glsl: add offset to glsl interface type
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_UINT:
246 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2u;
250 default: return (ir_expression_operation)0;
251 }
252
253 case GLSL_TYPE_DOUBLE:
254 if (!state->has_double())
255 return (ir_expression_operation)0;
256 switch (from->base_type) {
257 case GLSL_TYPE_INT: return ir_unop_i2d;
258 case GLSL_TYPE_UINT: return ir_unop_u2d;
259 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
260 default: return (ir_expression_operation)0;
261 }
262
263 default: return (ir_expression_operation)0;
264 }
265 }
266
267
268 /**
269 * If a conversion is available, convert one operand to a different type
270 *
271 * The \c from \c ir_rvalue is converted "in place".
272 *
273 * \param to Type that the operand it to be converted to
274 * \param from Operand that is being converted
275 * \param state GLSL compiler state
276 *
277 * \return
278 * If a conversion is possible (or unnecessary), \c true is returned.
279 * Otherwise \c false is returned.
280 */
281 bool
282 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
283 struct _mesa_glsl_parse_state *state)
284 {
285 void *ctx = state;
286 if (to->base_type == from->type->base_type)
287 return true;
288
289 /* Prior to GLSL 1.20, there are no implicit conversions */
290 if (!state->is_version(120, 0))
291 return false;
292
293 /* ESSL does not allow implicit conversions */
294 if (state->es_shader)
295 return false;
296
297 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
298 *
299 * "There are no implicit array or structure conversions. For
300 * example, an array of int cannot be implicitly converted to an
301 * array of float.
302 */
303 if (!to->is_numeric() || !from->type->is_numeric())
304 return false;
305
306 /* We don't actually want the specific type `to`, we want a type
307 * with the same base type as `to`, but the same vector width as
308 * `from`.
309 */
310 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
311 from->type->matrix_columns);
312
313 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
314 if (op) {
315 from = new(ctx) ir_expression(op, to, from, NULL);
316 return true;
317 } else {
318 return false;
319 }
320 }
321
322
323 static const struct glsl_type *
324 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
325 bool multiply,
326 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
327 {
328 const glsl_type *type_a = value_a->type;
329 const glsl_type *type_b = value_b->type;
330
331 /* From GLSL 1.50 spec, page 56:
332 *
333 * "The arithmetic binary operators add (+), subtract (-),
334 * multiply (*), and divide (/) operate on integer and
335 * floating-point scalars, vectors, and matrices."
336 */
337 if (!type_a->is_numeric() || !type_b->is_numeric()) {
338 _mesa_glsl_error(loc, state,
339 "operands to arithmetic operators must be numeric");
340 return glsl_type::error_type;
341 }
342
343
344 /* "If one operand is floating-point based and the other is
345 * not, then the conversions from Section 4.1.10 "Implicit
346 * Conversions" are applied to the non-floating-point-based operand."
347 */
348 if (!apply_implicit_conversion(type_a, value_b, state)
349 && !apply_implicit_conversion(type_b, value_a, state)) {
350 _mesa_glsl_error(loc, state,
351 "could not implicitly convert operands to "
352 "arithmetic operator");
353 return glsl_type::error_type;
354 }
355 type_a = value_a->type;
356 type_b = value_b->type;
357
358 /* "If the operands are integer types, they must both be signed or
359 * both be unsigned."
360 *
361 * From this rule and the preceeding conversion it can be inferred that
362 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
363 * The is_numeric check above already filtered out the case where either
364 * type is not one of these, so now the base types need only be tested for
365 * equality.
366 */
367 if (type_a->base_type != type_b->base_type) {
368 _mesa_glsl_error(loc, state,
369 "base type mismatch for arithmetic operator");
370 return glsl_type::error_type;
371 }
372
373 /* "All arithmetic binary operators result in the same fundamental type
374 * (signed integer, unsigned integer, or floating-point) as the
375 * operands they operate on, after operand type conversion. After
376 * conversion, the following cases are valid
377 *
378 * * The two operands are scalars. In this case the operation is
379 * applied, resulting in a scalar."
380 */
381 if (type_a->is_scalar() && type_b->is_scalar())
382 return type_a;
383
384 /* "* One operand is a scalar, and the other is a vector or matrix.
385 * In this case, the scalar operation is applied independently to each
386 * component of the vector or matrix, resulting in the same size
387 * vector or matrix."
388 */
389 if (type_a->is_scalar()) {
390 if (!type_b->is_scalar())
391 return type_b;
392 } else if (type_b->is_scalar()) {
393 return type_a;
394 }
395
396 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
397 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
398 * handled.
399 */
400 assert(!type_a->is_scalar());
401 assert(!type_b->is_scalar());
402
403 /* "* The two operands are vectors of the same size. In this case, the
404 * operation is done component-wise resulting in the same size
405 * vector."
406 */
407 if (type_a->is_vector() && type_b->is_vector()) {
408 if (type_a == type_b) {
409 return type_a;
410 } else {
411 _mesa_glsl_error(loc, state,
412 "vector size mismatch for arithmetic operator");
413 return glsl_type::error_type;
414 }
415 }
416
417 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
418 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
419 * <vector, vector> have been handled. At least one of the operands must
420 * be matrix. Further, since there are no integer matrix types, the base
421 * type of both operands must be float.
422 */
423 assert(type_a->is_matrix() || type_b->is_matrix());
424 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
425 type_a->base_type == GLSL_TYPE_DOUBLE);
426 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
427 type_b->base_type == GLSL_TYPE_DOUBLE);
428
429 /* "* The operator is add (+), subtract (-), or divide (/), and the
430 * operands are matrices with the same number of rows and the same
431 * number of columns. In this case, the operation is done component-
432 * wise resulting in the same size matrix."
433 * * The operator is multiply (*), where both operands are matrices or
434 * one operand is a vector and the other a matrix. A right vector
435 * operand is treated as a column vector and a left vector operand as a
436 * row vector. In all these cases, it is required that the number of
437 * columns of the left operand is equal to the number of rows of the
438 * right operand. Then, the multiply (*) operation does a linear
439 * algebraic multiply, yielding an object that has the same number of
440 * rows as the left operand and the same number of columns as the right
441 * operand. Section 5.10 "Vector and Matrix Operations" explains in
442 * more detail how vectors and matrices are operated on."
443 */
444 if (! multiply) {
445 if (type_a == type_b)
446 return type_a;
447 } else {
448 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
449
450 if (type == glsl_type::error_type) {
451 _mesa_glsl_error(loc, state,
452 "size mismatch for matrix multiplication");
453 }
454
455 return type;
456 }
457
458
459 /* "All other cases are illegal."
460 */
461 _mesa_glsl_error(loc, state, "type mismatch");
462 return glsl_type::error_type;
463 }
464
465
466 static const struct glsl_type *
467 unary_arithmetic_result_type(const struct glsl_type *type,
468 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
469 {
470 /* From GLSL 1.50 spec, page 57:
471 *
472 * "The arithmetic unary operators negate (-), post- and pre-increment
473 * and decrement (-- and ++) operate on integer or floating-point
474 * values (including vectors and matrices). All unary operators work
475 * component-wise on their operands. These result with the same type
476 * they operated on."
477 */
478 if (!type->is_numeric()) {
479 _mesa_glsl_error(loc, state,
480 "operands to arithmetic operators must be numeric");
481 return glsl_type::error_type;
482 }
483
484 return type;
485 }
486
487 /**
488 * \brief Return the result type of a bit-logic operation.
489 *
490 * If the given types to the bit-logic operator are invalid, return
491 * glsl_type::error_type.
492 *
493 * \param value_a LHS of bit-logic op
494 * \param value_b RHS of bit-logic op
495 */
496 static const struct glsl_type *
497 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
498 ast_operators op,
499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501 const glsl_type *type_a = value_a->type;
502 const glsl_type *type_b = value_b->type;
503
504 if (!state->check_bitwise_operations_allowed(loc)) {
505 return glsl_type::error_type;
506 }
507
508 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
509 *
510 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
511 * (|). The operands must be of type signed or unsigned integers or
512 * integer vectors."
513 */
514 if (!type_a->is_integer()) {
515 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
516 ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
521 ast_expression::operator_string(op));
522 return glsl_type::error_type;
523 }
524
525 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
526 * make sense for bitwise operations, as they don't operate on floats.
527 *
528 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
529 * here. It wasn't clear whether or not we should apply them to bitwise
530 * operations. However, Khronos has decided that they should in future
531 * language revisions. Applications also rely on this behavior. We opt
532 * to apply them in general, but issue a portability warning.
533 *
534 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
535 */
536 if (type_a->base_type != type_b->base_type) {
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "`%s` operator",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 } else {
545 _mesa_glsl_warning(loc, state,
546 "some implementations may not support implicit "
547 "int -> uint conversions for `%s' operators; "
548 "consider casting explicitly for portability",
549 ast_expression::operator_string(op));
550 }
551 type_a = value_a->type;
552 type_b = value_b->type;
553 }
554
555 /* "The fundamental types of the operands (signed or unsigned) must
556 * match,"
557 */
558 if (type_a->base_type != type_b->base_type) {
559 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
560 "base type", ast_expression::operator_string(op));
561 return glsl_type::error_type;
562 }
563
564 /* "The operands cannot be vectors of differing size." */
565 if (type_a->is_vector() &&
566 type_b->is_vector() &&
567 type_a->vector_elements != type_b->vector_elements) {
568 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
569 "different sizes", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571 }
572
573 /* "If one operand is a scalar and the other a vector, the scalar is
574 * applied component-wise to the vector, resulting in the same type as
575 * the vector. The fundamental types of the operands [...] will be the
576 * resulting fundamental type."
577 */
578 if (type_a->is_scalar())
579 return type_b;
580 else
581 return type_a;
582 }
583
584 static const struct glsl_type *
585 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
586 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
587 {
588 const glsl_type *type_a = value_a->type;
589 const glsl_type *type_b = value_b->type;
590
591 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
592 return glsl_type::error_type;
593 }
594
595 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
596 *
597 * "The operator modulus (%) operates on signed or unsigned integers or
598 * integer vectors."
599 */
600 if (!type_a->is_integer()) {
601 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
602 return glsl_type::error_type;
603 }
604 if (!type_b->is_integer()) {
605 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
606 return glsl_type::error_type;
607 }
608
609 /* "If the fundamental types in the operands do not match, then the
610 * conversions from section 4.1.10 "Implicit Conversions" are applied
611 * to create matching types."
612 *
613 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
614 * int -> uint conversion rules. Prior to that, there were no implicit
615 * conversions. So it's harmless to apply them universally - no implicit
616 * conversions will exist. If the types don't match, we'll receive false,
617 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
618 *
619 * "The operand types must both be signed or unsigned."
620 */
621 if (!apply_implicit_conversion(type_a, value_b, state) &&
622 !apply_implicit_conversion(type_b, value_a, state)) {
623 _mesa_glsl_error(loc, state,
624 "could not implicitly convert operands to "
625 "modulus (%%) operator");
626 return glsl_type::error_type;
627 }
628 type_a = value_a->type;
629 type_b = value_b->type;
630
631 /* "The operands cannot be vectors of differing size. If one operand is
632 * a scalar and the other vector, then the scalar is applied component-
633 * wise to the vector, resulting in the same type as the vector. If both
634 * are vectors of the same size, the result is computed component-wise."
635 */
636 if (type_a->is_vector()) {
637 if (!type_b->is_vector()
638 || (type_a->vector_elements == type_b->vector_elements))
639 return type_a;
640 } else
641 return type_b;
642
643 /* "The operator modulus (%) is not defined for any other data types
644 * (non-integer types)."
645 */
646 _mesa_glsl_error(loc, state, "type mismatch");
647 return glsl_type::error_type;
648 }
649
650
651 static const struct glsl_type *
652 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
653 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
654 {
655 const glsl_type *type_a = value_a->type;
656 const glsl_type *type_b = value_b->type;
657
658 /* From GLSL 1.50 spec, page 56:
659 * "The relational operators greater than (>), less than (<), greater
660 * than or equal (>=), and less than or equal (<=) operate only on
661 * scalar integer and scalar floating-point expressions."
662 */
663 if (!type_a->is_numeric()
664 || !type_b->is_numeric()
665 || !type_a->is_scalar()
666 || !type_b->is_scalar()) {
667 _mesa_glsl_error(loc, state,
668 "operands to relational operators must be scalar and "
669 "numeric");
670 return glsl_type::error_type;
671 }
672
673 /* "Either the operands' types must match, or the conversions from
674 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
675 * operand, after which the types must match."
676 */
677 if (!apply_implicit_conversion(type_a, value_b, state)
678 && !apply_implicit_conversion(type_b, value_a, state)) {
679 _mesa_glsl_error(loc, state,
680 "could not implicitly convert operands to "
681 "relational operator");
682 return glsl_type::error_type;
683 }
684 type_a = value_a->type;
685 type_b = value_b->type;
686
687 if (type_a->base_type != type_b->base_type) {
688 _mesa_glsl_error(loc, state, "base type mismatch");
689 return glsl_type::error_type;
690 }
691
692 /* "The result is scalar Boolean."
693 */
694 return glsl_type::bool_type;
695 }
696
697 /**
698 * \brief Return the result type of a bit-shift operation.
699 *
700 * If the given types to the bit-shift operator are invalid, return
701 * glsl_type::error_type.
702 *
703 * \param type_a Type of LHS of bit-shift op
704 * \param type_b Type of RHS of bit-shift op
705 */
706 static const struct glsl_type *
707 shift_result_type(const struct glsl_type *type_a,
708 const struct glsl_type *type_b,
709 ast_operators op,
710 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
711 {
712 if (!state->check_bitwise_operations_allowed(loc)) {
713 return glsl_type::error_type;
714 }
715
716 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
717 *
718 * "The shift operators (<<) and (>>). For both operators, the operands
719 * must be signed or unsigned integers or integer vectors. One operand
720 * can be signed while the other is unsigned."
721 */
722 if (!type_a->is_integer()) {
723 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
724 "integer vector", ast_expression::operator_string(op));
725 return glsl_type::error_type;
726
727 }
728 if (!type_b->is_integer()) {
729 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
730 "integer vector", ast_expression::operator_string(op));
731 return glsl_type::error_type;
732 }
733
734 /* "If the first operand is a scalar, the second operand has to be
735 * a scalar as well."
736 */
737 if (type_a->is_scalar() && !type_b->is_scalar()) {
738 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
739 "second must be scalar as well",
740 ast_expression::operator_string(op));
741 return glsl_type::error_type;
742 }
743
744 /* If both operands are vectors, check that they have same number of
745 * elements.
746 */
747 if (type_a->is_vector() &&
748 type_b->is_vector() &&
749 type_a->vector_elements != type_b->vector_elements) {
750 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
751 "have same number of elements",
752 ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "In all cases, the resulting type will be the same type as the left
757 * operand."
758 */
759 return type_a;
760 }
761
762 /**
763 * Returns the innermost array index expression in an rvalue tree.
764 * This is the largest indexing level -- if an array of blocks, then
765 * it is the block index rather than an indexing expression for an
766 * array-typed member of an array of blocks.
767 */
768 static ir_rvalue *
769 find_innermost_array_index(ir_rvalue *rv)
770 {
771 ir_dereference_array *last = NULL;
772 while (rv) {
773 if (rv->as_dereference_array()) {
774 last = rv->as_dereference_array();
775 rv = last->array;
776 } else if (rv->as_dereference_record())
777 rv = rv->as_dereference_record()->record;
778 else if (rv->as_swizzle())
779 rv = rv->as_swizzle()->val;
780 else
781 rv = NULL;
782 }
783
784 if (last)
785 return last->array_index;
786
787 return NULL;
788 }
789
790 /**
791 * Validates that a value can be assigned to a location with a specified type
792 *
793 * Validates that \c rhs can be assigned to some location. If the types are
794 * not an exact match but an automatic conversion is possible, \c rhs will be
795 * converted.
796 *
797 * \return
798 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
799 * Otherwise the actual RHS to be assigned will be returned. This may be
800 * \c rhs, or it may be \c rhs after some type conversion.
801 *
802 * \note
803 * In addition to being used for assignments, this function is used to
804 * type-check return values.
805 */
806 static ir_rvalue *
807 validate_assignment(struct _mesa_glsl_parse_state *state,
808 YYLTYPE loc, ir_rvalue *lhs,
809 ir_rvalue *rhs, bool is_initializer)
810 {
811 /* If there is already some error in the RHS, just return it. Anything
812 * else will lead to an avalanche of error message back to the user.
813 */
814 if (rhs->type->is_error())
815 return rhs;
816
817 /* In the Tessellation Control Shader:
818 * If a per-vertex output variable is used as an l-value, it is an error
819 * if the expression indicating the vertex number is not the identifier
820 * `gl_InvocationID`.
821 */
822 if (state->stage == MESA_SHADER_TESS_CTRL) {
823 ir_variable *var = lhs->variable_referenced();
824 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
825 ir_rvalue *index = find_innermost_array_index(lhs);
826 ir_variable *index_var = index ? index->variable_referenced() : NULL;
827 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
828 _mesa_glsl_error(&loc, state,
829 "Tessellation control shader outputs can only "
830 "be indexed by gl_InvocationID");
831 return NULL;
832 }
833 }
834 }
835
836 /* If the types are identical, the assignment can trivially proceed.
837 */
838 if (rhs->type == lhs->type)
839 return rhs;
840
841 /* If the array element types are the same and the LHS is unsized,
842 * the assignment is okay for initializers embedded in variable
843 * declarations.
844 *
845 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
846 * is handled by ir_dereference::is_lvalue.
847 */
848 const glsl_type *lhs_t = lhs->type;
849 const glsl_type *rhs_t = rhs->type;
850 bool unsized_array = false;
851 while(lhs_t->is_array()) {
852 if (rhs_t == lhs_t)
853 break; /* the rest of the inner arrays match so break out early */
854 if (!rhs_t->is_array()) {
855 unsized_array = false;
856 break; /* number of dimensions mismatch */
857 }
858 if (lhs_t->length == rhs_t->length) {
859 lhs_t = lhs_t->fields.array;
860 rhs_t = rhs_t->fields.array;
861 continue;
862 } else if (lhs_t->is_unsized_array()) {
863 unsized_array = true;
864 } else {
865 unsized_array = false;
866 break; /* sized array mismatch */
867 }
868 lhs_t = lhs_t->fields.array;
869 rhs_t = rhs_t->fields.array;
870 }
871 if (unsized_array) {
872 if (is_initializer) {
873 return rhs;
874 } else {
875 _mesa_glsl_error(&loc, state,
876 "implicitly sized arrays cannot be assigned");
877 return NULL;
878 }
879 }
880
881 /* Check for implicit conversion in GLSL 1.20 */
882 if (apply_implicit_conversion(lhs->type, rhs, state)) {
883 if (rhs->type == lhs->type)
884 return rhs;
885 }
886
887 _mesa_glsl_error(&loc, state,
888 "%s of type %s cannot be assigned to "
889 "variable of type %s",
890 is_initializer ? "initializer" : "value",
891 rhs->type->name, lhs->type->name);
892
893 return NULL;
894 }
895
896 static void
897 mark_whole_array_access(ir_rvalue *access)
898 {
899 ir_dereference_variable *deref = access->as_dereference_variable();
900
901 if (deref && deref->var) {
902 deref->var->data.max_array_access = deref->type->length - 1;
903 }
904 }
905
906 static bool
907 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
908 const char *non_lvalue_description,
909 ir_rvalue *lhs, ir_rvalue *rhs,
910 ir_rvalue **out_rvalue, bool needs_rvalue,
911 bool is_initializer,
912 YYLTYPE lhs_loc)
913 {
914 void *ctx = state;
915 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
916
917 ir_variable *lhs_var = lhs->variable_referenced();
918 if (lhs_var)
919 lhs_var->data.assigned = true;
920
921 if (!error_emitted) {
922 if (non_lvalue_description != NULL) {
923 _mesa_glsl_error(&lhs_loc, state,
924 "assignment to %s",
925 non_lvalue_description);
926 error_emitted = true;
927 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
928 (lhs_var->data.mode == ir_var_shader_storage &&
929 lhs_var->data.image_read_only))) {
930 /* We can have image_read_only set on both images and buffer variables,
931 * but in the former there is a distinction between assignments to
932 * the variable itself (read_only) and to the memory they point to
933 * (image_read_only), while in the case of buffer variables there is
934 * no such distinction, that is why this check here is limited to
935 * buffer variables alone.
936 */
937 _mesa_glsl_error(&lhs_loc, state,
938 "assignment to read-only variable '%s'",
939 lhs_var->name);
940 error_emitted = true;
941 } else if (lhs->type->is_array() &&
942 !state->check_version(120, 300, &lhs_loc,
943 "whole array assignment forbidden")) {
944 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
945 *
946 * "Other binary or unary expressions, non-dereferenced
947 * arrays, function names, swizzles with repeated fields,
948 * and constants cannot be l-values."
949 *
950 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
951 */
952 error_emitted = true;
953 } else if (!lhs->is_lvalue()) {
954 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
955 error_emitted = true;
956 }
957 }
958
959 ir_rvalue *new_rhs =
960 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
961 if (new_rhs != NULL) {
962 rhs = new_rhs;
963
964 /* If the LHS array was not declared with a size, it takes it size from
965 * the RHS. If the LHS is an l-value and a whole array, it must be a
966 * dereference of a variable. Any other case would require that the LHS
967 * is either not an l-value or not a whole array.
968 */
969 if (lhs->type->is_unsized_array()) {
970 ir_dereference *const d = lhs->as_dereference();
971
972 assert(d != NULL);
973
974 ir_variable *const var = d->variable_referenced();
975
976 assert(var != NULL);
977
978 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
979 /* FINISHME: This should actually log the location of the RHS. */
980 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
981 "previous access",
982 var->data.max_array_access);
983 }
984
985 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
986 rhs->type->array_size());
987 d->type = var->type;
988 }
989 if (lhs->type->is_array()) {
990 mark_whole_array_access(rhs);
991 mark_whole_array_access(lhs);
992 }
993 }
994
995 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
996 * but not post_inc) need the converted assigned value as an rvalue
997 * to handle things like:
998 *
999 * i = j += 1;
1000 */
1001 if (needs_rvalue) {
1002 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1003 ir_var_temporary);
1004 instructions->push_tail(var);
1005 instructions->push_tail(assign(var, rhs));
1006
1007 if (!error_emitted) {
1008 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1009 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1010 }
1011 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1012
1013 *out_rvalue = rvalue;
1014 } else {
1015 if (!error_emitted)
1016 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1017 *out_rvalue = NULL;
1018 }
1019
1020 return error_emitted;
1021 }
1022
1023 static ir_rvalue *
1024 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1025 {
1026 void *ctx = ralloc_parent(lvalue);
1027 ir_variable *var;
1028
1029 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1030 ir_var_temporary);
1031 instructions->push_tail(var);
1032
1033 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1034 lvalue));
1035
1036 return new(ctx) ir_dereference_variable(var);
1037 }
1038
1039
1040 ir_rvalue *
1041 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1042 {
1043 (void) instructions;
1044 (void) state;
1045
1046 return NULL;
1047 }
1048
1049 bool
1050 ast_node::has_sequence_subexpression() const
1051 {
1052 return false;
1053 }
1054
1055 void
1056 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1057 struct _mesa_glsl_parse_state *state)
1058 {
1059 (void)hir(instructions, state);
1060 }
1061
1062 void
1063 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 static ir_rvalue *
1070 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1071 {
1072 int join_op;
1073 ir_rvalue *cmp = NULL;
1074
1075 if (operation == ir_binop_all_equal)
1076 join_op = ir_binop_logic_and;
1077 else
1078 join_op = ir_binop_logic_or;
1079
1080 switch (op0->type->base_type) {
1081 case GLSL_TYPE_FLOAT:
1082 case GLSL_TYPE_UINT:
1083 case GLSL_TYPE_INT:
1084 case GLSL_TYPE_BOOL:
1085 case GLSL_TYPE_DOUBLE:
1086 return new(mem_ctx) ir_expression(operation, op0, op1);
1087
1088 case GLSL_TYPE_ARRAY: {
1089 for (unsigned int i = 0; i < op0->type->length; i++) {
1090 ir_rvalue *e0, *e1, *result;
1091
1092 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1093 new(mem_ctx) ir_constant(i));
1094 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1095 new(mem_ctx) ir_constant(i));
1096 result = do_comparison(mem_ctx, operation, e0, e1);
1097
1098 if (cmp) {
1099 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1100 } else {
1101 cmp = result;
1102 }
1103 }
1104
1105 mark_whole_array_access(op0);
1106 mark_whole_array_access(op1);
1107 break;
1108 }
1109
1110 case GLSL_TYPE_STRUCT: {
1111 for (unsigned int i = 0; i < op0->type->length; i++) {
1112 ir_rvalue *e0, *e1, *result;
1113 const char *field_name = op0->type->fields.structure[i].name;
1114
1115 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1116 field_name);
1117 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1118 field_name);
1119 result = do_comparison(mem_ctx, operation, e0, e1);
1120
1121 if (cmp) {
1122 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1123 } else {
1124 cmp = result;
1125 }
1126 }
1127 break;
1128 }
1129
1130 case GLSL_TYPE_ERROR:
1131 case GLSL_TYPE_VOID:
1132 case GLSL_TYPE_SAMPLER:
1133 case GLSL_TYPE_IMAGE:
1134 case GLSL_TYPE_INTERFACE:
1135 case GLSL_TYPE_ATOMIC_UINT:
1136 case GLSL_TYPE_SUBROUTINE:
1137 case GLSL_TYPE_FUNCTION:
1138 /* I assume a comparison of a struct containing a sampler just
1139 * ignores the sampler present in the type.
1140 */
1141 break;
1142 }
1143
1144 if (cmp == NULL)
1145 cmp = new(mem_ctx) ir_constant(true);
1146
1147 return cmp;
1148 }
1149
1150 /* For logical operations, we want to ensure that the operands are
1151 * scalar booleans. If it isn't, emit an error and return a constant
1152 * boolean to avoid triggering cascading error messages.
1153 */
1154 ir_rvalue *
1155 get_scalar_boolean_operand(exec_list *instructions,
1156 struct _mesa_glsl_parse_state *state,
1157 ast_expression *parent_expr,
1158 int operand,
1159 const char *operand_name,
1160 bool *error_emitted)
1161 {
1162 ast_expression *expr = parent_expr->subexpressions[operand];
1163 void *ctx = state;
1164 ir_rvalue *val = expr->hir(instructions, state);
1165
1166 if (val->type->is_boolean() && val->type->is_scalar())
1167 return val;
1168
1169 if (!*error_emitted) {
1170 YYLTYPE loc = expr->get_location();
1171 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1172 operand_name,
1173 parent_expr->operator_string(parent_expr->oper));
1174 *error_emitted = true;
1175 }
1176
1177 return new(ctx) ir_constant(true);
1178 }
1179
1180 /**
1181 * If name refers to a builtin array whose maximum allowed size is less than
1182 * size, report an error and return true. Otherwise return false.
1183 */
1184 void
1185 check_builtin_array_max_size(const char *name, unsigned size,
1186 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1187 {
1188 if ((strcmp("gl_TexCoord", name) == 0)
1189 && (size > state->Const.MaxTextureCoords)) {
1190 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1191 *
1192 * "The size [of gl_TexCoord] can be at most
1193 * gl_MaxTextureCoords."
1194 */
1195 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1196 "be larger than gl_MaxTextureCoords (%u)",
1197 state->Const.MaxTextureCoords);
1198 } else if (strcmp("gl_ClipDistance", name) == 0
1199 && size > state->Const.MaxClipPlanes) {
1200 /* From section 7.1 (Vertex Shader Special Variables) of the
1201 * GLSL 1.30 spec:
1202 *
1203 * "The gl_ClipDistance array is predeclared as unsized and
1204 * must be sized by the shader either redeclaring it with a
1205 * size or indexing it only with integral constant
1206 * expressions. ... The size can be at most
1207 * gl_MaxClipDistances."
1208 */
1209 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1210 "be larger than gl_MaxClipDistances (%u)",
1211 state->Const.MaxClipPlanes);
1212 }
1213 }
1214
1215 /**
1216 * Create the constant 1, of a which is appropriate for incrementing and
1217 * decrementing values of the given GLSL type. For example, if type is vec4,
1218 * this creates a constant value of 1.0 having type float.
1219 *
1220 * If the given type is invalid for increment and decrement operators, return
1221 * a floating point 1--the error will be detected later.
