, we can track the state of the default precision
6564 * qualifiers in the symbol table, and the rules will just work. This
6565 * is a slight abuse of the symbol table, but it has the semantics
6566 * that we want.
6567 */
6568 state->symbols->add_default_precision_qualifier(this->type_name,
6569 this->default_precision);
6570 }
6571
6572 /* FINISHME: Translate precision statements into IR. */
6573 return NULL;
6574 }
6575
6576 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6577 * process_record_constructor() can do type-checking on C-style initializer
6578 * expressions of structs, but ast_struct_specifier should only be translated
6579 * to HIR if it is declaring the type of a structure.
6580 *
6581 * The ->is_declaration field is false for initializers of variables
6582 * declared separately from the struct's type definition.
6583 *
6584 * struct S { ... }; (is_declaration = true)
6585 * struct T { ... } t = { ... }; (is_declaration = true)
6586 * S s = { ... }; (is_declaration = false)
6587 */
6588 if (this->structure != NULL && this->structure->is_declaration)
6589 return this->structure->hir(instructions, state);
6590
6591 return NULL;
6592 }
6593
6594
6595 /**
6596 * Process a structure or interface block tree into an array of structure fields
6597 *
6598 * After parsing, where there are some syntax differnces, structures and
6599 * interface blocks are almost identical. They are similar enough that the
6600 * AST for each can be processed the same way into a set of
6601 * \c glsl_struct_field to describe the members.
6602 *
6603 * If we're processing an interface block, var_mode should be the type of the
6604 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6605 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6606 * ir_var_auto.
6607 *
6608 * \return
6609 * The number of fields processed. A pointer to the array structure fields is
6610 * stored in \c *fields_ret.
6611 */
6612 static unsigned
6613 ast_process_struct_or_iface_block_members(exec_list *instructions,
6614 struct _mesa_glsl_parse_state *state,
6615 exec_list *declarations,
6616 glsl_struct_field **fields_ret,
6617 bool is_interface,
6618 enum glsl_matrix_layout matrix_layout,
6619 bool allow_reserved_names,
6620 ir_variable_mode var_mode,
6621 ast_type_qualifier *layout,
6622 unsigned block_stream,
6623 unsigned block_xfb_buffer,
6624 unsigned block_xfb_offset,
6625 unsigned expl_location,
6626 unsigned expl_align)
6627 {
6628 unsigned decl_count = 0;
6629 unsigned next_offset = 0;
6630
6631 /* Make an initial pass over the list of fields to determine how
6632 * many there are. Each element in this list is an ast_declarator_list.
6633 * This means that we actually need to count the number of elements in the
6634 * 'declarations' list in each of the elements.
6635 */
6636 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6637 decl_count += decl_list->declarations.length();
6638 }
6639
6640 /* Allocate storage for the fields and process the field
6641 * declarations. As the declarations are processed, try to also convert
6642 * the types to HIR. This ensures that structure definitions embedded in
6643 * other structure definitions or in interface blocks are processed.
6644 */
6645 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6646 decl_count);
6647
6648 bool first_member = true;
6649 bool first_member_has_explicit_location = false;
6650
6651 unsigned i = 0;
6652 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6653 const char *type_name;
6654 YYLTYPE loc = decl_list->get_location();
6655
6656 decl_list->type->specifier->hir(instructions, state);
6657
6658 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6659 *
6660 * "Anonymous structures are not supported; so embedded structures
6661 * must have a declarator. A name given to an embedded struct is
6662 * scoped at the same level as the struct it is embedded in."
6663 *
6664 * The same section of the GLSL 1.20 spec says:
6665 *
6666 * "Anonymous structures are not supported. Embedded structures are
6667 * not supported."
6668 *
6669 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6670 * embedded structures in 1.10 only.
6671 */
6672 if (state->language_version != 110 &&
6673 decl_list->type->specifier->structure != NULL)
6674 _mesa_glsl_error(&loc, state,
6675 "embedded structure declarations are not allowed");
6676
6677 const glsl_type *decl_type =
6678 decl_list->type->glsl_type(& type_name, state);
6679
6680 const struct ast_type_qualifier *const qual =
6681 &decl_list->type->qualifier;
6682
6683 /* From section 4.3.9 of the GLSL 4.40 spec:
6684 *
6685 * "[In interface blocks] opaque types are not allowed."
6686 *
6687 * It should be impossible for decl_type to be NULL here. Cases that
6688 * might naturally lead to decl_type being NULL, especially for the
6689 * is_interface case, will have resulted in compilation having
6690 * already halted due to a syntax error.
6691 */
6692 assert(decl_type);
6693
6694 if (is_interface) {
6695 if (decl_type->contains_opaque()) {
6696 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6697 "interface block contains opaque variable");
6698 }
6699 } else {
6700 if (decl_type->contains_atomic()) {
6701 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6702 *
6703 * "Members of structures cannot be declared as atomic counter
6704 * types."
6705 */
6706 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6707 }
6708
6709 if (decl_type->contains_image()) {
6710 /* FINISHME: Same problem as with atomic counters.
6711 * FINISHME: Request clarification from Khronos and add
6712 * FINISHME: spec quotation here.
6713 */
6714 _mesa_glsl_error(&loc, state, "image in structure");
6715 }
6716 }
6717
6718 if (qual->flags.q.explicit_binding) {
6719 _mesa_glsl_error(&loc, state,
6720 "binding layout qualifier cannot be applied "
6721 "to struct or interface block members");
6722 }
6723
6724 if (is_interface) {
6725 if (!first_member) {
6726 if (!layout->flags.q.explicit_location &&
6727 ((first_member_has_explicit_location &&
6728 !qual->flags.q.explicit_location) ||
6729 (!first_member_has_explicit_location &&
6730 qual->flags.q.explicit_location))) {
6731 _mesa_glsl_error(&loc, state,
6732 "when block-level location layout qualifier "
6733 "is not supplied either all members must "
6734 "have a location layout qualifier or all "
6735 "members must not have a location layout "
6736 "qualifier");
6737 }
6738 } else {
6739 first_member = false;
6740 first_member_has_explicit_location =
6741 qual->flags.q.explicit_location;
6742 }
6743 }
6744
6745 if (qual->flags.q.std140 ||
6746 qual->flags.q.std430 ||
6747 qual->flags.q.packed ||
6748 qual->flags.q.shared) {
6749 _mesa_glsl_error(&loc, state,
6750 "uniform/shader storage block layout qualifiers "
6751 "std140, std430, packed, and shared can only be "
6752 "applied to uniform/shader storage blocks, not "
6753 "members");
6754 }
6755
6756 if (qual->flags.q.constant) {
6757 _mesa_glsl_error(&loc, state,
6758 "const storage qualifier cannot be applied "
6759 "to struct or interface block members");
6760 }
6761
6762 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6763 *
6764 * "A block member may be declared with a stream identifier, but
6765 * the specified stream must match the stream associated with the
6766 * containing block."
