glsl: fix subroutine uniform .length().
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* ESSL does not allow implicit conversions */
295 if (state->es_shader)
296 return false;
297
298 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
299 *
300 * "There are no implicit array or structure conversions. For
301 * example, an array of int cannot be implicitly converted to an
302 * array of float.
303 */
304 if (!to->is_numeric() || !from->type->is_numeric())
305 return false;
306
307 /* We don't actually want the specific type `to`, we want a type
308 * with the same base type as `to`, but the same vector width as
309 * `from`.
310 */
311 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
312 from->type->matrix_columns);
313
314 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
315 if (op) {
316 from = new(ctx) ir_expression(op, to, from, NULL);
317 return true;
318 } else {
319 return false;
320 }
321 }
322
323
324 static const struct glsl_type *
325 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
326 bool multiply,
327 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
328 {
329 const glsl_type *type_a = value_a->type;
330 const glsl_type *type_b = value_b->type;
331
332 /* From GLSL 1.50 spec, page 56:
333 *
334 * "The arithmetic binary operators add (+), subtract (-),
335 * multiply (*), and divide (/) operate on integer and
336 * floating-point scalars, vectors, and matrices."
337 */
338 if (!type_a->is_numeric() || !type_b->is_numeric()) {
339 _mesa_glsl_error(loc, state,
340 "operands to arithmetic operators must be numeric");
341 return glsl_type::error_type;
342 }
343
344
345 /* "If one operand is floating-point based and the other is
346 * not, then the conversions from Section 4.1.10 "Implicit
347 * Conversions" are applied to the non-floating-point-based operand."
348 */
349 if (!apply_implicit_conversion(type_a, value_b, state)
350 && !apply_implicit_conversion(type_b, value_a, state)) {
351 _mesa_glsl_error(loc, state,
352 "could not implicitly convert operands to "
353 "arithmetic operator");
354 return glsl_type::error_type;
355 }
356 type_a = value_a->type;
357 type_b = value_b->type;
358
359 /* "If the operands are integer types, they must both be signed or
360 * both be unsigned."
361 *
362 * From this rule and the preceeding conversion it can be inferred that
363 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
364 * The is_numeric check above already filtered out the case where either
365 * type is not one of these, so now the base types need only be tested for
366 * equality.
367 */
368 if (type_a->base_type != type_b->base_type) {
369 _mesa_glsl_error(loc, state,
370 "base type mismatch for arithmetic operator");
371 return glsl_type::error_type;
372 }
373
374 /* "All arithmetic binary operators result in the same fundamental type
375 * (signed integer, unsigned integer, or floating-point) as the
376 * operands they operate on, after operand type conversion. After
377 * conversion, the following cases are valid
378 *
379 * * The two operands are scalars. In this case the operation is
380 * applied, resulting in a scalar."
381 */
382 if (type_a->is_scalar() && type_b->is_scalar())
383 return type_a;
384
385 /* "* One operand is a scalar, and the other is a vector or matrix.
386 * In this case, the scalar operation is applied independently to each
387 * component of the vector or matrix, resulting in the same size
388 * vector or matrix."
389 */
390 if (type_a->is_scalar()) {
391 if (!type_b->is_scalar())
392 return type_b;
393 } else if (type_b->is_scalar()) {
394 return type_a;
395 }
396
397 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
398 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
399 * handled.
400 */
401 assert(!type_a->is_scalar());
402 assert(!type_b->is_scalar());
403
404 /* "* The two operands are vectors of the same size. In this case, the
405 * operation is done component-wise resulting in the same size
406 * vector."
407 */
408 if (type_a->is_vector() && type_b->is_vector()) {
409 if (type_a == type_b) {
410 return type_a;
411 } else {
412 _mesa_glsl_error(loc, state,
413 "vector size mismatch for arithmetic operator");
414 return glsl_type::error_type;
415 }
416 }
417
418 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
419 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
420 * <vector, vector> have been handled. At least one of the operands must
421 * be matrix. Further, since there are no integer matrix types, the base
422 * type of both operands must be float.
423 */
424 assert(type_a->is_matrix() || type_b->is_matrix());
425 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
426 type_a->base_type == GLSL_TYPE_DOUBLE);
427 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
428 type_b->base_type == GLSL_TYPE_DOUBLE);
429
430 /* "* The operator is add (+), subtract (-), or divide (/), and the
431 * operands are matrices with the same number of rows and the same
432 * number of columns. In this case, the operation is done component-
433 * wise resulting in the same size matrix."
434 * * The operator is multiply (*), where both operands are matrices or
435 * one operand is a vector and the other a matrix. A right vector
436 * operand is treated as a column vector and a left vector operand as a
437 * row vector. In all these cases, it is required that the number of
438 * columns of the left operand is equal to the number of rows of the
439 * right operand. Then, the multiply (*) operation does a linear
440 * algebraic multiply, yielding an object that has the same number of
441 * rows as the left operand and the same number of columns as the right
442 * operand. Section 5.10 "Vector and Matrix Operations" explains in
443 * more detail how vectors and matrices are operated on."
444 */
445 if (! multiply) {
446 if (type_a == type_b)
447 return type_a;
448 } else {
449 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
450
451 if (type == glsl_type::error_type) {
452 _mesa_glsl_error(loc, state,
453 "size mismatch for matrix multiplication");
454 }
455
456 return type;
457 }
458
459
460 /* "All other cases are illegal."
461 */
462 _mesa_glsl_error(loc, state, "type mismatch");
463 return glsl_type::error_type;
464 }
465
466
467 static const struct glsl_type *
468 unary_arithmetic_result_type(const struct glsl_type *type,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 /* From GLSL 1.50 spec, page 57:
472 *
473 * "The arithmetic unary operators negate (-), post- and pre-increment
474 * and decrement (-- and ++) operate on integer or floating-point
475 * values (including vectors and matrices). All unary operators work
476 * component-wise on their operands. These result with the same type
477 * they operated on."
478 */
479 if (!type->is_numeric()) {
480 _mesa_glsl_error(loc, state,
481 "operands to arithmetic operators must be numeric");
482 return glsl_type::error_type;
483 }
484
485 return type;
486 }
487
488 /**
489 * \brief Return the result type of a bit-logic operation.
490 *
491 * If the given types to the bit-logic operator are invalid, return
492 * glsl_type::error_type.
493 *
494 * \param value_a LHS of bit-logic op
495 * \param value_b RHS of bit-logic op
496 */
497 static const struct glsl_type *
498 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
499 ast_operators op,
500 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
501 {
502 const glsl_type *type_a = value_a->type;
503 const glsl_type *type_b = value_b->type;
504
505 if (!state->check_bitwise_operations_allowed(loc)) {
506 return glsl_type::error_type;
507 }
508
509 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
510 *
511 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
512 * (|). The operands must be of type signed or unsigned integers or
513 * integer vectors."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
517 ast_expression::operator_string(op));
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
522 ast_expression::operator_string(op));
523 return glsl_type::error_type;
524 }
525
526 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
527 * make sense for bitwise operations, as they don't operate on floats.
528 *
529 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
530 * here. It wasn't clear whether or not we should apply them to bitwise
531 * operations. However, Khronos has decided that they should in future
532 * language revisions. Applications also rely on this behavior. We opt
533 * to apply them in general, but issue a portability warning.
534 *
535 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
536 */
537 if (type_a->base_type != type_b->base_type) {
538 if (!apply_implicit_conversion(type_a, value_b, state)
539 && !apply_implicit_conversion(type_b, value_a, state)) {
540 _mesa_glsl_error(loc, state,
541 "could not implicitly convert operands to "
542 "`%s` operator",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 } else {
546 _mesa_glsl_warning(loc, state,
547 "some implementations may not support implicit "
548 "int -> uint conversions for `%s' operators; "
549 "consider casting explicitly for portability",
550 ast_expression::operator_string(op));
551 }
552 type_a = value_a->type;
553 type_b = value_b->type;
554 }
555
556 /* "The fundamental types of the operands (signed or unsigned) must
557 * match,"
558 */
559 if (type_a->base_type != type_b->base_type) {
560 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
561 "base type", ast_expression::operator_string(op));
562 return glsl_type::error_type;
563 }
564
565 /* "The operands cannot be vectors of differing size." */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
570 "different sizes", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If one operand is a scalar and the other a vector, the scalar is
575 * applied component-wise to the vector, resulting in the same type as
576 * the vector. The fundamental types of the operands [...] will be the
577 * resulting fundamental type."
578 */
579 if (type_a->is_scalar())
580 return type_b;
581 else
582 return type_a;
583 }
584
585 static const struct glsl_type *
586 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
587 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
588 {
589 const glsl_type *type_a = value_a->type;
590 const glsl_type *type_b = value_b->type;
591
592 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
593 return glsl_type::error_type;
594 }
595
596 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
597 *
598 * "The operator modulus (%) operates on signed or unsigned integers or
599 * integer vectors."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605 if (!type_b->is_integer()) {
606 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
607 return glsl_type::error_type;
608 }
609
610 /* "If the fundamental types in the operands do not match, then the
611 * conversions from section 4.1.10 "Implicit Conversions" are applied
612 * to create matching types."
613 *
614 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
615 * int -> uint conversion rules. Prior to that, there were no implicit
616 * conversions. So it's harmless to apply them universally - no implicit
617 * conversions will exist. If the types don't match, we'll receive false,
618 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
619 *
620 * "The operand types must both be signed or unsigned."
621 */
622 if (!apply_implicit_conversion(type_a, value_b, state) &&
623 !apply_implicit_conversion(type_b, value_a, state)) {
624 _mesa_glsl_error(loc, state,
625 "could not implicitly convert operands to "
626 "modulus (%%) operator");
627 return glsl_type::error_type;
628 }
629 type_a = value_a->type;
630 type_b = value_b->type;
631
632 /* "The operands cannot be vectors of differing size. If one operand is
633 * a scalar and the other vector, then the scalar is applied component-
634 * wise to the vector, resulting in the same type as the vector. If both
635 * are vectors of the same size, the result is computed component-wise."
636 */
637 if (type_a->is_vector()) {
638 if (!type_b->is_vector()
639 || (type_a->vector_elements == type_b->vector_elements))
640 return type_a;
641 } else
642 return type_b;
643
644 /* "The operator modulus (%) is not defined for any other data types
645 * (non-integer types)."
646 */
647 _mesa_glsl_error(loc, state, "type mismatch");
648 return glsl_type::error_type;
649 }
650
651
652 static const struct glsl_type *
653 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
654 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
655 {
656 const glsl_type *type_a = value_a->type;
657 const glsl_type *type_b = value_b->type;
658
659 /* From GLSL 1.50 spec, page 56:
660 * "The relational operators greater than (>), less than (<), greater
661 * than or equal (>=), and less than or equal (<=) operate only on
662 * scalar integer and scalar floating-point expressions."
663 */
664 if (!type_a->is_numeric()
665 || !type_b->is_numeric()
666 || !type_a->is_scalar()
667 || !type_b->is_scalar()) {
668 _mesa_glsl_error(loc, state,
669 "operands to relational operators must be scalar and "
670 "numeric");
671 return glsl_type::error_type;
672 }
673
674 /* "Either the operands' types must match, or the conversions from
675 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
676 * operand, after which the types must match."
677 */
678 if (!apply_implicit_conversion(type_a, value_b, state)
679 && !apply_implicit_conversion(type_b, value_a, state)) {
680 _mesa_glsl_error(loc, state,
681 "could not implicitly convert operands to "
682 "relational operator");
683 return glsl_type::error_type;
684 }
685 type_a = value_a->type;
686 type_b = value_b->type;
687
688 if (type_a->base_type != type_b->base_type) {
689 _mesa_glsl_error(loc, state, "base type mismatch");
690 return glsl_type::error_type;
691 }
692
693 /* "The result is scalar Boolean."
694 */
695 return glsl_type::bool_type;
696 }
697
698 /**
699 * \brief Return the result type of a bit-shift operation.
700 *
701 * If the given types to the bit-shift operator are invalid, return
702 * glsl_type::error_type.
703 *
704 * \param type_a Type of LHS of bit-shift op
705 * \param type_b Type of RHS of bit-shift op
706 */
707 static const struct glsl_type *
708 shift_result_type(const struct glsl_type *type_a,
709 const struct glsl_type *type_b,
710 ast_operators op,
711 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
712 {
713 if (!state->check_bitwise_operations_allowed(loc)) {
714 return glsl_type::error_type;
715 }
716
717 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
718 *
719 * "The shift operators (<<) and (>>). For both operators, the operands
720 * must be signed or unsigned integers or integer vectors. One operand
721 * can be signed while the other is unsigned."
722 */
723 if (!type_a->is_integer()) {
724 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
725 "integer vector", ast_expression::operator_string(op));
726 return glsl_type::error_type;
727
728 }
729 if (!type_b->is_integer()) {
730 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
731 "integer vector", ast_expression::operator_string(op));
732 return glsl_type::error_type;
733 }
734
735 /* "If the first operand is a scalar, the second operand has to be
736 * a scalar as well."
737 */
738 if (type_a->is_scalar() && !type_b->is_scalar()) {
739 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
740 "second must be scalar as well",
741 ast_expression::operator_string(op));
742 return glsl_type::error_type;
743 }
744
745 /* If both operands are vectors, check that they have same number of
746 * elements.
747 */
748 if (type_a->is_vector() &&
749 type_b->is_vector() &&
750 type_a->vector_elements != type_b->vector_elements) {
751 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
752 "have same number of elements",
753 ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "In all cases, the resulting type will be the same type as the left
758 * operand."
759 */
760 return type_a;
761 }
762
763 /**
764 * Returns the innermost array index expression in an rvalue tree.
765 * This is the largest indexing level -- if an array of blocks, then
766 * it is the block index rather than an indexing expression for an
767 * array-typed member of an array of blocks.
768 */
769 static ir_rvalue *
770 find_innermost_array_index(ir_rvalue *rv)
771 {
772 ir_dereference_array *last = NULL;
773 while (rv) {
774 if (rv->as_dereference_array()) {
775 last = rv->as_dereference_array();
776 rv = last->array;
777 } else if (rv->as_dereference_record())
778 rv = rv->as_dereference_record()->record;
779 else if (rv->as_swizzle())
780 rv = rv->as_swizzle()->val;
781 else
782 rv = NULL;
783 }
784
785 if (last)
786 return last->array_index;
787
788 return NULL;
789 }
790
791 /**
792 * Validates that a value can be assigned to a location with a specified type
793 *
794 * Validates that \c rhs can be assigned to some location. If the types are
795 * not an exact match but an automatic conversion is possible, \c rhs will be
796 * converted.
797 *
798 * \return
799 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
800 * Otherwise the actual RHS to be assigned will be returned. This may be
801 * \c rhs, or it may be \c rhs after some type conversion.
802 *
803 * \note
804 * In addition to being used for assignments, this function is used to
805 * type-check return values.
806 */
807 static ir_rvalue *
808 validate_assignment(struct _mesa_glsl_parse_state *state,
809 YYLTYPE loc, ir_rvalue *lhs,
810 ir_rvalue *rhs, bool is_initializer)
811 {
812 /* If there is already some error in the RHS, just return it. Anything
813 * else will lead to an avalanche of error message back to the user.
814 */
815 if (rhs->type->is_error())
816 return rhs;
817
818 /* In the Tessellation Control Shader:
819 * If a per-vertex output variable is used as an l-value, it is an error
820 * if the expression indicating the vertex number is not the identifier
821 * `gl_InvocationID`.
822 */
823 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
824 ir_variable *var = lhs->variable_referenced();
825 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
826 ir_rvalue *index = find_innermost_array_index(lhs);
827 ir_variable *index_var = index ? index->variable_referenced() : NULL;
828 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
829 _mesa_glsl_error(&loc, state,
830 "Tessellation control shader outputs can only "
831 "be indexed by gl_InvocationID");
832 return NULL;
833 }
834 }
835 }
836
837 /* If the types are identical, the assignment can trivially proceed.
838 */
839 if (rhs->type == lhs->type)
840 return rhs;
841
842 /* If the array element types are the same and the LHS is unsized,
843 * the assignment is okay for initializers embedded in variable
844 * declarations.
845 *
846 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
847 * is handled by ir_dereference::is_lvalue.
848 */
849 const glsl_type *lhs_t = lhs->type;
850 const glsl_type *rhs_t = rhs->type;
851 bool unsized_array = false;
852 while(lhs_t->is_array()) {
853 if (rhs_t == lhs_t)
854 break; /* the rest of the inner arrays match so break out early */
855 if (!rhs_t->is_array()) {
856 unsized_array = false;
857 break; /* number of dimensions mismatch */
858 }
859 if (lhs_t->length == rhs_t->length) {
860 lhs_t = lhs_t->fields.array;
861 rhs_t = rhs_t->fields.array;
862 continue;
863 } else if (lhs_t->is_unsized_array()) {
864 unsized_array = true;
865 } else {
866 unsized_array = false;
867 break; /* sized array mismatch */
868 }
869 lhs_t = lhs_t->fields.array;
870 rhs_t = rhs_t->fields.array;
871 }
872 if (unsized_array) {
873 if (is_initializer) {
874 return rhs;
875 } else {
876 _mesa_glsl_error(&loc, state,
877 "implicitly sized arrays cannot be assigned");
878 return NULL;
879 }
880 }
881
882 /* Check for implicit conversion in GLSL 1.20 */
883 if (apply_implicit_conversion(lhs->type, rhs, state)) {
884 if (rhs->type == lhs->type)
885 return rhs;
886 }
887
888 _mesa_glsl_error(&loc, state,
889 "%s of type %s cannot be assigned to "
890 "variable of type %s",
891 is_initializer ? "initializer" : "value",
892 rhs->type->name, lhs->type->name);
893
894 return NULL;
895 }
896
897 static void
898 mark_whole_array_access(ir_rvalue *access)
899 {
900 ir_dereference_variable *deref = access->as_dereference_variable();
901
902 if (deref && deref->var) {
903 deref->var->data.max_array_access = deref->type->length - 1;
904 }
905 }
906
907 static bool
908 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
909 const char *non_lvalue_description,
910 ir_rvalue *lhs, ir_rvalue *rhs,
911 ir_rvalue **out_rvalue, bool needs_rvalue,
912 bool is_initializer,
913 YYLTYPE lhs_loc)
914 {
915 void *ctx = state;
916 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
917
918 ir_variable *lhs_var = lhs->variable_referenced();
919 if (lhs_var)
920 lhs_var->data.assigned = true;
921
922 if (!error_emitted) {
923 if (non_lvalue_description != NULL) {
924 _mesa_glsl_error(&lhs_loc, state,
925 "assignment to %s",
926 non_lvalue_description);
927 error_emitted = true;
928 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
929 (lhs_var->data.mode == ir_var_shader_storage &&
930 lhs_var->data.image_read_only))) {
931 /* We can have image_read_only set on both images and buffer variables,
932 * but in the former there is a distinction between assignments to
933 * the variable itself (read_only) and to the memory they point to
934 * (image_read_only), while in the case of buffer variables there is
935 * no such distinction, that is why this check here is limited to
936 * buffer variables alone.
937 */
938 _mesa_glsl_error(&lhs_loc, state,
939 "assignment to read-only variable '%s'",
940 lhs_var->name);
941 error_emitted = true;
942 } else if (lhs->type->is_array() &&
943 !state->check_version(120, 300, &lhs_loc,
944 "whole array assignment forbidden")) {
945 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
946 *
947 * "Other binary or unary expressions, non-dereferenced
948 * arrays, function names, swizzles with repeated fields,
949 * and constants cannot be l-values."
950 *
951 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
952 */
953 error_emitted = true;
954 } else if (!lhs->is_lvalue()) {
955 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
956 error_emitted = true;
957 }
958 }
959
960 ir_rvalue *new_rhs =
961 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
962 if (new_rhs != NULL) {
963 rhs = new_rhs;
964
965 /* If the LHS array was not declared with a size, it takes it size from
966 * the RHS. If the LHS is an l-value and a whole array, it must be a
967 * dereference of a variable. Any other case would require that the LHS
968 * is either not an l-value or not a whole array.
969 */
970 if (lhs->type->is_unsized_array()) {
971 ir_dereference *const d = lhs->as_dereference();
972
973 assert(d != NULL);
974
975 ir_variable *const var = d->variable_referenced();
976
977 assert(var != NULL);
978
979 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
980 /* FINISHME: This should actually log the location of the RHS. */
981 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
982 "previous access",
983 var->data.max_array_access);
984 }
985
986 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
987 rhs->type->array_size());
988 d->type = var->type;
989 }
990 if (lhs->type->is_array()) {
991 mark_whole_array_access(rhs);
992 mark_whole_array_access(lhs);
993 }
994 }
995
996 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
997 * but not post_inc) need the converted assigned value as an rvalue
998 * to handle things like:
999 *
1000 * i = j += 1;
1001 */
1002 if (needs_rvalue) {
1003 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1004 ir_var_temporary);
1005 instructions->push_tail(var);
1006 instructions->push_tail(assign(var, rhs));
1007
1008 if (!error_emitted) {
1009 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1010 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1011 }
1012 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1013
1014 *out_rvalue = rvalue;
1015 } else {
1016 if (!error_emitted)
1017 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1018 *out_rvalue = NULL;
1019 }
1020
1021 return error_emitted;
1022 }
1023
1024 static ir_rvalue *
1025 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1026 {
1027 void *ctx = ralloc_parent(lvalue);
1028 ir_variable *var;
1029
1030 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1031 ir_var_temporary);
1032 instructions->push_tail(var);
1033
1034 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1035 lvalue));
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 ir_rvalue *
1042 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1043 {
1044 (void) instructions;
1045 (void) state;
1046
1047 return NULL;
1048 }
1049
1050 bool
1051 ast_node::has_sequence_subexpression() const
1052 {
1053 return false;
1054 }
1055
1056 void
1057 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1058 struct _mesa_glsl_parse_state *state)
1059 {
1060 (void)hir(instructions, state);
1061 }
1062
1063 void
1064 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1065 struct _mesa_glsl_parse_state *state)
1066 {
1067 (void)hir(instructions, state);
1068 }
1069
1070 static ir_rvalue *
1071 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1072 {
1073 int join_op;
1074 ir_rvalue *cmp = NULL;
1075
1076 if (operation == ir_binop_all_equal)
1077 join_op = ir_binop_logic_and;
1078 else
1079 join_op = ir_binop_logic_or;
1080
1081 switch (op0->type->base_type) {
1082 case GLSL_TYPE_FLOAT:
1083 case GLSL_TYPE_UINT:
1084 case GLSL_TYPE_INT:
1085 case GLSL_TYPE_BOOL:
1086 case GLSL_TYPE_DOUBLE:
1087 return new(mem_ctx) ir_expression(operation, op0, op1);
1088
1089 case GLSL_TYPE_ARRAY: {
1090 for (unsigned int i = 0; i < op0->type->length; i++) {
1091 ir_rvalue *e0, *e1, *result;
1092
1093 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1094 new(mem_ctx) ir_constant(i));
1095 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1096 new(mem_ctx) ir_constant(i));
1097 result = do_comparison(mem_ctx, operation, e0, e1);
1098
1099 if (cmp) {
1100 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1101 } else {
1102 cmp = result;
1103 }
1104 }
1105
1106 mark_whole_array_access(op0);
1107 mark_whole_array_access(op1);
1108 break;
1109 }
1110
1111 case GLSL_TYPE_STRUCT: {
1112 for (unsigned int i = 0; i < op0->type->length; i++) {
1113 ir_rvalue *e0, *e1, *result;
1114 const char *field_name = op0->type->fields.structure[i].name;
1115
1116 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1117 field_name);
1118 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1119 field_name);
1120 result = do_comparison(mem_ctx, operation, e0, e1);
1121
1122 if (cmp) {
1123 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1124 } else {
1125 cmp = result;
1126 }
1127 }
1128 break;
1129 }
1130
1131 case GLSL_TYPE_ERROR:
1132 case GLSL_TYPE_VOID:
1133 case GLSL_TYPE_SAMPLER:
1134 case GLSL_TYPE_IMAGE:
1135 case GLSL_TYPE_INTERFACE:
1136 case GLSL_TYPE_ATOMIC_UINT:
1137 case GLSL_TYPE_SUBROUTINE:
1138 case GLSL_TYPE_FUNCTION:
1139 /* I assume a comparison of a struct containing a sampler just
1140 * ignores the sampler present in the type.
1141 */
1142 break;
1143 }
1144
1145 if (cmp == NULL)
1146 cmp = new(mem_ctx) ir_constant(true);
1147
1148 return cmp;
1149 }
1150
1151 /* For logical operations, we want to ensure that the operands are
1152 * scalar booleans. If it isn't, emit an error and return a constant
1153 * boolean to avoid triggering cascading error messages.
1154 */
1155 ir_rvalue *
1156 get_scalar_boolean_operand(exec_list *instructions,
1157 struct _mesa_glsl_parse_state *state,
1158 ast_expression *parent_expr,
1159 int operand,
1160 const char *operand_name,
1161 bool *error_emitted)
1162 {
1163 ast_expression *expr = parent_expr->subexpressions[operand];
1164 void *ctx = state;
1165 ir_rvalue *val = expr->hir(instructions, state);
1166
1167 if (val->type->is_boolean() && val->type->is_scalar())
1168 return val;
1169
1170 if (!*error_emitted) {
1171 YYLTYPE loc = expr->get_location();
1172 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1173 operand_name,
1174 parent_expr->operator_string(parent_expr->oper));
1175 *error_emitted = true;
1176 }
1177
1178 return new(ctx) ir_constant(true);
1179 }
1180
1181 /**
1182 * If name refers to a builtin array whose maximum allowed size is less than
1183 * size, report an error and return true. Otherwise return false.
1184 */
1185 void
1186 check_builtin_array_max_size(const char *name, unsigned size,
1187 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1188 {
1189 if ((strcmp("gl_TexCoord", name) == 0)
1190 && (size > state->Const.MaxTextureCoords)) {
1191 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1192 *
1193 * "The size [of gl_TexCoord] can be at most
1194 * gl_MaxTextureCoords."
1195 */
1196 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1197 "be larger than gl_MaxTextureCoords (%u)",
1198 state->Const.MaxTextureCoords);
1199 } else if (strcmp("gl_ClipDistance", name) == 0) {
1200 state->clip_dist_size = size;
1201 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1202 /* From section 7.1 (Vertex Shader Special Variables) of the
1203 * GLSL 1.30 spec:
1204 *
1205 * "The gl_ClipDistance array is predeclared as unsized and
1206 * must be sized by the shader either redeclaring it with a
1207 * size or indexing it only with integral constant
1208 * expressions. ... The size can be at most
1209 * gl_MaxClipDistances."
1210 */
1211 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1212 "be larger than gl_MaxClipDistances (%u)",
1213 state->Const.MaxClipPlanes);
1214 }
1215 } else if (strcmp("gl_CullDistance", name) == 0) {
1216 state->cull_dist_size = size;
1217 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1218 /* From the ARB_cull_distance spec:
1219 *
1220 * "The gl_CullDistance array is predeclared as unsized and
1221 * must be sized by the shader either redeclaring it with
1222 * a size or indexing it only with integral constant
1223 * expressions. The size determines the number and set of
1224 * enabled cull distances and can be at most
1225 * gl_MaxCullDistances."
1226 */
1227 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1228 "be larger than gl_MaxCullDistances (%u)",
1229 state->Const.MaxClipPlanes);
1230 }
1231 }
1232 }
1233
1234 /**
1235 * Create the constant 1, of a which is appropriate for incrementing and
1236 * decrementing values of the given GLSL type. For example, if type is vec4,
1237 * this creates a constant value of 1.0 having type float.
1238 *
1239 * If the given type is invalid for increment and decrement operators, return
1240 * a floating point 1--the error will be detected later.
1241 */
1242 static ir_rvalue *
1243 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1244 {
1245 switch (type->base_type) {
1246 case GLSL_TYPE_UINT:
1247 return new(ctx) ir_constant((unsigned) 1);
1248 case GLSL_TYPE_INT:
1249 return new(ctx) ir_constant(1);
1250 default:
1251 case GLSL_TYPE_FLOAT:
1252 return new(ctx) ir_constant(1.0f);
1253 }
1254 }
1255
1256 ir_rvalue *
1257 ast_expression::hir(exec_list *instructions,
1258 struct _mesa_glsl_parse_state *state)
1259 {
1260 return do_hir(instructions, state, true);
1261 }
1262
1263 void
1264 ast_expression::hir_no_rvalue(exec_list *instructions,
1265 struct _mesa_glsl_parse_state *state)
1266 {
1267 do_hir(instructions, state, false);
1268 }
1269
1270 void
1271 ast_expression::set_is_lhs(bool new_value)
1272 {
1273 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1274 * if we lack a identifier we can just skip it.
1275 */
1276 if (this->primary_expression.identifier == NULL)
1277 return;
1278
1279 this->is_lhs = new_value;
1280
1281 /* We need to go through the subexpressions tree to cover cases like
1282 * ast_field_selection
1283 */
1284 if (this->subexpressions[0] != NULL)
1285 this->subexpressions[0]->set_is_lhs(new_value);
1286 }
1287
1288 ir_rvalue *
1289 ast_expression::do_hir(exec_list *instructions,
1290 struct _mesa_glsl_parse_state *state,
1291 bool needs_rvalue)
1292 {
1293 void *ctx = state;
1294 static const int operations[AST_NUM_OPERATORS] = {
1295 -1, /* ast_assign doesn't convert to ir_expression. */
1296 -1, /* ast_plus doesn't convert to ir_expression. */
1297 ir_unop_neg,
1298 ir_binop_add,
1299 ir_binop_sub,
1300 ir_binop_mul,
1301 ir_binop_div,
1302 ir_binop_mod,
1303 ir_binop_lshift,
1304 ir_binop_rshift,
1305 ir_binop_less,
1306 ir_binop_greater,
1307 ir_binop_lequal,
1308 ir_binop_gequal,
1309 ir_binop_all_equal,
1310 ir_binop_any_nequal,
1311 ir_binop_bit_and,
1312 ir_binop_bit_xor,
1313 ir_binop_bit_or,
1314 ir_unop_bit_not,
1315 ir_binop_logic_and,
1316 ir_binop_logic_xor,
1317 ir_binop_logic_or,
1318 ir_unop_logic_not,
1319
1320 /* Note: The following block of expression types actually convert
1321 * to multiple IR instructions.