1222 */
1223 static ir_rvalue *
1224 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1225 {
1226 switch (type->base_type) {
1227 case GLSL_TYPE_UINT:
1228 return new(ctx) ir_constant((unsigned) 1);
1229 case GLSL_TYPE_INT:
1230 return new(ctx) ir_constant(1);
1231 default:
1232 case GLSL_TYPE_FLOAT:
1233 return new(ctx) ir_constant(1.0f);
1234 }
1235 }
1236
1237 ir_rvalue *
1238 ast_expression::hir(exec_list *instructions,
1239 struct _mesa_glsl_parse_state *state)
1240 {
1241 return do_hir(instructions, state, true);
1242 }
1243
1244 void
1245 ast_expression::hir_no_rvalue(exec_list *instructions,
1246 struct _mesa_glsl_parse_state *state)
1247 {
1248 do_hir(instructions, state, false);
1249 }
1250
1251 ir_rvalue *
1252 ast_expression::do_hir(exec_list *instructions,
1253 struct _mesa_glsl_parse_state *state,
1254 bool needs_rvalue)
1255 {
1256 void *ctx = state;
1257 static const int operations[AST_NUM_OPERATORS] = {
1258 -1, /* ast_assign doesn't convert to ir_expression. */
1259 -1, /* ast_plus doesn't convert to ir_expression. */
1260 ir_unop_neg,
1261 ir_binop_add,
1262 ir_binop_sub,
1263 ir_binop_mul,
1264 ir_binop_div,
1265 ir_binop_mod,
1266 ir_binop_lshift,
1267 ir_binop_rshift,
1268 ir_binop_less,
1269 ir_binop_greater,
1270 ir_binop_lequal,
1271 ir_binop_gequal,
1272 ir_binop_all_equal,
1273 ir_binop_any_nequal,
1274 ir_binop_bit_and,
1275 ir_binop_bit_xor,
1276 ir_binop_bit_or,
1277 ir_unop_bit_not,
1278 ir_binop_logic_and,
1279 ir_binop_logic_xor,
1280 ir_binop_logic_or,
1281 ir_unop_logic_not,
1282
1283 /* Note: The following block of expression types actually convert
1284 * to multiple IR instructions.
1285 */
1286 ir_binop_mul, /* ast_mul_assign */
1287 ir_binop_div, /* ast_div_assign */
1288 ir_binop_mod, /* ast_mod_assign */
1289 ir_binop_add, /* ast_add_assign */
1290 ir_binop_sub, /* ast_sub_assign */
1291 ir_binop_lshift, /* ast_ls_assign */
1292 ir_binop_rshift, /* ast_rs_assign */
1293 ir_binop_bit_and, /* ast_and_assign */
1294 ir_binop_bit_xor, /* ast_xor_assign */
1295 ir_binop_bit_or, /* ast_or_assign */
1296
1297 -1, /* ast_conditional doesn't convert to ir_expression. */
1298 ir_binop_add, /* ast_pre_inc. */
1299 ir_binop_sub, /* ast_pre_dec. */
1300 ir_binop_add, /* ast_post_inc. */
1301 ir_binop_sub, /* ast_post_dec. */
1302 -1, /* ast_field_selection doesn't conv to ir_expression. */
1303 -1, /* ast_array_index doesn't convert to ir_expression. */
1304 -1, /* ast_function_call doesn't conv to ir_expression. */
1305 -1, /* ast_identifier doesn't convert to ir_expression. */
1306 -1, /* ast_int_constant doesn't convert to ir_expression. */
1307 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1308 -1, /* ast_float_constant doesn't conv to ir_expression. */
1309 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1310 -1, /* ast_sequence doesn't convert to ir_expression. */
1311 };
1312 ir_rvalue *result = NULL;
1313 ir_rvalue *op[3];
1314 const struct glsl_type *type; /* a temporary variable for switch cases */
1315 bool error_emitted = false;
1316 YYLTYPE loc;
1317
1318 loc = this->get_location();
1319
1320 switch (this->oper) {
1321 case ast_aggregate:
1322 assert(!"ast_aggregate: Should never get here.");
1323 break;
1324
1325 case ast_assign: {
1326 op[0] = this->subexpressions[0]->hir(instructions, state);
1327 op[1] = this->subexpressions[1]->hir(instructions, state);
1328
1329 error_emitted =
1330 do_assignment(instructions, state,
1331 this->subexpressions[0]->non_lvalue_description,
1332 op[0], op[1], &result, needs_rvalue, false,
1333 this->subexpressions[0]->get_location());
1334 break;
1335 }
1336
1337 case ast_plus:
1338 op[0] = this->subexpressions[0]->hir(instructions, state);
1339
1340 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1341
1342 error_emitted = type->is_error();
1343
1344 result = op[0];
1345 break;
1346
1347 case ast_neg:
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349
1350 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1351
1352 error_emitted = type->is_error();
1353
1354 result = new(ctx) ir_expression(operations[this->oper], type,
1355 op[0], NULL);
1356 break;
1357
1358 case ast_add:
1359 case ast_sub:
1360 case ast_mul:
1361 case ast_div:
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = arithmetic_result_type(op[0], op[1],
1366 (this->oper == ast_mul),
1367 state, & loc);
1368 error_emitted = type->is_error();
1369
1370 result = new(ctx) ir_expression(operations[this->oper], type,
1371 op[0], op[1]);
1372 break;
1373
1374 case ast_mod:
1375 op[0] = this->subexpressions[0]->hir(instructions, state);
1376 op[1] = this->subexpressions[1]->hir(instructions, state);
1377
1378 type = modulus_result_type(op[0], op[1], state, &loc);
1379
1380 assert(operations[this->oper] == ir_binop_mod);
1381
1382 result = new(ctx) ir_expression(operations[this->oper], type,
1383 op[0], op[1]);
1384 error_emitted = type->is_error();
1385 break;
1386
1387 case ast_lshift:
1388 case ast_rshift:
1389 if (!state->check_bitwise_operations_allowed(&loc)) {
1390 error_emitted = true;
1391 }
1392
1393 op[0] = this->subexpressions[0]->hir(instructions, state);
1394 op[1] = this->subexpressions[1]->hir(instructions, state);
1395 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1396 &loc);
1397 result = new(ctx) ir_expression(operations[this->oper], type,
1398 op[0], op[1]);
1399 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1400 break;
1401
1402 case ast_less:
1403 case ast_greater:
1404 case ast_lequal:
1405 case ast_gequal:
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 type = relational_result_type(op[0], op[1], state, & loc);
1410
1411 /* The relational operators must either generate an error or result
1412 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1413 */
1414 assert(type->is_error()
1415 || ((type->base_type == GLSL_TYPE_BOOL)
1416 && type->is_scalar()));
1417
1418 result = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420 error_emitted = type->is_error();
1421 break;
1422
1423 case ast_nequal:
1424 case ast_equal:
1425 op[0] = this->subexpressions[0]->hir(instructions, state);
1426 op[1] = this->subexpressions[1]->hir(instructions, state);
1427
1428 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1429 *
1430 * "The equality operators equal (==), and not equal (!=)
1431 * operate on all types. They result in a scalar Boolean. If
1432 * the operand types do not match, then there must be a
1433 * conversion from Section 4.1.10 "Implicit Conversions"
1434 * applied to one operand that can make them match, in which
1435 * case this conversion is done."
1436 */
1437
1438 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1439 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1440 "no operation `%1$s' exists that takes a left-hand "
1441 "operand of type 'void' or a right operand of type "
1442 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1443 error_emitted = true;
1444 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1445 && !apply_implicit_conversion(op[1]->type, op[0], state))
1446 || (op[0]->type != op[1]->type)) {
1447 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1448 "type", (this->oper == ast_equal) ? "==" : "!=");
1449 error_emitted = true;
1450 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1451 !state->check_version(120, 300, &loc,
1452 "array comparisons forbidden")) {
1453 error_emitted = true;
1454 } else if ((op[0]->type->contains_opaque() ||
1455 op[1]->type->contains_opaque())) {
1456 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1457 error_emitted = true;
1458 }
1459
1460 if (error_emitted) {
1461 result = new(ctx) ir_constant(false);
1462 } else {
1463 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1464 assert(result->type == glsl_type::bool_type);
1465 }
1466 break;
1467
1468 case ast_bit_and:
1469 case ast_bit_xor:
1470 case ast_bit_or:
1471 op[0] = this->subexpressions[0]->hir(instructions, state);
1472 op[1] = this->subexpressions[1]->hir(instructions, state);
1473 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1474 result = new(ctx) ir_expression(operations[this->oper], type,
1475 op[0], op[1]);
1476 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1477 break;
1478
1479 case ast_bit_not:
1480 op[0] = this->subexpressions[0]->hir(instructions, state);
1481
1482 if (!state->check_bitwise_operations_allowed(&loc)) {
1483 error_emitted = true;
1484 }
1485
1486 if (!op[0]->type->is_integer()) {
1487 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1488 error_emitted = true;
1489 }
1490
1491 type = error_emitted ? glsl_type::error_type : op[0]->type;
1492 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1493 break;
1494
1495 case ast_logic_and: {
1496 exec_list rhs_instructions;
1497 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1498 "LHS", &error_emitted);
1499 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1500 "RHS", &error_emitted);
1501
1502 if (rhs_instructions.is_empty()) {
1503 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1504 type = result->type;
1505 } else {
1506 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1507 "and_tmp",
1508 ir_var_temporary);
1509 instructions->push_tail(tmp);
1510
1511 ir_if *const stmt = new(ctx) ir_if(op[0]);
1512 instructions->push_tail(stmt);
1513
1514 stmt->then_instructions.append_list(&rhs_instructions);
1515 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1516 ir_assignment *const then_assign =
1517 new(ctx) ir_assignment(then_deref, op[1]);
1518 stmt->then_instructions.push_tail(then_assign);
1519
1520 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1521 ir_assignment *const else_assign =
1522 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1523 stmt->else_instructions.push_tail(else_assign);
1524
1525 result = new(ctx) ir_dereference_variable(tmp);
1526 type = tmp->type;
1527 }
1528 break;
1529 }
1530
1531 case ast_logic_or: {
1532 exec_list rhs_instructions;
1533 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1534 "LHS", &error_emitted);
1535 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1536 "RHS", &error_emitted);
1537
1538 if (rhs_instructions.is_empty()) {
1539 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1540 type = result->type;
1541 } else {
1542 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1543 "or_tmp",
1544 ir_var_temporary);
1545 instructions->push_tail(tmp);
1546
1547 ir_if *const stmt = new(ctx) ir_if(op[0]);
1548 instructions->push_tail(stmt);
1549
1550 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1551 ir_assignment *const then_assign =
1552 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1553 stmt->then_instructions.push_tail(then_assign);
1554
1555 stmt->else_instructions.append_list(&rhs_instructions);
1556 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1557 ir_assignment *const else_assign =
1558 new(ctx) ir_assignment(else_deref, op[1]);
1559 stmt->else_instructions.push_tail(else_assign);
1560
1561 result = new(ctx) ir_dereference_variable(tmp);
1562 type = tmp->type;
1563 }
1564 break;
1565 }
1566
1567 case ast_logic_xor:
1568 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1569 *
1570 * "The logical binary operators and (&&), or ( | | ), and
1571 * exclusive or (^^). They operate only on two Boolean
1572 * expressions and result in a Boolean expression."
1573 */
1574 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1575 &error_emitted);
1576 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1577 &error_emitted);
1578
1579 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1580 op[0], op[1]);
1581 break;
1582
1583 case ast_logic_not:
1584 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1585 "operand", &error_emitted);
1586
1587 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1588 op[0], NULL);
1589 break;
1590
1591 case ast_mul_assign:
1592 case ast_div_assign:
1593 case ast_add_assign:
1594 case ast_sub_assign: {
1595 op[0] = this->subexpressions[0]->hir(instructions, state);
1596 op[1] = this->subexpressions[1]->hir(instructions, state);
1597
1598 type = arithmetic_result_type(op[0], op[1],
1599 (this->oper == ast_mul_assign),
1600 state, & loc);
1601
1602 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1603 op[0], op[1]);
1604
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611
1612 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1613 * explicitly test for this because none of the binary expression
1614 * operators allow array operands either.
1615 */
1616
1617 break;
1618 }
1619
1620 case ast_mod_assign: {
1621 op[0] = this->subexpressions[0]->hir(instructions, state);
1622 op[1] = this->subexpressions[1]->hir(instructions, state);
1623
1624 type = modulus_result_type(op[0], op[1], state, &loc);
1625
1626 assert(operations[this->oper] == ir_binop_mod);
1627
1628 ir_rvalue *temp_rhs;
1629 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1630 op[0], op[1]);
1631
1632 error_emitted =
1633 do_assignment(instructions, state,
1634 this->subexpressions[0]->non_lvalue_description,
1635 op[0]->clone(ctx, NULL), temp_rhs,
1636 &result, needs_rvalue, false,
1637 this->subexpressions[0]->get_location());
1638 break;
1639 }
1640
1641 case ast_ls_assign:
1642 case ast_rs_assign: {
1643 op[0] = this->subexpressions[0]->hir(instructions, state);
1644 op[1] = this->subexpressions[1]->hir(instructions, state);
1645 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1646 &loc);
1647 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1648 type, op[0], op[1]);
1649 error_emitted =
1650 do_assignment(instructions, state,
1651 this->subexpressions[0]->non_lvalue_description,
1652 op[0]->clone(ctx, NULL), temp_rhs,
1653 &result, needs_rvalue, false,
1654 this->subexpressions[0]->get_location());
1655 break;
1656 }
1657
1658 case ast_and_assign:
1659 case ast_xor_assign:
1660 case ast_or_assign: {
1661 op[0] = this->subexpressions[0]->hir(instructions, state);
1662 op[1] = this->subexpressions[1]->hir(instructions, state);
1663 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1664 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1665 type, op[0], op[1]);
1666 error_emitted =
1667 do_assignment(instructions, state,
1668 this->subexpressions[0]->non_lvalue_description,
1669 op[0]->clone(ctx, NULL), temp_rhs,
1670 &result, needs_rvalue, false,
1671 this->subexpressions[0]->get_location());
1672 break;
1673 }
1674
1675 case ast_conditional: {
1676 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1677 *
1678 * "The ternary selection operator (?:). It operates on three
1679 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1680 * first expression, which must result in a scalar Boolean."
1681 */
1682 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1683 "condition", &error_emitted);
1684
1685 /* The :? operator is implemented by generating an anonymous temporary
1686 * followed by an if-statement. The last instruction in each branch of
1687 * the if-statement assigns a value to the anonymous temporary. This
1688 * temporary is the r-value of the expression.
1689 */
1690 exec_list then_instructions;
1691 exec_list else_instructions;
1692
1693 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1694 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1695
1696 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1697 *
1698 * "The second and third expressions can be any type, as
1699 * long their types match, or there is a conversion in
1700 * Section 4.1.10 "Implicit Conversions" that can be applied
1701 * to one of the expressions to make their types match. This
1702 * resulting matching type is the type of the entire
1703 * expression."
1704 */
1705 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1706 && !apply_implicit_conversion(op[2]->type, op[1], state))
1707 || (op[1]->type != op[2]->type)) {
1708 YYLTYPE loc = this->subexpressions[1]->get_location();
1709
1710 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1711 "operator must have matching types");
1712 error_emitted = true;
1713 type = glsl_type::error_type;
1714 } else {
1715 type = op[1]->type;
1716 }
1717
1718 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1719 *
1720 * "The second and third expressions must be the same type, but can
1721 * be of any type other than an array."
1722 */
1723 if (type->is_array() &&
1724 !state->check_version(120, 300, &loc,
1725 "second and third operands of ?: operator "
1726 "cannot be arrays")) {
1727 error_emitted = true;
1728 }
1729
1730 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1731 *
1732 * "Except for array indexing, structure member selection, and
1733 * parentheses, opaque variables are not allowed to be operands in
1734 * expressions; such use results in a compile-time error."
1735 */
1736 if (type->contains_opaque()) {
1737 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1738 "of the ?: operator");
1739 error_emitted = true;
1740 }
1741
1742 ir_constant *cond_val = op[0]->constant_expression_value();
1743
1744 if (then_instructions.is_empty()
1745 && else_instructions.is_empty()
1746 && cond_val != NULL) {
1747 result = cond_val->value.b[0] ? op[1] : op[2];
1748 } else {
1749 /* The copy to conditional_tmp reads the whole array. */
1750 if (type->is_array()) {
1751 mark_whole_array_access(op[1]);
1752 mark_whole_array_access(op[2]);
1753 }
1754
1755 ir_variable *const tmp =
1756 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1757 instructions->push_tail(tmp);
1758
1759 ir_if *const stmt = new(ctx) ir_if(op[0]);
1760 instructions->push_tail(stmt);
1761
1762 then_instructions.move_nodes_to(& stmt->then_instructions);
1763 ir_dereference *const then_deref =
1764 new(ctx) ir_dereference_variable(tmp);
1765 ir_assignment *const then_assign =
1766 new(ctx) ir_assignment(then_deref, op[1]);
1767 stmt->then_instructions.push_tail(then_assign);
1768
1769 else_instructions.move_nodes_to(& stmt->else_instructions);
1770 ir_dereference *const else_deref =
1771 new(ctx) ir_dereference_variable(tmp);
1772 ir_assignment *const else_assign =
1773 new(ctx) ir_assignment(else_deref, op[2]);
1774 stmt->else_instructions.push_tail(else_assign);
1775
1776 result = new(ctx) ir_dereference_variable(tmp);
1777 }
1778 break;
1779 }
1780
1781 case ast_pre_inc:
1782 case ast_pre_dec: {
1783 this->non_lvalue_description = (this->oper == ast_pre_inc)
1784 ? "pre-increment operation" : "pre-decrement operation";
1785
1786 op[0] = this->subexpressions[0]->hir(instructions, state);
1787 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1788
1789 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1790
1791 ir_rvalue *temp_rhs;
1792 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1793 op[0], op[1]);
1794
1795 error_emitted =
1796 do_assignment(instructions, state,
1797 this->subexpressions[0]->non_lvalue_description,
1798 op[0]->clone(ctx, NULL), temp_rhs,
1799 &result, needs_rvalue, false,
1800 this->subexpressions[0]->get_location());
1801 break;
1802 }
1803
1804 case ast_post_inc:
1805 case ast_post_dec: {
1806 this->non_lvalue_description = (this->oper == ast_post_inc)
1807 ? "post-increment operation" : "post-decrement operation";
1808 op[0] = this->subexpressions[0]->hir(instructions, state);
1809 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1810
1811 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1812
1813 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1814
1815 ir_rvalue *temp_rhs;
1816 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1817 op[0], op[1]);
1818
1819 /* Get a temporary of a copy of the lvalue before it's modified.
1820 * This may get thrown away later.
1821 */
1822 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1823
1824 ir_rvalue *junk_rvalue;
1825 error_emitted =
1826 do_assignment(instructions, state,
1827 this->subexpressions[0]->non_lvalue_description,
1828 op[0]->clone(ctx, NULL), temp_rhs,
1829 &junk_rvalue, false, false,
1830 this->subexpressions[0]->get_location());
1831
1832 break;
1833 }
1834
1835 case ast_field_selection:
1836 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1837 break;
1838
1839 case ast_array_index: {
1840 YYLTYPE index_loc = subexpressions[1]->get_location();
1841
1842 op[0] = subexpressions[0]->hir(instructions, state);
1843 op[1] = subexpressions[1]->hir(instructions, state);
1844
1845 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1846 loc, index_loc);
1847
1848 if (result->type->is_error())
1849 error_emitted = true;
1850
1851 break;
1852 }
1853
1854 case ast_unsized_array_dim:
1855 assert(!"ast_unsized_array_dim: Should never get here.");
1856 break;
1857
1858 case ast_function_call:
1859 /* Should *NEVER* get here. ast_function_call should always be handled
1860 * by ast_function_expression::hir.
1861 */
1862 assert(0);
1863 break;
1864
1865 case ast_identifier: {
1866 /* ast_identifier can appear several places in a full abstract syntax
1867 * tree. This particular use must be at location specified in the grammar
1868 * as 'variable_identifier'.
1869 */
1870 ir_variable *var =
1871 state->symbols->get_variable(this->primary_expression.identifier);
1872
1873 if (var != NULL) {
1874 var->data.used = true;
1875 result = new(ctx) ir_dereference_variable(var);
1876 } else {
1877 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1878 this->primary_expression.identifier);
1879
1880 result = ir_rvalue::error_value(ctx);
1881 error_emitted = true;
1882 }
1883 break;
1884 }
1885
1886 case ast_int_constant:
1887 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1888 break;
1889
1890 case ast_uint_constant:
1891 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1892 break;
1893
1894 case ast_float_constant:
1895 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1896 break;
1897
1898 case ast_bool_constant:
1899 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1900 break;
1901
1902 case ast_double_constant:
1903 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1904 break;
1905
1906 case ast_sequence: {
1907 /* It should not be possible to generate a sequence in the AST without
1908 * any expressions in it.
1909 */
1910 assert(!this->expressions.is_empty());
1911
1912 /* The r-value of a sequence is the last expression in the sequence. If
1913 * the other expressions in the sequence do not have side-effects (and
1914 * therefore add instructions to the instruction list), they get dropped
1915 * on the floor.
1916 */
1917 exec_node *previous_tail_pred = NULL;
1918 YYLTYPE previous_operand_loc = loc;
1919
1920 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1921 /* If one of the operands of comma operator does not generate any
1922 * code, we want to emit a warning. At each pass through the loop
1923 * previous_tail_pred will point to the last instruction in the
1924 * stream *before* processing the previous operand. Naturally,
1925 * instructions->tail_pred will point to the last instruction in the
1926 * stream *after* processing the previous operand. If the two
1927 * pointers match, then the previous operand had no effect.
1928 *
1929 * The warning behavior here differs slightly from GCC. GCC will
1930 * only emit a warning if none of the left-hand operands have an
1931 * effect. However, it will emit a warning for each. I believe that
1932 * there are some cases in C (especially with GCC extensions) where
1933 * it is useful to have an intermediate step in a sequence have no
1934 * effect, but I don't think these cases exist in GLSL. Either way,
1935 * it would be a giant hassle to replicate that behavior.
1936 */
1937 if (previous_tail_pred == instructions->tail_pred) {
1938 _mesa_glsl_warning(&previous_operand_loc, state,
1939 "left-hand operand of comma expression has "
1940 "no effect");
1941 }
1942
1943 /* tail_pred is directly accessed instead of using the get_tail()
1944 * method for performance reasons. get_tail() has extra code to
1945 * return NULL when the list is empty. We don't care about that
1946 * here, so using tail_pred directly is fine.
1947 */
1948 previous_tail_pred = instructions->tail_pred;
1949 previous_operand_loc = ast->get_location();
1950
1951 result = ast->hir(instructions, state);
1952 }
1953
1954 /* Any errors should have already been emitted in the loop above.
1955 */
1956 error_emitted = true;
1957 break;
1958 }
1959 }
1960 type = NULL; /* use result->type, not type. */
1961 assert(result != NULL || !needs_rvalue);
1962
1963 if (result && result->type->is_error() && !error_emitted)
1964 _mesa_glsl_error(& loc, state, "type mismatch");
1965
1966 return result;
1967 }
1968
1969 bool
1970 ast_expression::has_sequence_subexpression() const
1971 {
1972 switch (this->oper) {
1973 case ast_plus:
1974 case ast_neg:
1975 case ast_bit_not:
1976 case ast_logic_not:
1977 case ast_pre_inc:
1978 case ast_pre_dec:
1979 case ast_post_inc:
1980 case ast_post_dec:
1981 return this->subexpressions[0]->has_sequence_subexpression();
1982
1983 case ast_assign:
1984 case ast_add:
1985 case ast_sub:
1986 case ast_mul:
1987 case ast_div:
1988 case ast_mod:
1989 case ast_lshift:
1990 case ast_rshift:
1991 case ast_less:
1992 case ast_greater:
1993 case ast_lequal:
1994 case ast_gequal:
1995 case ast_nequal:
1996 case ast_equal:
1997 case ast_bit_and:
1998 case ast_bit_xor:
1999 case ast_bit_or:
2000 case ast_logic_and:
2001 case ast_logic_or:
2002 case ast_logic_xor:
2003 case ast_array_index:
2004 case ast_mul_assign:
2005 case ast_div_assign:
2006 case ast_add_assign:
2007 case ast_sub_assign:
2008 case ast_mod_assign:
2009 case ast_ls_assign:
2010 case ast_rs_assign:
2011 case ast_and_assign:
2012 case ast_xor_assign:
2013 case ast_or_assign:
2014 return this->subexpressions[0]->has_sequence_subexpression() ||
2015 this->subexpressions[1]->has_sequence_subexpression();
2016
2017 case ast_conditional:
2018 return this->subexpressions[0]->has_sequence_subexpression() ||
2019 this->subexpressions[1]->has_sequence_subexpression() ||
2020 this->subexpressions[2]->has_sequence_subexpression();
2021
2022 case ast_sequence:
2023 return true;
2024
2025 case ast_field_selection:
2026 case ast_identifier:
2027 case ast_int_constant:
2028 case ast_uint_constant:
2029 case ast_float_constant:
2030 case ast_bool_constant:
2031 case ast_double_constant:
2032 return false;
2033
2034 case ast_aggregate:
2035 unreachable("ast_aggregate: Should never get here.");
2036
2037 case ast_function_call:
2038 unreachable("should be handled by ast_function_expression::hir");
2039
2040 case ast_unsized_array_dim:
2041 unreachable("ast_unsized_array_dim: Should never get here.");
2042 }
2043
2044 return false;
2045 }
2046
2047 ir_rvalue *
2048 ast_expression_statement::hir(exec_list *instructions,
2049 struct _mesa_glsl_parse_state *state)
2050 {
2051 /* It is possible to have expression statements that don't have an
2052 * expression. This is the solitary semicolon:
2053 *
2054 * for (i = 0; i < 5; i++)
2055 * ;
2056 *
2057 * In this case the expression will be NULL. Test for NULL and don't do
2058 * anything in that case.
2059 */
2060 if (expression != NULL)
2061 expression->hir_no_rvalue(instructions, state);
2062
2063 /* Statements do not have r-values.
2064 */
2065 return NULL;
2066 }
2067
2068
2069 ir_rvalue *
2070 ast_compound_statement::hir(exec_list *instructions,
2071 struct _mesa_glsl_parse_state *state)
2072 {
2073 if (new_scope)
2074 state->symbols->push_scope();
2075
2076 foreach_list_typed (ast_node, ast, link, &this->statements)
2077 ast->hir(instructions, state);
2078
2079 if (new_scope)
2080 state->symbols->pop_scope();
2081
2082 /* Compound statements do not have r-values.
2083 */
2084 return NULL;
2085 }
2086
2087 /**
2088 * Evaluate the given exec_node (which should be an ast_node representing
2089 * a single array dimension) and return its integer value.
2090 */
2091 static unsigned
2092 process_array_size(exec_node *node,
2093 struct _mesa_glsl_parse_state *state)
2094 {
2095 exec_list dummy_instructions;
2096
2097 ast_node *array_size = exec_node_data(ast_node, node, link);
2098
2099 /**
2100 * Dimensions other than the outermost dimension can by unsized if they
2101 * are immediately sized by a constructor or initializer.
2102 */
2103 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2104 return 0;
2105
2106 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2107 YYLTYPE loc = array_size->get_location();
2108
2109 if (ir == NULL) {
2110 _mesa_glsl_error(& loc, state,
2111 "array size could not be resolved");
2112 return 0;
2113 }
2114
2115 if (!ir->type->is_integer()) {
2116 _mesa_glsl_error(& loc, state,
2117 "array size must be integer type");
2118 return 0;
2119 }
2120
2121 if (!ir->type->is_scalar()) {
2122 _mesa_glsl_error(& loc, state,
2123 "array size must be scalar type");
2124 return 0;
2125 }
2126
2127 ir_constant *const size = ir->constant_expression_value();
2128 if (size == NULL || array_size->has_sequence_subexpression()) {
2129 _mesa_glsl_error(& loc, state, "array size must be a "
2130 "constant valued expression");
2131 return 0;
2132 }
2133
2134 if (size->value.i[0] <= 0) {
2135 _mesa_glsl_error(& loc, state, "array size must be > 0");
2136 return 0;
2137 }
2138
2139 assert(size->type == ir->type);
2140
2141 /* If the array size is const (and we've verified that
2142 * it is) then no instructions should have been emitted
2143 * when we converted it to HIR. If they were emitted,
2144 * then either the array size isn't const after all, or
2145 * we are emitting unnecessary instructions.
2146 */
2147 assert(dummy_instructions.is_empty());
2148
2149 return size->value.u[0];
2150 }
2151
2152 static const glsl_type *
2153 process_array_type(YYLTYPE *loc, const glsl_type *base,
2154 ast_array_specifier *array_specifier,
2155 struct _mesa_glsl_parse_state *state)
2156 {
2157 const glsl_type *array_type = base;
2158
2159 if (array_specifier != NULL) {
2160 if (base->is_array()) {
2161
2162 /* From page 19 (page 25) of the GLSL 1.20 spec:
2163 *
2164 * "Only one-dimensional arrays may be declared."
2165 */
2166 if (!state->check_arrays_of_arrays_allowed(loc)) {
2167 return glsl_type::error_type;
2168 }
2169 }
2170
2171 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2172 !node->is_head_sentinel(); node = node->prev) {
2173 unsigned array_size = process_array_size(node, state);
2174 array_type = glsl_type::get_array_instance(array_type, array_size);
2175 }
2176 }
2177
2178 return array_type;
2179 }
2180
2181 static bool
2182 precision_qualifier_allowed(const glsl_type *type)
2183 {
2184 /* Precision qualifiers apply to floating point, integer and opaque
2185 * types.
2186 *
2187 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2188 * "Any floating point or any integer declaration can have the type
2189 * preceded by one of these precision qualifiers [...] Literal
2190 * constants do not have precision qualifiers. Neither do Boolean
2191 * variables.
2192 *
2193 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2194 * spec also says:
2195 *
2196 * "Precision qualifiers are added for code portability with OpenGL
2197 * ES, not for functionality. They have the same syntax as in OpenGL
2198 * ES."