6767 */
6768 if (qual->flags.q.explicit_stream) {
6769 unsigned qual_stream;
6770 if (process_qualifier_constant(state, &loc, "stream",
6771 qual->stream, &qual_stream) &&
6772 qual_stream != block_stream) {
6773 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6774 "interface block member does not match "
6775 "the interface block (%u vs %u)", qual_stream,
6776 block_stream);
6777 }
6778 }
6779
6780 int xfb_buffer;
6781 unsigned explicit_xfb_buffer = 0;
6782 if (qual->flags.q.explicit_xfb_buffer) {
6783 unsigned qual_xfb_buffer;
6784 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6785 qual->xfb_buffer, &qual_xfb_buffer)) {
6786 explicit_xfb_buffer = 1;
6787 if (qual_xfb_buffer != block_xfb_buffer)
6788 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6789 "interface block member does not match "
6790 "the interface block (%u vs %u)",
6791 qual_xfb_buffer, block_xfb_buffer);
6792 }
6793 xfb_buffer = (int) qual_xfb_buffer;
6794 } else {
6795 if (layout)
6796 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6797 xfb_buffer = (int) block_xfb_buffer;
6798 }
6799
6800 int xfb_stride = -1;
6801 if (qual->flags.q.explicit_xfb_stride) {
6802 unsigned qual_xfb_stride;
6803 if (process_qualifier_constant(state, &loc, "xfb_stride",
6804 qual->xfb_stride, &qual_xfb_stride)) {
6805 xfb_stride = (int) qual_xfb_stride;
6806 }
6807 }
6808
6809 if (qual->flags.q.uniform && qual->has_interpolation()) {
6810 _mesa_glsl_error(&loc, state,
6811 "interpolation qualifiers cannot be used "
6812 "with uniform interface blocks");
6813 }
6814
6815 if ((qual->flags.q.uniform || !is_interface) &&
6816 qual->has_auxiliary_storage()) {
6817 _mesa_glsl_error(&loc, state,
6818 "auxiliary storage qualifiers cannot be used "
6819 "in uniform blocks or structures.");
6820 }
6821
6822 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6823 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6824 _mesa_glsl_error(&loc, state,
6825 "row_major and column_major can only be "
6826 "applied to interface blocks");
6827 } else
6828 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6829 }
6830
6831 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6832 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6833 "readonly and writeonly.");
6834 }
6835
6836 foreach_list_typed (ast_declaration, decl, link,
6837 &decl_list->declarations) {
6838 YYLTYPE loc = decl->get_location();
6839
6840 if (!allow_reserved_names)
6841 validate_identifier(decl->identifier, loc, state);
6842
6843 const struct glsl_type *field_type =
6844 process_array_type(&loc, decl_type, decl->array_specifier, state);
6845 validate_array_dimensions(field_type, state, &loc);
6846 fields[i].type = field_type;
6847 fields[i].name = decl->identifier;
6848 fields[i].interpolation =
6849 interpret_interpolation_qualifier(qual, field_type,
6850 var_mode, state, &loc);
6851 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6852 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6853 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6854 fields[i].precision = qual->precision;
6855 fields[i].offset = -1;
6856 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6857 fields[i].xfb_buffer = xfb_buffer;
6858 fields[i].xfb_stride = xfb_stride;
6859
6860 if (qual->flags.q.explicit_location) {
6861 unsigned qual_location;
6862 if (process_qualifier_constant(state, &loc, "location",
6863 qual->location, &qual_location)) {
6864 fields[i].location = qual_location +
6865 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6866 expl_location = fields[i].location +
6867 fields[i].type->count_attribute_slots(false);
6868 }
6869 } else {
6870 if (layout && layout->flags.q.explicit_location) {
6871 fields[i].location = expl_location;
6872 expl_location += fields[i].type->count_attribute_slots(false);
6873 } else {
6874 fields[i].location = -1;
6875 }
6876 }
6877
6878 /* Offset can only be used with std430 and std140 layouts an initial
6879 * value of 0 is used for error detection.
6880 */
6881 unsigned align = 0;
6882 unsigned size = 0;
6883 if (layout) {
6884 bool row_major;
6885 if (qual->flags.q.row_major ||
6886 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6887 row_major = true;
6888 } else {
6889 row_major = false;
6890 }
6891
6892 if(layout->flags.q.std140) {
6893 align = field_type->std140_base_alignment(row_major);
6894 size = field_type->std140_size(row_major);
6895 } else if (layout->flags.q.std430) {
6896 align = field_type->std430_base_alignment(row_major);
6897 size = field_type->std430_size(row_major);
6898 }
6899 }
6900
6901 if (qual->flags.q.explicit_offset) {
6902 unsigned qual_offset;
6903 if (process_qualifier_constant(state, &loc, "offset",
6904 qual->offset, &qual_offset)) {
6905 if (align != 0 && size != 0) {
6906 if (next_offset > qual_offset)
6907 _mesa_glsl_error(&loc, state, "layout qualifier "
6908 "offset overlaps previous member");
6909
6910 if (qual_offset % align) {
6911 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6912 "must be a multiple of the base "
6913 "alignment of %s", field_type->name);
6914 }
6915 fields[i].offset = qual_offset;
6916 next_offset = glsl_align(qual_offset + size, align);
6917 } else {
6918 _mesa_glsl_error(&loc, state, "offset can only be used "
6919 "with std430 and std140 layouts");
6920 }
6921 }
6922 }
6923
6924 if (qual->flags.q.explicit_align || expl_align != 0) {
6925 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6926 next_offset;
6927 if (align == 0 || size == 0) {
6928 _mesa_glsl_error(&loc, state, "align can only be used with "
6929 "std430 and std140 layouts");
6930 } else if (qual->flags.q.explicit_align) {
6931 unsigned member_align;
6932 if (process_qualifier_constant(state, &loc, "align",
6933 qual->align, &member_align)) {
6934 if (member_align == 0 ||
6935 member_align & (member_align - 1)) {
6936 _mesa_glsl_error(&loc, state, "align layout qualifier "
6937 "in not a power of 2");
6938 } else {
6939 fields[i].offset = glsl_align(offset, member_align);
6940 next_offset = glsl_align(fields[i].offset + size, align);
6941 }
6942 }
6943 } else {
6944 fields[i].offset = glsl_align(offset, expl_align);
6945 next_offset = glsl_align(fields[i].offset + size, align);
6946 }
6947 } else if (!qual->flags.q.explicit_offset) {
6948 if (align != 0 && size != 0)
6949 next_offset = glsl_align(next_offset + size, align);
6950 }
6951
6952 /* From the ARB_enhanced_layouts spec:
6953 *
6954 * "The given offset applies to the first component of the first
6955 * member of the qualified entity. Then, within the qualified
6956 * entity, subsequent components are each assigned, in order, to
6957 * the next available offset aligned to a multiple of that
6958 * component's size. Aggregate types are flattened down to the
6959 * component level to get this sequence of components."