1322 */
1323 ir_binop_mul, /* ast_mul_assign */
1324 ir_binop_div, /* ast_div_assign */
1325 ir_binop_mod, /* ast_mod_assign */
1326 ir_binop_add, /* ast_add_assign */
1327 ir_binop_sub, /* ast_sub_assign */
1328 ir_binop_lshift, /* ast_ls_assign */
1329 ir_binop_rshift, /* ast_rs_assign */
1330 ir_binop_bit_and, /* ast_and_assign */
1331 ir_binop_bit_xor, /* ast_xor_assign */
1332 ir_binop_bit_or, /* ast_or_assign */
1333
1334 -1, /* ast_conditional doesn't convert to ir_expression. */
1335 ir_binop_add, /* ast_pre_inc. */
1336 ir_binop_sub, /* ast_pre_dec. */
1337 ir_binop_add, /* ast_post_inc. */
1338 ir_binop_sub, /* ast_post_dec. */
1339 -1, /* ast_field_selection doesn't conv to ir_expression. */
1340 -1, /* ast_array_index doesn't convert to ir_expression. */
1341 -1, /* ast_function_call doesn't conv to ir_expression. */
1342 -1, /* ast_identifier doesn't convert to ir_expression. */
1343 -1, /* ast_int_constant doesn't convert to ir_expression. */
1344 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1345 -1, /* ast_float_constant doesn't conv to ir_expression. */
1346 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1347 -1, /* ast_sequence doesn't convert to ir_expression. */
1348 };
1349 ir_rvalue *result = NULL;
1350 ir_rvalue *op[3];
1351 const struct glsl_type *type; /* a temporary variable for switch cases */
1352 bool error_emitted = false;
1353 YYLTYPE loc;
1354
1355 loc = this->get_location();
1356
1357 switch (this->oper) {
1358 case ast_aggregate:
1359 assert(!"ast_aggregate: Should never get here.");
1360 break;
1361
1362 case ast_assign: {
1363 this->subexpressions[0]->set_is_lhs(true);
1364 op[0] = this->subexpressions[0]->hir(instructions, state);
1365 op[1] = this->subexpressions[1]->hir(instructions, state);
1366
1367 error_emitted =
1368 do_assignment(instructions, state,
1369 this->subexpressions[0]->non_lvalue_description,
1370 op[0], op[1], &result, needs_rvalue, false,
1371 this->subexpressions[0]->get_location());
1372 break;
1373 }
1374
1375 case ast_plus:
1376 op[0] = this->subexpressions[0]->hir(instructions, state);
1377
1378 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1379
1380 error_emitted = type->is_error();
1381
1382 result = op[0];
1383 break;
1384
1385 case ast_neg:
1386 op[0] = this->subexpressions[0]->hir(instructions, state);
1387
1388 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1389
1390 error_emitted = type->is_error();
1391
1392 result = new(ctx) ir_expression(operations[this->oper], type,
1393 op[0], NULL);
1394 break;
1395
1396 case ast_add:
1397 case ast_sub:
1398 case ast_mul:
1399 case ast_div:
1400 op[0] = this->subexpressions[0]->hir(instructions, state);
1401 op[1] = this->subexpressions[1]->hir(instructions, state);
1402
1403 type = arithmetic_result_type(op[0], op[1],
1404 (this->oper == ast_mul),
1405 state, & loc);
1406 error_emitted = type->is_error();
1407
1408 result = new(ctx) ir_expression(operations[this->oper], type,
1409 op[0], op[1]);
1410 break;
1411
1412 case ast_mod:
1413 op[0] = this->subexpressions[0]->hir(instructions, state);
1414 op[1] = this->subexpressions[1]->hir(instructions, state);
1415
1416 type = modulus_result_type(op[0], op[1], state, &loc);
1417
1418 assert(operations[this->oper] == ir_binop_mod);
1419
1420 result = new(ctx) ir_expression(operations[this->oper], type,
1421 op[0], op[1]);
1422 error_emitted = type->is_error();
1423 break;
1424
1425 case ast_lshift:
1426 case ast_rshift:
1427 if (!state->check_bitwise_operations_allowed(&loc)) {
1428 error_emitted = true;
1429 }
1430
1431 op[0] = this->subexpressions[0]->hir(instructions, state);
1432 op[1] = this->subexpressions[1]->hir(instructions, state);
1433 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1434 &loc);
1435 result = new(ctx) ir_expression(operations[this->oper], type,
1436 op[0], op[1]);
1437 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1438 break;
1439
1440 case ast_less:
1441 case ast_greater:
1442 case ast_lequal:
1443 case ast_gequal:
1444 op[0] = this->subexpressions[0]->hir(instructions, state);
1445 op[1] = this->subexpressions[1]->hir(instructions, state);
1446
1447 type = relational_result_type(op[0], op[1], state, & loc);
1448
1449 /* The relational operators must either generate an error or result
1450 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1451 */
1452 assert(type->is_error()
1453 || ((type->base_type == GLSL_TYPE_BOOL)
1454 && type->is_scalar()));
1455
1456 result = new(ctx) ir_expression(operations[this->oper], type,
1457 op[0], op[1]);
1458 error_emitted = type->is_error();
1459 break;
1460
1461 case ast_nequal:
1462 case ast_equal:
1463 op[0] = this->subexpressions[0]->hir(instructions, state);
1464 op[1] = this->subexpressions[1]->hir(instructions, state);
1465
1466 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1467 *
1468 * "The equality operators equal (==), and not equal (!=)
1469 * operate on all types. They result in a scalar Boolean. If
1470 * the operand types do not match, then there must be a
1471 * conversion from Section 4.1.10 "Implicit Conversions"
1472 * applied to one operand that can make them match, in which
1473 * case this conversion is done."
1474 */
1475
1476 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1477 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1478 "no operation `%1$s' exists that takes a left-hand "
1479 "operand of type 'void' or a right operand of type "
1480 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1481 error_emitted = true;
1482 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1483 && !apply_implicit_conversion(op[1]->type, op[0], state))
1484 || (op[0]->type != op[1]->type)) {
1485 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1486 "type", (this->oper == ast_equal) ? "==" : "!=");
1487 error_emitted = true;
1488 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1489 !state->check_version(120, 300, &loc,
1490 "array comparisons forbidden")) {
1491 error_emitted = true;
1492 } else if ((op[0]->type->contains_opaque() ||
1493 op[1]->type->contains_opaque())) {
1494 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1495 error_emitted = true;
1496 }
1497
1498 if (error_emitted) {
1499 result = new(ctx) ir_constant(false);
1500 } else {
1501 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1502 assert(result->type == glsl_type::bool_type);
1503 }
1504 break;
1505
1506 case ast_bit_and:
1507 case ast_bit_xor:
1508 case ast_bit_or:
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = this->subexpressions[1]->hir(instructions, state);
1511 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1512 result = new(ctx) ir_expression(operations[this->oper], type,
1513 op[0], op[1]);
1514 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1515 break;
1516
1517 case ast_bit_not:
1518 op[0] = this->subexpressions[0]->hir(instructions, state);
1519
1520 if (!state->check_bitwise_operations_allowed(&loc)) {
1521 error_emitted = true;
1522 }
1523
1524 if (!op[0]->type->is_integer()) {
1525 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1526 error_emitted = true;
1527 }
1528
1529 type = error_emitted ? glsl_type::error_type : op[0]->type;
1530 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1531 break;
1532
1533 case ast_logic_and: {
1534 exec_list rhs_instructions;
1535 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1536 "LHS", &error_emitted);
1537 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1538 "RHS", &error_emitted);
1539
1540 if (rhs_instructions.is_empty()) {
1541 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1542 type = result->type;
1543 } else {
1544 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1545 "and_tmp",
1546 ir_var_temporary);
1547 instructions->push_tail(tmp);
1548
1549 ir_if *const stmt = new(ctx) ir_if(op[0]);
1550 instructions->push_tail(stmt);
1551
1552 stmt->then_instructions.append_list(&rhs_instructions);
1553 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1554 ir_assignment *const then_assign =
1555 new(ctx) ir_assignment(then_deref, op[1]);
1556 stmt->then_instructions.push_tail(then_assign);
1557
1558 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1559 ir_assignment *const else_assign =
1560 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1561 stmt->else_instructions.push_tail(else_assign);
1562
1563 result = new(ctx) ir_dereference_variable(tmp);
1564 type = tmp->type;
1565 }
1566 break;
1567 }
1568
1569 case ast_logic_or: {
1570 exec_list rhs_instructions;
1571 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1572 "LHS", &error_emitted);
1573 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1574 "RHS", &error_emitted);
1575
1576 if (rhs_instructions.is_empty()) {
1577 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1578 type = result->type;
1579 } else {
1580 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1581 "or_tmp",
1582 ir_var_temporary);
1583 instructions->push_tail(tmp);
1584
1585 ir_if *const stmt = new(ctx) ir_if(op[0]);
1586 instructions->push_tail(stmt);
1587
1588 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1589 ir_assignment *const then_assign =
1590 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1591 stmt->then_instructions.push_tail(then_assign);
1592
1593 stmt->else_instructions.append_list(&rhs_instructions);
1594 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1595 ir_assignment *const else_assign =
1596 new(ctx) ir_assignment(else_deref, op[1]);
1597 stmt->else_instructions.push_tail(else_assign);
1598
1599 result = new(ctx) ir_dereference_variable(tmp);
1600 type = tmp->type;
1601 }
1602 break;
1603 }
1604
1605 case ast_logic_xor:
1606 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1607 *
1608 * "The logical binary operators and (&&), or ( | | ), and
1609 * exclusive or (^^). They operate only on two Boolean
1610 * expressions and result in a Boolean expression."
1611 */
1612 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1613 &error_emitted);
1614 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1615 &error_emitted);
1616
1617 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1618 op[0], op[1]);
1619 break;
1620
1621 case ast_logic_not:
1622 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1623 "operand", &error_emitted);
1624
1625 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1626 op[0], NULL);
1627 break;
1628
1629 case ast_mul_assign:
1630 case ast_div_assign:
1631 case ast_add_assign:
1632 case ast_sub_assign: {
1633 this->subexpressions[0]->set_is_lhs(true);
1634 op[0] = this->subexpressions[0]->hir(instructions, state);
1635 op[1] = this->subexpressions[1]->hir(instructions, state);
1636
1637 type = arithmetic_result_type(op[0], op[1],
1638 (this->oper == ast_mul_assign),
1639 state, & loc);
1640
1641 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1642 op[0], op[1]);
1643
1644 error_emitted =
1645 do_assignment(instructions, state,
1646 this->subexpressions[0]->non_lvalue_description,
1647 op[0]->clone(ctx, NULL), temp_rhs,
1648 &result, needs_rvalue, false,
1649 this->subexpressions[0]->get_location());
1650
1651 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1652 * explicitly test for this because none of the binary expression
1653 * operators allow array operands either.
1654 */
1655
1656 break;
1657 }
1658
1659 case ast_mod_assign: {
1660 this->subexpressions[0]->set_is_lhs(true);
1661 op[0] = this->subexpressions[0]->hir(instructions, state);
1662 op[1] = this->subexpressions[1]->hir(instructions, state);
1663
1664 type = modulus_result_type(op[0], op[1], state, &loc);
1665
1666 assert(operations[this->oper] == ir_binop_mod);
1667
1668 ir_rvalue *temp_rhs;
1669 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1670 op[0], op[1]);
1671
1672 error_emitted =
1673 do_assignment(instructions, state,
1674 this->subexpressions[0]->non_lvalue_description,
1675 op[0]->clone(ctx, NULL), temp_rhs,
1676 &result, needs_rvalue, false,
1677 this->subexpressions[0]->get_location());
1678 break;
1679 }
1680
1681 case ast_ls_assign:
1682 case ast_rs_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1687 &loc);
1688 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1689 type, op[0], op[1]);
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696 break;
1697 }
1698
1699 case ast_and_assign:
1700 case ast_xor_assign:
1701 case ast_or_assign: {
1702 this->subexpressions[0]->set_is_lhs(true);
1703 op[0] = this->subexpressions[0]->hir(instructions, state);
1704 op[1] = this->subexpressions[1]->hir(instructions, state);
1705 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1706 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1707 type, op[0], op[1]);
1708 error_emitted =
1709 do_assignment(instructions, state,
1710 this->subexpressions[0]->non_lvalue_description,
1711 op[0]->clone(ctx, NULL), temp_rhs,
1712 &result, needs_rvalue, false,
1713 this->subexpressions[0]->get_location());
1714 break;
1715 }
1716
1717 case ast_conditional: {
1718 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1719 *
1720 * "The ternary selection operator (?:). It operates on three
1721 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1722 * first expression, which must result in a scalar Boolean."
1723 */
1724 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1725 "condition", &error_emitted);
1726
1727 /* The :? operator is implemented by generating an anonymous temporary
1728 * followed by an if-statement. The last instruction in each branch of
1729 * the if-statement assigns a value to the anonymous temporary. This
1730 * temporary is the r-value of the expression.
1731 */
1732 exec_list then_instructions;
1733 exec_list else_instructions;
1734
1735 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1736 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1737
1738 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1739 *
1740 * "The second and third expressions can be any type, as
1741 * long their types match, or there is a conversion in
1742 * Section 4.1.10 "Implicit Conversions" that can be applied
1743 * to one of the expressions to make their types match. This
1744 * resulting matching type is the type of the entire
1745 * expression."
1746 */
1747 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1748 && !apply_implicit_conversion(op[2]->type, op[1], state))
1749 || (op[1]->type != op[2]->type)) {
1750 YYLTYPE loc = this->subexpressions[1]->get_location();
1751
1752 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1753 "operator must have matching types");
1754 error_emitted = true;
1755 type = glsl_type::error_type;
1756 } else {
1757 type = op[1]->type;
1758 }
1759
1760 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1761 *
1762 * "The second and third expressions must be the same type, but can
1763 * be of any type other than an array."
1764 */
1765 if (type->is_array() &&
1766 !state->check_version(120, 300, &loc,
1767 "second and third operands of ?: operator "
1768 "cannot be arrays")) {
1769 error_emitted = true;
1770 }
1771
1772 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1773 *
1774 * "Except for array indexing, structure member selection, and
1775 * parentheses, opaque variables are not allowed to be operands in
1776 * expressions; such use results in a compile-time error."
1777 */
1778 if (type->contains_opaque()) {
1779 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1780 "of the ?: operator");
1781 error_emitted = true;
1782 }
1783
1784 ir_constant *cond_val = op[0]->constant_expression_value();
1785
1786 if (then_instructions.is_empty()
1787 && else_instructions.is_empty()
1788 && cond_val != NULL) {
1789 result = cond_val->value.b[0] ? op[1] : op[2];
1790 } else {
1791 /* The copy to conditional_tmp reads the whole array. */
1792 if (type->is_array()) {
1793 mark_whole_array_access(op[1]);
1794 mark_whole_array_access(op[2]);
1795 }
1796
1797 ir_variable *const tmp =
1798 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1799 instructions->push_tail(tmp);
1800
1801 ir_if *const stmt = new(ctx) ir_if(op[0]);
1802 instructions->push_tail(stmt);
1803
1804 then_instructions.move_nodes_to(& stmt->then_instructions);
1805 ir_dereference *const then_deref =
1806 new(ctx) ir_dereference_variable(tmp);
1807 ir_assignment *const then_assign =
1808 new(ctx) ir_assignment(then_deref, op[1]);
1809 stmt->then_instructions.push_tail(then_assign);
1810
1811 else_instructions.move_nodes_to(& stmt->else_instructions);
1812 ir_dereference *const else_deref =
1813 new(ctx) ir_dereference_variable(tmp);
1814 ir_assignment *const else_assign =
1815 new(ctx) ir_assignment(else_deref, op[2]);
1816 stmt->else_instructions.push_tail(else_assign);
1817
1818 result = new(ctx) ir_dereference_variable(tmp);
1819 }
1820 break;
1821 }
1822
1823 case ast_pre_inc:
1824 case ast_pre_dec: {
1825 this->non_lvalue_description = (this->oper == ast_pre_inc)
1826 ? "pre-increment operation" : "pre-decrement operation";
1827
1828 op[0] = this->subexpressions[0]->hir(instructions, state);
1829 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1830
1831 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1832
1833 ir_rvalue *temp_rhs;
1834 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1835 op[0], op[1]);
1836
1837 error_emitted =
1838 do_assignment(instructions, state,
1839 this->subexpressions[0]->non_lvalue_description,
1840 op[0]->clone(ctx, NULL), temp_rhs,
1841 &result, needs_rvalue, false,
1842 this->subexpressions[0]->get_location());
1843 break;
1844 }
1845
1846 case ast_post_inc:
1847 case ast_post_dec: {
1848 this->non_lvalue_description = (this->oper == ast_post_inc)
1849 ? "post-increment operation" : "post-decrement operation";
1850 op[0] = this->subexpressions[0]->hir(instructions, state);
1851 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1852
1853 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1854
1855 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1856
1857 ir_rvalue *temp_rhs;
1858 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1859 op[0], op[1]);
1860
1861 /* Get a temporary of a copy of the lvalue before it's modified.
1862 * This may get thrown away later.
1863 */
1864 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1865
1866 ir_rvalue *junk_rvalue;
1867 error_emitted =
1868 do_assignment(instructions, state,
1869 this->subexpressions[0]->non_lvalue_description,
1870 op[0]->clone(ctx, NULL), temp_rhs,
1871 &junk_rvalue, false, false,
1872 this->subexpressions[0]->get_location());
1873
1874 break;
1875 }
1876
1877 case ast_field_selection:
1878 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1879 break;
1880
1881 case ast_array_index: {
1882 YYLTYPE index_loc = subexpressions[1]->get_location();
1883
1884 /* Getting if an array is being used uninitialized is beyond what we get
1885 * from ir_value.data.assigned. Setting is_lhs as true would force to
1886 * not raise a uninitialized warning when using an array
1887 */
1888 subexpressions[0]->set_is_lhs(true);
1889 op[0] = subexpressions[0]->hir(instructions, state);
1890 op[1] = subexpressions[1]->hir(instructions, state);
1891
1892 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1893 loc, index_loc);
1894
1895 if (result->type->is_error())
1896 error_emitted = true;
1897
1898 break;
1899 }
1900
1901 case ast_unsized_array_dim:
1902 assert(!"ast_unsized_array_dim: Should never get here.");
1903 break;
1904
1905 case ast_function_call:
1906 /* Should *NEVER* get here. ast_function_call should always be handled
1907 * by ast_function_expression::hir.
1908 */
1909 assert(0);
1910 break;
1911
1912 case ast_identifier: {
1913 /* ast_identifier can appear several places in a full abstract syntax
1914 * tree. This particular use must be at location specified in the grammar
1915 * as 'variable_identifier'.
1916 */
1917 ir_variable *var =
1918 state->symbols->get_variable(this->primary_expression.identifier);
1919
1920 if (var == NULL) {
1921 /* the identifier might be a subroutine name */
1922 char *sub_name;
1923 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1924 var = state->symbols->get_variable(sub_name);
1925 ralloc_free(sub_name);
1926 }
1927
1928 if (var != NULL) {
1929 var->data.used = true;
1930 result = new(ctx) ir_dereference_variable(var);
1931
1932 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1933 && !this->is_lhs
1934 && result->variable_referenced()->data.assigned != true
1935 && !is_gl_identifier(var->name)) {
1936 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1937 this->primary_expression.identifier);
1938 }
1939 } else {
1940 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1941 this->primary_expression.identifier);
1942
1943 result = ir_rvalue::error_value(ctx);
1944 error_emitted = true;
1945 }
1946 break;
1947 }
1948
1949 case ast_int_constant:
1950 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1951 break;
1952
1953 case ast_uint_constant:
1954 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1955 break;
1956
1957 case ast_float_constant:
1958 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1959 break;
1960
1961 case ast_bool_constant:
1962 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1963 break;
1964
1965 case ast_double_constant:
1966 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1967 break;
1968
1969 case ast_sequence: {
1970 /* It should not be possible to generate a sequence in the AST without
1971 * any expressions in it.
1972 */
1973 assert(!this->expressions.is_empty());
1974
1975 /* The r-value of a sequence is the last expression in the sequence. If
1976 * the other expressions in the sequence do not have side-effects (and
1977 * therefore add instructions to the instruction list), they get dropped
1978 * on the floor.
1979 */
1980 exec_node *previous_tail_pred = NULL;
1981 YYLTYPE previous_operand_loc = loc;
1982
1983 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1984 /* If one of the operands of comma operator does not generate any
1985 * code, we want to emit a warning. At each pass through the loop
1986 * previous_tail_pred will point to the last instruction in the
1987 * stream *before* processing the previous operand. Naturally,
1988 * instructions->tail_pred will point to the last instruction in the
1989 * stream *after* processing the previous operand. If the two
1990 * pointers match, then the previous operand had no effect.
1991 *
1992 * The warning behavior here differs slightly from GCC. GCC will
1993 * only emit a warning if none of the left-hand operands have an
1994 * effect. However, it will emit a warning for each. I believe that
1995 * there are some cases in C (especially with GCC extensions) where
1996 * it is useful to have an intermediate step in a sequence have no
1997 * effect, but I don't think these cases exist in GLSL. Either way,
1998 * it would be a giant hassle to replicate that behavior.
1999 */
2000 if (previous_tail_pred == instructions->tail_pred) {
2001 _mesa_glsl_warning(&previous_operand_loc, state,
2002 "left-hand operand of comma expression has "
2003 "no effect");
2004 }
2005
2006 /* tail_pred is directly accessed instead of using the get_tail()
2007 * method for performance reasons. get_tail() has extra code to
2008 * return NULL when the list is empty. We don't care about that
2009 * here, so using tail_pred directly is fine.
2010 */
2011 previous_tail_pred = instructions->tail_pred;
2012 previous_operand_loc = ast->get_location();
2013
2014 result = ast->hir(instructions, state);
2015 }
2016
2017 /* Any errors should have already been emitted in the loop above.
2018 */
2019 error_emitted = true;
2020 break;
2021 }
2022 }
2023 type = NULL; /* use result->type, not type. */
2024 assert(result != NULL || !needs_rvalue);
2025
2026 if (result && result->type->is_error() && !error_emitted)
2027 _mesa_glsl_error(& loc, state, "type mismatch");
2028
2029 return result;
2030 }
2031
2032 bool
2033 ast_expression::has_sequence_subexpression() const
2034 {
2035 switch (this->oper) {
2036 case ast_plus:
2037 case ast_neg:
2038 case ast_bit_not:
2039 case ast_logic_not:
2040 case ast_pre_inc:
2041 case ast_pre_dec:
2042 case ast_post_inc:
2043 case ast_post_dec:
2044 return this->subexpressions[0]->has_sequence_subexpression();
2045
2046 case ast_assign:
2047 case ast_add:
2048 case ast_sub:
2049 case ast_mul:
2050 case ast_div:
2051 case ast_mod:
2052 case ast_lshift:
2053 case ast_rshift:
2054 case ast_less:
2055 case ast_greater:
2056 case ast_lequal:
2057 case ast_gequal:
2058 case ast_nequal:
2059 case ast_equal:
2060 case ast_bit_and:
2061 case ast_bit_xor:
2062 case ast_bit_or:
2063 case ast_logic_and:
2064 case ast_logic_or:
2065 case ast_logic_xor:
2066 case ast_array_index:
2067 case ast_mul_assign:
2068 case ast_div_assign:
2069 case ast_add_assign:
2070 case ast_sub_assign:
2071 case ast_mod_assign:
2072 case ast_ls_assign:
2073 case ast_rs_assign:
2074 case ast_and_assign:
2075 case ast_xor_assign:
2076 case ast_or_assign:
2077 return this->subexpressions[0]->has_sequence_subexpression() ||
2078 this->subexpressions[1]->has_sequence_subexpression();
2079
2080 case ast_conditional:
2081 return this->subexpressions[0]->has_sequence_subexpression() ||
2082 this->subexpressions[1]->has_sequence_subexpression() ||
2083 this->subexpressions[2]->has_sequence_subexpression();
2084
2085 case ast_sequence:
2086 return true;
2087
2088 case ast_field_selection:
2089 case ast_identifier:
2090 case ast_int_constant:
2091 case ast_uint_constant:
2092 case ast_float_constant:
2093 case ast_bool_constant:
2094 case ast_double_constant:
2095 return false;
2096
2097 case ast_aggregate:
2098 unreachable("ast_aggregate: Should never get here.");
2099
2100 case ast_function_call:
2101 unreachable("should be handled by ast_function_expression::hir");
2102
2103 case ast_unsized_array_dim:
2104 unreachable("ast_unsized_array_dim: Should never get here.");
2105 }
2106
2107 return false;
2108 }
2109
2110 ir_rvalue *
2111 ast_expression_statement::hir(exec_list *instructions,
2112 struct _mesa_glsl_parse_state *state)
2113 {
2114 /* It is possible to have expression statements that don't have an
2115 * expression. This is the solitary semicolon:
2116 *
2117 * for (i = 0; i < 5; i++)
2118 * ;
2119 *
2120 * In this case the expression will be NULL. Test for NULL and don't do
2121 * anything in that case.
2122 */
2123 if (expression != NULL)
2124 expression->hir_no_rvalue(instructions, state);
2125
2126 /* Statements do not have r-values.
2127 */
2128 return NULL;
2129 }
2130
2131
2132 ir_rvalue *
2133 ast_compound_statement::hir(exec_list *instructions,
2134 struct _mesa_glsl_parse_state *state)
2135 {
2136 if (new_scope)
2137 state->symbols->push_scope();
2138
2139 foreach_list_typed (ast_node, ast, link, &this->statements)
2140 ast->hir(instructions, state);
2141
2142 if (new_scope)
2143 state->symbols->pop_scope();
2144
2145 /* Compound statements do not have r-values.
2146 */
2147 return NULL;
2148 }
2149
2150 /**
2151 * Evaluate the given exec_node (which should be an ast_node representing
2152 * a single array dimension) and return its integer value.
2153 */
2154 static unsigned
2155 process_array_size(exec_node *node,
2156 struct _mesa_glsl_parse_state *state)
2157 {
2158 exec_list dummy_instructions;
2159
2160 ast_node *array_size = exec_node_data(ast_node, node, link);
2161
2162 /**
2163 * Dimensions other than the outermost dimension can by unsized if they
2164 * are immediately sized by a constructor or initializer.
2165 */
2166 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2167 return 0;
2168
2169 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2170 YYLTYPE loc = array_size->get_location();
2171
2172 if (ir == NULL) {
2173 _mesa_glsl_error(& loc, state,
2174 "array size could not be resolved");
2175 return 0;
2176 }
2177
2178 if (!ir->type->is_integer()) {
2179 _mesa_glsl_error(& loc, state,
2180 "array size must be integer type");
2181 return 0;
2182 }
2183
2184 if (!ir->type->is_scalar()) {
2185 _mesa_glsl_error(& loc, state,
2186 "array size must be scalar type");
2187 return 0;
2188 }
2189
2190 ir_constant *const size = ir->constant_expression_value();
2191 if (size == NULL ||
2192 (state->is_version(120, 300) &&
2193 array_size->has_sequence_subexpression())) {
2194 _mesa_glsl_error(& loc, state, "array size must be a "
2195 "constant valued expression");
2196 return 0;
2197 }
2198
2199 if (size->value.i[0] <= 0) {
2200 _mesa_glsl_error(& loc, state, "array size must be > 0");
2201 return 0;
2202 }
2203
2204 assert(size->type == ir->type);
2205
2206 /* If the array size is const (and we've verified that
2207 * it is) then no instructions should have been emitted
2208 * when we converted it to HIR. If they were emitted,
2209 * then either the array size isn't const after all, or
2210 * we are emitting unnecessary instructions.
2211 */
2212 assert(dummy_instructions.is_empty());
2213
2214 return size->value.u[0];
2215 }
2216
2217 static const glsl_type *
2218 process_array_type(YYLTYPE *loc, const glsl_type *base,
2219 ast_array_specifier *array_specifier,
2220 struct _mesa_glsl_parse_state *state)
2221 {
2222 const glsl_type *array_type = base;
2223
2224 if (array_specifier != NULL) {
2225 if (base->is_array()) {
2226
2227 /* From page 19 (page 25) of the GLSL 1.20 spec:
2228 *
2229 * "Only one-dimensional arrays may be declared."
2230 */
2231 if (!state->check_arrays_of_arrays_allowed(loc)) {
2232 return glsl_type::error_type;
2233 }
2234 }
2235
2236 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2237 !node->is_head_sentinel(); node = node->prev) {
2238 unsigned array_size = process_array_size(node, state);
2239 array_type = glsl_type::get_array_instance(array_type, array_size);
2240 }
2241 }
2242
2243 return array_type;
2244 }
2245
2246 static bool
2247 precision_qualifier_allowed(const glsl_type *type)
2248 {
2249 /* Precision qualifiers apply to floating point, integer and opaque
2250 * types.
2251 *
2252 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2253 * "Any floating point or any integer declaration can have the type
2254 * preceded by one of these precision qualifiers [...] Literal
2255 * constants do not have precision qualifiers. Neither do Boolean
2256 * variables.
2257 *
2258 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2259 * spec also says:
2260 *
2261 * "Precision qualifiers are added for code portability with OpenGL
2262 * ES, not for functionality. They have the same syntax as in OpenGL
2263 * ES."
2264 *
2265 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2266 *
2267 * "uniform lowp sampler2D sampler;
2268 * highp vec2 coord;
2269 * ...
2270 * lowp vec4 col = texture2D (sampler, coord);
2271 * // texture2D returns lowp"
2272 *
2273 * From this, we infer that GLSL 1.30 (and later) should allow precision
2274 * qualifiers on sampler types just like float and integer types.
