glsl: make sure UBO arrays are sized in ES
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* ESSL does not allow implicit conversions */
295 if (state->es_shader)
296 return false;
297
298 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
299 *
300 * "There are no implicit array or structure conversions. For
301 * example, an array of int cannot be implicitly converted to an
302 * array of float.
303 */
304 if (!to->is_numeric() || !from->type->is_numeric())
305 return false;
306
307 /* We don't actually want the specific type `to`, we want a type
308 * with the same base type as `to`, but the same vector width as
309 * `from`.
310 */
311 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
312 from->type->matrix_columns);
313
314 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
315 if (op) {
316 from = new(ctx) ir_expression(op, to, from, NULL);
317 return true;
318 } else {
319 return false;
320 }
321 }
322
323
324 static const struct glsl_type *
325 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
326 bool multiply,
327 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
328 {
329 const glsl_type *type_a = value_a->type;
330 const glsl_type *type_b = value_b->type;
331
332 /* From GLSL 1.50 spec, page 56:
333 *
334 * "The arithmetic binary operators add (+), subtract (-),
335 * multiply (*), and divide (/) operate on integer and
336 * floating-point scalars, vectors, and matrices."
337 */
338 if (!type_a->is_numeric() || !type_b->is_numeric()) {
339 _mesa_glsl_error(loc, state,
340 "operands to arithmetic operators must be numeric");
341 return glsl_type::error_type;
342 }
343
344
345 /* "If one operand is floating-point based and the other is
346 * not, then the conversions from Section 4.1.10 "Implicit
347 * Conversions" are applied to the non-floating-point-based operand."
348 */
349 if (!apply_implicit_conversion(type_a, value_b, state)
350 && !apply_implicit_conversion(type_b, value_a, state)) {
351 _mesa_glsl_error(loc, state,
352 "could not implicitly convert operands to "
353 "arithmetic operator");
354 return glsl_type::error_type;
355 }
356 type_a = value_a->type;
357 type_b = value_b->type;
358
359 /* "If the operands are integer types, they must both be signed or
360 * both be unsigned."
361 *
362 * From this rule and the preceeding conversion it can be inferred that
363 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
364 * The is_numeric check above already filtered out the case where either
365 * type is not one of these, so now the base types need only be tested for
366 * equality.
367 */
368 if (type_a->base_type != type_b->base_type) {
369 _mesa_glsl_error(loc, state,
370 "base type mismatch for arithmetic operator");
371 return glsl_type::error_type;
372 }
373
374 /* "All arithmetic binary operators result in the same fundamental type
375 * (signed integer, unsigned integer, or floating-point) as the
376 * operands they operate on, after operand type conversion. After
377 * conversion, the following cases are valid
378 *
379 * * The two operands are scalars. In this case the operation is
380 * applied, resulting in a scalar."
381 */
382 if (type_a->is_scalar() && type_b->is_scalar())
383 return type_a;
384
385 /* "* One operand is a scalar, and the other is a vector or matrix.
386 * In this case, the scalar operation is applied independently to each
387 * component of the vector or matrix, resulting in the same size
388 * vector or matrix."
389 */
390 if (type_a->is_scalar()) {
391 if (!type_b->is_scalar())
392 return type_b;
393 } else if (type_b->is_scalar()) {
394 return type_a;
395 }
396
397 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
398 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
399 * handled.
400 */
401 assert(!type_a->is_scalar());
402 assert(!type_b->is_scalar());
403
404 /* "* The two operands are vectors of the same size. In this case, the
405 * operation is done component-wise resulting in the same size
406 * vector."
407 */
408 if (type_a->is_vector() && type_b->is_vector()) {
409 if (type_a == type_b) {
410 return type_a;
411 } else {
412 _mesa_glsl_error(loc, state,
413 "vector size mismatch for arithmetic operator");
414 return glsl_type::error_type;
415 }
416 }
417
418 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
419 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
420 * <vector, vector> have been handled. At least one of the operands must
421 * be matrix. Further, since there are no integer matrix types, the base
422 * type of both operands must be float.
423 */
424 assert(type_a->is_matrix() || type_b->is_matrix());
425 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
426 type_a->base_type == GLSL_TYPE_DOUBLE);
427 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
428 type_b->base_type == GLSL_TYPE_DOUBLE);
429
430 /* "* The operator is add (+), subtract (-), or divide (/), and the
431 * operands are matrices with the same number of rows and the same
432 * number of columns. In this case, the operation is done component-
433 * wise resulting in the same size matrix."
434 * * The operator is multiply (*), where both operands are matrices or
435 * one operand is a vector and the other a matrix. A right vector
436 * operand is treated as a column vector and a left vector operand as a
437 * row vector. In all these cases, it is required that the number of
438 * columns of the left operand is equal to the number of rows of the
439 * right operand. Then, the multiply (*) operation does a linear
440 * algebraic multiply, yielding an object that has the same number of
441 * rows as the left operand and the same number of columns as the right
442 * operand. Section 5.10 "Vector and Matrix Operations" explains in
443 * more detail how vectors and matrices are operated on."
444 */
445 if (! multiply) {
446 if (type_a == type_b)
447 return type_a;
448 } else {
449 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
450
451 if (type == glsl_type::error_type) {
452 _mesa_glsl_error(loc, state,
453 "size mismatch for matrix multiplication");
454 }
455
456 return type;
457 }
458
459
460 /* "All other cases are illegal."
461 */
462 _mesa_glsl_error(loc, state, "type mismatch");
463 return glsl_type::error_type;
464 }
465
466
467 static const struct glsl_type *
468 unary_arithmetic_result_type(const struct glsl_type *type,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 /* From GLSL 1.50 spec, page 57:
472 *
473 * "The arithmetic unary operators negate (-), post- and pre-increment
474 * and decrement (-- and ++) operate on integer or floating-point
475 * values (including vectors and matrices). All unary operators work
476 * component-wise on their operands. These result with the same type
477 * they operated on."
478 */
479 if (!type->is_numeric()) {
480 _mesa_glsl_error(loc, state,
481 "operands to arithmetic operators must be numeric");
482 return glsl_type::error_type;
483 }
484
485 return type;
486 }
487
488 /**
489 * \brief Return the result type of a bit-logic operation.
490 *
491 * If the given types to the bit-logic operator are invalid, return
492 * glsl_type::error_type.
493 *
494 * \param value_a LHS of bit-logic op
495 * \param value_b RHS of bit-logic op
496 */
497 static const struct glsl_type *
498 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
499 ast_operators op,
500 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
501 {
502 const glsl_type *type_a = value_a->type;
503 const glsl_type *type_b = value_b->type;
504
505 if (!state->check_bitwise_operations_allowed(loc)) {
506 return glsl_type::error_type;
507 }
508
509 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
510 *
511 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
512 * (|). The operands must be of type signed or unsigned integers or
513 * integer vectors."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
517 ast_expression::operator_string(op));
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
522 ast_expression::operator_string(op));
523 return glsl_type::error_type;
524 }
525
526 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
527 * make sense for bitwise operations, as they don't operate on floats.
528 *
529 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
530 * here. It wasn't clear whether or not we should apply them to bitwise
531 * operations. However, Khronos has decided that they should in future
532 * language revisions. Applications also rely on this behavior. We opt
533 * to apply them in general, but issue a portability warning.
534 *
535 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
536 */
537 if (type_a->base_type != type_b->base_type) {
538 if (!apply_implicit_conversion(type_a, value_b, state)
539 && !apply_implicit_conversion(type_b, value_a, state)) {
540 _mesa_glsl_error(loc, state,
541 "could not implicitly convert operands to "
542 "`%s` operator",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 } else {
546 _mesa_glsl_warning(loc, state,
547 "some implementations may not support implicit "
548 "int -> uint conversions for `%s' operators; "
549 "consider casting explicitly for portability",
550 ast_expression::operator_string(op));
551 }
552 type_a = value_a->type;
553 type_b = value_b->type;
554 }
555
556 /* "The fundamental types of the operands (signed or unsigned) must
557 * match,"
558 */
559 if (type_a->base_type != type_b->base_type) {
560 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
561 "base type", ast_expression::operator_string(op));
562 return glsl_type::error_type;
563 }
564
565 /* "The operands cannot be vectors of differing size." */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
570 "different sizes", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If one operand is a scalar and the other a vector, the scalar is
575 * applied component-wise to the vector, resulting in the same type as
576 * the vector. The fundamental types of the operands [...] will be the
577 * resulting fundamental type."
578 */
579 if (type_a->is_scalar())
580 return type_b;
581 else
582 return type_a;
583 }
584
585 static const struct glsl_type *
586 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
587 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
588 {
589 const glsl_type *type_a = value_a->type;
590 const glsl_type *type_b = value_b->type;
591
592 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
593 return glsl_type::error_type;
594 }
595
596 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
597 *
598 * "The operator modulus (%) operates on signed or unsigned integers or
599 * integer vectors."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605 if (!type_b->is_integer()) {
606 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
607 return glsl_type::error_type;
608 }
609
610 /* "If the fundamental types in the operands do not match, then the
611 * conversions from section 4.1.10 "Implicit Conversions" are applied
612 * to create matching types."
613 *
614 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
615 * int -> uint conversion rules. Prior to that, there were no implicit
616 * conversions. So it's harmless to apply them universally - no implicit
617 * conversions will exist. If the types don't match, we'll receive false,
618 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
619 *
620 * "The operand types must both be signed or unsigned."
621 */
622 if (!apply_implicit_conversion(type_a, value_b, state) &&
623 !apply_implicit_conversion(type_b, value_a, state)) {
624 _mesa_glsl_error(loc, state,
625 "could not implicitly convert operands to "
626 "modulus (%%) operator");
627 return glsl_type::error_type;
628 }
629 type_a = value_a->type;
630 type_b = value_b->type;
631
632 /* "The operands cannot be vectors of differing size. If one operand is
633 * a scalar and the other vector, then the scalar is applied component-
634 * wise to the vector, resulting in the same type as the vector. If both
635 * are vectors of the same size, the result is computed component-wise."
636 */
637 if (type_a->is_vector()) {
638 if (!type_b->is_vector()
639 || (type_a->vector_elements == type_b->vector_elements))
640 return type_a;
641 } else
642 return type_b;
643
644 /* "The operator modulus (%) is not defined for any other data types
645 * (non-integer types)."
646 */
647 _mesa_glsl_error(loc, state, "type mismatch");
648 return glsl_type::error_type;
649 }
650
651
652 static const struct glsl_type *
653 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
654 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
655 {
656 const glsl_type *type_a = value_a->type;
657 const glsl_type *type_b = value_b->type;
658
659 /* From GLSL 1.50 spec, page 56:
660 * "The relational operators greater than (>), less than (<), greater
661 * than or equal (>=), and less than or equal (<=) operate only on
662 * scalar integer and scalar floating-point expressions."
663 */
664 if (!type_a->is_numeric()
665 || !type_b->is_numeric()
666 || !type_a->is_scalar()
667 || !type_b->is_scalar()) {
668 _mesa_glsl_error(loc, state,
669 "operands to relational operators must be scalar and "
670 "numeric");
671 return glsl_type::error_type;
672 }
673
674 /* "Either the operands' types must match, or the conversions from
675 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
676 * operand, after which the types must match."
677 */
678 if (!apply_implicit_conversion(type_a, value_b, state)
679 && !apply_implicit_conversion(type_b, value_a, state)) {
680 _mesa_glsl_error(loc, state,
681 "could not implicitly convert operands to "
682 "relational operator");
683 return glsl_type::error_type;
684 }
685 type_a = value_a->type;
686 type_b = value_b->type;
687
688 if (type_a->base_type != type_b->base_type) {
689 _mesa_glsl_error(loc, state, "base type mismatch");
690 return glsl_type::error_type;
691 }
692
693 /* "The result is scalar Boolean."
694 */
695 return glsl_type::bool_type;
696 }
697
698 /**
699 * \brief Return the result type of a bit-shift operation.
700 *
701 * If the given types to the bit-shift operator are invalid, return
702 * glsl_type::error_type.
703 *
704 * \param type_a Type of LHS of bit-shift op
705 * \param type_b Type of RHS of bit-shift op
706 */
707 static const struct glsl_type *
708 shift_result_type(const struct glsl_type *type_a,
709 const struct glsl_type *type_b,
710 ast_operators op,
711 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
712 {
713 if (!state->check_bitwise_operations_allowed(loc)) {
714 return glsl_type::error_type;
715 }
716
717 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
718 *
719 * "The shift operators (<<) and (>>). For both operators, the operands
720 * must be signed or unsigned integers or integer vectors. One operand
721 * can be signed while the other is unsigned."
722 */
723 if (!type_a->is_integer()) {
724 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
725 "integer vector", ast_expression::operator_string(op));
726 return glsl_type::error_type;
727
728 }
729 if (!type_b->is_integer()) {
730 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
731 "integer vector", ast_expression::operator_string(op));
732 return glsl_type::error_type;
733 }
734
735 /* "If the first operand is a scalar, the second operand has to be
736 * a scalar as well."
737 */
738 if (type_a->is_scalar() && !type_b->is_scalar()) {
739 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
740 "second must be scalar as well",
741 ast_expression::operator_string(op));
742 return glsl_type::error_type;
743 }
744
745 /* If both operands are vectors, check that they have same number of
746 * elements.
747 */
748 if (type_a->is_vector() &&
749 type_b->is_vector() &&
750 type_a->vector_elements != type_b->vector_elements) {
751 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
752 "have same number of elements",
753 ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "In all cases, the resulting type will be the same type as the left
758 * operand."
759 */
760 return type_a;
761 }
762
763 /**
764 * Returns the innermost array index expression in an rvalue tree.
765 * This is the largest indexing level -- if an array of blocks, then
766 * it is the block index rather than an indexing expression for an
767 * array-typed member of an array of blocks.
768 */
769 static ir_rvalue *
770 find_innermost_array_index(ir_rvalue *rv)
771 {
772 ir_dereference_array *last = NULL;
773 while (rv) {
774 if (rv->as_dereference_array()) {
775 last = rv->as_dereference_array();
776 rv = last->array;
777 } else if (rv->as_dereference_record())
778 rv = rv->as_dereference_record()->record;
779 else if (rv->as_swizzle())
780 rv = rv->as_swizzle()->val;
781 else
782 rv = NULL;
783 }
784
785 if (last)
786 return last->array_index;
787
788 return NULL;
789 }
790
791 /**
792 * Validates that a value can be assigned to a location with a specified type
793 *
794 * Validates that \c rhs can be assigned to some location. If the types are
795 * not an exact match but an automatic conversion is possible, \c rhs will be
796 * converted.
797 *
798 * \return
799 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
800 * Otherwise the actual RHS to be assigned will be returned. This may be
801 * \c rhs, or it may be \c rhs after some type conversion.
802 *
803 * \note
804 * In addition to being used for assignments, this function is used to
805 * type-check return values.
806 */
807 static ir_rvalue *
808 validate_assignment(struct _mesa_glsl_parse_state *state,
809 YYLTYPE loc, ir_rvalue *lhs,
810 ir_rvalue *rhs, bool is_initializer)
811 {
812 /* If there is already some error in the RHS, just return it. Anything
813 * else will lead to an avalanche of error message back to the user.
814 */
815 if (rhs->type->is_error())
816 return rhs;
817
818 /* In the Tessellation Control Shader:
819 * If a per-vertex output variable is used as an l-value, it is an error
820 * if the expression indicating the vertex number is not the identifier
821 * `gl_InvocationID`.
822 */
823 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
824 ir_variable *var = lhs->variable_referenced();
825 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
826 ir_rvalue *index = find_innermost_array_index(lhs);
827 ir_variable *index_var = index ? index->variable_referenced() : NULL;
828 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
829 _mesa_glsl_error(&loc, state,
830 "Tessellation control shader outputs can only "
831 "be indexed by gl_InvocationID");
832 return NULL;
833 }
834 }
835 }
836
837 /* If the types are identical, the assignment can trivially proceed.
838 */
839 if (rhs->type == lhs->type)
840 return rhs;
841
842 /* If the array element types are the same and the LHS is unsized,
843 * the assignment is okay for initializers embedded in variable
844 * declarations.
845 *
846 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
847 * is handled by ir_dereference::is_lvalue.
848 */
849 const glsl_type *lhs_t = lhs->type;
850 const glsl_type *rhs_t = rhs->type;
851 bool unsized_array = false;
852 while(lhs_t->is_array()) {
853 if (rhs_t == lhs_t)
854 break; /* the rest of the inner arrays match so break out early */
855 if (!rhs_t->is_array()) {
856 unsized_array = false;
857 break; /* number of dimensions mismatch */
858 }
859 if (lhs_t->length == rhs_t->length) {
860 lhs_t = lhs_t->fields.array;
861 rhs_t = rhs_t->fields.array;
862 continue;
863 } else if (lhs_t->is_unsized_array()) {
864 unsized_array = true;
865 } else {
866 unsized_array = false;
867 break; /* sized array mismatch */
868 }
869 lhs_t = lhs_t->fields.array;
870 rhs_t = rhs_t->fields.array;
871 }
872 if (unsized_array) {
873 if (is_initializer) {
874 return rhs;
875 } else {
876 _mesa_glsl_error(&loc, state,
877 "implicitly sized arrays cannot be assigned");
878 return NULL;
879 }
880 }
881
882 /* Check for implicit conversion in GLSL 1.20 */
883 if (apply_implicit_conversion(lhs->type, rhs, state)) {
884 if (rhs->type == lhs->type)
885 return rhs;
886 }
887
888 _mesa_glsl_error(&loc, state,
889 "%s of type %s cannot be assigned to "
890 "variable of type %s",
891 is_initializer ? "initializer" : "value",
892 rhs->type->name, lhs->type->name);
893
894 return NULL;
895 }
896
897 static void
898 mark_whole_array_access(ir_rvalue *access)
899 {
900 ir_dereference_variable *deref = access->as_dereference_variable();
901
902 if (deref && deref->var) {
903 deref->var->data.max_array_access = deref->type->length - 1;
904 }
905 }
906
907 static bool
908 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
909 const char *non_lvalue_description,
910 ir_rvalue *lhs, ir_rvalue *rhs,
911 ir_rvalue **out_rvalue, bool needs_rvalue,
912 bool is_initializer,
913 YYLTYPE lhs_loc)
914 {
915 void *ctx = state;
916 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
917
918 ir_variable *lhs_var = lhs->variable_referenced();
919 if (lhs_var)
920 lhs_var->data.assigned = true;
921
922 if (!error_emitted) {
923 if (non_lvalue_description != NULL) {
924 _mesa_glsl_error(&lhs_loc, state,
925 "assignment to %s",
926 non_lvalue_description);
927 error_emitted = true;
928 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
929 (lhs_var->data.mode == ir_var_shader_storage &&
930 lhs_var->data.image_read_only))) {
931 /* We can have image_read_only set on both images and buffer variables,
932 * but in the former there is a distinction between assignments to
933 * the variable itself (read_only) and to the memory they point to
934 * (image_read_only), while in the case of buffer variables there is
935 * no such distinction, that is why this check here is limited to
936 * buffer variables alone.
937 */
938 _mesa_glsl_error(&lhs_loc, state,
939 "assignment to read-only variable '%s'",
940 lhs_var->name);
941 error_emitted = true;
942 } else if (lhs->type->is_array() &&
943 !state->check_version(120, 300, &lhs_loc,
944 "whole array assignment forbidden")) {
945 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
946 *
947 * "Other binary or unary expressions, non-dereferenced
948 * arrays, function names, swizzles with repeated fields,
949 * and constants cannot be l-values."
950 *
951 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
952 */
953 error_emitted = true;
954 } else if (!lhs->is_lvalue()) {
955 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
956 error_emitted = true;
957 }
958 }
959
960 ir_rvalue *new_rhs =
961 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
962 if (new_rhs != NULL) {
963 rhs = new_rhs;
964
965 /* If the LHS array was not declared with a size, it takes it size from
966 * the RHS. If the LHS is an l-value and a whole array, it must be a
967 * dereference of a variable. Any other case would require that the LHS
968 * is either not an l-value or not a whole array.
969 */
970 if (lhs->type->is_unsized_array()) {
971 ir_dereference *const d = lhs->as_dereference();
972
973 assert(d != NULL);
974
975 ir_variable *const var = d->variable_referenced();
976
977 assert(var != NULL);
978
979 if (var->data.max_array_access >= rhs->type->array_size()) {
980 /* FINISHME: This should actually log the location of the RHS. */
981 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
982 "previous access",
983 var->data.max_array_access);
984 }
985
986 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
987 rhs->type->array_size());
988 d->type = var->type;
989 }
990 if (lhs->type->is_array()) {
991 mark_whole_array_access(rhs);
992 mark_whole_array_access(lhs);
993 }
994 }
995
996 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
997 * but not post_inc) need the converted assigned value as an rvalue
998 * to handle things like:
999 *
1000 * i = j += 1;
1001 */
1002 if (needs_rvalue) {
1003 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1004 ir_var_temporary);
1005 instructions->push_tail(var);
1006 instructions->push_tail(assign(var, rhs));
1007
1008 if (!error_emitted) {
1009 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1010 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1011 }
1012 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1013
1014 *out_rvalue = rvalue;
1015 } else {
1016 if (!error_emitted)
1017 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1018 *out_rvalue = NULL;
1019 }
1020
1021 return error_emitted;
1022 }
1023
1024 static ir_rvalue *
1025 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1026 {
1027 void *ctx = ralloc_parent(lvalue);
1028 ir_variable *var;
1029
1030 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1031 ir_var_temporary);
1032 instructions->push_tail(var);
1033
1034 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1035 lvalue));
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 ir_rvalue *
1042 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1043 {
1044 (void) instructions;
1045 (void) state;
1046
1047 return NULL;
1048 }
1049
1050 bool
1051 ast_node::has_sequence_subexpression() const
1052 {
1053 return false;
1054 }
1055
1056 void
1057 ast_node::set_is_lhs(bool /* new_value */)
1058 {
1059 }
1060
1061 void
1062 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1063 struct _mesa_glsl_parse_state *state)
1064 {
1065 (void)hir(instructions, state);
1066 }
1067
1068 void
1069 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1070 struct _mesa_glsl_parse_state *state)
1071 {
1072 (void)hir(instructions, state);
1073 }
1074
1075 static ir_rvalue *
1076 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1077 {
1078 int join_op;
1079 ir_rvalue *cmp = NULL;
1080
1081 if (operation == ir_binop_all_equal)
1082 join_op = ir_binop_logic_and;
1083 else
1084 join_op = ir_binop_logic_or;
1085
1086 switch (op0->type->base_type) {
1087 case GLSL_TYPE_FLOAT:
1088 case GLSL_TYPE_UINT:
1089 case GLSL_TYPE_INT:
1090 case GLSL_TYPE_BOOL:
1091 case GLSL_TYPE_DOUBLE:
1092 return new(mem_ctx) ir_expression(operation, op0, op1);
1093
1094 case GLSL_TYPE_ARRAY: {
1095 for (unsigned int i = 0; i < op0->type->length; i++) {
1096 ir_rvalue *e0, *e1, *result;
1097
1098 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1099 new(mem_ctx) ir_constant(i));
1100 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1101 new(mem_ctx) ir_constant(i));
1102 result = do_comparison(mem_ctx, operation, e0, e1);
1103
1104 if (cmp) {
1105 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1106 } else {
1107 cmp = result;
1108 }
1109 }
1110
1111 mark_whole_array_access(op0);
1112 mark_whole_array_access(op1);
1113 break;
1114 }
1115
1116 case GLSL_TYPE_STRUCT: {
1117 for (unsigned int i = 0; i < op0->type->length; i++) {
1118 ir_rvalue *e0, *e1, *result;
1119 const char *field_name = op0->type->fields.structure[i].name;
1120
1121 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1122 field_name);
1123 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1124 field_name);
1125 result = do_comparison(mem_ctx, operation, e0, e1);
1126
1127 if (cmp) {
1128 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1129 } else {
1130 cmp = result;
1131 }
1132 }
1133 break;
1134 }
1135
1136 case GLSL_TYPE_ERROR:
1137 case GLSL_TYPE_VOID:
1138 case GLSL_TYPE_SAMPLER:
1139 case GLSL_TYPE_IMAGE:
1140 case GLSL_TYPE_INTERFACE:
1141 case GLSL_TYPE_ATOMIC_UINT:
1142 case GLSL_TYPE_SUBROUTINE:
1143 case GLSL_TYPE_FUNCTION:
1144 /* I assume a comparison of a struct containing a sampler just
1145 * ignores the sampler present in the type.
1146 */
1147 break;
1148 }
1149
1150 if (cmp == NULL)
1151 cmp = new(mem_ctx) ir_constant(true);
1152
1153 return cmp;
1154 }
1155
1156 /* For logical operations, we want to ensure that the operands are
1157 * scalar booleans. If it isn't, emit an error and return a constant
1158 * boolean to avoid triggering cascading error messages.
1159 */
1160 ir_rvalue *
1161 get_scalar_boolean_operand(exec_list *instructions,
1162 struct _mesa_glsl_parse_state *state,
1163 ast_expression *parent_expr,
1164 int operand,
1165 const char *operand_name,
1166 bool *error_emitted)
1167 {
1168 ast_expression *expr = parent_expr->subexpressions[operand];
1169 void *ctx = state;
1170 ir_rvalue *val = expr->hir(instructions, state);
1171
1172 if (val->type->is_boolean() && val->type->is_scalar())
1173 return val;
1174
1175 if (!*error_emitted) {
1176 YYLTYPE loc = expr->get_location();
1177 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1178 operand_name,
1179 parent_expr->operator_string(parent_expr->oper));
1180 *error_emitted = true;
1181 }
1182
1183 return new(ctx) ir_constant(true);
1184 }
1185
1186 /**
1187 * If name refers to a builtin array whose maximum allowed size is less than
1188 * size, report an error and return true. Otherwise return false.
1189 */
1190 void
1191 check_builtin_array_max_size(const char *name, unsigned size,
1192 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1193 {
1194 if ((strcmp("gl_TexCoord", name) == 0)
1195 && (size > state->Const.MaxTextureCoords)) {
1196 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1197 *
1198 * "The size [of gl_TexCoord] can be at most
1199 * gl_MaxTextureCoords."
1200 */
1201 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1202 "be larger than gl_MaxTextureCoords (%u)",
1203 state->Const.MaxTextureCoords);
1204 } else if (strcmp("gl_ClipDistance", name) == 0) {
1205 state->clip_dist_size = size;
1206 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1207 /* From section 7.1 (Vertex Shader Special Variables) of the
1208 * GLSL 1.30 spec:
1209 *
1210 * "The gl_ClipDistance array is predeclared as unsized and
1211 * must be sized by the shader either redeclaring it with a
1212 * size or indexing it only with integral constant
1213 * expressions. ... The size can be at most
1214 * gl_MaxClipDistances."
1215 */
1216 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1217 "be larger than gl_MaxClipDistances (%u)",
1218 state->Const.MaxClipPlanes);
1219 }
1220 } else if (strcmp("gl_CullDistance", name) == 0) {
1221 state->cull_dist_size = size;
1222 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1223 /* From the ARB_cull_distance spec:
1224 *
1225 * "The gl_CullDistance array is predeclared as unsized and
1226 * must be sized by the shader either redeclaring it with
1227 * a size or indexing it only with integral constant
1228 * expressions. The size determines the number and set of
1229 * enabled cull distances and can be at most
1230 * gl_MaxCullDistances."
1231 */
1232 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1233 "be larger than gl_MaxCullDistances (%u)",
1234 state->Const.MaxClipPlanes);
1235 }
1236 }
1237 }
1238
1239 /**
1240 * Create the constant 1, of a which is appropriate for incrementing and
1241 * decrementing values of the given GLSL type. For example, if type is vec4,
1242 * this creates a constant value of 1.0 having type float.
1243 *
1244 * If the given type is invalid for increment and decrement operators, return
1245 * a floating point 1--the error will be detected later.
1246 */
1247 static ir_rvalue *
1248 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1249 {
1250 switch (type->base_type) {
1251 case GLSL_TYPE_UINT:
1252 return new(ctx) ir_constant((unsigned) 1);
1253 case GLSL_TYPE_INT:
1254 return new(ctx) ir_constant(1);
1255 default:
1256 case GLSL_TYPE_FLOAT:
1257 return new(ctx) ir_constant(1.0f);
1258 }
1259 }
1260
1261 ir_rvalue *
1262 ast_expression::hir(exec_list *instructions,
1263 struct _mesa_glsl_parse_state *state)
1264 {
1265 return do_hir(instructions, state, true);
1266 }
1267
1268 void
1269 ast_expression::hir_no_rvalue(exec_list *instructions,
1270 struct _mesa_glsl_parse_state *state)
1271 {
1272 do_hir(instructions, state, false);
1273 }
1274
1275 void
1276 ast_expression::set_is_lhs(bool new_value)
1277 {
1278 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1279 * if we lack a identifier we can just skip it.
1280 */
1281 if (this->primary_expression.identifier == NULL)
1282 return;
1283
1284 this->is_lhs = new_value;
1285
1286 /* We need to go through the subexpressions tree to cover cases like
1287 * ast_field_selection
1288 */
1289 if (this->subexpressions[0] != NULL)
1290 this->subexpressions[0]->set_is_lhs(new_value);
1291 }
1292
1293 ir_rvalue *
1294 ast_expression::do_hir(exec_list *instructions,
1295 struct _mesa_glsl_parse_state *state,
1296 bool needs_rvalue)
1297 {
1298 void *ctx = state;
1299 static const int operations[AST_NUM_OPERATORS] = {
1300 -1, /* ast_assign doesn't convert to ir_expression. */
1301 -1, /* ast_plus doesn't convert to ir_expression. */
1302 ir_unop_neg,
1303 ir_binop_add,
1304 ir_binop_sub,
1305 ir_binop_mul,
1306 ir_binop_div,
1307 ir_binop_mod,
1308 ir_binop_lshift,
1309 ir_binop_rshift,
1310 ir_binop_less,
1311 ir_binop_greater,
1312 ir_binop_lequal,
1313 ir_binop_gequal,
1314 ir_binop_all_equal,
1315 ir_binop_any_nequal,
1316 ir_binop_bit_and,
1317 ir_binop_bit_xor,
1318 ir_binop_bit_or,
1319 ir_unop_bit_not,
1320 ir_binop_logic_and,
1321 ir_binop_logic_xor,
1322 ir_binop_logic_or,
1323 ir_unop_logic_not,
1324
1325 /* Note: The following block of expression types actually convert
1326 * to multiple IR instructions.