6960 */
6961 if (qual->flags.q.explicit_xfb_offset) {
6962 unsigned xfb_offset;
6963 if (process_qualifier_constant(state, &loc, "xfb_offset",
6964 qual->offset, &xfb_offset)) {
6965 fields[i].offset = xfb_offset;
6966 block_xfb_offset = fields[i].offset +
6967 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6968 }
6969 } else {
6970 if (layout && layout->flags.q.explicit_xfb_offset) {
6971 unsigned align = field_type->is_64bit() ? 8 : 4;
6972 fields[i].offset = glsl_align(block_xfb_offset, align);
6973 block_xfb_offset +=
6974 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6975 }
6976 }
6977
6978 /* Propogate row- / column-major information down the fields of the
6979 * structure or interface block. Structures need this data because
6980 * the structure may contain a structure that contains ... a matrix
6981 * that need the proper layout.
6982 */
6983 if (is_interface && layout &&
6984 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6985 (field_type->without_array()->is_matrix()
6986 || field_type->without_array()->is_record())) {
6987 /* If no layout is specified for the field, inherit the layout
6988 * from the block.
6989 */
6990 fields[i].matrix_layout = matrix_layout;
6991
6992 if (qual->flags.q.row_major)
6993 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6994 else if (qual->flags.q.column_major)
6995 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6996
6997 /* If we're processing an uniform or buffer block, the matrix
6998 * layout must be decided by this point.
6999 */
7000 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7001 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7002 }
7003
7004 /* Image qualifiers are allowed on buffer variables, which can only
7005 * be defined inside shader storage buffer objects
7006 */
7007 if (layout && var_mode == ir_var_shader_storage) {
7008 /* For readonly and writeonly qualifiers the field definition,
7009 * if set, overwrites the layout qualifier.
7010 */
7011 if (qual->flags.q.read_only) {
7012 fields[i].image_read_only = true;
7013 fields[i].image_write_only = false;
7014 } else if (qual->flags.q.write_only) {
7015 fields[i].image_read_only = false;
7016 fields[i].image_write_only = true;
7017 } else {
7018 fields[i].image_read_only = layout->flags.q.read_only;
7019 fields[i].image_write_only = layout->flags.q.write_only;
7020 }
7021
7022 /* For other qualifiers, we set the flag if either the layout
7023 * qualifier or the field qualifier are set
7024 */
7025 fields[i].image_coherent = qual->flags.q.coherent ||
7026 layout->flags.q.coherent;
7027 fields[i].image_volatile = qual->flags.q._volatile ||
7028 layout->flags.q._volatile;
7029 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7030 layout->flags.q.restrict_flag;
7031 }
7032
7033 i++;
7034 }
7035 }
7036
7037 assert(i == decl_count);
7038
7039 *fields_ret = fields;
7040 return decl_count;
7041 }
7042
7043
7044 ir_rvalue *
7045 ast_struct_specifier::hir(exec_list *instructions,
7046 struct _mesa_glsl_parse_state *state)
7047 {
7048 YYLTYPE loc = this->get_location();
7049
7050 unsigned expl_location = 0;
7051 if (layout && layout->flags.q.explicit_location) {
7052 if (!process_qualifier_constant(state, &loc, "location",
7053 layout->location, &expl_location)) {
7054 return NULL;
7055 } else {
7056 expl_location = VARYING_SLOT_VAR0 + expl_location;
7057 }
7058 }
7059
7060 glsl_struct_field *fields;
7061 unsigned decl_count =
7062 ast_process_struct_or_iface_block_members(instructions,
7063 state,
7064 &this->declarations,
7065 &fields,
7066 false,
7067 GLSL_MATRIX_LAYOUT_INHERITED,
7068 false /* allow_reserved_names */,
7069 ir_var_auto,
7070 layout,
7071 0, /* for interface only */
7072 0, /* for interface only */
7073 0, /* for interface only */
7074 expl_location,
7075 0 /* for interface only */);
7076
7077 validate_identifier(this->name, loc, state);
7078
7079 const glsl_type *t =
7080 glsl_type::get_record_instance(fields, decl_count, this->name);
7081
7082 if (!state->symbols->add_type(name, t)) {
7083 const glsl_type *match = state->symbols->get_type(name);
7084 /* allow struct matching for desktop GL - older UE4 does this */
7085 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7086 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7087 else
7088 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7089 } else {
7090 const glsl_type **s = reralloc(state, state->user_structures,
7091 const glsl_type *,
7092 state->num_user_structures + 1);
7093 if (s != NULL) {
7094 s[state->num_user_structures] = t;
7095 state->user_structures = s;
7096 state->num_user_structures++;
7097 }
7098 }
7099
7100 /* Structure type definitions do not have r-values.
7101 */
7102 return NULL;
7103 }
7104
7105
7106 /**
7107 * Visitor class which detects whether a given interface block has been used.
7108 */
7109 class interface_block_usage_visitor : public ir_hierarchical_visitor
7110 {
7111 public:
7112 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7113 : mode(mode), block(block), found(false)
7114 {
7115 }
7116
7117 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7118 {
7119 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7120 found = true;
7121 return visit_stop;
7122 }
7123 return visit_continue;
7124 }
7125
7126 bool usage_found() const
7127 {
7128 return this->found;
7129 }
7130
7131 private:
7132 ir_variable_mode mode;
7133 const glsl_type *block;
7134 bool found;
7135 };
7136
7137 static bool
7138 is_unsized_array_last_element(ir_variable *v)
7139 {
7140 const glsl_type *interface_type = v->get_interface_type();
7141 int length = interface_type->length;
7142
7143 assert(v->type->is_unsized_array());
7144
7145 /* Check if it is the last element of the interface */
7146 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7147 return true;
7148 return false;
7149 }
7150
7151 static void
7152 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7153 {
7154 var->data.image_read_only = field.image_read_only;
7155 var->data.image_write_only = field.image_write_only;
7156 var->data.image_coherent = field.image_coherent;
7157 var->data.image_volatile = field.image_volatile;
7158 var->data.image_restrict = field.image_restrict;
7159 }
7160
7161 ir_rvalue *
7162 ast_interface_block::hir(exec_list *instructions,
7163 struct _mesa_glsl_parse_state *state)
7164 {
7165 YYLTYPE loc = this->get_location();
7166
7167 /* Interface blocks must be declared at global scope */
7168 if (state->current_function != NULL) {
7169 _mesa_glsl_error(&loc, state,
7170 "Interface block `%s' must be declared "
7171 "at global scope",
7172 this->block_name);
7173 }
7174
7175 /* Validate qualifiers:
7176 *
7177 * - Layout Qualifiers as per the table in Section 4.4
7178 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7179 *
7180 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7181 * GLSL 4.50 spec:
7182 *
7183 * "Additionally, memory qualifiers may also be used in the declaration
7184 * of shader storage blocks"
7185 *
7186 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7187 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7188 * Layout Qualifiers) of the GLSL 4.50 spec says:
7189 *
7190 * "The std430 qualifier is supported only for shader storage blocks;
7191 * using std430 on a uniform block will result in a compile-time error."