2199 *
2200 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2201 *
2202 * "uniform lowp sampler2D sampler;
2203 * highp vec2 coord;
2204 * ...
2205 * lowp vec4 col = texture2D (sampler, coord);
2206 * // texture2D returns lowp"
2207 *
2208 * From this, we infer that GLSL 1.30 (and later) should allow precision
2209 * qualifiers on sampler types just like float and integer types.
2210 */
2211 return (type->is_float()
2212 || type->is_integer()
2213 || type->contains_opaque())
2214 && !type->without_array()->is_record();
2215 }
2216
2217 const glsl_type *
2218 ast_type_specifier::glsl_type(const char **name,
2219 struct _mesa_glsl_parse_state *state) const
2220 {
2221 const struct glsl_type *type;
2222
2223 type = state->symbols->get_type(this->type_name);
2224 *name = this->type_name;
2225
2226 YYLTYPE loc = this->get_location();
2227 type = process_array_type(&loc, type, this->array_specifier, state);
2228
2229 return type;
2230 }
2231
2232 /**
2233 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2234 *
2235 * "The precision statement
2236 *
2237 * precision precision-qualifier type;
2238 *
2239 * can be used to establish a default precision qualifier. The type field can
2240 * be either int or float or any of the sampler types, (...) If type is float,
2241 * the directive applies to non-precision-qualified floating point type
2242 * (scalar, vector, and matrix) declarations. If type is int, the directive
2243 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2244 * and unsigned) declarations."
2245 *
2246 * We use the symbol table to keep the values of the default precisions for
2247 * each 'type' in each scope and we use the 'type' string from the precision
2248 * statement as key in the symbol table. When we want to retrieve the default
2249 * precision associated with a given glsl_type we need to know the type string
2250 * associated with it. This is what this function returns.
2251 */
2252 static const char *
2253 get_type_name_for_precision_qualifier(const glsl_type *type)
2254 {
2255 switch (type->base_type) {
2256 case GLSL_TYPE_FLOAT:
2257 return "float";
2258 case GLSL_TYPE_UINT:
2259 case GLSL_TYPE_INT:
2260 return "int";
2261 case GLSL_TYPE_ATOMIC_UINT:
2262 return "atomic_uint";
2263 case GLSL_TYPE_IMAGE:
2264 /* fallthrough */
2265 case GLSL_TYPE_SAMPLER: {
2266 const unsigned type_idx =
2267 type->sampler_array + 2 * type->sampler_shadow;
2268 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2269 assert(type_idx < 4);
2270 switch (type->sampled_type) {
2271 case GLSL_TYPE_FLOAT:
2272 switch (type->sampler_dimensionality) {
2273 case GLSL_SAMPLER_DIM_1D: {
2274 assert(type->base_type == GLSL_TYPE_SAMPLER);
2275 static const char *const names[4] = {
2276 "sampler1D", "sampler1DArray",
2277 "sampler1DShadow", "sampler1DArrayShadow"
2278 };
2279 return names[type_idx];
2280 }
2281 case GLSL_SAMPLER_DIM_2D: {
2282 static const char *const names[8] = {
2283 "sampler2D", "sampler2DArray",
2284 "sampler2DShadow", "sampler2DArrayShadow",
2285 "image2D", "image2DArray", NULL, NULL
2286 };
2287 return names[offset + type_idx];
2288 }
2289 case GLSL_SAMPLER_DIM_3D: {
2290 static const char *const names[8] = {
2291 "sampler3D", NULL, NULL, NULL,
2292 "image3D", NULL, NULL, NULL
2293 };
2294 return names[offset + type_idx];
2295 }
2296 case GLSL_SAMPLER_DIM_CUBE: {
2297 static const char *const names[8] = {
2298 "samplerCube", "samplerCubeArray",
2299 "samplerCubeShadow", "samplerCubeArrayShadow",
2300 "imageCube", NULL, NULL, NULL
2301 };
2302 return names[offset + type_idx];
2303 }
2304 case GLSL_SAMPLER_DIM_MS: {
2305 assert(type->base_type == GLSL_TYPE_SAMPLER);
2306 static const char *const names[4] = {
2307 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2308 };
2309 return names[type_idx];
2310 }
2311 case GLSL_SAMPLER_DIM_RECT: {
2312 assert(type->base_type == GLSL_TYPE_SAMPLER);
2313 static const char *const names[4] = {
2314 "samplerRect", NULL, "samplerRectShadow", NULL
2315 };
2316 return names[type_idx];
2317 }
2318 case GLSL_SAMPLER_DIM_BUF: {
2319 assert(type->base_type == GLSL_TYPE_SAMPLER);
2320 static const char *const names[4] = {
2321 "samplerBuffer", NULL, NULL, NULL
2322 };
2323 return names[type_idx];
2324 }
2325 case GLSL_SAMPLER_DIM_EXTERNAL: {
2326 assert(type->base_type == GLSL_TYPE_SAMPLER);
2327 static const char *const names[4] = {
2328 "samplerExternalOES", NULL, NULL, NULL
2329 };
2330 return names[type_idx];
2331 }
2332 default:
2333 unreachable("Unsupported sampler/image dimensionality");
2334 } /* sampler/image float dimensionality */
2335 break;
2336 case GLSL_TYPE_INT:
2337 switch (type->sampler_dimensionality) {
2338 case GLSL_SAMPLER_DIM_1D: {
2339 assert(type->base_type == GLSL_TYPE_SAMPLER);
2340 static const char *const names[4] = {
2341 "isampler1D", "isampler1DArray", NULL, NULL
2342 };
2343 return names[type_idx];
2344 }
2345 case GLSL_SAMPLER_DIM_2D: {
2346 static const char *const names[8] = {
2347 "isampler2D", "isampler2DArray", NULL, NULL,
2348 "iimage2D", "iimage2DArray", NULL, NULL
2349 };
2350 return names[offset + type_idx];
2351 }
2352 case GLSL_SAMPLER_DIM_3D: {
2353 static const char *const names[8] = {
2354 "isampler3D", NULL, NULL, NULL,
2355 "iimage3D", NULL, NULL, NULL
2356 };
2357 return names[offset + type_idx];
2358 }
2359 case GLSL_SAMPLER_DIM_CUBE: {
2360 static const char *const names[8] = {
2361 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2362 "iimageCube", NULL, NULL, NULL
2363 };
2364 return names[offset + type_idx];
2365 }
2366 case GLSL_SAMPLER_DIM_MS: {
2367 assert(type->base_type == GLSL_TYPE_SAMPLER);
2368 static const char *const names[4] = {
2369 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2370 };
2371 return names[type_idx];
2372 }
2373 case GLSL_SAMPLER_DIM_RECT: {
2374 assert(type->base_type == GLSL_TYPE_SAMPLER);
2375 static const char *const names[4] = {
2376 "isamplerRect", NULL, "isamplerRectShadow", NULL
2377 };
2378 return names[type_idx];
2379 }
2380 case GLSL_SAMPLER_DIM_BUF: {
2381 assert(type->base_type == GLSL_TYPE_SAMPLER);
2382 static const char *const names[4] = {
2383 "isamplerBuffer", NULL, NULL, NULL
2384 };
2385 return names[type_idx];
2386 }
2387 default:
2388 unreachable("Unsupported isampler/iimage dimensionality");
2389 } /* sampler/image int dimensionality */
2390 break;
2391 case GLSL_TYPE_UINT:
2392 switch (type->sampler_dimensionality) {
2393 case GLSL_SAMPLER_DIM_1D: {
2394 assert(type->base_type == GLSL_TYPE_SAMPLER);
2395 static const char *const names[4] = {
2396 "usampler1D", "usampler1DArray", NULL, NULL
2397 };
2398 return names[type_idx];
2399 }
2400 case GLSL_SAMPLER_DIM_2D: {
2401 static const char *const names[8] = {
2402 "usampler2D", "usampler2DArray", NULL, NULL,
2403 "uimage2D", "uimage2DArray", NULL, NULL
2404 };
2405 return names[offset + type_idx];
2406 }
2407 case GLSL_SAMPLER_DIM_3D: {
2408 static const char *const names[8] = {
2409 "usampler3D", NULL, NULL, NULL,
2410 "uimage3D", NULL, NULL, NULL
2411 };
2412 return names[offset + type_idx];
2413 }
2414 case GLSL_SAMPLER_DIM_CUBE: {
2415 static const char *const names[8] = {
2416 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2417 "uimageCube", NULL, NULL, NULL
2418 };
2419 return names[offset + type_idx];
2420 }
2421 case GLSL_SAMPLER_DIM_MS: {
2422 assert(type->base_type == GLSL_TYPE_SAMPLER);
2423 static const char *const names[4] = {
2424 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2425 };
2426 return names[type_idx];
2427 }
2428 case GLSL_SAMPLER_DIM_RECT: {
2429 assert(type->base_type == GLSL_TYPE_SAMPLER);
2430 static const char *const names[4] = {
2431 "usamplerRect", NULL, "usamplerRectShadow", NULL
2432 };
2433 return names[type_idx];
2434 }
2435 case GLSL_SAMPLER_DIM_BUF: {
2436 assert(type->base_type == GLSL_TYPE_SAMPLER);
2437 static const char *const names[4] = {
2438 "usamplerBuffer", NULL, NULL, NULL
2439 };
2440 return names[type_idx];
2441 }
2442 default:
2443 unreachable("Unsupported usampler/uimage dimensionality");
2444 } /* sampler/image uint dimensionality */
2445 break;
2446 default:
2447 unreachable("Unsupported sampler/image type");
2448 } /* sampler/image type */
2449 break;
2450 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2451 break;
2452 default:
2453 unreachable("Unsupported type");
2454 } /* base type */
2455 }
2456
2457 static unsigned
2458 select_gles_precision(unsigned qual_precision,
2459 const glsl_type *type,
2460 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2461 {
2462 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2463 * In GLES we take the precision from the type qualifier if present,
2464 * otherwise, if the type of the variable allows precision qualifiers at
2465 * all, we look for the default precision qualifier for that type in the
2466 * current scope.
2467 */
2468 assert(state->es_shader);
2469
2470 unsigned precision = GLSL_PRECISION_NONE;
2471 if (qual_precision) {
2472 precision = qual_precision;
2473 } else if (precision_qualifier_allowed(type)) {
2474 const char *type_name =
2475 get_type_name_for_precision_qualifier(type->without_array());
2476 assert(type_name != NULL);
2477
2478 precision =
2479 state->symbols->get_default_precision_qualifier(type_name);
2480 if (precision == ast_precision_none) {
2481 _mesa_glsl_error(loc, state,
2482 "No precision specified in this scope for type `%s'",
2483 type->name);
2484 }
2485 }
2486 return precision;
2487 }
2488
2489 const glsl_type *
2490 ast_fully_specified_type::glsl_type(const char **name,
2491 struct _mesa_glsl_parse_state *state) const
2492 {
2493 return this->specifier->glsl_type(name, state);
2494 }
2495
2496 /**
2497 * Determine whether a toplevel variable declaration declares a varying. This
2498 * function operates by examining the variable's mode and the shader target,
2499 * so it correctly identifies linkage variables regardless of whether they are
2500 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2501 *
2502 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2503 * this function will produce undefined results.
2504 */
2505 static bool
2506 is_varying_var(ir_variable *var, gl_shader_stage target)
2507 {
2508 switch (target) {
2509 case MESA_SHADER_VERTEX:
2510 return var->data.mode == ir_var_shader_out;
2511 case MESA_SHADER_FRAGMENT:
2512 return var->data.mode == ir_var_shader_in;
2513 default:
2514 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2515 }
2516 }
2517
2518
2519 /**
2520 * Matrix layout qualifiers are only allowed on certain types
2521 */
2522 static void
2523 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2524 YYLTYPE *loc,
2525 const glsl_type *type,
2526 ir_variable *var)
2527 {
2528 if (var && !var->is_in_buffer_block()) {
2529 /* Layout qualifiers may only apply to interface blocks and fields in
2530 * them.
2531 */
2532 _mesa_glsl_error(loc, state,
2533 "uniform block layout qualifiers row_major and "
2534 "column_major may not be applied to variables "
2535 "outside of uniform blocks");
2536 } else if (!type->without_array()->is_matrix()) {
2537 /* The OpenGL ES 3.0 conformance tests did not originally allow
2538 * matrix layout qualifiers on non-matrices. However, the OpenGL
2539 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2540 * amended to specifically allow these layouts on all types. Emit
2541 * a warning so that people know their code may not be portable.
2542 */
2543 _mesa_glsl_warning(loc, state,
2544 "uniform block layout qualifiers row_major and "
2545 "column_major applied to non-matrix types may "
2546 "be rejected by older compilers");
2547 }
2548 }
2549
2550 static bool
2551 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2552 YYLTYPE *loc,
2553 const char *qual_indentifier,
2554 ast_expression *const_expression,
2555 unsigned *value)
2556 {
2557 exec_list dummy_instructions;
2558
2559 if (const_expression == NULL) {
2560 *value = 0;
2561 return true;
2562 }
2563
2564 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2565
2566 ir_constant *const const_int = ir->constant_expression_value();
2567 if (const_int == NULL || !const_int->type->is_integer()) {
2568 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2569 "expression", qual_indentifier);
2570 return false;
2571 }
2572
2573 if (const_int->value.i[0] < 0) {
2574 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2575 qual_indentifier, const_int->value.u[0]);
2576 return false;
2577 }
2578
2579 /* If the location is const (and we've verified that
2580 * it is) then no instructions should have been emitted
2581 * when we converted it to HIR. If they were emitted,
2582 * then either the location isn't const after all, or
2583 * we are emitting unnecessary instructions.
2584 */
2585 assert(dummy_instructions.is_empty());
2586
2587 *value = const_int->value.u[0];
2588 return true;
2589 }
2590
2591 static bool
2592 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2593 unsigned stream)
2594 {
2595 if (stream >= state->ctx->Const.MaxVertexStreams) {
2596 _mesa_glsl_error(loc, state,
2597 "invalid stream specified %d is larger than "
2598 "MAX_VERTEX_STREAMS - 1 (%d).",
2599 stream, state->ctx->Const.MaxVertexStreams - 1);
2600 return false;
2601 }
2602
2603 return true;
2604 }
2605
2606 static void
2607 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2608 YYLTYPE *loc,
2609 ir_variable *var,
2610 const glsl_type *type,
2611 const ast_type_qualifier *qual)
2612 {
2613 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2614 _mesa_glsl_error(loc, state,
2615 "the \"binding\" qualifier only applies to uniforms and "
2616 "shader storage buffer objects");
2617 return;
2618 }
2619
2620 unsigned qual_binding;
2621 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2622 &qual_binding)) {
2623 return;
2624 }
2625
2626 const struct gl_context *const ctx = state->ctx;
2627 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2628 unsigned max_index = qual_binding + elements - 1;
2629 const glsl_type *base_type = type->without_array();
2630
2631 if (base_type->is_interface()) {
2632 /* UBOs. From page 60 of the GLSL 4.20 specification:
2633 * "If the binding point for any uniform block instance is less than zero,
2634 * or greater than or equal to the implementation-dependent maximum
2635 * number of uniform buffer bindings, a compilation error will occur.
2636 * When the binding identifier is used with a uniform block instanced as
2637 * an array of size N, all elements of the array from binding through
2638 * binding + N – 1 must be within this range."
2639 *
2640 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2641 */
2642 if (qual->flags.q.uniform &&
2643 max_index >= ctx->Const.MaxUniformBufferBindings) {
2644 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2645 "the maximum number of UBO binding points (%d)",
2646 qual_binding, elements,
2647 ctx->Const.MaxUniformBufferBindings);
2648 return;
2649 }
2650
2651 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2652 * "If the binding point for any uniform or shader storage block instance
2653 * is less than zero, or greater than or equal to the
2654 * implementation-dependent maximum number of uniform buffer bindings, a
2655 * compile-time error will occur. When the binding identifier is used
2656 * with a uniform or shader storage block instanced as an array of size
2657 * N, all elements of the array from binding through binding + N – 1 must
2658 * be within this range."
2659 */
2660 if (qual->flags.q.buffer &&
2661 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2662 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2663 "the maximum number of SSBO binding points (%d)",
2664 qual_binding, elements,
2665 ctx->Const.MaxShaderStorageBufferBindings);
2666 return;
2667 }
2668 } else if (base_type->is_sampler()) {
2669 /* Samplers. From page 63 of the GLSL 4.20 specification:
2670 * "If the binding is less than zero, or greater than or equal to the
2671 * implementation-dependent maximum supported number of units, a
2672 * compilation error will occur. When the binding identifier is used
2673 * with an array of size N, all elements of the array from binding
2674 * through binding + N - 1 must be within this range."
2675 */
2676 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2677
2678 if (max_index >= limit) {
2679 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2680 "exceeds the maximum number of texture image units "
2681 "(%u)", qual_binding, elements, limit);
2682
2683 return;
2684 }
2685 } else if (base_type->contains_atomic()) {
2686 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2687 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2688 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2689 " maximum number of atomic counter buffer bindings"
2690 "(%u)", qual_binding,
2691 ctx->Const.MaxAtomicBufferBindings);
2692
2693 return;
2694 }
2695 } else if ((state->is_version(420, 310) ||
2696 state->ARB_shading_language_420pack_enable) &&
2697 base_type->is_image()) {
2698 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2699 if (max_index >= ctx->Const.MaxImageUnits) {
2700 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2701 " maximum number of image units (%d)", max_index,
2702 ctx->Const.MaxImageUnits);
2703 return;
2704 }
2705
2706 } else {
2707 _mesa_glsl_error(loc, state,
2708 "the \"binding\" qualifier only applies to uniform "
2709 "blocks, opaque variables, or arrays thereof");
2710 return;
2711 }
2712
2713 var->data.explicit_binding = true;
2714 var->data.binding = qual_binding;
2715
2716 return;
2717 }
2718
2719
2720 static glsl_interp_qualifier
2721 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2722 ir_variable_mode mode,
2723 struct _mesa_glsl_parse_state *state,
2724 YYLTYPE *loc)
2725 {
2726 glsl_interp_qualifier interpolation;
2727 if (qual->flags.q.flat)
2728 interpolation = INTERP_QUALIFIER_FLAT;
2729 else if (qual->flags.q.noperspective)
2730 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2731 else if (qual->flags.q.smooth)
2732 interpolation = INTERP_QUALIFIER_SMOOTH;
2733 else
2734 interpolation = INTERP_QUALIFIER_NONE;
2735
2736 if (interpolation != INTERP_QUALIFIER_NONE) {
2737 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2738 _mesa_glsl_error(loc, state,
2739 "interpolation qualifier `%s' can only be applied to "
2740 "shader inputs or outputs.",
2741 interpolation_string(interpolation));
2742
2743 }
2744
2745 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2746 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2747 _mesa_glsl_error(loc, state,
2748 "interpolation qualifier `%s' cannot be applied to "
2749 "vertex shader inputs or fragment shader outputs",
2750 interpolation_string(interpolation));
2751 }
2752 } else if (state->es_shader &&
2753 ((mode == ir_var_shader_in &&
2754 state->stage != MESA_SHADER_VERTEX) ||
2755 (mode == ir_var_shader_out &&
2756 state->stage != MESA_SHADER_FRAGMENT))) {
2757 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2758 *
2759 * "When no interpolation qualifier is present, smooth interpolation
2760 * is used."
2761 */
2762 interpolation = INTERP_QUALIFIER_SMOOTH;
2763 }
2764
2765 return interpolation;
2766 }
2767
2768
2769 static void
2770 apply_explicit_location(const struct ast_type_qualifier *qual,
2771 ir_variable *var,
2772 struct _mesa_glsl_parse_state *state,
2773 YYLTYPE *loc)
2774 {
2775 bool fail = false;
2776
2777 unsigned qual_location;
2778 if (!process_qualifier_constant(state, loc, "location", qual->location,
2779 &qual_location)) {
2780 return;
2781 }
2782
2783 /* Checks for GL_ARB_explicit_uniform_location. */
2784 if (qual->flags.q.uniform) {
2785 if (!state->check_explicit_uniform_location_allowed(loc, var))
2786 return;
2787
2788 const struct gl_context *const ctx = state->ctx;
2789 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2790
2791 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2792 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2793 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2794 ctx->Const.MaxUserAssignableUniformLocations);
2795 return;
2796 }
2797
2798 var->data.explicit_location = true;
2799 var->data.location = qual_location;
2800 return;
2801 }
2802
2803 /* Between GL_ARB_explicit_attrib_location an
2804 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2805 * stage can be assigned explicit locations. The checking here associates
2806 * the correct extension with the correct stage's input / output:
2807 *
2808 * input output
2809 * ----- ------
2810 * vertex explicit_loc sso
2811 * tess control sso sso
2812 * tess eval sso sso
2813 * geometry sso sso
2814 * fragment sso explicit_loc
2815 */
2816 switch (state->stage) {
2817 case MESA_SHADER_VERTEX:
2818 if (var->data.mode == ir_var_shader_in) {
2819 if (!state->check_explicit_attrib_location_allowed(loc, var))
2820 return;
2821
2822 break;
2823 }
2824
2825 if (var->data.mode == ir_var_shader_out) {
2826 if (!state->check_separate_shader_objects_allowed(loc, var))
2827 return;
2828
2829 break;
2830 }
2831
2832 fail = true;
2833 break;
2834
2835 case MESA_SHADER_TESS_CTRL:
2836 case MESA_SHADER_TESS_EVAL:
2837 case MESA_SHADER_GEOMETRY:
2838 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2839 if (!state->check_separate_shader_objects_allowed(loc, var))
2840 return;
2841
2842 break;
2843 }
2844
2845 fail = true;
2846 break;
2847
2848 case MESA_SHADER_FRAGMENT:
2849 if (var->data.mode == ir_var_shader_in) {
2850 if (!state->check_separate_shader_objects_allowed(loc, var))
2851 return;
2852
2853 break;
2854 }
2855
2856 if (var->data.mode == ir_var_shader_out) {
2857 if (!state->check_explicit_attrib_location_allowed(loc, var))
2858 return;
2859
2860 break;
2861 }
2862
2863 fail = true;
2864 break;
2865
2866 case MESA_SHADER_COMPUTE:
2867 _mesa_glsl_error(loc, state,
2868 "compute shader variables cannot be given "
2869 "explicit locations");
2870 return;
2871 };
2872
2873 if (fail) {
2874 _mesa_glsl_error(loc, state,
2875 "%s cannot be given an explicit location in %s shader",
2876 mode_string(var),
2877 _mesa_shader_stage_to_string(state->stage));
2878 } else {
2879 var->data.explicit_location = true;
2880
2881 switch (state->stage) {
2882 case MESA_SHADER_VERTEX:
2883 var->data.location = (var->data.mode == ir_var_shader_in)
2884 ? (qual_location + VERT_ATTRIB_GENERIC0)
2885 : (qual_location + VARYING_SLOT_VAR0);
2886 break;
2887
2888 case MESA_SHADER_TESS_CTRL:
2889 case MESA_SHADER_TESS_EVAL:
2890 case MESA_SHADER_GEOMETRY:
2891 if (var->data.patch)
2892 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2893 else
2894 var->data.location = qual_location + VARYING_SLOT_VAR0;
2895 break;
2896
2897 case MESA_SHADER_FRAGMENT:
2898 var->data.location = (var->data.mode == ir_var_shader_out)
2899 ? (qual_location + FRAG_RESULT_DATA0)
2900 : (qual_location + VARYING_SLOT_VAR0);
2901 break;
2902 case MESA_SHADER_COMPUTE:
2903 assert(!"Unexpected shader type");
2904 break;
2905 }
2906
2907 /* Check if index was set for the uniform instead of the function */
2908 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2909 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2910 "used with subroutine functions");
2911 return;
2912 }
2913
2914 unsigned qual_index;
2915 if (qual->flags.q.explicit_index &&
2916 process_qualifier_constant(state, loc, "index", qual->index,
2917 &qual_index)) {
2918 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2919 * Layout Qualifiers):
2920 *
2921 * "It is also a compile-time error if a fragment shader
2922 * sets a layout index to less than 0 or greater than 1."
2923 *
2924 * Older specifications don't mandate a behavior; we take
2925 * this as a clarification and always generate the error.
2926 */
2927 if (qual_index > 1) {
2928 _mesa_glsl_error(loc, state,
2929 "explicit index may only be 0 or 1");
2930 } else {
2931 var->data.explicit_index = true;
2932 var->data.index = qual_index;
2933 }
2934 }
2935 }
2936 }
2937
2938 static void
2939 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2940 ir_variable *var,
2941 struct _mesa_glsl_parse_state *state,
2942 YYLTYPE *loc)
2943 {
2944 const glsl_type *base_type = var->type->without_array();
2945
2946 if (base_type->is_image()) {
2947 if (var->data.mode != ir_var_uniform &&
2948 var->data.mode != ir_var_function_in) {
2949 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2950 "function parameters or uniform-qualified "
2951 "global variables");
2952 }
2953
2954 var->data.image_read_only |= qual->flags.q.read_only;
2955 var->data.image_write_only |= qual->flags.q.write_only;
2956 var->data.image_coherent |= qual->flags.q.coherent;
2957 var->data.image_volatile |= qual->flags.q._volatile;
2958 var->data.image_restrict |= qual->flags.q.restrict_flag;
2959 var->data.read_only = true;
2960
2961 if (qual->flags.q.explicit_image_format) {
2962 if (var->data.mode == ir_var_function_in) {
2963 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2964 "used on image function parameters");
2965 }
2966
2967 if (qual->image_base_type != base_type->sampled_type) {
2968 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2969 "base data type of the image");
2970 }
2971
2972 var->data.image_format = qual->image_format;
2973 } else {
2974 if (var->data.mode == ir_var_uniform) {
2975 if (state->es_shader) {
2976 _mesa_glsl_error(loc, state, "all image uniforms "
2977 "must have a format layout qualifier");
2978
2979 } else if (!qual->flags.q.write_only) {
2980 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2981 "`writeonly' must have a format layout "
2982 "qualifier");
2983 }
2984 }
2985
2986 var->data.image_format = GL_NONE;
2987 }
2988
2989 /* From page 70 of the GLSL ES 3.1 specification:
2990 *
2991 * "Except for image variables qualified with the format qualifiers
2992 * r32f, r32i, and r32ui, image variables must specify either memory
2993 * qualifier readonly or the memory qualifier writeonly."
2994 */
2995 if (state->es_shader &&
2996 var->data.image_format != GL_R32F &&
2997 var->data.image_format != GL_R32I &&
2998 var->data.image_format != GL_R32UI &&
2999 !var->data.image_read_only &&
3000 !var->data.image_write_only) {
3001 _mesa_glsl_error(loc, state, "image variables of format other than "
3002 "r32f, r32i or r32ui must be qualified `readonly' or "
3003 "`writeonly'");
3004 }
3005
3006 } else if (qual->flags.q.read_only ||
3007 qual->flags.q.write_only ||
3008 qual->flags.q.coherent ||
3009 qual->flags.q._volatile ||
3010 qual->flags.q.restrict_flag ||
3011 qual->flags.q.explicit_image_format) {
3012 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3013 "images");
3014 }
3015 }
3016
3017 static inline const char*
3018 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3019 {
3020 if (origin_upper_left && pixel_center_integer)
3021 return "origin_upper_left, pixel_center_integer";
3022 else if (origin_upper_left)
3023 return "origin_upper_left";
3024 else if (pixel_center_integer)
3025 return "pixel_center_integer";
3026 else
3027 return " ";
3028 }
3029
3030 static inline bool
3031 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3032 const struct ast_type_qualifier *qual)
3033 {
3034 /* If gl_FragCoord was previously declared, and the qualifiers were
3035 * different in any way, return true.
3036 */
3037 if (state->fs_redeclares_gl_fragcoord) {
3038 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3039 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3040 }
3041
3042 return false;
3043 }
3044
3045 static inline void
3046 validate_array_dimensions(const glsl_type *t,
3047 struct _mesa_glsl_parse_state *state,
3048 YYLTYPE *loc) {
3049 if (t->is_array()) {
3050 t = t->fields.array;
3051 while (t->is_array()) {
3052 if (t->is_unsized_array()) {
3053 _mesa_glsl_error(loc, state,
3054 "only the outermost array dimension can "
3055 "be unsized",
3056 t->name);
3057 break;
3058 }
3059 t = t->fields.array;
3060 }
3061 }
3062 }
3063
3064 static void
3065 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3066 ir_variable *var,
3067 struct _mesa_glsl_parse_state *state,
3068 YYLTYPE *loc)
3069 {
3070 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3071
3072 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3073 *
3074 * "Within any shader, the first redeclarations of gl_FragCoord
3075 * must appear before any use of gl_FragCoord."
3076 *
3077 * Generate a compiler error if above condition is not met by the
3078 * fragment shader.
3079 */
3080 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3081 if (earlier != NULL &&
3082 earlier->data.used &&
3083 !state->fs_redeclares_gl_fragcoord) {
3084 _mesa_glsl_error(loc, state,
3085 "gl_FragCoord used before its first redeclaration "
3086 "in fragment shader");
3087 }
3088
3089 /* Make sure all gl_FragCoord redeclarations specify the same layout
3090 * qualifiers.