2275 */
2276 return (type->is_float()
2277 || type->is_integer()
2278 || type->contains_opaque())
2279 && !type->without_array()->is_record();
2280 }
2281
2282 const glsl_type *
2283 ast_type_specifier::glsl_type(const char **name,
2284 struct _mesa_glsl_parse_state *state) const
2285 {
2286 const struct glsl_type *type;
2287
2288 type = state->symbols->get_type(this->type_name);
2289 *name = this->type_name;
2290
2291 YYLTYPE loc = this->get_location();
2292 type = process_array_type(&loc, type, this->array_specifier, state);
2293
2294 return type;
2295 }
2296
2297 /**
2298 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2299 *
2300 * "The precision statement
2301 *
2302 * precision precision-qualifier type;
2303 *
2304 * can be used to establish a default precision qualifier. The type field can
2305 * be either int or float or any of the sampler types, (...) If type is float,
2306 * the directive applies to non-precision-qualified floating point type
2307 * (scalar, vector, and matrix) declarations. If type is int, the directive
2308 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2309 * and unsigned) declarations."
2310 *
2311 * We use the symbol table to keep the values of the default precisions for
2312 * each 'type' in each scope and we use the 'type' string from the precision
2313 * statement as key in the symbol table. When we want to retrieve the default
2314 * precision associated with a given glsl_type we need to know the type string
2315 * associated with it. This is what this function returns.
2316 */
2317 static const char *
2318 get_type_name_for_precision_qualifier(const glsl_type *type)
2319 {
2320 switch (type->base_type) {
2321 case GLSL_TYPE_FLOAT:
2322 return "float";
2323 case GLSL_TYPE_UINT:
2324 case GLSL_TYPE_INT:
2325 return "int";
2326 case GLSL_TYPE_ATOMIC_UINT:
2327 return "atomic_uint";
2328 case GLSL_TYPE_IMAGE:
2329 /* fallthrough */
2330 case GLSL_TYPE_SAMPLER: {
2331 const unsigned type_idx =
2332 type->sampler_array + 2 * type->sampler_shadow;
2333 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2334 assert(type_idx < 4);
2335 switch (type->sampled_type) {
2336 case GLSL_TYPE_FLOAT:
2337 switch (type->sampler_dimensionality) {
2338 case GLSL_SAMPLER_DIM_1D: {
2339 assert(type->base_type == GLSL_TYPE_SAMPLER);
2340 static const char *const names[4] = {
2341 "sampler1D", "sampler1DArray",
2342 "sampler1DShadow", "sampler1DArrayShadow"
2343 };
2344 return names[type_idx];
2345 }
2346 case GLSL_SAMPLER_DIM_2D: {
2347 static const char *const names[8] = {
2348 "sampler2D", "sampler2DArray",
2349 "sampler2DShadow", "sampler2DArrayShadow",
2350 "image2D", "image2DArray", NULL, NULL
2351 };
2352 return names[offset + type_idx];
2353 }
2354 case GLSL_SAMPLER_DIM_3D: {
2355 static const char *const names[8] = {
2356 "sampler3D", NULL, NULL, NULL,
2357 "image3D", NULL, NULL, NULL
2358 };
2359 return names[offset + type_idx];
2360 }
2361 case GLSL_SAMPLER_DIM_CUBE: {
2362 static const char *const names[8] = {
2363 "samplerCube", "samplerCubeArray",
2364 "samplerCubeShadow", "samplerCubeArrayShadow",
2365 "imageCube", NULL, NULL, NULL
2366 };
2367 return names[offset + type_idx];
2368 }
2369 case GLSL_SAMPLER_DIM_MS: {
2370 assert(type->base_type == GLSL_TYPE_SAMPLER);
2371 static const char *const names[4] = {
2372 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2373 };
2374 return names[type_idx];
2375 }
2376 case GLSL_SAMPLER_DIM_RECT: {
2377 assert(type->base_type == GLSL_TYPE_SAMPLER);
2378 static const char *const names[4] = {
2379 "samplerRect", NULL, "samplerRectShadow", NULL
2380 };
2381 return names[type_idx];
2382 }
2383 case GLSL_SAMPLER_DIM_BUF: {
2384 static const char *const names[8] = {
2385 "samplerBuffer", NULL, NULL, NULL,
2386 "imageBuffer", NULL, NULL, NULL
2387 };
2388 return names[offset + type_idx];
2389 }
2390 case GLSL_SAMPLER_DIM_EXTERNAL: {
2391 assert(type->base_type == GLSL_TYPE_SAMPLER);
2392 static const char *const names[4] = {
2393 "samplerExternalOES", NULL, NULL, NULL
2394 };
2395 return names[type_idx];
2396 }
2397 default:
2398 unreachable("Unsupported sampler/image dimensionality");
2399 } /* sampler/image float dimensionality */
2400 break;
2401 case GLSL_TYPE_INT:
2402 switch (type->sampler_dimensionality) {
2403 case GLSL_SAMPLER_DIM_1D: {
2404 assert(type->base_type == GLSL_TYPE_SAMPLER);
2405 static const char *const names[4] = {
2406 "isampler1D", "isampler1DArray", NULL, NULL
2407 };
2408 return names[type_idx];
2409 }
2410 case GLSL_SAMPLER_DIM_2D: {
2411 static const char *const names[8] = {
2412 "isampler2D", "isampler2DArray", NULL, NULL,
2413 "iimage2D", "iimage2DArray", NULL, NULL
2414 };
2415 return names[offset + type_idx];
2416 }
2417 case GLSL_SAMPLER_DIM_3D: {
2418 static const char *const names[8] = {
2419 "isampler3D", NULL, NULL, NULL,
2420 "iimage3D", NULL, NULL, NULL
2421 };
2422 return names[offset + type_idx];
2423 }
2424 case GLSL_SAMPLER_DIM_CUBE: {
2425 static const char *const names[8] = {
2426 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2427 "iimageCube", NULL, NULL, NULL
2428 };
2429 return names[offset + type_idx];
2430 }
2431 case GLSL_SAMPLER_DIM_MS: {
2432 assert(type->base_type == GLSL_TYPE_SAMPLER);
2433 static const char *const names[4] = {
2434 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2435 };
2436 return names[type_idx];
2437 }
2438 case GLSL_SAMPLER_DIM_RECT: {
2439 assert(type->base_type == GLSL_TYPE_SAMPLER);
2440 static const char *const names[4] = {
2441 "isamplerRect", NULL, "isamplerRectShadow", NULL
2442 };
2443 return names[type_idx];
2444 }
2445 case GLSL_SAMPLER_DIM_BUF: {
2446 static const char *const names[8] = {
2447 "isamplerBuffer", NULL, NULL, NULL,
2448 "iimageBuffer", NULL, NULL, NULL
2449 };
2450 return names[offset + type_idx];
2451 }
2452 default:
2453 unreachable("Unsupported isampler/iimage dimensionality");
2454 } /* sampler/image int dimensionality */
2455 break;
2456 case GLSL_TYPE_UINT:
2457 switch (type->sampler_dimensionality) {
2458 case GLSL_SAMPLER_DIM_1D: {
2459 assert(type->base_type == GLSL_TYPE_SAMPLER);
2460 static const char *const names[4] = {
2461 "usampler1D", "usampler1DArray", NULL, NULL
2462 };
2463 return names[type_idx];
2464 }
2465 case GLSL_SAMPLER_DIM_2D: {
2466 static const char *const names[8] = {
2467 "usampler2D", "usampler2DArray", NULL, NULL,
2468 "uimage2D", "uimage2DArray", NULL, NULL
2469 };
2470 return names[offset + type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_3D: {
2473 static const char *const names[8] = {
2474 "usampler3D", NULL, NULL, NULL,
2475 "uimage3D", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 case GLSL_SAMPLER_DIM_CUBE: {
2480 static const char *const names[8] = {
2481 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2482 "uimageCube", NULL, NULL, NULL
2483 };
2484 return names[offset + type_idx];
2485 }
2486 case GLSL_SAMPLER_DIM_MS: {
2487 assert(type->base_type == GLSL_TYPE_SAMPLER);
2488 static const char *const names[4] = {
2489 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2490 };
2491 return names[type_idx];
2492 }
2493 case GLSL_SAMPLER_DIM_RECT: {
2494 assert(type->base_type == GLSL_TYPE_SAMPLER);
2495 static const char *const names[4] = {
2496 "usamplerRect", NULL, "usamplerRectShadow", NULL
2497 };
2498 return names[type_idx];
2499 }
2500 case GLSL_SAMPLER_DIM_BUF: {
2501 static const char *const names[8] = {
2502 "usamplerBuffer", NULL, NULL, NULL,
2503 "uimageBuffer", NULL, NULL, NULL
2504 };
2505 return names[offset + type_idx];
2506 }
2507 default:
2508 unreachable("Unsupported usampler/uimage dimensionality");
2509 } /* sampler/image uint dimensionality */
2510 break;
2511 default:
2512 unreachable("Unsupported sampler/image type");
2513 } /* sampler/image type */
2514 break;
2515 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2516 break;
2517 default:
2518 unreachable("Unsupported type");
2519 } /* base type */
2520 }
2521
2522 static unsigned
2523 select_gles_precision(unsigned qual_precision,
2524 const glsl_type *type,
2525 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2526 {
2527 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2528 * In GLES we take the precision from the type qualifier if present,
2529 * otherwise, if the type of the variable allows precision qualifiers at
2530 * all, we look for the default precision qualifier for that type in the
2531 * current scope.
2532 */
2533 assert(state->es_shader);
2534
2535 unsigned precision = GLSL_PRECISION_NONE;
2536 if (qual_precision) {
2537 precision = qual_precision;
2538 } else if (precision_qualifier_allowed(type)) {
2539 const char *type_name =
2540 get_type_name_for_precision_qualifier(type->without_array());
2541 assert(type_name != NULL);
2542
2543 precision =
2544 state->symbols->get_default_precision_qualifier(type_name);
2545 if (precision == ast_precision_none) {
2546 _mesa_glsl_error(loc, state,
2547 "No precision specified in this scope for type `%s'",
2548 type->name);
2549 }
2550 }
2551 return precision;
2552 }
2553
2554 const glsl_type *
2555 ast_fully_specified_type::glsl_type(const char **name,
2556 struct _mesa_glsl_parse_state *state) const
2557 {
2558 return this->specifier->glsl_type(name, state);
2559 }
2560
2561 /**
2562 * Determine whether a toplevel variable declaration declares a varying. This
2563 * function operates by examining the variable's mode and the shader target,
2564 * so it correctly identifies linkage variables regardless of whether they are
2565 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2566 *
2567 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2568 * this function will produce undefined results.
2569 */
2570 static bool
2571 is_varying_var(ir_variable *var, gl_shader_stage target)
2572 {
2573 switch (target) {
2574 case MESA_SHADER_VERTEX:
2575 return var->data.mode == ir_var_shader_out;
2576 case MESA_SHADER_FRAGMENT:
2577 return var->data.mode == ir_var_shader_in;
2578 default:
2579 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2580 }
2581 }
2582
2583
2584 /**
2585 * Matrix layout qualifiers are only allowed on certain types
2586 */
2587 static void
2588 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2589 YYLTYPE *loc,
2590 const glsl_type *type,
2591 ir_variable *var)
2592 {
2593 if (var && !var->is_in_buffer_block()) {
2594 /* Layout qualifiers may only apply to interface blocks and fields in
2595 * them.
2596 */
2597 _mesa_glsl_error(loc, state,
2598 "uniform block layout qualifiers row_major and "
2599 "column_major may not be applied to variables "
2600 "outside of uniform blocks");
2601 } else if (!type->without_array()->is_matrix()) {
2602 /* The OpenGL ES 3.0 conformance tests did not originally allow
2603 * matrix layout qualifiers on non-matrices. However, the OpenGL
2604 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2605 * amended to specifically allow these layouts on all types. Emit
2606 * a warning so that people know their code may not be portable.
2607 */
2608 _mesa_glsl_warning(loc, state,
2609 "uniform block layout qualifiers row_major and "
2610 "column_major applied to non-matrix types may "
2611 "be rejected by older compilers");
2612 }
2613 }
2614
2615 static bool
2616 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2617 struct _mesa_glsl_parse_state *state,
2618 unsigned xfb_buffer) {
2619 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2620 _mesa_glsl_error(loc, state,
2621 "invalid xfb_buffer specified %d is larger than "
2622 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2623 xfb_buffer,
2624 state->Const.MaxTransformFeedbackBuffers - 1);
2625 return false;
2626 }
2627
2628 return true;
2629 }
2630
2631 /* From the ARB_enhanced_layouts spec:
2632 *
2633 * "Variables and block members qualified with *xfb_offset* can be
2634 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2635 * The offset must be a multiple of the size of the first component of
2636 * the first qualified variable or block member, or a compile-time error
2637 * results. Further, if applied to an aggregate containing a double,
2638 * the offset must also be a multiple of 8, and the space taken in the
2639 * buffer will be a multiple of 8.
2640 */
2641 static bool
2642 validate_xfb_offset_qualifier(YYLTYPE *loc,
2643 struct _mesa_glsl_parse_state *state,
2644 int xfb_offset, const glsl_type *type,
2645 unsigned component_size) {
2646 const glsl_type *t_without_array = type->without_array();
2647
2648 if (xfb_offset != -1 && type->is_unsized_array()) {
2649 _mesa_glsl_error(loc, state,
2650 "xfb_offset can't be used with unsized arrays.");
2651 return false;
2652 }
2653
2654 /* Make sure nested structs don't contain unsized arrays, and validate
2655 * any xfb_offsets on interface members.
2656 */
2657 if (t_without_array->is_record() || t_without_array->is_interface())
2658 for (unsigned int i = 0; i < t_without_array->length; i++) {
2659 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2660
2661 /* When the interface block doesn't have an xfb_offset qualifier then
2662 * we apply the component size rules at the member level.
2663 */
2664 if (xfb_offset == -1)
2665 component_size = member_t->contains_double() ? 8 : 4;
2666
2667 int xfb_offset = t_without_array->fields.structure[i].offset;
2668 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2669 component_size);
2670 }
2671
2672 /* Nested structs or interface block without offset may not have had an
2673 * offset applied yet so return.
2674 */
2675 if (xfb_offset == -1) {
2676 return true;
2677 }
2678
2679 if (xfb_offset % component_size) {
2680 _mesa_glsl_error(loc, state,
2681 "invalid qualifier xfb_offset=%d must be a multiple "
2682 "of the first component size of the first qualified "
2683 "variable or block member. Or double if an aggregate "
2684 "that contains a double (%d).",
2685 xfb_offset, component_size);
2686 return false;
2687 }
2688
2689 return true;
2690 }
2691
2692 static bool
2693 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2694 unsigned stream)
2695 {
2696 if (stream >= state->ctx->Const.MaxVertexStreams) {
2697 _mesa_glsl_error(loc, state,
2698 "invalid stream specified %d is larger than "
2699 "MAX_VERTEX_STREAMS - 1 (%d).",
2700 stream, state->ctx->Const.MaxVertexStreams - 1);
2701 return false;
2702 }
2703
2704 return true;
2705 }
2706
2707 static void
2708 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2709 YYLTYPE *loc,
2710 ir_variable *var,
2711 const glsl_type *type,
2712 const ast_type_qualifier *qual)
2713 {
2714 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2715 _mesa_glsl_error(loc, state,
2716 "the \"binding\" qualifier only applies to uniforms and "
2717 "shader storage buffer objects");
2718 return;
2719 }
2720
2721 unsigned qual_binding;
2722 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2723 &qual_binding)) {
2724 return;
2725 }
2726
2727 const struct gl_context *const ctx = state->ctx;
2728 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2729 unsigned max_index = qual_binding + elements - 1;
2730 const glsl_type *base_type = type->without_array();
2731
2732 if (base_type->is_interface()) {
2733 /* UBOs. From page 60 of the GLSL 4.20 specification:
2734 * "If the binding point for any uniform block instance is less than zero,
2735 * or greater than or equal to the implementation-dependent maximum
2736 * number of uniform buffer bindings, a compilation error will occur.
2737 * When the binding identifier is used with a uniform block instanced as
2738 * an array of size N, all elements of the array from binding through
2739 * binding + N – 1 must be within this range."
2740 *
2741 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2742 */
2743 if (qual->flags.q.uniform &&
2744 max_index >= ctx->Const.MaxUniformBufferBindings) {
2745 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2746 "the maximum number of UBO binding points (%d)",
2747 qual_binding, elements,
2748 ctx->Const.MaxUniformBufferBindings);
2749 return;
2750 }
2751
2752 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2753 * "If the binding point for any uniform or shader storage block instance
2754 * is less than zero, or greater than or equal to the
2755 * implementation-dependent maximum number of uniform buffer bindings, a
2756 * compile-time error will occur. When the binding identifier is used
2757 * with a uniform or shader storage block instanced as an array of size
2758 * N, all elements of the array from binding through binding + N – 1 must
2759 * be within this range."
2760 */
2761 if (qual->flags.q.buffer &&
2762 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2763 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2764 "the maximum number of SSBO binding points (%d)",
2765 qual_binding, elements,
2766 ctx->Const.MaxShaderStorageBufferBindings);
2767 return;
2768 }
2769 } else if (base_type->is_sampler()) {
2770 /* Samplers. From page 63 of the GLSL 4.20 specification:
2771 * "If the binding is less than zero, or greater than or equal to the
2772 * implementation-dependent maximum supported number of units, a
2773 * compilation error will occur. When the binding identifier is used
2774 * with an array of size N, all elements of the array from binding
2775 * through binding + N - 1 must be within this range."
2776 */
2777 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2778
2779 if (max_index >= limit) {
2780 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2781 "exceeds the maximum number of texture image units "
2782 "(%u)", qual_binding, elements, limit);
2783
2784 return;
2785 }
2786 } else if (base_type->contains_atomic()) {
2787 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2788 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2789 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2790 " maximum number of atomic counter buffer bindings"
2791 "(%u)", qual_binding,
2792 ctx->Const.MaxAtomicBufferBindings);
2793
2794 return;
2795 }
2796 } else if ((state->is_version(420, 310) ||
2797 state->ARB_shading_language_420pack_enable) &&
2798 base_type->is_image()) {
2799 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2800 if (max_index >= ctx->Const.MaxImageUnits) {
2801 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2802 " maximum number of image units (%d)", max_index,
2803 ctx->Const.MaxImageUnits);
2804 return;
2805 }
2806
2807 } else {
2808 _mesa_glsl_error(loc, state,
2809 "the \"binding\" qualifier only applies to uniform "
2810 "blocks, opaque variables, or arrays thereof");
2811 return;
2812 }
2813
2814 var->data.explicit_binding = true;
2815 var->data.binding = qual_binding;
2816
2817 return;
2818 }
2819
2820
2821 static void
2822 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2823 YYLTYPE *loc,
2824 const glsl_interp_qualifier interpolation,
2825 const struct ast_type_qualifier *qual,
2826 const struct glsl_type *var_type,
2827 ir_variable_mode mode)
2828 {
2829 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2830 * not to vertex shader inputs nor fragment shader outputs.
2831 *
2832 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2833 * "Outputs from a vertex shader (out) and inputs to a fragment
2834 * shader (in) can be further qualified with one or more of these
2835 * interpolation qualifiers"
2836 * ...
2837 * "These interpolation qualifiers may only precede the qualifiers in,
2838 * centroid in, out, or centroid out in a declaration. They do not apply
2839 * to the deprecated storage qualifiers varying or centroid
2840 * varying. They also do not apply to inputs into a vertex shader or
2841 * outputs from a fragment shader."
2842 *
2843 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2844 * "Outputs from a shader (out) and inputs to a shader (in) can be
2845 * further qualified with one of these interpolation qualifiers."
2846 * ...
2847 * "These interpolation qualifiers may only precede the qualifiers
2848 * in, centroid in, out, or centroid out in a declaration. They do
2849 * not apply to inputs into a vertex shader or outputs from a
2850 * fragment shader."
2851 */
2852 if (state->is_version(130, 300)
2853 && interpolation != INTERP_QUALIFIER_NONE) {
2854 const char *i = interpolation_string(interpolation);
2855 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2856 _mesa_glsl_error(loc, state,
2857 "interpolation qualifier `%s' can only be applied to "
2858 "shader inputs or outputs.", i);
2859
2860 switch (state->stage) {
2861 case MESA_SHADER_VERTEX:
2862 if (mode == ir_var_shader_in) {
2863 _mesa_glsl_error(loc, state,
2864 "interpolation qualifier '%s' cannot be applied to "
2865 "vertex shader inputs", i);
2866 }
2867 break;
2868 case MESA_SHADER_FRAGMENT:
2869 if (mode == ir_var_shader_out) {
2870 _mesa_glsl_error(loc, state,
2871 "interpolation qualifier '%s' cannot be applied to "
2872 "fragment shader outputs", i);
2873 }
2874 break;
2875 default:
2876 break;
2877 }
2878 }
2879
2880 /* Interpolation qualifiers cannot be applied to 'centroid' and
2881 * 'centroid varying'.
2882 *
2883 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2884 * "interpolation qualifiers may only precede the qualifiers in,
2885 * centroid in, out, or centroid out in a declaration. They do not apply
2886 * to the deprecated storage qualifiers varying or centroid varying."
2887 *
2888 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2889 */
2890 if (state->is_version(130, 0)
2891 && interpolation != INTERP_QUALIFIER_NONE
2892 && qual->flags.q.varying) {
2893
2894 const char *i = interpolation_string(interpolation);
2895 const char *s;
2896 if (qual->flags.q.centroid)
2897 s = "centroid varying";
2898 else
2899 s = "varying";
2900
2901 _mesa_glsl_error(loc, state,
2902 "qualifier '%s' cannot be applied to the "
2903 "deprecated storage qualifier '%s'", i, s);
2904 }
2905
2906 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2907 * so must integer vertex outputs.
2908 *
2909 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2910 * "Fragment shader inputs that are signed or unsigned integers or
2911 * integer vectors must be qualified with the interpolation qualifier
2912 * flat."
2913 *
2914 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2915 * "Fragment shader inputs that are, or contain, signed or unsigned
2916 * integers or integer vectors must be qualified with the
2917 * interpolation qualifier flat."
2918 *
2919 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2920 * "Vertex shader outputs that are, or contain, signed or unsigned
2921 * integers or integer vectors must be qualified with the
2922 * interpolation qualifier flat."
2923 *
2924 * Note that prior to GLSL 1.50, this requirement applied to vertex
2925 * outputs rather than fragment inputs. That creates problems in the
2926 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2927 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2928 * apply the restriction to both vertex outputs and fragment inputs.
2929 *
2930 * Note also that the desktop GLSL specs are missing the text "or
2931 * contain"; this is presumably an oversight, since there is no
2932 * reasonable way to interpolate a fragment shader input that contains
2933 * an integer. See Khronos bug #15671.
2934 */
2935 if (state->is_version(130, 300)
2936 && var_type->contains_integer()
2937 && interpolation != INTERP_QUALIFIER_FLAT
2938 && ((state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_in)
2939 || (state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_out
2940 && state->es_shader))) {
2941 const char *shader_var_type = (state->stage == MESA_SHADER_VERTEX) ?
2942 "vertex output" : "fragment input";
2943 _mesa_glsl_error(loc, state, "if a %s is (or contains) "
2944 "an integer, then it must be qualified with 'flat'",
2945 shader_var_type);
2946 }
2947
2948 /* Double fragment inputs must be qualified with 'flat'.
2949 *
2950 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2951 * "This extension does not support interpolation of double-precision
2952 * values; doubles used as fragment shader inputs must be qualified as
2953 * "flat"."
2954 *
2955 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2956 * "Fragment shader inputs that are signed or unsigned integers, integer
2957 * vectors, or any double-precision floating-point type must be
2958 * qualified with the interpolation qualifier flat."
2959 *
2960 * Note that the GLSL specs are missing the text "or contain"; this is
2961 * presumably an oversight. See Khronos bug #15671.
2962 *
2963 * The 'double' type does not exist in GLSL ES so far.
2964 */
2965 if ((state->ARB_gpu_shader_fp64_enable
2966 || state->is_version(400, 0))
2967 && var_type->contains_double()
2968 && interpolation != INTERP_QUALIFIER_FLAT
2969 && state->stage == MESA_SHADER_FRAGMENT
2970 && mode == ir_var_shader_in) {
2971 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2972 "a double, then it must be qualified with 'flat'");
2973 }
2974 }
2975
2976 static glsl_interp_qualifier
2977 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2978 const struct glsl_type *var_type,
2979 ir_variable_mode mode,
2980 struct _mesa_glsl_parse_state *state,
2981 YYLTYPE *loc)
2982 {
2983 glsl_interp_qualifier interpolation;
2984 if (qual->flags.q.flat)
2985 interpolation = INTERP_QUALIFIER_FLAT;
2986 else if (qual->flags.q.noperspective)
2987 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2988 else if (qual->flags.q.smooth)
2989 interpolation = INTERP_QUALIFIER_SMOOTH;
2990 else if (state->es_shader &&
2991 ((mode == ir_var_shader_in &&
2992 state->stage != MESA_SHADER_VERTEX) ||
2993 (mode == ir_var_shader_out &&
2994 state->stage != MESA_SHADER_FRAGMENT)))
2995 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2996 *
2997 * "When no interpolation qualifier is present, smooth interpolation
2998 * is used."
2999 */
3000 interpolation = INTERP_QUALIFIER_SMOOTH;
3001 else
3002 interpolation = INTERP_QUALIFIER_NONE;
3003
3004 validate_interpolation_qualifier(state, loc,
3005 interpolation,
3006 qual, var_type, mode);
3007
3008 return interpolation;
3009 }
3010
3011
3012 static void
3013 apply_explicit_location(const struct ast_type_qualifier *qual,
3014 ir_variable *var,
3015 struct _mesa_glsl_parse_state *state,
3016 YYLTYPE *loc)
3017 {
3018 bool fail = false;
3019
3020 unsigned qual_location;
3021 if (!process_qualifier_constant(state, loc, "location", qual->location,
3022 &qual_location)) {
3023 return;
3024 }
3025
3026 /* Checks for GL_ARB_explicit_uniform_location. */
3027 if (qual->flags.q.uniform) {
3028 if (!state->check_explicit_uniform_location_allowed(loc, var))
3029 return;
3030
3031 const struct gl_context *const ctx = state->ctx;
3032 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3033
3034 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3035 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3036 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3037 ctx->Const.MaxUserAssignableUniformLocations);
3038 return;
3039 }
3040
3041 var->data.explicit_location = true;
3042 var->data.location = qual_location;
3043 return;
3044 }
3045
3046 /* Between GL_ARB_explicit_attrib_location an
3047 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3048 * stage can be assigned explicit locations. The checking here associates
3049 * the correct extension with the correct stage's input / output:
3050 *
3051 * input output
3052 * ----- ------
3053 * vertex explicit_loc sso
3054 * tess control sso sso
3055 * tess eval sso sso
3056 * geometry sso sso
3057 * fragment sso explicit_loc
3058 */
3059 switch (state->stage) {
3060 case MESA_SHADER_VERTEX:
3061 if (var->data.mode == ir_var_shader_in) {
3062 if (!state->check_explicit_attrib_location_allowed(loc, var))
3063 return;
3064
3065 break;
3066 }
3067
3068 if (var->data.mode == ir_var_shader_out) {
3069 if (!state->check_separate_shader_objects_allowed(loc, var))
3070 return;
3071
3072 break;
3073 }
3074
3075 fail = true;
3076 break;
3077
3078 case MESA_SHADER_TESS_CTRL:
3079 case MESA_SHADER_TESS_EVAL:
3080 case MESA_SHADER_GEOMETRY:
3081 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3082 if (!state->check_separate_shader_objects_allowed(loc, var))
3083 return;
3084
3085 break;
3086 }
3087
3088 fail = true;
3089 break;
3090
3091 case MESA_SHADER_FRAGMENT:
3092 if (var->data.mode == ir_var_shader_in) {
3093 if (!state->check_separate_shader_objects_allowed(loc, var))
3094 return;
3095
3096 break;
3097 }
3098
3099 if (var->data.mode == ir_var_shader_out) {
3100 if (!state->check_explicit_attrib_location_allowed(loc, var))
3101 return;
3102
3103 break;
3104 }
3105
3106 fail = true;
3107 break;
3108
3109 case MESA_SHADER_COMPUTE:
3110 _mesa_glsl_error(loc, state,
3111 "compute shader variables cannot be given "
3112 "explicit locations");
3113 return;
3114 };
3115
3116 if (fail) {
3117 _mesa_glsl_error(loc, state,
3118 "%s cannot be given an explicit location in %s shader",
3119 mode_string(var),
3120 _mesa_shader_stage_to_string(state->stage));
3121 } else {
3122 var->data.explicit_location = true;
3123
3124 switch (state->stage) {
3125 case MESA_SHADER_VERTEX:
3126 var->data.location = (var->data.mode == ir_var_shader_in)
3127 ? (qual_location + VERT_ATTRIB_GENERIC0)
3128 : (qual_location + VARYING_SLOT_VAR0);
3129 break;
3130
3131 case MESA_SHADER_TESS_CTRL:
3132 case MESA_SHADER_TESS_EVAL:
3133 case MESA_SHADER_GEOMETRY:
3134 if (var->data.patch)
3135 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3136 else
3137 var->data.location = qual_location + VARYING_SLOT_VAR0;
3138 break;
3139
3140 case MESA_SHADER_FRAGMENT:
3141 var->data.location = (var->data.mode == ir_var_shader_out)
3142 ? (qual_location + FRAG_RESULT_DATA0)
3143 : (qual_location + VARYING_SLOT_VAR0);
3144 break;
3145 case MESA_SHADER_COMPUTE:
3146 assert(!"Unexpected shader type");
3147 break;
3148 }
3149
3150 /* Check if index was set for the uniform instead of the function */
3151 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3152 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3153 "used with subroutine functions");
3154 return;
3155 }
3156
3157 unsigned qual_index;
3158 if (qual->flags.q.explicit_index &&
3159 process_qualifier_constant(state, loc, "index", qual->index,
3160 &qual_index)) {
3161 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3162 * Layout Qualifiers):
3163 *
3164 * "It is also a compile-time error if a fragment shader
3165 * sets a layout index to less than 0 or greater than 1."
3166 *
3167 * Older specifications don't mandate a behavior; we take
3168 * this as a clarification and always generate the error.