7192 */
7193 ast_type_qualifier allowed_blk_qualifiers;
7194 allowed_blk_qualifiers.flags.i = 0;
7195 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7196 allowed_blk_qualifiers.flags.q.shared = 1;
7197 allowed_blk_qualifiers.flags.q.packed = 1;
7198 allowed_blk_qualifiers.flags.q.std140 = 1;
7199 allowed_blk_qualifiers.flags.q.row_major = 1;
7200 allowed_blk_qualifiers.flags.q.column_major = 1;
7201 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7202 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7203 if (this->layout.flags.q.buffer) {
7204 allowed_blk_qualifiers.flags.q.buffer = 1;
7205 allowed_blk_qualifiers.flags.q.std430 = 1;
7206 allowed_blk_qualifiers.flags.q.coherent = 1;
7207 allowed_blk_qualifiers.flags.q._volatile = 1;
7208 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7209 allowed_blk_qualifiers.flags.q.read_only = 1;
7210 allowed_blk_qualifiers.flags.q.write_only = 1;
7211 } else {
7212 allowed_blk_qualifiers.flags.q.uniform = 1;
7213 }
7214 } else {
7215 /* Interface block */
7216 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7217
7218 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7219 if (this->layout.flags.q.out) {
7220 allowed_blk_qualifiers.flags.q.out = 1;
7221 if (state->stage == MESA_SHADER_GEOMETRY ||
7222 state->stage == MESA_SHADER_TESS_CTRL ||
7223 state->stage == MESA_SHADER_TESS_EVAL ||
7224 state->stage == MESA_SHADER_VERTEX ) {
7225 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7226 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7227 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7228 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7229 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7230 if (state->stage == MESA_SHADER_GEOMETRY) {
7231 allowed_blk_qualifiers.flags.q.stream = 1;
7232 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7233 }
7234 if (state->stage == MESA_SHADER_TESS_CTRL) {
7235 allowed_blk_qualifiers.flags.q.patch = 1;
7236 }
7237 }
7238 } else {
7239 allowed_blk_qualifiers.flags.q.in = 1;
7240 if (state->stage == MESA_SHADER_TESS_EVAL) {
7241 allowed_blk_qualifiers.flags.q.patch = 1;
7242 }
7243 }
7244 }
7245
7246 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7247 "invalid qualifier for block",
7248 this->block_name);
7249
7250 /* The ast_interface_block has a list of ast_declarator_lists. We
7251 * need to turn those into ir_variables with an association
7252 * with this uniform block.
7253 */
7254 enum glsl_interface_packing packing;
7255 if (this->layout.flags.q.shared) {
7256 packing = GLSL_INTERFACE_PACKING_SHARED;
7257 } else if (this->layout.flags.q.packed) {
7258 packing = GLSL_INTERFACE_PACKING_PACKED;
7259 } else if (this->layout.flags.q.std430) {
7260 packing = GLSL_INTERFACE_PACKING_STD430;
7261 } else {
7262 /* The default layout is std140.
7263 */
7264 packing = GLSL_INTERFACE_PACKING_STD140;
7265 }
7266
7267 ir_variable_mode var_mode;
7268 const char *iface_type_name;
7269 if (this->layout.flags.q.in) {
7270 var_mode = ir_var_shader_in;
7271 iface_type_name = "in";
7272 } else if (this->layout.flags.q.out) {
7273 var_mode = ir_var_shader_out;
7274 iface_type_name = "out";
7275 } else if (this->layout.flags.q.uniform) {
7276 var_mode = ir_var_uniform;
7277 iface_type_name = "uniform";
7278 } else if (this->layout.flags.q.buffer) {
7279 var_mode = ir_var_shader_storage;
7280 iface_type_name = "buffer";
7281 } else {
7282 var_mode = ir_var_auto;
7283 iface_type_name = "UNKNOWN";
7284 assert(!"interface block layout qualifier not found!");
7285 }
7286
7287 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7288 if (this->layout.flags.q.row_major)
7289 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7290 else if (this->layout.flags.q.column_major)
7291 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7292
7293 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7294 exec_list declared_variables;
7295 glsl_struct_field *fields;
7296
7297 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7298 * that we don't have incompatible qualifiers
7299 */
7300 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7301 _mesa_glsl_error(&loc, state,
7302 "Interface block sets both readonly and writeonly");
7303 }
7304
7305 unsigned qual_stream;
7306 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7307 &qual_stream) ||
7308 !validate_stream_qualifier(&loc, state, qual_stream)) {
7309 /* If the stream qualifier is invalid it doesn't make sense to continue
7310 * on and try to compare stream layouts on member variables against it
7311 * so just return early.
7312 */
7313 return NULL;
7314 }
7315
7316 unsigned qual_xfb_buffer;
7317 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7318 layout.xfb_buffer, &qual_xfb_buffer) ||
7319 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7320 return NULL;
7321 }
7322
7323 unsigned qual_xfb_offset;
7324 if (layout.flags.q.explicit_xfb_offset) {
7325 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7326 layout.offset, &qual_xfb_offset)) {
7327 return NULL;
7328 }
7329 }
7330
7331 unsigned qual_xfb_stride;
7332 if (layout.flags.q.explicit_xfb_stride) {
7333 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7334 layout.xfb_stride, &qual_xfb_stride)) {
7335 return NULL;
7336 }
7337 }
7338
7339 unsigned expl_location = 0;
7340 if (layout.flags.q.explicit_location) {
7341 if (!process_qualifier_constant(state, &loc, "location",
7342 layout.location, &expl_location)) {
7343 return NULL;
7344 } else {
7345 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7346 : VARYING_SLOT_VAR0;
7347 }
7348 }
7349
7350 unsigned expl_align = 0;
7351 if (layout.flags.q.explicit_align) {
7352 if (!process_qualifier_constant(state, &loc, "align",
7353 layout.align, &expl_align)) {
7354 return NULL;
7355 } else {
7356 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7357 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7358 "power of 2.");
7359 return NULL;
7360 }
7361 }
7362 }
7363
7364 unsigned int num_variables =
7365 ast_process_struct_or_iface_block_members(&declared_variables,
7366 state,
7367 &this->declarations,
7368 &fields,
7369 true,
7370 matrix_layout,
7371 redeclaring_per_vertex,
7372 var_mode,
7373 &this->layout,
7374 qual_stream,
7375 qual_xfb_buffer,
7376 qual_xfb_offset,
7377 expl_location,
7378 expl_align);
7379
7380 if (!redeclaring_per_vertex) {
7381 validate_identifier(this->block_name, loc, state);
7382
7383 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7384 *
7385 * "Block names have no other use within a shader beyond interface
7386 * matching; it is a compile-time error to use a block name at global
7387 * scope for anything other than as a block name."
7388 */
7389 ir_variable *var = state->symbols->get_variable(this->block_name);
7390 if (var && !var->type->is_interface()) {
7391 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7392 "already used in the scope.",
7393 this->block_name);
7394 }
7395 }
7396
7397 const glsl_type *earlier_per_vertex = NULL;
7398 if (redeclaring_per_vertex) {
7399 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7400 * the named interface block gl_in, we can find it by looking at the
7401 * previous declaration of gl_in. Otherwise we can find it by looking
7402 * at the previous decalartion of any of the built-in outputs,
7403 * e.g. gl_Position.