1327 */
1328 ir_binop_mul, /* ast_mul_assign */
1329 ir_binop_div, /* ast_div_assign */
1330 ir_binop_mod, /* ast_mod_assign */
1331 ir_binop_add, /* ast_add_assign */
1332 ir_binop_sub, /* ast_sub_assign */
1333 ir_binop_lshift, /* ast_ls_assign */
1334 ir_binop_rshift, /* ast_rs_assign */
1335 ir_binop_bit_and, /* ast_and_assign */
1336 ir_binop_bit_xor, /* ast_xor_assign */
1337 ir_binop_bit_or, /* ast_or_assign */
1338
1339 -1, /* ast_conditional doesn't convert to ir_expression. */
1340 ir_binop_add, /* ast_pre_inc. */
1341 ir_binop_sub, /* ast_pre_dec. */
1342 ir_binop_add, /* ast_post_inc. */
1343 ir_binop_sub, /* ast_post_dec. */
1344 -1, /* ast_field_selection doesn't conv to ir_expression. */
1345 -1, /* ast_array_index doesn't convert to ir_expression. */
1346 -1, /* ast_function_call doesn't conv to ir_expression. */
1347 -1, /* ast_identifier doesn't convert to ir_expression. */
1348 -1, /* ast_int_constant doesn't convert to ir_expression. */
1349 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1350 -1, /* ast_float_constant doesn't conv to ir_expression. */
1351 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1352 -1, /* ast_sequence doesn't convert to ir_expression. */
1353 };
1354 ir_rvalue *result = NULL;
1355 ir_rvalue *op[3];
1356 const struct glsl_type *type; /* a temporary variable for switch cases */
1357 bool error_emitted = false;
1358 YYLTYPE loc;
1359
1360 loc = this->get_location();
1361
1362 switch (this->oper) {
1363 case ast_aggregate:
1364 assert(!"ast_aggregate: Should never get here.");
1365 break;
1366
1367 case ast_assign: {
1368 this->subexpressions[0]->set_is_lhs(true);
1369 op[0] = this->subexpressions[0]->hir(instructions, state);
1370 op[1] = this->subexpressions[1]->hir(instructions, state);
1371
1372 error_emitted =
1373 do_assignment(instructions, state,
1374 this->subexpressions[0]->non_lvalue_description,
1375 op[0], op[1], &result, needs_rvalue, false,
1376 this->subexpressions[0]->get_location());
1377 break;
1378 }
1379
1380 case ast_plus:
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382
1383 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1384
1385 error_emitted = type->is_error();
1386
1387 result = op[0];
1388 break;
1389
1390 case ast_neg:
1391 op[0] = this->subexpressions[0]->hir(instructions, state);
1392
1393 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1394
1395 error_emitted = type->is_error();
1396
1397 result = new(ctx) ir_expression(operations[this->oper], type,
1398 op[0], NULL);
1399 break;
1400
1401 case ast_add:
1402 case ast_sub:
1403 case ast_mul:
1404 case ast_div:
1405 op[0] = this->subexpressions[0]->hir(instructions, state);
1406 op[1] = this->subexpressions[1]->hir(instructions, state);
1407
1408 type = arithmetic_result_type(op[0], op[1],
1409 (this->oper == ast_mul),
1410 state, & loc);
1411 error_emitted = type->is_error();
1412
1413 result = new(ctx) ir_expression(operations[this->oper], type,
1414 op[0], op[1]);
1415 break;
1416
1417 case ast_mod:
1418 op[0] = this->subexpressions[0]->hir(instructions, state);
1419 op[1] = this->subexpressions[1]->hir(instructions, state);
1420
1421 type = modulus_result_type(op[0], op[1], state, &loc);
1422
1423 assert(operations[this->oper] == ir_binop_mod);
1424
1425 result = new(ctx) ir_expression(operations[this->oper], type,
1426 op[0], op[1]);
1427 error_emitted = type->is_error();
1428 break;
1429
1430 case ast_lshift:
1431 case ast_rshift:
1432 if (!state->check_bitwise_operations_allowed(&loc)) {
1433 error_emitted = true;
1434 }
1435
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437 op[1] = this->subexpressions[1]->hir(instructions, state);
1438 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1439 &loc);
1440 result = new(ctx) ir_expression(operations[this->oper], type,
1441 op[0], op[1]);
1442 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1443 break;
1444
1445 case ast_less:
1446 case ast_greater:
1447 case ast_lequal:
1448 case ast_gequal:
1449 op[0] = this->subexpressions[0]->hir(instructions, state);
1450 op[1] = this->subexpressions[1]->hir(instructions, state);
1451
1452 type = relational_result_type(op[0], op[1], state, & loc);
1453
1454 /* The relational operators must either generate an error or result
1455 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1456 */
1457 assert(type->is_error()
1458 || ((type->base_type == GLSL_TYPE_BOOL)
1459 && type->is_scalar()));
1460
1461 result = new(ctx) ir_expression(operations[this->oper], type,
1462 op[0], op[1]);
1463 error_emitted = type->is_error();
1464 break;
1465
1466 case ast_nequal:
1467 case ast_equal:
1468 op[0] = this->subexpressions[0]->hir(instructions, state);
1469 op[1] = this->subexpressions[1]->hir(instructions, state);
1470
1471 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1472 *
1473 * "The equality operators equal (==), and not equal (!=)
1474 * operate on all types. They result in a scalar Boolean. If
1475 * the operand types do not match, then there must be a
1476 * conversion from Section 4.1.10 "Implicit Conversions"
1477 * applied to one operand that can make them match, in which
1478 * case this conversion is done."
1479 */
1480
1481 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1482 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1483 "no operation `%1$s' exists that takes a left-hand "
1484 "operand of type 'void' or a right operand of type "
1485 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1486 error_emitted = true;
1487 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1488 && !apply_implicit_conversion(op[1]->type, op[0], state))
1489 || (op[0]->type != op[1]->type)) {
1490 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1491 "type", (this->oper == ast_equal) ? "==" : "!=");
1492 error_emitted = true;
1493 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1494 !state->check_version(120, 300, &loc,
1495 "array comparisons forbidden")) {
1496 error_emitted = true;
1497 } else if ((op[0]->type->contains_opaque() ||
1498 op[1]->type->contains_opaque())) {
1499 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1500 error_emitted = true;
1501 }
1502
1503 if (error_emitted) {
1504 result = new(ctx) ir_constant(false);
1505 } else {
1506 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1507 assert(result->type == glsl_type::bool_type);
1508 }
1509 break;
1510
1511 case ast_bit_and:
1512 case ast_bit_xor:
1513 case ast_bit_or:
1514 op[0] = this->subexpressions[0]->hir(instructions, state);
1515 op[1] = this->subexpressions[1]->hir(instructions, state);
1516 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1517 result = new(ctx) ir_expression(operations[this->oper], type,
1518 op[0], op[1]);
1519 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1520 break;
1521
1522 case ast_bit_not:
1523 op[0] = this->subexpressions[0]->hir(instructions, state);
1524
1525 if (!state->check_bitwise_operations_allowed(&loc)) {
1526 error_emitted = true;
1527 }
1528
1529 if (!op[0]->type->is_integer()) {
1530 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1531 error_emitted = true;
1532 }
1533
1534 type = error_emitted ? glsl_type::error_type : op[0]->type;
1535 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1536 break;
1537
1538 case ast_logic_and: {
1539 exec_list rhs_instructions;
1540 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1541 "LHS", &error_emitted);
1542 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1543 "RHS", &error_emitted);
1544
1545 if (rhs_instructions.is_empty()) {
1546 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1547 type = result->type;
1548 } else {
1549 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1550 "and_tmp",
1551 ir_var_temporary);
1552 instructions->push_tail(tmp);
1553
1554 ir_if *const stmt = new(ctx) ir_if(op[0]);
1555 instructions->push_tail(stmt);
1556
1557 stmt->then_instructions.append_list(&rhs_instructions);
1558 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1559 ir_assignment *const then_assign =
1560 new(ctx) ir_assignment(then_deref, op[1]);
1561 stmt->then_instructions.push_tail(then_assign);
1562
1563 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1564 ir_assignment *const else_assign =
1565 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1566 stmt->else_instructions.push_tail(else_assign);
1567
1568 result = new(ctx) ir_dereference_variable(tmp);
1569 type = tmp->type;
1570 }
1571 break;
1572 }
1573
1574 case ast_logic_or: {
1575 exec_list rhs_instructions;
1576 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1577 "LHS", &error_emitted);
1578 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1579 "RHS", &error_emitted);
1580
1581 if (rhs_instructions.is_empty()) {
1582 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1583 type = result->type;
1584 } else {
1585 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1586 "or_tmp",
1587 ir_var_temporary);
1588 instructions->push_tail(tmp);
1589
1590 ir_if *const stmt = new(ctx) ir_if(op[0]);
1591 instructions->push_tail(stmt);
1592
1593 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1594 ir_assignment *const then_assign =
1595 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1596 stmt->then_instructions.push_tail(then_assign);
1597
1598 stmt->else_instructions.append_list(&rhs_instructions);
1599 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1600 ir_assignment *const else_assign =
1601 new(ctx) ir_assignment(else_deref, op[1]);
1602 stmt->else_instructions.push_tail(else_assign);
1603
1604 result = new(ctx) ir_dereference_variable(tmp);
1605 type = tmp->type;
1606 }
1607 break;
1608 }
1609
1610 case ast_logic_xor:
1611 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1612 *
1613 * "The logical binary operators and (&&), or ( | | ), and
1614 * exclusive or (^^). They operate only on two Boolean
1615 * expressions and result in a Boolean expression."
1616 */
1617 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1618 &error_emitted);
1619 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1620 &error_emitted);
1621
1622 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1623 op[0], op[1]);
1624 break;
1625
1626 case ast_logic_not:
1627 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1628 "operand", &error_emitted);
1629
1630 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1631 op[0], NULL);
1632 break;
1633
1634 case ast_mul_assign:
1635 case ast_div_assign:
1636 case ast_add_assign:
1637 case ast_sub_assign: {
1638 this->subexpressions[0]->set_is_lhs(true);
1639 op[0] = this->subexpressions[0]->hir(instructions, state);
1640 op[1] = this->subexpressions[1]->hir(instructions, state);
1641
1642 type = arithmetic_result_type(op[0], op[1],
1643 (this->oper == ast_mul_assign),
1644 state, & loc);
1645
1646 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1647 op[0], op[1]);
1648
1649 error_emitted =
1650 do_assignment(instructions, state,
1651 this->subexpressions[0]->non_lvalue_description,
1652 op[0]->clone(ctx, NULL), temp_rhs,
1653 &result, needs_rvalue, false,
1654 this->subexpressions[0]->get_location());
1655
1656 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1657 * explicitly test for this because none of the binary expression
1658 * operators allow array operands either.
1659 */
1660
1661 break;
1662 }
1663
1664 case ast_mod_assign: {
1665 this->subexpressions[0]->set_is_lhs(true);
1666 op[0] = this->subexpressions[0]->hir(instructions, state);
1667 op[1] = this->subexpressions[1]->hir(instructions, state);
1668
1669 type = modulus_result_type(op[0], op[1], state, &loc);
1670
1671 assert(operations[this->oper] == ir_binop_mod);
1672
1673 ir_rvalue *temp_rhs;
1674 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1675 op[0], op[1]);
1676
1677 error_emitted =
1678 do_assignment(instructions, state,
1679 this->subexpressions[0]->non_lvalue_description,
1680 op[0]->clone(ctx, NULL), temp_rhs,
1681 &result, needs_rvalue, false,
1682 this->subexpressions[0]->get_location());
1683 break;
1684 }
1685
1686 case ast_ls_assign:
1687 case ast_rs_assign: {
1688 this->subexpressions[0]->set_is_lhs(true);
1689 op[0] = this->subexpressions[0]->hir(instructions, state);
1690 op[1] = this->subexpressions[1]->hir(instructions, state);
1691 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1692 &loc);
1693 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1694 type, op[0], op[1]);
1695 error_emitted =
1696 do_assignment(instructions, state,
1697 this->subexpressions[0]->non_lvalue_description,
1698 op[0]->clone(ctx, NULL), temp_rhs,
1699 &result, needs_rvalue, false,
1700 this->subexpressions[0]->get_location());
1701 break;
1702 }
1703
1704 case ast_and_assign:
1705 case ast_xor_assign:
1706 case ast_or_assign: {
1707 this->subexpressions[0]->set_is_lhs(true);
1708 op[0] = this->subexpressions[0]->hir(instructions, state);
1709 op[1] = this->subexpressions[1]->hir(instructions, state);
1710 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1711 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1712 type, op[0], op[1]);
1713 error_emitted =
1714 do_assignment(instructions, state,
1715 this->subexpressions[0]->non_lvalue_description,
1716 op[0]->clone(ctx, NULL), temp_rhs,
1717 &result, needs_rvalue, false,
1718 this->subexpressions[0]->get_location());
1719 break;
1720 }
1721
1722 case ast_conditional: {
1723 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1724 *
1725 * "The ternary selection operator (?:). It operates on three
1726 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1727 * first expression, which must result in a scalar Boolean."
1728 */
1729 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1730 "condition", &error_emitted);
1731
1732 /* The :? operator is implemented by generating an anonymous temporary
1733 * followed by an if-statement. The last instruction in each branch of
1734 * the if-statement assigns a value to the anonymous temporary. This
1735 * temporary is the r-value of the expression.
1736 */
1737 exec_list then_instructions;
1738 exec_list else_instructions;
1739
1740 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1741 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1742
1743 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1744 *
1745 * "The second and third expressions can be any type, as
1746 * long their types match, or there is a conversion in
1747 * Section 4.1.10 "Implicit Conversions" that can be applied
1748 * to one of the expressions to make their types match. This
1749 * resulting matching type is the type of the entire
1750 * expression."
1751 */
1752 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1753 && !apply_implicit_conversion(op[2]->type, op[1], state))
1754 || (op[1]->type != op[2]->type)) {
1755 YYLTYPE loc = this->subexpressions[1]->get_location();
1756
1757 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1758 "operator must have matching types");
1759 error_emitted = true;
1760 type = glsl_type::error_type;
1761 } else {
1762 type = op[1]->type;
1763 }
1764
1765 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1766 *
1767 * "The second and third expressions must be the same type, but can
1768 * be of any type other than an array."
1769 */
1770 if (type->is_array() &&
1771 !state->check_version(120, 300, &loc,
1772 "second and third operands of ?: operator "
1773 "cannot be arrays")) {
1774 error_emitted = true;
1775 }
1776
1777 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1778 *
1779 * "Except for array indexing, structure member selection, and
1780 * parentheses, opaque variables are not allowed to be operands in
1781 * expressions; such use results in a compile-time error."
1782 */
1783 if (type->contains_opaque()) {
1784 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1785 "of the ?: operator");
1786 error_emitted = true;
1787 }
1788
1789 ir_constant *cond_val = op[0]->constant_expression_value();
1790
1791 if (then_instructions.is_empty()
1792 && else_instructions.is_empty()
1793 && cond_val != NULL) {
1794 result = cond_val->value.b[0] ? op[1] : op[2];
1795 } else {
1796 /* The copy to conditional_tmp reads the whole array. */
1797 if (type->is_array()) {
1798 mark_whole_array_access(op[1]);
1799 mark_whole_array_access(op[2]);
1800 }
1801
1802 ir_variable *const tmp =
1803 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1804 instructions->push_tail(tmp);
1805
1806 ir_if *const stmt = new(ctx) ir_if(op[0]);
1807 instructions->push_tail(stmt);
1808
1809 then_instructions.move_nodes_to(& stmt->then_instructions);
1810 ir_dereference *const then_deref =
1811 new(ctx) ir_dereference_variable(tmp);
1812 ir_assignment *const then_assign =
1813 new(ctx) ir_assignment(then_deref, op[1]);
1814 stmt->then_instructions.push_tail(then_assign);
1815
1816 else_instructions.move_nodes_to(& stmt->else_instructions);
1817 ir_dereference *const else_deref =
1818 new(ctx) ir_dereference_variable(tmp);
1819 ir_assignment *const else_assign =
1820 new(ctx) ir_assignment(else_deref, op[2]);
1821 stmt->else_instructions.push_tail(else_assign);
1822
1823 result = new(ctx) ir_dereference_variable(tmp);
1824 }
1825 break;
1826 }
1827
1828 case ast_pre_inc:
1829 case ast_pre_dec: {
1830 this->non_lvalue_description = (this->oper == ast_pre_inc)
1831 ? "pre-increment operation" : "pre-decrement operation";
1832
1833 op[0] = this->subexpressions[0]->hir(instructions, state);
1834 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1835
1836 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1837
1838 ir_rvalue *temp_rhs;
1839 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1840 op[0], op[1]);
1841
1842 error_emitted =
1843 do_assignment(instructions, state,
1844 this->subexpressions[0]->non_lvalue_description,
1845 op[0]->clone(ctx, NULL), temp_rhs,
1846 &result, needs_rvalue, false,
1847 this->subexpressions[0]->get_location());
1848 break;
1849 }
1850
1851 case ast_post_inc:
1852 case ast_post_dec: {
1853 this->non_lvalue_description = (this->oper == ast_post_inc)
1854 ? "post-increment operation" : "post-decrement operation";
1855 op[0] = this->subexpressions[0]->hir(instructions, state);
1856 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1857
1858 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1859
1860 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1861
1862 ir_rvalue *temp_rhs;
1863 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1864 op[0], op[1]);
1865
1866 /* Get a temporary of a copy of the lvalue before it's modified.
1867 * This may get thrown away later.
1868 */
1869 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1870
1871 ir_rvalue *junk_rvalue;
1872 error_emitted =
1873 do_assignment(instructions, state,
1874 this->subexpressions[0]->non_lvalue_description,
1875 op[0]->clone(ctx, NULL), temp_rhs,
1876 &junk_rvalue, false, false,
1877 this->subexpressions[0]->get_location());
1878
1879 break;
1880 }
1881
1882 case ast_field_selection:
1883 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1884 break;
1885
1886 case ast_array_index: {
1887 YYLTYPE index_loc = subexpressions[1]->get_location();
1888
1889 /* Getting if an array is being used uninitialized is beyond what we get
1890 * from ir_value.data.assigned. Setting is_lhs as true would force to
1891 * not raise a uninitialized warning when using an array
1892 */
1893 subexpressions[0]->set_is_lhs(true);
1894 op[0] = subexpressions[0]->hir(instructions, state);
1895 op[1] = subexpressions[1]->hir(instructions, state);
1896
1897 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1898 loc, index_loc);
1899
1900 if (result->type->is_error())
1901 error_emitted = true;
1902
1903 break;
1904 }
1905
1906 case ast_unsized_array_dim:
1907 assert(!"ast_unsized_array_dim: Should never get here.");
1908 break;
1909
1910 case ast_function_call:
1911 /* Should *NEVER* get here. ast_function_call should always be handled
1912 * by ast_function_expression::hir.
1913 */
1914 assert(0);
1915 break;
1916
1917 case ast_identifier: {
1918 /* ast_identifier can appear several places in a full abstract syntax
1919 * tree. This particular use must be at location specified in the grammar
1920 * as 'variable_identifier'.
1921 */
1922 ir_variable *var =
1923 state->symbols->get_variable(this->primary_expression.identifier);
1924
1925 if (var == NULL) {
1926 /* the identifier might be a subroutine name */
1927 char *sub_name;
1928 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1929 var = state->symbols->get_variable(sub_name);
1930 ralloc_free(sub_name);
1931 }
1932
1933 if (var != NULL) {
1934 var->data.used = true;
1935 result = new(ctx) ir_dereference_variable(var);
1936
1937 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1938 && !this->is_lhs
1939 && result->variable_referenced()->data.assigned != true
1940 && !is_gl_identifier(var->name)) {
1941 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1942 this->primary_expression.identifier);
1943 }
1944 } else {
1945 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1946 this->primary_expression.identifier);
1947
1948 result = ir_rvalue::error_value(ctx);
1949 error_emitted = true;
1950 }
1951 break;
1952 }
1953
1954 case ast_int_constant:
1955 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1956 break;
1957
1958 case ast_uint_constant:
1959 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1960 break;
1961
1962 case ast_float_constant:
1963 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1964 break;
1965
1966 case ast_bool_constant:
1967 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1968 break;
1969
1970 case ast_double_constant:
1971 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1972 break;
1973
1974 case ast_sequence: {
1975 /* It should not be possible to generate a sequence in the AST without
1976 * any expressions in it.
1977 */
1978 assert(!this->expressions.is_empty());
1979
1980 /* The r-value of a sequence is the last expression in the sequence. If
1981 * the other expressions in the sequence do not have side-effects (and
1982 * therefore add instructions to the instruction list), they get dropped
1983 * on the floor.
1984 */
1985 exec_node *previous_tail_pred = NULL;
1986 YYLTYPE previous_operand_loc = loc;
1987
1988 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1989 /* If one of the operands of comma operator does not generate any
1990 * code, we want to emit a warning. At each pass through the loop
1991 * previous_tail_pred will point to the last instruction in the
1992 * stream *before* processing the previous operand. Naturally,
1993 * instructions->tail_pred will point to the last instruction in the
1994 * stream *after* processing the previous operand. If the two
1995 * pointers match, then the previous operand had no effect.
1996 *
1997 * The warning behavior here differs slightly from GCC. GCC will
1998 * only emit a warning if none of the left-hand operands have an
1999 * effect. However, it will emit a warning for each. I believe that
2000 * there are some cases in C (especially with GCC extensions) where
2001 * it is useful to have an intermediate step in a sequence have no
2002 * effect, but I don't think these cases exist in GLSL. Either way,
2003 * it would be a giant hassle to replicate that behavior.
2004 */
2005 if (previous_tail_pred == instructions->tail_pred) {
2006 _mesa_glsl_warning(&previous_operand_loc, state,
2007 "left-hand operand of comma expression has "
2008 "no effect");
2009 }
2010
2011 /* tail_pred is directly accessed instead of using the get_tail()
2012 * method for performance reasons. get_tail() has extra code to
2013 * return NULL when the list is empty. We don't care about that
2014 * here, so using tail_pred directly is fine.
2015 */
2016 previous_tail_pred = instructions->tail_pred;
2017 previous_operand_loc = ast->get_location();
2018
2019 result = ast->hir(instructions, state);
2020 }
2021
2022 /* Any errors should have already been emitted in the loop above.
2023 */
2024 error_emitted = true;
2025 break;
2026 }
2027 }
2028 type = NULL; /* use result->type, not type. */
2029 assert(result != NULL || !needs_rvalue);
2030
2031 if (result && result->type->is_error() && !error_emitted)
2032 _mesa_glsl_error(& loc, state, "type mismatch");
2033
2034 return result;
2035 }
2036
2037 bool
2038 ast_expression::has_sequence_subexpression() const
2039 {
2040 switch (this->oper) {
2041 case ast_plus:
2042 case ast_neg:
2043 case ast_bit_not:
2044 case ast_logic_not:
2045 case ast_pre_inc:
2046 case ast_pre_dec:
2047 case ast_post_inc:
2048 case ast_post_dec:
2049 return this->subexpressions[0]->has_sequence_subexpression();
2050
2051 case ast_assign:
2052 case ast_add:
2053 case ast_sub:
2054 case ast_mul:
2055 case ast_div:
2056 case ast_mod:
2057 case ast_lshift:
2058 case ast_rshift:
2059 case ast_less:
2060 case ast_greater:
2061 case ast_lequal:
2062 case ast_gequal:
2063 case ast_nequal:
2064 case ast_equal:
2065 case ast_bit_and:
2066 case ast_bit_xor:
2067 case ast_bit_or:
2068 case ast_logic_and:
2069 case ast_logic_or:
2070 case ast_logic_xor:
2071 case ast_array_index:
2072 case ast_mul_assign:
2073 case ast_div_assign:
2074 case ast_add_assign:
2075 case ast_sub_assign:
2076 case ast_mod_assign:
2077 case ast_ls_assign:
2078 case ast_rs_assign:
2079 case ast_and_assign:
2080 case ast_xor_assign:
2081 case ast_or_assign:
2082 return this->subexpressions[0]->has_sequence_subexpression() ||
2083 this->subexpressions[1]->has_sequence_subexpression();
2084
2085 case ast_conditional:
2086 return this->subexpressions[0]->has_sequence_subexpression() ||
2087 this->subexpressions[1]->has_sequence_subexpression() ||
2088 this->subexpressions[2]->has_sequence_subexpression();
2089
2090 case ast_sequence:
2091 return true;
2092
2093 case ast_field_selection:
2094 case ast_identifier:
2095 case ast_int_constant:
2096 case ast_uint_constant:
2097 case ast_float_constant:
2098 case ast_bool_constant:
2099 case ast_double_constant:
2100 return false;
2101
2102 case ast_aggregate:
2103 return false;
2104
2105 case ast_function_call:
2106 unreachable("should be handled by ast_function_expression::hir");
2107
2108 case ast_unsized_array_dim:
2109 unreachable("ast_unsized_array_dim: Should never get here.");
2110 }
2111
2112 return false;
2113 }
2114
2115 ir_rvalue *
2116 ast_expression_statement::hir(exec_list *instructions,
2117 struct _mesa_glsl_parse_state *state)
2118 {
2119 /* It is possible to have expression statements that don't have an
2120 * expression. This is the solitary semicolon:
2121 *
2122 * for (i = 0; i < 5; i++)
2123 * ;
2124 *
2125 * In this case the expression will be NULL. Test for NULL and don't do
2126 * anything in that case.
2127 */
2128 if (expression != NULL)
2129 expression->hir_no_rvalue(instructions, state);
2130
2131 /* Statements do not have r-values.
2132 */
2133 return NULL;
2134 }
2135
2136
2137 ir_rvalue *
2138 ast_compound_statement::hir(exec_list *instructions,
2139 struct _mesa_glsl_parse_state *state)
2140 {
2141 if (new_scope)
2142 state->symbols->push_scope();
2143
2144 foreach_list_typed (ast_node, ast, link, &this->statements)
2145 ast->hir(instructions, state);
2146
2147 if (new_scope)
2148 state->symbols->pop_scope();
2149
2150 /* Compound statements do not have r-values.
2151 */
2152 return NULL;
2153 }
2154
2155 /**
2156 * Evaluate the given exec_node (which should be an ast_node representing
2157 * a single array dimension) and return its integer value.
2158 */
2159 static unsigned
2160 process_array_size(exec_node *node,
2161 struct _mesa_glsl_parse_state *state)
2162 {
2163 exec_list dummy_instructions;
2164
2165 ast_node *array_size = exec_node_data(ast_node, node, link);
2166
2167 /**
2168 * Dimensions other than the outermost dimension can by unsized if they
2169 * are immediately sized by a constructor or initializer.
2170 */
2171 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2172 return 0;
2173
2174 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2175 YYLTYPE loc = array_size->get_location();
2176
2177 if (ir == NULL) {
2178 _mesa_glsl_error(& loc, state,
2179 "array size could not be resolved");
2180 return 0;
2181 }
2182
2183 if (!ir->type->is_integer()) {
2184 _mesa_glsl_error(& loc, state,
2185 "array size must be integer type");
2186 return 0;
2187 }
2188
2189 if (!ir->type->is_scalar()) {
2190 _mesa_glsl_error(& loc, state,
2191 "array size must be scalar type");
2192 return 0;
2193 }
2194
2195 ir_constant *const size = ir->constant_expression_value();
2196 if (size == NULL ||
2197 (state->is_version(120, 300) &&
2198 array_size->has_sequence_subexpression())) {
2199 _mesa_glsl_error(& loc, state, "array size must be a "
2200 "constant valued expression");
2201 return 0;
2202 }
2203
2204 if (size->value.i[0] <= 0) {
2205 _mesa_glsl_error(& loc, state, "array size must be > 0");
2206 return 0;
2207 }
2208
2209 assert(size->type == ir->type);
2210
2211 /* If the array size is const (and we've verified that
2212 * it is) then no instructions should have been emitted
2213 * when we converted it to HIR. If they were emitted,
2214 * then either the array size isn't const after all, or
2215 * we are emitting unnecessary instructions.
2216 */
2217 assert(dummy_instructions.is_empty());
2218
2219 return size->value.u[0];
2220 }
2221
2222 static const glsl_type *
2223 process_array_type(YYLTYPE *loc, const glsl_type *base,
2224 ast_array_specifier *array_specifier,
2225 struct _mesa_glsl_parse_state *state)
2226 {
2227 const glsl_type *array_type = base;
2228
2229 if (array_specifier != NULL) {
2230 if (base->is_array()) {
2231
2232 /* From page 19 (page 25) of the GLSL 1.20 spec:
2233 *
2234 * "Only one-dimensional arrays may be declared."
2235 */
2236 if (!state->check_arrays_of_arrays_allowed(loc)) {
2237 return glsl_type::error_type;
2238 }
2239 }
2240
2241 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2242 !node->is_head_sentinel(); node = node->prev) {
2243 unsigned array_size = process_array_size(node, state);
2244 array_type = glsl_type::get_array_instance(array_type, array_size);
2245 }
2246 }
2247
2248 return array_type;
2249 }
2250
2251 static bool
2252 precision_qualifier_allowed(const glsl_type *type)
2253 {
2254 /* Precision qualifiers apply to floating point, integer and opaque
2255 * types.
2256 *
2257 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2258 * "Any floating point or any integer declaration can have the type
2259 * preceded by one of these precision qualifiers [...] Literal
2260 * constants do not have precision qualifiers. Neither do Boolean
2261 * variables.
2262 *
2263 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2264 * spec also says:
2265 *
2266 * "Precision qualifiers are added for code portability with OpenGL
2267 * ES, not for functionality. They have the same syntax as in OpenGL
2268 * ES."
2269 *
2270 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2271 *
2272 * "uniform lowp sampler2D sampler;
2273 * highp vec2 coord;
2274 * ...
2275 * lowp vec4 col = texture2D (sampler, coord);
2276 * // texture2D returns lowp"
2277 *
2278 * From this, we infer that GLSL 1.30 (and later) should allow precision
2279 * qualifiers on sampler types just like float and integer types.
2280 */
2281 return (type->is_float()
2282 || type->is_integer()
2283 || type->contains_opaque())
2284 && !type->without_array()->is_record();
2285 }
2286
2287 const glsl_type *
2288 ast_type_specifier::glsl_type(const char **name,
2289 struct _mesa_glsl_parse_state *state) const
2290 {
2291 const struct glsl_type *type;
2292
2293 type = state->symbols->get_type(this->type_name);
2294 *name = this->type_name;
2295
2296 YYLTYPE loc = this->get_location();
2297 type = process_array_type(&loc, type, this->array_specifier, state);
2298
2299 return type;
2300 }
2301
2302 /**
2303 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2304 *
2305 * "The precision statement
2306 *
2307 * precision precision-qualifier type;
2308 *
2309 * can be used to establish a default precision qualifier. The type field can
2310 * be either int or float or any of the sampler types, (...) If type is float,
2311 * the directive applies to non-precision-qualified floating point type
2312 * (scalar, vector, and matrix) declarations. If type is int, the directive
2313 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2314 * and unsigned) declarations."
2315 *
2316 * We use the symbol table to keep the values of the default precisions for
2317 * each 'type' in each scope and we use the 'type' string from the precision
2318 * statement as key in the symbol table. When we want to retrieve the default
2319 * precision associated with a given glsl_type we need to know the type string
2320 * associated with it. This is what this function returns.