3169 */
3170 if (qual_index > 1) {
3171 _mesa_glsl_error(loc, state,
3172 "explicit index may only be 0 or 1");
3173 } else {
3174 var->data.explicit_index = true;
3175 var->data.index = qual_index;
3176 }
3177 }
3178 }
3179 }
3180
3181 static void
3182 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3183 ir_variable *var,
3184 struct _mesa_glsl_parse_state *state,
3185 YYLTYPE *loc)
3186 {
3187 const glsl_type *base_type = var->type->without_array();
3188
3189 if (base_type->is_image()) {
3190 if (var->data.mode != ir_var_uniform &&
3191 var->data.mode != ir_var_function_in) {
3192 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3193 "function parameters or uniform-qualified "
3194 "global variables");
3195 }
3196
3197 var->data.image_read_only |= qual->flags.q.read_only;
3198 var->data.image_write_only |= qual->flags.q.write_only;
3199 var->data.image_coherent |= qual->flags.q.coherent;
3200 var->data.image_volatile |= qual->flags.q._volatile;
3201 var->data.image_restrict |= qual->flags.q.restrict_flag;
3202 var->data.read_only = true;
3203
3204 if (qual->flags.q.explicit_image_format) {
3205 if (var->data.mode == ir_var_function_in) {
3206 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3207 "used on image function parameters");
3208 }
3209
3210 if (qual->image_base_type != base_type->sampled_type) {
3211 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3212 "base data type of the image");
3213 }
3214
3215 var->data.image_format = qual->image_format;
3216 } else {
3217 if (var->data.mode == ir_var_uniform) {
3218 if (state->es_shader) {
3219 _mesa_glsl_error(loc, state, "all image uniforms "
3220 "must have a format layout qualifier");
3221
3222 } else if (!qual->flags.q.write_only) {
3223 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3224 "`writeonly' must have a format layout "
3225 "qualifier");
3226 }
3227 }
3228
3229 var->data.image_format = GL_NONE;
3230 }
3231
3232 /* From page 70 of the GLSL ES 3.1 specification:
3233 *
3234 * "Except for image variables qualified with the format qualifiers
3235 * r32f, r32i, and r32ui, image variables must specify either memory
3236 * qualifier readonly or the memory qualifier writeonly."
3237 */
3238 if (state->es_shader &&
3239 var->data.image_format != GL_R32F &&
3240 var->data.image_format != GL_R32I &&
3241 var->data.image_format != GL_R32UI &&
3242 !var->data.image_read_only &&
3243 !var->data.image_write_only) {
3244 _mesa_glsl_error(loc, state, "image variables of format other than "
3245 "r32f, r32i or r32ui must be qualified `readonly' or "
3246 "`writeonly'");
3247 }
3248
3249 } else if (qual->flags.q.read_only ||
3250 qual->flags.q.write_only ||
3251 qual->flags.q.coherent ||
3252 qual->flags.q._volatile ||
3253 qual->flags.q.restrict_flag ||
3254 qual->flags.q.explicit_image_format) {
3255 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3256 "images");
3257 }
3258 }
3259
3260 static inline const char*
3261 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3262 {
3263 if (origin_upper_left && pixel_center_integer)
3264 return "origin_upper_left, pixel_center_integer";
3265 else if (origin_upper_left)
3266 return "origin_upper_left";
3267 else if (pixel_center_integer)
3268 return "pixel_center_integer";
3269 else
3270 return " ";
3271 }
3272
3273 static inline bool
3274 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3275 const struct ast_type_qualifier *qual)
3276 {
3277 /* If gl_FragCoord was previously declared, and the qualifiers were
3278 * different in any way, return true.
3279 */
3280 if (state->fs_redeclares_gl_fragcoord) {
3281 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3282 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3283 }
3284
3285 return false;
3286 }
3287
3288 static inline void
3289 validate_array_dimensions(const glsl_type *t,
3290 struct _mesa_glsl_parse_state *state,
3291 YYLTYPE *loc) {
3292 if (t->is_array()) {
3293 t = t->fields.array;
3294 while (t->is_array()) {
3295 if (t->is_unsized_array()) {
3296 _mesa_glsl_error(loc, state,
3297 "only the outermost array dimension can "
3298 "be unsized",
3299 t->name);
3300 break;
3301 }
3302 t = t->fields.array;
3303 }
3304 }
3305 }
3306
3307 static void
3308 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3309 ir_variable *var,
3310 struct _mesa_glsl_parse_state *state,
3311 YYLTYPE *loc)
3312 {
3313 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3314
3315 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3316 *
3317 * "Within any shader, the first redeclarations of gl_FragCoord
3318 * must appear before any use of gl_FragCoord."
3319 *
3320 * Generate a compiler error if above condition is not met by the
3321 * fragment shader.
3322 */
3323 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3324 if (earlier != NULL &&
3325 earlier->data.used &&
3326 !state->fs_redeclares_gl_fragcoord) {
3327 _mesa_glsl_error(loc, state,
3328 "gl_FragCoord used before its first redeclaration "
3329 "in fragment shader");
3330 }
3331
3332 /* Make sure all gl_FragCoord redeclarations specify the same layout
3333 * qualifiers.
3334 */
3335 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3336 const char *const qual_string =
3337 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3338 qual->flags.q.pixel_center_integer);
3339
3340 const char *const state_string =
3341 get_layout_qualifier_string(state->fs_origin_upper_left,
3342 state->fs_pixel_center_integer);
3343
3344 _mesa_glsl_error(loc, state,
3345 "gl_FragCoord redeclared with different layout "
3346 "qualifiers (%s) and (%s) ",
3347 state_string,
3348 qual_string);
3349 }
3350 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3351 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3352 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3353 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3354 state->fs_redeclares_gl_fragcoord =
3355 state->fs_origin_upper_left ||
3356 state->fs_pixel_center_integer ||
3357 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3358 }
3359
3360 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3361 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3362 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3363 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3364 const char *const qual_string = (qual->flags.q.origin_upper_left)
3365 ? "origin_upper_left" : "pixel_center_integer";
3366
3367 _mesa_glsl_error(loc, state,
3368 "layout qualifier `%s' can only be applied to "
3369 "fragment shader input `gl_FragCoord'",
3370 qual_string);
3371 }
3372
3373 if (qual->flags.q.explicit_location) {
3374 apply_explicit_location(qual, var, state, loc);
3375
3376 if (qual->flags.q.explicit_component) {
3377 unsigned qual_component;
3378 if (process_qualifier_constant(state, loc, "component",
3379 qual->component, &qual_component)) {
3380 const glsl_type *type = var->type->without_array();
3381 unsigned components = type->component_slots();
3382
3383 if (type->is_matrix() || type->is_record()) {
3384 _mesa_glsl_error(loc, state, "component layout qualifier "
3385 "cannot be applied to a matrix, a structure, "
3386 "a block, or an array containing any of "
3387 "these.");
3388 } else if (qual_component != 0 &&
3389 (qual_component + components - 1) > 3) {
3390 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3391 (qual_component + components - 1));
3392 } else if (qual_component == 1 && type->is_double()) {
3393 /* We don't bother checking for 3 as it should be caught by the
3394 * overflow check above.
3395 */
3396 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3397 "component 1 or 3");
3398 } else {
3399 var->data.explicit_component = true;
3400 var->data.location_frac = qual_component;
3401 }
3402 }
3403 }
3404 } else if (qual->flags.q.explicit_index) {
3405 if (!qual->flags.q.subroutine_def)
3406 _mesa_glsl_error(loc, state,
3407 "explicit index requires explicit location");
3408 } else if (qual->flags.q.explicit_component) {
3409 _mesa_glsl_error(loc, state,
3410 "explicit component requires explicit location");
3411 }
3412
3413 if (qual->flags.q.explicit_binding) {
3414 apply_explicit_binding(state, loc, var, var->type, qual);
3415 }
3416
3417 if (state->stage == MESA_SHADER_GEOMETRY &&
3418 qual->flags.q.out && qual->flags.q.stream) {
3419 unsigned qual_stream;
3420 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3421 &qual_stream) &&
3422 validate_stream_qualifier(loc, state, qual_stream)) {
3423 var->data.stream = qual_stream;
3424 }
3425 }
3426
3427 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3428 unsigned qual_xfb_buffer;
3429 if (process_qualifier_constant(state, loc, "xfb_buffer",
3430 qual->xfb_buffer, &qual_xfb_buffer) &&
3431 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3432 var->data.xfb_buffer = qual_xfb_buffer;
3433 if (qual->flags.q.explicit_xfb_buffer)
3434 var->data.explicit_xfb_buffer = true;
3435 }
3436 }
3437
3438 if (qual->flags.q.explicit_xfb_offset) {
3439 unsigned qual_xfb_offset;
3440 unsigned component_size = var->type->contains_double() ? 8 : 4;
3441
3442 if (process_qualifier_constant(state, loc, "xfb_offset",
3443 qual->offset, &qual_xfb_offset) &&
3444 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3445 var->type, component_size)) {
3446 var->data.offset = qual_xfb_offset;
3447 var->data.explicit_xfb_offset = true;
3448 }
3449 }
3450
3451 if (qual->flags.q.explicit_xfb_stride) {
3452 unsigned qual_xfb_stride;
3453 if (process_qualifier_constant(state, loc, "xfb_stride",
3454 qual->xfb_stride, &qual_xfb_stride)) {
3455 var->data.xfb_stride = qual_xfb_stride;
3456 var->data.explicit_xfb_stride = true;
3457 }
3458 }
3459
3460 if (var->type->contains_atomic()) {
3461 if (var->data.mode == ir_var_uniform) {
3462 if (var->data.explicit_binding) {
3463 unsigned *offset =
3464 &state->atomic_counter_offsets[var->data.binding];
3465
3466 if (*offset % ATOMIC_COUNTER_SIZE)
3467 _mesa_glsl_error(loc, state,
3468 "misaligned atomic counter offset");
3469
3470 var->data.offset = *offset;
3471 *offset += var->type->atomic_size();
3472
3473 } else {
3474 _mesa_glsl_error(loc, state,
3475 "atomic counters require explicit binding point");
3476 }
3477 } else if (var->data.mode != ir_var_function_in) {
3478 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3479 "function parameters or uniform-qualified "
3480 "global variables");
3481 }
3482 }
3483
3484 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3485 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3486 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3487 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3488 * These extensions and all following extensions that add the 'layout'
3489 * keyword have been modified to require the use of 'in' or 'out'.
3490 *
3491 * The following extension do not allow the deprecated keywords:
3492 *
3493 * GL_AMD_conservative_depth
3494 * GL_ARB_conservative_depth
3495 * GL_ARB_gpu_shader5
3496 * GL_ARB_separate_shader_objects
3497 * GL_ARB_tessellation_shader
3498 * GL_ARB_transform_feedback3
3499 * GL_ARB_uniform_buffer_object
3500 *
3501 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3502 * allow layout with the deprecated keywords.
3503 */
3504 const bool relaxed_layout_qualifier_checking =
3505 state->ARB_fragment_coord_conventions_enable;
3506
3507 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3508 || qual->flags.q.varying;
3509 if (qual->has_layout() && uses_deprecated_qualifier) {
3510 if (relaxed_layout_qualifier_checking) {
3511 _mesa_glsl_warning(loc, state,
3512 "`layout' qualifier may not be used with "
3513 "`attribute' or `varying'");
3514 } else {
3515 _mesa_glsl_error(loc, state,
3516 "`layout' qualifier may not be used with "
3517 "`attribute' or `varying'");
3518 }
3519 }
3520
3521 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3522 * AMD_conservative_depth.
3523 */
3524 int depth_layout_count = qual->flags.q.depth_any
3525 + qual->flags.q.depth_greater
3526 + qual->flags.q.depth_less
3527 + qual->flags.q.depth_unchanged;
3528 if (depth_layout_count > 0
3529 && !state->is_version(420, 0)
3530 && !state->AMD_conservative_depth_enable
3531 && !state->ARB_conservative_depth_enable) {
3532 _mesa_glsl_error(loc, state,
3533 "extension GL_AMD_conservative_depth or "
3534 "GL_ARB_conservative_depth must be enabled "
3535 "to use depth layout qualifiers");
3536 } else if (depth_layout_count > 0
3537 && strcmp(var->name, "gl_FragDepth") != 0) {
3538 _mesa_glsl_error(loc, state,
3539 "depth layout qualifiers can be applied only to "
3540 "gl_FragDepth");
3541 } else if (depth_layout_count > 1
3542 && strcmp(var->name, "gl_FragDepth") == 0) {
3543 _mesa_glsl_error(loc, state,
3544 "at most one depth layout qualifier can be applied to "
3545 "gl_FragDepth");
3546 }
3547 if (qual->flags.q.depth_any)
3548 var->data.depth_layout = ir_depth_layout_any;
3549 else if (qual->flags.q.depth_greater)
3550 var->data.depth_layout = ir_depth_layout_greater;
3551 else if (qual->flags.q.depth_less)
3552 var->data.depth_layout = ir_depth_layout_less;
3553 else if (qual->flags.q.depth_unchanged)
3554 var->data.depth_layout = ir_depth_layout_unchanged;
3555 else
3556 var->data.depth_layout = ir_depth_layout_none;
3557
3558 if (qual->flags.q.std140 ||
3559 qual->flags.q.std430 ||
3560 qual->flags.q.packed ||
3561 qual->flags.q.shared) {
3562 _mesa_glsl_error(loc, state,
3563 "uniform and shader storage block layout qualifiers "
3564 "std140, std430, packed, and shared can only be "
3565 "applied to uniform or shader storage blocks, not "
3566 "members");
3567 }
3568
3569 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3570 validate_matrix_layout_for_type(state, loc, var->type, var);
3571 }
3572
3573 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3574 * Inputs):
3575 *
3576 * "Fragment shaders also allow the following layout qualifier on in only
3577 * (not with variable declarations)
3578 * layout-qualifier-id
3579 * early_fragment_tests
3580 * [...]"
3581 */
3582 if (qual->flags.q.early_fragment_tests) {
3583 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3584 "valid in fragment shader input layout declaration.");
3585 }
3586 }
3587
3588 static void
3589 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3590 ir_variable *var,
3591 struct _mesa_glsl_parse_state *state,
3592 YYLTYPE *loc,
3593 bool is_parameter)
3594 {
3595 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3596
3597 if (qual->flags.q.invariant) {
3598 if (var->data.used) {
3599 _mesa_glsl_error(loc, state,
3600 "variable `%s' may not be redeclared "
3601 "`invariant' after being used",
3602 var->name);
3603 } else {
3604 var->data.invariant = 1;
3605 }
3606 }
3607
3608 if (qual->flags.q.precise) {
3609 if (var->data.used) {
3610 _mesa_glsl_error(loc, state,
3611 "variable `%s' may not be redeclared "
3612 "`precise' after being used",
3613 var->name);
3614 } else {
3615 var->data.precise = 1;
3616 }
3617 }
3618
3619 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3620 _mesa_glsl_error(loc, state,
3621 "`subroutine' may only be applied to uniforms, "
3622 "subroutine type declarations, or function definitions");
3623 }
3624
3625 if (qual->flags.q.constant || qual->flags.q.attribute
3626 || qual->flags.q.uniform
3627 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3628 var->data.read_only = 1;
3629
3630 if (qual->flags.q.centroid)
3631 var->data.centroid = 1;
3632
3633 if (qual->flags.q.sample)
3634 var->data.sample = 1;
3635
3636 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3637 if (state->es_shader) {
3638 var->data.precision =
3639 select_gles_precision(qual->precision, var->type, state, loc);
3640 }
3641
3642 if (qual->flags.q.patch)
3643 var->data.patch = 1;
3644
3645 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3646 var->type = glsl_type::error_type;
3647 _mesa_glsl_error(loc, state,
3648 "`attribute' variables may not be declared in the "
3649 "%s shader",
3650 _mesa_shader_stage_to_string(state->stage));
3651 }
3652
3653 /* Disallow layout qualifiers which may only appear on layout declarations. */
3654 if (qual->flags.q.prim_type) {
3655 _mesa_glsl_error(loc, state,
3656 "Primitive type may only be specified on GS input or output "
3657 "layout declaration, not on variables.");
3658 }
3659
3660 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3661 *
3662 * "However, the const qualifier cannot be used with out or inout."
3663 *
3664 * The same section of the GLSL 4.40 spec further clarifies this saying:
3665 *
3666 * "The const qualifier cannot be used with out or inout, or a
3667 * compile-time error results."
3668 */
3669 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3670 _mesa_glsl_error(loc, state,
3671 "`const' may not be applied to `out' or `inout' "
3672 "function parameters");
3673 }
3674
3675 /* If there is no qualifier that changes the mode of the variable, leave
3676 * the setting alone.
3677 */
3678 assert(var->data.mode != ir_var_temporary);
3679 if (qual->flags.q.in && qual->flags.q.out)
3680 var->data.mode = ir_var_function_inout;
3681 else if (qual->flags.q.in)
3682 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3683 else if (qual->flags.q.attribute
3684 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3685 var->data.mode = ir_var_shader_in;
3686 else if (qual->flags.q.out)
3687 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3688 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3689 var->data.mode = ir_var_shader_out;
3690 else if (qual->flags.q.uniform)
3691 var->data.mode = ir_var_uniform;
3692 else if (qual->flags.q.buffer)
3693 var->data.mode = ir_var_shader_storage;
3694 else if (qual->flags.q.shared_storage)
3695 var->data.mode = ir_var_shader_shared;
3696
3697 if (!is_parameter && is_varying_var(var, state->stage)) {
3698 /* User-defined ins/outs are not permitted in compute shaders. */
3699 if (state->stage == MESA_SHADER_COMPUTE) {
3700 _mesa_glsl_error(loc, state,
3701 "user-defined input and output variables are not "
3702 "permitted in compute shaders");
3703 }
3704
3705 /* This variable is being used to link data between shader stages (in
3706 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3707 * that is allowed for such purposes.
3708 *
3709 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3710 *
3711 * "The varying qualifier can be used only with the data types
3712 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3713 * these."
3714 *
3715 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3716 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3717 *
3718 * "Fragment inputs can only be signed and unsigned integers and
3719 * integer vectors, float, floating-point vectors, matrices, or
3720 * arrays of these. Structures cannot be input.
3721 *
3722 * Similar text exists in the section on vertex shader outputs.
3723 *
3724 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3725 * 3.00 spec allows structs as well. Varying structs are also allowed
3726 * in GLSL 1.50.
3727 */
3728 switch (var->type->get_scalar_type()->base_type) {
3729 case GLSL_TYPE_FLOAT:
3730 /* Ok in all GLSL versions */
3731 break;
3732 case GLSL_TYPE_UINT:
3733 case GLSL_TYPE_INT:
3734 if (state->is_version(130, 300))
3735 break;
3736 _mesa_glsl_error(loc, state,
3737 "varying variables must be of base type float in %s",
3738 state->get_version_string());
3739 break;
3740 case GLSL_TYPE_STRUCT:
3741 if (state->is_version(150, 300))
3742 break;
3743 _mesa_glsl_error(loc, state,
3744 "varying variables may not be of type struct");
3745 break;
3746 case GLSL_TYPE_DOUBLE:
3747 break;
3748 default:
3749 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3750 break;
3751 }
3752 }
3753
3754 if (state->all_invariant && (state->current_function == NULL)) {
3755 switch (state->stage) {
3756 case MESA_SHADER_VERTEX:
3757 if (var->data.mode == ir_var_shader_out)
3758 var->data.invariant = true;
3759 break;
3760 case MESA_SHADER_TESS_CTRL:
3761 case MESA_SHADER_TESS_EVAL:
3762 case MESA_SHADER_GEOMETRY:
3763 if ((var->data.mode == ir_var_shader_in)
3764 || (var->data.mode == ir_var_shader_out))
3765 var->data.invariant = true;
3766 break;
3767 case MESA_SHADER_FRAGMENT:
3768 if (var->data.mode == ir_var_shader_in)
3769 var->data.invariant = true;
3770 break;
3771 case MESA_SHADER_COMPUTE:
3772 /* Invariance isn't meaningful in compute shaders. */
3773 break;
3774 }
3775 }
3776
3777 var->data.interpolation =
3778 interpret_interpolation_qualifier(qual, var->type,
3779 (ir_variable_mode) var->data.mode,
3780 state, loc);
3781
3782 /* Does the declaration use the deprecated 'attribute' or 'varying'
3783 * keywords?
3784 */
3785 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3786 || qual->flags.q.varying;
3787
3788
3789 /* Validate auxiliary storage qualifiers */
3790
3791 /* From section 4.3.4 of the GLSL 1.30 spec:
3792 * "It is an error to use centroid in in a vertex shader."
3793 *
3794 * From section 4.3.4 of the GLSL ES 3.00 spec:
3795 * "It is an error to use centroid in or interpolation qualifiers in
3796 * a vertex shader input."
3797 */
3798
3799 /* Section 4.3.6 of the GLSL 1.30 specification states:
3800 * "It is an error to use centroid out in a fragment shader."
3801 *
3802 * The GL_ARB_shading_language_420pack extension specification states:
3803 * "It is an error to use auxiliary storage qualifiers or interpolation
3804 * qualifiers on an output in a fragment shader."
3805 */
3806 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3807 _mesa_glsl_error(loc, state,
3808 "sample qualifier may only be used on `in` or `out` "
3809 "variables between shader stages");
3810 }
3811 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3812 _mesa_glsl_error(loc, state,
3813 "centroid qualifier may only be used with `in', "
3814 "`out' or `varying' variables between shader stages");
3815 }
3816
3817 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3818 _mesa_glsl_error(loc, state,
3819 "the shared storage qualifiers can only be used with "
3820 "compute shaders");
3821 }
3822
3823 apply_image_qualifier_to_variable(qual, var, state, loc);
3824 }
3825
3826 /**
3827 * Get the variable that is being redeclared by this declaration
3828 *
3829 * Semantic checks to verify the validity of the redeclaration are also
3830 * performed. If semantic checks fail, compilation error will be emitted via
3831 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3832 *
3833 * \returns
3834 * A pointer to an existing variable in the current scope if the declaration
3835 * is a redeclaration, \c NULL otherwise.
3836 */
3837 static ir_variable *
3838 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3839 struct _mesa_glsl_parse_state *state,
3840 bool allow_all_redeclarations)
3841 {
3842 /* Check if this declaration is actually a re-declaration, either to
3843 * resize an array or add qualifiers to an existing variable.
3844 *
3845 * This is allowed for variables in the current scope, or when at
3846 * global scope (for built-ins in the implicit outer scope).
3847 */
3848 ir_variable *earlier = state->symbols->get_variable(var->name);
3849 if (earlier == NULL ||
3850 (state->current_function != NULL &&
3851 !state->symbols->name_declared_this_scope(var->name))) {
3852 return NULL;
3853 }
3854
3855
3856 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3857 *
3858 * "It is legal to declare an array without a size and then
3859 * later re-declare the same name as an array of the same
3860 * type and specify a size."
3861 */
3862 if (earlier->type->is_unsized_array() && var->type->is_array()
3863 && (var->type->fields.array == earlier->type->fields.array)) {
3864 /* FINISHME: This doesn't match the qualifiers on the two
3865 * FINISHME: declarations. It's not 100% clear whether this is
3866 * FINISHME: required or not.
3867 */
3868
3869 const unsigned size = unsigned(var->type->array_size());
3870 check_builtin_array_max_size(var->name, size, loc, state);
3871 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3872 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3873 "previous access",
3874 earlier->data.max_array_access);
3875 }
3876
3877 earlier->type = var->type;
3878 delete var;
3879 var = NULL;
3880 } else if ((state->ARB_fragment_coord_conventions_enable ||
3881 state->is_version(150, 0))
3882 && strcmp(var->name, "gl_FragCoord") == 0
3883 && earlier->type == var->type
3884 && var->data.mode == ir_var_shader_in) {
3885 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3886 * qualifiers.
3887 */
3888 earlier->data.origin_upper_left = var->data.origin_upper_left;
3889 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3890
3891 /* According to section 4.3.7 of the GLSL 1.30 spec,
3892 * the following built-in varaibles can be redeclared with an
3893 * interpolation qualifier:
3894 * * gl_FrontColor
3895 * * gl_BackColor
3896 * * gl_FrontSecondaryColor
3897 * * gl_BackSecondaryColor
3898 * * gl_Color
3899 * * gl_SecondaryColor
3900 */
3901 } else if (state->is_version(130, 0)
3902 && (strcmp(var->name, "gl_FrontColor") == 0
3903 || strcmp(var->name, "gl_BackColor") == 0
3904 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3905 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3906 || strcmp(var->name, "gl_Color") == 0
3907 || strcmp(var->name, "gl_SecondaryColor") == 0)
3908 && earlier->type == var->type
3909 && earlier->data.mode == var->data.mode) {
3910 earlier->data.interpolation = var->data.interpolation;
3911
3912 /* Layout qualifiers for gl_FragDepth. */
3913 } else if ((state->is_version(420, 0) ||
3914 state->AMD_conservative_depth_enable ||
3915 state->ARB_conservative_depth_enable)
3916 && strcmp(var->name, "gl_FragDepth") == 0
3917 && earlier->type == var->type
3918 && earlier->data.mode == var->data.mode) {
3919
3920 /** From the AMD_conservative_depth spec:
3921 * Within any shader, the first redeclarations of gl_FragDepth
3922 * must appear before any use of gl_FragDepth.
3923 */
3924 if (earlier->data.used) {
3925 _mesa_glsl_error(&loc, state,
3926 "the first redeclaration of gl_FragDepth "
3927 "must appear before any use of gl_FragDepth");
3928 }
3929
3930 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3931 if (earlier->data.depth_layout != ir_depth_layout_none
3932 && earlier->data.depth_layout != var->data.depth_layout) {
3933 _mesa_glsl_error(&loc, state,
3934 "gl_FragDepth: depth layout is declared here "
3935 "as '%s, but it was previously declared as "
3936 "'%s'",
3937 depth_layout_string(var->data.depth_layout),
3938 depth_layout_string(earlier->data.depth_layout));
3939 }
3940
3941 earlier->data.depth_layout = var->data.depth_layout;
3942
3943 } else if (allow_all_redeclarations) {
3944 if (earlier->data.mode != var->data.mode) {
3945 _mesa_glsl_error(&loc, state,
3946 "redeclaration of `%s' with incorrect qualifiers",
3947 var->name);
3948 } else if (earlier->type != var->type) {
3949 _mesa_glsl_error(&loc, state,
3950 "redeclaration of `%s' has incorrect type",
3951 var->name);
3952 }
3953 } else {
3954 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3955 }
3956
3957 return earlier;
3958 }
3959
3960 /**
3961 * Generate the IR for an initializer in a variable declaration
3962 */
3963 ir_rvalue *
3964 process_initializer(ir_variable *var, ast_declaration *decl,
3965 ast_fully_specified_type *type,
3966 exec_list *initializer_instructions,
3967 struct _mesa_glsl_parse_state *state)
3968 {
3969 ir_rvalue *result = NULL;
3970
3971 YYLTYPE initializer_loc = decl->initializer->get_location();
3972
3973 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3974 *
3975 * "All uniform variables are read-only and are initialized either
3976 * directly by an application via API commands, or indirectly by
3977 * OpenGL."
3978 */
3979 if (var->data.mode == ir_var_uniform) {
3980 state->check_version(120, 0, &initializer_loc,
3981 "cannot initialize uniform %s",
3982 var->name);
3983 }
3984
3985 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3986 *
3987 * "Buffer variables cannot have initializers."
3988 */
3989 if (var->data.mode == ir_var_shader_storage) {
3990 _mesa_glsl_error(&initializer_loc, state,
3991 "cannot initialize buffer variable %s",
3992 var->name);
3993 }
3994
3995 /* From section 4.1.7 of the GLSL 4.40 spec:
3996 *
3997 * "Opaque variables [...] are initialized only through the
3998 * OpenGL API; they cannot be declared with an initializer in a
3999 * shader."
4000 */
4001 if (var->type->contains_opaque()) {
4002 _mesa_glsl_error(&initializer_loc, state,
4003 "cannot initialize opaque variable %s",
4004 var->name);
4005 }
4006
4007 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4008 _mesa_glsl_error(&initializer_loc, state,
4009 "cannot initialize %s shader input / %s %s",
4010 _mesa_shader_stage_to_string(state->stage),
4011 (state->stage == MESA_SHADER_VERTEX)
4012 ? "attribute" : "varying",
4013 var->name);
4014 }
4015
4016 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4017 _mesa_glsl_error(&initializer_loc, state,
4018 "cannot initialize %s shader output %s",
4019 _mesa_shader_stage_to_string(state->stage),
4020 var->name);
4021 }
4022
4023 /* If the initializer is an ast_aggregate_initializer, recursively store
4024 * type information from the LHS into it, so that its hir() function can do
4025 * type checking.
4026 */
4027 if (decl->initializer->oper == ast_aggregate)
4028 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4029
4030 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4031 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4032
4033 /* Calculate the constant value if this is a const or uniform
4034 * declaration.
4035 *
4036 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4037 *
4038 * "Declarations of globals without a storage qualifier, or with
4039 * just the const qualifier, may include initializers, in which case
4040 * they will be initialized before the first line of main() is
4041 * executed. Such initializers must be a constant expression."
4042 *
4043 * The same section of the GLSL ES 3.00.4 spec has similar language.
4044 */
4045 if (type->qualifier.flags.q.constant
4046 || type->qualifier.flags.q.uniform
4047 || (state->es_shader && state->current_function == NULL)) {
4048 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4049 lhs, rhs, true);
4050 if (new_rhs != NULL) {
4051 rhs = new_rhs;
4052
4053 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4054 * says:
4055 *
4056 * "A constant expression is one of
4057 *
4058 * ...
4059 *
4060 * - an expression formed by an operator on operands that are
4061 * all constant expressions, including getting an element of
4062 * a constant array, or a field of a constant structure, or
4063 * components of a constant vector. However, the sequence
4064 * operator ( , ) and the assignment operators ( =, +=, ...)
4065 * are not included in the operators that can create a
4066 * constant expression."
4067 *
4068 * Section 12.43 (Sequence operator and constant expressions) says:
4069 *
4070 * "Should the following construct be allowed?
4071 *
4072 * float a[2,3];
4073 *
4074 * The expression within the brackets uses the sequence operator
4075 * (',') and returns the integer 3 so the construct is declaring
4076 * a single-dimensional array of size 3. In some languages, the
4077 * construct declares a two-dimensional array. It would be
4078 * preferable to make this construct illegal to avoid confusion.