3091 */
3092 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3093 const char *const qual_string =
3094 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3095 qual->flags.q.pixel_center_integer);
3096
3097 const char *const state_string =
3098 get_layout_qualifier_string(state->fs_origin_upper_left,
3099 state->fs_pixel_center_integer);
3100
3101 _mesa_glsl_error(loc, state,
3102 "gl_FragCoord redeclared with different layout "
3103 "qualifiers (%s) and (%s) ",
3104 state_string,
3105 qual_string);
3106 }
3107 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3108 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3109 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3110 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3111 state->fs_redeclares_gl_fragcoord =
3112 state->fs_origin_upper_left ||
3113 state->fs_pixel_center_integer ||
3114 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3115 }
3116
3117 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3118 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3119 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3120 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3121 const char *const qual_string = (qual->flags.q.origin_upper_left)
3122 ? "origin_upper_left" : "pixel_center_integer";
3123
3124 _mesa_glsl_error(loc, state,
3125 "layout qualifier `%s' can only be applied to "
3126 "fragment shader input `gl_FragCoord'",
3127 qual_string);
3128 }
3129
3130 if (qual->flags.q.explicit_location) {
3131 apply_explicit_location(qual, var, state, loc);
3132 } else if (qual->flags.q.explicit_index) {
3133 if (!qual->flags.q.subroutine_def)
3134 _mesa_glsl_error(loc, state,
3135 "explicit index requires explicit location");
3136 }
3137
3138 if (qual->flags.q.explicit_binding) {
3139 apply_explicit_binding(state, loc, var, var->type, qual);
3140 }
3141
3142 if (state->stage == MESA_SHADER_GEOMETRY &&
3143 qual->flags.q.out && qual->flags.q.stream) {
3144 unsigned qual_stream;
3145 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3146 &qual_stream) &&
3147 validate_stream_qualifier(loc, state, qual_stream)) {
3148 var->data.stream = qual_stream;
3149 }
3150 }
3151
3152 if (var->type->contains_atomic()) {
3153 if (var->data.mode == ir_var_uniform) {
3154 if (var->data.explicit_binding) {
3155 unsigned *offset =
3156 &state->atomic_counter_offsets[var->data.binding];
3157
3158 if (*offset % ATOMIC_COUNTER_SIZE)
3159 _mesa_glsl_error(loc, state,
3160 "misaligned atomic counter offset");
3161
3162 var->data.offset = *offset;
3163 *offset += var->type->atomic_size();
3164
3165 } else {
3166 _mesa_glsl_error(loc, state,
3167 "atomic counters require explicit binding point");
3168 }
3169 } else if (var->data.mode != ir_var_function_in) {
3170 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3171 "function parameters or uniform-qualified "
3172 "global variables");
3173 }
3174 }
3175
3176 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3177 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3178 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3179 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3180 * These extensions and all following extensions that add the 'layout'
3181 * keyword have been modified to require the use of 'in' or 'out'.
3182 *
3183 * The following extension do not allow the deprecated keywords:
3184 *
3185 * GL_AMD_conservative_depth
3186 * GL_ARB_conservative_depth
3187 * GL_ARB_gpu_shader5
3188 * GL_ARB_separate_shader_objects
3189 * GL_ARB_tessellation_shader
3190 * GL_ARB_transform_feedback3
3191 * GL_ARB_uniform_buffer_object
3192 *
3193 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3194 * allow layout with the deprecated keywords.
3195 */
3196 const bool relaxed_layout_qualifier_checking =
3197 state->ARB_fragment_coord_conventions_enable;
3198
3199 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3200 || qual->flags.q.varying;
3201 if (qual->has_layout() && uses_deprecated_qualifier) {
3202 if (relaxed_layout_qualifier_checking) {
3203 _mesa_glsl_warning(loc, state,
3204 "`layout' qualifier may not be used with "
3205 "`attribute' or `varying'");
3206 } else {
3207 _mesa_glsl_error(loc, state,
3208 "`layout' qualifier may not be used with "
3209 "`attribute' or `varying'");
3210 }
3211 }
3212
3213 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3214 * AMD_conservative_depth.
3215 */
3216 int depth_layout_count = qual->flags.q.depth_any
3217 + qual->flags.q.depth_greater
3218 + qual->flags.q.depth_less
3219 + qual->flags.q.depth_unchanged;
3220 if (depth_layout_count > 0
3221 && !state->AMD_conservative_depth_enable
3222 && !state->ARB_conservative_depth_enable) {
3223 _mesa_glsl_error(loc, state,
3224 "extension GL_AMD_conservative_depth or "
3225 "GL_ARB_conservative_depth must be enabled "
3226 "to use depth layout qualifiers");
3227 } else if (depth_layout_count > 0
3228 && strcmp(var->name, "gl_FragDepth") != 0) {
3229 _mesa_glsl_error(loc, state,
3230 "depth layout qualifiers can be applied only to "
3231 "gl_FragDepth");
3232 } else if (depth_layout_count > 1
3233 && strcmp(var->name, "gl_FragDepth") == 0) {
3234 _mesa_glsl_error(loc, state,
3235 "at most one depth layout qualifier can be applied to "
3236 "gl_FragDepth");
3237 }
3238 if (qual->flags.q.depth_any)
3239 var->data.depth_layout = ir_depth_layout_any;
3240 else if (qual->flags.q.depth_greater)
3241 var->data.depth_layout = ir_depth_layout_greater;
3242 else if (qual->flags.q.depth_less)
3243 var->data.depth_layout = ir_depth_layout_less;
3244 else if (qual->flags.q.depth_unchanged)
3245 var->data.depth_layout = ir_depth_layout_unchanged;
3246 else
3247 var->data.depth_layout = ir_depth_layout_none;
3248
3249 if (qual->flags.q.std140 ||
3250 qual->flags.q.std430 ||
3251 qual->flags.q.packed ||
3252 qual->flags.q.shared) {
3253 _mesa_glsl_error(loc, state,
3254 "uniform and shader storage block layout qualifiers "
3255 "std140, std430, packed, and shared can only be "
3256 "applied to uniform or shader storage blocks, not "
3257 "members");
3258 }
3259
3260 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3261 validate_matrix_layout_for_type(state, loc, var->type, var);
3262 }
3263
3264 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3265 * Inputs):
3266 *
3267 * "Fragment shaders also allow the following layout qualifier on in only
3268 * (not with variable declarations)
3269 * layout-qualifier-id
3270 * early_fragment_tests
3271 * [...]"
3272 */
3273 if (qual->flags.q.early_fragment_tests) {
3274 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3275 "valid in fragment shader input layout declaration.");
3276 }
3277 }
3278
3279 static void
3280 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3281 ir_variable *var,
3282 struct _mesa_glsl_parse_state *state,
3283 YYLTYPE *loc,
3284 bool is_parameter)
3285 {
3286 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3287
3288 if (qual->flags.q.invariant) {
3289 if (var->data.used) {
3290 _mesa_glsl_error(loc, state,
3291 "variable `%s' may not be redeclared "
3292 "`invariant' after being used",
3293 var->name);
3294 } else {
3295 var->data.invariant = 1;
3296 }
3297 }
3298
3299 if (qual->flags.q.precise) {
3300 if (var->data.used) {
3301 _mesa_glsl_error(loc, state,
3302 "variable `%s' may not be redeclared "
3303 "`precise' after being used",
3304 var->name);
3305 } else {
3306 var->data.precise = 1;
3307 }
3308 }
3309
3310 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3311 _mesa_glsl_error(loc, state,
3312 "`subroutine' may only be applied to uniforms, "
3313 "subroutine type declarations, or function definitions");
3314 }
3315
3316 if (qual->flags.q.constant || qual->flags.q.attribute
3317 || qual->flags.q.uniform
3318 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3319 var->data.read_only = 1;
3320
3321 if (qual->flags.q.centroid)
3322 var->data.centroid = 1;
3323
3324 if (qual->flags.q.sample)
3325 var->data.sample = 1;
3326
3327 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3328 if (state->es_shader) {
3329 var->data.precision =
3330 select_gles_precision(qual->precision, var->type, state, loc);
3331 }
3332
3333 if (qual->flags.q.patch)
3334 var->data.patch = 1;
3335
3336 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3337 var->type = glsl_type::error_type;
3338 _mesa_glsl_error(loc, state,
3339 "`attribute' variables may not be declared in the "
3340 "%s shader",
3341 _mesa_shader_stage_to_string(state->stage));
3342 }
3343
3344 /* Disallow layout qualifiers which may only appear on layout declarations. */
3345 if (qual->flags.q.prim_type) {
3346 _mesa_glsl_error(loc, state,
3347 "Primitive type may only be specified on GS input or output "
3348 "layout declaration, not on variables.");
3349 }
3350
3351 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3352 *
3353 * "However, the const qualifier cannot be used with out or inout."
3354 *
3355 * The same section of the GLSL 4.40 spec further clarifies this saying:
3356 *
3357 * "The const qualifier cannot be used with out or inout, or a
3358 * compile-time error results."
3359 */
3360 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3361 _mesa_glsl_error(loc, state,
3362 "`const' may not be applied to `out' or `inout' "
3363 "function parameters");
3364 }
3365
3366 /* If there is no qualifier that changes the mode of the variable, leave
3367 * the setting alone.
3368 */
3369 assert(var->data.mode != ir_var_temporary);
3370 if (qual->flags.q.in && qual->flags.q.out)
3371 var->data.mode = ir_var_function_inout;
3372 else if (qual->flags.q.in)
3373 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3374 else if (qual->flags.q.attribute
3375 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3376 var->data.mode = ir_var_shader_in;
3377 else if (qual->flags.q.out)
3378 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3379 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3380 var->data.mode = ir_var_shader_out;
3381 else if (qual->flags.q.uniform)
3382 var->data.mode = ir_var_uniform;
3383 else if (qual->flags.q.buffer)
3384 var->data.mode = ir_var_shader_storage;
3385 else if (qual->flags.q.shared_storage)
3386 var->data.mode = ir_var_shader_shared;
3387
3388 if (!is_parameter && is_varying_var(var, state->stage)) {
3389 /* User-defined ins/outs are not permitted in compute shaders. */
3390 if (state->stage == MESA_SHADER_COMPUTE) {
3391 _mesa_glsl_error(loc, state,
3392 "user-defined input and output variables are not "
3393 "permitted in compute shaders");
3394 }
3395
3396 /* This variable is being used to link data between shader stages (in
3397 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3398 * that is allowed for such purposes.
3399 *
3400 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3401 *
3402 * "The varying qualifier can be used only with the data types
3403 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3404 * these."
3405 *
3406 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3407 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3408 *
3409 * "Fragment inputs can only be signed and unsigned integers and
3410 * integer vectors, float, floating-point vectors, matrices, or
3411 * arrays of these. Structures cannot be input.
3412 *
3413 * Similar text exists in the section on vertex shader outputs.
3414 *
3415 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3416 * 3.00 spec allows structs as well. Varying structs are also allowed
3417 * in GLSL 1.50.
3418 */
3419 switch (var->type->get_scalar_type()->base_type) {
3420 case GLSL_TYPE_FLOAT:
3421 /* Ok in all GLSL versions */
3422 break;
3423 case GLSL_TYPE_UINT:
3424 case GLSL_TYPE_INT:
3425 if (state->is_version(130, 300))
3426 break;
3427 _mesa_glsl_error(loc, state,
3428 "varying variables must be of base type float in %s",
3429 state->get_version_string());
3430 break;
3431 case GLSL_TYPE_STRUCT:
3432 if (state->is_version(150, 300))
3433 break;
3434 _mesa_glsl_error(loc, state,
3435 "varying variables may not be of type struct");
3436 break;
3437 case GLSL_TYPE_DOUBLE:
3438 break;
3439 default:
3440 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3441 break;
3442 }
3443 }
3444
3445 if (state->all_invariant && (state->current_function == NULL)) {
3446 switch (state->stage) {
3447 case MESA_SHADER_VERTEX:
3448 if (var->data.mode == ir_var_shader_out)
3449 var->data.invariant = true;
3450 break;
3451 case MESA_SHADER_TESS_CTRL:
3452 case MESA_SHADER_TESS_EVAL:
3453 case MESA_SHADER_GEOMETRY:
3454 if ((var->data.mode == ir_var_shader_in)
3455 || (var->data.mode == ir_var_shader_out))
3456 var->data.invariant = true;
3457 break;
3458 case MESA_SHADER_FRAGMENT:
3459 if (var->data.mode == ir_var_shader_in)
3460 var->data.invariant = true;
3461 break;
3462 case MESA_SHADER_COMPUTE:
3463 /* Invariance isn't meaningful in compute shaders. */
3464 break;
3465 }
3466 }
3467
3468 var->data.interpolation =
3469 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3470 state, loc);
3471
3472 /* Does the declaration use the deprecated 'attribute' or 'varying'
3473 * keywords?
3474 */
3475 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3476 || qual->flags.q.varying;
3477
3478
3479 /* Validate auxiliary storage qualifiers */
3480
3481 /* From section 4.3.4 of the GLSL 1.30 spec:
3482 * "It is an error to use centroid in in a vertex shader."
3483 *
3484 * From section 4.3.4 of the GLSL ES 3.00 spec:
3485 * "It is an error to use centroid in or interpolation qualifiers in
3486 * a vertex shader input."
3487 */
3488
3489 /* Section 4.3.6 of the GLSL 1.30 specification states:
3490 * "It is an error to use centroid out in a fragment shader."
3491 *
3492 * The GL_ARB_shading_language_420pack extension specification states:
3493 * "It is an error to use auxiliary storage qualifiers or interpolation
3494 * qualifiers on an output in a fragment shader."
3495 */
3496 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3497 _mesa_glsl_error(loc, state,
3498 "sample qualifier may only be used on `in` or `out` "
3499 "variables between shader stages");
3500 }
3501 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3502 _mesa_glsl_error(loc, state,
3503 "centroid qualifier may only be used with `in', "
3504 "`out' or `varying' variables between shader stages");
3505 }
3506
3507 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3508 _mesa_glsl_error(loc, state,
3509 "the shared storage qualifiers can only be used with "
3510 "compute shaders");
3511 }
3512
3513 apply_image_qualifier_to_variable(qual, var, state, loc);
3514 }
3515
3516 /**
3517 * Get the variable that is being redeclared by this declaration
3518 *
3519 * Semantic checks to verify the validity of the redeclaration are also
3520 * performed. If semantic checks fail, compilation error will be emitted via
3521 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3522 *
3523 * \returns
3524 * A pointer to an existing variable in the current scope if the declaration
3525 * is a redeclaration, \c NULL otherwise.
3526 */
3527 static ir_variable *
3528 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3529 struct _mesa_glsl_parse_state *state,
3530 bool allow_all_redeclarations)
3531 {
3532 /* Check if this declaration is actually a re-declaration, either to
3533 * resize an array or add qualifiers to an existing variable.
3534 *
3535 * This is allowed for variables in the current scope, or when at
3536 * global scope (for built-ins in the implicit outer scope).
3537 */
3538 ir_variable *earlier = state->symbols->get_variable(var->name);
3539 if (earlier == NULL ||
3540 (state->current_function != NULL &&
3541 !state->symbols->name_declared_this_scope(var->name))) {
3542 return NULL;
3543 }
3544
3545
3546 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3547 *
3548 * "It is legal to declare an array without a size and then
3549 * later re-declare the same name as an array of the same
3550 * type and specify a size."
3551 */
3552 if (earlier->type->is_unsized_array() && var->type->is_array()
3553 && (var->type->fields.array == earlier->type->fields.array)) {
3554 /* FINISHME: This doesn't match the qualifiers on the two
3555 * FINISHME: declarations. It's not 100% clear whether this is
3556 * FINISHME: required or not.
3557 */
3558
3559 const unsigned size = unsigned(var->type->array_size());
3560 check_builtin_array_max_size(var->name, size, loc, state);
3561 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3562 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3563 "previous access",
3564 earlier->data.max_array_access);
3565 }
3566
3567 earlier->type = var->type;
3568 delete var;
3569 var = NULL;
3570 } else if ((state->ARB_fragment_coord_conventions_enable ||
3571 state->is_version(150, 0))
3572 && strcmp(var->name, "gl_FragCoord") == 0
3573 && earlier->type == var->type
3574 && var->data.mode == ir_var_shader_in) {
3575 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3576 * qualifiers.
3577 */
3578 earlier->data.origin_upper_left = var->data.origin_upper_left;
3579 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3580
3581 /* According to section 4.3.7 of the GLSL 1.30 spec,
3582 * the following built-in varaibles can be redeclared with an
3583 * interpolation qualifier:
3584 * * gl_FrontColor
3585 * * gl_BackColor
3586 * * gl_FrontSecondaryColor
3587 * * gl_BackSecondaryColor
3588 * * gl_Color
3589 * * gl_SecondaryColor
3590 */
3591 } else if (state->is_version(130, 0)
3592 && (strcmp(var->name, "gl_FrontColor") == 0
3593 || strcmp(var->name, "gl_BackColor") == 0
3594 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3595 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3596 || strcmp(var->name, "gl_Color") == 0
3597 || strcmp(var->name, "gl_SecondaryColor") == 0)
3598 && earlier->type == var->type
3599 && earlier->data.mode == var->data.mode) {
3600 earlier->data.interpolation = var->data.interpolation;
3601
3602 /* Layout qualifiers for gl_FragDepth. */
3603 } else if ((state->AMD_conservative_depth_enable ||
3604 state->ARB_conservative_depth_enable)
3605 && strcmp(var->name, "gl_FragDepth") == 0
3606 && earlier->type == var->type
3607 && earlier->data.mode == var->data.mode) {
3608
3609 /** From the AMD_conservative_depth spec:
3610 * Within any shader, the first redeclarations of gl_FragDepth
3611 * must appear before any use of gl_FragDepth.
3612 */
3613 if (earlier->data.used) {
3614 _mesa_glsl_error(&loc, state,
3615 "the first redeclaration of gl_FragDepth "
3616 "must appear before any use of gl_FragDepth");
3617 }
3618
3619 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3620 if (earlier->data.depth_layout != ir_depth_layout_none
3621 && earlier->data.depth_layout != var->data.depth_layout) {
3622 _mesa_glsl_error(&loc, state,
3623 "gl_FragDepth: depth layout is declared here "
3624 "as '%s, but it was previously declared as "
3625 "'%s'",
3626 depth_layout_string(var->data.depth_layout),
3627 depth_layout_string(earlier->data.depth_layout));
3628 }
3629
3630 earlier->data.depth_layout = var->data.depth_layout;
3631
3632 } else if (allow_all_redeclarations) {
3633 if (earlier->data.mode != var->data.mode) {
3634 _mesa_glsl_error(&loc, state,
3635 "redeclaration of `%s' with incorrect qualifiers",
3636 var->name);
3637 } else if (earlier->type != var->type) {
3638 _mesa_glsl_error(&loc, state,
3639 "redeclaration of `%s' has incorrect type",
3640 var->name);
3641 }
3642 } else {
3643 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3644 }
3645
3646 return earlier;
3647 }
3648
3649 /**
3650 * Generate the IR for an initializer in a variable declaration
3651 */
3652 ir_rvalue *
3653 process_initializer(ir_variable *var, ast_declaration *decl,
3654 ast_fully_specified_type *type,
3655 exec_list *initializer_instructions,
3656 struct _mesa_glsl_parse_state *state)
3657 {
3658 ir_rvalue *result = NULL;
3659
3660 YYLTYPE initializer_loc = decl->initializer->get_location();
3661
3662 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3663 *
3664 * "All uniform variables are read-only and are initialized either
3665 * directly by an application via API commands, or indirectly by
3666 * OpenGL."
3667 */
3668 if (var->data.mode == ir_var_uniform) {
3669 state->check_version(120, 0, &initializer_loc,
3670 "cannot initialize uniform %s",
3671 var->name);
3672 }
3673
3674 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3675 *
3676 * "Buffer variables cannot have initializers."
3677 */
3678 if (var->data.mode == ir_var_shader_storage) {
3679 _mesa_glsl_error(&initializer_loc, state,
3680 "cannot initialize buffer variable %s",
3681 var->name);
3682 }
3683
3684 /* From section 4.1.7 of the GLSL 4.40 spec:
3685 *
3686 * "Opaque variables [...] are initialized only through the
3687 * OpenGL API; they cannot be declared with an initializer in a
3688 * shader."
3689 */
3690 if (var->type->contains_opaque()) {
3691 _mesa_glsl_error(&initializer_loc, state,
3692 "cannot initialize opaque variable %s",
3693 var->name);
3694 }
3695
3696 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3697 _mesa_glsl_error(&initializer_loc, state,
3698 "cannot initialize %s shader input / %s %s",
3699 _mesa_shader_stage_to_string(state->stage),
3700 (state->stage == MESA_SHADER_VERTEX)
3701 ? "attribute" : "varying",
3702 var->name);
3703 }
3704
3705 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3706 _mesa_glsl_error(&initializer_loc, state,
3707 "cannot initialize %s shader output %s",
3708 _mesa_shader_stage_to_string(state->stage),
3709 var->name);
3710 }
3711
3712 /* If the initializer is an ast_aggregate_initializer, recursively store
3713 * type information from the LHS into it, so that its hir() function can do
3714 * type checking.
3715 */
3716 if (decl->initializer->oper == ast_aggregate)
3717 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3718
3719 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3720 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3721
3722 /* Calculate the constant value if this is a const or uniform
3723 * declaration.
3724 *
3725 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3726 *
3727 * "Declarations of globals without a storage qualifier, or with
3728 * just the const qualifier, may include initializers, in which case
3729 * they will be initialized before the first line of main() is
3730 * executed. Such initializers must be a constant expression."
3731 *
3732 * The same section of the GLSL ES 3.00.4 spec has similar language.
3733 */
3734 if (type->qualifier.flags.q.constant
3735 || type->qualifier.flags.q.uniform
3736 || (state->es_shader && state->current_function == NULL)) {
3737 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3738 lhs, rhs, true);
3739 if (new_rhs != NULL) {
3740 rhs = new_rhs;
3741
3742 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3743 * says:
3744 *
3745 * "A constant expression is one of
3746 *
3747 * ...
3748 *
3749 * - an expression formed by an operator on operands that are
3750 * all constant expressions, including getting an element of
3751 * a constant array, or a field of a constant structure, or
3752 * components of a constant vector. However, the sequence
3753 * operator ( , ) and the assignment operators ( =, +=, ...)
3754 * are not included in the operators that can create a
3755 * constant expression."
3756 *
3757 * Section 12.43 (Sequence operator and constant expressions) says:
3758 *
3759 * "Should the following construct be allowed?
3760 *
3761 * float a[2,3];
3762 *
3763 * The expression within the brackets uses the sequence operator
3764 * (',') and returns the integer 3 so the construct is declaring
3765 * a single-dimensional array of size 3. In some languages, the
3766 * construct declares a two-dimensional array. It would be
3767 * preferable to make this construct illegal to avoid confusion.
3768 *
3769 * One possibility is to change the definition of the sequence
3770 * operator so that it does not return a constant-expression and
3771 * hence cannot be used to declare an array size.
3772 *
3773 * RESOLUTION: The result of a sequence operator is not a
3774 * constant-expression."
3775 *
3776 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3777 * contains language almost identical to the section 4.3.3 in the
3778 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3779 * versions.
3780 */
3781 ir_constant *constant_value = rhs->constant_expression_value();
3782 if (!constant_value ||
3783 (state->is_version(430, 300) &&
3784 decl->initializer->has_sequence_subexpression())) {
3785 const char *const variable_mode =
3786 (type->qualifier.flags.q.constant)
3787 ? "const"
3788 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3789
3790 /* If ARB_shading_language_420pack is enabled, initializers of
3791 * const-qualified local variables do not have to be constant
3792 * expressions. Const-qualified global variables must still be
3793 * initialized with constant expressions.
3794 */
3795 if (!state->has_420pack()
3796 || state->current_function == NULL) {
3797 _mesa_glsl_error(& initializer_loc, state,
3798 "initializer of %s variable `%s' must be a "
3799 "constant expression",
3800 variable_mode,
3801 decl->identifier);
3802 if (var->type->is_numeric()) {
3803 /* Reduce cascading errors. */
3804 var->constant_value = type->qualifier.flags.q.constant
3805 ? ir_constant::zero(state, var->type) : NULL;
3806 }
3807 }
3808 } else {
3809 rhs = constant_value;
3810 var->constant_value = type->qualifier.flags.q.constant
3811 ? constant_value : NULL;
3812 }
3813 } else {
3814 if (var->type->is_numeric()) {
3815 /* Reduce cascading errors. */
3816 var->constant_value = type->qualifier.flags.q.constant
3817 ? ir_constant::zero(state, var->type) : NULL;
3818 }
3819 }
3820 }
3821
3822 if (rhs && !rhs->type->is_error()) {
3823 bool temp = var->data.read_only;
3824 if (type->qualifier.flags.q.constant)
3825 var->data.read_only = false;
3826
3827 /* Never emit code to initialize a uniform.
3828 */
3829 const glsl_type *initializer_type;
3830 if (!type->qualifier.flags.q.uniform) {
3831 do_assignment(initializer_instructions, state,
3832 NULL,
3833 lhs, rhs,
3834 &result, true,
3835 true,
3836 type->get_location());
3837 initializer_type = result->type;
3838 } else
3839 initializer_type = rhs->type;
3840
3841 var->constant_initializer = rhs->constant_expression_value();
3842 var->data.has_initializer = true;
3843
3844 /* If the declared variable is an unsized array, it must inherrit
3845 * its full type from the initializer. A declaration such as
3846 *
3847 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3848 *
3849 * becomes
3850 *
3851 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3852 *
3853 * The assignment generated in the if-statement (below) will also
3854 * automatically handle this case for non-uniforms.
3855 *
3856 * If the declared variable is not an array, the types must
3857 * already match exactly. As a result, the type assignment
3858 * here can be done unconditionally. For non-uniforms the call
3859 * to do_assignment can change the type of the initializer (via
3860 * the implicit conversion rules). For uniforms the initializer
3861 * must be a constant expression, and the type of that expression
3862 * was validated above.
3863 */
3864 var->type = initializer_type;
3865
3866 var->data.read_only = temp;
3867 }
3868
3869 return result;
3870 }
3871
3872 static void
3873 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3874 YYLTYPE loc, ir_variable *var,
3875 unsigned num_vertices,
3876 unsigned *size,
3877 const char *var_category)
3878 {
3879 if (var->type->is_unsized_array()) {
3880 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3881 *
3882 * All geometry shader input unsized array declarations will be
3883 * sized by an earlier input layout qualifier, when present, as per
3884 * the following table.
3885 *
3886 * Followed by a table mapping each allowed input layout qualifier to
3887 * the corresponding input length.
3888 *
3889 * Similarly for tessellation control shader outputs.
3890 */
3891 if (num_vertices != 0)
3892 var->type = glsl_type::get_array_instance(var->type->fields.array,
3893 num_vertices);
3894 } else {
3895 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3896 * includes the following examples of compile-time errors:
3897 *
3898 * // code sequence within one shader...
3899 * in vec4 Color1[]; // size unknown
3900 * ...Color1.length()...// illegal, length() unknown
3901 * in vec4 Color2[2]; // size is 2
3902 * ...Color1.length()...// illegal, Color1 still has no size
3903 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3904 * layout(lines) in; // legal, input size is 2, matching
3905 * in vec4 Color4[3]; // illegal, contradicts layout
3906 * ...
3907 *
3908 * To detect the case illustrated by Color3, we verify that the size of
3909 * an explicitly-sized array matches the size of any previously declared
3910 * explicitly-sized array. To detect the case illustrated by Color4, we
3911 * verify that the size of an explicitly-sized array is consistent with
3912 * any previously declared input layout.
3913 */
3914 if (num_vertices != 0 && var->type->length != num_vertices) {
3915 _mesa_glsl_error(&loc, state,
3916 "%s size contradicts previously declared layout "
3917 "(size is %u, but layout requires a size of %u)",
3918 var_category, var->type->length, num_vertices);
3919 } else if (*size != 0 && var->type->length != *size) {
3920 _mesa_glsl_error(&loc, state,
3921 "%s sizes are inconsistent (size is %u, but a "
3922 "previous declaration has size %u)",
3923 var_category, var->type->length, *size);
3924 } else {
3925 *size = var->type->length;
3926 }
3927 }
3928 }
3929
3930 static void
3931 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3932 YYLTYPE loc, ir_variable *var)
3933 {
3934 unsigned num_vertices = 0;
3935
3936 if (state->tcs_output_vertices_specified) {
3937 if (!state->out_qualifier->vertices->
3938 process_qualifier_constant(state, "vertices",
3939 &num_vertices, false)) {
3940 return;
3941 }
3942
3943 if (num_vertices > state->Const.MaxPatchVertices) {
3944 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3945 "GL_MAX_PATCH_VERTICES", num_vertices);
3946 return;
3947 }
3948 }
3949
3950 if (!var->type->is_array() && !var->data.patch) {
3951 _mesa_glsl_error(&loc, state,
3952 "tessellation control shader outputs must be arrays");
3953
3954 /* To avoid cascading failures, short circuit the checks below. */
3955 return;
3956 }
3957
3958 if (var->data.patch)
3959 return;
3960
3961 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3962 &state->tcs_output_size,
3963 "tessellation control shader output");
3964 }
3965
3966 /**
3967 * Do additional processing necessary for tessellation control/evaluation shader
3968 * input declarations. This covers both interface block arrays and bare input
3969 * variables.