2321 */
2322 static const char *
2323 get_type_name_for_precision_qualifier(const glsl_type *type)
2324 {
2325 switch (type->base_type) {
2326 case GLSL_TYPE_FLOAT:
2327 return "float";
2328 case GLSL_TYPE_UINT:
2329 case GLSL_TYPE_INT:
2330 return "int";
2331 case GLSL_TYPE_ATOMIC_UINT:
2332 return "atomic_uint";
2333 case GLSL_TYPE_IMAGE:
2334 /* fallthrough */
2335 case GLSL_TYPE_SAMPLER: {
2336 const unsigned type_idx =
2337 type->sampler_array + 2 * type->sampler_shadow;
2338 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2339 assert(type_idx < 4);
2340 switch (type->sampled_type) {
2341 case GLSL_TYPE_FLOAT:
2342 switch (type->sampler_dimensionality) {
2343 case GLSL_SAMPLER_DIM_1D: {
2344 assert(type->base_type == GLSL_TYPE_SAMPLER);
2345 static const char *const names[4] = {
2346 "sampler1D", "sampler1DArray",
2347 "sampler1DShadow", "sampler1DArrayShadow"
2348 };
2349 return names[type_idx];
2350 }
2351 case GLSL_SAMPLER_DIM_2D: {
2352 static const char *const names[8] = {
2353 "sampler2D", "sampler2DArray",
2354 "sampler2DShadow", "sampler2DArrayShadow",
2355 "image2D", "image2DArray", NULL, NULL
2356 };
2357 return names[offset + type_idx];
2358 }
2359 case GLSL_SAMPLER_DIM_3D: {
2360 static const char *const names[8] = {
2361 "sampler3D", NULL, NULL, NULL,
2362 "image3D", NULL, NULL, NULL
2363 };
2364 return names[offset + type_idx];
2365 }
2366 case GLSL_SAMPLER_DIM_CUBE: {
2367 static const char *const names[8] = {
2368 "samplerCube", "samplerCubeArray",
2369 "samplerCubeShadow", "samplerCubeArrayShadow",
2370 "imageCube", NULL, NULL, NULL
2371 };
2372 return names[offset + type_idx];
2373 }
2374 case GLSL_SAMPLER_DIM_MS: {
2375 assert(type->base_type == GLSL_TYPE_SAMPLER);
2376 static const char *const names[4] = {
2377 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2378 };
2379 return names[type_idx];
2380 }
2381 case GLSL_SAMPLER_DIM_RECT: {
2382 assert(type->base_type == GLSL_TYPE_SAMPLER);
2383 static const char *const names[4] = {
2384 "samplerRect", NULL, "samplerRectShadow", NULL
2385 };
2386 return names[type_idx];
2387 }
2388 case GLSL_SAMPLER_DIM_BUF: {
2389 static const char *const names[8] = {
2390 "samplerBuffer", NULL, NULL, NULL,
2391 "imageBuffer", NULL, NULL, NULL
2392 };
2393 return names[offset + type_idx];
2394 }
2395 case GLSL_SAMPLER_DIM_EXTERNAL: {
2396 assert(type->base_type == GLSL_TYPE_SAMPLER);
2397 static const char *const names[4] = {
2398 "samplerExternalOES", NULL, NULL, NULL
2399 };
2400 return names[type_idx];
2401 }
2402 default:
2403 unreachable("Unsupported sampler/image dimensionality");
2404 } /* sampler/image float dimensionality */
2405 break;
2406 case GLSL_TYPE_INT:
2407 switch (type->sampler_dimensionality) {
2408 case GLSL_SAMPLER_DIM_1D: {
2409 assert(type->base_type == GLSL_TYPE_SAMPLER);
2410 static const char *const names[4] = {
2411 "isampler1D", "isampler1DArray", NULL, NULL
2412 };
2413 return names[type_idx];
2414 }
2415 case GLSL_SAMPLER_DIM_2D: {
2416 static const char *const names[8] = {
2417 "isampler2D", "isampler2DArray", NULL, NULL,
2418 "iimage2D", "iimage2DArray", NULL, NULL
2419 };
2420 return names[offset + type_idx];
2421 }
2422 case GLSL_SAMPLER_DIM_3D: {
2423 static const char *const names[8] = {
2424 "isampler3D", NULL, NULL, NULL,
2425 "iimage3D", NULL, NULL, NULL
2426 };
2427 return names[offset + type_idx];
2428 }
2429 case GLSL_SAMPLER_DIM_CUBE: {
2430 static const char *const names[8] = {
2431 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2432 "iimageCube", NULL, NULL, NULL
2433 };
2434 return names[offset + type_idx];
2435 }
2436 case GLSL_SAMPLER_DIM_MS: {
2437 assert(type->base_type == GLSL_TYPE_SAMPLER);
2438 static const char *const names[4] = {
2439 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2440 };
2441 return names[type_idx];
2442 }
2443 case GLSL_SAMPLER_DIM_RECT: {
2444 assert(type->base_type == GLSL_TYPE_SAMPLER);
2445 static const char *const names[4] = {
2446 "isamplerRect", NULL, "isamplerRectShadow", NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_BUF: {
2451 static const char *const names[8] = {
2452 "isamplerBuffer", NULL, NULL, NULL,
2453 "iimageBuffer", NULL, NULL, NULL
2454 };
2455 return names[offset + type_idx];
2456 }
2457 default:
2458 unreachable("Unsupported isampler/iimage dimensionality");
2459 } /* sampler/image int dimensionality */
2460 break;
2461 case GLSL_TYPE_UINT:
2462 switch (type->sampler_dimensionality) {
2463 case GLSL_SAMPLER_DIM_1D: {
2464 assert(type->base_type == GLSL_TYPE_SAMPLER);
2465 static const char *const names[4] = {
2466 "usampler1D", "usampler1DArray", NULL, NULL
2467 };
2468 return names[type_idx];
2469 }
2470 case GLSL_SAMPLER_DIM_2D: {
2471 static const char *const names[8] = {
2472 "usampler2D", "usampler2DArray", NULL, NULL,
2473 "uimage2D", "uimage2DArray", NULL, NULL
2474 };
2475 return names[offset + type_idx];
2476 }
2477 case GLSL_SAMPLER_DIM_3D: {
2478 static const char *const names[8] = {
2479 "usampler3D", NULL, NULL, NULL,
2480 "uimage3D", NULL, NULL, NULL
2481 };
2482 return names[offset + type_idx];
2483 }
2484 case GLSL_SAMPLER_DIM_CUBE: {
2485 static const char *const names[8] = {
2486 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2487 "uimageCube", NULL, NULL, NULL
2488 };
2489 return names[offset + type_idx];
2490 }
2491 case GLSL_SAMPLER_DIM_MS: {
2492 assert(type->base_type == GLSL_TYPE_SAMPLER);
2493 static const char *const names[4] = {
2494 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2495 };
2496 return names[type_idx];
2497 }
2498 case GLSL_SAMPLER_DIM_RECT: {
2499 assert(type->base_type == GLSL_TYPE_SAMPLER);
2500 static const char *const names[4] = {
2501 "usamplerRect", NULL, "usamplerRectShadow", NULL
2502 };
2503 return names[type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_BUF: {
2506 static const char *const names[8] = {
2507 "usamplerBuffer", NULL, NULL, NULL,
2508 "uimageBuffer", NULL, NULL, NULL
2509 };
2510 return names[offset + type_idx];
2511 }
2512 default:
2513 unreachable("Unsupported usampler/uimage dimensionality");
2514 } /* sampler/image uint dimensionality */
2515 break;
2516 default:
2517 unreachable("Unsupported sampler/image type");
2518 } /* sampler/image type */
2519 break;
2520 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2521 break;
2522 default:
2523 unreachable("Unsupported type");
2524 } /* base type */
2525 }
2526
2527 static unsigned
2528 select_gles_precision(unsigned qual_precision,
2529 const glsl_type *type,
2530 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2531 {
2532 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2533 * In GLES we take the precision from the type qualifier if present,
2534 * otherwise, if the type of the variable allows precision qualifiers at
2535 * all, we look for the default precision qualifier for that type in the
2536 * current scope.
2537 */
2538 assert(state->es_shader);
2539
2540 unsigned precision = GLSL_PRECISION_NONE;
2541 if (qual_precision) {
2542 precision = qual_precision;
2543 } else if (precision_qualifier_allowed(type)) {
2544 const char *type_name =
2545 get_type_name_for_precision_qualifier(type->without_array());
2546 assert(type_name != NULL);
2547
2548 precision =
2549 state->symbols->get_default_precision_qualifier(type_name);
2550 if (precision == ast_precision_none) {
2551 _mesa_glsl_error(loc, state,
2552 "No precision specified in this scope for type `%s'",
2553 type->name);
2554 }
2555 }
2556 return precision;
2557 }
2558
2559 const glsl_type *
2560 ast_fully_specified_type::glsl_type(const char **name,
2561 struct _mesa_glsl_parse_state *state) const
2562 {
2563 return this->specifier->glsl_type(name, state);
2564 }
2565
2566 /**
2567 * Determine whether a toplevel variable declaration declares a varying. This
2568 * function operates by examining the variable's mode and the shader target,
2569 * so it correctly identifies linkage variables regardless of whether they are
2570 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2571 *
2572 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2573 * this function will produce undefined results.
2574 */
2575 static bool
2576 is_varying_var(ir_variable *var, gl_shader_stage target)
2577 {
2578 switch (target) {
2579 case MESA_SHADER_VERTEX:
2580 return var->data.mode == ir_var_shader_out;
2581 case MESA_SHADER_FRAGMENT:
2582 return var->data.mode == ir_var_shader_in;
2583 default:
2584 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2585 }
2586 }
2587
2588
2589 /**
2590 * Matrix layout qualifiers are only allowed on certain types
2591 */
2592 static void
2593 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2594 YYLTYPE *loc,
2595 const glsl_type *type,
2596 ir_variable *var)
2597 {
2598 if (var && !var->is_in_buffer_block()) {
2599 /* Layout qualifiers may only apply to interface blocks and fields in
2600 * them.
2601 */
2602 _mesa_glsl_error(loc, state,
2603 "uniform block layout qualifiers row_major and "
2604 "column_major may not be applied to variables "
2605 "outside of uniform blocks");
2606 } else if (!type->without_array()->is_matrix()) {
2607 /* The OpenGL ES 3.0 conformance tests did not originally allow
2608 * matrix layout qualifiers on non-matrices. However, the OpenGL
2609 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2610 * amended to specifically allow these layouts on all types. Emit
2611 * a warning so that people know their code may not be portable.
2612 */
2613 _mesa_glsl_warning(loc, state,
2614 "uniform block layout qualifiers row_major and "
2615 "column_major applied to non-matrix types may "
2616 "be rejected by older compilers");
2617 }
2618 }
2619
2620 static bool
2621 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2622 struct _mesa_glsl_parse_state *state,
2623 unsigned xfb_buffer) {
2624 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2625 _mesa_glsl_error(loc, state,
2626 "invalid xfb_buffer specified %d is larger than "
2627 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2628 xfb_buffer,
2629 state->Const.MaxTransformFeedbackBuffers - 1);
2630 return false;
2631 }
2632
2633 return true;
2634 }
2635
2636 /* From the ARB_enhanced_layouts spec:
2637 *
2638 * "Variables and block members qualified with *xfb_offset* can be
2639 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2640 * The offset must be a multiple of the size of the first component of
2641 * the first qualified variable or block member, or a compile-time error
2642 * results. Further, if applied to an aggregate containing a double,
2643 * the offset must also be a multiple of 8, and the space taken in the
2644 * buffer will be a multiple of 8.
2645 */
2646 static bool
2647 validate_xfb_offset_qualifier(YYLTYPE *loc,
2648 struct _mesa_glsl_parse_state *state,
2649 int xfb_offset, const glsl_type *type,
2650 unsigned component_size) {
2651 const glsl_type *t_without_array = type->without_array();
2652
2653 if (xfb_offset != -1 && type->is_unsized_array()) {
2654 _mesa_glsl_error(loc, state,
2655 "xfb_offset can't be used with unsized arrays.");
2656 return false;
2657 }
2658
2659 /* Make sure nested structs don't contain unsized arrays, and validate
2660 * any xfb_offsets on interface members.
2661 */
2662 if (t_without_array->is_record() || t_without_array->is_interface())
2663 for (unsigned int i = 0; i < t_without_array->length; i++) {
2664 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2665
2666 /* When the interface block doesn't have an xfb_offset qualifier then
2667 * we apply the component size rules at the member level.
2668 */
2669 if (xfb_offset == -1)
2670 component_size = member_t->contains_double() ? 8 : 4;
2671
2672 int xfb_offset = t_without_array->fields.structure[i].offset;
2673 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2674 component_size);
2675 }
2676
2677 /* Nested structs or interface block without offset may not have had an
2678 * offset applied yet so return.
2679 */
2680 if (xfb_offset == -1) {
2681 return true;
2682 }
2683
2684 if (xfb_offset % component_size) {
2685 _mesa_glsl_error(loc, state,
2686 "invalid qualifier xfb_offset=%d must be a multiple "
2687 "of the first component size of the first qualified "
2688 "variable or block member. Or double if an aggregate "
2689 "that contains a double (%d).",
2690 xfb_offset, component_size);
2691 return false;
2692 }
2693
2694 return true;
2695 }
2696
2697 static bool
2698 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2699 unsigned stream)
2700 {
2701 if (stream >= state->ctx->Const.MaxVertexStreams) {
2702 _mesa_glsl_error(loc, state,
2703 "invalid stream specified %d is larger than "
2704 "MAX_VERTEX_STREAMS - 1 (%d).",
2705 stream, state->ctx->Const.MaxVertexStreams - 1);
2706 return false;
2707 }
2708
2709 return true;
2710 }
2711
2712 static void
2713 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2714 YYLTYPE *loc,
2715 ir_variable *var,
2716 const glsl_type *type,
2717 const ast_type_qualifier *qual)
2718 {
2719 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2720 _mesa_glsl_error(loc, state,
2721 "the \"binding\" qualifier only applies to uniforms and "
2722 "shader storage buffer objects");
2723 return;
2724 }
2725
2726 unsigned qual_binding;
2727 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2728 &qual_binding)) {
2729 return;
2730 }
2731
2732 const struct gl_context *const ctx = state->ctx;
2733 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2734 unsigned max_index = qual_binding + elements - 1;
2735 const glsl_type *base_type = type->without_array();
2736
2737 if (base_type->is_interface()) {
2738 /* UBOs. From page 60 of the GLSL 4.20 specification:
2739 * "If the binding point for any uniform block instance is less than zero,
2740 * or greater than or equal to the implementation-dependent maximum
2741 * number of uniform buffer bindings, a compilation error will occur.
2742 * When the binding identifier is used with a uniform block instanced as
2743 * an array of size N, all elements of the array from binding through
2744 * binding + N – 1 must be within this range."
2745 *
2746 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2747 */
2748 if (qual->flags.q.uniform &&
2749 max_index >= ctx->Const.MaxUniformBufferBindings) {
2750 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2751 "the maximum number of UBO binding points (%d)",
2752 qual_binding, elements,
2753 ctx->Const.MaxUniformBufferBindings);
2754 return;
2755 }
2756
2757 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2758 * "If the binding point for any uniform or shader storage block instance
2759 * is less than zero, or greater than or equal to the
2760 * implementation-dependent maximum number of uniform buffer bindings, a
2761 * compile-time error will occur. When the binding identifier is used
2762 * with a uniform or shader storage block instanced as an array of size
2763 * N, all elements of the array from binding through binding + N – 1 must
2764 * be within this range."
2765 */
2766 if (qual->flags.q.buffer &&
2767 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2768 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2769 "the maximum number of SSBO binding points (%d)",
2770 qual_binding, elements,
2771 ctx->Const.MaxShaderStorageBufferBindings);
2772 return;
2773 }
2774 } else if (base_type->is_sampler()) {
2775 /* Samplers. From page 63 of the GLSL 4.20 specification:
2776 * "If the binding is less than zero, or greater than or equal to the
2777 * implementation-dependent maximum supported number of units, a
2778 * compilation error will occur. When the binding identifier is used
2779 * with an array of size N, all elements of the array from binding
2780 * through binding + N - 1 must be within this range."
2781 */
2782 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2783
2784 if (max_index >= limit) {
2785 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2786 "exceeds the maximum number of texture image units "
2787 "(%u)", qual_binding, elements, limit);
2788
2789 return;
2790 }
2791 } else if (base_type->contains_atomic()) {
2792 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2793 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2794 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2795 " maximum number of atomic counter buffer bindings"
2796 "(%u)", qual_binding,
2797 ctx->Const.MaxAtomicBufferBindings);
2798
2799 return;
2800 }
2801 } else if ((state->is_version(420, 310) ||
2802 state->ARB_shading_language_420pack_enable) &&
2803 base_type->is_image()) {
2804 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2805 if (max_index >= ctx->Const.MaxImageUnits) {
2806 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2807 " maximum number of image units (%d)", max_index,
2808 ctx->Const.MaxImageUnits);
2809 return;
2810 }
2811
2812 } else {
2813 _mesa_glsl_error(loc, state,
2814 "the \"binding\" qualifier only applies to uniform "
2815 "blocks, opaque variables, or arrays thereof");
2816 return;
2817 }
2818
2819 var->data.explicit_binding = true;
2820 var->data.binding = qual_binding;
2821
2822 return;
2823 }
2824
2825
2826 static void
2827 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2828 YYLTYPE *loc,
2829 const glsl_interp_qualifier interpolation,
2830 const struct ast_type_qualifier *qual,
2831 const struct glsl_type *var_type,
2832 ir_variable_mode mode)
2833 {
2834 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2835 * not to vertex shader inputs nor fragment shader outputs.
2836 *
2837 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2838 * "Outputs from a vertex shader (out) and inputs to a fragment
2839 * shader (in) can be further qualified with one or more of these
2840 * interpolation qualifiers"
2841 * ...
2842 * "These interpolation qualifiers may only precede the qualifiers in,
2843 * centroid in, out, or centroid out in a declaration. They do not apply
2844 * to the deprecated storage qualifiers varying or centroid
2845 * varying. They also do not apply to inputs into a vertex shader or
2846 * outputs from a fragment shader."
2847 *
2848 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2849 * "Outputs from a shader (out) and inputs to a shader (in) can be
2850 * further qualified with one of these interpolation qualifiers."
2851 * ...
2852 * "These interpolation qualifiers may only precede the qualifiers
2853 * in, centroid in, out, or centroid out in a declaration. They do
2854 * not apply to inputs into a vertex shader or outputs from a
2855 * fragment shader."
2856 */
2857 if (state->is_version(130, 300)
2858 && interpolation != INTERP_QUALIFIER_NONE) {
2859 const char *i = interpolation_string(interpolation);
2860 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2861 _mesa_glsl_error(loc, state,
2862 "interpolation qualifier `%s' can only be applied to "
2863 "shader inputs or outputs.", i);
2864
2865 switch (state->stage) {
2866 case MESA_SHADER_VERTEX:
2867 if (mode == ir_var_shader_in) {
2868 _mesa_glsl_error(loc, state,
2869 "interpolation qualifier '%s' cannot be applied to "
2870 "vertex shader inputs", i);
2871 }
2872 break;
2873 case MESA_SHADER_FRAGMENT:
2874 if (mode == ir_var_shader_out) {
2875 _mesa_glsl_error(loc, state,
2876 "interpolation qualifier '%s' cannot be applied to "
2877 "fragment shader outputs", i);
2878 }
2879 break;
2880 default:
2881 break;
2882 }
2883 }
2884
2885 /* Interpolation qualifiers cannot be applied to 'centroid' and
2886 * 'centroid varying'.
2887 *
2888 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2889 * "interpolation qualifiers may only precede the qualifiers in,
2890 * centroid in, out, or centroid out in a declaration. They do not apply
2891 * to the deprecated storage qualifiers varying or centroid varying."
2892 *
2893 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2894 */
2895 if (state->is_version(130, 0)
2896 && interpolation != INTERP_QUALIFIER_NONE
2897 && qual->flags.q.varying) {
2898
2899 const char *i = interpolation_string(interpolation);
2900 const char *s;
2901 if (qual->flags.q.centroid)
2902 s = "centroid varying";
2903 else
2904 s = "varying";
2905
2906 _mesa_glsl_error(loc, state,
2907 "qualifier '%s' cannot be applied to the "
2908 "deprecated storage qualifier '%s'", i, s);
2909 }
2910
2911 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2912 * so must integer vertex outputs.
2913 *
2914 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2915 * "Fragment shader inputs that are signed or unsigned integers or
2916 * integer vectors must be qualified with the interpolation qualifier
2917 * flat."
2918 *
2919 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2920 * "Fragment shader inputs that are, or contain, signed or unsigned
2921 * integers or integer vectors must be qualified with the
2922 * interpolation qualifier flat."
2923 *
2924 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2925 * "Vertex shader outputs that are, or contain, signed or unsigned
2926 * integers or integer vectors must be qualified with the
2927 * interpolation qualifier flat."
2928 *
2929 * Note that prior to GLSL 1.50, this requirement applied to vertex
2930 * outputs rather than fragment inputs. That creates problems in the
2931 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2932 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2933 * apply the restriction to both vertex outputs and fragment inputs.
2934 *
2935 * Note also that the desktop GLSL specs are missing the text "or
2936 * contain"; this is presumably an oversight, since there is no
2937 * reasonable way to interpolate a fragment shader input that contains
2938 * an integer. See Khronos bug #15671.
2939 */
2940 if (state->is_version(130, 300)
2941 && var_type->contains_integer()
2942 && interpolation != INTERP_QUALIFIER_FLAT
2943 && ((state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_in)
2944 || (state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_out
2945 && state->es_shader))) {
2946 const char *shader_var_type = (state->stage == MESA_SHADER_VERTEX) ?
2947 "vertex output" : "fragment input";
2948 _mesa_glsl_error(loc, state, "if a %s is (or contains) "
2949 "an integer, then it must be qualified with 'flat'",
2950 shader_var_type);
2951 }
2952
2953 /* Double fragment inputs must be qualified with 'flat'.
2954 *
2955 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2956 * "This extension does not support interpolation of double-precision
2957 * values; doubles used as fragment shader inputs must be qualified as
2958 * "flat"."
2959 *
2960 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2961 * "Fragment shader inputs that are signed or unsigned integers, integer
2962 * vectors, or any double-precision floating-point type must be
2963 * qualified with the interpolation qualifier flat."
2964 *
2965 * Note that the GLSL specs are missing the text "or contain"; this is
2966 * presumably an oversight. See Khronos bug #15671.
2967 *
2968 * The 'double' type does not exist in GLSL ES so far.
2969 */
2970 if (state->has_double()
2971 && var_type->contains_double()
2972 && interpolation != INTERP_QUALIFIER_FLAT
2973 && state->stage == MESA_SHADER_FRAGMENT
2974 && mode == ir_var_shader_in) {
2975 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2976 "a double, then it must be qualified with 'flat'");
2977 }
2978 }
2979
2980 static glsl_interp_qualifier
2981 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2982 const struct glsl_type *var_type,
2983 ir_variable_mode mode,
2984 struct _mesa_glsl_parse_state *state,
2985 YYLTYPE *loc)
2986 {
2987 glsl_interp_qualifier interpolation;
2988 if (qual->flags.q.flat)
2989 interpolation = INTERP_QUALIFIER_FLAT;
2990 else if (qual->flags.q.noperspective)
2991 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2992 else if (qual->flags.q.smooth)
2993 interpolation = INTERP_QUALIFIER_SMOOTH;
2994 else if (state->es_shader &&
2995 ((mode == ir_var_shader_in &&
2996 state->stage != MESA_SHADER_VERTEX) ||
2997 (mode == ir_var_shader_out &&
2998 state->stage != MESA_SHADER_FRAGMENT)))
2999 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3000 *
3001 * "When no interpolation qualifier is present, smooth interpolation
3002 * is used."
3003 */
3004 interpolation = INTERP_QUALIFIER_SMOOTH;
3005 else
3006 interpolation = INTERP_QUALIFIER_NONE;
3007
3008 validate_interpolation_qualifier(state, loc,
3009 interpolation,
3010 qual, var_type, mode);
3011
3012 return interpolation;
3013 }
3014
3015
3016 static void
3017 apply_explicit_location(const struct ast_type_qualifier *qual,
3018 ir_variable *var,
3019 struct _mesa_glsl_parse_state *state,
3020 YYLTYPE *loc)
3021 {
3022 bool fail = false;
3023
3024 unsigned qual_location;
3025 if (!process_qualifier_constant(state, loc, "location", qual->location,
3026 &qual_location)) {
3027 return;
3028 }
3029
3030 /* Checks for GL_ARB_explicit_uniform_location. */
3031 if (qual->flags.q.uniform) {
3032 if (!state->check_explicit_uniform_location_allowed(loc, var))
3033 return;
3034
3035 const struct gl_context *const ctx = state->ctx;
3036 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3037
3038 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3039 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3040 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3041 ctx->Const.MaxUserAssignableUniformLocations);
3042 return;
3043 }
3044
3045 var->data.explicit_location = true;
3046 var->data.location = qual_location;
3047 return;
3048 }
3049
3050 /* Between GL_ARB_explicit_attrib_location an
3051 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3052 * stage can be assigned explicit locations. The checking here associates
3053 * the correct extension with the correct stage's input / output:
3054 *
3055 * input output
3056 * ----- ------
3057 * vertex explicit_loc sso
3058 * tess control sso sso
3059 * tess eval sso sso
3060 * geometry sso sso
3061 * fragment sso explicit_loc
3062 */
3063 switch (state->stage) {
3064 case MESA_SHADER_VERTEX:
3065 if (var->data.mode == ir_var_shader_in) {
3066 if (!state->check_explicit_attrib_location_allowed(loc, var))
3067 return;
3068
3069 break;
3070 }
3071
3072 if (var->data.mode == ir_var_shader_out) {
3073 if (!state->check_separate_shader_objects_allowed(loc, var))
3074 return;
3075
3076 break;
3077 }
3078
3079 fail = true;
3080 break;
3081
3082 case MESA_SHADER_TESS_CTRL:
3083 case MESA_SHADER_TESS_EVAL:
3084 case MESA_SHADER_GEOMETRY:
3085 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3086 if (!state->check_separate_shader_objects_allowed(loc, var))
3087 return;
3088
3089 break;
3090 }
3091
3092 fail = true;
3093 break;
3094
3095 case MESA_SHADER_FRAGMENT:
3096 if (var->data.mode == ir_var_shader_in) {
3097 if (!state->check_separate_shader_objects_allowed(loc, var))
3098 return;
3099
3100 break;
3101 }
3102
3103 if (var->data.mode == ir_var_shader_out) {
3104 if (!state->check_explicit_attrib_location_allowed(loc, var))
3105 return;
3106
3107 break;
3108 }
3109
3110 fail = true;
3111 break;
3112
3113 case MESA_SHADER_COMPUTE:
3114 _mesa_glsl_error(loc, state,
3115 "compute shader variables cannot be given "
3116 "explicit locations");
3117 return;
3118 };
3119
3120 if (fail) {
3121 _mesa_glsl_error(loc, state,
3122 "%s cannot be given an explicit location in %s shader",
3123 mode_string(var),
3124 _mesa_shader_stage_to_string(state->stage));
3125 } else {
3126 var->data.explicit_location = true;
3127
3128 switch (state->stage) {
3129 case MESA_SHADER_VERTEX:
3130 var->data.location = (var->data.mode == ir_var_shader_in)
3131 ? (qual_location + VERT_ATTRIB_GENERIC0)
3132 : (qual_location + VARYING_SLOT_VAR0);
3133 break;
3134
3135 case MESA_SHADER_TESS_CTRL:
3136 case MESA_SHADER_TESS_EVAL:
3137 case MESA_SHADER_GEOMETRY:
3138 if (var->data.patch)
3139 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3140 else
3141 var->data.location = qual_location + VARYING_SLOT_VAR0;
3142 break;
3143
3144 case MESA_SHADER_FRAGMENT:
3145 var->data.location = (var->data.mode == ir_var_shader_out)
3146 ? (qual_location + FRAG_RESULT_DATA0)
3147 : (qual_location + VARYING_SLOT_VAR0);
3148 break;
3149 case MESA_SHADER_COMPUTE:
3150 assert(!"Unexpected shader type");
3151 break;
3152 }
3153
3154 /* Check if index was set for the uniform instead of the function */
3155 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3156 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3157 "used with subroutine functions");
3158 return;
3159 }
3160
3161 unsigned qual_index;
3162 if (qual->flags.q.explicit_index &&
3163 process_qualifier_constant(state, loc, "index", qual->index,
3164 &qual_index)) {
3165 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3166 * Layout Qualifiers):
3167 *
3168 * "It is also a compile-time error if a fragment shader
3169 * sets a layout index to less than 0 or greater than 1."
3170 *
3171 * Older specifications don't mandate a behavior; we take
3172 * this as a clarification and always generate the error.
3173 */
3174 if (qual_index > 1) {
3175 _mesa_glsl_error(loc, state,
3176 "explicit index may only be 0 or 1");
3177 } else {
3178 var->data.explicit_index = true;
3179 var->data.index = qual_index;
3180 }
3181 }
3182 }
3183 }
3184
3185 static void
3186 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3187 ir_variable *var,
3188 struct _mesa_glsl_parse_state *state,
3189 YYLTYPE *loc)
3190 {
3191 const glsl_type *base_type = var->type->without_array();
3192
3193 if (base_type->is_image()) {
3194 if (var->data.mode != ir_var_uniform &&
3195 var->data.mode != ir_var_function_in) {
3196 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3197 "function parameters or uniform-qualified "
3198 "global variables");
3199 }
3200
3201 var->data.image_read_only |= qual->flags.q.read_only;
3202 var->data.image_write_only |= qual->flags.q.write_only;
3203 var->data.image_coherent |= qual->flags.q.coherent;
3204 var->data.image_volatile |= qual->flags.q._volatile;
3205 var->data.image_restrict |= qual->flags.q.restrict_flag;
3206 var->data.read_only = true;
3207
3208 if (qual->flags.q.explicit_image_format) {
3209 if (var->data.mode == ir_var_function_in) {
3210 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3211 "used on image function parameters");
3212 }
3213
3214 if (qual->image_base_type != base_type->sampled_type) {
3215 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3216 "base data type of the image");
3217 }
3218
3219 var->data.image_format = qual->image_format;
3220 } else {
3221 if (var->data.mode == ir_var_uniform) {
3222 if (state->es_shader) {
3223 _mesa_glsl_error(loc, state, "all image uniforms "
3224 "must have a format layout qualifier");
3225
3226 } else if (!qual->flags.q.write_only) {
3227 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3228 "`writeonly' must have a format layout "
3229 "qualifier");
3230 }
3231 }
3232
3233 var->data.image_format = GL_NONE;
3234 }
3235
3236 /* From page 70 of the GLSL ES 3.1 specification:
3237 *
3238 * "Except for image variables qualified with the format qualifiers
3239 * r32f, r32i, and r32ui, image variables must specify either memory
3240 * qualifier readonly or the memory qualifier writeonly."