7404 *
7405 * Also check that the instance name and array-ness of the redeclaration
7406 * are correct.
7407 */
7408 switch (var_mode) {
7409 case ir_var_shader_in:
7410 if (ir_variable *earlier_gl_in =
7411 state->symbols->get_variable("gl_in")) {
7412 earlier_per_vertex = earlier_gl_in->get_interface_type();
7413 } else {
7414 _mesa_glsl_error(&loc, state,
7415 "redeclaration of gl_PerVertex input not allowed "
7416 "in the %s shader",
7417 _mesa_shader_stage_to_string(state->stage));
7418 }
7419 if (this->instance_name == NULL ||
7420 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7421 !this->array_specifier->is_single_dimension()) {
7422 _mesa_glsl_error(&loc, state,
7423 "gl_PerVertex input must be redeclared as "
7424 "gl_in[]");
7425 }
7426 break;
7427 case ir_var_shader_out:
7428 if (ir_variable *earlier_gl_Position =
7429 state->symbols->get_variable("gl_Position")) {
7430 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7431 } else if (ir_variable *earlier_gl_out =
7432 state->symbols->get_variable("gl_out")) {
7433 earlier_per_vertex = earlier_gl_out->get_interface_type();
7434 } else {
7435 _mesa_glsl_error(&loc, state,
7436 "redeclaration of gl_PerVertex output not "
7437 "allowed in the %s shader",
7438 _mesa_shader_stage_to_string(state->stage));
7439 }
7440 if (state->stage == MESA_SHADER_TESS_CTRL) {
7441 if (this->instance_name == NULL ||
7442 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7443 _mesa_glsl_error(&loc, state,
7444 "gl_PerVertex output must be redeclared as "
7445 "gl_out[]");
7446 }
7447 } else {
7448 if (this->instance_name != NULL) {
7449 _mesa_glsl_error(&loc, state,
7450 "gl_PerVertex output may not be redeclared with "
7451 "an instance name");
7452 }
7453 }
7454 break;
7455 default:
7456 _mesa_glsl_error(&loc, state,
7457 "gl_PerVertex must be declared as an input or an "
7458 "output");
7459 break;
7460 }
7461
7462 if (earlier_per_vertex == NULL) {
7463 /* An error has already been reported. Bail out to avoid null
7464 * dereferences later in this function.
7465 */
7466 return NULL;
7467 }
7468
7469 /* Copy locations from the old gl_PerVertex interface block. */
7470 for (unsigned i = 0; i < num_variables; i++) {
7471 int j = earlier_per_vertex->field_index(fields[i].name);
7472 if (j == -1) {
7473 _mesa_glsl_error(&loc, state,
7474 "redeclaration of gl_PerVertex must be a subset "
7475 "of the built-in members of gl_PerVertex");
7476 } else {
7477 fields[i].location =
7478 earlier_per_vertex->fields.structure[j].location;
7479 fields[i].offset =
7480 earlier_per_vertex->fields.structure[j].offset;
7481 fields[i].interpolation =
7482 earlier_per_vertex->fields.structure[j].interpolation;
7483 fields[i].centroid =
7484 earlier_per_vertex->fields.structure[j].centroid;
7485 fields[i].sample =
7486 earlier_per_vertex->fields.structure[j].sample;
7487 fields[i].patch =
7488 earlier_per_vertex->fields.structure[j].patch;
7489 fields[i].precision =
7490 earlier_per_vertex->fields.structure[j].precision;
7491 fields[i].explicit_xfb_buffer =
7492 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7493 fields[i].xfb_buffer =
7494 earlier_per_vertex->fields.structure[j].xfb_buffer;
7495 fields[i].xfb_stride =
7496 earlier_per_vertex->fields.structure[j].xfb_stride;
7497 }
7498 }
7499
7500 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7501 * spec:
7502 *
7503 * If a built-in interface block is redeclared, it must appear in
7504 * the shader before any use of any member included in the built-in
7505 * declaration, or a compilation error will result.
7506 *
7507 * This appears to be a clarification to the behaviour established for
7508 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7509 * regardless of GLSL version.
7510 */
7511 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7512 v.run(instructions);
7513 if (v.usage_found()) {
7514 _mesa_glsl_error(&loc, state,
7515 "redeclaration of a built-in interface block must "
7516 "appear before any use of any member of the "
7517 "interface block");
7518 }
7519 }
7520
7521 const glsl_type *block_type =
7522 glsl_type::get_interface_instance(fields,
7523 num_variables,
7524 packing,
7525 matrix_layout ==
7526 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7527 this->block_name);
7528
7529 unsigned component_size = block_type->contains_double() ? 8 : 4;
7530 int xfb_offset =
7531 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7532 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7533 component_size);
7534
7535 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7536 YYLTYPE loc = this->get_location();
7537 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7538 "already taken in the current scope",
7539 this->block_name, iface_type_name);
7540 }
7541
7542 /* Since interface blocks cannot contain statements, it should be
7543 * impossible for the block to generate any instructions.
7544 */
7545 assert(declared_variables.is_empty());
7546
7547 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7548 *
7549 * Geometry shader input variables get the per-vertex values written
7550 * out by vertex shader output variables of the same names. Since a
7551 * geometry shader operates on a set of vertices, each input varying
7552 * variable (or input block, see interface blocks below) needs to be
7553 * declared as an array.
7554 */
7555 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7556 var_mode == ir_var_shader_in) {
7557 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7558 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7559 state->stage == MESA_SHADER_TESS_EVAL) &&
7560 !this->layout.flags.q.patch &&
7561 this->array_specifier == NULL &&
7562 var_mode == ir_var_shader_in) {
7563 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7564 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7565 !this->layout.flags.q.patch &&
7566 this->array_specifier == NULL &&
7567 var_mode == ir_var_shader_out) {
7568 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7569 }
7570
7571
7572 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7573 * says:
7574 *
7575 * "If an instance name (instance-name) is used, then it puts all the
7576 * members inside a scope within its own name space, accessed with the
7577 * field selector ( . ) operator (analogously to structures)."
7578 */
7579 if (this->instance_name) {
7580 if (redeclaring_per_vertex) {
7581 /* When a built-in in an unnamed interface block is redeclared,
7582 * get_variable_being_redeclared() calls
7583 * check_builtin_array_max_size() to make sure that built-in array
7584 * variables aren't redeclared to illegal sizes. But we're looking
7585 * at a redeclaration of a named built-in interface block. So we
7586 * have to manually call check_builtin_array_max_size() for all parts
7587 * of the interface that are arrays.
7588 */
7589 for (unsigned i = 0; i < num_variables; i++) {
7590 if (fields[i].type->is_array()) {
7591 const unsigned size = fields[i].type->array_size();
7592 check_builtin_array_max_size(fields[i].name, size, loc, state);
7593 }
7594 }
7595 } else {
7596 validate_identifier(this->instance_name, loc, state);
7597 }
7598
7599 ir_variable *var;
7600
7601 if (this->array_specifier != NULL) {
7602 const glsl_type *block_array_type =
7603 process_array_type(&loc, block_type, this->array_specifier, state);
7604
7605 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7606 *
7607 * For uniform blocks declared an array, each individual array
7608 * element corresponds to a separate buffer object backing one
7609 * instance of the block. As the array size indicates the number
7610 * of buffer objects needed, uniform block array declarations
7611 * must specify an array size.