3970 */
3971 static void
3972 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3973 YYLTYPE loc, ir_variable *var)
3974 {
3975 if (!var->type->is_array() && !var->data.patch) {
3976 _mesa_glsl_error(&loc, state,
3977 "per-vertex tessellation shader inputs must be arrays");
3978 /* Avoid cascading failures. */
3979 return;
3980 }
3981
3982 if (var->data.patch)
3983 return;
3984
3985 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3986 if (var->type->is_unsized_array()) {
3987 var->type = glsl_type::get_array_instance(var->type->fields.array,
3988 state->Const.MaxPatchVertices);
3989 }
3990 }
3991
3992
3993 /**
3994 * Do additional processing necessary for geometry shader input declarations
3995 * (this covers both interface blocks arrays and bare input variables).
3996 */
3997 static void
3998 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3999 YYLTYPE loc, ir_variable *var)
4000 {
4001 unsigned num_vertices = 0;
4002
4003 if (state->gs_input_prim_type_specified) {
4004 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4005 }
4006
4007 /* Geometry shader input variables must be arrays. Caller should have
4008 * reported an error for this.
4009 */
4010 if (!var->type->is_array()) {
4011 assert(state->error);
4012
4013 /* To avoid cascading failures, short circuit the checks below. */
4014 return;
4015 }
4016
4017 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4018 &state->gs_input_size,
4019 "geometry shader input");
4020 }
4021
4022 void
4023 validate_identifier(const char *identifier, YYLTYPE loc,
4024 struct _mesa_glsl_parse_state *state)
4025 {
4026 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4027 *
4028 * "Identifiers starting with "gl_" are reserved for use by
4029 * OpenGL, and may not be declared in a shader as either a
4030 * variable or a function."
4031 */
4032 if (is_gl_identifier(identifier)) {
4033 _mesa_glsl_error(&loc, state,
4034 "identifier `%s' uses reserved `gl_' prefix",
4035 identifier);
4036 } else if (strstr(identifier, "__")) {
4037 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4038 * spec:
4039 *
4040 * "In addition, all identifiers containing two
4041 * consecutive underscores (__) are reserved as
4042 * possible future keywords."
4043 *
4044 * The intention is that names containing __ are reserved for internal
4045 * use by the implementation, and names prefixed with GL_ are reserved
4046 * for use by Khronos. Names simply containing __ are dangerous to use,
4047 * but should be allowed.
4048 *
4049 * A future version of the GLSL specification will clarify this.
4050 */
4051 _mesa_glsl_warning(&loc, state,
4052 "identifier `%s' uses reserved `__' string",
4053 identifier);
4054 }
4055 }
4056
4057 ir_rvalue *
4058 ast_declarator_list::hir(exec_list *instructions,
4059 struct _mesa_glsl_parse_state *state)
4060 {
4061 void *ctx = state;
4062 const struct glsl_type *decl_type;
4063 const char *type_name = NULL;
4064 ir_rvalue *result = NULL;
4065 YYLTYPE loc = this->get_location();
4066
4067 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4068 *
4069 * "To ensure that a particular output variable is invariant, it is
4070 * necessary to use the invariant qualifier. It can either be used to
4071 * qualify a previously declared variable as being invariant
4072 *
4073 * invariant gl_Position; // make existing gl_Position be invariant"
4074 *
4075 * In these cases the parser will set the 'invariant' flag in the declarator
4076 * list, and the type will be NULL.
4077 */
4078 if (this->invariant) {
4079 assert(this->type == NULL);
4080
4081 if (state->current_function != NULL) {
4082 _mesa_glsl_error(& loc, state,
4083 "all uses of `invariant' keyword must be at global "
4084 "scope");
4085 }
4086
4087 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4088 assert(decl->array_specifier == NULL);
4089 assert(decl->initializer == NULL);
4090
4091 ir_variable *const earlier =
4092 state->symbols->get_variable(decl->identifier);
4093 if (earlier == NULL) {
4094 _mesa_glsl_error(& loc, state,
4095 "undeclared variable `%s' cannot be marked "
4096 "invariant", decl->identifier);
4097 } else if (!is_varying_var(earlier, state->stage)) {
4098 _mesa_glsl_error(&loc, state,
4099 "`%s' cannot be marked invariant; interfaces between "
4100 "shader stages only.", decl->identifier);
4101 } else if (earlier->data.used) {
4102 _mesa_glsl_error(& loc, state,
4103 "variable `%s' may not be redeclared "
4104 "`invariant' after being used",
4105 earlier->name);
4106 } else {
4107 earlier->data.invariant = true;
4108 }
4109 }
4110
4111 /* Invariant redeclarations do not have r-values.
4112 */
4113 return NULL;
4114 }
4115
4116 if (this->precise) {
4117 assert(this->type == NULL);
4118
4119 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4120 assert(decl->array_specifier == NULL);
4121 assert(decl->initializer == NULL);
4122
4123 ir_variable *const earlier =
4124 state->symbols->get_variable(decl->identifier);
4125 if (earlier == NULL) {
4126 _mesa_glsl_error(& loc, state,
4127 "undeclared variable `%s' cannot be marked "
4128 "precise", decl->identifier);
4129 } else if (state->current_function != NULL &&
4130 !state->symbols->name_declared_this_scope(decl->identifier)) {
4131 /* Note: we have to check if we're in a function, since
4132 * builtins are treated as having come from another scope.
4133 */
4134 _mesa_glsl_error(& loc, state,
4135 "variable `%s' from an outer scope may not be "
4136 "redeclared `precise' in this scope",
4137 earlier->name);
4138 } else if (earlier->data.used) {
4139 _mesa_glsl_error(& loc, state,
4140 "variable `%s' may not be redeclared "
4141 "`precise' after being used",
4142 earlier->name);
4143 } else {
4144 earlier->data.precise = true;
4145 }
4146 }
4147
4148 /* Precise redeclarations do not have r-values either. */
4149 return NULL;
4150 }
4151
4152 assert(this->type != NULL);
4153 assert(!this->invariant);
4154 assert(!this->precise);
4155
4156 /* The type specifier may contain a structure definition. Process that
4157 * before any of the variable declarations.
4158 */
4159 (void) this->type->specifier->hir(instructions, state);
4160
4161 decl_type = this->type->glsl_type(& type_name, state);
4162
4163 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4164 * "Buffer variables may only be declared inside interface blocks
4165 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4166 * shader storage blocks. It is a compile-time error to declare buffer
4167 * variables at global scope (outside a block)."
4168 */
4169 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4170 _mesa_glsl_error(&loc, state,
4171 "buffer variables cannot be declared outside "
4172 "interface blocks");
4173 }
4174
4175 /* An offset-qualified atomic counter declaration sets the default
4176 * offset for the next declaration within the same atomic counter
4177 * buffer.
4178 */
4179 if (decl_type && decl_type->contains_atomic()) {
4180 if (type->qualifier.flags.q.explicit_binding &&
4181 type->qualifier.flags.q.explicit_offset) {
4182 unsigned qual_binding;
4183 unsigned qual_offset;
4184 if (process_qualifier_constant(state, &loc, "binding",
4185 type->qualifier.binding,
4186 &qual_binding)
4187 && process_qualifier_constant(state, &loc, "offset",
4188 type->qualifier.offset,
4189 &qual_offset)) {
4190 state->atomic_counter_offsets[qual_binding] = qual_offset;
4191 }
4192 }
4193 }
4194
4195 if (this->declarations.is_empty()) {
4196 /* If there is no structure involved in the program text, there are two
4197 * possible scenarios:
4198 *
4199 * - The program text contained something like 'vec4;'. This is an
4200 * empty declaration. It is valid but weird. Emit a warning.
4201 *
4202 * - The program text contained something like 'S;' and 'S' is not the
4203 * name of a known structure type. This is both invalid and weird.
4204 * Emit an error.
4205 *
4206 * - The program text contained something like 'mediump float;'
4207 * when the programmer probably meant 'precision mediump
4208 * float;' Emit a warning with a description of what they
4209 * probably meant to do.
4210 *
4211 * Note that if decl_type is NULL and there is a structure involved,
4212 * there must have been some sort of error with the structure. In this
4213 * case we assume that an error was already generated on this line of
4214 * code for the structure. There is no need to generate an additional,
4215 * confusing error.
4216 */
4217 assert(this->type->specifier->structure == NULL || decl_type != NULL
4218 || state->error);
4219
4220 if (decl_type == NULL) {
4221 _mesa_glsl_error(&loc, state,
4222 "invalid type `%s' in empty declaration",
4223 type_name);
4224 } else {
4225 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4226 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4227 *
4228 * "The combinations of types and qualifiers that cause
4229 * compile-time or link-time errors are the same whether or not
4230 * the declaration is empty."
4231 */
4232 validate_array_dimensions(decl_type, state, &loc);
4233 }
4234
4235 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4236 /* Empty atomic counter declarations are allowed and useful
4237 * to set the default offset qualifier.
4238 */
4239 return NULL;
4240 } else if (this->type->qualifier.precision != ast_precision_none) {
4241 if (this->type->specifier->structure != NULL) {
4242 _mesa_glsl_error(&loc, state,
4243 "precision qualifiers can't be applied "
4244 "to structures");
4245 } else {
4246 static const char *const precision_names[] = {
4247 "highp",
4248 "highp",
4249 "mediump",
4250 "lowp"
4251 };
4252
4253 _mesa_glsl_warning(&loc, state,
4254 "empty declaration with precision "
4255 "qualifier, to set the default precision, "
4256 "use `precision %s %s;'",
4257 precision_names[this->type->
4258 qualifier.precision],
4259 type_name);
4260 }
4261 } else if (this->type->specifier->structure == NULL) {
4262 _mesa_glsl_warning(&loc, state, "empty declaration");
4263 }
4264 }
4265 }
4266
4267 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4268 const struct glsl_type *var_type;
4269 ir_variable *var;
4270 const char *identifier = decl->identifier;
4271 /* FINISHME: Emit a warning if a variable declaration shadows a
4272 * FINISHME: declaration at a higher scope.
4273 */
4274
4275 if ((decl_type == NULL) || decl_type->is_void()) {
4276 if (type_name != NULL) {
4277 _mesa_glsl_error(& loc, state,
4278 "invalid type `%s' in declaration of `%s'",
4279 type_name, decl->identifier);
4280 } else {
4281 _mesa_glsl_error(& loc, state,
4282 "invalid type in declaration of `%s'",
4283 decl->identifier);
4284 }
4285 continue;
4286 }
4287
4288 if (this->type->qualifier.flags.q.subroutine) {
4289 const glsl_type *t;
4290 const char *name;
4291
4292 t = state->symbols->get_type(this->type->specifier->type_name);
4293 if (!t)
4294 _mesa_glsl_error(& loc, state,
4295 "invalid type in declaration of `%s'",
4296 decl->identifier);
4297 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4298
4299 identifier = name;
4300
4301 }
4302 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4303 state);
4304
4305 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4306
4307 /* The 'varying in' and 'varying out' qualifiers can only be used with
4308 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4309 * yet.
4310 */
4311 if (this->type->qualifier.flags.q.varying) {
4312 if (this->type->qualifier.flags.q.in) {
4313 _mesa_glsl_error(& loc, state,
4314 "`varying in' qualifier in declaration of "
4315 "`%s' only valid for geometry shaders using "
4316 "ARB_geometry_shader4 or EXT_geometry_shader4",
4317 decl->identifier);
4318 } else if (this->type->qualifier.flags.q.out) {
4319 _mesa_glsl_error(& loc, state,
4320 "`varying out' qualifier in declaration of "
4321 "`%s' only valid for geometry shaders using "
4322 "ARB_geometry_shader4 or EXT_geometry_shader4",
4323 decl->identifier);
4324 }
4325 }
4326
4327 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4328 *
4329 * "Global variables can only use the qualifiers const,
4330 * attribute, uniform, or varying. Only one may be
4331 * specified.
4332 *
4333 * Local variables can only use the qualifier const."
4334 *
4335 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4336 * any extension that adds the 'layout' keyword.
4337 */
4338 if (!state->is_version(130, 300)
4339 && !state->has_explicit_attrib_location()
4340 && !state->has_separate_shader_objects()
4341 && !state->ARB_fragment_coord_conventions_enable) {
4342 if (this->type->qualifier.flags.q.out) {
4343 _mesa_glsl_error(& loc, state,
4344 "`out' qualifier in declaration of `%s' "
4345 "only valid for function parameters in %s",
4346 decl->identifier, state->get_version_string());
4347 }
4348 if (this->type->qualifier.flags.q.in) {
4349 _mesa_glsl_error(& loc, state,
4350 "`in' qualifier in declaration of `%s' "
4351 "only valid for function parameters in %s",
4352 decl->identifier, state->get_version_string());
4353 }
4354 /* FINISHME: Test for other invalid qualifiers. */
4355 }
4356
4357 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4358 & loc, false);
4359 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4360 &loc);
4361
4362 if (this->type->qualifier.flags.q.invariant) {
4363 if (!is_varying_var(var, state->stage)) {
4364 _mesa_glsl_error(&loc, state,
4365 "`%s' cannot be marked invariant; interfaces between "
4366 "shader stages only", var->name);
4367 }
4368 }
4369
4370 if (state->current_function != NULL) {
4371 const char *mode = NULL;
4372 const char *extra = "";
4373
4374 /* There is no need to check for 'inout' here because the parser will
4375 * only allow that in function parameter lists.
4376 */
4377 if (this->type->qualifier.flags.q.attribute) {
4378 mode = "attribute";
4379 } else if (this->type->qualifier.flags.q.subroutine) {
4380 mode = "subroutine uniform";
4381 } else if (this->type->qualifier.flags.q.uniform) {
4382 mode = "uniform";
4383 } else if (this->type->qualifier.flags.q.varying) {
4384 mode = "varying";
4385 } else if (this->type->qualifier.flags.q.in) {
4386 mode = "in";
4387 extra = " or in function parameter list";
4388 } else if (this->type->qualifier.flags.q.out) {
4389 mode = "out";
4390 extra = " or in function parameter list";
4391 }
4392
4393 if (mode) {
4394 _mesa_glsl_error(& loc, state,
4395 "%s variable `%s' must be declared at "
4396 "global scope%s",
4397 mode, var->name, extra);
4398 }
4399 } else if (var->data.mode == ir_var_shader_in) {
4400 var->data.read_only = true;
4401
4402 if (state->stage == MESA_SHADER_VERTEX) {
4403 bool error_emitted = false;
4404
4405 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4406 *
4407 * "Vertex shader inputs can only be float, floating-point
4408 * vectors, matrices, signed and unsigned integers and integer
4409 * vectors. Vertex shader inputs can also form arrays of these
4410 * types, but not structures."
4411 *
4412 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4413 *
4414 * "Vertex shader inputs can only be float, floating-point
4415 * vectors, matrices, signed and unsigned integers and integer
4416 * vectors. They cannot be arrays or structures."
4417 *
4418 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4419 *
4420 * "The attribute qualifier can be used only with float,
4421 * floating-point vectors, and matrices. Attribute variables
4422 * cannot be declared as arrays or structures."
4423 *
4424 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4425 *
4426 * "Vertex shader inputs can only be float, floating-point
4427 * vectors, matrices, signed and unsigned integers and integer
4428 * vectors. Vertex shader inputs cannot be arrays or
4429 * structures."
4430 */
4431 const glsl_type *check_type = var->type->without_array();
4432
4433 switch (check_type->base_type) {
4434 case GLSL_TYPE_FLOAT:
4435 break;
4436 case GLSL_TYPE_UINT:
4437 case GLSL_TYPE_INT:
4438 if (state->is_version(120, 300))
4439 break;
4440 case GLSL_TYPE_DOUBLE:
4441 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4442 break;
4443 /* FALLTHROUGH */
4444 default:
4445 _mesa_glsl_error(& loc, state,
4446 "vertex shader input / attribute cannot have "
4447 "type %s`%s'",
4448 var->type->is_array() ? "array of " : "",
4449 check_type->name);
4450 error_emitted = true;
4451 }
4452
4453 if (!error_emitted && var->type->is_array() &&
4454 !state->check_version(150, 0, &loc,
4455 "vertex shader input / attribute "
4456 "cannot have array type")) {
4457 error_emitted = true;
4458 }
4459 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4460 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4461 *
4462 * Geometry shader input variables get the per-vertex values
4463 * written out by vertex shader output variables of the same
4464 * names. Since a geometry shader operates on a set of
4465 * vertices, each input varying variable (or input block, see
4466 * interface blocks below) needs to be declared as an array.
4467 */
4468 if (!var->type->is_array()) {
4469 _mesa_glsl_error(&loc, state,
4470 "geometry shader inputs must be arrays");
4471 }
4472
4473 handle_geometry_shader_input_decl(state, loc, var);
4474 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4475 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4476 *
4477 * It is a compile-time error to declare a fragment shader
4478 * input with, or that contains, any of the following types:
4479 *
4480 * * A boolean type
4481 * * An opaque type
4482 * * An array of arrays
4483 * * An array of structures
4484 * * A structure containing an array
4485 * * A structure containing a structure
4486 */
4487 if (state->es_shader) {
4488 const glsl_type *check_type = var->type->without_array();
4489 if (check_type->is_boolean() ||
4490 check_type->contains_opaque()) {
4491 _mesa_glsl_error(&loc, state,
4492 "fragment shader input cannot have type %s",
4493 check_type->name);
4494 }
4495 if (var->type->is_array() &&
4496 var->type->fields.array->is_array()) {
4497 _mesa_glsl_error(&loc, state,
4498 "%s shader output "
4499 "cannot have an array of arrays",
4500 _mesa_shader_stage_to_string(state->stage));
4501 }
4502 if (var->type->is_array() &&
4503 var->type->fields.array->is_record()) {
4504 _mesa_glsl_error(&loc, state,
4505 "fragment shader input "
4506 "cannot have an array of structs");
4507 }
4508 if (var->type->is_record()) {
4509 for (unsigned i = 0; i < var->type->length; i++) {
4510 if (var->type->fields.structure[i].type->is_array() ||
4511 var->type->fields.structure[i].type->is_record())
4512 _mesa_glsl_error(&loc, state,
4513 "fragement shader input cannot have "
4514 "a struct that contains an "
4515 "array or struct");
4516 }
4517 }
4518 }
4519 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4520 state->stage == MESA_SHADER_TESS_EVAL) {
4521 handle_tess_shader_input_decl(state, loc, var);
4522 }
4523 } else if (var->data.mode == ir_var_shader_out) {
4524 const glsl_type *check_type = var->type->without_array();
4525
4526 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4527 *
4528 * It is a compile-time error to declare a vertex, tessellation
4529 * evaluation, tessellation control, or geometry shader output
4530 * that contains any of the following:
4531 *
4532 * * A Boolean type (bool, bvec2 ...)
4533 * * An opaque type
4534 */
4535 if (check_type->is_boolean() || check_type->contains_opaque())
4536 _mesa_glsl_error(&loc, state,
4537 "%s shader output cannot have type %s",
4538 _mesa_shader_stage_to_string(state->stage),
4539 check_type->name);
4540
4541 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4542 *
4543 * It is a compile-time error to declare a fragment shader output
4544 * that contains any of the following:
4545 *
4546 * * A Boolean type (bool, bvec2 ...)
4547 * * A double-precision scalar or vector (double, dvec2 ...)
4548 * * An opaque type
4549 * * Any matrix type
4550 * * A structure
4551 */
4552 if (state->stage == MESA_SHADER_FRAGMENT) {
4553 if (check_type->is_record() || check_type->is_matrix())
4554 _mesa_glsl_error(&loc, state,
4555 "fragment shader output "
4556 "cannot have struct or matrix type");
4557 switch (check_type->base_type) {
4558 case GLSL_TYPE_UINT:
4559 case GLSL_TYPE_INT:
4560 case GLSL_TYPE_FLOAT:
4561 break;
4562 default:
4563 _mesa_glsl_error(&loc, state,
4564 "fragment shader output cannot have "
4565 "type %s", check_type->name);
4566 }
4567 }
4568
4569 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4570 *
4571 * It is a compile-time error to declare a vertex shader output
4572 * with, or that contains, any of the following types:
4573 *
4574 * * A boolean type
4575 * * An opaque type
4576 * * An array of arrays
4577 * * An array of structures
4578 * * A structure containing an array
4579 * * A structure containing a structure
4580 *
4581 * It is a compile-time error to declare a fragment shader output
4582 * with, or that contains, any of the following types:
4583 *
4584 * * A boolean type
4585 * * An opaque type
4586 * * A matrix
4587 * * A structure
4588 * * An array of array
4589 */
4590 if (state->es_shader) {
4591 if (var->type->is_array() &&
4592 var->type->fields.array->is_array()) {
4593 _mesa_glsl_error(&loc, state,
4594 "%s shader output "
4595 "cannot have an array of arrays",
4596 _mesa_shader_stage_to_string(state->stage));
4597 }
4598 if (state->stage == MESA_SHADER_VERTEX) {
4599 if (var->type->is_array() &&
4600 var->type->fields.array->is_record()) {
4601 _mesa_glsl_error(&loc, state,
4602 "vertex shader output "
4603 "cannot have an array of structs");
4604 }
4605 if (var->type->is_record()) {
4606 for (unsigned i = 0; i < var->type->length; i++) {
4607 if (var->type->fields.structure[i].type->is_array() ||
4608 var->type->fields.structure[i].type->is_record())
4609 _mesa_glsl_error(&loc, state,
4610 "vertex shader output cannot have a "
4611 "struct that contains an "
4612 "array or struct");
4613 }
4614 }
4615 }
4616 }
4617
4618 if (state->stage == MESA_SHADER_TESS_CTRL) {
4619 handle_tess_ctrl_shader_output_decl(state, loc, var);
4620 }
4621 } else if (var->type->contains_subroutine()) {
4622 /* declare subroutine uniforms as hidden */
4623 var->data.how_declared = ir_var_hidden;
4624 }
4625
4626 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4627 * so must integer vertex outputs.
4628 *
4629 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4630 * "Fragment shader inputs that are signed or unsigned integers or
4631 * integer vectors must be qualified with the interpolation qualifier
4632 * flat."
4633 *
4634 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4635 * "Fragment shader inputs that are, or contain, signed or unsigned
4636 * integers or integer vectors must be qualified with the
4637 * interpolation qualifier flat."
4638 *
4639 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4640 * "Vertex shader outputs that are, or contain, signed or unsigned
4641 * integers or integer vectors must be qualified with the
4642 * interpolation qualifier flat."
4643 *
4644 * Note that prior to GLSL 1.50, this requirement applied to vertex
4645 * outputs rather than fragment inputs. That creates problems in the
4646 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4647 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4648 * apply the restriction to both vertex outputs and fragment inputs.
4649 *
4650 * Note also that the desktop GLSL specs are missing the text "or
4651 * contain"; this is presumably an oversight, since there is no
4652 * reasonable way to interpolate a fragment shader input that contains
4653 * an integer.
4654 */
4655 if (state->is_version(130, 300) &&
4656 var->type->contains_integer() &&
4657 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4658 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4659 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4660 && state->es_shader))) {
4661 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4662 "vertex output" : "fragment input";
4663 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4664 "an integer, then it must be qualified with 'flat'",
4665 var_type);
4666 }
4667
4668 /* Double fragment inputs must be qualified with 'flat'. */
4669 if (var->type->contains_double() &&
4670 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4671 state->stage == MESA_SHADER_FRAGMENT &&
4672 var->data.mode == ir_var_shader_in) {
4673 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4674 "a double, then it must be qualified with 'flat'",
4675 var_type);
4676 }
4677
4678 /* Interpolation qualifiers cannot be applied to 'centroid' and
4679 * 'centroid varying'.
4680 *
4681 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4682 * "interpolation qualifiers may only precede the qualifiers in,
4683 * centroid in, out, or centroid out in a declaration. They do not apply
4684 * to the deprecated storage qualifiers varying or centroid varying."
4685 *
4686 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4687 */
4688 if (state->is_version(130, 0)
4689 && this->type->qualifier.has_interpolation()
4690 && this->type->qualifier.flags.q.varying) {
4691
4692 const char *i = interpolation_string(var->data.interpolation);
4693 const char *s;
4694 if (this->type->qualifier.flags.q.centroid)
4695 s = "centroid varying";
4696 else
4697 s = "varying";
4698
4699 _mesa_glsl_error(&loc, state,
4700 "qualifier '%s' cannot be applied to the "
4701 "deprecated storage qualifier '%s'", i, s);
4702 }
4703
4704
4705 /* Interpolation qualifiers can only apply to vertex shader outputs and
4706 * fragment shader inputs.
4707 *
4708 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4709 * "Outputs from a vertex shader (out) and inputs to a fragment
4710 * shader (in) can be further qualified with one or more of these
4711 * interpolation qualifiers"
4712 *
4713 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4714 * "These interpolation qualifiers may only precede the qualifiers
4715 * in, centroid in, out, or centroid out in a declaration. They do
4716 * not apply to inputs into a vertex shader or outputs from a
4717 * fragment shader."
4718 */
4719 if (state->is_version(130, 300)
4720 && this->type->qualifier.has_interpolation()) {
4721
4722 const char *i = interpolation_string(var->data.interpolation);
4723 switch (state->stage) {
4724 case MESA_SHADER_VERTEX:
4725 if (this->type->qualifier.flags.q.in) {
4726 _mesa_glsl_error(&loc, state,
4727 "qualifier '%s' cannot be applied to vertex "
4728 "shader inputs", i);
4729 }
4730 break;
4731 case MESA_SHADER_FRAGMENT:
4732 if (this->type->qualifier.flags.q.out) {
4733 _mesa_glsl_error(&loc, state,
4734 "qualifier '%s' cannot be applied to fragment "
4735 "shader outputs", i);
4736 }
4737 break;
4738 default:
4739 break;
4740 }
4741 }
4742
4743
4744 /* From section 4.3.4 of the GLSL 4.00 spec:
4745 * "Input variables may not be declared using the patch in qualifier
4746 * in tessellation control or geometry shaders."
4747 *
4748 * From section 4.3.6 of the GLSL 4.00 spec:
4749 * "It is an error to use patch out in a vertex, tessellation
4750 * evaluation, or geometry shader."
4751 *
4752 * This doesn't explicitly forbid using them in a fragment shader, but
4753 * that's probably just an oversight.
4754 */
4755 if (state->stage != MESA_SHADER_TESS_EVAL
4756 && this->type->qualifier.flags.q.patch
4757 && this->type->qualifier.flags.q.in) {
4758
4759 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4760 "tessellation evaluation shader");
4761 }
4762
4763 if (state->stage != MESA_SHADER_TESS_CTRL
4764 && this->type->qualifier.flags.q.patch
4765 && this->type->qualifier.flags.q.out) {
4766
4767 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4768 "tessellation control shader");
4769 }
4770
4771 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4772 */
4773 if (this->type->qualifier.precision != ast_precision_none) {
4774 state->check_precision_qualifiers_allowed(&loc);
4775 }
4776
4777
4778 /* If a precision qualifier is allowed on a type, it is allowed on
4779 * an array of that type.
4780 */
4781 if (!(this->type->qualifier.precision == ast_precision_none
4782 || precision_qualifier_allowed(var->type->without_array()))) {
4783
4784 _mesa_glsl_error(&loc, state,
4785 "precision qualifiers apply only to floating point"
4786 ", integer and opaque types");
4787 }
4788
4789 /* From section 4.1.7 of the GLSL 4.40 spec:
4790 *
4791 * "[Opaque types] can only be declared as function
4792 * parameters or uniform-qualified variables."
4793 */
4794 if (var_type->contains_opaque() &&
4795 !this->type->qualifier.flags.q.uniform) {
4796 _mesa_glsl_error(&loc, state,
4797 "opaque variables must be declared uniform");
4798 }
4799
4800 /* Process the initializer and add its instructions to a temporary
4801 * list. This list will be added to the instruction stream (below) after
4802 * the declaration is added. This is done because in some cases (such as
4803 * redeclarations) the declaration may not actually be added to the
4804 * instruction stream.
4805 */
4806 exec_list initializer_instructions;
4807
4808 /* Examine var name here since var may get deleted in the next call */
4809 bool var_is_gl_id = is_gl_identifier(var->name);
4810
4811 ir_variable *earlier =
4812 get_variable_being_redeclared(var, decl->get_location(), state,
4813 false /* allow_all_redeclarations */);
4814 if (earlier != NULL) {
4815 if (var_is_gl_id &&
4816 earlier->data.how_declared == ir_var_declared_in_block) {
4817 _mesa_glsl_error(&loc, state,
4818 "`%s' has already been redeclared using "
4819 "gl_PerVertex", earlier->name);
4820 }
4821 earlier->data.how_declared = ir_var_declared_normally;
4822 }
4823
4824 if (decl->initializer != NULL) {
4825 result = process_initializer((earlier == NULL) ? var : earlier,
4826 decl, this->type,
4827 &initializer_instructions, state);
4828 } else {
4829 validate_array_dimensions(var_type, state, &loc);
4830 }
4831
4832 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4833 *
4834 * "It is an error to write to a const variable outside of
4835 * its declaration, so they must be initialized when
4836 * declared."
4837 */
4838 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4839 _mesa_glsl_error(& loc, state,
4840 "const declaration of `%s' must be initialized",
4841 decl->identifier);
4842 }
4843
4844 if (state->es_shader) {
4845 const glsl_type *const t = (earlier == NULL)
4846 ? var->type : earlier->type;
4847
4848 if (t->is_unsized_array())
4849 /* Section 10.17 of the GLSL ES 1.00 specification states that
4850 * unsized array declarations have been removed from the language.