4079 *
4080 * One possibility is to change the definition of the sequence
4081 * operator so that it does not return a constant-expression and
4082 * hence cannot be used to declare an array size.
4083 *
4084 * RESOLUTION: The result of a sequence operator is not a
4085 * constant-expression."
4086 *
4087 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4088 * contains language almost identical to the section 4.3.3 in the
4089 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4090 * versions.
4091 */
4092 ir_constant *constant_value = rhs->constant_expression_value();
4093 if (!constant_value ||
4094 (state->is_version(430, 300) &&
4095 decl->initializer->has_sequence_subexpression())) {
4096 const char *const variable_mode =
4097 (type->qualifier.flags.q.constant)
4098 ? "const"
4099 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4100
4101 /* If ARB_shading_language_420pack is enabled, initializers of
4102 * const-qualified local variables do not have to be constant
4103 * expressions. Const-qualified global variables must still be
4104 * initialized with constant expressions.
4105 */
4106 if (!state->has_420pack()
4107 || state->current_function == NULL) {
4108 _mesa_glsl_error(& initializer_loc, state,
4109 "initializer of %s variable `%s' must be a "
4110 "constant expression",
4111 variable_mode,
4112 decl->identifier);
4113 if (var->type->is_numeric()) {
4114 /* Reduce cascading errors. */
4115 var->constant_value = type->qualifier.flags.q.constant
4116 ? ir_constant::zero(state, var->type) : NULL;
4117 }
4118 }
4119 } else {
4120 rhs = constant_value;
4121 var->constant_value = type->qualifier.flags.q.constant
4122 ? constant_value : NULL;
4123 }
4124 } else {
4125 if (var->type->is_numeric()) {
4126 /* Reduce cascading errors. */
4127 var->constant_value = type->qualifier.flags.q.constant
4128 ? ir_constant::zero(state, var->type) : NULL;
4129 }
4130 }
4131 }
4132
4133 if (rhs && !rhs->type->is_error()) {
4134 bool temp = var->data.read_only;
4135 if (type->qualifier.flags.q.constant)
4136 var->data.read_only = false;
4137
4138 /* Never emit code to initialize a uniform.
4139 */
4140 const glsl_type *initializer_type;
4141 if (!type->qualifier.flags.q.uniform) {
4142 do_assignment(initializer_instructions, state,
4143 NULL,
4144 lhs, rhs,
4145 &result, true,
4146 true,
4147 type->get_location());
4148 initializer_type = result->type;
4149 } else
4150 initializer_type = rhs->type;
4151
4152 var->constant_initializer = rhs->constant_expression_value();
4153 var->data.has_initializer = true;
4154
4155 /* If the declared variable is an unsized array, it must inherrit
4156 * its full type from the initializer. A declaration such as
4157 *
4158 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4159 *
4160 * becomes
4161 *
4162 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4163 *
4164 * The assignment generated in the if-statement (below) will also
4165 * automatically handle this case for non-uniforms.
4166 *
4167 * If the declared variable is not an array, the types must
4168 * already match exactly. As a result, the type assignment
4169 * here can be done unconditionally. For non-uniforms the call
4170 * to do_assignment can change the type of the initializer (via
4171 * the implicit conversion rules). For uniforms the initializer
4172 * must be a constant expression, and the type of that expression
4173 * was validated above.
4174 */
4175 var->type = initializer_type;
4176
4177 var->data.read_only = temp;
4178 }
4179
4180 return result;
4181 }
4182
4183 static void
4184 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4185 YYLTYPE loc, ir_variable *var,
4186 unsigned num_vertices,
4187 unsigned *size,
4188 const char *var_category)
4189 {
4190 if (var->type->is_unsized_array()) {
4191 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4192 *
4193 * All geometry shader input unsized array declarations will be
4194 * sized by an earlier input layout qualifier, when present, as per
4195 * the following table.
4196 *
4197 * Followed by a table mapping each allowed input layout qualifier to
4198 * the corresponding input length.
4199 *
4200 * Similarly for tessellation control shader outputs.
4201 */
4202 if (num_vertices != 0)
4203 var->type = glsl_type::get_array_instance(var->type->fields.array,
4204 num_vertices);
4205 } else {
4206 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4207 * includes the following examples of compile-time errors:
4208 *
4209 * // code sequence within one shader...
4210 * in vec4 Color1[]; // size unknown
4211 * ...Color1.length()...// illegal, length() unknown
4212 * in vec4 Color2[2]; // size is 2
4213 * ...Color1.length()...// illegal, Color1 still has no size
4214 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4215 * layout(lines) in; // legal, input size is 2, matching
4216 * in vec4 Color4[3]; // illegal, contradicts layout
4217 * ...
4218 *
4219 * To detect the case illustrated by Color3, we verify that the size of
4220 * an explicitly-sized array matches the size of any previously declared
4221 * explicitly-sized array. To detect the case illustrated by Color4, we
4222 * verify that the size of an explicitly-sized array is consistent with
4223 * any previously declared input layout.
4224 */
4225 if (num_vertices != 0 && var->type->length != num_vertices) {
4226 _mesa_glsl_error(&loc, state,
4227 "%s size contradicts previously declared layout "
4228 "(size is %u, but layout requires a size of %u)",
4229 var_category, var->type->length, num_vertices);
4230 } else if (*size != 0 && var->type->length != *size) {
4231 _mesa_glsl_error(&loc, state,
4232 "%s sizes are inconsistent (size is %u, but a "
4233 "previous declaration has size %u)",
4234 var_category, var->type->length, *size);
4235 } else {
4236 *size = var->type->length;
4237 }
4238 }
4239 }
4240
4241 static void
4242 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4243 YYLTYPE loc, ir_variable *var)
4244 {
4245 unsigned num_vertices = 0;
4246
4247 if (state->tcs_output_vertices_specified) {
4248 if (!state->out_qualifier->vertices->
4249 process_qualifier_constant(state, "vertices",
4250 &num_vertices, false)) {
4251 return;
4252 }
4253
4254 if (num_vertices > state->Const.MaxPatchVertices) {
4255 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4256 "GL_MAX_PATCH_VERTICES", num_vertices);
4257 return;
4258 }
4259 }
4260
4261 if (!var->type->is_array() && !var->data.patch) {
4262 _mesa_glsl_error(&loc, state,
4263 "tessellation control shader outputs must be arrays");
4264
4265 /* To avoid cascading failures, short circuit the checks below. */
4266 return;
4267 }
4268
4269 if (var->data.patch)
4270 return;
4271
4272 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4273 &state->tcs_output_size,
4274 "tessellation control shader output");
4275 }
4276
4277 /**
4278 * Do additional processing necessary for tessellation control/evaluation shader
4279 * input declarations. This covers both interface block arrays and bare input
4280 * variables.
4281 */
4282 static void
4283 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4284 YYLTYPE loc, ir_variable *var)
4285 {
4286 if (!var->type->is_array() && !var->data.patch) {
4287 _mesa_glsl_error(&loc, state,
4288 "per-vertex tessellation shader inputs must be arrays");
4289 /* Avoid cascading failures. */
4290 return;
4291 }
4292
4293 if (var->data.patch)
4294 return;
4295
4296 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4297 if (var->type->is_unsized_array()) {
4298 var->type = glsl_type::get_array_instance(var->type->fields.array,
4299 state->Const.MaxPatchVertices);
4300 }
4301 }
4302
4303
4304 /**
4305 * Do additional processing necessary for geometry shader input declarations
4306 * (this covers both interface blocks arrays and bare input variables).
4307 */
4308 static void
4309 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4310 YYLTYPE loc, ir_variable *var)
4311 {
4312 unsigned num_vertices = 0;
4313
4314 if (state->gs_input_prim_type_specified) {
4315 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4316 }
4317
4318 /* Geometry shader input variables must be arrays. Caller should have
4319 * reported an error for this.
4320 */
4321 if (!var->type->is_array()) {
4322 assert(state->error);
4323
4324 /* To avoid cascading failures, short circuit the checks below. */
4325 return;
4326 }
4327
4328 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4329 &state->gs_input_size,
4330 "geometry shader input");
4331 }
4332
4333 void
4334 validate_identifier(const char *identifier, YYLTYPE loc,
4335 struct _mesa_glsl_parse_state *state)
4336 {
4337 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4338 *
4339 * "Identifiers starting with "gl_" are reserved for use by
4340 * OpenGL, and may not be declared in a shader as either a
4341 * variable or a function."
4342 */
4343 if (is_gl_identifier(identifier)) {
4344 _mesa_glsl_error(&loc, state,
4345 "identifier `%s' uses reserved `gl_' prefix",
4346 identifier);
4347 } else if (strstr(identifier, "__")) {
4348 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4349 * spec:
4350 *
4351 * "In addition, all identifiers containing two
4352 * consecutive underscores (__) are reserved as
4353 * possible future keywords."
4354 *
4355 * The intention is that names containing __ are reserved for internal
4356 * use by the implementation, and names prefixed with GL_ are reserved
4357 * for use by Khronos. Names simply containing __ are dangerous to use,
4358 * but should be allowed.
4359 *
4360 * A future version of the GLSL specification will clarify this.
4361 */
4362 _mesa_glsl_warning(&loc, state,
4363 "identifier `%s' uses reserved `__' string",
4364 identifier);
4365 }
4366 }
4367
4368 ir_rvalue *
4369 ast_declarator_list::hir(exec_list *instructions,
4370 struct _mesa_glsl_parse_state *state)
4371 {
4372 void *ctx = state;
4373 const struct glsl_type *decl_type;
4374 const char *type_name = NULL;
4375 ir_rvalue *result = NULL;
4376 YYLTYPE loc = this->get_location();
4377
4378 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4379 *
4380 * "To ensure that a particular output variable is invariant, it is
4381 * necessary to use the invariant qualifier. It can either be used to
4382 * qualify a previously declared variable as being invariant
4383 *
4384 * invariant gl_Position; // make existing gl_Position be invariant"
4385 *
4386 * In these cases the parser will set the 'invariant' flag in the declarator
4387 * list, and the type will be NULL.
4388 */
4389 if (this->invariant) {
4390 assert(this->type == NULL);
4391
4392 if (state->current_function != NULL) {
4393 _mesa_glsl_error(& loc, state,
4394 "all uses of `invariant' keyword must be at global "
4395 "scope");
4396 }
4397
4398 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4399 assert(decl->array_specifier == NULL);
4400 assert(decl->initializer == NULL);
4401
4402 ir_variable *const earlier =
4403 state->symbols->get_variable(decl->identifier);
4404 if (earlier == NULL) {
4405 _mesa_glsl_error(& loc, state,
4406 "undeclared variable `%s' cannot be marked "
4407 "invariant", decl->identifier);
4408 } else if (!is_varying_var(earlier, state->stage)) {
4409 _mesa_glsl_error(&loc, state,
4410 "`%s' cannot be marked invariant; interfaces between "
4411 "shader stages only.", decl->identifier);
4412 } else if (earlier->data.used) {
4413 _mesa_glsl_error(& loc, state,
4414 "variable `%s' may not be redeclared "
4415 "`invariant' after being used",
4416 earlier->name);
4417 } else {
4418 earlier->data.invariant = true;
4419 }
4420 }
4421
4422 /* Invariant redeclarations do not have r-values.
4423 */
4424 return NULL;
4425 }
4426
4427 if (this->precise) {
4428 assert(this->type == NULL);
4429
4430 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4431 assert(decl->array_specifier == NULL);
4432 assert(decl->initializer == NULL);
4433
4434 ir_variable *const earlier =
4435 state->symbols->get_variable(decl->identifier);
4436 if (earlier == NULL) {
4437 _mesa_glsl_error(& loc, state,
4438 "undeclared variable `%s' cannot be marked "
4439 "precise", decl->identifier);
4440 } else if (state->current_function != NULL &&
4441 !state->symbols->name_declared_this_scope(decl->identifier)) {
4442 /* Note: we have to check if we're in a function, since
4443 * builtins are treated as having come from another scope.
4444 */
4445 _mesa_glsl_error(& loc, state,
4446 "variable `%s' from an outer scope may not be "
4447 "redeclared `precise' in this scope",
4448 earlier->name);
4449 } else if (earlier->data.used) {
4450 _mesa_glsl_error(& loc, state,
4451 "variable `%s' may not be redeclared "
4452 "`precise' after being used",
4453 earlier->name);
4454 } else {
4455 earlier->data.precise = true;
4456 }
4457 }
4458
4459 /* Precise redeclarations do not have r-values either. */
4460 return NULL;
4461 }
4462
4463 assert(this->type != NULL);
4464 assert(!this->invariant);
4465 assert(!this->precise);
4466
4467 /* The type specifier may contain a structure definition. Process that
4468 * before any of the variable declarations.
4469 */
4470 (void) this->type->specifier->hir(instructions, state);
4471
4472 decl_type = this->type->glsl_type(& type_name, state);
4473
4474 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4475 * "Buffer variables may only be declared inside interface blocks
4476 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4477 * shader storage blocks. It is a compile-time error to declare buffer
4478 * variables at global scope (outside a block)."
4479 */
4480 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4481 _mesa_glsl_error(&loc, state,
4482 "buffer variables cannot be declared outside "
4483 "interface blocks");
4484 }
4485
4486 /* An offset-qualified atomic counter declaration sets the default
4487 * offset for the next declaration within the same atomic counter
4488 * buffer.
4489 */
4490 if (decl_type && decl_type->contains_atomic()) {
4491 if (type->qualifier.flags.q.explicit_binding &&
4492 type->qualifier.flags.q.explicit_offset) {
4493 unsigned qual_binding;
4494 unsigned qual_offset;
4495 if (process_qualifier_constant(state, &loc, "binding",
4496 type->qualifier.binding,
4497 &qual_binding)
4498 && process_qualifier_constant(state, &loc, "offset",
4499 type->qualifier.offset,
4500 &qual_offset)) {
4501 state->atomic_counter_offsets[qual_binding] = qual_offset;
4502 }
4503 }
4504
4505 ast_type_qualifier allowed_atomic_qual_mask;
4506 allowed_atomic_qual_mask.flags.i = 0;
4507 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4508 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4509 allowed_atomic_qual_mask.flags.q.uniform = 1;
4510
4511 type->qualifier.validate_flags(&loc, state,
4512 "invalid layout qualifier for "
4513 "atomic_uint",
4514 allowed_atomic_qual_mask);
4515 }
4516
4517 if (this->declarations.is_empty()) {
4518 /* If there is no structure involved in the program text, there are two
4519 * possible scenarios:
4520 *
4521 * - The program text contained something like 'vec4;'. This is an
4522 * empty declaration. It is valid but weird. Emit a warning.
4523 *
4524 * - The program text contained something like 'S;' and 'S' is not the
4525 * name of a known structure type. This is both invalid and weird.
4526 * Emit an error.
4527 *
4528 * - The program text contained something like 'mediump float;'
4529 * when the programmer probably meant 'precision mediump
4530 * float;' Emit a warning with a description of what they
4531 * probably meant to do.
4532 *
4533 * Note that if decl_type is NULL and there is a structure involved,
4534 * there must have been some sort of error with the structure. In this
4535 * case we assume that an error was already generated on this line of
4536 * code for the structure. There is no need to generate an additional,
4537 * confusing error.
4538 */
4539 assert(this->type->specifier->structure == NULL || decl_type != NULL
4540 || state->error);
4541
4542 if (decl_type == NULL) {
4543 _mesa_glsl_error(&loc, state,
4544 "invalid type `%s' in empty declaration",
4545 type_name);
4546 } else {
4547 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4548 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4549 * spec:
4550 *
4551 * "... any declaration that leaves the size undefined is
4552 * disallowed as this would add complexity and there are no
4553 * use-cases."
4554 */
4555 if (state->es_shader && decl_type->is_unsized_array()) {
4556 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4557 "or implicitly defined");
4558 }
4559
4560 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4561 *
4562 * "The combinations of types and qualifiers that cause
4563 * compile-time or link-time errors are the same whether or not
4564 * the declaration is empty."
4565 */
4566 validate_array_dimensions(decl_type, state, &loc);
4567 }
4568
4569 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4570 /* Empty atomic counter declarations are allowed and useful
4571 * to set the default offset qualifier.
4572 */
4573 return NULL;
4574 } else if (this->type->qualifier.precision != ast_precision_none) {
4575 if (this->type->specifier->structure != NULL) {
4576 _mesa_glsl_error(&loc, state,
4577 "precision qualifiers can't be applied "
4578 "to structures");
4579 } else {
4580 static const char *const precision_names[] = {
4581 "highp",
4582 "highp",
4583 "mediump",
4584 "lowp"
4585 };
4586
4587 _mesa_glsl_warning(&loc, state,
4588 "empty declaration with precision "
4589 "qualifier, to set the default precision, "
4590 "use `precision %s %s;'",
4591 precision_names[this->type->
4592 qualifier.precision],
4593 type_name);
4594 }
4595 } else if (this->type->specifier->structure == NULL) {
4596 _mesa_glsl_warning(&loc, state, "empty declaration");
4597 }
4598 }
4599 }
4600
4601 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4602 const struct glsl_type *var_type;
4603 ir_variable *var;
4604 const char *identifier = decl->identifier;
4605 /* FINISHME: Emit a warning if a variable declaration shadows a
4606 * FINISHME: declaration at a higher scope.
4607 */
4608
4609 if ((decl_type == NULL) || decl_type->is_void()) {
4610 if (type_name != NULL) {
4611 _mesa_glsl_error(& loc, state,
4612 "invalid type `%s' in declaration of `%s'",
4613 type_name, decl->identifier);
4614 } else {
4615 _mesa_glsl_error(& loc, state,
4616 "invalid type in declaration of `%s'",
4617 decl->identifier);
4618 }
4619 continue;
4620 }
4621
4622 if (this->type->qualifier.flags.q.subroutine) {
4623 const glsl_type *t;
4624 const char *name;
4625
4626 t = state->symbols->get_type(this->type->specifier->type_name);
4627 if (!t)
4628 _mesa_glsl_error(& loc, state,
4629 "invalid type in declaration of `%s'",
4630 decl->identifier);
4631 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4632
4633 identifier = name;
4634
4635 }
4636 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4637 state);
4638
4639 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4640
4641 /* The 'varying in' and 'varying out' qualifiers can only be used with
4642 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4643 * yet.
4644 */
4645 if (this->type->qualifier.flags.q.varying) {
4646 if (this->type->qualifier.flags.q.in) {
4647 _mesa_glsl_error(& loc, state,
4648 "`varying in' qualifier in declaration of "
4649 "`%s' only valid for geometry shaders using "
4650 "ARB_geometry_shader4 or EXT_geometry_shader4",
4651 decl->identifier);
4652 } else if (this->type->qualifier.flags.q.out) {
4653 _mesa_glsl_error(& loc, state,
4654 "`varying out' qualifier in declaration of "
4655 "`%s' only valid for geometry shaders using "
4656 "ARB_geometry_shader4 or EXT_geometry_shader4",
4657 decl->identifier);
4658 }
4659 }
4660
4661 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4662 *
4663 * "Global variables can only use the qualifiers const,
4664 * attribute, uniform, or varying. Only one may be
4665 * specified.
4666 *
4667 * Local variables can only use the qualifier const."
4668 *
4669 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4670 * any extension that adds the 'layout' keyword.
4671 */
4672 if (!state->is_version(130, 300)
4673 && !state->has_explicit_attrib_location()
4674 && !state->has_separate_shader_objects()
4675 && !state->ARB_fragment_coord_conventions_enable) {
4676 if (this->type->qualifier.flags.q.out) {
4677 _mesa_glsl_error(& loc, state,
4678 "`out' qualifier in declaration of `%s' "
4679 "only valid for function parameters in %s",
4680 decl->identifier, state->get_version_string());
4681 }
4682 if (this->type->qualifier.flags.q.in) {
4683 _mesa_glsl_error(& loc, state,
4684 "`in' qualifier in declaration of `%s' "
4685 "only valid for function parameters in %s",
4686 decl->identifier, state->get_version_string());
4687 }
4688 /* FINISHME: Test for other invalid qualifiers. */
4689 }
4690
4691 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4692 & loc, false);
4693 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4694 &loc);
4695
4696 if (this->type->qualifier.flags.q.invariant) {
4697 if (!is_varying_var(var, state->stage)) {
4698 _mesa_glsl_error(&loc, state,
4699 "`%s' cannot be marked invariant; interfaces between "
4700 "shader stages only", var->name);
4701 }
4702 }
4703
4704 if (state->current_function != NULL) {
4705 const char *mode = NULL;
4706 const char *extra = "";
4707
4708 /* There is no need to check for 'inout' here because the parser will
4709 * only allow that in function parameter lists.
4710 */
4711 if (this->type->qualifier.flags.q.attribute) {
4712 mode = "attribute";
4713 } else if (this->type->qualifier.flags.q.subroutine) {
4714 mode = "subroutine uniform";
4715 } else if (this->type->qualifier.flags.q.uniform) {
4716 mode = "uniform";
4717 } else if (this->type->qualifier.flags.q.varying) {
4718 mode = "varying";
4719 } else if (this->type->qualifier.flags.q.in) {
4720 mode = "in";
4721 extra = " or in function parameter list";
4722 } else if (this->type->qualifier.flags.q.out) {
4723 mode = "out";
4724 extra = " or in function parameter list";
4725 }
4726
4727 if (mode) {
4728 _mesa_glsl_error(& loc, state,
4729 "%s variable `%s' must be declared at "
4730 "global scope%s",
4731 mode, var->name, extra);
4732 }
4733 } else if (var->data.mode == ir_var_shader_in) {
4734 var->data.read_only = true;
4735
4736 if (state->stage == MESA_SHADER_VERTEX) {
4737 bool error_emitted = false;
4738
4739 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4740 *
4741 * "Vertex shader inputs can only be float, floating-point
4742 * vectors, matrices, signed and unsigned integers and integer
4743 * vectors. Vertex shader inputs can also form arrays of these
4744 * types, but not structures."
4745 *
4746 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4747 *
4748 * "Vertex shader inputs can only be float, floating-point
4749 * vectors, matrices, signed and unsigned integers and integer
4750 * vectors. They cannot be arrays or structures."
4751 *
4752 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4753 *
4754 * "The attribute qualifier can be used only with float,
4755 * floating-point vectors, and matrices. Attribute variables
4756 * cannot be declared as arrays or structures."
4757 *
4758 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4759 *
4760 * "Vertex shader inputs can only be float, floating-point
4761 * vectors, matrices, signed and unsigned integers and integer
4762 * vectors. Vertex shader inputs cannot be arrays or
4763 * structures."
4764 */
4765 const glsl_type *check_type = var->type->without_array();
4766
4767 switch (check_type->base_type) {
4768 case GLSL_TYPE_FLOAT:
4769 break;
4770 case GLSL_TYPE_UINT:
4771 case GLSL_TYPE_INT:
4772 if (state->is_version(120, 300))
4773 break;
4774 case GLSL_TYPE_DOUBLE:
4775 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4776 break;
4777 /* FALLTHROUGH */
4778 default:
4779 _mesa_glsl_error(& loc, state,
4780 "vertex shader input / attribute cannot have "
4781 "type %s`%s'",
4782 var->type->is_array() ? "array of " : "",
4783 check_type->name);
4784 error_emitted = true;
4785 }
4786
4787 if (!error_emitted && var->type->is_array() &&
4788 !state->check_version(150, 0, &loc,
4789 "vertex shader input / attribute "
4790 "cannot have array type")) {
4791 error_emitted = true;
4792 }
4793 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4794 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4795 *
4796 * Geometry shader input variables get the per-vertex values
4797 * written out by vertex shader output variables of the same
4798 * names. Since a geometry shader operates on a set of
4799 * vertices, each input varying variable (or input block, see
4800 * interface blocks below) needs to be declared as an array.
4801 */
4802 if (!var->type->is_array()) {
4803 _mesa_glsl_error(&loc, state,
4804 "geometry shader inputs must be arrays");
4805 }
4806
4807 handle_geometry_shader_input_decl(state, loc, var);
4808 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4809 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4810 *
4811 * It is a compile-time error to declare a fragment shader
4812 * input with, or that contains, any of the following types:
4813 *
4814 * * A boolean type
4815 * * An opaque type
4816 * * An array of arrays
4817 * * An array of structures
4818 * * A structure containing an array
4819 * * A structure containing a structure
4820 */
4821 if (state->es_shader) {
4822 const glsl_type *check_type = var->type->without_array();
4823 if (check_type->is_boolean() ||
4824 check_type->contains_opaque()) {
4825 _mesa_glsl_error(&loc, state,
4826 "fragment shader input cannot have type %s",
4827 check_type->name);
4828 }
4829 if (var->type->is_array() &&
4830 var->type->fields.array->is_array()) {
4831 _mesa_glsl_error(&loc, state,
4832 "%s shader output "
4833 "cannot have an array of arrays",
4834 _mesa_shader_stage_to_string(state->stage));
4835 }
4836 if (var->type->is_array() &&
4837 var->type->fields.array->is_record()) {
4838 _mesa_glsl_error(&loc, state,
4839 "fragment shader input "
4840 "cannot have an array of structs");
4841 }
4842 if (var->type->is_record()) {
4843 for (unsigned i = 0; i < var->type->length; i++) {
4844 if (var->type->fields.structure[i].type->is_array() ||
4845 var->type->fields.structure[i].type->is_record())
4846 _mesa_glsl_error(&loc, state,
4847 "fragement shader input cannot have "
4848 "a struct that contains an "
4849 "array or struct");
4850 }
4851 }
4852 }
4853 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4854 state->stage == MESA_SHADER_TESS_EVAL) {
4855 handle_tess_shader_input_decl(state, loc, var);
4856 }
4857 } else if (var->data.mode == ir_var_shader_out) {
4858 const glsl_type *check_type = var->type->without_array();
4859
4860 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4861 *
4862 * It is a compile-time error to declare a vertex, tessellation
4863 * evaluation, tessellation control, or geometry shader output
4864 * that contains any of the following:
4865 *
4866 * * A Boolean type (bool, bvec2 ...)
4867 * * An opaque type
4868 */
4869 if (check_type->is_boolean() || check_type->contains_opaque())
4870 _mesa_glsl_error(&loc, state,
4871 "%s shader output cannot have type %s",
4872 _mesa_shader_stage_to_string(state->stage),
4873 check_type->name);
4874
4875 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4876 *
4877 * It is a compile-time error to declare a fragment shader output
4878 * that contains any of the following:
4879 *
4880 * * A Boolean type (bool, bvec2 ...)
4881 * * A double-precision scalar or vector (double, dvec2 ...)
4882 * * An opaque type
4883 * * Any matrix type
4884 * * A structure
4885 */
4886 if (state->stage == MESA_SHADER_FRAGMENT) {
4887 if (check_type->is_record() || check_type->is_matrix())
4888 _mesa_glsl_error(&loc, state,
4889 "fragment shader output "
4890 "cannot have struct or matrix type");
4891 switch (check_type->base_type) {
4892 case GLSL_TYPE_UINT:
4893 case GLSL_TYPE_INT:
4894 case GLSL_TYPE_FLOAT:
4895 break;
4896 default:
4897 _mesa_glsl_error(&loc, state,
4898 "fragment shader output cannot have "
4899 "type %s", check_type->name);
4900 }
4901 }
4902
4903 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4904 *
4905 * It is a compile-time error to declare a vertex shader output
4906 * with, or that contains, any of the following types:
4907 *
4908 * * A boolean type
4909 * * An opaque type
4910 * * An array of arrays
4911 * * An array of structures
4912 * * A structure containing an array
4913 * * A structure containing a structure
4914 *
4915 * It is a compile-time error to declare a fragment shader output
4916 * with, or that contains, any of the following types:
4917 *
4918 * * A boolean type
4919 * * An opaque type
4920 * * A matrix
4921 * * A structure
4922 * * An array of array
4923 */
4924 if (state->es_shader) {
4925 if (var->type->is_array() &&
4926 var->type->fields.array->is_array()) {
4927 _mesa_glsl_error(&loc, state,
4928 "%s shader output "
4929 "cannot have an array of arrays",
4930 _mesa_shader_stage_to_string(state->stage));
4931 }
4932 if (state->stage == MESA_SHADER_VERTEX) {
4933 if (var->type->is_array() &&
4934 var->type->fields.array->is_record()) {
4935 _mesa_glsl_error(&loc, state,
4936 "vertex shader output "
4937 "cannot have an array of structs");
4938 }
4939 if (var->type->is_record()) {
4940 for (unsigned i = 0; i < var->type->length; i++) {
4941 if (var->type->fields.structure[i].type->is_array() ||
4942 var->type->fields.structure[i].type->is_record())
4943 _mesa_glsl_error(&loc, state,
4944 "vertex shader output cannot have a "
4945 "struct that contains an "
4946 "array or struct");
4947 }
4948 }
4949 }
4950 }
4951
4952 if (state->stage == MESA_SHADER_TESS_CTRL) {
4953 handle_tess_ctrl_shader_output_decl(state, loc, var);
4954 }
4955 } else if (var->type->contains_subroutine()) {
4956 /* declare subroutine uniforms as hidden */
4957 var->data.how_declared = ir_var_hidden;
4958 }
4959
4960 /* From section 4.3.4 of the GLSL 4.00 spec:
4961 * "Input variables may not be declared using the patch in qualifier
4962 * in tessellation control or geometry shaders."
4963 *
4964 * From section 4.3.6 of the GLSL 4.00 spec:
4965 * "It is an error to use patch out in a vertex, tessellation
4966 * evaluation, or geometry shader."
4967 *
4968 * This doesn't explicitly forbid using them in a fragment shader, but
4969 * that's probably just an oversight.
4970 */
4971 if (state->stage != MESA_SHADER_TESS_EVAL
4972 && this->type->qualifier.flags.q.patch
4973 && this->type->qualifier.flags.q.in) {
4974
4975 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4976 "tessellation evaluation shader");
4977 }
4978
4979 if (state->stage != MESA_SHADER_TESS_CTRL
4980 && this->type->qualifier.flags.q.patch
4981 && this->type->qualifier.flags.q.out) {
4982
4983 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4984 "tessellation control shader");
4985 }
4986
4987 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4988 */
4989 if (this->type->qualifier.precision != ast_precision_none) {
4990 state->check_precision_qualifiers_allowed(&loc);
4991 }
4992
4993
4994 /* If a precision qualifier is allowed on a type, it is allowed on
4995 * an array of that type.