7612 *
7613 * And a few paragraphs later:
7614 *
7615 * Geometry shader input blocks must be declared as arrays and
7616 * follow the array declaration and linking rules for all
7617 * geometry shader inputs. All other input and output block
7618 * arrays must specify an array size.
7619 *
7620 * The same applies to tessellation shaders.
7621 *
7622 * The upshot of this is that the only circumstance where an
7623 * interface array size *doesn't* need to be specified is on a
7624 * geometry shader input, tessellation control shader input,
7625 * tessellation control shader output, and tessellation evaluation
7626 * shader input.
7627 */
7628 if (block_array_type->is_unsized_array()) {
7629 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7630 state->stage == MESA_SHADER_TESS_CTRL ||
7631 state->stage == MESA_SHADER_TESS_EVAL;
7632 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7633
7634 if (this->layout.flags.q.in) {
7635 if (!allow_inputs)
7636 _mesa_glsl_error(&loc, state,
7637 "unsized input block arrays not allowed in "
7638 "%s shader",
7639 _mesa_shader_stage_to_string(state->stage));
7640 } else if (this->layout.flags.q.out) {
7641 if (!allow_outputs)
7642 _mesa_glsl_error(&loc, state,
7643 "unsized output block arrays not allowed in "
7644 "%s shader",
7645 _mesa_shader_stage_to_string(state->stage));
7646 } else {
7647 /* by elimination, this is a uniform block array */
7648 _mesa_glsl_error(&loc, state,
7649 "unsized uniform block arrays not allowed in "
7650 "%s shader",
7651 _mesa_shader_stage_to_string(state->stage));
7652 }
7653 }
7654
7655 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7656 *
7657 * * Arrays of arrays of blocks are not allowed
7658 */
7659 if (state->es_shader && block_array_type->is_array() &&
7660 block_array_type->fields.array->is_array()) {
7661 _mesa_glsl_error(&loc, state,
7662 "arrays of arrays interface blocks are "
7663 "not allowed");
7664 }
7665
7666 var = new(state) ir_variable(block_array_type,
7667 this->instance_name,
7668 var_mode);
7669 } else {
7670 var = new(state) ir_variable(block_type,
7671 this->instance_name,
7672 var_mode);
7673 }
7674
7675 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7676 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7677
7678 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7679 var->data.read_only = true;
7680
7681 var->data.patch = this->layout.flags.q.patch;
7682
7683 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7684 handle_geometry_shader_input_decl(state, loc, var);
7685 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7686 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7687 handle_tess_shader_input_decl(state, loc, var);
7688 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7689 handle_tess_ctrl_shader_output_decl(state, loc, var);
7690
7691 for (unsigned i = 0; i < num_variables; i++) {
7692 if (var->data.mode == ir_var_shader_storage)
7693 apply_memory_qualifiers(var, fields[i]);
7694 }
7695
7696 if (ir_variable *earlier =
7697 state->symbols->get_variable(this->instance_name)) {
7698 if (!redeclaring_per_vertex) {
7699 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7700 this->instance_name);
7701 }
7702 earlier->data.how_declared = ir_var_declared_normally;
7703 earlier->type = var->type;
7704 earlier->reinit_interface_type(block_type);
7705 delete var;
7706 } else {
7707 if (this->layout.flags.q.explicit_binding) {
7708 apply_explicit_binding(state, &loc, var, var->type,
7709 &this->layout);
7710 }
7711
7712 var->data.stream = qual_stream;
7713 if (layout.flags.q.explicit_location) {
7714 var->data.location = expl_location;
7715 var->data.explicit_location = true;
7716 }
7717
7718 state->symbols->add_variable(var);
7719 instructions->push_tail(var);
7720 }
7721 } else {
7722 /* In order to have an array size, the block must also be declared with
7723 * an instance name.
7724 */
7725 assert(this->array_specifier == NULL);
7726
7727 for (unsigned i = 0; i < num_variables; i++) {
7728 ir_variable *var =
7729 new(state) ir_variable(fields[i].type,
7730 ralloc_strdup(state, fields[i].name),
7731 var_mode);
7732 var->data.interpolation = fields[i].interpolation;
7733 var->data.centroid = fields[i].centroid;
7734 var->data.sample = fields[i].sample;
7735 var->data.patch = fields[i].patch;
7736 var->data.stream = qual_stream;
7737 var->data.location = fields[i].location;
7738
7739 if (fields[i].location != -1)
7740 var->data.explicit_location = true;
7741
7742 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7743 var->data.xfb_buffer = fields[i].xfb_buffer;
7744
7745 if (fields[i].offset != -1)
7746 var->data.explicit_xfb_offset = true;
7747 var->data.offset = fields[i].offset;
7748
7749 var->init_interface_type(block_type);
7750
7751 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7752 var->data.read_only = true;
7753
7754 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7755 if (state->es_shader) {
7756 var->data.precision =
7757 select_gles_precision(fields[i].precision, fields[i].type,
7758 state, &loc);
7759 }
7760
7761 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7762 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7763 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7764 } else {
7765 var->data.matrix_layout = fields[i].matrix_layout;
7766 }
7767
7768 if (var->data.mode == ir_var_shader_storage)
7769 apply_memory_qualifiers(var, fields[i]);
7770
7771 /* Examine var name here since var may get deleted in the next call */
7772 bool var_is_gl_id = is_gl_identifier(var->name);
7773
7774 if (redeclaring_per_vertex) {
7775 ir_variable *earlier =
7776 get_variable_being_redeclared(var, loc, state,
7777 true /* allow_all_redeclarations */);
7778 if (!var_is_gl_id || earlier == NULL) {
7779 _mesa_glsl_error(&loc, state,
7780 "redeclaration of gl_PerVertex can only "
7781 "include built-in variables");
7782 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7783 _mesa_glsl_error(&loc, state,
7784 "`%s' has already been redeclared",
7785 earlier->name);
7786 } else {
7787 earlier->data.how_declared = ir_var_declared_in_block;
7788 earlier->reinit_interface_type(block_type);
7789 }
7790 continue;
7791 }
7792
7793 if (state->symbols->get_variable(var->name) != NULL)
7794 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7795
7796 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7797 * The UBO declaration itself doesn't get an ir_variable unless it
7798 * has an instance name. This is ugly.
7799 */
7800 if (this->layout.flags.q.explicit_binding) {
7801 apply_explicit_binding(state, &loc, var,
7802 var->get_interface_type(), &this->layout);
7803 }
7804
7805 if (var->type->is_unsized_array()) {
7806 if (var->is_in_shader_storage_block()) {
7807 if (is_unsized_array_last_element(var)) {
7808 var->data.from_ssbo_unsized_array = true;
7809 }
7810 } else {
7811 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7812 *
7813 * "If an array is declared as the last member of a shader storage
7814 * block and the size is not specified at compile-time, it is
7815 * sized at run-time. In all other cases, arrays are sized only
7816 * at compile-time."