4851 * Arrays that are sized using an initializer are still explicitly
4852 * sized. However, GLSL ES 1.00 does not allow array
4853 * initializers. That is only allowed in GLSL ES 3.00.
4854 *
4855 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4856 *
4857 * "An array type can also be formed without specifying a size
4858 * if the definition includes an initializer:
4859 *
4860 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4861 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4862 *
4863 * float a[5];
4864 * float b[] = a;"
4865 */
4866 _mesa_glsl_error(& loc, state,
4867 "unsized array declarations are not allowed in "
4868 "GLSL ES");
4869 }
4870
4871 /* If the declaration is not a redeclaration, there are a few additional
4872 * semantic checks that must be applied. In addition, variable that was
4873 * created for the declaration should be added to the IR stream.
4874 */
4875 if (earlier == NULL) {
4876 validate_identifier(decl->identifier, loc, state);
4877
4878 /* Add the variable to the symbol table. Note that the initializer's
4879 * IR was already processed earlier (though it hasn't been emitted
4880 * yet), without the variable in scope.
4881 *
4882 * This differs from most C-like languages, but it follows the GLSL
4883 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4884 * spec:
4885 *
4886 * "Within a declaration, the scope of a name starts immediately
4887 * after the initializer if present or immediately after the name
4888 * being declared if not."
4889 */
4890 if (!state->symbols->add_variable(var)) {
4891 YYLTYPE loc = this->get_location();
4892 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4893 "current scope", decl->identifier);
4894 continue;
4895 }
4896
4897 /* Push the variable declaration to the top. It means that all the
4898 * variable declarations will appear in a funny last-to-first order,
4899 * but otherwise we run into trouble if a function is prototyped, a
4900 * global var is decled, then the function is defined with usage of
4901 * the global var. See glslparsertest's CorrectModule.frag.
4902 */
4903 instructions->push_head(var);
4904 }
4905
4906 instructions->append_list(&initializer_instructions);
4907 }
4908
4909
4910 /* Generally, variable declarations do not have r-values. However,
4911 * one is used for the declaration in
4912 *
4913 * while (bool b = some_condition()) {
4914 * ...
4915 * }
4916 *
4917 * so we return the rvalue from the last seen declaration here.
4918 */
4919 return result;
4920 }
4921
4922
4923 ir_rvalue *
4924 ast_parameter_declarator::hir(exec_list *instructions,
4925 struct _mesa_glsl_parse_state *state)
4926 {
4927 void *ctx = state;
4928 const struct glsl_type *type;
4929 const char *name = NULL;
4930 YYLTYPE loc = this->get_location();
4931
4932 type = this->type->glsl_type(& name, state);
4933
4934 if (type == NULL) {
4935 if (name != NULL) {
4936 _mesa_glsl_error(& loc, state,
4937 "invalid type `%s' in declaration of `%s'",
4938 name, this->identifier);
4939 } else {
4940 _mesa_glsl_error(& loc, state,
4941 "invalid type in declaration of `%s'",
4942 this->identifier);
4943 }
4944
4945 type = glsl_type::error_type;
4946 }
4947
4948 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4949 *
4950 * "Functions that accept no input arguments need not use void in the
4951 * argument list because prototypes (or definitions) are required and
4952 * therefore there is no ambiguity when an empty argument list "( )" is
4953 * declared. The idiom "(void)" as a parameter list is provided for
4954 * convenience."
4955 *
4956 * Placing this check here prevents a void parameter being set up
4957 * for a function, which avoids tripping up checks for main taking
4958 * parameters and lookups of an unnamed symbol.
4959 */
4960 if (type->is_void()) {
4961 if (this->identifier != NULL)
4962 _mesa_glsl_error(& loc, state,
4963 "named parameter cannot have type `void'");
4964
4965 is_void = true;
4966 return NULL;
4967 }
4968
4969 if (formal_parameter && (this->identifier == NULL)) {
4970 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4971 return NULL;
4972 }
4973
4974 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4975 * call already handled the "vec4[..] foo" case.
4976 */
4977 type = process_array_type(&loc, type, this->array_specifier, state);
4978
4979 if (!type->is_error() && type->is_unsized_array()) {
4980 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4981 "a declared size");
4982 type = glsl_type::error_type;
4983 }
4984
4985 is_void = false;
4986 ir_variable *var = new(ctx)
4987 ir_variable(type, this->identifier, ir_var_function_in);
4988
4989 /* Apply any specified qualifiers to the parameter declaration. Note that
4990 * for function parameters the default mode is 'in'.
4991 */
4992 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4993 true);
4994
4995 /* From section 4.1.7 of the GLSL 4.40 spec:
4996 *
4997 * "Opaque variables cannot be treated as l-values; hence cannot
4998 * be used as out or inout function parameters, nor can they be
4999 * assigned into."
5000 */
5001 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5002 && type->contains_opaque()) {
5003 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5004 "contain opaque variables");
5005 type = glsl_type::error_type;
5006 }
5007
5008 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5009 *
5010 * "When calling a function, expressions that do not evaluate to
5011 * l-values cannot be passed to parameters declared as out or inout."
5012 *
5013 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5014 *
5015 * "Other binary or unary expressions, non-dereferenced arrays,
5016 * function names, swizzles with repeated fields, and constants
5017 * cannot be l-values."
5018 *
5019 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5020 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5021 */
5022 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5023 && type->is_array()
5024 && !state->check_version(120, 100, &loc,
5025 "arrays cannot be out or inout parameters")) {
5026 type = glsl_type::error_type;
5027 }
5028
5029 instructions->push_tail(var);
5030
5031 /* Parameter declarations do not have r-values.
5032 */
5033 return NULL;
5034 }
5035
5036
5037 void
5038 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5039 bool formal,
5040 exec_list *ir_parameters,
5041 _mesa_glsl_parse_state *state)
5042 {
5043 ast_parameter_declarator *void_param = NULL;
5044 unsigned count = 0;
5045
5046 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5047 param->formal_parameter = formal;
5048 param->hir(ir_parameters, state);
5049
5050 if (param->is_void)
5051 void_param = param;
5052
5053 count++;
5054 }
5055
5056 if ((void_param != NULL) && (count > 1)) {
5057 YYLTYPE loc = void_param->get_location();
5058
5059 _mesa_glsl_error(& loc, state,
5060 "`void' parameter must be only parameter");
5061 }
5062 }
5063
5064
5065 void
5066 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5067 {
5068 /* IR invariants disallow function declarations or definitions
5069 * nested within other function definitions. But there is no
5070 * requirement about the relative order of function declarations
5071 * and definitions with respect to one another. So simply insert
5072 * the new ir_function block at the end of the toplevel instruction
5073 * list.
5074 */
5075 state->toplevel_ir->push_tail(f);
5076 }
5077
5078
5079 ir_rvalue *
5080 ast_function::hir(exec_list *instructions,
5081 struct _mesa_glsl_parse_state *state)
5082 {
5083 void *ctx = state;
5084 ir_function *f = NULL;
5085 ir_function_signature *sig = NULL;
5086 exec_list hir_parameters;
5087 YYLTYPE loc = this->get_location();
5088
5089 const char *const name = identifier;
5090
5091 /* New functions are always added to the top-level IR instruction stream,
5092 * so this instruction list pointer is ignored. See also emit_function
5093 * (called below).
5094 */
5095 (void) instructions;
5096
5097 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5098 *
5099 * "Function declarations (prototypes) cannot occur inside of functions;
5100 * they must be at global scope, or for the built-in functions, outside
5101 * the global scope."
5102 *
5103 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5104 *
5105 * "User defined functions may only be defined within the global scope."
5106 *
5107 * Note that this language does not appear in GLSL 1.10.
5108 */
5109 if ((state->current_function != NULL) &&
5110 state->is_version(120, 100)) {
5111 YYLTYPE loc = this->get_location();
5112 _mesa_glsl_error(&loc, state,
5113 "declaration of function `%s' not allowed within "
5114 "function body", name);
5115 }
5116
5117 validate_identifier(name, this->get_location(), state);
5118
5119 /* Convert the list of function parameters to HIR now so that they can be
5120 * used below to compare this function's signature with previously seen
5121 * signatures for functions with the same name.
5122 */
5123 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5124 is_definition,
5125 & hir_parameters, state);
5126
5127 const char *return_type_name;
5128 const glsl_type *return_type =
5129 this->return_type->glsl_type(& return_type_name, state);
5130
5131 if (!return_type) {
5132 YYLTYPE loc = this->get_location();
5133 _mesa_glsl_error(&loc, state,
5134 "function `%s' has undeclared return type `%s'",
5135 name, return_type_name);
5136 return_type = glsl_type::error_type;
5137 }
5138
5139 /* ARB_shader_subroutine states:
5140 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5141 * subroutine(...) to a function declaration."
5142 */
5143 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5144 YYLTYPE loc = this->get_location();
5145 _mesa_glsl_error(&loc, state,
5146 "function declaration `%s' cannot have subroutine prepended",
5147 name);
5148 }
5149
5150 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5151 * "No qualifier is allowed on the return type of a function."
5152 */
5153 if (this->return_type->has_qualifiers(state)) {
5154 YYLTYPE loc = this->get_location();
5155 _mesa_glsl_error(& loc, state,
5156 "function `%s' return type has qualifiers", name);
5157 }
5158
5159 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5160 *
5161 * "Arrays are allowed as arguments and as the return type. In both
5162 * cases, the array must be explicitly sized."
5163 */
5164 if (return_type->is_unsized_array()) {
5165 YYLTYPE loc = this->get_location();
5166 _mesa_glsl_error(& loc, state,
5167 "function `%s' return type array must be explicitly "
5168 "sized", name);
5169 }
5170
5171 /* From section 4.1.7 of the GLSL 4.40 spec:
5172 *
5173 * "[Opaque types] can only be declared as function parameters
5174 * or uniform-qualified variables."
5175 */
5176 if (return_type->contains_opaque()) {
5177 YYLTYPE loc = this->get_location();
5178 _mesa_glsl_error(&loc, state,
5179 "function `%s' return type can't contain an opaque type",
5180 name);
5181 }
5182
5183 /* Create an ir_function if one doesn't already exist. */
5184 f = state->symbols->get_function(name);
5185 if (f == NULL) {
5186 f = new(ctx) ir_function(name);
5187 if (!this->return_type->qualifier.flags.q.subroutine) {
5188 if (!state->symbols->add_function(f)) {
5189 /* This function name shadows a non-function use of the same name. */
5190 YYLTYPE loc = this->get_location();
5191 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5192 "non-function", name);
5193 return NULL;
5194 }
5195 }
5196 emit_function(state, f);
5197 }
5198
5199 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5200 *
5201 * "A shader cannot redefine or overload built-in functions."
5202 *
5203 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5204 *
5205 * "User code can overload the built-in functions but cannot redefine
5206 * them."
5207 */
5208 if (state->es_shader && state->language_version >= 300) {
5209 /* Local shader has no exact candidates; check the built-ins. */
5210 _mesa_glsl_initialize_builtin_functions();
5211 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5212 YYLTYPE loc = this->get_location();
5213 _mesa_glsl_error(& loc, state,
5214 "A shader cannot redefine or overload built-in "
5215 "function `%s' in GLSL ES 3.00", name);
5216 return NULL;
5217 }
5218 }
5219
5220 /* Verify that this function's signature either doesn't match a previously
5221 * seen signature for a function with the same name, or, if a match is found,
5222 * that the previously seen signature does not have an associated definition.
5223 */
5224 if (state->es_shader || f->has_user_signature()) {
5225 sig = f->exact_matching_signature(state, &hir_parameters);
5226 if (sig != NULL) {
5227 const char *badvar = sig->qualifiers_match(&hir_parameters);
5228 if (badvar != NULL) {
5229 YYLTYPE loc = this->get_location();
5230
5231 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5232 "qualifiers don't match prototype", name, badvar);
5233 }
5234
5235 if (sig->return_type != return_type) {
5236 YYLTYPE loc = this->get_location();
5237
5238 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5239 "match prototype", name);
5240 }
5241
5242 if (sig->is_defined) {
5243 if (is_definition) {
5244 YYLTYPE loc = this->get_location();
5245 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5246 } else {
5247 /* We just encountered a prototype that exactly matches a
5248 * function that's already been defined. This is redundant,
5249 * and we should ignore it.
5250 */
5251 return NULL;
5252 }
5253 }
5254 }
5255 }
5256
5257 /* Verify the return type of main() */
5258 if (strcmp(name, "main") == 0) {
5259 if (! return_type->is_void()) {
5260 YYLTYPE loc = this->get_location();
5261
5262 _mesa_glsl_error(& loc, state, "main() must return void");
5263 }
5264
5265 if (!hir_parameters.is_empty()) {
5266 YYLTYPE loc = this->get_location();
5267
5268 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5269 }
5270 }
5271
5272 /* Finish storing the information about this new function in its signature.
5273 */
5274 if (sig == NULL) {
5275 sig = new(ctx) ir_function_signature(return_type);
5276 f->add_signature(sig);
5277 }
5278
5279 sig->replace_parameters(&hir_parameters);
5280 signature = sig;
5281
5282 if (this->return_type->qualifier.flags.q.subroutine_def) {
5283 int idx;
5284
5285 if (this->return_type->qualifier.flags.q.explicit_index) {
5286 unsigned qual_index;
5287 if (process_qualifier_constant(state, &loc, "index",
5288 this->return_type->qualifier.index,
5289 &qual_index)) {
5290 if (!state->has_explicit_uniform_location()) {
5291 _mesa_glsl_error(&loc, state, "subroutine index requires "
5292 "GL_ARB_explicit_uniform_location or "
5293 "GLSL 4.30");
5294 } else if (qual_index >= MAX_SUBROUTINES) {
5295 _mesa_glsl_error(&loc, state,
5296 "invalid subroutine index (%d) index must "
5297 "be a number between 0 and "
5298 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5299 MAX_SUBROUTINES - 1);
5300 } else {
5301 f->subroutine_index = qual_index;
5302 }
5303 }
5304 }
5305
5306 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5307 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5308 f->num_subroutine_types);
5309 idx = 0;
5310 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5311 const struct glsl_type *type;
5312 /* the subroutine type must be already declared */
5313 type = state->symbols->get_type(decl->identifier);
5314 if (!type) {
5315 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5316 }
5317 f->subroutine_types[idx++] = type;
5318 }
5319 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5320 ir_function *,
5321 state->num_subroutines + 1);
5322 state->subroutines[state->num_subroutines] = f;
5323 state->num_subroutines++;
5324
5325 }
5326
5327 if (this->return_type->qualifier.flags.q.subroutine) {
5328 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5329 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5330 return NULL;
5331 }
5332 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5333 ir_function *,
5334 state->num_subroutine_types + 1);
5335 state->subroutine_types[state->num_subroutine_types] = f;
5336 state->num_subroutine_types++;
5337
5338 f->is_subroutine = true;
5339 }
5340
5341 /* Function declarations (prototypes) do not have r-values.
5342 */
5343 return NULL;
5344 }
5345
5346
5347 ir_rvalue *
5348 ast_function_definition::hir(exec_list *instructions,
5349 struct _mesa_glsl_parse_state *state)
5350 {
5351 prototype->is_definition = true;
5352 prototype->hir(instructions, state);
5353
5354 ir_function_signature *signature = prototype->signature;
5355 if (signature == NULL)
5356 return NULL;
5357
5358 assert(state->current_function == NULL);
5359 state->current_function = signature;
5360 state->found_return = false;
5361
5362 /* Duplicate parameters declared in the prototype as concrete variables.
5363 * Add these to the symbol table.
5364 */
5365 state->symbols->push_scope();
5366 foreach_in_list(ir_variable, var, &signature->parameters) {
5367 assert(var->as_variable() != NULL);
5368
5369 /* The only way a parameter would "exist" is if two parameters have
5370 * the same name.
5371 */
5372 if (state->symbols->name_declared_this_scope(var->name)) {
5373 YYLTYPE loc = this->get_location();
5374
5375 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5376 } else {
5377 state->symbols->add_variable(var);
5378 }
5379 }
5380
5381 /* Convert the body of the function to HIR. */
5382 this->body->hir(&signature->body, state);
5383 signature->is_defined = true;
5384
5385 state->symbols->pop_scope();
5386
5387 assert(state->current_function == signature);
5388 state->current_function = NULL;
5389
5390 if (!signature->return_type->is_void() && !state->found_return) {
5391 YYLTYPE loc = this->get_location();
5392 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5393 "%s, but no return statement",
5394 signature->function_name(),
5395 signature->return_type->name);
5396 }
5397
5398 /* Function definitions do not have r-values.
5399 */
5400 return NULL;
5401 }
5402
5403
5404 ir_rvalue *
5405 ast_jump_statement::hir(exec_list *instructions,
5406 struct _mesa_glsl_parse_state *state)
5407 {
5408 void *ctx = state;
5409
5410 switch (mode) {
5411 case ast_return: {
5412 ir_return *inst;
5413 assert(state->current_function);
5414
5415 if (opt_return_value) {
5416 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5417
5418 /* The value of the return type can be NULL if the shader says
5419 * 'return foo();' and foo() is a function that returns void.
5420 *
5421 * NOTE: The GLSL spec doesn't say that this is an error. The type
5422 * of the return value is void. If the return type of the function is
5423 * also void, then this should compile without error. Seriously.
5424 */
5425 const glsl_type *const ret_type =
5426 (ret == NULL) ? glsl_type::void_type : ret->type;
5427
5428 /* Implicit conversions are not allowed for return values prior to
5429 * ARB_shading_language_420pack.
5430 */
5431 if (state->current_function->return_type != ret_type) {
5432 YYLTYPE loc = this->get_location();
5433
5434 if (state->has_420pack()) {
5435 if (!apply_implicit_conversion(state->current_function->return_type,
5436 ret, state)) {
5437 _mesa_glsl_error(& loc, state,
5438 "could not implicitly convert return value "
5439 "to %s, in function `%s'",
5440 state->current_function->return_type->name,
5441 state->current_function->function_name());
5442 }
5443 } else {
5444 _mesa_glsl_error(& loc, state,
5445 "`return' with wrong type %s, in function `%s' "
5446 "returning %s",
5447 ret_type->name,
5448 state->current_function->function_name(),
5449 state->current_function->return_type->name);
5450 }
5451 } else if (state->current_function->return_type->base_type ==
5452 GLSL_TYPE_VOID) {
5453 YYLTYPE loc = this->get_location();
5454
5455 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5456 * specs add a clarification:
5457 *
5458 * "A void function can only use return without a return argument, even if
5459 * the return argument has void type. Return statements only accept values:
5460 *
5461 * void func1() { }
5462 * void func2() { return func1(); } // illegal return statement"
5463 */
5464 _mesa_glsl_error(& loc, state,
5465 "void functions can only use `return' without a "
5466 "return argument");
5467 }
5468
5469 inst = new(ctx) ir_return(ret);
5470 } else {
5471 if (state->current_function->return_type->base_type !=
5472 GLSL_TYPE_VOID) {
5473 YYLTYPE loc = this->get_location();
5474
5475 _mesa_glsl_error(& loc, state,
5476 "`return' with no value, in function %s returning "
5477 "non-void",
5478 state->current_function->function_name());
5479 }
5480 inst = new(ctx) ir_return;
5481 }
5482
5483 state->found_return = true;
5484 instructions->push_tail(inst);
5485 break;
5486 }
5487
5488 case ast_discard:
5489 if (state->stage != MESA_SHADER_FRAGMENT) {
5490 YYLTYPE loc = this->get_location();
5491
5492 _mesa_glsl_error(& loc, state,
5493 "`discard' may only appear in a fragment shader");
5494 }
5495 instructions->push_tail(new(ctx) ir_discard);
5496 break;
5497
5498 case ast_break:
5499 case ast_continue:
5500 if (mode == ast_continue &&
5501 state->loop_nesting_ast == NULL) {
5502 YYLTYPE loc = this->get_location();
5503
5504 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5505 } else if (mode == ast_break &&
5506 state->loop_nesting_ast == NULL &&
5507 state->switch_state.switch_nesting_ast == NULL) {
5508 YYLTYPE loc = this->get_location();
5509
5510 _mesa_glsl_error(& loc, state,
5511 "break may only appear in a loop or a switch");
5512 } else {
5513 /* For a loop, inline the for loop expression again, since we don't
5514 * know where near the end of the loop body the normal copy of it is
5515 * going to be placed. Same goes for the condition for a do-while
5516 * loop.
5517 */
5518 if (state->loop_nesting_ast != NULL &&
5519 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5520 if (state->loop_nesting_ast->rest_expression) {
5521 state->loop_nesting_ast->rest_expression->hir(instructions,
5522 state);
5523 }
5524 if (state->loop_nesting_ast->mode ==
5525 ast_iteration_statement::ast_do_while) {
5526 state->loop_nesting_ast->condition_to_hir(instructions, state);
5527 }
5528 }
5529
5530 if (state->switch_state.is_switch_innermost &&
5531 mode == ast_continue) {
5532 /* Set 'continue_inside' to true. */
5533 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5534 ir_dereference_variable *deref_continue_inside_var =
5535 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5536 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5537 true_val));
5538
5539 /* Break out from the switch, continue for the loop will
5540 * be called right after switch. */
5541 ir_loop_jump *const jump =
5542 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5543 instructions->push_tail(jump);
5544
5545 } else if (state->switch_state.is_switch_innermost &&
5546 mode == ast_break) {
5547 /* Force break out of switch by inserting a break. */
5548 ir_loop_jump *const jump =
5549 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5550 instructions->push_tail(jump);
5551 } else {
5552 ir_loop_jump *const jump =
5553 new(ctx) ir_loop_jump((mode == ast_break)
5554 ? ir_loop_jump::jump_break
5555 : ir_loop_jump::jump_continue);
5556 instructions->push_tail(jump);
5557 }
5558 }
5559
5560 break;
5561 }
5562
5563 /* Jump instructions do not have r-values.
5564 */
5565 return NULL;
5566 }
5567
5568
5569 ir_rvalue *
5570 ast_selection_statement::hir(exec_list *instructions,
5571 struct _mesa_glsl_parse_state *state)
5572 {
5573 void *ctx = state;
5574
5575 ir_rvalue *const condition = this->condition->hir(instructions, state);
5576
5577 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5578 *
5579 * "Any expression whose type evaluates to a Boolean can be used as the
5580 * conditional expression bool-expression. Vector types are not accepted
5581 * as the expression to if."
5582 *
5583 * The checks are separated so that higher quality diagnostics can be
5584 * generated for cases where both rules are violated.
5585 */
5586 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5587 YYLTYPE loc = this->condition->get_location();
5588
5589 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5590 "boolean");
5591 }
5592
5593 ir_if *const stmt = new(ctx) ir_if(condition);
5594
5595 if (then_statement != NULL) {
5596 state->symbols->push_scope();
5597 then_statement->hir(& stmt->then_instructions, state);
5598 state->symbols->pop_scope();
5599 }
5600
5601 if (else_statement != NULL) {
5602 state->symbols->push_scope();
5603 else_statement->hir(& stmt->else_instructions, state);
5604 state->symbols->pop_scope();
5605 }
5606
5607 instructions->push_tail(stmt);
5608
5609 /* if-statements do not have r-values.
5610 */
5611 return NULL;
5612 }
5613
5614
5615 ir_rvalue *
5616 ast_switch_statement::hir(exec_list *instructions,
5617 struct _mesa_glsl_parse_state *state)
5618 {
5619 void *ctx = state;
5620
5621 ir_rvalue *const test_expression =
5622 this->test_expression->hir(instructions, state);
5623
5624 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5625 *
5626 * "The type of init-expression in a switch statement must be a
5627 * scalar integer."
5628 */
5629 if (!test_expression->type->is_scalar() ||
5630 !test_expression->type->is_integer()) {
5631 YYLTYPE loc = this->test_expression->get_location();
5632
5633 _mesa_glsl_error(& loc,
5634 state,
5635 "switch-statement expression must be scalar "
5636 "integer");
5637 }
5638
5639 /* Track the switch-statement nesting in a stack-like manner.
5640 */
5641 struct glsl_switch_state saved = state->switch_state;
5642
5643 state->switch_state.is_switch_innermost = true;
5644 state->switch_state.switch_nesting_ast = this;
5645 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5646 hash_table_pointer_compare);
5647 state->switch_state.previous_default = NULL;
5648
5649 /* Initalize is_fallthru state to false.
5650 */
5651 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5652 state->switch_state.is_fallthru_var =
5653 new(ctx) ir_variable(glsl_type::bool_type,
5654 "switch_is_fallthru_tmp",
5655 ir_var_temporary);
5656 instructions->push_tail(state->switch_state.is_fallthru_var);
5657
5658 ir_dereference_variable *deref_is_fallthru_var =
5659 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5660 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5661 is_fallthru_val));
5662
5663 /* Initialize continue_inside state to false.
5664 */
5665 state->switch_state.continue_inside =
5666 new(ctx) ir_variable(glsl_type::bool_type,
5667 "continue_inside_tmp",
5668 ir_var_temporary);
5669 instructions->push_tail(state->switch_state.continue_inside);
5670
5671 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5672 ir_dereference_variable *deref_continue_inside_var =
5673 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5674 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5675 false_val));
5676
5677 state->switch_state.run_default =
5678 new(ctx) ir_variable(glsl_type::bool_type,
5679 "run_default_tmp",
5680 ir_var_temporary);
5681 instructions->push_tail(state->switch_state.run_default);
5682
5683 /* Loop around the switch is used for flow control. */
5684 ir_loop * loop = new(ctx) ir_loop();
5685 instructions->push_tail(loop);
5686
5687 /* Cache test expression.
5688 */
5689 test_to_hir(&loop->body_instructions, state);
5690
5691 /* Emit code for body of switch stmt.
5692 */
5693 body->hir(&loop->body_instructions, state);
5694
5695 /* Insert a break at the end to exit loop. */
5696 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5697 loop->body_instructions.push_tail(jump);
5698
5699 /* If we are inside loop, check if continue got called inside switch. */
5700 if (state->loop_nesting_ast != NULL) {
5701 ir_dereference_variable *deref_continue_inside =
5702 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5703 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5704 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5705
5706 if (state->loop_nesting_ast != NULL) {
5707 if (state->loop_nesting_ast->rest_expression) {
5708 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5709 state);
5710 }
5711 if (state->loop_nesting_ast->mode ==
5712 ast_iteration_statement::ast_do_while) {
5713 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5714 }
5715 }
5716 irif->then_instructions.push_tail(jump);
5717 instructions->push_tail(irif);
5718 }
5719
5720 hash_table_dtor(state->switch_state.labels_ht);
5721
5722 state->switch_state = saved;
5723
5724 /* Switch statements do not have r-values. */
5725 return NULL;
5726 }
5727
5728
5729 void
5730 ast_switch_statement::test_to_hir(exec_list *instructions,
5731 struct _mesa_glsl_parse_state *state)
5732 {
5733 void *ctx = state;
5734
5735 /* Cache value of test expression. */
5736 ir_rvalue *const test_val =
5737 test_expression->hir(instructions,
5738 state);
5739
5740 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5741 "switch_test_tmp",
5742 ir_var_temporary);
5743 ir_dereference_variable *deref_test_var =
5744 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5745
5746 instructions->push_tail(state->switch_state.test_var);
5747 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5748 }
5749
5750
5751 ir_rvalue *
5752 ast_switch_body::hir(exec_list *instructions,
5753 struct _mesa_glsl_parse_state *state)
5754 {
5755 if (stmts != NULL)
5756 stmts->hir(instructions, state);
5757
5758 /* Switch bodies do not have r-values. */
5759 return NULL;
5760 }
5761
5762 ir_rvalue *
5763 ast_case_statement_list::hir(exec_list *instructions,
5764 struct _mesa_glsl_parse_state *state)
5765 {
5766 exec_list default_case, after_default, tmp;
5767
5768 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5769 case_stmt->hir(&tmp, state);
5770
5771 /* Default case. */
5772 if (state->switch_state.previous_default && default_case.is_empty()) {
5773 default_case.append_list(&tmp);
5774 continue;
5775 }
5776
5777 /* If default case found, append 'after_default' list. */
5778 if (!default_case.is_empty())
5779 after_default.append_list(&tmp);
5780 else
5781 instructions->append_list(&tmp);
5782 }
5783
5784 /* Handle the default case. This is done here because default might not be
5785 * the last case. We need to add checks against following cases first to see
5786 * if default should be chosen or not.
5787 */
5788 if (!default_case.is_empty()) {
5789
5790 ir_rvalue *const true_val = new (state) ir_constant(true);
5791 ir_dereference_variable *deref_run_default_var =
5792 new(state) ir_dereference_variable(state->switch_state.run_default);
5793
5794 /* Choose to run default case initially, following conditional
5795 * assignments might change this.