4996 */
4997 if (!(this->type->qualifier.precision == ast_precision_none
4998 || precision_qualifier_allowed(var->type->without_array()))) {
4999
5000 _mesa_glsl_error(&loc, state,
5001 "precision qualifiers apply only to floating point"
5002 ", integer and opaque types");
5003 }
5004
5005 /* From section 4.1.7 of the GLSL 4.40 spec:
5006 *
5007 * "[Opaque types] can only be declared as function
5008 * parameters or uniform-qualified variables."
5009 */
5010 if (var_type->contains_opaque() &&
5011 !this->type->qualifier.flags.q.uniform) {
5012 _mesa_glsl_error(&loc, state,
5013 "opaque variables must be declared uniform");
5014 }
5015
5016 /* Process the initializer and add its instructions to a temporary
5017 * list. This list will be added to the instruction stream (below) after
5018 * the declaration is added. This is done because in some cases (such as
5019 * redeclarations) the declaration may not actually be added to the
5020 * instruction stream.
5021 */
5022 exec_list initializer_instructions;
5023
5024 /* Examine var name here since var may get deleted in the next call */
5025 bool var_is_gl_id = is_gl_identifier(var->name);
5026
5027 ir_variable *earlier =
5028 get_variable_being_redeclared(var, decl->get_location(), state,
5029 false /* allow_all_redeclarations */);
5030 if (earlier != NULL) {
5031 if (var_is_gl_id &&
5032 earlier->data.how_declared == ir_var_declared_in_block) {
5033 _mesa_glsl_error(&loc, state,
5034 "`%s' has already been redeclared using "
5035 "gl_PerVertex", earlier->name);
5036 }
5037 earlier->data.how_declared = ir_var_declared_normally;
5038 }
5039
5040 if (decl->initializer != NULL) {
5041 result = process_initializer((earlier == NULL) ? var : earlier,
5042 decl, this->type,
5043 &initializer_instructions, state);
5044 } else {
5045 validate_array_dimensions(var_type, state, &loc);
5046 }
5047
5048 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5049 *
5050 * "It is an error to write to a const variable outside of
5051 * its declaration, so they must be initialized when
5052 * declared."
5053 */
5054 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5055 _mesa_glsl_error(& loc, state,
5056 "const declaration of `%s' must be initialized",
5057 decl->identifier);
5058 }
5059
5060 if (state->es_shader) {
5061 const glsl_type *const t = (earlier == NULL)
5062 ? var->type : earlier->type;
5063
5064 if (t->is_unsized_array())
5065 /* Section 10.17 of the GLSL ES 1.00 specification states that
5066 * unsized array declarations have been removed from the language.
5067 * Arrays that are sized using an initializer are still explicitly
5068 * sized. However, GLSL ES 1.00 does not allow array
5069 * initializers. That is only allowed in GLSL ES 3.00.
5070 *
5071 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5072 *
5073 * "An array type can also be formed without specifying a size
5074 * if the definition includes an initializer:
5075 *
5076 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5077 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5078 *
5079 * float a[5];
5080 * float b[] = a;"
5081 */
5082 _mesa_glsl_error(& loc, state,
5083 "unsized array declarations are not allowed in "
5084 "GLSL ES");
5085 }
5086
5087 /* If the declaration is not a redeclaration, there are a few additional
5088 * semantic checks that must be applied. In addition, variable that was
5089 * created for the declaration should be added to the IR stream.
5090 */
5091 if (earlier == NULL) {
5092 validate_identifier(decl->identifier, loc, state);
5093
5094 /* Add the variable to the symbol table. Note that the initializer's
5095 * IR was already processed earlier (though it hasn't been emitted
5096 * yet), without the variable in scope.
5097 *
5098 * This differs from most C-like languages, but it follows the GLSL
5099 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5100 * spec:
5101 *
5102 * "Within a declaration, the scope of a name starts immediately
5103 * after the initializer if present or immediately after the name
5104 * being declared if not."
5105 */
5106 if (!state->symbols->add_variable(var)) {
5107 YYLTYPE loc = this->get_location();
5108 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5109 "current scope", decl->identifier);
5110 continue;
5111 }
5112
5113 /* Push the variable declaration to the top. It means that all the
5114 * variable declarations will appear in a funny last-to-first order,
5115 * but otherwise we run into trouble if a function is prototyped, a
5116 * global var is decled, then the function is defined with usage of
5117 * the global var. See glslparsertest's CorrectModule.frag.
5118 */
5119 instructions->push_head(var);
5120 }
5121
5122 instructions->append_list(&initializer_instructions);
5123 }
5124
5125
5126 /* Generally, variable declarations do not have r-values. However,
5127 * one is used for the declaration in
5128 *
5129 * while (bool b = some_condition()) {
5130 * ...
5131 * }
5132 *
5133 * so we return the rvalue from the last seen declaration here.
5134 */
5135 return result;
5136 }
5137
5138
5139 ir_rvalue *
5140 ast_parameter_declarator::hir(exec_list *instructions,
5141 struct _mesa_glsl_parse_state *state)
5142 {
5143 void *ctx = state;
5144 const struct glsl_type *type;
5145 const char *name = NULL;
5146 YYLTYPE loc = this->get_location();
5147
5148 type = this->type->glsl_type(& name, state);
5149
5150 if (type == NULL) {
5151 if (name != NULL) {
5152 _mesa_glsl_error(& loc, state,
5153 "invalid type `%s' in declaration of `%s'",
5154 name, this->identifier);
5155 } else {
5156 _mesa_glsl_error(& loc, state,
5157 "invalid type in declaration of `%s'",
5158 this->identifier);
5159 }
5160
5161 type = glsl_type::error_type;
5162 }
5163
5164 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5165 *
5166 * "Functions that accept no input arguments need not use void in the
5167 * argument list because prototypes (or definitions) are required and
5168 * therefore there is no ambiguity when an empty argument list "( )" is
5169 * declared. The idiom "(void)" as a parameter list is provided for
5170 * convenience."
5171 *
5172 * Placing this check here prevents a void parameter being set up
5173 * for a function, which avoids tripping up checks for main taking
5174 * parameters and lookups of an unnamed symbol.
5175 */
5176 if (type->is_void()) {
5177 if (this->identifier != NULL)
5178 _mesa_glsl_error(& loc, state,
5179 "named parameter cannot have type `void'");
5180
5181 is_void = true;
5182 return NULL;
5183 }
5184
5185 if (formal_parameter && (this->identifier == NULL)) {
5186 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5187 return NULL;
5188 }
5189
5190 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5191 * call already handled the "vec4[..] foo" case.
5192 */
5193 type = process_array_type(&loc, type, this->array_specifier, state);
5194
5195 if (!type->is_error() && type->is_unsized_array()) {
5196 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5197 "a declared size");
5198 type = glsl_type::error_type;
5199 }
5200
5201 is_void = false;
5202 ir_variable *var = new(ctx)
5203 ir_variable(type, this->identifier, ir_var_function_in);
5204
5205 /* Apply any specified qualifiers to the parameter declaration. Note that
5206 * for function parameters the default mode is 'in'.
5207 */
5208 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5209 true);
5210
5211 /* From section 4.1.7 of the GLSL 4.40 spec:
5212 *
5213 * "Opaque variables cannot be treated as l-values; hence cannot
5214 * be used as out or inout function parameters, nor can they be
5215 * assigned into."
5216 */
5217 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5218 && type->contains_opaque()) {
5219 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5220 "contain opaque variables");
5221 type = glsl_type::error_type;
5222 }
5223
5224 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5225 *
5226 * "When calling a function, expressions that do not evaluate to
5227 * l-values cannot be passed to parameters declared as out or inout."
5228 *
5229 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5230 *
5231 * "Other binary or unary expressions, non-dereferenced arrays,
5232 * function names, swizzles with repeated fields, and constants
5233 * cannot be l-values."
5234 *
5235 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5236 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5237 */
5238 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5239 && type->is_array()
5240 && !state->check_version(120, 100, &loc,
5241 "arrays cannot be out or inout parameters")) {
5242 type = glsl_type::error_type;
5243 }
5244
5245 instructions->push_tail(var);
5246
5247 /* Parameter declarations do not have r-values.
5248 */
5249 return NULL;
5250 }
5251
5252
5253 void
5254 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5255 bool formal,
5256 exec_list *ir_parameters,
5257 _mesa_glsl_parse_state *state)
5258 {
5259 ast_parameter_declarator *void_param = NULL;
5260 unsigned count = 0;
5261
5262 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5263 param->formal_parameter = formal;
5264 param->hir(ir_parameters, state);
5265
5266 if (param->is_void)
5267 void_param = param;
5268
5269 count++;
5270 }
5271
5272 if ((void_param != NULL) && (count > 1)) {
5273 YYLTYPE loc = void_param->get_location();
5274
5275 _mesa_glsl_error(& loc, state,
5276 "`void' parameter must be only parameter");
5277 }
5278 }
5279
5280
5281 void
5282 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5283 {
5284 /* IR invariants disallow function declarations or definitions
5285 * nested within other function definitions. But there is no
5286 * requirement about the relative order of function declarations
5287 * and definitions with respect to one another. So simply insert
5288 * the new ir_function block at the end of the toplevel instruction
5289 * list.
5290 */
5291 state->toplevel_ir->push_tail(f);
5292 }
5293
5294
5295 ir_rvalue *
5296 ast_function::hir(exec_list *instructions,
5297 struct _mesa_glsl_parse_state *state)
5298 {
5299 void *ctx = state;
5300 ir_function *f = NULL;
5301 ir_function_signature *sig = NULL;
5302 exec_list hir_parameters;
5303 YYLTYPE loc = this->get_location();
5304
5305 const char *const name = identifier;
5306
5307 /* New functions are always added to the top-level IR instruction stream,
5308 * so this instruction list pointer is ignored. See also emit_function
5309 * (called below).
5310 */
5311 (void) instructions;
5312
5313 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5314 *
5315 * "Function declarations (prototypes) cannot occur inside of functions;
5316 * they must be at global scope, or for the built-in functions, outside
5317 * the global scope."
5318 *
5319 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5320 *
5321 * "User defined functions may only be defined within the global scope."
5322 *
5323 * Note that this language does not appear in GLSL 1.10.
5324 */
5325 if ((state->current_function != NULL) &&
5326 state->is_version(120, 100)) {
5327 YYLTYPE loc = this->get_location();
5328 _mesa_glsl_error(&loc, state,
5329 "declaration of function `%s' not allowed within "
5330 "function body", name);
5331 }
5332
5333 validate_identifier(name, this->get_location(), state);
5334
5335 /* Convert the list of function parameters to HIR now so that they can be
5336 * used below to compare this function's signature with previously seen
5337 * signatures for functions with the same name.
5338 */
5339 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5340 is_definition,
5341 & hir_parameters, state);
5342
5343 const char *return_type_name;
5344 const glsl_type *return_type =
5345 this->return_type->glsl_type(& return_type_name, state);
5346
5347 if (!return_type) {
5348 YYLTYPE loc = this->get_location();
5349 _mesa_glsl_error(&loc, state,
5350 "function `%s' has undeclared return type `%s'",
5351 name, return_type_name);
5352 return_type = glsl_type::error_type;
5353 }
5354
5355 /* ARB_shader_subroutine states:
5356 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5357 * subroutine(...) to a function declaration."
5358 */
5359 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5360 YYLTYPE loc = this->get_location();
5361 _mesa_glsl_error(&loc, state,
5362 "function declaration `%s' cannot have subroutine prepended",
5363 name);
5364 }
5365
5366 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5367 * "No qualifier is allowed on the return type of a function."
5368 */
5369 if (this->return_type->has_qualifiers(state)) {
5370 YYLTYPE loc = this->get_location();
5371 _mesa_glsl_error(& loc, state,
5372 "function `%s' return type has qualifiers", name);
5373 }
5374
5375 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5376 *
5377 * "Arrays are allowed as arguments and as the return type. In both
5378 * cases, the array must be explicitly sized."
5379 */
5380 if (return_type->is_unsized_array()) {
5381 YYLTYPE loc = this->get_location();
5382 _mesa_glsl_error(& loc, state,
5383 "function `%s' return type array must be explicitly "
5384 "sized", name);
5385 }
5386
5387 /* From section 4.1.7 of the GLSL 4.40 spec:
5388 *
5389 * "[Opaque types] can only be declared as function parameters
5390 * or uniform-qualified variables."
5391 */
5392 if (return_type->contains_opaque()) {
5393 YYLTYPE loc = this->get_location();
5394 _mesa_glsl_error(&loc, state,
5395 "function `%s' return type can't contain an opaque type",
5396 name);
5397 }
5398
5399 /* Create an ir_function if one doesn't already exist. */
5400 f = state->symbols->get_function(name);
5401 if (f == NULL) {
5402 f = new(ctx) ir_function(name);
5403 if (!this->return_type->qualifier.flags.q.subroutine) {
5404 if (!state->symbols->add_function(f)) {
5405 /* This function name shadows a non-function use of the same name. */
5406 YYLTYPE loc = this->get_location();
5407 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5408 "non-function", name);
5409 return NULL;
5410 }
5411 }
5412 emit_function(state, f);
5413 }
5414
5415 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5416 *
5417 * "A shader cannot redefine or overload built-in functions."
5418 *
5419 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5420 *
5421 * "User code can overload the built-in functions but cannot redefine
5422 * them."
5423 */
5424 if (state->es_shader && state->language_version >= 300) {
5425 /* Local shader has no exact candidates; check the built-ins. */
5426 _mesa_glsl_initialize_builtin_functions();
5427 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5428 YYLTYPE loc = this->get_location();
5429 _mesa_glsl_error(& loc, state,
5430 "A shader cannot redefine or overload built-in "
5431 "function `%s' in GLSL ES 3.00", name);
5432 return NULL;
5433 }
5434 }
5435
5436 /* Verify that this function's signature either doesn't match a previously
5437 * seen signature for a function with the same name, or, if a match is found,
5438 * that the previously seen signature does not have an associated definition.
5439 */
5440 if (state->es_shader || f->has_user_signature()) {
5441 sig = f->exact_matching_signature(state, &hir_parameters);
5442 if (sig != NULL) {
5443 const char *badvar = sig->qualifiers_match(&hir_parameters);
5444 if (badvar != NULL) {
5445 YYLTYPE loc = this->get_location();
5446
5447 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5448 "qualifiers don't match prototype", name, badvar);
5449 }
5450
5451 if (sig->return_type != return_type) {
5452 YYLTYPE loc = this->get_location();
5453
5454 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5455 "match prototype", name);
5456 }
5457
5458 if (sig->is_defined) {
5459 if (is_definition) {
5460 YYLTYPE loc = this->get_location();
5461 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5462 } else {
5463 /* We just encountered a prototype that exactly matches a
5464 * function that's already been defined. This is redundant,
5465 * and we should ignore it.
5466 */
5467 return NULL;
5468 }
5469 }
5470 }
5471 }
5472
5473 /* Verify the return type of main() */
5474 if (strcmp(name, "main") == 0) {
5475 if (! return_type->is_void()) {
5476 YYLTYPE loc = this->get_location();
5477
5478 _mesa_glsl_error(& loc, state, "main() must return void");
5479 }
5480
5481 if (!hir_parameters.is_empty()) {
5482 YYLTYPE loc = this->get_location();
5483
5484 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5485 }
5486 }
5487
5488 /* Finish storing the information about this new function in its signature.
5489 */
5490 if (sig == NULL) {
5491 sig = new(ctx) ir_function_signature(return_type);
5492 f->add_signature(sig);
5493 }
5494
5495 sig->replace_parameters(&hir_parameters);
5496 signature = sig;
5497
5498 if (this->return_type->qualifier.flags.q.subroutine_def) {
5499 int idx;
5500
5501 if (this->return_type->qualifier.flags.q.explicit_index) {
5502 unsigned qual_index;
5503 if (process_qualifier_constant(state, &loc, "index",
5504 this->return_type->qualifier.index,
5505 &qual_index)) {
5506 if (!state->has_explicit_uniform_location()) {
5507 _mesa_glsl_error(&loc, state, "subroutine index requires "
5508 "GL_ARB_explicit_uniform_location or "
5509 "GLSL 4.30");
5510 } else if (qual_index >= MAX_SUBROUTINES) {
5511 _mesa_glsl_error(&loc, state,
5512 "invalid subroutine index (%d) index must "
5513 "be a number between 0 and "
5514 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5515 MAX_SUBROUTINES - 1);
5516 } else {
5517 f->subroutine_index = qual_index;
5518 }
5519 }
5520 }
5521
5522 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5523 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5524 f->num_subroutine_types);
5525 idx = 0;
5526 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5527 const struct glsl_type *type;
5528 /* the subroutine type must be already declared */
5529 type = state->symbols->get_type(decl->identifier);
5530 if (!type) {
5531 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5532 }
5533
5534 for (int i = 0; i < state->num_subroutine_types; i++) {
5535 ir_function *fn = state->subroutine_types[i];
5536 ir_function_signature *tsig = NULL;
5537
5538 if (strcmp(fn->name, decl->identifier))
5539 continue;
5540
5541 tsig = fn->matching_signature(state, &sig->parameters,
5542 false);
5543 if (!tsig) {
5544 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5545 } else {
5546 if (tsig->return_type != sig->return_type) {
5547 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5548 }
5549 }
5550 }
5551 f->subroutine_types[idx++] = type;
5552 }
5553 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5554 ir_function *,
5555 state->num_subroutines + 1);
5556 state->subroutines[state->num_subroutines] = f;
5557 state->num_subroutines++;
5558
5559 }
5560
5561 if (this->return_type->qualifier.flags.q.subroutine) {
5562 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5563 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5564 return NULL;
5565 }
5566 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5567 ir_function *,
5568 state->num_subroutine_types + 1);
5569 state->subroutine_types[state->num_subroutine_types] = f;
5570 state->num_subroutine_types++;
5571
5572 f->is_subroutine = true;
5573 }
5574
5575 /* Function declarations (prototypes) do not have r-values.
5576 */
5577 return NULL;
5578 }
5579
5580
5581 ir_rvalue *
5582 ast_function_definition::hir(exec_list *instructions,
5583 struct _mesa_glsl_parse_state *state)
5584 {
5585 prototype->is_definition = true;
5586 prototype->hir(instructions, state);
5587
5588 ir_function_signature *signature = prototype->signature;
5589 if (signature == NULL)
5590 return NULL;
5591
5592 assert(state->current_function == NULL);
5593 state->current_function = signature;
5594 state->found_return = false;
5595
5596 /* Duplicate parameters declared in the prototype as concrete variables.
5597 * Add these to the symbol table.
5598 */
5599 state->symbols->push_scope();
5600 foreach_in_list(ir_variable, var, &signature->parameters) {
5601 assert(var->as_variable() != NULL);
5602
5603 /* The only way a parameter would "exist" is if two parameters have
5604 * the same name.
5605 */
5606 if (state->symbols->name_declared_this_scope(var->name)) {
5607 YYLTYPE loc = this->get_location();
5608
5609 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5610 } else {
5611 state->symbols->add_variable(var);
5612 }
5613 }
5614
5615 /* Convert the body of the function to HIR. */
5616 this->body->hir(&signature->body, state);
5617 signature->is_defined = true;
5618
5619 state->symbols->pop_scope();
5620
5621 assert(state->current_function == signature);
5622 state->current_function = NULL;
5623
5624 if (!signature->return_type->is_void() && !state->found_return) {
5625 YYLTYPE loc = this->get_location();
5626 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5627 "%s, but no return statement",
5628 signature->function_name(),
5629 signature->return_type->name);
5630 }
5631
5632 /* Function definitions do not have r-values.
5633 */
5634 return NULL;
5635 }
5636
5637
5638 ir_rvalue *
5639 ast_jump_statement::hir(exec_list *instructions,
5640 struct _mesa_glsl_parse_state *state)
5641 {
5642 void *ctx = state;
5643
5644 switch (mode) {
5645 case ast_return: {
5646 ir_return *inst;
5647 assert(state->current_function);
5648
5649 if (opt_return_value) {
5650 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5651
5652 /* The value of the return type can be NULL if the shader says
5653 * 'return foo();' and foo() is a function that returns void.
5654 *
5655 * NOTE: The GLSL spec doesn't say that this is an error. The type
5656 * of the return value is void. If the return type of the function is
5657 * also void, then this should compile without error. Seriously.
5658 */
5659 const glsl_type *const ret_type =
5660 (ret == NULL) ? glsl_type::void_type : ret->type;
5661
5662 /* Implicit conversions are not allowed for return values prior to
5663 * ARB_shading_language_420pack.
5664 */
5665 if (state->current_function->return_type != ret_type) {
5666 YYLTYPE loc = this->get_location();
5667
5668 if (state->has_420pack()) {
5669 if (!apply_implicit_conversion(state->current_function->return_type,
5670 ret, state)) {
5671 _mesa_glsl_error(& loc, state,
5672 "could not implicitly convert return value "
5673 "to %s, in function `%s'",
5674 state->current_function->return_type->name,
5675 state->current_function->function_name());
5676 }
5677 } else {
5678 _mesa_glsl_error(& loc, state,
5679 "`return' with wrong type %s, in function `%s' "
5680 "returning %s",
5681 ret_type->name,
5682 state->current_function->function_name(),
5683 state->current_function->return_type->name);
5684 }
5685 } else if (state->current_function->return_type->base_type ==
5686 GLSL_TYPE_VOID) {
5687 YYLTYPE loc = this->get_location();
5688
5689 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5690 * specs add a clarification:
5691 *
5692 * "A void function can only use return without a return argument, even if
5693 * the return argument has void type. Return statements only accept values:
5694 *
5695 * void func1() { }
5696 * void func2() { return func1(); } // illegal return statement"
5697 */
5698 _mesa_glsl_error(& loc, state,
5699 "void functions can only use `return' without a "
5700 "return argument");
5701 }
5702
5703 inst = new(ctx) ir_return(ret);
5704 } else {
5705 if (state->current_function->return_type->base_type !=
5706 GLSL_TYPE_VOID) {
5707 YYLTYPE loc = this->get_location();
5708
5709 _mesa_glsl_error(& loc, state,
5710 "`return' with no value, in function %s returning "
5711 "non-void",
5712 state->current_function->function_name());
5713 }
5714 inst = new(ctx) ir_return;
5715 }
5716
5717 state->found_return = true;
5718 instructions->push_tail(inst);
5719 break;
5720 }
5721
5722 case ast_discard:
5723 if (state->stage != MESA_SHADER_FRAGMENT) {
5724 YYLTYPE loc = this->get_location();
5725
5726 _mesa_glsl_error(& loc, state,
5727 "`discard' may only appear in a fragment shader");
5728 }
5729 instructions->push_tail(new(ctx) ir_discard);
5730 break;
5731
5732 case ast_break:
5733 case ast_continue:
5734 if (mode == ast_continue &&
5735 state->loop_nesting_ast == NULL) {
5736 YYLTYPE loc = this->get_location();
5737
5738 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5739 } else if (mode == ast_break &&
5740 state->loop_nesting_ast == NULL &&
5741 state->switch_state.switch_nesting_ast == NULL) {
5742 YYLTYPE loc = this->get_location();
5743
5744 _mesa_glsl_error(& loc, state,
5745 "break may only appear in a loop or a switch");
5746 } else {
5747 /* For a loop, inline the for loop expression again, since we don't
5748 * know where near the end of the loop body the normal copy of it is
5749 * going to be placed. Same goes for the condition for a do-while
5750 * loop.
5751 */
5752 if (state->loop_nesting_ast != NULL &&
5753 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5754 if (state->loop_nesting_ast->rest_expression) {
5755 state->loop_nesting_ast->rest_expression->hir(instructions,
5756 state);
5757 }
5758 if (state->loop_nesting_ast->mode ==
5759 ast_iteration_statement::ast_do_while) {
5760 state->loop_nesting_ast->condition_to_hir(instructions, state);
5761 }
5762 }
5763
5764 if (state->switch_state.is_switch_innermost &&
5765 mode == ast_continue) {
5766 /* Set 'continue_inside' to true. */
5767 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5768 ir_dereference_variable *deref_continue_inside_var =
5769 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5770 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5771 true_val));
5772
5773 /* Break out from the switch, continue for the loop will
5774 * be called right after switch. */
5775 ir_loop_jump *const jump =
5776 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5777 instructions->push_tail(jump);
5778
5779 } else if (state->switch_state.is_switch_innermost &&
5780 mode == ast_break) {
5781 /* Force break out of switch by inserting a break. */
5782 ir_loop_jump *const jump =
5783 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5784 instructions->push_tail(jump);
5785 } else {
5786 ir_loop_jump *const jump =
5787 new(ctx) ir_loop_jump((mode == ast_break)
5788 ? ir_loop_jump::jump_break
5789 : ir_loop_jump::jump_continue);
5790 instructions->push_tail(jump);
5791 }
5792 }
5793
5794 break;
5795 }
5796
5797 /* Jump instructions do not have r-values.
5798 */
5799 return NULL;
5800 }
5801
5802
5803 ir_rvalue *
5804 ast_selection_statement::hir(exec_list *instructions,
5805 struct _mesa_glsl_parse_state *state)
5806 {
5807 void *ctx = state;
5808
5809 ir_rvalue *const condition = this->condition->hir(instructions, state);
5810
5811 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5812 *
5813 * "Any expression whose type evaluates to a Boolean can be used as the
5814 * conditional expression bool-expression. Vector types are not accepted
5815 * as the expression to if."
5816 *
5817 * The checks are separated so that higher quality diagnostics can be
5818 * generated for cases where both rules are violated.
5819 */
5820 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5821 YYLTYPE loc = this->condition->get_location();
5822
5823 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5824 "boolean");
5825 }
5826
5827 ir_if *const stmt = new(ctx) ir_if(condition);
5828
5829 if (then_statement != NULL) {
5830 state->symbols->push_scope();
5831 then_statement->hir(& stmt->then_instructions, state);
5832 state->symbols->pop_scope();
5833 }
5834
5835 if (else_statement != NULL) {
5836 state->symbols->push_scope();
5837 else_statement->hir(& stmt->else_instructions, state);
5838 state->symbols->pop_scope();
5839 }
5840
5841 instructions->push_tail(stmt);
5842
5843 /* if-statements do not have r-values.
5844 */
5845 return NULL;
5846 }
5847
5848
5849 ir_rvalue *
5850 ast_switch_statement::hir(exec_list *instructions,
5851 struct _mesa_glsl_parse_state *state)
5852 {
5853 void *ctx = state;
5854
5855 ir_rvalue *const test_expression =
5856 this->test_expression->hir(instructions, state);
5857
5858 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5859 *
5860 * "The type of init-expression in a switch statement must be a
5861 * scalar integer."
5862 */
5863 if (!test_expression->type->is_scalar() ||
5864 !test_expression->type->is_integer()) {
5865 YYLTYPE loc = this->test_expression->get_location();
5866
5867 _mesa_glsl_error(& loc,
5868 state,
5869 "switch-statement expression must be scalar "
5870 "integer");
5871 }
5872
5873 /* Track the switch-statement nesting in a stack-like manner.
5874 */
5875 struct glsl_switch_state saved = state->switch_state;
5876
5877 state->switch_state.is_switch_innermost = true;
5878 state->switch_state.switch_nesting_ast = this;
5879 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5880 hash_table_pointer_compare);
5881 state->switch_state.previous_default = NULL;
5882
5883 /* Initalize is_fallthru state to false.
5884 */
5885 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5886 state->switch_state.is_fallthru_var =
5887 new(ctx) ir_variable(glsl_type::bool_type,
5888 "switch_is_fallthru_tmp",
5889 ir_var_temporary);
5890 instructions->push_tail(state->switch_state.is_fallthru_var);
5891
5892 ir_dereference_variable *deref_is_fallthru_var =
5893 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5894 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5895 is_fallthru_val));
5896
5897 /* Initialize continue_inside state to false.
5898 */
5899 state->switch_state.continue_inside =
5900 new(ctx) ir_variable(glsl_type::bool_type,
5901 "continue_inside_tmp",
5902 ir_var_temporary);
5903 instructions->push_tail(state->switch_state.continue_inside);
5904
5905 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5906 ir_dereference_variable *deref_continue_inside_var =
5907 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5908 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5909 false_val));
5910
5911 state->switch_state.run_default =
5912 new(ctx) ir_variable(glsl_type::bool_type,
5913 "run_default_tmp",
5914 ir_var_temporary);
5915 instructions->push_tail(state->switch_state.run_default);
5916
5917 /* Loop around the switch is used for flow control. */
5918 ir_loop * loop = new(ctx) ir_loop();
5919 instructions->push_tail(loop);
5920
5921 /* Cache test expression.
5922 */
5923 test_to_hir(&loop->body_instructions, state);
5924
5925 /* Emit code for body of switch stmt.