7817 */
7818 if (state->es_shader) {
7819 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7820 "definition: only last member of a shader "
7821 "storage block can be defined as unsized "
7822 "array", fields[i].name);
7823 }
7824 }
7825 }
7826
7827 state->symbols->add_variable(var);
7828 instructions->push_tail(var);
7829 }
7830
7831 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7832 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7833 *
7834 * It is also a compilation error ... to redeclare a built-in
7835 * block and then use a member from that built-in block that was
7836 * not included in the redeclaration.
7837 *
7838 * This appears to be a clarification to the behaviour established
7839 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7840 * behaviour regardless of GLSL version.
7841 *
7842 * To prevent the shader from using a member that was not included in
7843 * the redeclaration, we disable any ir_variables that are still
7844 * associated with the old declaration of gl_PerVertex (since we've
7845 * already updated all of the variables contained in the new
7846 * gl_PerVertex to point to it).
7847 *
7848 * As a side effect this will prevent
7849 * validate_intrastage_interface_blocks() from getting confused and
7850 * thinking there are conflicting definitions of gl_PerVertex in the
7851 * shader.
7852 */
7853 foreach_in_list_safe(ir_instruction, node, instructions) {
7854 ir_variable *const var = node->as_variable();
7855 if (var != NULL &&
7856 var->get_interface_type() == earlier_per_vertex &&
7857 var->data.mode == var_mode) {
7858 if (var->data.how_declared == ir_var_declared_normally) {
7859 _mesa_glsl_error(&loc, state,
7860 "redeclaration of gl_PerVertex cannot "
7861 "follow a redeclaration of `%s'",
7862 var->name);
7863 }
7864 state->symbols->disable_variable(var->name);
7865 var->remove();
7866 }
7867 }
7868 }
7869 }
7870
7871 return NULL;
7872 }
7873
7874
7875 ir_rvalue *
7876 ast_tcs_output_layout::hir(exec_list *instructions,
7877 struct _mesa_glsl_parse_state *state)
7878 {
7879 YYLTYPE loc = this->get_location();
7880
7881 unsigned num_vertices;
7882 if (!state->out_qualifier->vertices->
7883 process_qualifier_constant(state, "vertices", &num_vertices,
7884 false)) {
7885 /* return here to stop cascading incorrect error messages */
7886 return NULL;
7887 }
7888
7889 /* If any shader outputs occurred before this declaration and specified an
7890 * array size, make sure the size they specified is consistent with the
7891 * primitive type.
7892 */
7893 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7894 _mesa_glsl_error(&loc, state,
7895 "this tessellation control shader output layout "
7896 "specifies %u vertices, but a previous output "
7897 "is declared with size %u",
7898 num_vertices, state->tcs_output_size);
7899 return NULL;
7900 }
7901
7902 state->tcs_output_vertices_specified = true;
7903
7904 /* If any shader outputs occurred before this declaration and did not
7905 * specify an array size, their size is determined now.
7906 */
7907 foreach_in_list (ir_instruction, node, instructions) {
7908 ir_variable *var = node->as_variable();
7909 if (var == NULL || var->data.mode != ir_var_shader_out)
7910 continue;
7911
7912 /* Note: Not all tessellation control shader output are arrays. */
7913 if (!var->type->is_unsized_array() || var->data.patch)
7914 continue;
7915
7916 if (var->data.max_array_access >= (int)num_vertices) {
7917 _mesa_glsl_error(&loc, state,
7918 "this tessellation control shader output layout "
7919 "specifies %u vertices, but an access to element "
7920 "%u of output `%s' already exists", num_vertices,
7921 var->data.max_array_access, var->name);
7922 } else {
7923 var->type = glsl_type::get_array_instance(var->type->fields.array,
7924 num_vertices);
7925 }
7926 }
7927
7928 return NULL;
7929 }
7930
7931
7932 ir_rvalue *
7933 ast_gs_input_layout::hir(exec_list *instructions,
7934 struct _mesa_glsl_parse_state *state)
7935 {
7936 YYLTYPE loc = this->get_location();
7937
7938 /* If any geometry input layout declaration preceded this one, make sure it
7939 * was consistent with this one.
7940 */
7941 if (state->gs_input_prim_type_specified &&
7942 state->in_qualifier->prim_type != this->prim_type) {
7943 _mesa_glsl_error(&loc, state,
7944 "geometry shader input layout does not match"
7945 " previous declaration");
7946 return NULL;
7947 }
7948
7949 /* If any shader inputs occurred before this declaration and specified an
7950 * array size, make sure the size they specified is consistent with the
7951 * primitive type.
7952 */
7953 unsigned num_vertices = vertices_per_prim(this->prim_type);
7954 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7955 _mesa_glsl_error(&loc, state,
7956 "this geometry shader input layout implies %u vertices"
7957 " per primitive, but a previous input is declared"
7958 " with size %u", num_vertices, state->gs_input_size);
7959 return NULL;
7960 }
7961
7962 state->gs_input_prim_type_specified = true;
7963
7964 /* If any shader inputs occurred before this declaration and did not
7965 * specify an array size, their size is determined now.
7966 */
7967 foreach_in_list(ir_instruction, node, instructions) {
7968 ir_variable *var = node->as_variable();
7969 if (var == NULL || var->data.mode != ir_var_shader_in)
7970 continue;
7971
7972 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7973 * array; skip it.
7974 */
7975
7976 if (var->type->is_unsized_array()) {
7977 if (var->data.max_array_access >= (int)num_vertices) {
7978 _mesa_glsl_error(&loc, state,
7979 "this geometry shader input layout implies %u"
7980 " vertices, but an access to element %u of input"
7981 " `%s' already exists", num_vertices,
7982 var->data.max_array_access, var->name);
7983 } else {
7984 var->type = glsl_type::get_array_instance(var->type->fields.array,
7985 num_vertices);
7986 }
7987 }
7988 }
7989
7990 return NULL;
7991 }
7992
7993
7994 ir_rvalue *
7995 ast_cs_input_layout::hir(exec_list *instructions,
7996 struct _mesa_glsl_parse_state *state)
7997 {
7998 YYLTYPE loc = this->get_location();
7999
8000 /* From the ARB_compute_shader specification:
8001 *
8002 * If the local size of the shader in any dimension is greater
8003 * than the maximum size supported by the implementation for that
8004 * dimension, a compile-time error results.
8005 *
8006 * It is not clear from the spec how the error should be reported if
8007 * the total size of the work group exceeds
8008 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8009 * report it at compile time as well.