5796 */
5797 ir_assignment *const init_var =
5798 new(state) ir_assignment(deref_run_default_var, true_val);
5799 instructions->push_tail(init_var);
5800
5801 /* Default case was the last one, no checks required. */
5802 if (after_default.is_empty()) {
5803 instructions->append_list(&default_case);
5804 return NULL;
5805 }
5806
5807 foreach_in_list(ir_instruction, ir, &after_default) {
5808 ir_assignment *assign = ir->as_assignment();
5809
5810 if (!assign)
5811 continue;
5812
5813 /* Clone the check between case label and init expression. */
5814 ir_expression *exp = (ir_expression*) assign->condition;
5815 ir_expression *clone = exp->clone(state, NULL);
5816
5817 ir_dereference_variable *deref_var =
5818 new(state) ir_dereference_variable(state->switch_state.run_default);
5819 ir_rvalue *const false_val = new (state) ir_constant(false);
5820
5821 ir_assignment *const set_false =
5822 new(state) ir_assignment(deref_var, false_val, clone);
5823
5824 instructions->push_tail(set_false);
5825 }
5826
5827 /* Append default case and all cases after it. */
5828 instructions->append_list(&default_case);
5829 instructions->append_list(&after_default);
5830 }
5831
5832 /* Case statements do not have r-values. */
5833 return NULL;
5834 }
5835
5836 ir_rvalue *
5837 ast_case_statement::hir(exec_list *instructions,
5838 struct _mesa_glsl_parse_state *state)
5839 {
5840 labels->hir(instructions, state);
5841
5842 /* Guard case statements depending on fallthru state. */
5843 ir_dereference_variable *const deref_fallthru_guard =
5844 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5845 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5846
5847 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5848 stmt->hir(& test_fallthru->then_instructions, state);
5849
5850 instructions->push_tail(test_fallthru);
5851
5852 /* Case statements do not have r-values. */
5853 return NULL;
5854 }
5855
5856
5857 ir_rvalue *
5858 ast_case_label_list::hir(exec_list *instructions,
5859 struct _mesa_glsl_parse_state *state)
5860 {
5861 foreach_list_typed (ast_case_label, label, link, & this->labels)
5862 label->hir(instructions, state);
5863
5864 /* Case labels do not have r-values. */
5865 return NULL;
5866 }
5867
5868 ir_rvalue *
5869 ast_case_label::hir(exec_list *instructions,
5870 struct _mesa_glsl_parse_state *state)
5871 {
5872 void *ctx = state;
5873
5874 ir_dereference_variable *deref_fallthru_var =
5875 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5876
5877 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5878
5879 /* If not default case, ... */
5880 if (this->test_value != NULL) {
5881 /* Conditionally set fallthru state based on
5882 * comparison of cached test expression value to case label.
5883 */
5884 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5885 ir_constant *label_const = label_rval->constant_expression_value();
5886
5887 if (!label_const) {
5888 YYLTYPE loc = this->test_value->get_location();
5889
5890 _mesa_glsl_error(& loc, state,
5891 "switch statement case label must be a "
5892 "constant expression");
5893
5894 /* Stuff a dummy value in to allow processing to continue. */
5895 label_const = new(ctx) ir_constant(0);
5896 } else {
5897 ast_expression *previous_label = (ast_expression *)
5898 hash_table_find(state->switch_state.labels_ht,
5899 (void *)(uintptr_t)label_const->value.u[0]);
5900
5901 if (previous_label) {
5902 YYLTYPE loc = this->test_value->get_location();
5903 _mesa_glsl_error(& loc, state, "duplicate case value");
5904
5905 loc = previous_label->get_location();
5906 _mesa_glsl_error(& loc, state, "this is the previous case label");
5907 } else {
5908 hash_table_insert(state->switch_state.labels_ht,
5909 this->test_value,
5910 (void *)(uintptr_t)label_const->value.u[0]);
5911 }
5912 }
5913
5914 ir_dereference_variable *deref_test_var =
5915 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5916
5917 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5918 label_const,
5919 deref_test_var);
5920
5921 /*
5922 * From GLSL 4.40 specification section 6.2 ("Selection"):
5923 *
5924 * "The type of the init-expression value in a switch statement must
5925 * be a scalar int or uint. The type of the constant-expression value
5926 * in a case label also must be a scalar int or uint. When any pair
5927 * of these values is tested for "equal value" and the types do not
5928 * match, an implicit conversion will be done to convert the int to a
5929 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5930 * is done."
5931 */
5932 if (label_const->type != state->switch_state.test_var->type) {
5933 YYLTYPE loc = this->test_value->get_location();
5934
5935 const glsl_type *type_a = label_const->type;
5936 const glsl_type *type_b = state->switch_state.test_var->type;
5937
5938 /* Check if int->uint implicit conversion is supported. */
5939 bool integer_conversion_supported =
5940 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5941 state);
5942
5943 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5944 !integer_conversion_supported) {
5945 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5946 "init-expression and case label (%s != %s)",
5947 type_a->name, type_b->name);
5948 } else {
5949 /* Conversion of the case label. */
5950 if (type_a->base_type == GLSL_TYPE_INT) {
5951 if (!apply_implicit_conversion(glsl_type::uint_type,
5952 test_cond->operands[0], state))
5953 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5954 } else {
5955 /* Conversion of the init-expression value. */
5956 if (!apply_implicit_conversion(glsl_type::uint_type,
5957 test_cond->operands[1], state))
5958 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5959 }
5960 }
5961 }
5962
5963 ir_assignment *set_fallthru_on_test =
5964 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5965
5966 instructions->push_tail(set_fallthru_on_test);
5967 } else { /* default case */
5968 if (state->switch_state.previous_default) {
5969 YYLTYPE loc = this->get_location();
5970 _mesa_glsl_error(& loc, state,
5971 "multiple default labels in one switch");
5972
5973 loc = state->switch_state.previous_default->get_location();
5974 _mesa_glsl_error(& loc, state, "this is the first default label");
5975 }
5976 state->switch_state.previous_default = this;
5977
5978 /* Set fallthru condition on 'run_default' bool. */
5979 ir_dereference_variable *deref_run_default =
5980 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5981 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5982 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5983 cond_true,
5984 deref_run_default);
5985
5986 /* Set falltrhu state. */
5987 ir_assignment *set_fallthru =
5988 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5989
5990 instructions->push_tail(set_fallthru);
5991 }
5992
5993 /* Case statements do not have r-values. */
5994 return NULL;
5995 }
5996
5997 void
5998 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5999 struct _mesa_glsl_parse_state *state)
6000 {
6001 void *ctx = state;
6002
6003 if (condition != NULL) {
6004 ir_rvalue *const cond =
6005 condition->hir(instructions, state);
6006
6007 if ((cond == NULL)
6008 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6009 YYLTYPE loc = condition->get_location();
6010
6011 _mesa_glsl_error(& loc, state,
6012 "loop condition must be scalar boolean");
6013 } else {
6014 /* As the first code in the loop body, generate a block that looks
6015 * like 'if (!condition) break;' as the loop termination condition.
6016 */
6017 ir_rvalue *const not_cond =
6018 new(ctx) ir_expression(ir_unop_logic_not, cond);
6019
6020 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6021
6022 ir_jump *const break_stmt =
6023 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6024
6025 if_stmt->then_instructions.push_tail(break_stmt);
6026 instructions->push_tail(if_stmt);
6027 }
6028 }
6029 }
6030
6031
6032 ir_rvalue *
6033 ast_iteration_statement::hir(exec_list *instructions,
6034 struct _mesa_glsl_parse_state *state)
6035 {
6036 void *ctx = state;
6037
6038 /* For-loops and while-loops start a new scope, but do-while loops do not.
6039 */
6040 if (mode != ast_do_while)
6041 state->symbols->push_scope();
6042
6043 if (init_statement != NULL)
6044 init_statement->hir(instructions, state);
6045
6046 ir_loop *const stmt = new(ctx) ir_loop();
6047 instructions->push_tail(stmt);
6048
6049 /* Track the current loop nesting. */
6050 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6051
6052 state->loop_nesting_ast = this;
6053
6054 /* Likewise, indicate that following code is closest to a loop,
6055 * NOT closest to a switch.
6056 */
6057 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6058 state->switch_state.is_switch_innermost = false;
6059
6060 if (mode != ast_do_while)
6061 condition_to_hir(&stmt->body_instructions, state);
6062
6063 if (body != NULL)
6064 body->hir(& stmt->body_instructions, state);
6065
6066 if (rest_expression != NULL)
6067 rest_expression->hir(& stmt->body_instructions, state);
6068
6069 if (mode == ast_do_while)
6070 condition_to_hir(&stmt->body_instructions, state);
6071
6072 if (mode != ast_do_while)
6073 state->symbols->pop_scope();
6074
6075 /* Restore previous nesting before returning. */
6076 state->loop_nesting_ast = nesting_ast;
6077 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6078
6079 /* Loops do not have r-values.
6080 */
6081 return NULL;
6082 }
6083
6084
6085 /**
6086 * Determine if the given type is valid for establishing a default precision
6087 * qualifier.
6088 *
6089 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6090 *
6091 * "The precision statement
6092 *
6093 * precision precision-qualifier type;
6094 *
6095 * can be used to establish a default precision qualifier. The type field
6096 * can be either int or float or any of the sampler types, and the
6097 * precision-qualifier can be lowp, mediump, or highp."
6098 *
6099 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6100 * qualifiers on sampler types, but this seems like an oversight (since the
6101 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6102 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6103 * version.
6104 */
6105 static bool
6106 is_valid_default_precision_type(const struct glsl_type *const type)
6107 {
6108 if (type == NULL)
6109 return false;
6110
6111 switch (type->base_type) {
6112 case GLSL_TYPE_INT:
6113 case GLSL_TYPE_FLOAT:
6114 /* "int" and "float" are valid, but vectors and matrices are not. */
6115 return type->vector_elements == 1 && type->matrix_columns == 1;
6116 case GLSL_TYPE_SAMPLER:
6117 case GLSL_TYPE_IMAGE:
6118 case GLSL_TYPE_ATOMIC_UINT:
6119 return true;
6120 default:
6121 return false;
6122 }
6123 }
6124
6125
6126 ir_rvalue *
6127 ast_type_specifier::hir(exec_list *instructions,
6128 struct _mesa_glsl_parse_state *state)
6129 {
6130 if (this->default_precision == ast_precision_none && this->structure == NULL)
6131 return NULL;
6132
6133 YYLTYPE loc = this->get_location();
6134
6135 /* If this is a precision statement, check that the type to which it is
6136 * applied is either float or int.
6137 *
6138 * From section 4.5.3 of the GLSL 1.30 spec:
6139 * "The precision statement
6140 * precision precision-qualifier type;
6141 * can be used to establish a default precision qualifier. The type
6142 * field can be either int or float [...]. Any other types or
6143 * qualifiers will result in an error.
6144 */
6145 if (this->default_precision != ast_precision_none) {
6146 if (!state->check_precision_qualifiers_allowed(&loc))
6147 return NULL;
6148
6149 if (this->structure != NULL) {
6150 _mesa_glsl_error(&loc, state,
6151 "precision qualifiers do not apply to structures");
6152 return NULL;
6153 }
6154
6155 if (this->array_specifier != NULL) {
6156 _mesa_glsl_error(&loc, state,
6157 "default precision statements do not apply to "
6158 "arrays");
6159 return NULL;
6160 }
6161
6162 const struct glsl_type *const type =
6163 state->symbols->get_type(this->type_name);
6164 if (!is_valid_default_precision_type(type)) {
6165 _mesa_glsl_error(&loc, state,
6166 "default precision statements apply only to "
6167 "float, int, and opaque types");
6168 return NULL;
6169 }
6170
6171 if (state->es_shader) {
6172 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6173 * spec says:
6174 *
6175 * "Non-precision qualified declarations will use the precision
6176 * qualifier specified in the most recent precision statement
6177 * that is still in scope. The precision statement has the same
6178 * scoping rules as variable declarations. If it is declared
6179 * inside a compound statement, its effect stops at the end of
6180 * the innermost statement it was declared in. Precision
6181 * statements in nested scopes override precision statements in
6182 * outer scopes. Multiple precision statements for the same basic
6183 * type can appear inside the same scope, with later statements
6184 * overriding earlier statements within that scope."
6185 *
6186 * Default precision specifications follow the same scope rules as
6187 * variables. So, we can track the state of the default precision
6188 * qualifiers in the symbol table, and the rules will just work. This
6189 * is a slight abuse of the symbol table, but it has the semantics
6190 * that we want.
6191 */
6192 state->symbols->add_default_precision_qualifier(this->type_name,
6193 this->default_precision);
6194 }
6195
6196 /* FINISHME: Translate precision statements into IR. */
6197 return NULL;
6198 }
6199
6200 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6201 * process_record_constructor() can do type-checking on C-style initializer
6202 * expressions of structs, but ast_struct_specifier should only be translated
6203 * to HIR if it is declaring the type of a structure.
6204 *
6205 * The ->is_declaration field is false for initializers of variables
6206 * declared separately from the struct's type definition.
6207 *
6208 * struct S { ... }; (is_declaration = true)
6209 * struct T { ... } t = { ... }; (is_declaration = true)
6210 * S s = { ... }; (is_declaration = false)
6211 */
6212 if (this->structure != NULL && this->structure->is_declaration)
6213 return this->structure->hir(instructions, state);
6214
6215 return NULL;
6216 }
6217
6218
6219 /**
6220 * Process a structure or interface block tree into an array of structure fields
6221 *
6222 * After parsing, where there are some syntax differnces, structures and
6223 * interface blocks are almost identical. They are similar enough that the
6224 * AST for each can be processed the same way into a set of
6225 * \c glsl_struct_field to describe the members.
6226 *
6227 * If we're processing an interface block, var_mode should be the type of the
6228 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6229 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6230 * ir_var_auto.
6231 *
6232 * \return
6233 * The number of fields processed. A pointer to the array structure fields is
6234 * stored in \c *fields_ret.
6235 */
6236 static unsigned
6237 ast_process_struct_or_iface_block_members(exec_list *instructions,
6238 struct _mesa_glsl_parse_state *state,
6239 exec_list *declarations,
6240 glsl_struct_field **fields_ret,
6241 bool is_interface,
6242 enum glsl_matrix_layout matrix_layout,
6243 bool allow_reserved_names,
6244 ir_variable_mode var_mode,
6245 ast_type_qualifier *layout,
6246 unsigned block_stream,
6247 unsigned expl_location)
6248 {
6249 unsigned decl_count = 0;
6250 unsigned next_offset = 0;
6251
6252 /* Make an initial pass over the list of fields to determine how
6253 * many there are. Each element in this list is an ast_declarator_list.
6254 * This means that we actually need to count the number of elements in the
6255 * 'declarations' list in each of the elements.
6256 */
6257 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6258 decl_count += decl_list->declarations.length();
6259 }
6260
6261 /* Allocate storage for the fields and process the field
6262 * declarations. As the declarations are processed, try to also convert
6263 * the types to HIR. This ensures that structure definitions embedded in
6264 * other structure definitions or in interface blocks are processed.
6265 */
6266 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6267 decl_count);
6268
6269 bool first_member = true;
6270 bool first_member_has_explicit_location = false;
6271
6272 unsigned i = 0;
6273 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6274 const char *type_name;
6275 YYLTYPE loc = decl_list->get_location();
6276
6277 decl_list->type->specifier->hir(instructions, state);
6278
6279 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6280 *
6281 * "Anonymous structures are not supported; so embedded structures
6282 * must have a declarator. A name given to an embedded struct is
6283 * scoped at the same level as the struct it is embedded in."
6284 *
6285 * The same section of the GLSL 1.20 spec says:
6286 *
6287 * "Anonymous structures are not supported. Embedded structures are
6288 * not supported."
6289 *
6290 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6291 * embedded structures in 1.10 only.
6292 */
6293 if (state->language_version != 110 &&
6294 decl_list->type->specifier->structure != NULL)
6295 _mesa_glsl_error(&loc, state,
6296 "embedded structure declarations are not allowed");
6297
6298 const glsl_type *decl_type =
6299 decl_list->type->glsl_type(& type_name, state);
6300
6301 const struct ast_type_qualifier *const qual =
6302 &decl_list->type->qualifier;
6303
6304 /* From section 4.3.9 of the GLSL 4.40 spec:
6305 *
6306 * "[In interface blocks] opaque types are not allowed."
6307 *
6308 * It should be impossible for decl_type to be NULL here. Cases that
6309 * might naturally lead to decl_type being NULL, especially for the
6310 * is_interface case, will have resulted in compilation having
6311 * already halted due to a syntax error.
6312 */
6313 assert(decl_type);
6314
6315 if (is_interface) {
6316 if (decl_type->contains_opaque()) {
6317 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6318 "interface block contains opaque variable");
6319 }
6320 } else {
6321 if (decl_type->contains_atomic()) {
6322 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6323 *
6324 * "Members of structures cannot be declared as atomic counter
6325 * types."
6326 */
6327 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6328 }
6329
6330 if (decl_type->contains_image()) {
6331 /* FINISHME: Same problem as with atomic counters.
6332 * FINISHME: Request clarification from Khronos and add
6333 * FINISHME: spec quotation here.
6334 */
6335 _mesa_glsl_error(&loc, state, "image in structure");
6336 }
6337 }
6338
6339 if (qual->flags.q.explicit_binding) {
6340 _mesa_glsl_error(&loc, state,
6341 "binding layout qualifier cannot be applied "
6342 "to struct or interface block members");
6343 }
6344
6345 if (is_interface) {
6346 if (!first_member) {
6347 if (!layout->flags.q.explicit_location &&
6348 ((first_member_has_explicit_location &&
6349 !qual->flags.q.explicit_location) ||
6350 (!first_member_has_explicit_location &&
6351 qual->flags.q.explicit_location))) {
6352 _mesa_glsl_error(&loc, state,
6353 "when block-level location layout qualifier "
6354 "is not supplied either all members must "
6355 "have a location layout qualifier or all "
6356 "members must not have a location layout "
6357 "qualifier");
6358 }
6359 } else {
6360 first_member = false;
6361 first_member_has_explicit_location =
6362 qual->flags.q.explicit_location;
6363 }
6364 }
6365
6366 if (qual->flags.q.std140 ||
6367 qual->flags.q.std430 ||
6368 qual->flags.q.packed ||
6369 qual->flags.q.shared) {
6370 _mesa_glsl_error(&loc, state,
6371 "uniform/shader storage block layout qualifiers "
6372 "std140, std430, packed, and shared can only be "
6373 "applied to uniform/shader storage blocks, not "
6374 "members");
6375 }
6376
6377 if (qual->flags.q.constant) {
6378 _mesa_glsl_error(&loc, state,
6379 "const storage qualifier cannot be applied "
6380 "to struct or interface block members");
6381 }
6382
6383 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6384 *
6385 * "A block member may be declared with a stream identifier, but
6386 * the specified stream must match the stream associated with the
6387 * containing block."
6388 */
6389 if (qual->flags.q.explicit_stream) {
6390 unsigned qual_stream;
6391 if (process_qualifier_constant(state, &loc, "stream",
6392 qual->stream, &qual_stream) &&
6393 qual_stream != block_stream) {
6394 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6395 "interface block member does not match "
6396 "the interface block (%u vs %u)", qual_stream,
6397 block_stream);
6398 }
6399 }
6400
6401 if (qual->flags.q.uniform && qual->has_interpolation()) {
6402 _mesa_glsl_error(&loc, state,
6403 "interpolation qualifiers cannot be used "
6404 "with uniform interface blocks");
6405 }
6406
6407 if ((qual->flags.q.uniform || !is_interface) &&
6408 qual->has_auxiliary_storage()) {
6409 _mesa_glsl_error(&loc, state,
6410 "auxiliary storage qualifiers cannot be used "
6411 "in uniform blocks or structures.");
6412 }
6413
6414 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6415 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6416 _mesa_glsl_error(&loc, state,
6417 "row_major and column_major can only be "
6418 "applied to interface blocks");
6419 } else
6420 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6421 }
6422
6423 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6424 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6425 "readonly and writeonly.");
6426 }
6427
6428 foreach_list_typed (ast_declaration, decl, link,
6429 &decl_list->declarations) {
6430 YYLTYPE loc = decl->get_location();
6431
6432 if (!allow_reserved_names)
6433 validate_identifier(decl->identifier, loc, state);
6434
6435 const struct glsl_type *field_type =
6436 process_array_type(&loc, decl_type, decl->array_specifier, state);
6437 validate_array_dimensions(field_type, state, &loc);
6438 fields[i].type = field_type;
6439 fields[i].name = decl->identifier;
6440 fields[i].interpolation =
6441 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6442 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6443 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6444 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6445 fields[i].precision = qual->precision;
6446
6447 if (qual->flags.q.explicit_location) {
6448 unsigned qual_location;
6449 if (process_qualifier_constant(state, &loc, "location",
6450 qual->location, &qual_location)) {
6451 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6452 expl_location = fields[i].location +
6453 fields[i].type->count_attribute_slots(false);
6454 }
6455 } else {
6456 if (layout && layout->flags.q.explicit_location) {
6457 fields[i].location = expl_location;
6458 expl_location += fields[i].type->count_attribute_slots(false);
6459 } else {
6460 fields[i].location = -1;
6461 }
6462 }
6463
6464 /* Offset can only be used with std430 and std140 layouts an initial
6465 * value of 0 is used for error detection.
6466 */
6467 unsigned align = 0;
6468 unsigned size = 0;
6469 if (layout) {
6470 bool row_major;
6471 if (qual->flags.q.row_major ||
6472 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6473 row_major = true;
6474 } else {
6475 row_major = false;
6476 }
6477
6478 if(layout->flags.q.std140) {
6479 align = field_type->std140_base_alignment(row_major);
6480 size = field_type->std140_size(row_major);
6481 } else if (layout->flags.q.std430) {
6482 align = field_type->std430_base_alignment(row_major);
6483 size = field_type->std430_size(row_major);
6484 }
6485 }
6486
6487 if (qual->flags.q.explicit_offset) {
6488 unsigned qual_offset;
6489 if (process_qualifier_constant(state, &loc, "offset",
6490 qual->offset, &qual_offset)) {
6491 if (align != 0 && size != 0) {
6492 if (next_offset > qual_offset)
6493 _mesa_glsl_error(&loc, state, "layout qualifier "
6494 "offset overlaps previous member");
6495
6496 if (qual_offset % align) {
6497 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6498 "must be a multiple of the base "
6499 "alignment of %s", field_type->name);
6500 }
6501 fields[i].offset = qual_offset;
6502 next_offset = glsl_align(qual_offset + size, align);
6503 } else {
6504 _mesa_glsl_error(&loc, state, "offset can only be used "
6505 "with std430 and std140 layouts");
6506 }
6507 }
6508 } else {
6509 fields[i].offset = -1;
6510 if (align != 0 && size != 0)
6511 next_offset = glsl_align(next_offset + size, align);
6512 }
6513
6514 /* Propogate row- / column-major information down the fields of the
6515 * structure or interface block. Structures need this data because
6516 * the structure may contain a structure that contains ... a matrix
6517 * that need the proper layout.
6518 */
6519 if (is_interface &&
6520 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6521 (field_type->without_array()->is_matrix()
6522 || field_type->without_array()->is_record())) {
6523 /* If no layout is specified for the field, inherit the layout
6524 * from the block.
6525 */
6526 fields[i].matrix_layout = matrix_layout;
6527
6528 if (qual->flags.q.row_major)
6529 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6530 else if (qual->flags.q.column_major)
6531 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6532
6533 /* If we're processing an uniform or buffer block, the matrix
6534 * layout must be decided by this point.
6535 */
6536 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6537 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6538 }
6539
6540 /* Image qualifiers are allowed on buffer variables, which can only
6541 * be defined inside shader storage buffer objects
6542 */
6543 if (layout && var_mode == ir_var_shader_storage) {
6544 /* For readonly and writeonly qualifiers the field definition,
6545 * if set, overwrites the layout qualifier.
6546 */
6547 if (qual->flags.q.read_only) {
6548 fields[i].image_read_only = true;
6549 fields[i].image_write_only = false;
6550 } else if (qual->flags.q.write_only) {
6551 fields[i].image_read_only = false;
6552 fields[i].image_write_only = true;
6553 } else {
6554 fields[i].image_read_only = layout->flags.q.read_only;
6555 fields[i].image_write_only = layout->flags.q.write_only;
6556 }
6557
6558 /* For other qualifiers, we set the flag if either the layout
6559 * qualifier or the field qualifier are set
6560 */
6561 fields[i].image_coherent = qual->flags.q.coherent ||
6562 layout->flags.q.coherent;
6563 fields[i].image_volatile = qual->flags.q._volatile ||
6564 layout->flags.q._volatile;
6565 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6566 layout->flags.q.restrict_flag;
6567 }
6568
6569 i++;
6570 }
6571 }
6572
6573 assert(i == decl_count);
6574
6575 *fields_ret = fields;
6576 return decl_count;
6577 }
6578
6579
6580 ir_rvalue *
6581 ast_struct_specifier::hir(exec_list *instructions,
6582 struct _mesa_glsl_parse_state *state)
6583 {
6584 YYLTYPE loc = this->get_location();
6585
6586 unsigned expl_location = 0;
6587 if (layout && layout->flags.q.explicit_location) {
6588 if (!process_qualifier_constant(state, &loc, "location",
6589 layout->location, &expl_location)) {
6590 return NULL;
6591 } else {
6592 expl_location = VARYING_SLOT_VAR0 + expl_location;
6593 }
6594 }
6595
6596 glsl_struct_field *fields;
6597 unsigned decl_count =
6598 ast_process_struct_or_iface_block_members(instructions,
6599 state,
6600 &this->declarations,
6601 &fields,
6602 false,
6603 GLSL_MATRIX_LAYOUT_INHERITED,
6604 false /* allow_reserved_names */,
6605 ir_var_auto,
6606 layout,
6607 0, /* for interface only */
6608 expl_location);
6609
6610 validate_identifier(this->name, loc, state);
6611
6612 const glsl_type *t =
6613 glsl_type::get_record_instance(fields, decl_count, this->name);
6614
6615 if (!state->symbols->add_type(name, t)) {
6616 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6617 } else {
6618 const glsl_type **s = reralloc(state, state->user_structures,
6619 const glsl_type *,
6620 state->num_user_structures + 1);
6621 if (s != NULL) {
6622 s[state->num_user_structures] = t;
6623 state->user_structures = s;
6624 state->num_user_structures++;
6625 }
6626 }
6627
6628 /* Structure type definitions do not have r-values.
6629 */
6630 return NULL;
6631 }
6632
6633
6634 /**
6635 * Visitor class which detects whether a given interface block has been used.
6636 */
6637 class interface_block_usage_visitor : public ir_hierarchical_visitor
6638 {
6639 public:
6640 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6641 : mode(mode), block(block), found(false)
6642 {
6643 }
6644
6645 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6646 {
6647 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6648 found = true;
6649 return visit_stop;
6650 }
6651 return visit_continue;
6652 }
6653
6654 bool usage_found() const
6655 {
6656 return this->found;
6657 }
6658
6659 private:
6660 ir_variable_mode mode;
6661 const glsl_type *block;
6662 bool found;
6663 };
6664
6665 static bool
6666 is_unsized_array_last_element(ir_variable *v)
6667 {
6668 const glsl_type *interface_type = v->get_interface_type();
6669 int length = interface_type->length;
6670
6671 assert(v->type->is_unsized_array());
6672
6673 /* Check if it is the last element of the interface */
6674 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6675 return true;
6676 return false;
6677 }
6678
6679 ir_rvalue *
6680 ast_interface_block::hir(exec_list *instructions,
6681 struct _mesa_glsl_parse_state *state)
6682 {
6683 YYLTYPE loc = this->get_location();
6684
6685 /* Interface blocks must be declared at global scope */
6686 if (state->current_function != NULL) {
6687 _mesa_glsl_error(&loc, state,
6688 "Interface block `%s' must be declared "
6689 "at global scope",
6690 this->block_name);
6691 }
6692
6693 if (!this->layout.flags.q.buffer &&
6694 this->layout.flags.q.std430) {
6695 _mesa_glsl_error(&loc, state,
6696 "std430 storage block layout qualifier is supported "
6697 "only for shader storage blocks");
6698 }
6699
6700 /* The ast_interface_block has a list of ast_declarator_lists. We
6701 * need to turn those into ir_variables with an association
6702 * with this uniform block.
6703 */
6704 enum glsl_interface_packing packing;
6705 if (this->layout.flags.q.shared) {
6706 packing = GLSL_INTERFACE_PACKING_SHARED;
6707 } else if (this->layout.flags.q.packed) {
6708 packing = GLSL_INTERFACE_PACKING_PACKED;
6709 } else if (this->layout.flags.q.std430) {
6710 packing = GLSL_INTERFACE_PACKING_STD430;
6711 } else {
6712 /* The default layout is std140.
6713 */
6714 packing = GLSL_INTERFACE_PACKING_STD140;
6715 }
6716
6717 ir_variable_mode var_mode;
6718 const char *iface_type_name;
6719 if (this->layout.flags.q.in) {
6720 var_mode = ir_var_shader_in;
6721 iface_type_name = "in";
6722 } else if (this->layout.flags.q.out) {
6723 var_mode = ir_var_shader_out;
6724 iface_type_name = "out";
6725 } else if (this->layout.flags.q.uniform) {
6726 var_mode = ir_var_uniform;
6727 iface_type_name = "uniform";
6728 } else if (this->layout.flags.q.buffer) {
6729 var_mode = ir_var_shader_storage;
6730 iface_type_name = "buffer";
6731 } else {
6732 var_mode = ir_var_auto;
6733 iface_type_name = "UNKNOWN";
6734 assert(!"interface block layout qualifier not found!");
6735 }
6736
6737 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6738 if (this->layout.flags.q.row_major)
6739 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6740 else if (this->layout.flags.q.column_major)
6741 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6742
6743 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6744 exec_list declared_variables;
6745 glsl_struct_field *fields;
6746
6747 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6748 * that we don't have incompatible qualifiers
6749 */
6750 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6751 _mesa_glsl_error(&loc, state,
6752 "Interface block sets both readonly and writeonly");
6753 }
6754
6755 unsigned qual_stream;
6756 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6757 &qual_stream) ||
6758 !validate_stream_qualifier(&loc, state, qual_stream)) {
6759 /* If the stream qualifier is invalid it doesn't make sense to continue
6760 * on and try to compare stream layouts on member variables against it
6761 * so just return early.