5926 */
5927 body->hir(&loop->body_instructions, state);
5928
5929 /* Insert a break at the end to exit loop. */
5930 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5931 loop->body_instructions.push_tail(jump);
5932
5933 /* If we are inside loop, check if continue got called inside switch. */
5934 if (state->loop_nesting_ast != NULL) {
5935 ir_dereference_variable *deref_continue_inside =
5936 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5937 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5938 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5939
5940 if (state->loop_nesting_ast != NULL) {
5941 if (state->loop_nesting_ast->rest_expression) {
5942 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5943 state);
5944 }
5945 if (state->loop_nesting_ast->mode ==
5946 ast_iteration_statement::ast_do_while) {
5947 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5948 }
5949 }
5950 irif->then_instructions.push_tail(jump);
5951 instructions->push_tail(irif);
5952 }
5953
5954 hash_table_dtor(state->switch_state.labels_ht);
5955
5956 state->switch_state = saved;
5957
5958 /* Switch statements do not have r-values. */
5959 return NULL;
5960 }
5961
5962
5963 void
5964 ast_switch_statement::test_to_hir(exec_list *instructions,
5965 struct _mesa_glsl_parse_state *state)
5966 {
5967 void *ctx = state;
5968
5969 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5970 * on the switch test case. The first one would be already raised when
5971 * getting the test_expression at ast_switch_statement::hir
5972 */
5973 test_expression->set_is_lhs(true);
5974 /* Cache value of test expression. */
5975 ir_rvalue *const test_val =
5976 test_expression->hir(instructions,
5977 state);
5978
5979 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5980 "switch_test_tmp",
5981 ir_var_temporary);
5982 ir_dereference_variable *deref_test_var =
5983 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5984
5985 instructions->push_tail(state->switch_state.test_var);
5986 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5987 }
5988
5989
5990 ir_rvalue *
5991 ast_switch_body::hir(exec_list *instructions,
5992 struct _mesa_glsl_parse_state *state)
5993 {
5994 if (stmts != NULL)
5995 stmts->hir(instructions, state);
5996
5997 /* Switch bodies do not have r-values. */
5998 return NULL;
5999 }
6000
6001 ir_rvalue *
6002 ast_case_statement_list::hir(exec_list *instructions,
6003 struct _mesa_glsl_parse_state *state)
6004 {
6005 exec_list default_case, after_default, tmp;
6006
6007 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6008 case_stmt->hir(&tmp, state);
6009
6010 /* Default case. */
6011 if (state->switch_state.previous_default && default_case.is_empty()) {
6012 default_case.append_list(&tmp);
6013 continue;
6014 }
6015
6016 /* If default case found, append 'after_default' list. */
6017 if (!default_case.is_empty())
6018 after_default.append_list(&tmp);
6019 else
6020 instructions->append_list(&tmp);
6021 }
6022
6023 /* Handle the default case. This is done here because default might not be
6024 * the last case. We need to add checks against following cases first to see
6025 * if default should be chosen or not.
6026 */
6027 if (!default_case.is_empty()) {
6028
6029 ir_rvalue *const true_val = new (state) ir_constant(true);
6030 ir_dereference_variable *deref_run_default_var =
6031 new(state) ir_dereference_variable(state->switch_state.run_default);
6032
6033 /* Choose to run default case initially, following conditional
6034 * assignments might change this.
6035 */
6036 ir_assignment *const init_var =
6037 new(state) ir_assignment(deref_run_default_var, true_val);
6038 instructions->push_tail(init_var);
6039
6040 /* Default case was the last one, no checks required. */
6041 if (after_default.is_empty()) {
6042 instructions->append_list(&default_case);
6043 return NULL;
6044 }
6045
6046 foreach_in_list(ir_instruction, ir, &after_default) {
6047 ir_assignment *assign = ir->as_assignment();
6048
6049 if (!assign)
6050 continue;
6051
6052 /* Clone the check between case label and init expression. */
6053 ir_expression *exp = (ir_expression*) assign->condition;
6054 ir_expression *clone = exp->clone(state, NULL);
6055
6056 ir_dereference_variable *deref_var =
6057 new(state) ir_dereference_variable(state->switch_state.run_default);
6058 ir_rvalue *const false_val = new (state) ir_constant(false);
6059
6060 ir_assignment *const set_false =
6061 new(state) ir_assignment(deref_var, false_val, clone);
6062
6063 instructions->push_tail(set_false);
6064 }
6065
6066 /* Append default case and all cases after it. */
6067 instructions->append_list(&default_case);
6068 instructions->append_list(&after_default);
6069 }
6070
6071 /* Case statements do not have r-values. */
6072 return NULL;
6073 }
6074
6075 ir_rvalue *
6076 ast_case_statement::hir(exec_list *instructions,
6077 struct _mesa_glsl_parse_state *state)
6078 {
6079 labels->hir(instructions, state);
6080
6081 /* Guard case statements depending on fallthru state. */
6082 ir_dereference_variable *const deref_fallthru_guard =
6083 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6084 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6085
6086 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6087 stmt->hir(& test_fallthru->then_instructions, state);
6088
6089 instructions->push_tail(test_fallthru);
6090
6091 /* Case statements do not have r-values. */
6092 return NULL;
6093 }
6094
6095
6096 ir_rvalue *
6097 ast_case_label_list::hir(exec_list *instructions,
6098 struct _mesa_glsl_parse_state *state)
6099 {
6100 foreach_list_typed (ast_case_label, label, link, & this->labels)
6101 label->hir(instructions, state);
6102
6103 /* Case labels do not have r-values. */
6104 return NULL;
6105 }
6106
6107 ir_rvalue *
6108 ast_case_label::hir(exec_list *instructions,
6109 struct _mesa_glsl_parse_state *state)
6110 {
6111 void *ctx = state;
6112
6113 ir_dereference_variable *deref_fallthru_var =
6114 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6115
6116 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6117
6118 /* If not default case, ... */
6119 if (this->test_value != NULL) {
6120 /* Conditionally set fallthru state based on
6121 * comparison of cached test expression value to case label.
6122 */
6123 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6124 ir_constant *label_const = label_rval->constant_expression_value();
6125
6126 if (!label_const) {
6127 YYLTYPE loc = this->test_value->get_location();
6128
6129 _mesa_glsl_error(& loc, state,
6130 "switch statement case label must be a "
6131 "constant expression");
6132
6133 /* Stuff a dummy value in to allow processing to continue. */
6134 label_const = new(ctx) ir_constant(0);
6135 } else {
6136 ast_expression *previous_label = (ast_expression *)
6137 hash_table_find(state->switch_state.labels_ht,
6138 (void *)(uintptr_t)label_const->value.u[0]);
6139
6140 if (previous_label) {
6141 YYLTYPE loc = this->test_value->get_location();
6142 _mesa_glsl_error(& loc, state, "duplicate case value");
6143
6144 loc = previous_label->get_location();
6145 _mesa_glsl_error(& loc, state, "this is the previous case label");
6146 } else {
6147 hash_table_insert(state->switch_state.labels_ht,
6148 this->test_value,
6149 (void *)(uintptr_t)label_const->value.u[0]);
6150 }
6151 }
6152
6153 ir_dereference_variable *deref_test_var =
6154 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6155
6156 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6157 label_const,
6158 deref_test_var);
6159
6160 /*
6161 * From GLSL 4.40 specification section 6.2 ("Selection"):
6162 *
6163 * "The type of the init-expression value in a switch statement must
6164 * be a scalar int or uint. The type of the constant-expression value
6165 * in a case label also must be a scalar int or uint. When any pair
6166 * of these values is tested for "equal value" and the types do not
6167 * match, an implicit conversion will be done to convert the int to a
6168 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6169 * is done."
6170 */
6171 if (label_const->type != state->switch_state.test_var->type) {
6172 YYLTYPE loc = this->test_value->get_location();
6173
6174 const glsl_type *type_a = label_const->type;
6175 const glsl_type *type_b = state->switch_state.test_var->type;
6176
6177 /* Check if int->uint implicit conversion is supported. */
6178 bool integer_conversion_supported =
6179 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6180 state);
6181
6182 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6183 !integer_conversion_supported) {
6184 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6185 "init-expression and case label (%s != %s)",
6186 type_a->name, type_b->name);
6187 } else {
6188 /* Conversion of the case label. */
6189 if (type_a->base_type == GLSL_TYPE_INT) {
6190 if (!apply_implicit_conversion(glsl_type::uint_type,
6191 test_cond->operands[0], state))
6192 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6193 } else {
6194 /* Conversion of the init-expression value. */
6195 if (!apply_implicit_conversion(glsl_type::uint_type,
6196 test_cond->operands[1], state))
6197 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6198 }
6199 }
6200 }
6201
6202 ir_assignment *set_fallthru_on_test =
6203 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6204
6205 instructions->push_tail(set_fallthru_on_test);
6206 } else { /* default case */
6207 if (state->switch_state.previous_default) {
6208 YYLTYPE loc = this->get_location();
6209 _mesa_glsl_error(& loc, state,
6210 "multiple default labels in one switch");
6211
6212 loc = state->switch_state.previous_default->get_location();
6213 _mesa_glsl_error(& loc, state, "this is the first default label");
6214 }
6215 state->switch_state.previous_default = this;
6216
6217 /* Set fallthru condition on 'run_default' bool. */
6218 ir_dereference_variable *deref_run_default =
6219 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6220 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6221 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6222 cond_true,
6223 deref_run_default);
6224
6225 /* Set falltrhu state. */
6226 ir_assignment *set_fallthru =
6227 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6228
6229 instructions->push_tail(set_fallthru);
6230 }
6231
6232 /* Case statements do not have r-values. */
6233 return NULL;
6234 }
6235
6236 void
6237 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6238 struct _mesa_glsl_parse_state *state)
6239 {
6240 void *ctx = state;
6241
6242 if (condition != NULL) {
6243 ir_rvalue *const cond =
6244 condition->hir(instructions, state);
6245
6246 if ((cond == NULL)
6247 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6248 YYLTYPE loc = condition->get_location();
6249
6250 _mesa_glsl_error(& loc, state,
6251 "loop condition must be scalar boolean");
6252 } else {
6253 /* As the first code in the loop body, generate a block that looks
6254 * like 'if (!condition) break;' as the loop termination condition.
6255 */
6256 ir_rvalue *const not_cond =
6257 new(ctx) ir_expression(ir_unop_logic_not, cond);
6258
6259 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6260
6261 ir_jump *const break_stmt =
6262 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6263
6264 if_stmt->then_instructions.push_tail(break_stmt);
6265 instructions->push_tail(if_stmt);
6266 }
6267 }
6268 }
6269
6270
6271 ir_rvalue *
6272 ast_iteration_statement::hir(exec_list *instructions,
6273 struct _mesa_glsl_parse_state *state)
6274 {
6275 void *ctx = state;
6276
6277 /* For-loops and while-loops start a new scope, but do-while loops do not.
6278 */
6279 if (mode != ast_do_while)
6280 state->symbols->push_scope();
6281
6282 if (init_statement != NULL)
6283 init_statement->hir(instructions, state);
6284
6285 ir_loop *const stmt = new(ctx) ir_loop();
6286 instructions->push_tail(stmt);
6287
6288 /* Track the current loop nesting. */
6289 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6290
6291 state->loop_nesting_ast = this;
6292
6293 /* Likewise, indicate that following code is closest to a loop,
6294 * NOT closest to a switch.
6295 */
6296 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6297 state->switch_state.is_switch_innermost = false;
6298
6299 if (mode != ast_do_while)
6300 condition_to_hir(&stmt->body_instructions, state);
6301
6302 if (body != NULL)
6303 body->hir(& stmt->body_instructions, state);
6304
6305 if (rest_expression != NULL)
6306 rest_expression->hir(& stmt->body_instructions, state);
6307
6308 if (mode == ast_do_while)
6309 condition_to_hir(&stmt->body_instructions, state);
6310
6311 if (mode != ast_do_while)
6312 state->symbols->pop_scope();
6313
6314 /* Restore previous nesting before returning. */
6315 state->loop_nesting_ast = nesting_ast;
6316 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6317
6318 /* Loops do not have r-values.
6319 */
6320 return NULL;
6321 }
6322
6323
6324 /**
6325 * Determine if the given type is valid for establishing a default precision
6326 * qualifier.
6327 *
6328 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6329 *
6330 * "The precision statement
6331 *
6332 * precision precision-qualifier type;
6333 *
6334 * can be used to establish a default precision qualifier. The type field
6335 * can be either int or float or any of the sampler types, and the
6336 * precision-qualifier can be lowp, mediump, or highp."
6337 *
6338 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6339 * qualifiers on sampler types, but this seems like an oversight (since the
6340 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6341 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6342 * version.
6343 */
6344 static bool
6345 is_valid_default_precision_type(const struct glsl_type *const type)
6346 {
6347 if (type == NULL)
6348 return false;
6349
6350 switch (type->base_type) {
6351 case GLSL_TYPE_INT:
6352 case GLSL_TYPE_FLOAT:
6353 /* "int" and "float" are valid, but vectors and matrices are not. */
6354 return type->vector_elements == 1 && type->matrix_columns == 1;
6355 case GLSL_TYPE_SAMPLER:
6356 case GLSL_TYPE_IMAGE:
6357 case GLSL_TYPE_ATOMIC_UINT:
6358 return true;
6359 default:
6360 return false;
6361 }
6362 }
6363
6364
6365 ir_rvalue *
6366 ast_type_specifier::hir(exec_list *instructions,
6367 struct _mesa_glsl_parse_state *state)
6368 {
6369 if (this->default_precision == ast_precision_none && this->structure == NULL)
6370 return NULL;
6371
6372 YYLTYPE loc = this->get_location();
6373
6374 /* If this is a precision statement, check that the type to which it is
6375 * applied is either float or int.
6376 *
6377 * From section 4.5.3 of the GLSL 1.30 spec:
6378 * "The precision statement
6379 * precision precision-qualifier type;
6380 * can be used to establish a default precision qualifier. The type
6381 * field can be either int or float [...]. Any other types or
6382 * qualifiers will result in an error.
6383 */
6384 if (this->default_precision != ast_precision_none) {
6385 if (!state->check_precision_qualifiers_allowed(&loc))
6386 return NULL;
6387
6388 if (this->structure != NULL) {
6389 _mesa_glsl_error(&loc, state,
6390 "precision qualifiers do not apply to structures");
6391 return NULL;
6392 }
6393
6394 if (this->array_specifier != NULL) {
6395 _mesa_glsl_error(&loc, state,
6396 "default precision statements do not apply to "
6397 "arrays");
6398 return NULL;
6399 }
6400
6401 const struct glsl_type *const type =
6402 state->symbols->get_type(this->type_name);
6403 if (!is_valid_default_precision_type(type)) {
6404 _mesa_glsl_error(&loc, state,
6405 "default precision statements apply only to "
6406 "float, int, and opaque types");
6407 return NULL;
6408 }
6409
6410 if (state->es_shader) {
6411 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6412 * spec says:
6413 *
6414 * "Non-precision qualified declarations will use the precision
6415 * qualifier specified in the most recent precision statement
6416 * that is still in scope. The precision statement has the same
6417 * scoping rules as variable declarations. If it is declared
6418 * inside a compound statement, its effect stops at the end of
6419 * the innermost statement it was declared in. Precision
6420 * statements in nested scopes override precision statements in
6421 * outer scopes. Multiple precision statements for the same basic
6422 * type can appear inside the same scope, with later statements
6423 * overriding earlier statements within that scope."
6424 *
6425 * Default precision specifications follow the same scope rules as
6426 * variables. So, we can track the state of the default precision
6427 * qualifiers in the symbol table, and the rules will just work. This
6428 * is a slight abuse of the symbol table, but it has the semantics
6429 * that we want.
6430 */
6431 state->symbols->add_default_precision_qualifier(this->type_name,
6432 this->default_precision);
6433 }
6434
6435 /* FINISHME: Translate precision statements into IR. */
6436 return NULL;
6437 }
6438
6439 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6440 * process_record_constructor() can do type-checking on C-style initializer
6441 * expressions of structs, but ast_struct_specifier should only be translated
6442 * to HIR if it is declaring the type of a structure.
6443 *
6444 * The ->is_declaration field is false for initializers of variables
6445 * declared separately from the struct's type definition.
6446 *
6447 * struct S { ... }; (is_declaration = true)
6448 * struct T { ... } t = { ... }; (is_declaration = true)
6449 * S s = { ... }; (is_declaration = false)
6450 */
6451 if (this->structure != NULL && this->structure->is_declaration)
6452 return this->structure->hir(instructions, state);
6453
6454 return NULL;
6455 }
6456
6457
6458 /**
6459 * Process a structure or interface block tree into an array of structure fields
6460 *
6461 * After parsing, where there are some syntax differnces, structures and
6462 * interface blocks are almost identical. They are similar enough that the
6463 * AST for each can be processed the same way into a set of
6464 * \c glsl_struct_field to describe the members.
6465 *
6466 * If we're processing an interface block, var_mode should be the type of the
6467 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6468 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6469 * ir_var_auto.
6470 *
6471 * \return
6472 * The number of fields processed. A pointer to the array structure fields is
6473 * stored in \c *fields_ret.
6474 */
6475 static unsigned
6476 ast_process_struct_or_iface_block_members(exec_list *instructions,
6477 struct _mesa_glsl_parse_state *state,
6478 exec_list *declarations,
6479 glsl_struct_field **fields_ret,
6480 bool is_interface,
6481 enum glsl_matrix_layout matrix_layout,
6482 bool allow_reserved_names,
6483 ir_variable_mode var_mode,
6484 ast_type_qualifier *layout,
6485 unsigned block_stream,
6486 unsigned block_xfb_buffer,
6487 unsigned block_xfb_offset,
6488 unsigned expl_location,
6489 unsigned expl_align)
6490 {
6491 unsigned decl_count = 0;
6492 unsigned next_offset = 0;
6493
6494 /* Make an initial pass over the list of fields to determine how
6495 * many there are. Each element in this list is an ast_declarator_list.
6496 * This means that we actually need to count the number of elements in the
6497 * 'declarations' list in each of the elements.
6498 */
6499 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6500 decl_count += decl_list->declarations.length();
6501 }
6502
6503 /* Allocate storage for the fields and process the field
6504 * declarations. As the declarations are processed, try to also convert
6505 * the types to HIR. This ensures that structure definitions embedded in
6506 * other structure definitions or in interface blocks are processed.
6507 */
6508 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6509 decl_count);
6510
6511 bool first_member = true;
6512 bool first_member_has_explicit_location = false;
6513
6514 unsigned i = 0;
6515 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6516 const char *type_name;
6517 YYLTYPE loc = decl_list->get_location();
6518
6519 decl_list->type->specifier->hir(instructions, state);
6520
6521 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6522 *
6523 * "Anonymous structures are not supported; so embedded structures
6524 * must have a declarator. A name given to an embedded struct is
6525 * scoped at the same level as the struct it is embedded in."
6526 *
6527 * The same section of the GLSL 1.20 spec says:
6528 *
6529 * "Anonymous structures are not supported. Embedded structures are
6530 * not supported."
6531 *
6532 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6533 * embedded structures in 1.10 only.
6534 */
6535 if (state->language_version != 110 &&
6536 decl_list->type->specifier->structure != NULL)
6537 _mesa_glsl_error(&loc, state,
6538 "embedded structure declarations are not allowed");
6539
6540 const glsl_type *decl_type =
6541 decl_list->type->glsl_type(& type_name, state);
6542
6543 const struct ast_type_qualifier *const qual =
6544 &decl_list->type->qualifier;
6545
6546 /* From section 4.3.9 of the GLSL 4.40 spec:
6547 *
6548 * "[In interface blocks] opaque types are not allowed."
6549 *
6550 * It should be impossible for decl_type to be NULL here. Cases that
6551 * might naturally lead to decl_type being NULL, especially for the
6552 * is_interface case, will have resulted in compilation having
6553 * already halted due to a syntax error.
6554 */
6555 assert(decl_type);
6556
6557 if (is_interface) {
6558 if (decl_type->contains_opaque()) {
6559 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6560 "interface block contains opaque variable");
6561 }
6562 } else {
6563 if (decl_type->contains_atomic()) {
6564 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6565 *
6566 * "Members of structures cannot be declared as atomic counter
6567 * types."
6568 */
6569 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6570 }
6571
6572 if (decl_type->contains_image()) {
6573 /* FINISHME: Same problem as with atomic counters.
6574 * FINISHME: Request clarification from Khronos and add
6575 * FINISHME: spec quotation here.
6576 */
6577 _mesa_glsl_error(&loc, state, "image in structure");
6578 }
6579 }
6580
6581 if (qual->flags.q.explicit_binding) {
6582 _mesa_glsl_error(&loc, state,
6583 "binding layout qualifier cannot be applied "
6584 "to struct or interface block members");
6585 }
6586
6587 if (is_interface) {
6588 if (!first_member) {
6589 if (!layout->flags.q.explicit_location &&
6590 ((first_member_has_explicit_location &&
6591 !qual->flags.q.explicit_location) ||
6592 (!first_member_has_explicit_location &&
6593 qual->flags.q.explicit_location))) {
6594 _mesa_glsl_error(&loc, state,
6595 "when block-level location layout qualifier "
6596 "is not supplied either all members must "
6597 "have a location layout qualifier or all "
6598 "members must not have a location layout "
6599 "qualifier");
6600 }
6601 } else {
6602 first_member = false;
6603 first_member_has_explicit_location =
6604 qual->flags.q.explicit_location;
6605 }
6606 }
6607
6608 if (qual->flags.q.std140 ||
6609 qual->flags.q.std430 ||
6610 qual->flags.q.packed ||
6611 qual->flags.q.shared) {
6612 _mesa_glsl_error(&loc, state,
6613 "uniform/shader storage block layout qualifiers "
6614 "std140, std430, packed, and shared can only be "
6615 "applied to uniform/shader storage blocks, not "
6616 "members");
6617 }
6618
6619 if (qual->flags.q.constant) {
6620 _mesa_glsl_error(&loc, state,
6621 "const storage qualifier cannot be applied "
6622 "to struct or interface block members");
6623 }
6624
6625 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6626 *
6627 * "A block member may be declared with a stream identifier, but
6628 * the specified stream must match the stream associated with the
6629 * containing block."
6630 */
6631 if (qual->flags.q.explicit_stream) {
6632 unsigned qual_stream;
6633 if (process_qualifier_constant(state, &loc, "stream",
6634 qual->stream, &qual_stream) &&
6635 qual_stream != block_stream) {
6636 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6637 "interface block member does not match "
6638 "the interface block (%u vs %u)", qual_stream,
6639 block_stream);
6640 }
6641 }
6642
6643 int xfb_buffer;
6644 unsigned explicit_xfb_buffer = 0;
6645 if (qual->flags.q.explicit_xfb_buffer) {
6646 unsigned qual_xfb_buffer;
6647 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6648 qual->xfb_buffer, &qual_xfb_buffer)) {
6649 explicit_xfb_buffer = 1;
6650 if (qual_xfb_buffer != block_xfb_buffer)
6651 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6652 "interface block member does not match "
6653 "the interface block (%u vs %u)",
6654 qual_xfb_buffer, block_xfb_buffer);
6655 }
6656 xfb_buffer = (int) qual_xfb_buffer;
6657 } else {
6658 if (layout)
6659 explicit_xfb_buffer = layout->flags.q.xfb_buffer;
6660 xfb_buffer = (int) block_xfb_buffer;
6661 }
6662
6663 int xfb_stride = -1;
6664 if (qual->flags.q.explicit_xfb_stride) {
6665 unsigned qual_xfb_stride;
6666 if (process_qualifier_constant(state, &loc, "xfb_stride",
6667 qual->xfb_stride, &qual_xfb_stride)) {
6668 xfb_stride = (int) qual_xfb_stride;
6669 }
6670 }
6671
6672 if (qual->flags.q.uniform && qual->has_interpolation()) {
6673 _mesa_glsl_error(&loc, state,
6674 "interpolation qualifiers cannot be used "
6675 "with uniform interface blocks");
6676 }
6677
6678 if ((qual->flags.q.uniform || !is_interface) &&
6679 qual->has_auxiliary_storage()) {
6680 _mesa_glsl_error(&loc, state,
6681 "auxiliary storage qualifiers cannot be used "
6682 "in uniform blocks or structures.");
6683 }
6684
6685 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6686 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6687 _mesa_glsl_error(&loc, state,
6688 "row_major and column_major can only be "
6689 "applied to interface blocks");
6690 } else
6691 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6692 }
6693
6694 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6695 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6696 "readonly and writeonly.");
6697 }
6698
6699 foreach_list_typed (ast_declaration, decl, link,
6700 &decl_list->declarations) {
6701 YYLTYPE loc = decl->get_location();
6702
6703 if (!allow_reserved_names)
6704 validate_identifier(decl->identifier, loc, state);
6705
6706 const struct glsl_type *field_type =
6707 process_array_type(&loc, decl_type, decl->array_specifier, state);
6708 validate_array_dimensions(field_type, state, &loc);
6709 fields[i].type = field_type;
6710 fields[i].name = decl->identifier;
6711 fields[i].interpolation =
6712 interpret_interpolation_qualifier(qual, field_type,
6713 var_mode, state, &loc);
6714 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6715 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6716 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6717 fields[i].precision = qual->precision;
6718 fields[i].offset = -1;
6719 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6720 fields[i].xfb_buffer = xfb_buffer;
6721 fields[i].xfb_stride = xfb_stride;
6722
6723 if (qual->flags.q.explicit_location) {
6724 unsigned qual_location;
6725 if (process_qualifier_constant(state, &loc, "location",
6726 qual->location, &qual_location)) {
6727 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6728 expl_location = fields[i].location +
6729 fields[i].type->count_attribute_slots(false);
6730 }
6731 } else {
6732 if (layout && layout->flags.q.explicit_location) {
6733 fields[i].location = expl_location;
6734 expl_location += fields[i].type->count_attribute_slots(false);
6735 } else {
6736 fields[i].location = -1;
6737 }
6738 }
6739
6740 /* Offset can only be used with std430 and std140 layouts an initial
6741 * value of 0 is used for error detection.
6742 */
6743 unsigned align = 0;
6744 unsigned size = 0;
6745 if (layout) {
6746 bool row_major;
6747 if (qual->flags.q.row_major ||
6748 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6749 row_major = true;
6750 } else {
6751 row_major = false;
6752 }
6753
6754 if(layout->flags.q.std140) {
6755 align = field_type->std140_base_alignment(row_major);
6756 size = field_type->std140_size(row_major);
6757 } else if (layout->flags.q.std430) {
6758 align = field_type->std430_base_alignment(row_major);
6759 size = field_type->std430_size(row_major);
6760 }
6761 }
6762
6763 if (qual->flags.q.explicit_offset) {
6764 unsigned qual_offset;
6765 if (process_qualifier_constant(state, &loc, "offset",
6766 qual->offset, &qual_offset)) {
6767 if (align != 0 && size != 0) {
6768 if (next_offset > qual_offset)
6769 _mesa_glsl_error(&loc, state, "layout qualifier "
6770 "offset overlaps previous member");
6771
6772 if (qual_offset % align) {
6773 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6774 "must be a multiple of the base "
6775 "alignment of %s", field_type->name);
6776 }
6777 fields[i].offset = qual_offset;
6778 next_offset = glsl_align(qual_offset + size, align);
6779 } else {
6780 _mesa_glsl_error(&loc, state, "offset can only be used "
6781 "with std430 and std140 layouts");
6782 }
6783 }
6784 }
6785
6786 if (qual->flags.q.explicit_align || expl_align != 0) {
6787 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6788 next_offset;
6789 if (align == 0 || size == 0) {
6790 _mesa_glsl_error(&loc, state, "align can only be used with "
6791 "std430 and std140 layouts");
6792 } else if (qual->flags.q.explicit_align) {
6793 unsigned member_align;
6794 if (process_qualifier_constant(state, &loc, "align",
6795 qual->align, &member_align)) {
6796 if (member_align == 0 ||
6797 member_align & (member_align - 1)) {
6798 _mesa_glsl_error(&loc, state, "align layout qualifier "
6799 "in not a power of 2");
6800 } else {
6801 fields[i].offset = glsl_align(offset, member_align);
6802 next_offset = glsl_align(fields[i].offset + size, align);
6803 }
6804 }
6805 } else {
6806 fields[i].offset = glsl_align(offset, expl_align);
6807 next_offset = glsl_align(fields[i].offset + size, align);
6808 }
6809 }
6810
6811 if (!qual->flags.q.explicit_offset) {
6812 if (align != 0 && size != 0)
6813 next_offset = glsl_align(next_offset + size, align);
6814 }
6815
6816 /* From the ARB_enhanced_layouts spec:
6817 *
6818 * "The given offset applies to the first component of the first
6819 * member of the qualified entity. Then, within the qualified
6820 * entity, subsequent components are each assigned, in order, to
6821 * the next available offset aligned to a multiple of that
6822 * component's size. Aggregate types are flattened down to the
6823 * component level to get this sequence of components."
6824 */
6825 if (qual->flags.q.explicit_xfb_offset) {
6826 unsigned xfb_offset;
6827 if (process_qualifier_constant(state, &loc, "xfb_offset",
6828 qual->offset, &xfb_offset)) {
6829 fields[i].offset = xfb_offset;
6830 block_xfb_offset = fields[i].offset +
6831 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6832 }
6833 } else {
6834 if (layout && layout->flags.q.explicit_xfb_offset) {
6835 unsigned align = field_type->is_double() ? 8 : 4;
6836 fields[i].offset = glsl_align(block_xfb_offset, align);
6837 block_xfb_offset +=
6838 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6839 }
6840 }
6841
6842 /* Propogate row- / column-major information down the fields of the
6843 * structure or interface block. Structures need this data because
6844 * the structure may contain a structure that contains ... a matrix
6845 * that need the proper layout.
6846 */
6847 if (is_interface && layout &&
6848 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6849 (field_type->without_array()->is_matrix()
6850 || field_type->without_array()->is_record())) {
6851 /* If no layout is specified for the field, inherit the layout
6852 * from the block.
6853 */
6854 fields[i].matrix_layout = matrix_layout;
6855
6856 if (qual->flags.q.row_major)
6857 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6858 else if (qual->flags.q.column_major)
6859 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6860
6861 /* If we're processing an uniform or buffer block, the matrix
6862 * layout must be decided by this point.
6863 */
6864 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6865 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6866 }
6867
6868 /* Image qualifiers are allowed on buffer variables, which can only
6869 * be defined inside shader storage buffer objects
6870 */
6871 if (layout && var_mode == ir_var_shader_storage) {
6872 /* For readonly and writeonly qualifiers the field definition,
6873 * if set, overwrites the layout qualifier.