3241 */
3242 if (state->es_shader &&
3243 var->data.image_format != GL_R32F &&
3244 var->data.image_format != GL_R32I &&
3245 var->data.image_format != GL_R32UI &&
3246 !var->data.image_read_only &&
3247 !var->data.image_write_only) {
3248 _mesa_glsl_error(loc, state, "image variables of format other than "
3249 "r32f, r32i or r32ui must be qualified `readonly' or "
3250 "`writeonly'");
3251 }
3252
3253 } else if (qual->flags.q.read_only ||
3254 qual->flags.q.write_only ||
3255 qual->flags.q.coherent ||
3256 qual->flags.q._volatile ||
3257 qual->flags.q.restrict_flag ||
3258 qual->flags.q.explicit_image_format) {
3259 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3260 "images");
3261 }
3262 }
3263
3264 static inline const char*
3265 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3266 {
3267 if (origin_upper_left && pixel_center_integer)
3268 return "origin_upper_left, pixel_center_integer";
3269 else if (origin_upper_left)
3270 return "origin_upper_left";
3271 else if (pixel_center_integer)
3272 return "pixel_center_integer";
3273 else
3274 return " ";
3275 }
3276
3277 static inline bool
3278 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3279 const struct ast_type_qualifier *qual)
3280 {
3281 /* If gl_FragCoord was previously declared, and the qualifiers were
3282 * different in any way, return true.
3283 */
3284 if (state->fs_redeclares_gl_fragcoord) {
3285 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3286 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3287 }
3288
3289 return false;
3290 }
3291
3292 static inline void
3293 validate_array_dimensions(const glsl_type *t,
3294 struct _mesa_glsl_parse_state *state,
3295 YYLTYPE *loc) {
3296 if (t->is_array()) {
3297 t = t->fields.array;
3298 while (t->is_array()) {
3299 if (t->is_unsized_array()) {
3300 _mesa_glsl_error(loc, state,
3301 "only the outermost array dimension can "
3302 "be unsized",
3303 t->name);
3304 break;
3305 }
3306 t = t->fields.array;
3307 }
3308 }
3309 }
3310
3311 static void
3312 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3313 ir_variable *var,
3314 struct _mesa_glsl_parse_state *state,
3315 YYLTYPE *loc)
3316 {
3317 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3318
3319 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3320 *
3321 * "Within any shader, the first redeclarations of gl_FragCoord
3322 * must appear before any use of gl_FragCoord."
3323 *
3324 * Generate a compiler error if above condition is not met by the
3325 * fragment shader.
3326 */
3327 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3328 if (earlier != NULL &&
3329 earlier->data.used &&
3330 !state->fs_redeclares_gl_fragcoord) {
3331 _mesa_glsl_error(loc, state,
3332 "gl_FragCoord used before its first redeclaration "
3333 "in fragment shader");
3334 }
3335
3336 /* Make sure all gl_FragCoord redeclarations specify the same layout
3337 * qualifiers.
3338 */
3339 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3340 const char *const qual_string =
3341 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3342 qual->flags.q.pixel_center_integer);
3343
3344 const char *const state_string =
3345 get_layout_qualifier_string(state->fs_origin_upper_left,
3346 state->fs_pixel_center_integer);
3347
3348 _mesa_glsl_error(loc, state,
3349 "gl_FragCoord redeclared with different layout "
3350 "qualifiers (%s) and (%s) ",
3351 state_string,
3352 qual_string);
3353 }
3354 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3355 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3356 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3357 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3358 state->fs_redeclares_gl_fragcoord =
3359 state->fs_origin_upper_left ||
3360 state->fs_pixel_center_integer ||
3361 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3362 }
3363
3364 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3365 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3366 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3367 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3368 const char *const qual_string = (qual->flags.q.origin_upper_left)
3369 ? "origin_upper_left" : "pixel_center_integer";
3370
3371 _mesa_glsl_error(loc, state,
3372 "layout qualifier `%s' can only be applied to "
3373 "fragment shader input `gl_FragCoord'",
3374 qual_string);
3375 }
3376
3377 if (qual->flags.q.explicit_location) {
3378 apply_explicit_location(qual, var, state, loc);
3379
3380 if (qual->flags.q.explicit_component) {
3381 unsigned qual_component;
3382 if (process_qualifier_constant(state, loc, "component",
3383 qual->component, &qual_component)) {
3384 const glsl_type *type = var->type->without_array();
3385 unsigned components = type->component_slots();
3386
3387 if (type->is_matrix() || type->is_record()) {
3388 _mesa_glsl_error(loc, state, "component layout qualifier "
3389 "cannot be applied to a matrix, a structure, "
3390 "a block, or an array containing any of "
3391 "these.");
3392 } else if (qual_component != 0 &&
3393 (qual_component + components - 1) > 3) {
3394 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3395 (qual_component + components - 1));
3396 } else if (qual_component == 1 && type->is_64bit()) {
3397 /* We don't bother checking for 3 as it should be caught by the
3398 * overflow check above.
3399 */
3400 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3401 "component 1 or 3");
3402 } else {
3403 var->data.explicit_component = true;
3404 var->data.location_frac = qual_component;
3405 }
3406 }
3407 }
3408 } else if (qual->flags.q.explicit_index) {
3409 if (!qual->flags.q.subroutine_def)
3410 _mesa_glsl_error(loc, state,
3411 "explicit index requires explicit location");
3412 } else if (qual->flags.q.explicit_component) {
3413 _mesa_glsl_error(loc, state,
3414 "explicit component requires explicit location");
3415 }
3416
3417 if (qual->flags.q.explicit_binding) {
3418 apply_explicit_binding(state, loc, var, var->type, qual);
3419 }
3420
3421 if (state->stage == MESA_SHADER_GEOMETRY &&
3422 qual->flags.q.out && qual->flags.q.stream) {
3423 unsigned qual_stream;
3424 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3425 &qual_stream) &&
3426 validate_stream_qualifier(loc, state, qual_stream)) {
3427 var->data.stream = qual_stream;
3428 }
3429 }
3430
3431 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3432 unsigned qual_xfb_buffer;
3433 if (process_qualifier_constant(state, loc, "xfb_buffer",
3434 qual->xfb_buffer, &qual_xfb_buffer) &&
3435 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3436 var->data.xfb_buffer = qual_xfb_buffer;
3437 if (qual->flags.q.explicit_xfb_buffer)
3438 var->data.explicit_xfb_buffer = true;
3439 }
3440 }
3441
3442 if (qual->flags.q.explicit_xfb_offset) {
3443 unsigned qual_xfb_offset;
3444 unsigned component_size = var->type->contains_double() ? 8 : 4;
3445
3446 if (process_qualifier_constant(state, loc, "xfb_offset",
3447 qual->offset, &qual_xfb_offset) &&
3448 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3449 var->type, component_size)) {
3450 var->data.offset = qual_xfb_offset;
3451 var->data.explicit_xfb_offset = true;
3452 }
3453 }
3454
3455 if (qual->flags.q.explicit_xfb_stride) {
3456 unsigned qual_xfb_stride;
3457 if (process_qualifier_constant(state, loc, "xfb_stride",
3458 qual->xfb_stride, &qual_xfb_stride)) {
3459 var->data.xfb_stride = qual_xfb_stride;
3460 var->data.explicit_xfb_stride = true;
3461 }
3462 }
3463
3464 if (var->type->contains_atomic()) {
3465 if (var->data.mode == ir_var_uniform) {
3466 if (var->data.explicit_binding) {
3467 unsigned *offset =
3468 &state->atomic_counter_offsets[var->data.binding];
3469
3470 if (*offset % ATOMIC_COUNTER_SIZE)
3471 _mesa_glsl_error(loc, state,
3472 "misaligned atomic counter offset");
3473
3474 var->data.offset = *offset;
3475 *offset += var->type->atomic_size();
3476
3477 } else {
3478 _mesa_glsl_error(loc, state,
3479 "atomic counters require explicit binding point");
3480 }
3481 } else if (var->data.mode != ir_var_function_in) {
3482 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3483 "function parameters or uniform-qualified "
3484 "global variables");
3485 }
3486 }
3487
3488 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3489 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3490 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3491 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3492 * These extensions and all following extensions that add the 'layout'
3493 * keyword have been modified to require the use of 'in' or 'out'.
3494 *
3495 * The following extension do not allow the deprecated keywords:
3496 *
3497 * GL_AMD_conservative_depth
3498 * GL_ARB_conservative_depth
3499 * GL_ARB_gpu_shader5
3500 * GL_ARB_separate_shader_objects
3501 * GL_ARB_tessellation_shader
3502 * GL_ARB_transform_feedback3
3503 * GL_ARB_uniform_buffer_object
3504 *
3505 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3506 * allow layout with the deprecated keywords.
3507 */
3508 const bool relaxed_layout_qualifier_checking =
3509 state->ARB_fragment_coord_conventions_enable;
3510
3511 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3512 || qual->flags.q.varying;
3513 if (qual->has_layout() && uses_deprecated_qualifier) {
3514 if (relaxed_layout_qualifier_checking) {
3515 _mesa_glsl_warning(loc, state,
3516 "`layout' qualifier may not be used with "
3517 "`attribute' or `varying'");
3518 } else {
3519 _mesa_glsl_error(loc, state,
3520 "`layout' qualifier may not be used with "
3521 "`attribute' or `varying'");
3522 }
3523 }
3524
3525 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3526 * AMD_conservative_depth.
3527 */
3528 int depth_layout_count = qual->flags.q.depth_any
3529 + qual->flags.q.depth_greater
3530 + qual->flags.q.depth_less
3531 + qual->flags.q.depth_unchanged;
3532 if (depth_layout_count > 0
3533 && !state->is_version(420, 0)
3534 && !state->AMD_conservative_depth_enable
3535 && !state->ARB_conservative_depth_enable) {
3536 _mesa_glsl_error(loc, state,
3537 "extension GL_AMD_conservative_depth or "
3538 "GL_ARB_conservative_depth must be enabled "
3539 "to use depth layout qualifiers");
3540 } else if (depth_layout_count > 0
3541 && strcmp(var->name, "gl_FragDepth") != 0) {
3542 _mesa_glsl_error(loc, state,
3543 "depth layout qualifiers can be applied only to "
3544 "gl_FragDepth");
3545 } else if (depth_layout_count > 1
3546 && strcmp(var->name, "gl_FragDepth") == 0) {
3547 _mesa_glsl_error(loc, state,
3548 "at most one depth layout qualifier can be applied to "
3549 "gl_FragDepth");
3550 }
3551 if (qual->flags.q.depth_any)
3552 var->data.depth_layout = ir_depth_layout_any;
3553 else if (qual->flags.q.depth_greater)
3554 var->data.depth_layout = ir_depth_layout_greater;
3555 else if (qual->flags.q.depth_less)
3556 var->data.depth_layout = ir_depth_layout_less;
3557 else if (qual->flags.q.depth_unchanged)
3558 var->data.depth_layout = ir_depth_layout_unchanged;
3559 else
3560 var->data.depth_layout = ir_depth_layout_none;
3561
3562 if (qual->flags.q.std140 ||
3563 qual->flags.q.std430 ||
3564 qual->flags.q.packed ||
3565 qual->flags.q.shared) {
3566 _mesa_glsl_error(loc, state,
3567 "uniform and shader storage block layout qualifiers "
3568 "std140, std430, packed, and shared can only be "
3569 "applied to uniform or shader storage blocks, not "
3570 "members");
3571 }
3572
3573 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3574 validate_matrix_layout_for_type(state, loc, var->type, var);
3575 }
3576
3577 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3578 * Inputs):
3579 *
3580 * "Fragment shaders also allow the following layout qualifier on in only
3581 * (not with variable declarations)
3582 * layout-qualifier-id
3583 * early_fragment_tests
3584 * [...]"
3585 */
3586 if (qual->flags.q.early_fragment_tests) {
3587 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3588 "valid in fragment shader input layout declaration.");
3589 }
3590 }
3591
3592 static void
3593 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3594 ir_variable *var,
3595 struct _mesa_glsl_parse_state *state,
3596 YYLTYPE *loc,
3597 bool is_parameter)
3598 {
3599 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3600
3601 if (qual->flags.q.invariant) {
3602 if (var->data.used) {
3603 _mesa_glsl_error(loc, state,
3604 "variable `%s' may not be redeclared "
3605 "`invariant' after being used",
3606 var->name);
3607 } else {
3608 var->data.invariant = 1;
3609 }
3610 }
3611
3612 if (qual->flags.q.precise) {
3613 if (var->data.used) {
3614 _mesa_glsl_error(loc, state,
3615 "variable `%s' may not be redeclared "
3616 "`precise' after being used",
3617 var->name);
3618 } else {
3619 var->data.precise = 1;
3620 }
3621 }
3622
3623 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3624 _mesa_glsl_error(loc, state,
3625 "`subroutine' may only be applied to uniforms, "
3626 "subroutine type declarations, or function definitions");
3627 }
3628
3629 if (qual->flags.q.constant || qual->flags.q.attribute
3630 || qual->flags.q.uniform
3631 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3632 var->data.read_only = 1;
3633
3634 if (qual->flags.q.centroid)
3635 var->data.centroid = 1;
3636
3637 if (qual->flags.q.sample)
3638 var->data.sample = 1;
3639
3640 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3641 if (state->es_shader) {
3642 var->data.precision =
3643 select_gles_precision(qual->precision, var->type, state, loc);
3644 }
3645
3646 if (qual->flags.q.patch)
3647 var->data.patch = 1;
3648
3649 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3650 var->type = glsl_type::error_type;
3651 _mesa_glsl_error(loc, state,
3652 "`attribute' variables may not be declared in the "
3653 "%s shader",
3654 _mesa_shader_stage_to_string(state->stage));
3655 }
3656
3657 /* Disallow layout qualifiers which may only appear on layout declarations. */
3658 if (qual->flags.q.prim_type) {
3659 _mesa_glsl_error(loc, state,
3660 "Primitive type may only be specified on GS input or output "
3661 "layout declaration, not on variables.");
3662 }
3663
3664 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3665 *
3666 * "However, the const qualifier cannot be used with out or inout."
3667 *
3668 * The same section of the GLSL 4.40 spec further clarifies this saying:
3669 *
3670 * "The const qualifier cannot be used with out or inout, or a
3671 * compile-time error results."
3672 */
3673 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3674 _mesa_glsl_error(loc, state,
3675 "`const' may not be applied to `out' or `inout' "
3676 "function parameters");
3677 }
3678
3679 /* If there is no qualifier that changes the mode of the variable, leave
3680 * the setting alone.
3681 */
3682 assert(var->data.mode != ir_var_temporary);
3683 if (qual->flags.q.in && qual->flags.q.out)
3684 var->data.mode = ir_var_function_inout;
3685 else if (qual->flags.q.in)
3686 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3687 else if (qual->flags.q.attribute
3688 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3689 var->data.mode = ir_var_shader_in;
3690 else if (qual->flags.q.out)
3691 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3692 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3693 var->data.mode = ir_var_shader_out;
3694 else if (qual->flags.q.uniform)
3695 var->data.mode = ir_var_uniform;
3696 else if (qual->flags.q.buffer)
3697 var->data.mode = ir_var_shader_storage;
3698 else if (qual->flags.q.shared_storage)
3699 var->data.mode = ir_var_shader_shared;
3700
3701 if (!is_parameter && is_varying_var(var, state->stage)) {
3702 /* User-defined ins/outs are not permitted in compute shaders. */
3703 if (state->stage == MESA_SHADER_COMPUTE) {
3704 _mesa_glsl_error(loc, state,
3705 "user-defined input and output variables are not "
3706 "permitted in compute shaders");
3707 }
3708
3709 /* This variable is being used to link data between shader stages (in
3710 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3711 * that is allowed for such purposes.
3712 *
3713 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3714 *
3715 * "The varying qualifier can be used only with the data types
3716 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3717 * these."
3718 *
3719 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3720 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3721 *
3722 * "Fragment inputs can only be signed and unsigned integers and
3723 * integer vectors, float, floating-point vectors, matrices, or
3724 * arrays of these. Structures cannot be input.
3725 *
3726 * Similar text exists in the section on vertex shader outputs.
3727 *
3728 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3729 * 3.00 spec allows structs as well. Varying structs are also allowed
3730 * in GLSL 1.50.
3731 */
3732 switch (var->type->get_scalar_type()->base_type) {
3733 case GLSL_TYPE_FLOAT:
3734 /* Ok in all GLSL versions */
3735 break;
3736 case GLSL_TYPE_UINT:
3737 case GLSL_TYPE_INT:
3738 if (state->is_version(130, 300))
3739 break;
3740 _mesa_glsl_error(loc, state,
3741 "varying variables must be of base type float in %s",
3742 state->get_version_string());
3743 break;
3744 case GLSL_TYPE_STRUCT:
3745 if (state->is_version(150, 300))
3746 break;
3747 _mesa_glsl_error(loc, state,
3748 "varying variables may not be of type struct");
3749 break;
3750 case GLSL_TYPE_DOUBLE:
3751 break;
3752 default:
3753 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3754 break;
3755 }
3756 }
3757
3758 if (state->all_invariant && (state->current_function == NULL)) {
3759 switch (state->stage) {
3760 case MESA_SHADER_VERTEX:
3761 if (var->data.mode == ir_var_shader_out)
3762 var->data.invariant = true;
3763 break;
3764 case MESA_SHADER_TESS_CTRL:
3765 case MESA_SHADER_TESS_EVAL:
3766 case MESA_SHADER_GEOMETRY:
3767 if ((var->data.mode == ir_var_shader_in)
3768 || (var->data.mode == ir_var_shader_out))
3769 var->data.invariant = true;
3770 break;
3771 case MESA_SHADER_FRAGMENT:
3772 if (var->data.mode == ir_var_shader_in)
3773 var->data.invariant = true;
3774 break;
3775 case MESA_SHADER_COMPUTE:
3776 /* Invariance isn't meaningful in compute shaders. */
3777 break;
3778 }
3779 }
3780
3781 var->data.interpolation =
3782 interpret_interpolation_qualifier(qual, var->type,
3783 (ir_variable_mode) var->data.mode,
3784 state, loc);
3785
3786 /* Does the declaration use the deprecated 'attribute' or 'varying'
3787 * keywords?
3788 */
3789 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3790 || qual->flags.q.varying;
3791
3792
3793 /* Validate auxiliary storage qualifiers */
3794
3795 /* From section 4.3.4 of the GLSL 1.30 spec:
3796 * "It is an error to use centroid in in a vertex shader."
3797 *
3798 * From section 4.3.4 of the GLSL ES 3.00 spec:
3799 * "It is an error to use centroid in or interpolation qualifiers in
3800 * a vertex shader input."
3801 */
3802
3803 /* Section 4.3.6 of the GLSL 1.30 specification states:
3804 * "It is an error to use centroid out in a fragment shader."
3805 *
3806 * The GL_ARB_shading_language_420pack extension specification states:
3807 * "It is an error to use auxiliary storage qualifiers or interpolation
3808 * qualifiers on an output in a fragment shader."
3809 */
3810 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3811 _mesa_glsl_error(loc, state,
3812 "sample qualifier may only be used on `in` or `out` "
3813 "variables between shader stages");
3814 }
3815 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3816 _mesa_glsl_error(loc, state,
3817 "centroid qualifier may only be used with `in', "
3818 "`out' or `varying' variables between shader stages");
3819 }
3820
3821 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3822 _mesa_glsl_error(loc, state,
3823 "the shared storage qualifiers can only be used with "
3824 "compute shaders");
3825 }
3826
3827 apply_image_qualifier_to_variable(qual, var, state, loc);
3828 }
3829
3830 /**
3831 * Get the variable that is being redeclared by this declaration
3832 *
3833 * Semantic checks to verify the validity of the redeclaration are also
3834 * performed. If semantic checks fail, compilation error will be emitted via
3835 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3836 *
3837 * \returns
3838 * A pointer to an existing variable in the current scope if the declaration
3839 * is a redeclaration, \c NULL otherwise.
3840 */
3841 static ir_variable *
3842 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3843 struct _mesa_glsl_parse_state *state,
3844 bool allow_all_redeclarations)
3845 {
3846 /* Check if this declaration is actually a re-declaration, either to
3847 * resize an array or add qualifiers to an existing variable.
3848 *
3849 * This is allowed for variables in the current scope, or when at
3850 * global scope (for built-ins in the implicit outer scope).
3851 */
3852 ir_variable *earlier = state->symbols->get_variable(var->name);
3853 if (earlier == NULL ||
3854 (state->current_function != NULL &&
3855 !state->symbols->name_declared_this_scope(var->name))) {
3856 return NULL;
3857 }
3858
3859
3860 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3861 *
3862 * "It is legal to declare an array without a size and then
3863 * later re-declare the same name as an array of the same
3864 * type and specify a size."
3865 */
3866 if (earlier->type->is_unsized_array() && var->type->is_array()
3867 && (var->type->fields.array == earlier->type->fields.array)) {
3868 /* FINISHME: This doesn't match the qualifiers on the two
3869 * FINISHME: declarations. It's not 100% clear whether this is
3870 * FINISHME: required or not.
3871 */
3872
3873 const int size = var->type->array_size();
3874 check_builtin_array_max_size(var->name, size, loc, state);
3875 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3876 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3877 "previous access",
3878 earlier->data.max_array_access);
3879 }
3880
3881 earlier->type = var->type;
3882 delete var;
3883 var = NULL;
3884 } else if ((state->ARB_fragment_coord_conventions_enable ||
3885 state->is_version(150, 0))
3886 && strcmp(var->name, "gl_FragCoord") == 0
3887 && earlier->type == var->type
3888 && var->data.mode == ir_var_shader_in) {
3889 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3890 * qualifiers.
3891 */
3892 earlier->data.origin_upper_left = var->data.origin_upper_left;
3893 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3894
3895 /* According to section 4.3.7 of the GLSL 1.30 spec,
3896 * the following built-in varaibles can be redeclared with an
3897 * interpolation qualifier:
3898 * * gl_FrontColor
3899 * * gl_BackColor
3900 * * gl_FrontSecondaryColor
3901 * * gl_BackSecondaryColor
3902 * * gl_Color
3903 * * gl_SecondaryColor
3904 */
3905 } else if (state->is_version(130, 0)
3906 && (strcmp(var->name, "gl_FrontColor") == 0
3907 || strcmp(var->name, "gl_BackColor") == 0
3908 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3909 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3910 || strcmp(var->name, "gl_Color") == 0
3911 || strcmp(var->name, "gl_SecondaryColor") == 0)
3912 && earlier->type == var->type
3913 && earlier->data.mode == var->data.mode) {
3914 earlier->data.interpolation = var->data.interpolation;
3915
3916 /* Layout qualifiers for gl_FragDepth. */
3917 } else if ((state->is_version(420, 0) ||
3918 state->AMD_conservative_depth_enable ||
3919 state->ARB_conservative_depth_enable)
3920 && strcmp(var->name, "gl_FragDepth") == 0
3921 && earlier->type == var->type
3922 && earlier->data.mode == var->data.mode) {
3923
3924 /** From the AMD_conservative_depth spec:
3925 * Within any shader, the first redeclarations of gl_FragDepth
3926 * must appear before any use of gl_FragDepth.
3927 */
3928 if (earlier->data.used) {
3929 _mesa_glsl_error(&loc, state,
3930 "the first redeclaration of gl_FragDepth "
3931 "must appear before any use of gl_FragDepth");
3932 }
3933
3934 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3935 if (earlier->data.depth_layout != ir_depth_layout_none
3936 && earlier->data.depth_layout != var->data.depth_layout) {
3937 _mesa_glsl_error(&loc, state,
3938 "gl_FragDepth: depth layout is declared here "
3939 "as '%s, but it was previously declared as "
3940 "'%s'",
3941 depth_layout_string(var->data.depth_layout),
3942 depth_layout_string(earlier->data.depth_layout));
3943 }
3944
3945 earlier->data.depth_layout = var->data.depth_layout;
3946
3947 } else if (allow_all_redeclarations) {
3948 if (earlier->data.mode != var->data.mode) {
3949 _mesa_glsl_error(&loc, state,
3950 "redeclaration of `%s' with incorrect qualifiers",
3951 var->name);
3952 } else if (earlier->type != var->type) {
3953 _mesa_glsl_error(&loc, state,
3954 "redeclaration of `%s' has incorrect type",
3955 var->name);
3956 }
3957 } else {
3958 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3959 }
3960
3961 return earlier;
3962 }
3963
3964 /**
3965 * Generate the IR for an initializer in a variable declaration
3966 */
3967 ir_rvalue *
3968 process_initializer(ir_variable *var, ast_declaration *decl,
3969 ast_fully_specified_type *type,
3970 exec_list *initializer_instructions,
3971 struct _mesa_glsl_parse_state *state)
3972 {
3973 ir_rvalue *result = NULL;
3974
3975 YYLTYPE initializer_loc = decl->initializer->get_location();
3976
3977 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3978 *
3979 * "All uniform variables are read-only and are initialized either
3980 * directly by an application via API commands, or indirectly by
3981 * OpenGL."
3982 */
3983 if (var->data.mode == ir_var_uniform) {
3984 state->check_version(120, 0, &initializer_loc,
3985 "cannot initialize uniform %s",
3986 var->name);
3987 }
3988
3989 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3990 *
3991 * "Buffer variables cannot have initializers."
3992 */
3993 if (var->data.mode == ir_var_shader_storage) {
3994 _mesa_glsl_error(&initializer_loc, state,
3995 "cannot initialize buffer variable %s",
3996 var->name);
3997 }
3998
3999 /* From section 4.1.7 of the GLSL 4.40 spec:
4000 *
4001 * "Opaque variables [...] are initialized only through the
4002 * OpenGL API; they cannot be declared with an initializer in a
4003 * shader."
4004 */
4005 if (var->type->contains_opaque()) {
4006 _mesa_glsl_error(&initializer_loc, state,
4007 "cannot initialize opaque variable %s",
4008 var->name);
4009 }
4010
4011 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4012 _mesa_glsl_error(&initializer_loc, state,
4013 "cannot initialize %s shader input / %s %s",
4014 _mesa_shader_stage_to_string(state->stage),
4015 (state->stage == MESA_SHADER_VERTEX)
4016 ? "attribute" : "varying",
4017 var->name);
4018 }
4019
4020 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4021 _mesa_glsl_error(&initializer_loc, state,
4022 "cannot initialize %s shader output %s",
4023 _mesa_shader_stage_to_string(state->stage),
4024 var->name);
4025 }
4026
4027 /* If the initializer is an ast_aggregate_initializer, recursively store
4028 * type information from the LHS into it, so that its hir() function can do
4029 * type checking.
4030 */
4031 if (decl->initializer->oper == ast_aggregate)
4032 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4033
4034 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4035 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4036
4037 /* Calculate the constant value if this is a const or uniform
4038 * declaration.
4039 *
4040 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4041 *
4042 * "Declarations of globals without a storage qualifier, or with
4043 * just the const qualifier, may include initializers, in which case
4044 * they will be initialized before the first line of main() is
4045 * executed. Such initializers must be a constant expression."
4046 *
4047 * The same section of the GLSL ES 3.00.4 spec has similar language.
4048 */
4049 if (type->qualifier.flags.q.constant
4050 || type->qualifier.flags.q.uniform
4051 || (state->es_shader && state->current_function == NULL)) {
4052 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4053 lhs, rhs, true);
4054 if (new_rhs != NULL) {
4055 rhs = new_rhs;
4056
4057 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4058 * says:
4059 *
4060 * "A constant expression is one of
4061 *
4062 * ...
4063 *
4064 * - an expression formed by an operator on operands that are
4065 * all constant expressions, including getting an element of
4066 * a constant array, or a field of a constant structure, or
4067 * components of a constant vector. However, the sequence
4068 * operator ( , ) and the assignment operators ( =, +=, ...)
4069 * are not included in the operators that can create a
4070 * constant expression."
4071 *
4072 * Section 12.43 (Sequence operator and constant expressions) says:
4073 *
4074 * "Should the following construct be allowed?
4075 *
4076 * float a[2,3];
4077 *
4078 * The expression within the brackets uses the sequence operator
4079 * (',') and returns the integer 3 so the construct is declaring
4080 * a single-dimensional array of size 3. In some languages, the
4081 * construct declares a two-dimensional array. It would be
4082 * preferable to make this construct illegal to avoid confusion.
4083 *
4084 * One possibility is to change the definition of the sequence
4085 * operator so that it does not return a constant-expression and
4086 * hence cannot be used to declare an array size.
4087 *
4088 * RESOLUTION: The result of a sequence operator is not a
4089 * constant-expression."
4090 *
4091 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4092 * contains language almost identical to the section 4.3.3 in the
4093 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4094 * versions.
4095 */
4096 ir_constant *constant_value = rhs->constant_expression_value();
4097 if (!constant_value ||
4098 (state->is_version(430, 300) &&
4099 decl->initializer->has_sequence_subexpression())) {
4100 const char *const variable_mode =
4101 (type->qualifier.flags.q.constant)
4102 ? "const"
4103 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4104
4105 /* If ARB_shading_language_420pack is enabled, initializers of
4106 * const-qualified local variables do not have to be constant
4107 * expressions. Const-qualified global variables must still be
4108 * initialized with constant expressions.
4109 */
4110 if (!state->has_420pack()
4111 || state->current_function == NULL) {
4112 _mesa_glsl_error(& initializer_loc, state,
4113 "initializer of %s variable `%s' must be a "
4114 "constant expression",
4115 variable_mode,
4116 decl->identifier);
4117 if (var->type->is_numeric()) {
4118 /* Reduce cascading errors. */
4119 var->constant_value = type->qualifier.flags.q.constant
4120 ? ir_constant::zero(state, var->type) : NULL;
4121 }
4122 }
4123 } else {
4124 rhs = constant_value;
4125 var->constant_value = type->qualifier.flags.q.constant
4126 ? constant_value : NULL;
4127 }
4128 } else {
4129 if (var->type->is_numeric()) {
4130 /* Reduce cascading errors. */
4131 var->constant_value = type->qualifier.flags.q.constant
4132 ? ir_constant::zero(state, var->type) : NULL;
4133 }
4134 }
4135 }
4136
4137 if (rhs && !rhs->type->is_error()) {
4138 bool temp = var->data.read_only;
4139 if (type->qualifier.flags.q.constant)
4140 var->data.read_only = false;
4141
4142 /* Never emit code to initialize a uniform.
4143 */
4144 const glsl_type *initializer_type;
4145 if (!type->qualifier.flags.q.uniform) {
4146 do_assignment(initializer_instructions, state,
4147 NULL,
4148 lhs, rhs,
4149 &result, true,
4150 true,
4151 type->get_location());
4152 initializer_type = result->type;
4153 } else
4154 initializer_type = rhs->type;
4155
4156 var->constant_initializer = rhs->constant_expression_value();
4157 var->data.has_initializer = true;
4158
4159 /* If the declared variable is an unsized array, it must inherrit
4160 * its full type from the initializer. A declaration such as
4161 *
4162 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4163 *
4164 * becomes
4165 *
4166 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4167 *
4168 * The assignment generated in the if-statement (below) will also
4169 * automatically handle this case for non-uniforms.