6762 */
6763 return NULL;
6764 }
6765
6766 unsigned expl_location = 0;
6767 if (layout.flags.q.explicit_location) {
6768 if (!process_qualifier_constant(state, &loc, "location",
6769 layout.location, &expl_location)) {
6770 return NULL;
6771 } else {
6772 expl_location = VARYING_SLOT_VAR0 + expl_location;
6773 }
6774 }
6775
6776 unsigned int num_variables =
6777 ast_process_struct_or_iface_block_members(&declared_variables,
6778 state,
6779 &this->declarations,
6780 &fields,
6781 true,
6782 matrix_layout,
6783 redeclaring_per_vertex,
6784 var_mode,
6785 &this->layout,
6786 qual_stream,
6787 expl_location);
6788
6789 if (!redeclaring_per_vertex) {
6790 validate_identifier(this->block_name, loc, state);
6791
6792 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6793 *
6794 * "Block names have no other use within a shader beyond interface
6795 * matching; it is a compile-time error to use a block name at global
6796 * scope for anything other than as a block name."
6797 */
6798 ir_variable *var = state->symbols->get_variable(this->block_name);
6799 if (var && !var->type->is_interface()) {
6800 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6801 "already used in the scope.",
6802 this->block_name);
6803 }
6804 }
6805
6806 const glsl_type *earlier_per_vertex = NULL;
6807 if (redeclaring_per_vertex) {
6808 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6809 * the named interface block gl_in, we can find it by looking at the
6810 * previous declaration of gl_in. Otherwise we can find it by looking
6811 * at the previous decalartion of any of the built-in outputs,
6812 * e.g. gl_Position.
6813 *
6814 * Also check that the instance name and array-ness of the redeclaration
6815 * are correct.
6816 */
6817 switch (var_mode) {
6818 case ir_var_shader_in:
6819 if (ir_variable *earlier_gl_in =
6820 state->symbols->get_variable("gl_in")) {
6821 earlier_per_vertex = earlier_gl_in->get_interface_type();
6822 } else {
6823 _mesa_glsl_error(&loc, state,
6824 "redeclaration of gl_PerVertex input not allowed "
6825 "in the %s shader",
6826 _mesa_shader_stage_to_string(state->stage));
6827 }
6828 if (this->instance_name == NULL ||
6829 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6830 !this->array_specifier->is_single_dimension()) {
6831 _mesa_glsl_error(&loc, state,
6832 "gl_PerVertex input must be redeclared as "
6833 "gl_in[]");
6834 }
6835 break;
6836 case ir_var_shader_out:
6837 if (ir_variable *earlier_gl_Position =
6838 state->symbols->get_variable("gl_Position")) {
6839 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6840 } else if (ir_variable *earlier_gl_out =
6841 state->symbols->get_variable("gl_out")) {
6842 earlier_per_vertex = earlier_gl_out->get_interface_type();
6843 } else {
6844 _mesa_glsl_error(&loc, state,
6845 "redeclaration of gl_PerVertex output not "
6846 "allowed in the %s shader",
6847 _mesa_shader_stage_to_string(state->stage));
6848 }
6849 if (state->stage == MESA_SHADER_TESS_CTRL) {
6850 if (this->instance_name == NULL ||
6851 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6852 _mesa_glsl_error(&loc, state,
6853 "gl_PerVertex output must be redeclared as "
6854 "gl_out[]");
6855 }
6856 } else {
6857 if (this->instance_name != NULL) {
6858 _mesa_glsl_error(&loc, state,
6859 "gl_PerVertex output may not be redeclared with "
6860 "an instance name");
6861 }
6862 }
6863 break;
6864 default:
6865 _mesa_glsl_error(&loc, state,
6866 "gl_PerVertex must be declared as an input or an "
6867 "output");
6868 break;
6869 }
6870
6871 if (earlier_per_vertex == NULL) {
6872 /* An error has already been reported. Bail out to avoid null
6873 * dereferences later in this function.
6874 */
6875 return NULL;
6876 }
6877
6878 /* Copy locations from the old gl_PerVertex interface block. */
6879 for (unsigned i = 0; i < num_variables; i++) {
6880 int j = earlier_per_vertex->field_index(fields[i].name);
6881 if (j == -1) {
6882 _mesa_glsl_error(&loc, state,
6883 "redeclaration of gl_PerVertex must be a subset "
6884 "of the built-in members of gl_PerVertex");
6885 } else {
6886 fields[i].location =
6887 earlier_per_vertex->fields.structure[j].location;
6888 fields[i].offset =
6889 earlier_per_vertex->fields.structure[j].offset;
6890 fields[i].interpolation =
6891 earlier_per_vertex->fields.structure[j].interpolation;
6892 fields[i].centroid =
6893 earlier_per_vertex->fields.structure[j].centroid;
6894 fields[i].sample =
6895 earlier_per_vertex->fields.structure[j].sample;
6896 fields[i].patch =
6897 earlier_per_vertex->fields.structure[j].patch;
6898 fields[i].precision =
6899 earlier_per_vertex->fields.structure[j].precision;
6900 }
6901 }
6902
6903 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6904 * spec:
6905 *
6906 * If a built-in interface block is redeclared, it must appear in
6907 * the shader before any use of any member included in the built-in
6908 * declaration, or a compilation error will result.
6909 *
6910 * This appears to be a clarification to the behaviour established for
6911 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6912 * regardless of GLSL version.
6913 */
6914 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6915 v.run(instructions);
6916 if (v.usage_found()) {
6917 _mesa_glsl_error(&loc, state,
6918 "redeclaration of a built-in interface block must "
6919 "appear before any use of any member of the "
6920 "interface block");
6921 }
6922 }
6923
6924 const glsl_type *block_type =
6925 glsl_type::get_interface_instance(fields,
6926 num_variables,
6927 packing,
6928 this->block_name);
6929
6930 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6931 YYLTYPE loc = this->get_location();
6932 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6933 "already taken in the current scope",
6934 this->block_name, iface_type_name);
6935 }
6936
6937 /* Since interface blocks cannot contain statements, it should be
6938 * impossible for the block to generate any instructions.
6939 */
6940 assert(declared_variables.is_empty());
6941
6942 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6943 *
6944 * Geometry shader input variables get the per-vertex values written
6945 * out by vertex shader output variables of the same names. Since a
6946 * geometry shader operates on a set of vertices, each input varying
6947 * variable (or input block, see interface blocks below) needs to be
6948 * declared as an array.
6949 */
6950 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6951 var_mode == ir_var_shader_in) {
6952 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6953 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6954 state->stage == MESA_SHADER_TESS_EVAL) &&
6955 this->array_specifier == NULL &&
6956 var_mode == ir_var_shader_in) {
6957 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6958 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6959 this->array_specifier == NULL &&
6960 var_mode == ir_var_shader_out) {
6961 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6962 }
6963
6964
6965 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6966 * says:
6967 *
6968 * "If an instance name (instance-name) is used, then it puts all the
6969 * members inside a scope within its own name space, accessed with the
6970 * field selector ( . ) operator (analogously to structures)."
6971 */
6972 if (this->instance_name) {
6973 if (redeclaring_per_vertex) {
6974 /* When a built-in in an unnamed interface block is redeclared,
6975 * get_variable_being_redeclared() calls
6976 * check_builtin_array_max_size() to make sure that built-in array
6977 * variables aren't redeclared to illegal sizes. But we're looking
6978 * at a redeclaration of a named built-in interface block. So we
6979 * have to manually call check_builtin_array_max_size() for all parts
6980 * of the interface that are arrays.
6981 */
6982 for (unsigned i = 0; i < num_variables; i++) {
6983 if (fields[i].type->is_array()) {
6984 const unsigned size = fields[i].type->array_size();
6985 check_builtin_array_max_size(fields[i].name, size, loc, state);
6986 }
6987 }
6988 } else {
6989 validate_identifier(this->instance_name, loc, state);
6990 }
6991
6992 ir_variable *var;
6993
6994 if (this->array_specifier != NULL) {
6995 const glsl_type *block_array_type =
6996 process_array_type(&loc, block_type, this->array_specifier, state);
6997
6998 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6999 *
7000 * For uniform blocks declared an array, each individual array
7001 * element corresponds to a separate buffer object backing one
7002 * instance of the block. As the array size indicates the number
7003 * of buffer objects needed, uniform block array declarations
7004 * must specify an array size.
7005 *
7006 * And a few paragraphs later:
7007 *
7008 * Geometry shader input blocks must be declared as arrays and
7009 * follow the array declaration and linking rules for all
7010 * geometry shader inputs. All other input and output block
7011 * arrays must specify an array size.
7012 *
7013 * The same applies to tessellation shaders.
7014 *
7015 * The upshot of this is that the only circumstance where an
7016 * interface array size *doesn't* need to be specified is on a
7017 * geometry shader input, tessellation control shader input,
7018 * tessellation control shader output, and tessellation evaluation
7019 * shader input.
7020 */
7021 if (block_array_type->is_unsized_array()) {
7022 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7023 state->stage == MESA_SHADER_TESS_CTRL ||
7024 state->stage == MESA_SHADER_TESS_EVAL;
7025 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7026
7027 if (this->layout.flags.q.in) {
7028 if (!allow_inputs)
7029 _mesa_glsl_error(&loc, state,
7030 "unsized input block arrays not allowed in "
7031 "%s shader",
7032 _mesa_shader_stage_to_string(state->stage));
7033 } else if (this->layout.flags.q.out) {
7034 if (!allow_outputs)
7035 _mesa_glsl_error(&loc, state,
7036 "unsized output block arrays not allowed in "
7037 "%s shader",
7038 _mesa_shader_stage_to_string(state->stage));
7039 } else {
7040 /* by elimination, this is a uniform block array */
7041 _mesa_glsl_error(&loc, state,
7042 "unsized uniform block arrays not allowed in "
7043 "%s shader",
7044 _mesa_shader_stage_to_string(state->stage));
7045 }
7046 }
7047
7048 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7049 *
7050 * * Arrays of arrays of blocks are not allowed
7051 */
7052 if (state->es_shader && block_array_type->is_array() &&
7053 block_array_type->fields.array->is_array()) {
7054 _mesa_glsl_error(&loc, state,
7055 "arrays of arrays interface blocks are "
7056 "not allowed");
7057 }
7058
7059 var = new(state) ir_variable(block_array_type,
7060 this->instance_name,
7061 var_mode);
7062 } else {
7063 var = new(state) ir_variable(block_type,
7064 this->instance_name,
7065 var_mode);
7066 }
7067
7068 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7069 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7070
7071 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7072 var->data.read_only = true;
7073
7074 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7075 handle_geometry_shader_input_decl(state, loc, var);
7076 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7077 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7078 handle_tess_shader_input_decl(state, loc, var);
7079 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7080 handle_tess_ctrl_shader_output_decl(state, loc, var);
7081
7082 for (unsigned i = 0; i < num_variables; i++) {
7083 if (fields[i].type->is_unsized_array()) {
7084 if (var_mode == ir_var_shader_storage) {
7085 if (i != (num_variables - 1)) {
7086 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7087 "only last member of a shader storage block "
7088 "can be defined as unsized array",
7089 fields[i].name);
7090 }
7091 } else {
7092 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7093 *
7094 * "If an array is declared as the last member of a shader storage
7095 * block and the size is not specified at compile-time, it is
7096 * sized at run-time. In all other cases, arrays are sized only
7097 * at compile-time."
7098 */
7099 if (state->es_shader) {
7100 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7101 "only last member of a shader storage block "
7102 "can be defined as unsized array",
7103 fields[i].name);
7104 }
7105 }
7106 }
7107 }
7108
7109 if (ir_variable *earlier =
7110 state->symbols->get_variable(this->instance_name)) {
7111 if (!redeclaring_per_vertex) {
7112 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7113 this->instance_name);
7114 }
7115 earlier->data.how_declared = ir_var_declared_normally;
7116 earlier->type = var->type;
7117 earlier->reinit_interface_type(block_type);
7118 delete var;
7119 } else {
7120 if (this->layout.flags.q.explicit_binding) {
7121 apply_explicit_binding(state, &loc, var, var->type,
7122 &this->layout);
7123 }
7124
7125 var->data.stream = qual_stream;
7126 if (layout.flags.q.explicit_location) {
7127 var->data.location = expl_location;
7128 var->data.explicit_location = true;
7129 }
7130
7131 state->symbols->add_variable(var);
7132 instructions->push_tail(var);
7133 }
7134 } else {
7135 /* In order to have an array size, the block must also be declared with
7136 * an instance name.
7137 */
7138 assert(this->array_specifier == NULL);
7139
7140 for (unsigned i = 0; i < num_variables; i++) {
7141 ir_variable *var =
7142 new(state) ir_variable(fields[i].type,
7143 ralloc_strdup(state, fields[i].name),
7144 var_mode);
7145 var->data.interpolation = fields[i].interpolation;
7146 var->data.centroid = fields[i].centroid;
7147 var->data.sample = fields[i].sample;
7148 var->data.patch = fields[i].patch;
7149 var->data.stream = qual_stream;
7150 var->data.location = fields[i].location;
7151 if (fields[i].location != -1)
7152 var->data.explicit_location = true;
7153 var->init_interface_type(block_type);
7154
7155 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7156 var->data.read_only = true;
7157
7158 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7159 if (state->es_shader) {
7160 var->data.precision =
7161 select_gles_precision(fields[i].precision, fields[i].type,
7162 state, &loc);
7163 }
7164
7165 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7166 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7167 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7168 } else {
7169 var->data.matrix_layout = fields[i].matrix_layout;
7170 }
7171
7172 if (var->data.mode == ir_var_shader_storage) {
7173 var->data.image_read_only = fields[i].image_read_only;
7174 var->data.image_write_only = fields[i].image_write_only;
7175 var->data.image_coherent = fields[i].image_coherent;
7176 var->data.image_volatile = fields[i].image_volatile;
7177 var->data.image_restrict = fields[i].image_restrict;
7178 }
7179
7180 /* Examine var name here since var may get deleted in the next call */
7181 bool var_is_gl_id = is_gl_identifier(var->name);
7182
7183 if (redeclaring_per_vertex) {
7184 ir_variable *earlier =
7185 get_variable_being_redeclared(var, loc, state,
7186 true /* allow_all_redeclarations */);
7187 if (!var_is_gl_id || earlier == NULL) {
7188 _mesa_glsl_error(&loc, state,
7189 "redeclaration of gl_PerVertex can only "
7190 "include built-in variables");
7191 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7192 _mesa_glsl_error(&loc, state,
7193 "`%s' has already been redeclared",
7194 earlier->name);
7195 } else {
7196 earlier->data.how_declared = ir_var_declared_in_block;
7197 earlier->reinit_interface_type(block_type);
7198 }
7199 continue;
7200 }
7201
7202 if (state->symbols->get_variable(var->name) != NULL)
7203 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7204
7205 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7206 * The UBO declaration itself doesn't get an ir_variable unless it
7207 * has an instance name. This is ugly.
7208 */
7209 if (this->layout.flags.q.explicit_binding) {
7210 apply_explicit_binding(state, &loc, var,
7211 var->get_interface_type(), &this->layout);
7212 }
7213
7214 if (var->type->is_unsized_array()) {
7215 if (var->is_in_shader_storage_block()) {
7216 if (!is_unsized_array_last_element(var)) {
7217 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7218 "only last member of a shader storage block "
7219 "can be defined as unsized array",
7220 var->name);
7221 }
7222 var->data.from_ssbo_unsized_array = true;
7223 } else {
7224 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7225 *
7226 * "If an array is declared as the last member of a shader storage
7227 * block and the size is not specified at compile-time, it is
7228 * sized at run-time. In all other cases, arrays are sized only
7229 * at compile-time."
7230 */
7231 if (state->es_shader) {
7232 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7233 "only last member of a shader storage block "
7234 "can be defined as unsized array",
7235 var->name);
7236 }
7237 }
7238 }
7239
7240 state->symbols->add_variable(var);
7241 instructions->push_tail(var);
7242 }
7243
7244 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7245 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7246 *
7247 * It is also a compilation error ... to redeclare a built-in
7248 * block and then use a member from that built-in block that was
7249 * not included in the redeclaration.
7250 *
7251 * This appears to be a clarification to the behaviour established
7252 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7253 * behaviour regardless of GLSL version.
7254 *
7255 * To prevent the shader from using a member that was not included in
7256 * the redeclaration, we disable any ir_variables that are still
7257 * associated with the old declaration of gl_PerVertex (since we've
7258 * already updated all of the variables contained in the new
7259 * gl_PerVertex to point to it).
7260 *
7261 * As a side effect this will prevent
7262 * validate_intrastage_interface_blocks() from getting confused and
7263 * thinking there are conflicting definitions of gl_PerVertex in the
7264 * shader.
7265 */
7266 foreach_in_list_safe(ir_instruction, node, instructions) {
7267 ir_variable *const var = node->as_variable();
7268 if (var != NULL &&
7269 var->get_interface_type() == earlier_per_vertex &&
7270 var->data.mode == var_mode) {
7271 if (var->data.how_declared == ir_var_declared_normally) {
7272 _mesa_glsl_error(&loc, state,
7273 "redeclaration of gl_PerVertex cannot "
7274 "follow a redeclaration of `%s'",
7275 var->name);
7276 }
7277 state->symbols->disable_variable(var->name);
7278 var->remove();
7279 }
7280 }
7281 }
7282 }
7283
7284 return NULL;
7285 }
7286
7287
7288 ir_rvalue *
7289 ast_tcs_output_layout::hir(exec_list *instructions,
7290 struct _mesa_glsl_parse_state *state)
7291 {
7292 YYLTYPE loc = this->get_location();
7293
7294 unsigned num_vertices;
7295 if (!state->out_qualifier->vertices->
7296 process_qualifier_constant(state, "vertices", &num_vertices,
7297 false)) {
7298 /* return here to stop cascading incorrect error messages */
7299 return NULL;
7300 }
7301
7302 /* If any shader outputs occurred before this declaration and specified an
7303 * array size, make sure the size they specified is consistent with the
7304 * primitive type.
7305 */
7306 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7307 _mesa_glsl_error(&loc, state,
7308 "this tessellation control shader output layout "
7309 "specifies %u vertices, but a previous output "
7310 "is declared with size %u",
7311 num_vertices, state->tcs_output_size);
7312 return NULL;
7313 }
7314
7315 state->tcs_output_vertices_specified = true;
7316
7317 /* If any shader outputs occurred before this declaration and did not
7318 * specify an array size, their size is determined now.
7319 */
7320 foreach_in_list (ir_instruction, node, instructions) {
7321 ir_variable *var = node->as_variable();
7322 if (var == NULL || var->data.mode != ir_var_shader_out)
7323 continue;
7324
7325 /* Note: Not all tessellation control shader output are arrays. */
7326 if (!var->type->is_unsized_array() || var->data.patch)
7327 continue;
7328
7329 if (var->data.max_array_access >= num_vertices) {
7330 _mesa_glsl_error(&loc, state,
7331 "this tessellation control shader output layout "
7332 "specifies %u vertices, but an access to element "
7333 "%u of output `%s' already exists", num_vertices,
7334 var->data.max_array_access, var->name);
7335 } else {
7336 var->type = glsl_type::get_array_instance(var->type->fields.array,
7337 num_vertices);
7338 }
7339 }
7340
7341 return NULL;
7342 }
7343
7344
7345 ir_rvalue *
7346 ast_gs_input_layout::hir(exec_list *instructions,
7347 struct _mesa_glsl_parse_state *state)
7348 {
7349 YYLTYPE loc = this->get_location();
7350
7351 /* If any geometry input layout declaration preceded this one, make sure it
7352 * was consistent with this one.
7353 */
7354 if (state->gs_input_prim_type_specified &&
7355 state->in_qualifier->prim_type != this->prim_type) {
7356 _mesa_glsl_error(&loc, state,
7357 "geometry shader input layout does not match"
7358 " previous declaration");
7359 return NULL;
7360 }
7361
7362 /* If any shader inputs occurred before this declaration and specified an
7363 * array size, make sure the size they specified is consistent with the
7364 * primitive type.
7365 */
7366 unsigned num_vertices = vertices_per_prim(this->prim_type);
7367 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7368 _mesa_glsl_error(&loc, state,
7369 "this geometry shader input layout implies %u vertices"
7370 " per primitive, but a previous input is declared"
7371 " with size %u", num_vertices, state->gs_input_size);
7372 return NULL;
7373 }
7374
7375 state->gs_input_prim_type_specified = true;
7376
7377 /* If any shader inputs occurred before this declaration and did not
7378 * specify an array size, their size is determined now.
7379 */
7380 foreach_in_list(ir_instruction, node, instructions) {
7381 ir_variable *var = node->as_variable();
7382 if (var == NULL || var->data.mode != ir_var_shader_in)
7383 continue;
7384
7385 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7386 * array; skip it.
7387 */
7388
7389 if (var->type->is_unsized_array()) {
7390 if (var->data.max_array_access >= num_vertices) {
7391 _mesa_glsl_error(&loc, state,
7392 "this geometry shader input layout implies %u"
7393 " vertices, but an access to element %u of input"
7394 " `%s' already exists", num_vertices,
7395 var->data.max_array_access, var->name);
7396 } else {
7397 var->type = glsl_type::get_array_instance(var->type->fields.array,
7398 num_vertices);
7399 }
7400 }
7401 }
7402
7403 return NULL;
7404 }
7405
7406
7407 ir_rvalue *
7408 ast_cs_input_layout::hir(exec_list *instructions,
7409 struct _mesa_glsl_parse_state *state)
7410 {
7411 YYLTYPE loc = this->get_location();
7412
7413 /* From the ARB_compute_shader specification:
7414 *
7415 * If the local size of the shader in any dimension is greater
7416 * than the maximum size supported by the implementation for that
7417 * dimension, a compile-time error results.
7418 *
7419 * It is not clear from the spec how the error should be reported if
7420 * the total size of the work group exceeds
7421 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7422 * report it at compile time as well.
7423 */
7424 GLuint64 total_invocations = 1;
7425 unsigned qual_local_size[3];
7426 for (int i = 0; i < 3; i++) {
7427
7428 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7429 'x' + i);
7430 /* Infer a local_size of 1 for unspecified dimensions */
7431 if (this->local_size[i] == NULL) {
7432 qual_local_size[i] = 1;
7433 } else if (!this->local_size[i]->
7434 process_qualifier_constant(state, local_size_str,
7435 &qual_local_size[i], false)) {
7436 ralloc_free(local_size_str);
7437 return NULL;
7438 }
7439 ralloc_free(local_size_str);
7440
7441 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7442 _mesa_glsl_error(&loc, state,
7443 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7444 " (%d)", 'x' + i,
7445 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7446 break;
7447 }
7448 total_invocations *= qual_local_size[i];
7449 if (total_invocations >
7450 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7451 _mesa_glsl_error(&loc, state,
7452 "product of local_sizes exceeds "
7453 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7454 state->ctx->Const.MaxComputeWorkGroupInvocations);
7455 break;
7456 }
7457 }
7458
7459 /* If any compute input layout declaration preceded this one, make sure it
7460 * was consistent with this one.
7461 */
7462 if (state->cs_input_local_size_specified) {
7463 for (int i = 0; i < 3; i++) {
7464 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7465 _mesa_glsl_error(&loc, state,
7466 "compute shader input layout does not match"
7467 " previous declaration");
7468 return NULL;
7469 }
7470 }
7471 }
7472
7473 state->cs_input_local_size_specified = true;
7474 for (int i = 0; i < 3; i++)
7475 state->cs_input_local_size[i] = qual_local_size[i];
7476
7477 /* We may now declare the built-in constant gl_WorkGroupSize (see
7478 * builtin_variable_generator::generate_constants() for why we didn't
7479 * declare it earlier).
7480 */
7481 ir_variable *var = new(state->symbols)
7482 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7483 var->data.how_declared = ir_var_declared_implicitly;
7484 var->data.read_only = true;
7485 instructions->push_tail(var);
7486 state->symbols->add_variable(var);
7487 ir_constant_data data;
7488 memset(&data, 0, sizeof(data));
7489 for (int i = 0; i < 3; i++)
7490 data.u[i] = qual_local_size[i];
7491 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7492 var->constant_initializer =
7493 new(var) ir_constant(glsl_type::uvec3_type, &data);
7494 var->data.has_initializer = true;
7495
7496 return NULL;
7497 }
7498
7499
7500 static void
7501 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7502 exec_list *instructions)
7503 {
7504 bool gl_FragColor_assigned = false;
7505 bool gl_FragData_assigned = false;
7506 bool gl_FragSecondaryColor_assigned = false;
7507 bool gl_FragSecondaryData_assigned = false;
7508 bool user_defined_fs_output_assigned = false;
7509 ir_variable *user_defined_fs_output = NULL;
7510
7511 /* It would be nice to have proper location information. */
7512 YYLTYPE loc;
7513 memset(&loc, 0, sizeof(loc));
7514
7515 foreach_in_list(ir_instruction, node, instructions) {
7516 ir_variable *var = node->as_variable();
7517
7518 if (!var || !var->data.assigned)
7519 continue;
7520
7521 if (strcmp(var->name, "gl_FragColor") == 0)
7522 gl_FragColor_assigned = true;
7523 else if (strcmp(var->name, "gl_FragData") == 0)
7524 gl_FragData_assigned = true;
7525 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7526 gl_FragSecondaryColor_assigned = true;
7527 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7528 gl_FragSecondaryData_assigned = true;
7529 else if (!is_gl_identifier(var->name)) {
7530 if (state->stage == MESA_SHADER_FRAGMENT &&
7531 var->data.mode == ir_var_shader_out) {
7532 user_defined_fs_output_assigned = true;
7533 user_defined_fs_output = var;
7534 }
7535 }
7536 }
7537
7538 /* From the GLSL 1.30 spec:
7539 *
7540 * "If a shader statically assigns a value to gl_FragColor, it
7541 * may not assign a value to any element of gl_FragData. If a
7542 * shader statically writes a value to any element of
7543 * gl_FragData, it may not assign a value to
7544 * gl_FragColor. That is, a shader may assign values to either
7545 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7546 * linked together must also consistently write just one of
7547 * these variables. Similarly, if user declared output
7548 * variables are in use (statically assigned to), then the
7549 * built-in variables gl_FragColor and gl_FragData may not be
7550 * assigned to. These incorrect usages all generate compile
7551 * time errors."
7552 */
7553 if (gl_FragColor_assigned && gl_FragData_assigned) {
7554 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7555 "`gl_FragColor' and `gl_FragData'");
7556 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7557 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7558 "`gl_FragColor' and `%s'",
7559 user_defined_fs_output->name);
7560 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7561 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7562 "`gl_FragSecondaryColorEXT' and"
7563 " `gl_FragSecondaryDataEXT'");
7564 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7565 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7566 "`gl_FragColor' and"
7567 " `gl_FragSecondaryDataEXT'");
7568 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7569 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7570 "`gl_FragData' and"
7571 " `gl_FragSecondaryColorEXT'");
7572 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7573 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7574 "`gl_FragData' and `%s'",
7575 user_defined_fs_output->name);
7576 }
7577
7578 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7579 !state->EXT_blend_func_extended_enable) {
7580 _mesa_glsl_error(&loc, state,
7581 "Dual source blending requires EXT_blend_func_extended");
7582 }
7583 }
7584
7585
7586 static void
7587 remove_per_vertex_blocks(exec_list *instructions,
7588 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7589 {
7590 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7591 * if it exists in this shader type.
7592 */
7593 const glsl_type *per_vertex = NULL;
7594 switch (mode) {
7595 case ir_var_shader_in:
7596 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7597 per_vertex = gl_in->get_interface_type();
7598 break;
7599 case ir_var_shader_out:
7600 if (ir_variable *gl_Position =
7601 state->symbols->get_variable("gl_Position")) {
7602 per_vertex = gl_Position->get_interface_type();
7603 }
7604 break;
7605 default:
7606 assert(!"Unexpected mode");
7607 break;
7608 }
7609
7610 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7611 * need to do anything.
7612 */
7613 if (per_vertex == NULL)
7614 return;
7615
7616 /* If the interface block is used by the shader, then we don't need to do
7617 * anything.
7618 */
7619 interface_block_usage_visitor v(mode, per_vertex);
7620 v.run(instructions);
7621 if (v.usage_found())
7622 return;
7623
7624 /* Remove any ir_variable declarations that refer to the interface block
7625 * we're removing.
7626 */
7627 foreach_in_list_safe(ir_instruction, node, instructions) {
7628 ir_variable *const var = node->as_variable();
7629 if (var != NULL && var->get_interface_type() == per_vertex &&
7630 var->data.mode == mode) {
7631 state->symbols->disable_variable(var->name);
7632 var->remove();
7633 }
7634 }
7635 }