8010 */
8011 GLuint64 total_invocations = 1;
8012 unsigned qual_local_size[3];
8013 for (int i = 0; i < 3; i++) {
8014
8015 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8016 'x' + i);
8017 /* Infer a local_size of 1 for unspecified dimensions */
8018 if (this->local_size[i] == NULL) {
8019 qual_local_size[i] = 1;
8020 } else if (!this->local_size[i]->
8021 process_qualifier_constant(state, local_size_str,
8022 &qual_local_size[i], false)) {
8023 ralloc_free(local_size_str);
8024 return NULL;
8025 }
8026 ralloc_free(local_size_str);
8027
8028 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8029 _mesa_glsl_error(&loc, state,
8030 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8031 " (%d)", 'x' + i,
8032 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8033 break;
8034 }
8035 total_invocations *= qual_local_size[i];
8036 if (total_invocations >
8037 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8038 _mesa_glsl_error(&loc, state,
8039 "product of local_sizes exceeds "
8040 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8041 state->ctx->Const.MaxComputeWorkGroupInvocations);
8042 break;
8043 }
8044 }
8045
8046 /* If any compute input layout declaration preceded this one, make sure it
8047 * was consistent with this one.
8048 */
8049 if (state->cs_input_local_size_specified) {
8050 for (int i = 0; i < 3; i++) {
8051 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8052 _mesa_glsl_error(&loc, state,
8053 "compute shader input layout does not match"
8054 " previous declaration");
8055 return NULL;
8056 }
8057 }
8058 }
8059
8060 /* The ARB_compute_variable_group_size spec says:
8061 *
8062 * If a compute shader including a *local_size_variable* qualifier also
8063 * declares a fixed local group size using the *local_size_x*,
8064 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8065 * results
8066 */
8067 if (state->cs_input_local_size_variable_specified) {
8068 _mesa_glsl_error(&loc, state,
8069 "compute shader can't include both a variable and a "
8070 "fixed local group size");
8071 return NULL;
8072 }
8073
8074 state->cs_input_local_size_specified = true;
8075 for (int i = 0; i < 3; i++)
8076 state->cs_input_local_size[i] = qual_local_size[i];
8077
8078 /* We may now declare the built-in constant gl_WorkGroupSize (see
8079 * builtin_variable_generator::generate_constants() for why we didn't
8080 * declare it earlier).
8081 */
8082 ir_variable *var = new(state->symbols)
8083 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8084 var->data.how_declared = ir_var_declared_implicitly;
8085 var->data.read_only = true;
8086 instructions->push_tail(var);
8087 state->symbols->add_variable(var);
8088 ir_constant_data data;
8089 memset(&data, 0, sizeof(data));
8090 for (int i = 0; i < 3; i++)
8091 data.u[i] = qual_local_size[i];
8092 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8093 var->constant_initializer =
8094 new(var) ir_constant(glsl_type::uvec3_type, &data);
8095 var->data.has_initializer = true;
8096
8097 return NULL;
8098 }
8099
8100
8101 static void
8102 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8103 exec_list *instructions)
8104 {
8105 bool gl_FragColor_assigned = false;
8106 bool gl_FragData_assigned = false;
8107 bool gl_FragSecondaryColor_assigned = false;
8108 bool gl_FragSecondaryData_assigned = false;
8109 bool user_defined_fs_output_assigned = false;
8110 ir_variable *user_defined_fs_output = NULL;
8111
8112 /* It would be nice to have proper location information. */
8113 YYLTYPE loc;
8114 memset(&loc, 0, sizeof(loc));
8115
8116 foreach_in_list(ir_instruction, node, instructions) {
8117 ir_variable *var = node->as_variable();
8118
8119 if (!var || !var->data.assigned)
8120 continue;
8121
8122 if (strcmp(var->name, "gl_FragColor") == 0)
8123 gl_FragColor_assigned = true;
8124 else if (strcmp(var->name, "gl_FragData") == 0)
8125 gl_FragData_assigned = true;
8126 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8127 gl_FragSecondaryColor_assigned = true;
8128 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8129 gl_FragSecondaryData_assigned = true;
8130 else if (!is_gl_identifier(var->name)) {
8131 if (state->stage == MESA_SHADER_FRAGMENT &&
8132 var->data.mode == ir_var_shader_out) {
8133 user_defined_fs_output_assigned = true;
8134 user_defined_fs_output = var;
8135 }
8136 }
8137 }
8138
8139 /* From the GLSL 1.30 spec:
8140 *
8141 * "If a shader statically assigns a value to gl_FragColor, it
8142 * may not assign a value to any element of gl_FragData. If a
8143 * shader statically writes a value to any element of
8144 * gl_FragData, it may not assign a value to
8145 * gl_FragColor. That is, a shader may assign values to either
8146 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8147 * linked together must also consistently write just one of
8148 * these variables. Similarly, if user declared output
8149 * variables are in use (statically assigned to), then the
8150 * built-in variables gl_FragColor and gl_FragData may not be
8151 * assigned to. These incorrect usages all generate compile
8152 * time errors."
8153 */
8154 if (gl_FragColor_assigned && gl_FragData_assigned) {
8155 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8156 "`gl_FragColor' and `gl_FragData'");
8157 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8158 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8159 "`gl_FragColor' and `%s'",
8160 user_defined_fs_output->name);
8161 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8162 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8163 "`gl_FragSecondaryColorEXT' and"
8164 " `gl_FragSecondaryDataEXT'");
8165 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8166 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8167 "`gl_FragColor' and"
8168 " `gl_FragSecondaryDataEXT'");
8169 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8170 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8171 "`gl_FragData' and"
8172 " `gl_FragSecondaryColorEXT'");
8173 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8174 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8175 "`gl_FragData' and `%s'",
8176 user_defined_fs_output->name);
8177 }
8178
8179 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8180 !state->EXT_blend_func_extended_enable) {
8181 _mesa_glsl_error(&loc, state,
8182 "Dual source blending requires EXT_blend_func_extended");
8183 }
8184 }
8185
8186
8187 static void
8188 remove_per_vertex_blocks(exec_list *instructions,
8189 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8190 {
8191 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8192 * if it exists in this shader type.
8193 */
8194 const glsl_type *per_vertex = NULL;
8195 switch (mode) {
8196 case ir_var_shader_in:
8197 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8198 per_vertex = gl_in->get_interface_type();
8199 break;
8200 case ir_var_shader_out:
8201 if (ir_variable *gl_Position =
8202 state->symbols->get_variable("gl_Position")) {
8203 per_vertex = gl_Position->get_interface_type();
8204 }
8205 break;
8206 default:
8207 assert(!"Unexpected mode");
8208 break;
8209 }
8210
8211 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8212 * need to do anything.
8213 */
8214 if (per_vertex == NULL)
8215 return;
8216
8217 /* If the interface block is used by the shader, then we don't need to do
8218 * anything.
8219 */
8220 interface_block_usage_visitor v(mode, per_vertex);
8221 v.run(instructions);
8222 if (v.usage_found())
8223 return;
8224
8225 /* Remove any ir_variable declarations that refer to the interface block
8226 * we're removing.
8227 */
8228 foreach_in_list_safe(ir_instruction, node, instructions) {
8229 ir_variable *const var = node->as_variable();
8230 if (var != NULL && var->get_interface_type() == per_vertex &&
8231 var->data.mode == mode) {
8232 state->symbols->disable_variable(var->name);
8233 var->remove();
8234 }
8235 }
8236 }