4170 *
4171 * If the declared variable is not an array, the types must
4172 * already match exactly. As a result, the type assignment
4173 * here can be done unconditionally. For non-uniforms the call
4174 * to do_assignment can change the type of the initializer (via
4175 * the implicit conversion rules). For uniforms the initializer
4176 * must be a constant expression, and the type of that expression
4177 * was validated above.
4178 */
4179 var->type = initializer_type;
4180
4181 var->data.read_only = temp;
4182 }
4183
4184 return result;
4185 }
4186
4187 static void
4188 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4189 YYLTYPE loc, ir_variable *var,
4190 unsigned num_vertices,
4191 unsigned *size,
4192 const char *var_category)
4193 {
4194 if (var->type->is_unsized_array()) {
4195 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4196 *
4197 * All geometry shader input unsized array declarations will be
4198 * sized by an earlier input layout qualifier, when present, as per
4199 * the following table.
4200 *
4201 * Followed by a table mapping each allowed input layout qualifier to
4202 * the corresponding input length.
4203 *
4204 * Similarly for tessellation control shader outputs.
4205 */
4206 if (num_vertices != 0)
4207 var->type = glsl_type::get_array_instance(var->type->fields.array,
4208 num_vertices);
4209 } else {
4210 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4211 * includes the following examples of compile-time errors:
4212 *
4213 * // code sequence within one shader...
4214 * in vec4 Color1[]; // size unknown
4215 * ...Color1.length()...// illegal, length() unknown
4216 * in vec4 Color2[2]; // size is 2
4217 * ...Color1.length()...// illegal, Color1 still has no size
4218 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4219 * layout(lines) in; // legal, input size is 2, matching
4220 * in vec4 Color4[3]; // illegal, contradicts layout
4221 * ...
4222 *
4223 * To detect the case illustrated by Color3, we verify that the size of
4224 * an explicitly-sized array matches the size of any previously declared
4225 * explicitly-sized array. To detect the case illustrated by Color4, we
4226 * verify that the size of an explicitly-sized array is consistent with
4227 * any previously declared input layout.
4228 */
4229 if (num_vertices != 0 && var->type->length != num_vertices) {
4230 _mesa_glsl_error(&loc, state,
4231 "%s size contradicts previously declared layout "
4232 "(size is %u, but layout requires a size of %u)",
4233 var_category, var->type->length, num_vertices);
4234 } else if (*size != 0 && var->type->length != *size) {
4235 _mesa_glsl_error(&loc, state,
4236 "%s sizes are inconsistent (size is %u, but a "
4237 "previous declaration has size %u)",
4238 var_category, var->type->length, *size);
4239 } else {
4240 *size = var->type->length;
4241 }
4242 }
4243 }
4244
4245 static void
4246 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4247 YYLTYPE loc, ir_variable *var)
4248 {
4249 unsigned num_vertices = 0;
4250
4251 if (state->tcs_output_vertices_specified) {
4252 if (!state->out_qualifier->vertices->
4253 process_qualifier_constant(state, "vertices",
4254 &num_vertices, false)) {
4255 return;
4256 }
4257
4258 if (num_vertices > state->Const.MaxPatchVertices) {
4259 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4260 "GL_MAX_PATCH_VERTICES", num_vertices);
4261 return;
4262 }
4263 }
4264
4265 if (!var->type->is_array() && !var->data.patch) {
4266 _mesa_glsl_error(&loc, state,
4267 "tessellation control shader outputs must be arrays");
4268
4269 /* To avoid cascading failures, short circuit the checks below. */
4270 return;
4271 }
4272
4273 if (var->data.patch)
4274 return;
4275
4276 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4277 &state->tcs_output_size,
4278 "tessellation control shader output");
4279 }
4280
4281 /**
4282 * Do additional processing necessary for tessellation control/evaluation shader
4283 * input declarations. This covers both interface block arrays and bare input
4284 * variables.
4285 */
4286 static void
4287 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4288 YYLTYPE loc, ir_variable *var)
4289 {
4290 if (!var->type->is_array() && !var->data.patch) {
4291 _mesa_glsl_error(&loc, state,
4292 "per-vertex tessellation shader inputs must be arrays");
4293 /* Avoid cascading failures. */
4294 return;
4295 }
4296
4297 if (var->data.patch)
4298 return;
4299
4300 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4301 if (var->type->is_unsized_array()) {
4302 var->type = glsl_type::get_array_instance(var->type->fields.array,
4303 state->Const.MaxPatchVertices);
4304 }
4305 }
4306
4307
4308 /**
4309 * Do additional processing necessary for geometry shader input declarations
4310 * (this covers both interface blocks arrays and bare input variables).
4311 */
4312 static void
4313 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4314 YYLTYPE loc, ir_variable *var)
4315 {
4316 unsigned num_vertices = 0;
4317
4318 if (state->gs_input_prim_type_specified) {
4319 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4320 }
4321
4322 /* Geometry shader input variables must be arrays. Caller should have
4323 * reported an error for this.
4324 */
4325 if (!var->type->is_array()) {
4326 assert(state->error);
4327
4328 /* To avoid cascading failures, short circuit the checks below. */
4329 return;
4330 }
4331
4332 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4333 &state->gs_input_size,
4334 "geometry shader input");
4335 }
4336
4337 void
4338 validate_identifier(const char *identifier, YYLTYPE loc,
4339 struct _mesa_glsl_parse_state *state)
4340 {
4341 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4342 *
4343 * "Identifiers starting with "gl_" are reserved for use by
4344 * OpenGL, and may not be declared in a shader as either a
4345 * variable or a function."
4346 */
4347 if (is_gl_identifier(identifier)) {
4348 _mesa_glsl_error(&loc, state,
4349 "identifier `%s' uses reserved `gl_' prefix",
4350 identifier);
4351 } else if (strstr(identifier, "__")) {
4352 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4353 * spec:
4354 *
4355 * "In addition, all identifiers containing two
4356 * consecutive underscores (__) are reserved as
4357 * possible future keywords."
4358 *
4359 * The intention is that names containing __ are reserved for internal
4360 * use by the implementation, and names prefixed with GL_ are reserved
4361 * for use by Khronos. Names simply containing __ are dangerous to use,
4362 * but should be allowed.
4363 *
4364 * A future version of the GLSL specification will clarify this.
4365 */
4366 _mesa_glsl_warning(&loc, state,
4367 "identifier `%s' uses reserved `__' string",
4368 identifier);
4369 }
4370 }
4371
4372 ir_rvalue *
4373 ast_declarator_list::hir(exec_list *instructions,
4374 struct _mesa_glsl_parse_state *state)
4375 {
4376 void *ctx = state;
4377 const struct glsl_type *decl_type;
4378 const char *type_name = NULL;
4379 ir_rvalue *result = NULL;
4380 YYLTYPE loc = this->get_location();
4381
4382 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4383 *
4384 * "To ensure that a particular output variable is invariant, it is
4385 * necessary to use the invariant qualifier. It can either be used to
4386 * qualify a previously declared variable as being invariant
4387 *
4388 * invariant gl_Position; // make existing gl_Position be invariant"
4389 *
4390 * In these cases the parser will set the 'invariant' flag in the declarator
4391 * list, and the type will be NULL.
4392 */
4393 if (this->invariant) {
4394 assert(this->type == NULL);
4395
4396 if (state->current_function != NULL) {
4397 _mesa_glsl_error(& loc, state,
4398 "all uses of `invariant' keyword must be at global "
4399 "scope");
4400 }
4401
4402 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4403 assert(decl->array_specifier == NULL);
4404 assert(decl->initializer == NULL);
4405
4406 ir_variable *const earlier =
4407 state->symbols->get_variable(decl->identifier);
4408 if (earlier == NULL) {
4409 _mesa_glsl_error(& loc, state,
4410 "undeclared variable `%s' cannot be marked "
4411 "invariant", decl->identifier);
4412 } else if (!is_varying_var(earlier, state->stage)) {
4413 _mesa_glsl_error(&loc, state,
4414 "`%s' cannot be marked invariant; interfaces between "
4415 "shader stages only.", decl->identifier);
4416 } else if (earlier->data.used) {
4417 _mesa_glsl_error(& loc, state,
4418 "variable `%s' may not be redeclared "
4419 "`invariant' after being used",
4420 earlier->name);
4421 } else {
4422 earlier->data.invariant = true;
4423 }
4424 }
4425
4426 /* Invariant redeclarations do not have r-values.
4427 */
4428 return NULL;
4429 }
4430
4431 if (this->precise) {
4432 assert(this->type == NULL);
4433
4434 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4435 assert(decl->array_specifier == NULL);
4436 assert(decl->initializer == NULL);
4437
4438 ir_variable *const earlier =
4439 state->symbols->get_variable(decl->identifier);
4440 if (earlier == NULL) {
4441 _mesa_glsl_error(& loc, state,
4442 "undeclared variable `%s' cannot be marked "
4443 "precise", decl->identifier);
4444 } else if (state->current_function != NULL &&
4445 !state->symbols->name_declared_this_scope(decl->identifier)) {
4446 /* Note: we have to check if we're in a function, since
4447 * builtins are treated as having come from another scope.
4448 */
4449 _mesa_glsl_error(& loc, state,
4450 "variable `%s' from an outer scope may not be "
4451 "redeclared `precise' in this scope",
4452 earlier->name);
4453 } else if (earlier->data.used) {
4454 _mesa_glsl_error(& loc, state,
4455 "variable `%s' may not be redeclared "
4456 "`precise' after being used",
4457 earlier->name);
4458 } else {
4459 earlier->data.precise = true;
4460 }
4461 }
4462
4463 /* Precise redeclarations do not have r-values either. */
4464 return NULL;
4465 }
4466
4467 assert(this->type != NULL);
4468 assert(!this->invariant);
4469 assert(!this->precise);
4470
4471 /* The type specifier may contain a structure definition. Process that
4472 * before any of the variable declarations.
4473 */
4474 (void) this->type->specifier->hir(instructions, state);
4475
4476 decl_type = this->type->glsl_type(& type_name, state);
4477
4478 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4479 * "Buffer variables may only be declared inside interface blocks
4480 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4481 * shader storage blocks. It is a compile-time error to declare buffer
4482 * variables at global scope (outside a block)."
4483 */
4484 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4485 _mesa_glsl_error(&loc, state,
4486 "buffer variables cannot be declared outside "
4487 "interface blocks");
4488 }
4489
4490 /* An offset-qualified atomic counter declaration sets the default
4491 * offset for the next declaration within the same atomic counter
4492 * buffer.
4493 */
4494 if (decl_type && decl_type->contains_atomic()) {
4495 if (type->qualifier.flags.q.explicit_binding &&
4496 type->qualifier.flags.q.explicit_offset) {
4497 unsigned qual_binding;
4498 unsigned qual_offset;
4499 if (process_qualifier_constant(state, &loc, "binding",
4500 type->qualifier.binding,
4501 &qual_binding)
4502 && process_qualifier_constant(state, &loc, "offset",
4503 type->qualifier.offset,
4504 &qual_offset)) {
4505 state->atomic_counter_offsets[qual_binding] = qual_offset;
4506 }
4507 }
4508
4509 ast_type_qualifier allowed_atomic_qual_mask;
4510 allowed_atomic_qual_mask.flags.i = 0;
4511 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4512 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4513 allowed_atomic_qual_mask.flags.q.uniform = 1;
4514
4515 type->qualifier.validate_flags(&loc, state,
4516 "invalid layout qualifier for "
4517 "atomic_uint",
4518 allowed_atomic_qual_mask);
4519 }
4520
4521 if (this->declarations.is_empty()) {
4522 /* If there is no structure involved in the program text, there are two
4523 * possible scenarios:
4524 *
4525 * - The program text contained something like 'vec4;'. This is an
4526 * empty declaration. It is valid but weird. Emit a warning.
4527 *
4528 * - The program text contained something like 'S;' and 'S' is not the
4529 * name of a known structure type. This is both invalid and weird.
4530 * Emit an error.
4531 *
4532 * - The program text contained something like 'mediump float;'
4533 * when the programmer probably meant 'precision mediump
4534 * float;' Emit a warning with a description of what they
4535 * probably meant to do.
4536 *
4537 * Note that if decl_type is NULL and there is a structure involved,
4538 * there must have been some sort of error with the structure. In this
4539 * case we assume that an error was already generated on this line of
4540 * code for the structure. There is no need to generate an additional,
4541 * confusing error.
4542 */
4543 assert(this->type->specifier->structure == NULL || decl_type != NULL
4544 || state->error);
4545
4546 if (decl_type == NULL) {
4547 _mesa_glsl_error(&loc, state,
4548 "invalid type `%s' in empty declaration",
4549 type_name);
4550 } else {
4551 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4552 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4553 * spec:
4554 *
4555 * "... any declaration that leaves the size undefined is
4556 * disallowed as this would add complexity and there are no
4557 * use-cases."
4558 */
4559 if (state->es_shader && decl_type->is_unsized_array()) {
4560 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4561 "or implicitly defined");
4562 }
4563
4564 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4565 *
4566 * "The combinations of types and qualifiers that cause
4567 * compile-time or link-time errors are the same whether or not
4568 * the declaration is empty."
4569 */
4570 validate_array_dimensions(decl_type, state, &loc);
4571 }
4572
4573 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4574 /* Empty atomic counter declarations are allowed and useful
4575 * to set the default offset qualifier.
4576 */
4577 return NULL;
4578 } else if (this->type->qualifier.precision != ast_precision_none) {
4579 if (this->type->specifier->structure != NULL) {
4580 _mesa_glsl_error(&loc, state,
4581 "precision qualifiers can't be applied "
4582 "to structures");
4583 } else {
4584 static const char *const precision_names[] = {
4585 "highp",
4586 "highp",
4587 "mediump",
4588 "lowp"
4589 };
4590
4591 _mesa_glsl_warning(&loc, state,
4592 "empty declaration with precision "
4593 "qualifier, to set the default precision, "
4594 "use `precision %s %s;'",
4595 precision_names[this->type->
4596 qualifier.precision],
4597 type_name);
4598 }
4599 } else if (this->type->specifier->structure == NULL) {
4600 _mesa_glsl_warning(&loc, state, "empty declaration");
4601 }
4602 }
4603 }
4604
4605 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4606 const struct glsl_type *var_type;
4607 ir_variable *var;
4608 const char *identifier = decl->identifier;
4609 /* FINISHME: Emit a warning if a variable declaration shadows a
4610 * FINISHME: declaration at a higher scope.
4611 */
4612
4613 if ((decl_type == NULL) || decl_type->is_void()) {
4614 if (type_name != NULL) {
4615 _mesa_glsl_error(& loc, state,
4616 "invalid type `%s' in declaration of `%s'",
4617 type_name, decl->identifier);
4618 } else {
4619 _mesa_glsl_error(& loc, state,
4620 "invalid type in declaration of `%s'",
4621 decl->identifier);
4622 }
4623 continue;
4624 }
4625
4626 if (this->type->qualifier.flags.q.subroutine) {
4627 const glsl_type *t;
4628 const char *name;
4629
4630 t = state->symbols->get_type(this->type->specifier->type_name);
4631 if (!t)
4632 _mesa_glsl_error(& loc, state,
4633 "invalid type in declaration of `%s'",
4634 decl->identifier);
4635 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4636
4637 identifier = name;
4638
4639 }
4640 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4641 state);
4642
4643 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4644
4645 /* The 'varying in' and 'varying out' qualifiers can only be used with
4646 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4647 * yet.
4648 */
4649 if (this->type->qualifier.flags.q.varying) {
4650 if (this->type->qualifier.flags.q.in) {
4651 _mesa_glsl_error(& loc, state,
4652 "`varying in' qualifier in declaration of "
4653 "`%s' only valid for geometry shaders using "
4654 "ARB_geometry_shader4 or EXT_geometry_shader4",
4655 decl->identifier);
4656 } else if (this->type->qualifier.flags.q.out) {
4657 _mesa_glsl_error(& loc, state,
4658 "`varying out' qualifier in declaration of "
4659 "`%s' only valid for geometry shaders using "
4660 "ARB_geometry_shader4 or EXT_geometry_shader4",
4661 decl->identifier);
4662 }
4663 }
4664
4665 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4666 *
4667 * "Global variables can only use the qualifiers const,
4668 * attribute, uniform, or varying. Only one may be
4669 * specified.
4670 *
4671 * Local variables can only use the qualifier const."
4672 *
4673 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4674 * any extension that adds the 'layout' keyword.
4675 */
4676 if (!state->is_version(130, 300)
4677 && !state->has_explicit_attrib_location()
4678 && !state->has_separate_shader_objects()
4679 && !state->ARB_fragment_coord_conventions_enable) {
4680 if (this->type->qualifier.flags.q.out) {
4681 _mesa_glsl_error(& loc, state,
4682 "`out' qualifier in declaration of `%s' "
4683 "only valid for function parameters in %s",
4684 decl->identifier, state->get_version_string());
4685 }
4686 if (this->type->qualifier.flags.q.in) {
4687 _mesa_glsl_error(& loc, state,
4688 "`in' qualifier in declaration of `%s' "
4689 "only valid for function parameters in %s",
4690 decl->identifier, state->get_version_string());
4691 }
4692 /* FINISHME: Test for other invalid qualifiers. */
4693 }
4694
4695 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4696 & loc, false);
4697 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4698 &loc);
4699
4700 if (this->type->qualifier.flags.q.invariant) {
4701 if (!is_varying_var(var, state->stage)) {
4702 _mesa_glsl_error(&loc, state,
4703 "`%s' cannot be marked invariant; interfaces between "
4704 "shader stages only", var->name);
4705 }
4706 }
4707
4708 if (state->current_function != NULL) {
4709 const char *mode = NULL;
4710 const char *extra = "";
4711
4712 /* There is no need to check for 'inout' here because the parser will
4713 * only allow that in function parameter lists.
4714 */
4715 if (this->type->qualifier.flags.q.attribute) {
4716 mode = "attribute";
4717 } else if (this->type->qualifier.flags.q.subroutine) {
4718 mode = "subroutine uniform";
4719 } else if (this->type->qualifier.flags.q.uniform) {
4720 mode = "uniform";
4721 } else if (this->type->qualifier.flags.q.varying) {
4722 mode = "varying";
4723 } else if (this->type->qualifier.flags.q.in) {
4724 mode = "in";
4725 extra = " or in function parameter list";
4726 } else if (this->type->qualifier.flags.q.out) {
4727 mode = "out";
4728 extra = " or in function parameter list";
4729 }
4730
4731 if (mode) {
4732 _mesa_glsl_error(& loc, state,
4733 "%s variable `%s' must be declared at "
4734 "global scope%s",
4735 mode, var->name, extra);
4736 }
4737 } else if (var->data.mode == ir_var_shader_in) {
4738 var->data.read_only = true;
4739
4740 if (state->stage == MESA_SHADER_VERTEX) {
4741 bool error_emitted = false;
4742
4743 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4744 *
4745 * "Vertex shader inputs can only be float, floating-point
4746 * vectors, matrices, signed and unsigned integers and integer
4747 * vectors. Vertex shader inputs can also form arrays of these
4748 * types, but not structures."
4749 *
4750 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4751 *
4752 * "Vertex shader inputs can only be float, floating-point
4753 * vectors, matrices, signed and unsigned integers and integer
4754 * vectors. They cannot be arrays or structures."
4755 *
4756 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4757 *
4758 * "The attribute qualifier can be used only with float,
4759 * floating-point vectors, and matrices. Attribute variables
4760 * cannot be declared as arrays or structures."
4761 *
4762 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4763 *
4764 * "Vertex shader inputs can only be float, floating-point
4765 * vectors, matrices, signed and unsigned integers and integer
4766 * vectors. Vertex shader inputs cannot be arrays or
4767 * structures."
4768 */
4769 const glsl_type *check_type = var->type->without_array();
4770
4771 switch (check_type->base_type) {
4772 case GLSL_TYPE_FLOAT:
4773 break;
4774 case GLSL_TYPE_UINT:
4775 case GLSL_TYPE_INT:
4776 if (state->is_version(120, 300))
4777 break;
4778 case GLSL_TYPE_DOUBLE:
4779 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4780 break;
4781 /* FALLTHROUGH */
4782 default:
4783 _mesa_glsl_error(& loc, state,
4784 "vertex shader input / attribute cannot have "
4785 "type %s`%s'",
4786 var->type->is_array() ? "array of " : "",
4787 check_type->name);
4788 error_emitted = true;
4789 }
4790
4791 if (!error_emitted && var->type->is_array() &&
4792 !state->check_version(150, 0, &loc,
4793 "vertex shader input / attribute "
4794 "cannot have array type")) {
4795 error_emitted = true;
4796 }
4797 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4798 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4799 *
4800 * Geometry shader input variables get the per-vertex values
4801 * written out by vertex shader output variables of the same
4802 * names. Since a geometry shader operates on a set of
4803 * vertices, each input varying variable (or input block, see
4804 * interface blocks below) needs to be declared as an array.
4805 */
4806 if (!var->type->is_array()) {
4807 _mesa_glsl_error(&loc, state,
4808 "geometry shader inputs must be arrays");
4809 }
4810
4811 handle_geometry_shader_input_decl(state, loc, var);
4812 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4813 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4814 *
4815 * It is a compile-time error to declare a fragment shader
4816 * input with, or that contains, any of the following types:
4817 *
4818 * * A boolean type
4819 * * An opaque type
4820 * * An array of arrays
4821 * * An array of structures
4822 * * A structure containing an array
4823 * * A structure containing a structure
4824 */
4825 if (state->es_shader) {
4826 const glsl_type *check_type = var->type->without_array();
4827 if (check_type->is_boolean() ||
4828 check_type->contains_opaque()) {
4829 _mesa_glsl_error(&loc, state,
4830 "fragment shader input cannot have type %s",
4831 check_type->name);
4832 }
4833 if (var->type->is_array() &&
4834 var->type->fields.array->is_array()) {
4835 _mesa_glsl_error(&loc, state,
4836 "%s shader output "
4837 "cannot have an array of arrays",
4838 _mesa_shader_stage_to_string(state->stage));
4839 }
4840 if (var->type->is_array() &&
4841 var->type->fields.array->is_record()) {
4842 _mesa_glsl_error(&loc, state,
4843 "fragment shader input "
4844 "cannot have an array of structs");
4845 }
4846 if (var->type->is_record()) {
4847 for (unsigned i = 0; i < var->type->length; i++) {
4848 if (var->type->fields.structure[i].type->is_array() ||
4849 var->type->fields.structure[i].type->is_record())
4850 _mesa_glsl_error(&loc, state,
4851 "fragement shader input cannot have "
4852 "a struct that contains an "
4853 "array or struct");
4854 }
4855 }
4856 }
4857 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4858 state->stage == MESA_SHADER_TESS_EVAL) {
4859 handle_tess_shader_input_decl(state, loc, var);
4860 }
4861 } else if (var->data.mode == ir_var_shader_out) {
4862 const glsl_type *check_type = var->type->without_array();
4863
4864 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4865 *
4866 * It is a compile-time error to declare a vertex, tessellation
4867 * evaluation, tessellation control, or geometry shader output
4868 * that contains any of the following:
4869 *
4870 * * A Boolean type (bool, bvec2 ...)
4871 * * An opaque type
4872 */
4873 if (check_type->is_boolean() || check_type->contains_opaque())
4874 _mesa_glsl_error(&loc, state,
4875 "%s shader output cannot have type %s",
4876 _mesa_shader_stage_to_string(state->stage),
4877 check_type->name);
4878
4879 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4880 *
4881 * It is a compile-time error to declare a fragment shader output
4882 * that contains any of the following:
4883 *
4884 * * A Boolean type (bool, bvec2 ...)
4885 * * A double-precision scalar or vector (double, dvec2 ...)
4886 * * An opaque type
4887 * * Any matrix type
4888 * * A structure
4889 */
4890 if (state->stage == MESA_SHADER_FRAGMENT) {
4891 if (check_type->is_record() || check_type->is_matrix())
4892 _mesa_glsl_error(&loc, state,
4893 "fragment shader output "
4894 "cannot have struct or matrix type");
4895 switch (check_type->base_type) {
4896 case GLSL_TYPE_UINT:
4897 case GLSL_TYPE_INT:
4898 case GLSL_TYPE_FLOAT:
4899 break;
4900 default:
4901 _mesa_glsl_error(&loc, state,
4902 "fragment shader output cannot have "
4903 "type %s", check_type->name);
4904 }
4905 }
4906
4907 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4908 *
4909 * It is a compile-time error to declare a vertex shader output
4910 * with, or that contains, any of the following types:
4911 *
4912 * * A boolean type
4913 * * An opaque type
4914 * * An array of arrays
4915 * * An array of structures
4916 * * A structure containing an array
4917 * * A structure containing a structure
4918 *
4919 * It is a compile-time error to declare a fragment shader output
4920 * with, or that contains, any of the following types:
4921 *
4922 * * A boolean type
4923 * * An opaque type
4924 * * A matrix
4925 * * A structure
4926 * * An array of array
4927 */
4928 if (state->es_shader) {
4929 if (var->type->is_array() &&
4930 var->type->fields.array->is_array()) {
4931 _mesa_glsl_error(&loc, state,
4932 "%s shader output "
4933 "cannot have an array of arrays",
4934 _mesa_shader_stage_to_string(state->stage));
4935 }
4936 if (state->stage == MESA_SHADER_VERTEX) {
4937 if (var->type->is_array() &&
4938 var->type->fields.array->is_record()) {
4939 _mesa_glsl_error(&loc, state,
4940 "vertex shader output "
4941 "cannot have an array of structs");
4942 }
4943 if (var->type->is_record()) {
4944 for (unsigned i = 0; i < var->type->length; i++) {
4945 if (var->type->fields.structure[i].type->is_array() ||
4946 var->type->fields.structure[i].type->is_record())
4947 _mesa_glsl_error(&loc, state,
4948 "vertex shader output cannot have a "
4949 "struct that contains an "
4950 "array or struct");
4951 }
4952 }
4953 }
4954 }
4955
4956 if (state->stage == MESA_SHADER_TESS_CTRL) {
4957 handle_tess_ctrl_shader_output_decl(state, loc, var);
4958 }
4959 } else if (var->type->contains_subroutine()) {
4960 /* declare subroutine uniforms as hidden */
4961 var->data.how_declared = ir_var_hidden;
4962 }
4963
4964 /* From section 4.3.4 of the GLSL 4.00 spec:
4965 * "Input variables may not be declared using the patch in qualifier
4966 * in tessellation control or geometry shaders."
4967 *
4968 * From section 4.3.6 of the GLSL 4.00 spec:
4969 * "It is an error to use patch out in a vertex, tessellation
4970 * evaluation, or geometry shader."
4971 *
4972 * This doesn't explicitly forbid using them in a fragment shader, but
4973 * that's probably just an oversight.
4974 */
4975 if (state->stage != MESA_SHADER_TESS_EVAL
4976 && this->type->qualifier.flags.q.patch
4977 && this->type->qualifier.flags.q.in) {
4978
4979 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4980 "tessellation evaluation shader");
4981 }
4982
4983 if (state->stage != MESA_SHADER_TESS_CTRL
4984 && this->type->qualifier.flags.q.patch
4985 && this->type->qualifier.flags.q.out) {
4986
4987 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4988 "tessellation control shader");
4989 }
4990
4991 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4992 */
4993 if (this->type->qualifier.precision != ast_precision_none) {
4994 state->check_precision_qualifiers_allowed(&loc);
4995 }
4996
4997
4998 /* If a precision qualifier is allowed on a type, it is allowed on
4999 * an array of that type.
5000 */
5001 if (!(this->type->qualifier.precision == ast_precision_none
5002 || precision_qualifier_allowed(var->type->without_array()))) {
5003
5004 _mesa_glsl_error(&loc, state,
5005 "precision qualifiers apply only to floating point"
5006 ", integer and opaque types");
5007 }
5008
5009 /* From section 4.1.7 of the GLSL 4.40 spec:
5010 *
5011 * "[Opaque types] can only be declared as function
5012 * parameters or uniform-qualified variables."
5013 */
5014 if (var_type->contains_opaque() &&
5015 !this->type->qualifier.flags.q.uniform) {
5016 _mesa_glsl_error(&loc, state,
5017 "opaque variables must be declared uniform");
5018 }
5019
5020 /* Process the initializer and add its instructions to a temporary
5021 * list. This list will be added to the instruction stream (below) after
5022 * the declaration is added. This is done because in some cases (such as
5023 * redeclarations) the declaration may not actually be added to the
5024 * instruction stream.
5025 */
5026 exec_list initializer_instructions;
5027
5028 /* Examine var name here since var may get deleted in the next call */
5029 bool var_is_gl_id = is_gl_identifier(var->name);
5030
5031 ir_variable *earlier =
5032 get_variable_being_redeclared(var, decl->get_location(), state,
5033 false /* allow_all_redeclarations */);
5034 if (earlier != NULL) {
5035 if (var_is_gl_id &&
5036 earlier->data.how_declared == ir_var_declared_in_block) {
5037 _mesa_glsl_error(&loc, state,
5038 "`%s' has already been redeclared using "
5039 "gl_PerVertex", earlier->name);
5040 }
5041 earlier->data.how_declared = ir_var_declared_normally;
5042 }
5043
5044 if (decl->initializer != NULL) {
5045 result = process_initializer((earlier == NULL) ? var : earlier,
5046 decl, this->type,
5047 &initializer_instructions, state);
5048 } else {
5049 validate_array_dimensions(var_type, state, &loc);
5050 }
5051
5052 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5053 *
5054 * "It is an error to write to a const variable outside of
5055 * its declaration, so they must be initialized when
5056 * declared."
5057 */
5058 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5059 _mesa_glsl_error(& loc, state,
5060 "const declaration of `%s' must be initialized",
5061 decl->identifier);
5062 }
5063
5064 if (state->es_shader) {
5065 const glsl_type *const t = (earlier == NULL)
5066 ? var->type : earlier->type;
5067
5068 if (t->is_unsized_array())
5069 /* Section 10.17 of the GLSL ES 1.00 specification states that
5070 * unsized array declarations have been removed from the language.
5071 * Arrays that are sized using an initializer are still explicitly
5072 * sized. However, GLSL ES 1.00 does not allow array
5073 * initializers. That is only allowed in GLSL ES 3.00.
5074 *
5075 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5076 *
5077 * "An array type can also be formed without specifying a size
5078 * if the definition includes an initializer:
5079 *
5080 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5081 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5082 *
5083 * float a[5];
5084 * float b[] = a;"
5085 */
5086 _mesa_glsl_error(& loc, state,
5087 "unsized array declarations are not allowed in "
5088 "GLSL ES");
5089 }
5090
5091 /* If the declaration is not a redeclaration, there are a few additional
5092 * semantic checks that must be applied. In addition, variable that was
5093 * created for the declaration should be added to the IR stream.
5094 */
5095 if (earlier == NULL) {
5096 validate_identifier(decl->identifier, loc, state);
5097
5098 /* Add the variable to the symbol table. Note that the initializer's
5099 * IR was already processed earlier (though it hasn't been emitted
5100 * yet), without the variable in scope.
5101 *
5102 * This differs from most C-like languages, but it follows the GLSL
5103 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5104 * spec:
5105 *
5106 * "Within a declaration, the scope of a name starts immediately
5107 * after the initializer if present or immediately after the name
5108 * being declared if not."
5109 */
5110 if (!state->symbols->add_variable(var)) {
5111 YYLTYPE loc = this->get_location();
5112 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5113 "current scope", decl->identifier);
5114 continue;
5115 }
5116
5117 /* Push the variable declaration to the top. It means that all the
5118 * variable declarations will appear in a funny last-to-first order,
5119 * but otherwise we run into trouble if a function is prototyped, a
5120 * global var is decled, then the function is defined with usage of
5121 * the global var. See glslparsertest's CorrectModule.frag.
5122 */
5123 instructions->push_head(var);
5124 }
5125
5126 instructions->append_list(&initializer_instructions);
5127 }
5128
5129
5130 /* Generally, variable declarations do not have r-values. However,
5131 * one is used for the declaration in
5132 *
5133 * while (bool b = some_condition()) {
5134 * ...
5135 * }
5136 *
5137 * so we return the rvalue from the last seen declaration here.
5138 */
5139 return result;
5140 }
5141
5142
5143 ir_rvalue *
5144 ast_parameter_declarator::hir(exec_list *instructions,
5145 struct _mesa_glsl_parse_state *state)
5146 {
5147 void *ctx = state;
5148 const struct glsl_type *type;
5149 const char *name = NULL;
5150 YYLTYPE loc = this->get_location();
5151
5152 type = this->type->glsl_type(& name, state);
5153
5154 if (type == NULL) {
5155 if (name != NULL) {
5156 _mesa_glsl_error(& loc, state,
5157 "invalid type `%s' in declaration of `%s'",
5158 name, this->identifier);
5159 } else {
5160 _mesa_glsl_error(& loc, state,
5161 "invalid type in declaration of `%s'",
5162 this->identifier);
5163 }
5164
5165 type = glsl_type::error_type;
5166 }
5167
5168 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5169 *
5170 * "Functions that accept no input arguments need not use void in the
5171 * argument list because prototypes (or definitions) are required and
5172 * therefore there is no ambiguity when an empty argument list "( )" is
5173 * declared. The idiom "(void)" as a parameter list is provided for
5174 * convenience."
5175 *
5176 * Placing this check here prevents a void parameter being set up
5177 * for a function, which avoids tripping up checks for main taking
5178 * parameters and lookups of an unnamed symbol.
5179 */
5180 if (type->is_void()) {
5181 if (this->identifier != NULL)
5182 _mesa_glsl_error(& loc, state,
5183 "named parameter cannot have type `void'");
5184
5185 is_void = true;
5186 return NULL;
5187 }
5188
5189 if (formal_parameter && (this->identifier == NULL)) {
5190 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5191 return NULL;
5192 }
5193
5194 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5195 * call already handled the "vec4[..] foo" case.
5196 */
5197 type = process_array_type(&loc, type, this->array_specifier, state);
5198
5199 if (!type->is_error() && type->is_unsized_array()) {
5200 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5201 "a declared size");
5202 type = glsl_type::error_type;
5203 }
5204
5205 is_void = false;
5206 ir_variable *var = new(ctx)
5207 ir_variable(type, this->identifier, ir_var_function_in);
5208
5209 /* Apply any specified qualifiers to the parameter declaration. Note that
5210 * for function parameters the default mode is 'in'.
5211 */
5212 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5213 true);
5214
5215 /* From section 4.1.7 of the GLSL 4.40 spec:
5216 *
5217 * "Opaque variables cannot be treated as l-values; hence cannot
5218 * be used as out or inout function parameters, nor can they be
5219 * assigned into."
5220 */
5221 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5222 && type->contains_opaque()) {
5223 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5224 "contain opaque variables");
5225 type = glsl_type::error_type;
5226 }
5227
5228 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5229 *
5230 * "When calling a function, expressions that do not evaluate to
5231 * l-values cannot be passed to parameters declared as out or inout."
5232 *
5233 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5234 *
5235 * "Other binary or unary expressions, non-dereferenced arrays,
5236 * function names, swizzles with repeated fields, and constants
5237 * cannot be l-values."
5238 *
5239 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5240 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5241 */
5242 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5243 && type->is_array()
5244 && !state->check_version(120, 100, &loc,
5245 "arrays cannot be out or inout parameters")) {
5246 type = glsl_type::error_type;
5247 }
5248
5249 instructions->push_tail(var);
5250
5251 /* Parameter declarations do not have r-values.
5252 */
5253 return NULL;
5254 }
5255
5256
5257 void
5258 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5259 bool formal,
5260 exec_list *ir_parameters,
5261 _mesa_glsl_parse_state *state)
5262 {
5263 ast_parameter_declarator *void_param = NULL;
5264 unsigned count = 0;
5265
5266 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5267 param->formal_parameter = formal;
5268 param->hir(ir_parameters, state);
5269
5270 if (param->is_void)
5271 void_param = param;
5272
5273 count++;
5274 }
5275
5276 if ((void_param != NULL) && (count > 1)) {
5277 YYLTYPE loc = void_param->get_location();
5278
5279 _mesa_glsl_error(& loc, state,
5280 "`void' parameter must be only parameter");
5281 }
5282 }
5283
5284
5285 void
5286 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5287 {
5288 /* IR invariants disallow function declarations or definitions
5289 * nested within other function definitions. But there is no
5290 * requirement about the relative order of function declarations
5291 * and definitions with respect to one another. So simply insert
5292 * the new ir_function block at the end of the toplevel instruction
5293 * list.
5294 */
5295 state->toplevel_ir->push_tail(f);
5296 }
5297
5298
5299 ir_rvalue *
5300 ast_function::hir(exec_list *instructions,
5301 struct _mesa_glsl_parse_state *state)
5302 {
5303 void *ctx = state;
5304 ir_function *f = NULL;
5305 ir_function_signature *sig = NULL;
5306 exec_list hir_parameters;
5307 YYLTYPE loc = this->get_location();
5308
5309 const char *const name = identifier;
5310
5311 /* New functions are always added to the top-level IR instruction stream,
5312 * so this instruction list pointer is ignored. See also emit_function
5313 * (called below).
5314 */
5315 (void) instructions;
5316
5317 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5318 *
5319 * "Function declarations (prototypes) cannot occur inside of functions;
5320 * they must be at global scope, or for the built-in functions, outside
5321 * the global scope."
5322 *
5323 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5324 *
5325 * "User defined functions may only be defined within the global scope."
5326 *
5327 * Note that this language does not appear in GLSL 1.10.
5328 */
5329 if ((state->current_function != NULL) &&
5330 state->is_version(120, 100)) {
5331 YYLTYPE loc = this->get_location();
5332 _mesa_glsl_error(&loc, state,
5333 "declaration of function `%s' not allowed within "
5334 "function body", name);
5335 }
5336
5337 validate_identifier(name, this->get_location(), state);
5338
5339 /* Convert the list of function parameters to HIR now so that they can be
5340 * used below to compare this function's signature with previously seen
5341 * signatures for functions with the same name.
5342 */
5343 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5344 is_definition,
5345 & hir_parameters, state);
5346
5347 const char *return_type_name;
5348 const glsl_type *return_type =
5349 this->return_type->glsl_type(& return_type_name, state);
5350
5351 if (!return_type) {
5352 YYLTYPE loc = this->get_location();
5353 _mesa_glsl_error(&loc, state,
5354 "function `%s' has undeclared return type `%s'",
5355 name, return_type_name);
5356 return_type = glsl_type::error_type;
5357 }
5358
5359 /* ARB_shader_subroutine states:
5360 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5361 * subroutine(...) to a function declaration."
5362 */
5363 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5364 YYLTYPE loc = this->get_location();
5365 _mesa_glsl_error(&loc, state,
5366 "function declaration `%s' cannot have subroutine prepended",
5367 name);
5368 }
5369
5370 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5371 * "No qualifier is allowed on the return type of a function."
5372 */
5373 if (this->return_type->has_qualifiers(state)) {
5374 YYLTYPE loc = this->get_location();
5375 _mesa_glsl_error(& loc, state,
5376 "function `%s' return type has qualifiers", name);
5377 }
5378
5379 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5380 *
5381 * "Arrays are allowed as arguments and as the return type. In both
5382 * cases, the array must be explicitly sized."
5383 */
5384 if (return_type->is_unsized_array()) {
5385 YYLTYPE loc = this->get_location();
5386 _mesa_glsl_error(& loc, state,
5387 "function `%s' return type array must be explicitly "
5388 "sized", name);
5389 }
5390
5391 /* From section 4.1.7 of the GLSL 4.40 spec:
5392 *
5393 * "[Opaque types] can only be declared as function parameters
5394 * or uniform-qualified variables."
5395 */
5396 if (return_type->contains_opaque()) {
5397 YYLTYPE loc = this->get_location();
5398 _mesa_glsl_error(&loc, state,
5399 "function `%s' return type can't contain an opaque type",
5400 name);
5401 }
5402
5403 /**/
5404 if (return_type->is_subroutine()) {
5405 YYLTYPE loc = this->get_location();
5406 _mesa_glsl_error(&loc, state,
5407 "function `%s' return type can't be a subroutine type",
5408 name);
5409 }
5410
5411
5412 /* Create an ir_function if one doesn't already exist. */
5413 f = state->symbols->get_function(name);
5414 if (f == NULL) {
5415 f = new(ctx) ir_function(name);
5416 if (!this->return_type->qualifier.flags.q.subroutine) {
5417 if (!state->symbols->add_function(f)) {
5418 /* This function name shadows a non-function use of the same name. */
5419 YYLTYPE loc = this->get_location();
5420 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5421 "non-function", name);
5422 return NULL;
5423 }
5424 }
5425 emit_function(state, f);
5426 }
5427
5428 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5429 *
5430 * "A shader cannot redefine or overload built-in functions."
5431 *
5432 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5433 *
5434 * "User code can overload the built-in functions but cannot redefine
5435 * them."
5436 */
5437 if (state->es_shader && state->language_version >= 300) {
5438 /* Local shader has no exact candidates; check the built-ins. */
5439 _mesa_glsl_initialize_builtin_functions();
5440 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5441 YYLTYPE loc = this->get_location();
5442 _mesa_glsl_error(& loc, state,
5443 "A shader cannot redefine or overload built-in "
5444 "function `%s' in GLSL ES 3.00", name);
5445 return NULL;
5446 }
5447 }
5448
5449 /* Verify that this function's signature either doesn't match a previously
5450 * seen signature for a function with the same name, or, if a match is found,
5451 * that the previously seen signature does not have an associated definition.
5452 */
5453 if (state->es_shader || f->has_user_signature()) {
5454 sig = f->exact_matching_signature(state, &hir_parameters);
5455 if (sig != NULL) {
5456 const char *badvar = sig->qualifiers_match(&hir_parameters);
5457 if (badvar != NULL) {
5458 YYLTYPE loc = this->get_location();
5459
5460 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5461 "qualifiers don't match prototype", name, badvar);
5462 }
5463
5464 if (sig->return_type != return_type) {
5465 YYLTYPE loc = this->get_location();
5466
5467 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5468 "match prototype", name);
5469 }
5470
5471 if (sig->is_defined) {
5472 if (is_definition) {
5473 YYLTYPE loc = this->get_location();
5474 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5475 } else {
5476 /* We just encountered a prototype that exactly matches a
5477 * function that's already been defined. This is redundant,
5478 * and we should ignore it.
5479 */
5480 return NULL;
5481 }
5482 }
5483 }
5484 }
5485
5486 /* Verify the return type of main() */
5487 if (strcmp(name, "main") == 0) {
5488 if (! return_type->is_void()) {
5489 YYLTYPE loc = this->get_location();
5490
5491 _mesa_glsl_error(& loc, state, "main() must return void");
5492 }
5493
5494 if (!hir_parameters.is_empty()) {
5495 YYLTYPE loc = this->get_location();
5496
5497 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5498 }
5499 }
5500
5501 /* Finish storing the information about this new function in its signature.
5502 */
5503 if (sig == NULL) {
5504 sig = new(ctx) ir_function_signature(return_type);
5505 f->add_signature(sig);
5506 }
5507
5508 sig->replace_parameters(&hir_parameters);
5509 signature = sig;
5510
5511 if (this->return_type->qualifier.flags.q.subroutine_def) {
5512 int idx;
5513
5514 if (this->return_type->qualifier.flags.q.explicit_index) {
5515 unsigned qual_index;
5516 if (process_qualifier_constant(state, &loc, "index",
5517 this->return_type->qualifier.index,
5518 &qual_index)) {
5519 if (!state->has_explicit_uniform_location()) {
5520 _mesa_glsl_error(&loc, state, "subroutine index requires "
5521 "GL_ARB_explicit_uniform_location or "
5522 "GLSL 4.30");
5523 } else if (qual_index >= MAX_SUBROUTINES) {
5524 _mesa_glsl_error(&loc, state,
5525 "invalid subroutine index (%d) index must "
5526 "be a number between 0 and "
5527 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5528 MAX_SUBROUTINES - 1);
5529 } else {
5530 f->subroutine_index = qual_index;
5531 }
5532 }
5533 }
5534
5535 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5536 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5537 f->num_subroutine_types);
5538 idx = 0;
5539 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5540 const struct glsl_type *type;
5541 /* the subroutine type must be already declared */
5542 type = state->symbols->get_type(decl->identifier);
5543 if (!type) {
5544 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5545 }
5546
5547 for (int i = 0; i < state->num_subroutine_types; i++) {
5548 ir_function *fn = state->subroutine_types[i];
5549 ir_function_signature *tsig = NULL;
5550
5551 if (strcmp(fn->name, decl->identifier))
5552 continue;
5553
5554 tsig = fn->matching_signature(state, &sig->parameters,
5555 false);
5556 if (!tsig) {
5557 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5558 } else {
5559 if (tsig->return_type != sig->return_type) {
5560 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5561 }
5562 }
5563 }
5564 f->subroutine_types[idx++] = type;
5565 }
5566 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5567 ir_function *,
5568 state->num_subroutines + 1);
5569 state->subroutines[state->num_subroutines] = f;
5570 state->num_subroutines++;
5571
5572 }
5573
5574 if (this->return_type->qualifier.flags.q.subroutine) {
5575 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5576 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5577 return NULL;
5578 }
5579 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5580 ir_function *,
5581 state->num_subroutine_types + 1);
5582 state->subroutine_types[state->num_subroutine_types] = f;
5583 state->num_subroutine_types++;
5584
5585 f->is_subroutine = true;
5586 }
5587
5588 /* Function declarations (prototypes) do not have r-values.
5589 */
5590 return NULL;
5591 }
5592
5593
5594 ir_rvalue *
5595 ast_function_definition::hir(exec_list *instructions,
5596 struct _mesa_glsl_parse_state *state)
5597 {
5598 prototype->is_definition = true;
5599 prototype->hir(instructions, state);
5600
5601 ir_function_signature *signature = prototype->signature;
5602 if (signature == NULL)
5603 return NULL;
5604
5605 assert(state->current_function == NULL);
5606 state->current_function = signature;
5607 state->found_return = false;
5608
5609 /* Duplicate parameters declared in the prototype as concrete variables.
5610 * Add these to the symbol table.
5611 */
5612 state->symbols->push_scope();
5613 foreach_in_list(ir_variable, var, &signature->parameters) {
5614 assert(var->as_variable() != NULL);
5615
5616 /* The only way a parameter would "exist" is if two parameters have
5617 * the same name.
5618 */
5619 if (state->symbols->name_declared_this_scope(var->name)) {
5620 YYLTYPE loc = this->get_location();
5621
5622 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5623 } else {
5624 state->symbols->add_variable(var);
5625 }
5626 }
5627
5628 /* Convert the body of the function to HIR. */
5629 this->body->hir(&signature->body, state);
5630 signature->is_defined = true;
5631
5632 state->symbols->pop_scope();
5633
5634 assert(state->current_function == signature);
5635 state->current_function = NULL;
5636
5637 if (!signature->return_type->is_void() && !state->found_return) {
5638 YYLTYPE loc = this->get_location();
5639 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5640 "%s, but no return statement",
5641 signature->function_name(),
5642 signature->return_type->name);
5643 }
5644
5645 /* Function definitions do not have r-values.
5646 */
5647 return NULL;
5648 }
5649
5650
5651 ir_rvalue *
5652 ast_jump_statement::hir(exec_list *instructions,
5653 struct _mesa_glsl_parse_state *state)
5654 {
5655 void *ctx = state;
5656
5657 switch (mode) {
5658 case ast_return: {
5659 ir_return *inst;
5660 assert(state->current_function);
5661
5662 if (opt_return_value) {
5663 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5664
5665 /* The value of the return type can be NULL if the shader says
5666 * 'return foo();' and foo() is a function that returns void.
5667 *
5668 * NOTE: The GLSL spec doesn't say that this is an error. The type
5669 * of the return value is void. If the return type of the function is
5670 * also void, then this should compile without error. Seriously.
5671 */
5672 const glsl_type *const ret_type =
5673 (ret == NULL) ? glsl_type::void_type : ret->type;
5674
5675 /* Implicit conversions are not allowed for return values prior to
5676 * ARB_shading_language_420pack.
5677 */
5678 if (state->current_function->return_type != ret_type) {
5679 YYLTYPE loc = this->get_location();
5680
5681 if (state->has_420pack()) {
5682 if (!apply_implicit_conversion(state->current_function->return_type,
5683 ret, state)) {
5684 _mesa_glsl_error(& loc, state,
5685 "could not implicitly convert return value "
5686 "to %s, in function `%s'",
5687 state->current_function->return_type->name,
5688 state->current_function->function_name());
5689 }
5690 } else {
5691 _mesa_glsl_error(& loc, state,
5692 "`return' with wrong type %s, in function `%s' "
5693 "returning %s",
5694 ret_type->name,
5695 state->current_function->function_name(),
5696 state->current_function->return_type->name);
5697 }
5698 } else if (state->current_function->return_type->base_type ==
5699 GLSL_TYPE_VOID) {
5700 YYLTYPE loc = this->get_location();
5701
5702 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5703 * specs add a clarification:
5704 *
5705 * "A void function can only use return without a return argument, even if
5706 * the return argument has void type. Return statements only accept values:
5707 *
5708 * void func1() { }
5709 * void func2() { return func1(); } // illegal return statement"
5710 */
5711 _mesa_glsl_error(& loc, state,
5712 "void functions can only use `return' without a "
5713 "return argument");
5714 }
5715
5716 inst = new(ctx) ir_return(ret);
5717 } else {
5718 if (state->current_function->return_type->base_type !=
5719 GLSL_TYPE_VOID) {
5720 YYLTYPE loc = this->get_location();
5721
5722 _mesa_glsl_error(& loc, state,
5723 "`return' with no value, in function %s returning "
5724 "non-void",
5725 state->current_function->function_name());
5726 }
5727 inst = new(ctx) ir_return;
5728 }
5729
5730 state->found_return = true;
5731 instructions->push_tail(inst);
5732 break;
5733 }
5734
5735 case ast_discard:
5736 if (state->stage != MESA_SHADER_FRAGMENT) {
5737 YYLTYPE loc = this->get_location();
5738
5739 _mesa_glsl_error(& loc, state,
5740 "`discard' may only appear in a fragment shader");
5741 }
5742 instructions->push_tail(new(ctx) ir_discard);
5743 break;
5744
5745 case ast_break:
5746 case ast_continue:
5747 if (mode == ast_continue &&
5748 state->loop_nesting_ast == NULL) {
5749 YYLTYPE loc = this->get_location();
5750
5751 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5752 } else if (mode == ast_break &&
5753 state->loop_nesting_ast == NULL &&
5754 state->switch_state.switch_nesting_ast == NULL) {
5755 YYLTYPE loc = this->get_location();
5756
5757 _mesa_glsl_error(& loc, state,
5758 "break may only appear in a loop or a switch");
5759 } else {
5760 /* For a loop, inline the for loop expression again, since we don't
5761 * know where near the end of the loop body the normal copy of it is
5762 * going to be placed. Same goes for the condition for a do-while
5763 * loop.
5764 */
5765 if (state->loop_nesting_ast != NULL &&
5766 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5767 if (state->loop_nesting_ast->rest_expression) {
5768 state->loop_nesting_ast->rest_expression->hir(instructions,
5769 state);
5770 }
5771 if (state->loop_nesting_ast->mode ==
5772 ast_iteration_statement::ast_do_while) {
5773 state->loop_nesting_ast->condition_to_hir(instructions, state);
5774 }
5775 }
5776
5777 if (state->switch_state.is_switch_innermost &&
5778 mode == ast_continue) {
5779 /* Set 'continue_inside' to true. */
5780 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5781 ir_dereference_variable *deref_continue_inside_var =
5782 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5783 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5784 true_val));
5785
5786 /* Break out from the switch, continue for the loop will
5787 * be called right after switch. */
5788 ir_loop_jump *const jump =
5789 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5790 instructions->push_tail(jump);
5791
5792 } else if (state->switch_state.is_switch_innermost &&
5793 mode == ast_break) {
5794 /* Force break out of switch by inserting a break. */
5795 ir_loop_jump *const jump =
5796 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5797 instructions->push_tail(jump);
5798 } else {
5799 ir_loop_jump *const jump =
5800 new(ctx) ir_loop_jump((mode == ast_break)
5801 ? ir_loop_jump::jump_break
5802 : ir_loop_jump::jump_continue);
5803 instructions->push_tail(jump);
5804 }
5805 }
5806
5807 break;
5808 }
5809
5810 /* Jump instructions do not have r-values.
5811 */
5812 return NULL;
5813 }
5814
5815
5816 ir_rvalue *
5817 ast_selection_statement::hir(exec_list *instructions,
5818 struct _mesa_glsl_parse_state *state)
5819 {
5820 void *ctx = state;
5821
5822 ir_rvalue *const condition = this->condition->hir(instructions, state);
5823
5824 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5825 *
5826 * "Any expression whose type evaluates to a Boolean can be used as the
5827 * conditional expression bool-expression. Vector types are not accepted
5828 * as the expression to if."
5829 *
5830 * The checks are separated so that higher quality diagnostics can be
5831 * generated for cases where both rules are violated.
5832 */
5833 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5834 YYLTYPE loc = this->condition->get_location();
5835
5836 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5837 "boolean");
5838 }
5839
5840 ir_if *const stmt = new(ctx) ir_if(condition);
5841
5842 if (then_statement != NULL) {
5843 state->symbols->push_scope();
5844 then_statement->hir(& stmt->then_instructions, state);
5845 state->symbols->pop_scope();
5846 }
5847
5848 if (else_statement != NULL) {
5849 state->symbols->push_scope();
5850 else_statement->hir(& stmt->else_instructions, state);
5851 state->symbols->pop_scope();
5852 }
5853
5854 instructions->push_tail(stmt);
5855
5856 /* if-statements do not have r-values.
5857 */
5858 return NULL;
5859 }
5860
5861
5862 ir_rvalue *
5863 ast_switch_statement::hir(exec_list *instructions,
5864 struct _mesa_glsl_parse_state *state)
5865 {
5866 void *ctx = state;
5867
5868 ir_rvalue *const test_expression =
5869 this->test_expression->hir(instructions, state);
5870
5871 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5872 *
5873 * "The type of init-expression in a switch statement must be a
5874 * scalar integer."
5875 */
5876 if (!test_expression->type->is_scalar() ||
5877 !test_expression->type->is_integer()) {
5878 YYLTYPE loc = this->test_expression->get_location();
5879
5880 _mesa_glsl_error(& loc,
5881 state,
5882 "switch-statement expression must be scalar "
5883 "integer");
5884 }
5885
5886 /* Track the switch-statement nesting in a stack-like manner.
5887 */
5888 struct glsl_switch_state saved = state->switch_state;
5889
5890 state->switch_state.is_switch_innermost = true;
5891 state->switch_state.switch_nesting_ast = this;
5892 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5893 hash_table_pointer_compare);
5894 state->switch_state.previous_default = NULL;
5895
5896 /* Initalize is_fallthru state to false.
5897 */
5898 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5899 state->switch_state.is_fallthru_var =
5900 new(ctx) ir_variable(glsl_type::bool_type,
5901 "switch_is_fallthru_tmp",
5902 ir_var_temporary);
5903 instructions->push_tail(state->switch_state.is_fallthru_var);
5904
5905 ir_dereference_variable *deref_is_fallthru_var =
5906 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5907 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5908 is_fallthru_val));
5909
5910 /* Initialize continue_inside state to false.
5911 */
5912 state->switch_state.continue_inside =
5913 new(ctx) ir_variable(glsl_type::bool_type,
5914 "continue_inside_tmp",
5915 ir_var_temporary);
5916 instructions->push_tail(state->switch_state.continue_inside);
5917
5918 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5919 ir_dereference_variable *deref_continue_inside_var =
5920 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5921 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5922 false_val));
5923
5924 state->switch_state.run_default =
5925 new(ctx) ir_variable(glsl_type::bool_type,
5926 "run_default_tmp",
5927 ir_var_temporary);
5928 instructions->push_tail(state->switch_state.run_default);
5929
5930 /* Loop around the switch is used for flow control. */
5931 ir_loop * loop = new(ctx) ir_loop();
5932 instructions->push_tail(loop);
5933
5934 /* Cache test expression.
5935 */
5936 test_to_hir(&loop->body_instructions, state);
5937
5938 /* Emit code for body of switch stmt.
5939 */
5940 body->hir(&loop->body_instructions, state);
5941
5942 /* Insert a break at the end to exit loop. */
5943 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5944 loop->body_instructions.push_tail(jump);
5945
5946 /* If we are inside loop, check if continue got called inside switch. */
5947 if (state->loop_nesting_ast != NULL) {
5948 ir_dereference_variable *deref_continue_inside =
5949 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5950 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5951 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5952
5953 if (state->loop_nesting_ast != NULL) {
5954 if (state->loop_nesting_ast->rest_expression) {
5955 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5956 state);
5957 }
5958 if (state->loop_nesting_ast->mode ==
5959 ast_iteration_statement::ast_do_while) {
5960 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5961 }
5962 }
5963 irif->then_instructions.push_tail(jump);
5964 instructions->push_tail(irif);
5965 }
5966
5967 hash_table_dtor(state->switch_state.labels_ht);
5968
5969 state->switch_state = saved;
5970
5971 /* Switch statements do not have r-values. */
5972 return NULL;
5973 }
5974
5975
5976 void
5977 ast_switch_statement::test_to_hir(exec_list *instructions,
5978 struct _mesa_glsl_parse_state *state)
5979 {
5980 void *ctx = state;
5981
5982 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5983 * on the switch test case. The first one would be already raised when
5984 * getting the test_expression at ast_switch_statement::hir
5985 */
5986 test_expression->set_is_lhs(true);
5987 /* Cache value of test expression. */
5988 ir_rvalue *const test_val =
5989 test_expression->hir(instructions,
5990 state);
5991
5992 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5993 "switch_test_tmp",
5994 ir_var_temporary);
5995 ir_dereference_variable *deref_test_var =
5996 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5997
5998 instructions->push_tail(state->switch_state.test_var);
5999 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6000 }
6001
6002
6003 ir_rvalue *
6004 ast_switch_body::hir(exec_list *instructions,
6005 struct _mesa_glsl_parse_state *state)
6006 {
6007 if (stmts != NULL)
6008 stmts->hir(instructions, state);
6009
6010 /* Switch bodies do not have r-values. */
6011 return NULL;
6012 }
6013
6014 ir_rvalue *
6015 ast_case_statement_list::hir(exec_list *instructions,
6016 struct _mesa_glsl_parse_state *state)
6017 {
6018 exec_list default_case, after_default, tmp;
6019
6020 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6021 case_stmt->hir(&tmp, state);
6022
6023 /* Default case. */
6024 if (state->switch_state.previous_default && default_case.is_empty()) {
6025 default_case.append_list(&tmp);
6026 continue;
6027 }
6028
6029 /* If default case found, append 'after_default' list. */
6030 if (!default_case.is_empty())
6031 after_default.append_list(&tmp);
6032 else
6033 instructions->append_list(&tmp);
6034 }
6035
6036 /* Handle the default case. This is done here because default might not be
6037 * the last case. We need to add checks against following cases first to see
6038 * if default should be chosen or not.
6039 */
6040 if (!default_case.is_empty()) {
6041
6042 ir_rvalue *const true_val = new (state) ir_constant(true);
6043 ir_dereference_variable *deref_run_default_var =
6044 new(state) ir_dereference_variable(state->switch_state.run_default);
6045
6046 /* Choose to run default case initially, following conditional
6047 * assignments might change this.
6048 */
6049 ir_assignment *const init_var =
6050 new(state) ir_assignment(deref_run_default_var, true_val);
6051 instructions->push_tail(init_var);
6052
6053 /* Default case was the last one, no checks required. */
6054 if (after_default.is_empty()) {
6055 instructions->append_list(&default_case);
6056 return NULL;
6057 }
6058
6059 foreach_in_list(ir_instruction, ir, &after_default) {
6060 ir_assignment *assign = ir->as_assignment();
6061
6062 if (!assign)
6063 continue;
6064
6065 /* Clone the check between case label and init expression. */
6066 ir_expression *exp = (ir_expression*) assign->condition;
6067 ir_expression *clone = exp->clone(state, NULL);
6068
6069 ir_dereference_variable *deref_var =
6070 new(state) ir_dereference_variable(state->switch_state.run_default);
6071 ir_rvalue *const false_val = new (state) ir_constant(false);
6072
6073 ir_assignment *const set_false =
6074 new(state) ir_assignment(deref_var, false_val, clone);
6075
6076 instructions->push_tail(set_false);
6077 }
6078
6079 /* Append default case and all cases after it. */
6080 instructions->append_list(&default_case);
6081 instructions->append_list(&after_default);
6082 }
6083
6084 /* Case statements do not have r-values. */
6085 return NULL;
6086 }
6087
6088 ir_rvalue *
6089 ast_case_statement::hir(exec_list *instructions,
6090 struct _mesa_glsl_parse_state *state)
6091 {
6092 labels->hir(instructions, state);
6093
6094 /* Guard case statements depending on fallthru state. */
6095 ir_dereference_variable *const deref_fallthru_guard =
6096 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6097 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6098
6099 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6100 stmt->hir(& test_fallthru->then_instructions, state);
6101
6102 instructions->push_tail(test_fallthru);
6103
6104 /* Case statements do not have r-values. */
6105 return NULL;
6106 }
6107
6108
6109 ir_rvalue *
6110 ast_case_label_list::hir(exec_list *instructions,
6111 struct _mesa_glsl_parse_state *state)
6112 {
6113 foreach_list_typed (ast_case_label, label, link, & this->labels)
6114 label->hir(instructions, state);
6115
6116 /* Case labels do not have r-values. */
6117 return NULL;
6118 }
6119
6120 ir_rvalue *
6121 ast_case_label::hir(exec_list *instructions,
6122 struct _mesa_glsl_parse_state *state)
6123 {
6124 void *ctx = state;
6125
6126 ir_dereference_variable *deref_fallthru_var =
6127 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6128
6129 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6130
6131 /* If not default case, ... */
6132 if (this->test_value != NULL) {
6133 /* Conditionally set fallthru state based on
6134 * comparison of cached test expression value to case label.
6135 */
6136 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6137 ir_constant *label_const = label_rval->constant_expression_value();
6138
6139 if (!label_const) {
6140 YYLTYPE loc = this->test_value->get_location();
6141
6142 _mesa_glsl_error(& loc, state,
6143 "switch statement case label must be a "
6144 "constant expression");
6145
6146 /* Stuff a dummy value in to allow processing to continue. */
6147 label_const = new(ctx) ir_constant(0);
6148 } else {
6149 ast_expression *previous_label = (ast_expression *)
6150 hash_table_find(state->switch_state.labels_ht,
6151 (void *)(uintptr_t)label_const->value.u[0]);
6152
6153 if (previous_label) {
6154 YYLTYPE loc = this->test_value->get_location();
6155 _mesa_glsl_error(& loc, state, "duplicate case value");
6156
6157 loc = previous_label->get_location();
6158 _mesa_glsl_error(& loc, state, "this is the previous case label");
6159 } else {
6160 hash_table_insert(state->switch_state.labels_ht,
6161 this->test_value,
6162 (void *)(uintptr_t)label_const->value.u[0]);
6163 }
6164 }
6165
6166 ir_dereference_variable *deref_test_var =
6167 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6168
6169 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6170 label_const,
6171 deref_test_var);
6172
6173 /*
6174 * From GLSL 4.40 specification section 6.2 ("Selection"):
6175 *
6176 * "The type of the init-expression value in a switch statement must
6177 * be a scalar int or uint. The type of the constant-expression value
6178 * in a case label also must be a scalar int or uint. When any pair
6179 * of these values is tested for "equal value" and the types do not
6180 * match, an implicit conversion will be done to convert the int to a
6181 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6182 * is done."
6183 */
6184 if (label_const->type != state->switch_state.test_var->type) {
6185 YYLTYPE loc = this->test_value->get_location();
6186
6187 const glsl_type *type_a = label_const->type;
6188 const glsl_type *type_b = state->switch_state.test_var->type;
6189
6190 /* Check if int->uint implicit conversion is supported. */
6191 bool integer_conversion_supported =
6192 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6193 state);
6194
6195 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6196 !integer_conversion_supported) {
6197 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6198 "init-expression and case label (%s != %s)",
6199 type_a->name, type_b->name);
6200 } else {
6201 /* Conversion of the case label. */
6202 if (type_a->base_type == GLSL_TYPE_INT) {
6203 if (!apply_implicit_conversion(glsl_type::uint_type,
6204 test_cond->operands[0], state))
6205 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6206 } else {
6207 /* Conversion of the init-expression value. */
6208 if (!apply_implicit_conversion(glsl_type::uint_type,
6209 test_cond->operands[1], state))
6210 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6211 }
6212 }
6213 }
6214
6215 ir_assignment *set_fallthru_on_test =
6216 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6217
6218 instructions->push_tail(set_fallthru_on_test);
6219 } else { /* default case */
6220 if (state->switch_state.previous_default) {
6221 YYLTYPE loc = this->get_location();
6222 _mesa_glsl_error(& loc, state,
6223 "multiple default labels in one switch");
6224
6225 loc = state->switch_state.previous_default->get_location();
6226 _mesa_glsl_error(& loc, state, "this is the first default label");
6227 }
6228 state->switch_state.previous_default = this;
6229
6230 /* Set fallthru condition on 'run_default' bool. */
6231 ir_dereference_variable *deref_run_default =
6232 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6233 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6234 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6235 cond_true,
6236 deref_run_default);
6237
6238 /* Set falltrhu state. */
6239 ir_assignment *set_fallthru =
6240 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6241
6242 instructions->push_tail(set_fallthru);
6243 }
6244
6245 /* Case statements do not have r-values. */
6246 return NULL;
6247 }
6248
6249 void
6250 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6251 struct _mesa_glsl_parse_state *state)
6252 {
6253 void *ctx = state;
6254
6255 if (condition != NULL) {
6256 ir_rvalue *const cond =
6257 condition->hir(instructions, state);
6258
6259 if ((cond == NULL)
6260 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6261 YYLTYPE loc = condition->get_location();
6262
6263 _mesa_glsl_error(& loc, state,
6264 "loop condition must be scalar boolean");
6265 } else {
6266 /* As the first code in the loop body, generate a block that looks
6267 * like 'if (!condition) break;' as the loop termination condition.
6268 */
6269 ir_rvalue *const not_cond =
6270 new(ctx) ir_expression(ir_unop_logic_not, cond);
6271
6272 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6273
6274 ir_jump *const break_stmt =
6275 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6276
6277 if_stmt->then_instructions.push_tail(break_stmt);
6278 instructions->push_tail(if_stmt);
6279 }
6280 }
6281 }
6282
6283
6284 ir_rvalue *
6285 ast_iteration_statement::hir(exec_list *instructions,
6286 struct _mesa_glsl_parse_state *state)
6287 {
6288 void *ctx = state;
6289
6290 /* For-loops and while-loops start a new scope, but do-while loops do not.
6291 */
6292 if (mode != ast_do_while)
6293 state->symbols->push_scope();
6294
6295 if (init_statement != NULL)
6296 init_statement->hir(instructions, state);
6297
6298 ir_loop *const stmt = new(ctx) ir_loop();
6299 instructions->push_tail(stmt);
6300
6301 /* Track the current loop nesting. */
6302 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6303
6304 state->loop_nesting_ast = this;
6305
6306 /* Likewise, indicate that following code is closest to a loop,
6307 * NOT closest to a switch.
6308 */
6309 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6310 state->switch_state.is_switch_innermost = false;
6311
6312 if (mode != ast_do_while)
6313 condition_to_hir(&stmt->body_instructions, state);
6314
6315 if (body != NULL)
6316 body->hir(& stmt->body_instructions, state);
6317
6318 if (rest_expression != NULL)
6319 rest_expression->hir(& stmt->body_instructions, state);
6320
6321 if (mode == ast_do_while)
6322 condition_to_hir(&stmt->body_instructions, state);
6323
6324 if (mode != ast_do_while)
6325 state->symbols->pop_scope();
6326
6327 /* Restore previous nesting before returning. */
6328 state->loop_nesting_ast = nesting_ast;
6329 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6330
6331 /* Loops do not have r-values.
6332 */
6333 return NULL;
6334 }
6335
6336
6337 /**
6338 * Determine if the given type is valid for establishing a default precision
6339 * qualifier.
6340 *
6341 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6342 *
6343 * "The precision statement
6344 *
6345 * precision precision-qualifier type;
6346 *
6347 * can be used to establish a default precision qualifier. The type field
6348 * can be either int or float or any of the sampler types, and the
6349 * precision-qualifier can be lowp, mediump, or highp."
6350 *
6351 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6352 * qualifiers on sampler types, but this seems like an oversight (since the
6353 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6354 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6355 * version.
6356 */
6357 static bool
6358 is_valid_default_precision_type(const struct glsl_type *const type)
6359 {
6360 if (type == NULL)
6361 return false;
6362
6363 switch (type->base_type) {
6364 case GLSL_TYPE_INT:
6365 case GLSL_TYPE_FLOAT:
6366 /* "int" and "float" are valid, but vectors and matrices are not. */
6367 return type->vector_elements == 1 && type->matrix_columns == 1;
6368 case GLSL_TYPE_SAMPLER:
6369 case GLSL_TYPE_IMAGE:
6370 case GLSL_TYPE_ATOMIC_UINT:
6371 return true;
6372 default:
6373 return false;
6374 }
6375 }
6376
6377
6378 ir_rvalue *
6379 ast_type_specifier::hir(exec_list *instructions,
6380 struct _mesa_glsl_parse_state *state)
6381 {
6382 if (this->default_precision == ast_precision_none && this->structure == NULL)
6383 return NULL;
6384
6385 YYLTYPE loc = this->get_location();
6386
6387 /* If this is a precision statement, check that the type to which it is
6388 * applied is either float or int.
6389 *
6390 * From section 4.5.3 of the GLSL 1.30 spec:
6391 * "The precision statement
6392 * precision precision-qualifier type;
6393 * can be used to establish a default precision qualifier. The type
6394 * field can be either int or float [...]. Any other types or
6395 * qualifiers will result in an error.
6396 */
6397 if (this->default_precision != ast_precision_none) {
6398 if (!state->check_precision_qualifiers_allowed(&loc))
6399 return NULL;
6400
6401 if (this->structure != NULL) {
6402 _mesa_glsl_error(&loc, state,
6403 "precision qualifiers do not apply to structures");
6404 return NULL;
6405 }
6406
6407 if (this->array_specifier != NULL) {
6408 _mesa_glsl_error(&loc, state,
6409 "default precision statements do not apply to "
6410 "arrays");
6411 return NULL;
6412 }
6413
6414 const struct glsl_type *const type =
6415 state->symbols->get_type(this->type_name);
6416 if (!is_valid_default_precision_type(type)) {
6417 _mesa_glsl_error(&loc, state,
6418 "default precision statements apply only to "
6419 "float, int, and opaque types");
6420 return NULL;
6421 }
6422
6423 if (state->es_shader) {
6424 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6425 * spec says:
6426 *
6427 * "Non-precision qualified declarations will use the precision
6428 * qualifier specified in the most recent precision statement
6429 * that is still in scope. The precision statement has the same
6430 * scoping rules as variable declarations. If it is declared
6431 * inside a compound statement, its effect stops at the end of
6432 * the innermost statement it was declared in. Precision
6433 * statements in nested scopes override precision statements in
6434 * outer scopes. Multiple precision statements for the same basic
6435 * type can appear inside the same scope, with later statements
6436 * overriding earlier statements within that scope."
6437 *
6438 * Default precision specifications follow the same scope rules as
6439 * variables. So, we can track the state of the default precision
6440 * qualifiers in the symbol table, and the rules will just work. This
6441 * is a slight abuse of the symbol table, but it has the semantics
6442 * that we want.
6443 */
6444 state->symbols->add_default_precision_qualifier(this->type_name,
6445 this->default_precision);
6446 }
6447
6448 /* FINISHME: Translate precision statements into IR. */
6449 return NULL;
6450 }
6451
6452 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6453 * process_record_constructor() can do type-checking on C-style initializer
6454 * expressions of structs, but ast_struct_specifier should only be translated
6455 * to HIR if it is declaring the type of a structure.
6456 *
6457 * The ->is_declaration field is false for initializers of variables
6458 * declared separately from the struct's type definition.
6459 *
6460 * struct S { ... }; (is_declaration = true)
6461 * struct T { ... } t = { ... }; (is_declaration = true)
6462 * S s = { ... }; (is_declaration = false)
6463 */
6464 if (this->structure != NULL && this->structure->is_declaration)
6465 return this->structure->hir(instructions, state);
6466
6467 return NULL;
6468 }
6469
6470
6471 /**
6472 * Process a structure or interface block tree into an array of structure fields
6473 *
6474 * After parsing, where there are some syntax differnces, structures and
6475 * interface blocks are almost identical. They are similar enough that the
6476 * AST for each can be processed the same way into a set of
6477 * \c glsl_struct_field to describe the members.
6478 *
6479 * If we're processing an interface block, var_mode should be the type of the
6480 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6481 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6482 * ir_var_auto.
6483 *
6484 * \return
6485 * The number of fields processed. A pointer to the array structure fields is
6486 * stored in \c *fields_ret.
6487 */
6488 static unsigned
6489 ast_process_struct_or_iface_block_members(exec_list *instructions,
6490 struct _mesa_glsl_parse_state *state,
6491 exec_list *declarations,
6492 glsl_struct_field **fields_ret,
6493 bool is_interface,
6494 enum glsl_matrix_layout matrix_layout,
6495 bool allow_reserved_names,
6496 ir_variable_mode var_mode,
6497 ast_type_qualifier *layout,
6498 unsigned block_stream,
6499 unsigned block_xfb_buffer,
6500 unsigned block_xfb_offset,
6501 unsigned expl_location,
6502 unsigned expl_align)
6503 {
6504 unsigned decl_count = 0;
6505 unsigned next_offset = 0;
6506
6507 /* Make an initial pass over the list of fields to determine how
6508 * many there are. Each element in this list is an ast_declarator_list.
6509 * This means that we actually need to count the number of elements in the
6510 * 'declarations' list in each of the elements.
6511 */
6512 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6513 decl_count += decl_list->declarations.length();
6514 }
6515
6516 /* Allocate storage for the fields and process the field
6517 * declarations. As the declarations are processed, try to also convert
6518 * the types to HIR. This ensures that structure definitions embedded in
6519 * other structure definitions or in interface blocks are processed.
6520 */
6521 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6522 decl_count);
6523
6524 bool first_member = true;
6525 bool first_member_has_explicit_location = false;
6526
6527 unsigned i = 0;
6528 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6529 const char *type_name;
6530 YYLTYPE loc = decl_list->get_location();
6531
6532 decl_list->type->specifier->hir(instructions, state);
6533
6534 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6535 *
6536 * "Anonymous structures are not supported; so embedded structures
6537 * must have a declarator. A name given to an embedded struct is
6538 * scoped at the same level as the struct it is embedded in."
6539 *
6540 * The same section of the GLSL 1.20 spec says:
6541 *
6542 * "Anonymous structures are not supported. Embedded structures are
6543 * not supported."
6544 *
6545 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6546 * embedded structures in 1.10 only.
6547 */
6548 if (state->language_version != 110 &&
6549 decl_list->type->specifier->structure != NULL)
6550 _mesa_glsl_error(&loc, state,
6551 "embedded structure declarations are not allowed");
6552
6553 const glsl_type *decl_type =
6554 decl_list->type->glsl_type(& type_name, state);
6555
6556 const struct ast_type_qualifier *const qual =
6557 &decl_list->type->qualifier;
6558
6559 /* From section 4.3.9 of the GLSL 4.40 spec:
6560 *
6561 * "[In interface blocks] opaque types are not allowed."
6562 *
6563 * It should be impossible for decl_type to be NULL here. Cases that
6564 * might naturally lead to decl_type being NULL, especially for the
6565 * is_interface case, will have resulted in compilation having
6566 * already halted due to a syntax error.
6567 */
6568 assert(decl_type);
6569
6570 if (is_interface) {
6571 if (decl_type->contains_opaque()) {
6572 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6573 "interface block contains opaque variable");
6574 }
6575 } else {
6576 if (decl_type->contains_atomic()) {
6577 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6578 *
6579 * "Members of structures cannot be declared as atomic counter
6580 * types."
6581 */
6582 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6583 }
6584
6585 if (decl_type->contains_image()) {
6586 /* FINISHME: Same problem as with atomic counters.
6587 * FINISHME: Request clarification from Khronos and add
6588 * FINISHME: spec quotation here.
6589 */
6590 _mesa_glsl_error(&loc, state, "image in structure");
6591 }
6592 }
6593
6594 if (qual->flags.q.explicit_binding) {
6595 _mesa_glsl_error(&loc, state,
6596 "binding layout qualifier cannot be applied "
6597 "to struct or interface block members");
6598 }
6599
6600 if (is_interface) {
6601 if (!first_member) {
6602 if (!layout->flags.q.explicit_location &&
6603 ((first_member_has_explicit_location &&
6604 !qual->flags.q.explicit_location) ||
6605 (!first_member_has_explicit_location &&
6606 qual->flags.q.explicit_location))) {
6607 _mesa_glsl_error(&loc, state,
6608 "when block-level location layout qualifier "
6609 "is not supplied either all members must "
6610 "have a location layout qualifier or all "
6611 "members must not have a location layout "
6612 "qualifier");
6613 }
6614 } else {
6615 first_member = false;
6616 first_member_has_explicit_location =
6617 qual->flags.q.explicit_location;
6618 }
6619 }
6620
6621 if (qual->flags.q.std140 ||
6622 qual->flags.q.std430 ||
6623 qual->flags.q.packed ||
6624 qual->flags.q.shared) {
6625 _mesa_glsl_error(&loc, state,
6626 "uniform/shader storage block layout qualifiers "
6627 "std140, std430, packed, and shared can only be "
6628 "applied to uniform/shader storage blocks, not "
6629 "members");
6630 }
6631
6632 if (qual->flags.q.constant) {
6633 _mesa_glsl_error(&loc, state,
6634 "const storage qualifier cannot be applied "
6635 "to struct or interface block members");
6636 }
6637
6638 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6639 *
6640 * "A block member may be declared with a stream identifier, but
6641 * the specified stream must match the stream associated with the
6642 * containing block."
6643 */
6644 if (qual->flags.q.explicit_stream) {
6645 unsigned qual_stream;
6646 if (process_qualifier_constant(state, &loc, "stream",
6647 qual->stream, &qual_stream) &&
6648 qual_stream != block_stream) {
6649 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6650 "interface block member does not match "
6651 "the interface block (%u vs %u)", qual_stream,
6652 block_stream);
6653 }
6654 }
6655
6656 int xfb_buffer;
6657 unsigned explicit_xfb_buffer = 0;
6658 if (qual->flags.q.explicit_xfb_buffer) {
6659 unsigned qual_xfb_buffer;
6660 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6661 qual->xfb_buffer, &qual_xfb_buffer)) {
6662 explicit_xfb_buffer = 1;
6663 if (qual_xfb_buffer != block_xfb_buffer)
6664 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6665 "interface block member does not match "
6666 "the interface block (%u vs %u)",
6667 qual_xfb_buffer, block_xfb_buffer);
6668 }
6669 xfb_buffer = (int) qual_xfb_buffer;
6670 } else {
6671 if (layout)
6672 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6673 xfb_buffer = (int) block_xfb_buffer;
6674 }
6675
6676 int xfb_stride = -1;
6677 if (qual->flags.q.explicit_xfb_stride) {
6678 unsigned qual_xfb_stride;
6679 if (process_qualifier_constant(state, &loc, "xfb_stride",
6680 qual->xfb_stride, &qual_xfb_stride)) {
6681 xfb_stride = (int) qual_xfb_stride;
6682 }
6683 }
6684
6685 if (qual->flags.q.uniform && qual->has_interpolation()) {
6686 _mesa_glsl_error(&loc, state,
6687 "interpolation qualifiers cannot be used "
6688 "with uniform interface blocks");
6689 }
6690
6691 if ((qual->flags.q.uniform || !is_interface) &&
6692 qual->has_auxiliary_storage()) {
6693 _mesa_glsl_error(&loc, state,
6694 "auxiliary storage qualifiers cannot be used "
6695 "in uniform blocks or structures.");
6696 }
6697
6698 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6699 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6700 _mesa_glsl_error(&loc, state,
6701 "row_major and column_major can only be "
6702 "applied to interface blocks");
6703 } else
6704 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6705 }
6706
6707 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6708 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6709 "readonly and writeonly.");
6710 }
6711
6712 foreach_list_typed (ast_declaration, decl, link,
6713 &decl_list->declarations) {
6714 YYLTYPE loc = decl->get_location();
6715
6716 if (!allow_reserved_names)
6717 validate_identifier(decl->identifier, loc, state);
6718
6719 const struct glsl_type *field_type =
6720 process_array_type(&loc, decl_type, decl->array_specifier, state);
6721 validate_array_dimensions(field_type, state, &loc);
6722 fields[i].type = field_type;
6723 fields[i].name = decl->identifier;
6724 fields[i].interpolation =
6725 interpret_interpolation_qualifier(qual, field_type,
6726 var_mode, state, &loc);
6727 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6728 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6729 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6730 fields[i].precision = qual->precision;
6731 fields[i].offset = -1;
6732 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6733 fields[i].xfb_buffer = xfb_buffer;
6734 fields[i].xfb_stride = xfb_stride;
6735
6736 if (qual->flags.q.explicit_location) {
6737 unsigned qual_location;
6738 if (process_qualifier_constant(state, &loc, "location",
6739 qual->location, &qual_location)) {
6740 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6741 expl_location = fields[i].location +
6742 fields[i].type->count_attribute_slots(false);
6743 }
6744 } else {
6745 if (layout && layout->flags.q.explicit_location) {
6746 fields[i].location = expl_location;
6747 expl_location += fields[i].type->count_attribute_slots(false);
6748 } else {
6749 fields[i].location = -1;
6750 }
6751 }
6752
6753 /* Offset can only be used with std430 and std140 layouts an initial
6754 * value of 0 is used for error detection.
6755 */
6756 unsigned align = 0;
6757 unsigned size = 0;
6758 if (layout) {
6759 bool row_major;
6760 if (qual->flags.q.row_major ||
6761 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6762 row_major = true;
6763 } else {
6764 row_major = false;
6765 }
6766
6767 if(layout->flags.q.std140) {
6768 align = field_type->std140_base_alignment(row_major);
6769 size = field_type->std140_size(row_major);
6770 } else if (layout->flags.q.std430) {
6771 align = field_type->std430_base_alignment(row_major);
6772 size = field_type->std430_size(row_major);
6773 }
6774 }
6775
6776 if (qual->flags.q.explicit_offset) {
6777 unsigned qual_offset;
6778 if (process_qualifier_constant(state, &loc, "offset",
6779 qual->offset, &qual_offset)) {
6780 if (align != 0 && size != 0) {
6781 if (next_offset > qual_offset)
6782 _mesa_glsl_error(&loc, state, "layout qualifier "
6783 "offset overlaps previous member");
6784
6785 if (qual_offset % align) {
6786 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6787 "must be a multiple of the base "
6788 "alignment of %s", field_type->name);
6789 }
6790 fields[i].offset = qual_offset;
6791 next_offset = glsl_align(qual_offset + size, align);
6792 } else {
6793 _mesa_glsl_error(&loc, state, "offset can only be used "
6794 "with std430 and std140 layouts");
6795 }
6796 }
6797 }
6798
6799 if (qual->flags.q.explicit_align || expl_align != 0) {
6800 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6801 next_offset;
6802 if (align == 0 || size == 0) {
6803 _mesa_glsl_error(&loc, state, "align can only be used with "
6804 "std430 and std140 layouts");
6805 } else if (qual->flags.q.explicit_align) {
6806 unsigned member_align;
6807 if (process_qualifier_constant(state, &loc, "align",
6808 qual->align, &member_align)) {
6809 if (member_align == 0 ||
6810 member_align & (member_align - 1)) {
6811 _mesa_glsl_error(&loc, state, "align layout qualifier "
6812 "in not a power of 2");
6813 } else {
6814 fields[i].offset = glsl_align(offset, member_align);
6815 next_offset = glsl_align(fields[i].offset + size, align);
6816 }
6817 }
6818 } else {
6819 fields[i].offset = glsl_align(offset, expl_align);
6820 next_offset = glsl_align(fields[i].offset + size, align);
6821 }
6822 } else if (!qual->flags.q.explicit_offset) {
6823 if (align != 0 && size != 0)
6824 next_offset = glsl_align(next_offset + size, align);
6825 }
6826
6827 /* From the ARB_enhanced_layouts spec:
6828 *
6829 * "The given offset applies to the first component of the first
6830 * member of the qualified entity. Then, within the qualified
6831 * entity, subsequent components are each assigned, in order, to
6832 * the next available offset aligned to a multiple of that
6833 * component's size. Aggregate types are flattened down to the
6834 * component level to get this sequence of components."
6835 */
6836 if (qual->flags.q.explicit_xfb_offset) {
6837 unsigned xfb_offset;
6838 if (process_qualifier_constant(state, &loc, "xfb_offset",
6839 qual->offset, &xfb_offset)) {
6840 fields[i].offset = xfb_offset;
6841 block_xfb_offset = fields[i].offset +
6842 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6843 }
6844 } else {
6845 if (layout && layout->flags.q.explicit_xfb_offset) {
6846 unsigned align = field_type->is_64bit() ? 8 : 4;
6847 fields[i].offset = glsl_align(block_xfb_offset, align);
6848 block_xfb_offset +=
6849 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6850 }
6851 }
6852
6853 /* Propogate row- / column-major information down the fields of the
6854 * structure or interface block. Structures need this data because
6855 * the structure may contain a structure that contains ... a matrix
6856 * that need the proper layout.
6857 */
6858 if (is_interface && layout &&
6859 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6860 (field_type->without_array()->is_matrix()
6861 || field_type->without_array()->is_record())) {
6862 /* If no layout is specified for the field, inherit the layout
6863 * from the block.
6864 */
6865 fields[i].matrix_layout = matrix_layout;
6866
6867 if (qual->flags.q.row_major)
6868 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6869 else if (qual->flags.q.column_major)
6870 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6871
6872 /* If we're processing an uniform or buffer block, the matrix
6873 * layout must be decided by this point.
6874 */
6875 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6876 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6877 }
6878
6879 /* Image qualifiers are allowed on buffer variables, which can only
6880 * be defined inside shader storage buffer objects
6881 */
6882 if (layout && var_mode == ir_var_shader_storage) {
6883 /* For readonly and writeonly qualifiers the field definition,
6884 * if set, overwrites the layout qualifier.
6885 */
6886 if (qual->flags.q.read_only) {
6887 fields[i].image_read_only = true;
6888 fields[i].image_write_only = false;
6889 } else if (qual->flags.q.write_only) {
6890 fields[i].image_read_only = false;
6891 fields[i].image_write_only = true;
6892 } else {
6893 fields[i].image_read_only = layout->flags.q.read_only;
6894 fields[i].image_write_only = layout->flags.q.write_only;
6895 }
6896
6897 /* For other qualifiers, we set the flag if either the layout
6898 * qualifier or the field qualifier are set
6899 */
6900 fields[i].image_coherent = qual->flags.q.coherent ||
6901 layout->flags.q.coherent;
6902 fields[i].image_volatile = qual->flags.q._volatile ||
6903 layout->flags.q._volatile;
6904 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6905 layout->flags.q.restrict_flag;
6906 }
6907
6908 i++;
6909 }
6910 }
6911
6912 assert(i == decl_count);
6913
6914 *fields_ret = fields;
6915 return decl_count;
6916 }
6917
6918
6919 ir_rvalue *
6920 ast_struct_specifier::hir(exec_list *instructions,
6921 struct _mesa_glsl_parse_state *state)
6922 {
6923 YYLTYPE loc = this->get_location();
6924
6925 unsigned expl_location = 0;
6926 if (layout && layout->flags.q.explicit_location) {
6927 if (!process_qualifier_constant(state, &loc, "location",
6928 layout->location, &expl_location)) {
6929 return NULL;
6930 } else {
6931 expl_location = VARYING_SLOT_VAR0 + expl_location;
6932 }
6933 }
6934
6935 glsl_struct_field *fields;
6936 unsigned decl_count =
6937 ast_process_struct_or_iface_block_members(instructions,
6938 state,
6939 &this->declarations,
6940 &fields,
6941 false,
6942 GLSL_MATRIX_LAYOUT_INHERITED,
6943 false /* allow_reserved_names */,
6944 ir_var_auto,
6945 layout,
6946 0, /* for interface only */
6947 0, /* for interface only */
6948 0, /* for interface only */
6949 expl_location,
6950 0 /* for interface only */);
6951
6952 validate_identifier(this->name, loc, state);
6953
6954 const glsl_type *t =
6955 glsl_type::get_record_instance(fields, decl_count, this->name);
6956
6957 if (!state->symbols->add_type(name, t)) {
6958 const glsl_type *match = state->symbols->get_type(name);
6959 /* allow struct matching for desktop GL - older UE4 does this */
6960 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
6961 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
6962 else
6963 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6964 } else {
6965 const glsl_type **s = reralloc(state, state->user_structures,
6966 const glsl_type *,
6967 state->num_user_structures + 1);
6968 if (s != NULL) {
6969 s[state->num_user_structures] = t;
6970 state->user_structures = s;
6971 state->num_user_structures++;
6972 }
6973 }
6974
6975 /* Structure type definitions do not have r-values.
6976 */
6977 return NULL;
6978 }
6979
6980
6981 /**
6982 * Visitor class which detects whether a given interface block has been used.
6983 */
6984 class interface_block_usage_visitor : public ir_hierarchical_visitor
6985 {
6986 public:
6987 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6988 : mode(mode), block(block), found(false)
6989 {
6990 }
6991
6992 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6993 {
6994 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6995 found = true;
6996 return visit_stop;
6997 }
6998 return visit_continue;
6999 }
7000
7001 bool usage_found() const
7002 {
7003 return this->found;
7004 }
7005
7006 private:
7007 ir_variable_mode mode;
7008 const glsl_type *block;
7009 bool found;
7010 };
7011
7012 static bool
7013 is_unsized_array_last_element(ir_variable *v)
7014 {
7015 const glsl_type *interface_type = v->get_interface_type();
7016 int length = interface_type->length;
7017
7018 assert(v->type->is_unsized_array());
7019
7020 /* Check if it is the last element of the interface */
7021 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7022 return true;
7023 return false;
7024 }
7025
7026 static void
7027 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7028 {
7029 var->data.image_read_only = field.image_read_only;
7030 var->data.image_write_only = field.image_write_only;
7031 var->data.image_coherent = field.image_coherent;
7032 var->data.image_volatile = field.image_volatile;
7033 var->data.image_restrict = field.image_restrict;
7034 }
7035
7036 ir_rvalue *
7037 ast_interface_block::hir(exec_list *instructions,
7038 struct _mesa_glsl_parse_state *state)
7039 {
7040 YYLTYPE loc = this->get_location();
7041
7042 /* Interface blocks must be declared at global scope */
7043 if (state->current_function != NULL) {
7044 _mesa_glsl_error(&loc, state,
7045 "Interface block `%s' must be declared "
7046 "at global scope",
7047 this->block_name);
7048 }
7049
7050 if (!this->layout.flags.q.buffer &&
7051 this->layout.flags.q.std430) {
7052 _mesa_glsl_error(&loc, state,
7053 "std430 storage block layout qualifier is supported "
7054 "only for shader storage blocks");
7055 }
7056
7057 /* The ast_interface_block has a list of ast_declarator_lists. We
7058 * need to turn those into ir_variables with an association
7059 * with this uniform block.
7060 */
7061 enum glsl_interface_packing packing;
7062 if (this->layout.flags.q.shared) {
7063 packing = GLSL_INTERFACE_PACKING_SHARED;
7064 } else if (this->layout.flags.q.packed) {
7065 packing = GLSL_INTERFACE_PACKING_PACKED;
7066 } else if (this->layout.flags.q.std430) {
7067 packing = GLSL_INTERFACE_PACKING_STD430;
7068 } else {
7069 /* The default layout is std140.
7070 */
7071 packing = GLSL_INTERFACE_PACKING_STD140;
7072 }
7073
7074 ir_variable_mode var_mode;
7075 const char *iface_type_name;
7076 if (this->layout.flags.q.in) {
7077 var_mode = ir_var_shader_in;
7078 iface_type_name = "in";
7079 } else if (this->layout.flags.q.out) {
7080 var_mode = ir_var_shader_out;
7081 iface_type_name = "out";
7082 } else if (this->layout.flags.q.uniform) {
7083 var_mode = ir_var_uniform;
7084 iface_type_name = "uniform";
7085 } else if (this->layout.flags.q.buffer) {
7086 var_mode = ir_var_shader_storage;
7087 iface_type_name = "buffer";
7088 } else {
7089 var_mode = ir_var_auto;
7090 iface_type_name = "UNKNOWN";
7091 assert(!"interface block layout qualifier not found!");
7092 }
7093
7094 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7095 if (this->layout.flags.q.row_major)
7096 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7097 else if (this->layout.flags.q.column_major)
7098 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7099
7100 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7101 exec_list declared_variables;
7102 glsl_struct_field *fields;
7103
7104 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7105 * that we don't have incompatible qualifiers
7106 */
7107 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7108 _mesa_glsl_error(&loc, state,
7109 "Interface block sets both readonly and writeonly");
7110 }
7111
7112 if (this->layout.flags.q.explicit_component) {
7113 _mesa_glsl_error(&loc, state, "component layout qualifier cannot be "
7114 "applied to a matrix, a structure, a block, or an "
7115 "array containing any of these.");
7116 }
7117
7118 unsigned qual_stream;
7119 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7120 &qual_stream) ||
7121 !validate_stream_qualifier(&loc, state, qual_stream)) {
7122 /* If the stream qualifier is invalid it doesn't make sense to continue
7123 * on and try to compare stream layouts on member variables against it
7124 * so just return early.
7125 */
7126 return NULL;
7127 }
7128
7129 unsigned qual_xfb_buffer;
7130 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7131 layout.xfb_buffer, &qual_xfb_buffer) ||
7132 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7133 return NULL;
7134 }
7135
7136 unsigned qual_xfb_offset;
7137 if (layout.flags.q.explicit_xfb_offset) {
7138 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7139 layout.offset, &qual_xfb_offset)) {
7140 return NULL;
7141 }
7142 }
7143
7144 unsigned qual_xfb_stride;
7145 if (layout.flags.q.explicit_xfb_stride) {
7146 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7147 layout.xfb_stride, &qual_xfb_stride)) {
7148 return NULL;
7149 }
7150 }
7151
7152 unsigned expl_location = 0;
7153 if (layout.flags.q.explicit_location) {
7154 if (!process_qualifier_constant(state, &loc, "location",
7155 layout.location, &expl_location)) {
7156 return NULL;
7157 } else {
7158 expl_location = VARYING_SLOT_VAR0 + expl_location;
7159 }
7160 }
7161
7162 unsigned expl_align = 0;
7163 if (layout.flags.q.explicit_align) {
7164 if (!process_qualifier_constant(state, &loc, "align",
7165 layout.align, &expl_align)) {
7166 return NULL;
7167 } else {
7168 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7169 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7170 "power of 2.");
7171 return NULL;
7172 }
7173 }
7174 }
7175
7176 unsigned int num_variables =
7177 ast_process_struct_or_iface_block_members(&declared_variables,
7178 state,
7179 &this->declarations,
7180 &fields,
7181 true,
7182 matrix_layout,
7183 redeclaring_per_vertex,
7184 var_mode,
7185 &this->layout,
7186 qual_stream,
7187 qual_xfb_buffer,
7188 qual_xfb_offset,
7189 expl_location,
7190 expl_align);
7191
7192 if (!redeclaring_per_vertex) {
7193 validate_identifier(this->block_name, loc, state);
7194
7195 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7196 *
7197 * "Block names have no other use within a shader beyond interface
7198 * matching; it is a compile-time error to use a block name at global
7199 * scope for anything other than as a block name."
7200 */
7201 ir_variable *var = state->symbols->get_variable(this->block_name);
7202 if (var && !var->type->is_interface()) {
7203 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7204 "already used in the scope.",
7205 this->block_name);
7206 }
7207 }
7208
7209 const glsl_type *earlier_per_vertex = NULL;
7210 if (redeclaring_per_vertex) {
7211 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7212 * the named interface block gl_in, we can find it by looking at the
7213 * previous declaration of gl_in. Otherwise we can find it by looking
7214 * at the previous decalartion of any of the built-in outputs,
7215 * e.g. gl_Position.
7216 *
7217 * Also check that the instance name and array-ness of the redeclaration
7218 * are correct.
7219 */
7220 switch (var_mode) {
7221 case ir_var_shader_in:
7222 if (ir_variable *earlier_gl_in =
7223 state->symbols->get_variable("gl_in")) {
7224 earlier_per_vertex = earlier_gl_in->get_interface_type();
7225 } else {
7226 _mesa_glsl_error(&loc, state,
7227 "redeclaration of gl_PerVertex input not allowed "
7228 "in the %s shader",
7229 _mesa_shader_stage_to_string(state->stage));
7230 }
7231 if (this->instance_name == NULL ||
7232 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7233 !this->array_specifier->is_single_dimension()) {
7234 _mesa_glsl_error(&loc, state,
7235 "gl_PerVertex input must be redeclared as "
7236 "gl_in[]");
7237 }
7238 break;
7239 case ir_var_shader_out:
7240 if (ir_variable *earlier_gl_Position =
7241 state->symbols->get_variable("gl_Position")) {
7242 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7243 } else if (ir_variable *earlier_gl_out =
7244 state->symbols->get_variable("gl_out")) {
7245 earlier_per_vertex = earlier_gl_out->get_interface_type();
7246 } else {
7247 _mesa_glsl_error(&loc, state,
7248 "redeclaration of gl_PerVertex output not "
7249 "allowed in the %s shader",
7250 _mesa_shader_stage_to_string(state->stage));
7251 }
7252 if (state->stage == MESA_SHADER_TESS_CTRL) {
7253 if (this->instance_name == NULL ||
7254 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7255 _mesa_glsl_error(&loc, state,
7256 "gl_PerVertex output must be redeclared as "
7257 "gl_out[]");
7258 }
7259 } else {
7260 if (this->instance_name != NULL) {
7261 _mesa_glsl_error(&loc, state,
7262 "gl_PerVertex output may not be redeclared with "
7263 "an instance name");
7264 }
7265 }
7266 break;
7267 default:
7268 _mesa_glsl_error(&loc, state,
7269 "gl_PerVertex must be declared as an input or an "
7270 "output");
7271 break;
7272 }
7273
7274 if (earlier_per_vertex == NULL) {
7275 /* An error has already been reported. Bail out to avoid null
7276 * dereferences later in this function.
7277 */
7278 return NULL;
7279 }
7280
7281 /* Copy locations from the old gl_PerVertex interface block. */
7282 for (unsigned i = 0; i < num_variables; i++) {
7283 int j = earlier_per_vertex->field_index(fields[i].name);
7284 if (j == -1) {
7285 _mesa_glsl_error(&loc, state,
7286 "redeclaration of gl_PerVertex must be a subset "
7287 "of the built-in members of gl_PerVertex");
7288 } else {
7289 fields[i].location =
7290 earlier_per_vertex->fields.structure[j].location;
7291 fields[i].offset =
7292 earlier_per_vertex->fields.structure[j].offset;
7293 fields[i].interpolation =
7294 earlier_per_vertex->fields.structure[j].interpolation;
7295 fields[i].centroid =
7296 earlier_per_vertex->fields.structure[j].centroid;
7297 fields[i].sample =
7298 earlier_per_vertex->fields.structure[j].sample;
7299 fields[i].patch =
7300 earlier_per_vertex->fields.structure[j].patch;
7301 fields[i].precision =
7302 earlier_per_vertex->fields.structure[j].precision;
7303 fields[i].explicit_xfb_buffer =
7304 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7305 fields[i].xfb_buffer =
7306 earlier_per_vertex->fields.structure[j].xfb_buffer;
7307 fields[i].xfb_stride =
7308 earlier_per_vertex->fields.structure[j].xfb_stride;
7309 }
7310 }
7311
7312 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7313 * spec:
7314 *
7315 * If a built-in interface block is redeclared, it must appear in
7316 * the shader before any use of any member included in the built-in
7317 * declaration, or a compilation error will result.
7318 *
7319 * This appears to be a clarification to the behaviour established for
7320 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7321 * regardless of GLSL version.
7322 */
7323 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7324 v.run(instructions);
7325 if (v.usage_found()) {
7326 _mesa_glsl_error(&loc, state,
7327 "redeclaration of a built-in interface block must "
7328 "appear before any use of any member of the "
7329 "interface block");
7330 }
7331 }
7332
7333 const glsl_type *block_type =
7334 glsl_type::get_interface_instance(fields,
7335 num_variables,
7336 packing,
7337 this->block_name);
7338
7339 unsigned component_size = block_type->contains_double() ? 8 : 4;
7340 int xfb_offset =
7341 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7342 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7343 component_size);
7344
7345 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7346 YYLTYPE loc = this->get_location();
7347 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7348 "already taken in the current scope",
7349 this->block_name, iface_type_name);
7350 }
7351
7352 /* Since interface blocks cannot contain statements, it should be
7353 * impossible for the block to generate any instructions.
7354 */
7355 assert(declared_variables.is_empty());
7356
7357 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7358 *
7359 * Geometry shader input variables get the per-vertex values written
7360 * out by vertex shader output variables of the same names. Since a
7361 * geometry shader operates on a set of vertices, each input varying
7362 * variable (or input block, see interface blocks below) needs to be
7363 * declared as an array.
7364 */
7365 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7366 var_mode == ir_var_shader_in) {
7367 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7368 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7369 state->stage == MESA_SHADER_TESS_EVAL) &&
7370 this->array_specifier == NULL &&
7371 var_mode == ir_var_shader_in) {
7372 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7373 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7374 this->array_specifier == NULL &&
7375 var_mode == ir_var_shader_out) {
7376 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7377 }
7378
7379
7380 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7381 * says:
7382 *
7383 * "If an instance name (instance-name) is used, then it puts all the
7384 * members inside a scope within its own name space, accessed with the
7385 * field selector ( . ) operator (analogously to structures)."
7386 */
7387 if (this->instance_name) {
7388 if (redeclaring_per_vertex) {
7389 /* When a built-in in an unnamed interface block is redeclared,
7390 * get_variable_being_redeclared() calls
7391 * check_builtin_array_max_size() to make sure that built-in array
7392 * variables aren't redeclared to illegal sizes. But we're looking
7393 * at a redeclaration of a named built-in interface block. So we
7394 * have to manually call check_builtin_array_max_size() for all parts
7395 * of the interface that are arrays.
7396 */
7397 for (unsigned i = 0; i < num_variables; i++) {
7398 if (fields[i].type->is_array()) {
7399 const unsigned size = fields[i].type->array_size();
7400 check_builtin_array_max_size(fields[i].name, size, loc, state);
7401 }
7402 }
7403 } else {
7404 validate_identifier(this->instance_name, loc, state);
7405 }
7406
7407 ir_variable *var;
7408
7409 if (this->array_specifier != NULL) {
7410 const glsl_type *block_array_type =
7411 process_array_type(&loc, block_type, this->array_specifier, state);
7412
7413 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7414 *
7415 * For uniform blocks declared an array, each individual array
7416 * element corresponds to a separate buffer object backing one
7417 * instance of the block. As the array size indicates the number
7418 * of buffer objects needed, uniform block array declarations
7419 * must specify an array size.
7420 *
7421 * And a few paragraphs later:
7422 *
7423 * Geometry shader input blocks must be declared as arrays and
7424 * follow the array declaration and linking rules for all
7425 * geometry shader inputs. All other input and output block
7426 * arrays must specify an array size.
7427 *
7428 * The same applies to tessellation shaders.
7429 *
7430 * The upshot of this is that the only circumstance where an
7431 * interface array size *doesn't* need to be specified is on a
7432 * geometry shader input, tessellation control shader input,
7433 * tessellation control shader output, and tessellation evaluation
7434 * shader input.
7435 */
7436 if (block_array_type->is_unsized_array()) {
7437 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7438 state->stage == MESA_SHADER_TESS_CTRL ||
7439 state->stage == MESA_SHADER_TESS_EVAL;
7440 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7441
7442 if (this->layout.flags.q.in) {
7443 if (!allow_inputs)
7444 _mesa_glsl_error(&loc, state,
7445 "unsized input block arrays not allowed in "
7446 "%s shader",
7447 _mesa_shader_stage_to_string(state->stage));
7448 } else if (this->layout.flags.q.out) {
7449 if (!allow_outputs)
7450 _mesa_glsl_error(&loc, state,
7451 "unsized output block arrays not allowed in "
7452 "%s shader",
7453 _mesa_shader_stage_to_string(state->stage));
7454 } else {
7455 /* by elimination, this is a uniform block array */
7456 _mesa_glsl_error(&loc, state,
7457 "unsized uniform block arrays not allowed in "
7458 "%s shader",
7459 _mesa_shader_stage_to_string(state->stage));
7460 }
7461 }
7462
7463 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7464 *
7465 * * Arrays of arrays of blocks are not allowed
7466 */
7467 if (state->es_shader && block_array_type->is_array() &&
7468 block_array_type->fields.array->is_array()) {
7469 _mesa_glsl_error(&loc, state,
7470 "arrays of arrays interface blocks are "
7471 "not allowed");
7472 }
7473
7474 var = new(state) ir_variable(block_array_type,
7475 this->instance_name,
7476 var_mode);
7477 } else {
7478 var = new(state) ir_variable(block_type,
7479 this->instance_name,
7480 var_mode);
7481 }
7482
7483 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7484 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7485
7486 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7487 var->data.read_only = true;
7488
7489 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7490 handle_geometry_shader_input_decl(state, loc, var);
7491 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7492 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7493 handle_tess_shader_input_decl(state, loc, var);
7494 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7495 handle_tess_ctrl_shader_output_decl(state, loc, var);
7496
7497 for (unsigned i = 0; i < num_variables; i++) {
7498 if (var->data.mode == ir_var_shader_storage)
7499 apply_memory_qualifiers(var, fields[i]);
7500 }
7501
7502 if (ir_variable *earlier =
7503 state->symbols->get_variable(this->instance_name)) {
7504 if (!redeclaring_per_vertex) {
7505 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7506 this->instance_name);
7507 }
7508 earlier->data.how_declared = ir_var_declared_normally;
7509 earlier->type = var->type;
7510 earlier->reinit_interface_type(block_type);
7511 delete var;
7512 } else {
7513 if (this->layout.flags.q.explicit_binding) {
7514 apply_explicit_binding(state, &loc, var, var->type,
7515 &this->layout);
7516 }
7517
7518 var->data.stream = qual_stream;
7519 if (layout.flags.q.explicit_location) {
7520 var->data.location = expl_location;
7521 var->data.explicit_location = true;
7522 }
7523
7524 state->symbols->add_variable(var);
7525 instructions->push_tail(var);
7526 }
7527 } else {
7528 /* In order to have an array size, the block must also be declared with
7529 * an instance name.
7530 */
7531 assert(this->array_specifier == NULL);
7532
7533 for (unsigned i = 0; i < num_variables; i++) {
7534 ir_variable *var =
7535 new(state) ir_variable(fields[i].type,
7536 ralloc_strdup(state, fields[i].name),
7537 var_mode);
7538 var->data.interpolation = fields[i].interpolation;
7539 var->data.centroid = fields[i].centroid;
7540 var->data.sample = fields[i].sample;
7541 var->data.patch = fields[i].patch;
7542 var->data.stream = qual_stream;
7543 var->data.location = fields[i].location;
7544
7545 if (fields[i].location != -1)
7546 var->data.explicit_location = true;
7547
7548 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7549 var->data.xfb_buffer = fields[i].xfb_buffer;
7550
7551 if (fields[i].offset != -1)
7552 var->data.explicit_xfb_offset = true;
7553 var->data.offset = fields[i].offset;
7554
7555 var->init_interface_type(block_type);
7556
7557 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7558 var->data.read_only = true;
7559
7560 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7561 if (state->es_shader) {
7562 var->data.precision =
7563 select_gles_precision(fields[i].precision, fields[i].type,
7564 state, &loc);
7565 }
7566
7567 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7568 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7569 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7570 } else {
7571 var->data.matrix_layout = fields[i].matrix_layout;
7572 }
7573
7574 if (var->data.mode == ir_var_shader_storage)
7575 apply_memory_qualifiers(var, fields[i]);
7576
7577 /* Examine var name here since var may get deleted in the next call */
7578 bool var_is_gl_id = is_gl_identifier(var->name);
7579
7580 if (redeclaring_per_vertex) {
7581 ir_variable *earlier =
7582 get_variable_being_redeclared(var, loc, state,
7583 true /* allow_all_redeclarations */);
7584 if (!var_is_gl_id || earlier == NULL) {
7585 _mesa_glsl_error(&loc, state,
7586 "redeclaration of gl_PerVertex can only "
7587 "include built-in variables");
7588 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7589 _mesa_glsl_error(&loc, state,
7590 "`%s' has already been redeclared",
7591 earlier->name);
7592 } else {
7593 earlier->data.how_declared = ir_var_declared_in_block;
7594 earlier->reinit_interface_type(block_type);
7595 }
7596 continue;
7597 }
7598
7599 if (state->symbols->get_variable(var->name) != NULL)
7600 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7601
7602 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7603 * The UBO declaration itself doesn't get an ir_variable unless it
7604 * has an instance name. This is ugly.
7605 */
7606 if (this->layout.flags.q.explicit_binding) {
7607 apply_explicit_binding(state, &loc, var,
7608 var->get_interface_type(), &this->layout);
7609 }
7610
7611 if (var->type->is_unsized_array()) {
7612 if (var->is_in_shader_storage_block()) {
7613 if (is_unsized_array_last_element(var)) {
7614 var->data.from_ssbo_unsized_array = true;
7615 }
7616 } else {
7617 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7618 *
7619 * "If an array is declared as the last member of a shader storage
7620 * block and the size is not specified at compile-time, it is
7621 * sized at run-time. In all other cases, arrays are sized only
7622 * at compile-time."
7623 */
7624 if (state->es_shader) {
7625 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7626 "definition: only last member of a shader "
7627 "storage block can be defined as unsized "
7628 "array", fields[i].name);
7629 }
7630 }
7631 }
7632
7633 state->symbols->add_variable(var);
7634 instructions->push_tail(var);
7635 }
7636
7637 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7638 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7639 *
7640 * It is also a compilation error ... to redeclare a built-in
7641 * block and then use a member from that built-in block that was
7642 * not included in the redeclaration.
7643 *
7644 * This appears to be a clarification to the behaviour established
7645 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7646 * behaviour regardless of GLSL version.
7647 *
7648 * To prevent the shader from using a member that was not included in
7649 * the redeclaration, we disable any ir_variables that are still
7650 * associated with the old declaration of gl_PerVertex (since we've
7651 * already updated all of the variables contained in the new
7652 * gl_PerVertex to point to it).
7653 *
7654 * As a side effect this will prevent
7655 * validate_intrastage_interface_blocks() from getting confused and
7656 * thinking there are conflicting definitions of gl_PerVertex in the
7657 * shader.
7658 */
7659 foreach_in_list_safe(ir_instruction, node, instructions) {
7660 ir_variable *const var = node->as_variable();
7661 if (var != NULL &&
7662 var->get_interface_type() == earlier_per_vertex &&
7663 var->data.mode == var_mode) {
7664 if (var->data.how_declared == ir_var_declared_normally) {
7665 _mesa_glsl_error(&loc, state,
7666 "redeclaration of gl_PerVertex cannot "
7667 "follow a redeclaration of `%s'",
7668 var->name);
7669 }
7670 state->symbols->disable_variable(var->name);
7671 var->remove();
7672 }
7673 }
7674 }
7675 }
7676
7677 return NULL;
7678 }
7679
7680
7681 ir_rvalue *
7682 ast_tcs_output_layout::hir(exec_list *instructions,
7683 struct _mesa_glsl_parse_state *state)
7684 {
7685 YYLTYPE loc = this->get_location();
7686
7687 unsigned num_vertices;
7688 if (!state->out_qualifier->vertices->
7689 process_qualifier_constant(state, "vertices", &num_vertices,
7690 false)) {
7691 /* return here to stop cascading incorrect error messages */
7692 return NULL;
7693 }
7694
7695 /* If any shader outputs occurred before this declaration and specified an
7696 * array size, make sure the size they specified is consistent with the
7697 * primitive type.
7698 */
7699 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7700 _mesa_glsl_error(&loc, state,
7701 "this tessellation control shader output layout "
7702 "specifies %u vertices, but a previous output "
7703 "is declared with size %u",
7704 num_vertices, state->tcs_output_size);
7705 return NULL;
7706 }
7707
7708 state->tcs_output_vertices_specified = true;
7709
7710 /* If any shader outputs occurred before this declaration and did not
7711 * specify an array size, their size is determined now.
7712 */
7713 foreach_in_list (ir_instruction, node, instructions) {
7714 ir_variable *var = node->as_variable();
7715 if (var == NULL || var->data.mode != ir_var_shader_out)
7716 continue;
7717
7718 /* Note: Not all tessellation control shader output are arrays. */
7719 if (!var->type->is_unsized_array() || var->data.patch)
7720 continue;
7721
7722 if (var->data.max_array_access >= (int)num_vertices) {
7723 _mesa_glsl_error(&loc, state,
7724 "this tessellation control shader output layout "
7725 "specifies %u vertices, but an access to element "
7726 "%u of output `%s' already exists", num_vertices,
7727 var->data.max_array_access, var->name);
7728 } else {
7729 var->type = glsl_type::get_array_instance(var->type->fields.array,
7730 num_vertices);
7731 }
7732 }
7733
7734 return NULL;
7735 }
7736
7737
7738 ir_rvalue *
7739 ast_gs_input_layout::hir(exec_list *instructions,
7740 struct _mesa_glsl_parse_state *state)
7741 {
7742 YYLTYPE loc = this->get_location();
7743
7744 /* If any geometry input layout declaration preceded this one, make sure it
7745 * was consistent with this one.
7746 */
7747 if (state->gs_input_prim_type_specified &&
7748 state->in_qualifier->prim_type != this->prim_type) {
7749 _mesa_glsl_error(&loc, state,
7750 "geometry shader input layout does not match"
7751 " previous declaration");
7752 return NULL;
7753 }
7754
7755 /* If any shader inputs occurred before this declaration and specified an
7756 * array size, make sure the size they specified is consistent with the
7757 * primitive type.
7758 */
7759 unsigned num_vertices = vertices_per_prim(this->prim_type);
7760 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7761 _mesa_glsl_error(&loc, state,
7762 "this geometry shader input layout implies %u vertices"
7763 " per primitive, but a previous input is declared"
7764 " with size %u", num_vertices, state->gs_input_size);
7765 return NULL;
7766 }
7767
7768 state->gs_input_prim_type_specified = true;
7769
7770 /* If any shader inputs occurred before this declaration and did not
7771 * specify an array size, their size is determined now.
7772 */
7773 foreach_in_list(ir_instruction, node, instructions) {
7774 ir_variable *var = node->as_variable();
7775 if (var == NULL || var->data.mode != ir_var_shader_in)
7776 continue;
7777
7778 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7779 * array; skip it.
7780 */
7781
7782 if (var->type->is_unsized_array()) {
7783 if (var->data.max_array_access >= (int)num_vertices) {
7784 _mesa_glsl_error(&loc, state,
7785 "this geometry shader input layout implies %u"
7786 " vertices, but an access to element %u of input"
7787 " `%s' already exists", num_vertices,
7788 var->data.max_array_access, var->name);
7789 } else {
7790 var->type = glsl_type::get_array_instance(var->type->fields.array,
7791 num_vertices);
7792 }
7793 }
7794 }
7795
7796 return NULL;
7797 }
7798
7799
7800 ir_rvalue *
7801 ast_cs_input_layout::hir(exec_list *instructions,
7802 struct _mesa_glsl_parse_state *state)
7803 {
7804 YYLTYPE loc = this->get_location();
7805
7806 /* From the ARB_compute_shader specification:
7807 *
7808 * If the local size of the shader in any dimension is greater
7809 * than the maximum size supported by the implementation for that
7810 * dimension, a compile-time error results.
7811 *
7812 * It is not clear from the spec how the error should be reported if
7813 * the total size of the work group exceeds
7814 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7815 * report it at compile time as well.
7816 */
7817 GLuint64 total_invocations = 1;
7818 unsigned qual_local_size[3];
7819 for (int i = 0; i < 3; i++) {
7820
7821 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7822 'x' + i);
7823 /* Infer a local_size of 1 for unspecified dimensions */
7824 if (this->local_size[i] == NULL) {
7825 qual_local_size[i] = 1;
7826 } else if (!this->local_size[i]->
7827 process_qualifier_constant(state, local_size_str,
7828 &qual_local_size[i], false)) {
7829 ralloc_free(local_size_str);
7830 return NULL;
7831 }
7832 ralloc_free(local_size_str);
7833
7834 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7835 _mesa_glsl_error(&loc, state,
7836 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7837 " (%d)", 'x' + i,
7838 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7839 break;
7840 }
7841 total_invocations *= qual_local_size[i];
7842 if (total_invocations >
7843 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7844 _mesa_glsl_error(&loc, state,
7845 "product of local_sizes exceeds "
7846 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7847 state->ctx->Const.MaxComputeWorkGroupInvocations);
7848 break;
7849 }
7850 }
7851
7852 /* If any compute input layout declaration preceded this one, make sure it
7853 * was consistent with this one.
7854 */
7855 if (state->cs_input_local_size_specified) {
7856 for (int i = 0; i < 3; i++) {
7857 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7858 _mesa_glsl_error(&loc, state,
7859 "compute shader input layout does not match"
7860 " previous declaration");
7861 return NULL;
7862 }
7863 }
7864 }
7865
7866 state->cs_input_local_size_specified = true;
7867 for (int i = 0; i < 3; i++)
7868 state->cs_input_local_size[i] = qual_local_size[i];
7869
7870 /* We may now declare the built-in constant gl_WorkGroupSize (see
7871 * builtin_variable_generator::generate_constants() for why we didn't
7872 * declare it earlier).
7873 */
7874 ir_variable *var = new(state->symbols)
7875 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7876 var->data.how_declared = ir_var_declared_implicitly;
7877 var->data.read_only = true;
7878 instructions->push_tail(var);
7879 state->symbols->add_variable(var);
7880 ir_constant_data data;
7881 memset(&data, 0, sizeof(data));
7882 for (int i = 0; i < 3; i++)
7883 data.u[i] = qual_local_size[i];
7884 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7885 var->constant_initializer =
7886 new(var) ir_constant(glsl_type::uvec3_type, &data);
7887 var->data.has_initializer = true;
7888
7889 return NULL;
7890 }
7891
7892
7893 static void
7894 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7895 exec_list *instructions)
7896 {
7897 bool gl_FragColor_assigned = false;
7898 bool gl_FragData_assigned = false;
7899 bool gl_FragSecondaryColor_assigned = false;
7900 bool gl_FragSecondaryData_assigned = false;
7901 bool user_defined_fs_output_assigned = false;
7902 ir_variable *user_defined_fs_output = NULL;
7903
7904 /* It would be nice to have proper location information. */
7905 YYLTYPE loc;
7906 memset(&loc, 0, sizeof(loc));
7907
7908 foreach_in_list(ir_instruction, node, instructions) {
7909 ir_variable *var = node->as_variable();
7910
7911 if (!var || !var->data.assigned)
7912 continue;
7913
7914 if (strcmp(var->name, "gl_FragColor") == 0)
7915 gl_FragColor_assigned = true;
7916 else if (strcmp(var->name, "gl_FragData") == 0)
7917 gl_FragData_assigned = true;
7918 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7919 gl_FragSecondaryColor_assigned = true;
7920 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7921 gl_FragSecondaryData_assigned = true;
7922 else if (!is_gl_identifier(var->name)) {
7923 if (state->stage == MESA_SHADER_FRAGMENT &&
7924 var->data.mode == ir_var_shader_out) {
7925 user_defined_fs_output_assigned = true;
7926 user_defined_fs_output = var;
7927 }
7928 }
7929 }
7930
7931 /* From the GLSL 1.30 spec:
7932 *
7933 * "If a shader statically assigns a value to gl_FragColor, it
7934 * may not assign a value to any element of gl_FragData. If a
7935 * shader statically writes a value to any element of
7936 * gl_FragData, it may not assign a value to
7937 * gl_FragColor. That is, a shader may assign values to either
7938 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7939 * linked together must also consistently write just one of
7940 * these variables. Similarly, if user declared output
7941 * variables are in use (statically assigned to), then the
7942 * built-in variables gl_FragColor and gl_FragData may not be
7943 * assigned to. These incorrect usages all generate compile
7944 * time errors."
7945 */
7946 if (gl_FragColor_assigned && gl_FragData_assigned) {
7947 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7948 "`gl_FragColor' and `gl_FragData'");
7949 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7950 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7951 "`gl_FragColor' and `%s'",
7952 user_defined_fs_output->name);
7953 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7954 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7955 "`gl_FragSecondaryColorEXT' and"
7956 " `gl_FragSecondaryDataEXT'");
7957 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7958 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7959 "`gl_FragColor' and"
7960 " `gl_FragSecondaryDataEXT'");
7961 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7962 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7963 "`gl_FragData' and"
7964 " `gl_FragSecondaryColorEXT'");
7965 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7966 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7967 "`gl_FragData' and `%s'",
7968 user_defined_fs_output->name);
7969 }
7970
7971 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7972 !state->EXT_blend_func_extended_enable) {
7973 _mesa_glsl_error(&loc, state,
7974 "Dual source blending requires EXT_blend_func_extended");
7975 }
7976 }
7977
7978
7979 static void
7980 remove_per_vertex_blocks(exec_list *instructions,
7981 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7982 {
7983 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7984 * if it exists in this shader type.
7985 */
7986 const glsl_type *per_vertex = NULL;
7987 switch (mode) {
7988 case ir_var_shader_in:
7989 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7990 per_vertex = gl_in->get_interface_type();
7991 break;
7992 case ir_var_shader_out:
7993 if (ir_variable *gl_Position =
7994 state->symbols->get_variable("gl_Position")) {
7995 per_vertex = gl_Position->get_interface_type();
7996 }
7997 break;
7998 default:
7999 assert(!"Unexpected mode");
8000 break;
8001 }
8002
8003 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8004 * need to do anything.
8005 */
8006 if (per_vertex == NULL)
8007 return;
8008
8009 /* If the interface block is used by the shader, then we don't need to do
8010 * anything.
8011 */
8012 interface_block_usage_visitor v(mode, per_vertex);
8013 v.run(instructions);
8014 if (v.usage_found())
8015 return;
8016
8017 /* Remove any ir_variable declarations that refer to the interface block
8018 * we're removing.
8019 */
8020 foreach_in_list_safe(ir_instruction, node, instructions) {
8021 ir_variable *const var = node->as_variable();
8022 if (var != NULL && var->get_interface_type() == per_vertex &&
8023 var->data.mode == mode) {
8024 state->symbols->disable_variable(var->name);
8025 var->remove();
8026 }
8027 }
8028 }