6874 */
6875 if (qual->flags.q.read_only) {
6876 fields[i].image_read_only = true;
6877 fields[i].image_write_only = false;
6878 } else if (qual->flags.q.write_only) {
6879 fields[i].image_read_only = false;
6880 fields[i].image_write_only = true;
6881 } else {
6882 fields[i].image_read_only = layout->flags.q.read_only;
6883 fields[i].image_write_only = layout->flags.q.write_only;
6884 }
6885
6886 /* For other qualifiers, we set the flag if either the layout
6887 * qualifier or the field qualifier are set
6888 */
6889 fields[i].image_coherent = qual->flags.q.coherent ||
6890 layout->flags.q.coherent;
6891 fields[i].image_volatile = qual->flags.q._volatile ||
6892 layout->flags.q._volatile;
6893 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6894 layout->flags.q.restrict_flag;
6895 }
6896
6897 i++;
6898 }
6899 }
6900
6901 assert(i == decl_count);
6902
6903 *fields_ret = fields;
6904 return decl_count;
6905 }
6906
6907
6908 ir_rvalue *
6909 ast_struct_specifier::hir(exec_list *instructions,
6910 struct _mesa_glsl_parse_state *state)
6911 {
6912 YYLTYPE loc = this->get_location();
6913
6914 unsigned expl_location = 0;
6915 if (layout && layout->flags.q.explicit_location) {
6916 if (!process_qualifier_constant(state, &loc, "location",
6917 layout->location, &expl_location)) {
6918 return NULL;
6919 } else {
6920 expl_location = VARYING_SLOT_VAR0 + expl_location;
6921 }
6922 }
6923
6924 glsl_struct_field *fields;
6925 unsigned decl_count =
6926 ast_process_struct_or_iface_block_members(instructions,
6927 state,
6928 &this->declarations,
6929 &fields,
6930 false,
6931 GLSL_MATRIX_LAYOUT_INHERITED,
6932 false /* allow_reserved_names */,
6933 ir_var_auto,
6934 layout,
6935 0, /* for interface only */
6936 0, /* for interface only */
6937 0, /* for interface only */
6938 expl_location,
6939 0 /* for interface only */);
6940
6941 validate_identifier(this->name, loc, state);
6942
6943 const glsl_type *t =
6944 glsl_type::get_record_instance(fields, decl_count, this->name);
6945
6946 if (!state->symbols->add_type(name, t)) {
6947 const glsl_type *match = state->symbols->get_type(name);
6948 /* allow struct matching for desktop GL - older UE4 does this */
6949 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
6950 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
6951 else
6952 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6953 } else {
6954 const glsl_type **s = reralloc(state, state->user_structures,
6955 const glsl_type *,
6956 state->num_user_structures + 1);
6957 if (s != NULL) {
6958 s[state->num_user_structures] = t;
6959 state->user_structures = s;
6960 state->num_user_structures++;
6961 }
6962 }
6963
6964 /* Structure type definitions do not have r-values.
6965 */
6966 return NULL;
6967 }
6968
6969
6970 /**
6971 * Visitor class which detects whether a given interface block has been used.
6972 */
6973 class interface_block_usage_visitor : public ir_hierarchical_visitor
6974 {
6975 public:
6976 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6977 : mode(mode), block(block), found(false)
6978 {
6979 }
6980
6981 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6982 {
6983 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6984 found = true;
6985 return visit_stop;
6986 }
6987 return visit_continue;
6988 }
6989
6990 bool usage_found() const
6991 {
6992 return this->found;
6993 }
6994
6995 private:
6996 ir_variable_mode mode;
6997 const glsl_type *block;
6998 bool found;
6999 };
7000
7001 static bool
7002 is_unsized_array_last_element(ir_variable *v)
7003 {
7004 const glsl_type *interface_type = v->get_interface_type();
7005 int length = interface_type->length;
7006
7007 assert(v->type->is_unsized_array());
7008
7009 /* Check if it is the last element of the interface */
7010 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7011 return true;
7012 return false;
7013 }
7014
7015 static void
7016 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7017 {
7018 var->data.image_read_only = field.image_read_only;
7019 var->data.image_write_only = field.image_write_only;
7020 var->data.image_coherent = field.image_coherent;
7021 var->data.image_volatile = field.image_volatile;
7022 var->data.image_restrict = field.image_restrict;
7023 }
7024
7025 ir_rvalue *
7026 ast_interface_block::hir(exec_list *instructions,
7027 struct _mesa_glsl_parse_state *state)
7028 {
7029 YYLTYPE loc = this->get_location();
7030
7031 /* Interface blocks must be declared at global scope */
7032 if (state->current_function != NULL) {
7033 _mesa_glsl_error(&loc, state,
7034 "Interface block `%s' must be declared "
7035 "at global scope",
7036 this->block_name);
7037 }
7038
7039 if (!this->layout.flags.q.buffer &&
7040 this->layout.flags.q.std430) {
7041 _mesa_glsl_error(&loc, state,
7042 "std430 storage block layout qualifier is supported "
7043 "only for shader storage blocks");
7044 }
7045
7046 /* The ast_interface_block has a list of ast_declarator_lists. We
7047 * need to turn those into ir_variables with an association
7048 * with this uniform block.
7049 */
7050 enum glsl_interface_packing packing;
7051 if (this->layout.flags.q.shared) {
7052 packing = GLSL_INTERFACE_PACKING_SHARED;
7053 } else if (this->layout.flags.q.packed) {
7054 packing = GLSL_INTERFACE_PACKING_PACKED;
7055 } else if (this->layout.flags.q.std430) {
7056 packing = GLSL_INTERFACE_PACKING_STD430;
7057 } else {
7058 /* The default layout is std140.
7059 */
7060 packing = GLSL_INTERFACE_PACKING_STD140;
7061 }
7062
7063 ir_variable_mode var_mode;
7064 const char *iface_type_name;
7065 if (this->layout.flags.q.in) {
7066 var_mode = ir_var_shader_in;
7067 iface_type_name = "in";
7068 } else if (this->layout.flags.q.out) {
7069 var_mode = ir_var_shader_out;
7070 iface_type_name = "out";
7071 } else if (this->layout.flags.q.uniform) {
7072 var_mode = ir_var_uniform;
7073 iface_type_name = "uniform";
7074 } else if (this->layout.flags.q.buffer) {
7075 var_mode = ir_var_shader_storage;
7076 iface_type_name = "buffer";
7077 } else {
7078 var_mode = ir_var_auto;
7079 iface_type_name = "UNKNOWN";
7080 assert(!"interface block layout qualifier not found!");
7081 }
7082
7083 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7084 if (this->layout.flags.q.row_major)
7085 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7086 else if (this->layout.flags.q.column_major)
7087 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7088
7089 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7090 exec_list declared_variables;
7091 glsl_struct_field *fields;
7092
7093 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7094 * that we don't have incompatible qualifiers
7095 */
7096 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7097 _mesa_glsl_error(&loc, state,
7098 "Interface block sets both readonly and writeonly");
7099 }
7100
7101 if (this->layout.flags.q.explicit_component) {
7102 _mesa_glsl_error(&loc, state, "component layout qualifier cannot be "
7103 "applied to a matrix, a structure, a block, or an "
7104 "array containing any of these.");
7105 }
7106
7107 unsigned qual_stream;
7108 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7109 &qual_stream) ||
7110 !validate_stream_qualifier(&loc, state, qual_stream)) {
7111 /* If the stream qualifier is invalid it doesn't make sense to continue
7112 * on and try to compare stream layouts on member variables against it
7113 * so just return early.
7114 */
7115 return NULL;
7116 }
7117
7118 unsigned qual_xfb_buffer;
7119 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7120 layout.xfb_buffer, &qual_xfb_buffer) ||
7121 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7122 return NULL;
7123 }
7124
7125 unsigned qual_xfb_offset;
7126 if (layout.flags.q.explicit_xfb_offset) {
7127 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7128 layout.offset, &qual_xfb_offset)) {
7129 return NULL;
7130 }
7131 }
7132
7133 unsigned qual_xfb_stride;
7134 if (layout.flags.q.explicit_xfb_stride) {
7135 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7136 layout.xfb_stride, &qual_xfb_stride)) {
7137 return NULL;
7138 }
7139 }
7140
7141 unsigned expl_location = 0;
7142 if (layout.flags.q.explicit_location) {
7143 if (!process_qualifier_constant(state, &loc, "location",
7144 layout.location, &expl_location)) {
7145 return NULL;
7146 } else {
7147 expl_location = VARYING_SLOT_VAR0 + expl_location;
7148 }
7149 }
7150
7151 unsigned expl_align = 0;
7152 if (layout.flags.q.explicit_align) {
7153 if (!process_qualifier_constant(state, &loc, "align",
7154 layout.align, &expl_align)) {
7155 return NULL;
7156 } else {
7157 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7158 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7159 "power of 2.");
7160 return NULL;
7161 }
7162 }
7163 }
7164
7165 unsigned int num_variables =
7166 ast_process_struct_or_iface_block_members(&declared_variables,
7167 state,
7168 &this->declarations,
7169 &fields,
7170 true,
7171 matrix_layout,
7172 redeclaring_per_vertex,
7173 var_mode,
7174 &this->layout,
7175 qual_stream,
7176 qual_xfb_buffer,
7177 qual_xfb_offset,
7178 expl_location,
7179 expl_align);
7180
7181 if (!redeclaring_per_vertex) {
7182 validate_identifier(this->block_name, loc, state);
7183
7184 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7185 *
7186 * "Block names have no other use within a shader beyond interface
7187 * matching; it is a compile-time error to use a block name at global
7188 * scope for anything other than as a block name."
7189 */
7190 ir_variable *var = state->symbols->get_variable(this->block_name);
7191 if (var && !var->type->is_interface()) {
7192 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7193 "already used in the scope.",
7194 this->block_name);
7195 }
7196 }
7197
7198 const glsl_type *earlier_per_vertex = NULL;
7199 if (redeclaring_per_vertex) {
7200 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7201 * the named interface block gl_in, we can find it by looking at the
7202 * previous declaration of gl_in. Otherwise we can find it by looking
7203 * at the previous decalartion of any of the built-in outputs,
7204 * e.g. gl_Position.
7205 *
7206 * Also check that the instance name and array-ness of the redeclaration
7207 * are correct.
7208 */
7209 switch (var_mode) {
7210 case ir_var_shader_in:
7211 if (ir_variable *earlier_gl_in =
7212 state->symbols->get_variable("gl_in")) {
7213 earlier_per_vertex = earlier_gl_in->get_interface_type();
7214 } else {
7215 _mesa_glsl_error(&loc, state,
7216 "redeclaration of gl_PerVertex input not allowed "
7217 "in the %s shader",
7218 _mesa_shader_stage_to_string(state->stage));
7219 }
7220 if (this->instance_name == NULL ||
7221 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7222 !this->array_specifier->is_single_dimension()) {
7223 _mesa_glsl_error(&loc, state,
7224 "gl_PerVertex input must be redeclared as "
7225 "gl_in[]");
7226 }
7227 break;
7228 case ir_var_shader_out:
7229 if (ir_variable *earlier_gl_Position =
7230 state->symbols->get_variable("gl_Position")) {
7231 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7232 } else if (ir_variable *earlier_gl_out =
7233 state->symbols->get_variable("gl_out")) {
7234 earlier_per_vertex = earlier_gl_out->get_interface_type();
7235 } else {
7236 _mesa_glsl_error(&loc, state,
7237 "redeclaration of gl_PerVertex output not "
7238 "allowed in the %s shader",
7239 _mesa_shader_stage_to_string(state->stage));
7240 }
7241 if (state->stage == MESA_SHADER_TESS_CTRL) {
7242 if (this->instance_name == NULL ||
7243 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7244 _mesa_glsl_error(&loc, state,
7245 "gl_PerVertex output must be redeclared as "
7246 "gl_out[]");
7247 }
7248 } else {
7249 if (this->instance_name != NULL) {
7250 _mesa_glsl_error(&loc, state,
7251 "gl_PerVertex output may not be redeclared with "
7252 "an instance name");
7253 }
7254 }
7255 break;
7256 default:
7257 _mesa_glsl_error(&loc, state,
7258 "gl_PerVertex must be declared as an input or an "
7259 "output");
7260 break;
7261 }
7262
7263 if (earlier_per_vertex == NULL) {
7264 /* An error has already been reported. Bail out to avoid null
7265 * dereferences later in this function.
7266 */
7267 return NULL;
7268 }
7269
7270 /* Copy locations from the old gl_PerVertex interface block. */
7271 for (unsigned i = 0; i < num_variables; i++) {
7272 int j = earlier_per_vertex->field_index(fields[i].name);
7273 if (j == -1) {
7274 _mesa_glsl_error(&loc, state,
7275 "redeclaration of gl_PerVertex must be a subset "
7276 "of the built-in members of gl_PerVertex");
7277 } else {
7278 fields[i].location =
7279 earlier_per_vertex->fields.structure[j].location;
7280 fields[i].offset =
7281 earlier_per_vertex->fields.structure[j].offset;
7282 fields[i].interpolation =
7283 earlier_per_vertex->fields.structure[j].interpolation;
7284 fields[i].centroid =
7285 earlier_per_vertex->fields.structure[j].centroid;
7286 fields[i].sample =
7287 earlier_per_vertex->fields.structure[j].sample;
7288 fields[i].patch =
7289 earlier_per_vertex->fields.structure[j].patch;
7290 fields[i].precision =
7291 earlier_per_vertex->fields.structure[j].precision;
7292 fields[i].explicit_xfb_buffer =
7293 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7294 fields[i].xfb_buffer =
7295 earlier_per_vertex->fields.structure[j].xfb_buffer;
7296 fields[i].xfb_stride =
7297 earlier_per_vertex->fields.structure[j].xfb_stride;
7298 }
7299 }
7300
7301 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7302 * spec:
7303 *
7304 * If a built-in interface block is redeclared, it must appear in
7305 * the shader before any use of any member included in the built-in
7306 * declaration, or a compilation error will result.
7307 *
7308 * This appears to be a clarification to the behaviour established for
7309 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7310 * regardless of GLSL version.
7311 */
7312 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7313 v.run(instructions);
7314 if (v.usage_found()) {
7315 _mesa_glsl_error(&loc, state,
7316 "redeclaration of a built-in interface block must "
7317 "appear before any use of any member of the "
7318 "interface block");
7319 }
7320 }
7321
7322 const glsl_type *block_type =
7323 glsl_type::get_interface_instance(fields,
7324 num_variables,
7325 packing,
7326 this->block_name);
7327
7328 unsigned component_size = block_type->contains_double() ? 8 : 4;
7329 int xfb_offset =
7330 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7331 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7332 component_size);
7333
7334 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7335 YYLTYPE loc = this->get_location();
7336 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7337 "already taken in the current scope",
7338 this->block_name, iface_type_name);
7339 }
7340
7341 /* Since interface blocks cannot contain statements, it should be
7342 * impossible for the block to generate any instructions.
7343 */
7344 assert(declared_variables.is_empty());
7345
7346 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7347 *
7348 * Geometry shader input variables get the per-vertex values written
7349 * out by vertex shader output variables of the same names. Since a
7350 * geometry shader operates on a set of vertices, each input varying
7351 * variable (or input block, see interface blocks below) needs to be
7352 * declared as an array.
7353 */
7354 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7355 var_mode == ir_var_shader_in) {
7356 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7357 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7358 state->stage == MESA_SHADER_TESS_EVAL) &&
7359 this->array_specifier == NULL &&
7360 var_mode == ir_var_shader_in) {
7361 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7362 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7363 this->array_specifier == NULL &&
7364 var_mode == ir_var_shader_out) {
7365 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7366 }
7367
7368
7369 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7370 * says:
7371 *
7372 * "If an instance name (instance-name) is used, then it puts all the
7373 * members inside a scope within its own name space, accessed with the
7374 * field selector ( . ) operator (analogously to structures)."
7375 */
7376 if (this->instance_name) {
7377 if (redeclaring_per_vertex) {
7378 /* When a built-in in an unnamed interface block is redeclared,
7379 * get_variable_being_redeclared() calls
7380 * check_builtin_array_max_size() to make sure that built-in array
7381 * variables aren't redeclared to illegal sizes. But we're looking
7382 * at a redeclaration of a named built-in interface block. So we
7383 * have to manually call check_builtin_array_max_size() for all parts
7384 * of the interface that are arrays.
7385 */
7386 for (unsigned i = 0; i < num_variables; i++) {
7387 if (fields[i].type->is_array()) {
7388 const unsigned size = fields[i].type->array_size();
7389 check_builtin_array_max_size(fields[i].name, size, loc, state);
7390 }
7391 }
7392 } else {
7393 validate_identifier(this->instance_name, loc, state);
7394 }
7395
7396 ir_variable *var;
7397
7398 if (this->array_specifier != NULL) {
7399 const glsl_type *block_array_type =
7400 process_array_type(&loc, block_type, this->array_specifier, state);
7401
7402 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7403 *
7404 * For uniform blocks declared an array, each individual array
7405 * element corresponds to a separate buffer object backing one
7406 * instance of the block. As the array size indicates the number
7407 * of buffer objects needed, uniform block array declarations
7408 * must specify an array size.
7409 *
7410 * And a few paragraphs later:
7411 *
7412 * Geometry shader input blocks must be declared as arrays and
7413 * follow the array declaration and linking rules for all
7414 * geometry shader inputs. All other input and output block
7415 * arrays must specify an array size.
7416 *
7417 * The same applies to tessellation shaders.
7418 *
7419 * The upshot of this is that the only circumstance where an
7420 * interface array size *doesn't* need to be specified is on a
7421 * geometry shader input, tessellation control shader input,
7422 * tessellation control shader output, and tessellation evaluation
7423 * shader input.
7424 */
7425 if (block_array_type->is_unsized_array()) {
7426 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7427 state->stage == MESA_SHADER_TESS_CTRL ||
7428 state->stage == MESA_SHADER_TESS_EVAL;
7429 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7430
7431 if (this->layout.flags.q.in) {
7432 if (!allow_inputs)
7433 _mesa_glsl_error(&loc, state,
7434 "unsized input block arrays not allowed in "
7435 "%s shader",
7436 _mesa_shader_stage_to_string(state->stage));
7437 } else if (this->layout.flags.q.out) {
7438 if (!allow_outputs)
7439 _mesa_glsl_error(&loc, state,
7440 "unsized output block arrays not allowed in "
7441 "%s shader",
7442 _mesa_shader_stage_to_string(state->stage));
7443 } else {
7444 /* by elimination, this is a uniform block array */
7445 _mesa_glsl_error(&loc, state,
7446 "unsized uniform block arrays not allowed in "
7447 "%s shader",
7448 _mesa_shader_stage_to_string(state->stage));
7449 }
7450 }
7451
7452 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7453 *
7454 * * Arrays of arrays of blocks are not allowed
7455 */
7456 if (state->es_shader && block_array_type->is_array() &&
7457 block_array_type->fields.array->is_array()) {
7458 _mesa_glsl_error(&loc, state,
7459 "arrays of arrays interface blocks are "
7460 "not allowed");
7461 }
7462
7463 var = new(state) ir_variable(block_array_type,
7464 this->instance_name,
7465 var_mode);
7466 } else {
7467 var = new(state) ir_variable(block_type,
7468 this->instance_name,
7469 var_mode);
7470 }
7471
7472 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7473 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7474
7475 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7476 var->data.read_only = true;
7477
7478 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7479 handle_geometry_shader_input_decl(state, loc, var);
7480 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7481 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7482 handle_tess_shader_input_decl(state, loc, var);
7483 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7484 handle_tess_ctrl_shader_output_decl(state, loc, var);
7485
7486 for (unsigned i = 0; i < num_variables; i++) {
7487 if (fields[i].type->is_unsized_array()) {
7488 if (var_mode == ir_var_shader_storage) {
7489 if (i != (num_variables - 1)) {
7490 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7491 "only last member of a shader storage block "
7492 "can be defined as unsized array",
7493 fields[i].name);
7494 }
7495 } else {
7496 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7497 *
7498 * "If an array is declared as the last member of a shader storage
7499 * block and the size is not specified at compile-time, it is
7500 * sized at run-time. In all other cases, arrays are sized only
7501 * at compile-time."
7502 */
7503 if (state->es_shader) {
7504 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7505 "only last member of a shader storage block "
7506 "can be defined as unsized array",
7507 fields[i].name);
7508 }
7509 }
7510 }
7511
7512 if (var->data.mode == ir_var_shader_storage)
7513 apply_memory_qualifiers(var, fields[i]);
7514 }
7515
7516 if (ir_variable *earlier =
7517 state->symbols->get_variable(this->instance_name)) {
7518 if (!redeclaring_per_vertex) {
7519 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7520 this->instance_name);
7521 }
7522 earlier->data.how_declared = ir_var_declared_normally;
7523 earlier->type = var->type;
7524 earlier->reinit_interface_type(block_type);
7525 delete var;
7526 } else {
7527 if (this->layout.flags.q.explicit_binding) {
7528 apply_explicit_binding(state, &loc, var, var->type,
7529 &this->layout);
7530 }
7531
7532 var->data.stream = qual_stream;
7533 if (layout.flags.q.explicit_location) {
7534 var->data.location = expl_location;
7535 var->data.explicit_location = true;
7536 }
7537
7538 state->symbols->add_variable(var);
7539 instructions->push_tail(var);
7540 }
7541 } else {
7542 /* In order to have an array size, the block must also be declared with
7543 * an instance name.
7544 */
7545 assert(this->array_specifier == NULL);
7546
7547 for (unsigned i = 0; i < num_variables; i++) {
7548 ir_variable *var =
7549 new(state) ir_variable(fields[i].type,
7550 ralloc_strdup(state, fields[i].name),
7551 var_mode);
7552 var->data.interpolation = fields[i].interpolation;
7553 var->data.centroid = fields[i].centroid;
7554 var->data.sample = fields[i].sample;
7555 var->data.patch = fields[i].patch;
7556 var->data.stream = qual_stream;
7557 var->data.location = fields[i].location;
7558
7559 if (fields[i].location != -1)
7560 var->data.explicit_location = true;
7561
7562 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7563 var->data.xfb_buffer = fields[i].xfb_buffer;
7564
7565 if (fields[i].offset != -1)
7566 var->data.explicit_xfb_offset = true;
7567 var->data.offset = fields[i].offset;
7568
7569 var->init_interface_type(block_type);
7570
7571 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7572 var->data.read_only = true;
7573
7574 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7575 if (state->es_shader) {
7576 var->data.precision =
7577 select_gles_precision(fields[i].precision, fields[i].type,
7578 state, &loc);
7579 }
7580
7581 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7582 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7583 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7584 } else {
7585 var->data.matrix_layout = fields[i].matrix_layout;
7586 }
7587
7588 if (var->data.mode == ir_var_shader_storage)
7589 apply_memory_qualifiers(var, fields[i]);
7590
7591 /* Examine var name here since var may get deleted in the next call */
7592 bool var_is_gl_id = is_gl_identifier(var->name);
7593
7594 if (redeclaring_per_vertex) {
7595 ir_variable *earlier =
7596 get_variable_being_redeclared(var, loc, state,
7597 true /* allow_all_redeclarations */);
7598 if (!var_is_gl_id || earlier == NULL) {
7599 _mesa_glsl_error(&loc, state,
7600 "redeclaration of gl_PerVertex can only "
7601 "include built-in variables");
7602 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7603 _mesa_glsl_error(&loc, state,
7604 "`%s' has already been redeclared",
7605 earlier->name);
7606 } else {
7607 earlier->data.how_declared = ir_var_declared_in_block;
7608 earlier->reinit_interface_type(block_type);
7609 }
7610 continue;
7611 }
7612
7613 if (state->symbols->get_variable(var->name) != NULL)
7614 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7615
7616 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7617 * The UBO declaration itself doesn't get an ir_variable unless it
7618 * has an instance name. This is ugly.
7619 */
7620 if (this->layout.flags.q.explicit_binding) {
7621 apply_explicit_binding(state, &loc, var,
7622 var->get_interface_type(), &this->layout);
7623 }
7624
7625 if (var->type->is_unsized_array()) {
7626 if (var->is_in_shader_storage_block()) {
7627 if (!is_unsized_array_last_element(var)) {
7628 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7629 "only last member of a shader storage block "
7630 "can be defined as unsized array",
7631 var->name);
7632 }
7633 var->data.from_ssbo_unsized_array = true;
7634 } else {
7635 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7636 *
7637 * "If an array is declared as the last member of a shader storage
7638 * block and the size is not specified at compile-time, it is
7639 * sized at run-time. In all other cases, arrays are sized only
7640 * at compile-time."
7641 */
7642 if (state->es_shader) {
7643 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7644 "only last member of a shader storage block "
7645 "can be defined as unsized array",
7646 var->name);
7647 }
7648 }
7649 }
7650
7651 state->symbols->add_variable(var);
7652 instructions->push_tail(var);
7653 }
7654
7655 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7656 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7657 *
7658 * It is also a compilation error ... to redeclare a built-in
7659 * block and then use a member from that built-in block that was
7660 * not included in the redeclaration.
7661 *
7662 * This appears to be a clarification to the behaviour established
7663 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7664 * behaviour regardless of GLSL version.
7665 *
7666 * To prevent the shader from using a member that was not included in
7667 * the redeclaration, we disable any ir_variables that are still
7668 * associated with the old declaration of gl_PerVertex (since we've
7669 * already updated all of the variables contained in the new
7670 * gl_PerVertex to point to it).
7671 *
7672 * As a side effect this will prevent
7673 * validate_intrastage_interface_blocks() from getting confused and
7674 * thinking there are conflicting definitions of gl_PerVertex in the
7675 * shader.
7676 */
7677 foreach_in_list_safe(ir_instruction, node, instructions) {
7678 ir_variable *const var = node->as_variable();
7679 if (var != NULL &&
7680 var->get_interface_type() == earlier_per_vertex &&
7681 var->data.mode == var_mode) {
7682 if (var->data.how_declared == ir_var_declared_normally) {
7683 _mesa_glsl_error(&loc, state,
7684 "redeclaration of gl_PerVertex cannot "
7685 "follow a redeclaration of `%s'",
7686 var->name);
7687 }
7688 state->symbols->disable_variable(var->name);
7689 var->remove();
7690 }
7691 }
7692 }
7693 }
7694
7695 return NULL;
7696 }
7697
7698
7699 ir_rvalue *
7700 ast_tcs_output_layout::hir(exec_list *instructions,
7701 struct _mesa_glsl_parse_state *state)
7702 {
7703 YYLTYPE loc = this->get_location();
7704
7705 unsigned num_vertices;
7706 if (!state->out_qualifier->vertices->
7707 process_qualifier_constant(state, "vertices", &num_vertices,
7708 false)) {
7709 /* return here to stop cascading incorrect error messages */
7710 return NULL;
7711 }
7712
7713 /* If any shader outputs occurred before this declaration and specified an
7714 * array size, make sure the size they specified is consistent with the
7715 * primitive type.
7716 */
7717 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7718 _mesa_glsl_error(&loc, state,
7719 "this tessellation control shader output layout "
7720 "specifies %u vertices, but a previous output "
7721 "is declared with size %u",
7722 num_vertices, state->tcs_output_size);
7723 return NULL;
7724 }
7725
7726 state->tcs_output_vertices_specified = true;
7727
7728 /* If any shader outputs occurred before this declaration and did not
7729 * specify an array size, their size is determined now.
7730 */
7731 foreach_in_list (ir_instruction, node, instructions) {
7732 ir_variable *var = node->as_variable();
7733 if (var == NULL || var->data.mode != ir_var_shader_out)
7734 continue;
7735
7736 /* Note: Not all tessellation control shader output are arrays. */
7737 if (!var->type->is_unsized_array() || var->data.patch)
7738 continue;
7739
7740 if (var->data.max_array_access >= num_vertices) {
7741 _mesa_glsl_error(&loc, state,
7742 "this tessellation control shader output layout "
7743 "specifies %u vertices, but an access to element "
7744 "%u of output `%s' already exists", num_vertices,
7745 var->data.max_array_access, var->name);
7746 } else {
7747 var->type = glsl_type::get_array_instance(var->type->fields.array,
7748 num_vertices);
7749 }
7750 }
7751
7752 return NULL;
7753 }
7754
7755
7756 ir_rvalue *
7757 ast_gs_input_layout::hir(exec_list *instructions,
7758 struct _mesa_glsl_parse_state *state)
7759 {
7760 YYLTYPE loc = this->get_location();
7761
7762 /* If any geometry input layout declaration preceded this one, make sure it
7763 * was consistent with this one.
7764 */
7765 if (state->gs_input_prim_type_specified &&
7766 state->in_qualifier->prim_type != this->prim_type) {
7767 _mesa_glsl_error(&loc, state,
7768 "geometry shader input layout does not match"
7769 " previous declaration");
7770 return NULL;
7771 }
7772
7773 /* If any shader inputs occurred before this declaration and specified an
7774 * array size, make sure the size they specified is consistent with the
7775 * primitive type.
7776 */
7777 unsigned num_vertices = vertices_per_prim(this->prim_type);
7778 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7779 _mesa_glsl_error(&loc, state,
7780 "this geometry shader input layout implies %u vertices"
7781 " per primitive, but a previous input is declared"
7782 " with size %u", num_vertices, state->gs_input_size);
7783 return NULL;
7784 }
7785
7786 state->gs_input_prim_type_specified = true;
7787
7788 /* If any shader inputs occurred before this declaration and did not
7789 * specify an array size, their size is determined now.
7790 */
7791 foreach_in_list(ir_instruction, node, instructions) {
7792 ir_variable *var = node->as_variable();
7793 if (var == NULL || var->data.mode != ir_var_shader_in)
7794 continue;
7795
7796 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7797 * array; skip it.
7798 */
7799
7800 if (var->type->is_unsized_array()) {
7801 if (var->data.max_array_access >= num_vertices) {
7802 _mesa_glsl_error(&loc, state,
7803 "this geometry shader input layout implies %u"
7804 " vertices, but an access to element %u of input"
7805 " `%s' already exists", num_vertices,
7806 var->data.max_array_access, var->name);
7807 } else {
7808 var->type = glsl_type::get_array_instance(var->type->fields.array,
7809 num_vertices);
7810 }
7811 }
7812 }
7813
7814 return NULL;
7815 }
7816
7817
7818 ir_rvalue *
7819 ast_cs_input_layout::hir(exec_list *instructions,
7820 struct _mesa_glsl_parse_state *state)
7821 {
7822 YYLTYPE loc = this->get_location();
7823
7824 /* From the ARB_compute_shader specification:
7825 *
7826 * If the local size of the shader in any dimension is greater
7827 * than the maximum size supported by the implementation for that
7828 * dimension, a compile-time error results.
7829 *
7830 * It is not clear from the spec how the error should be reported if
7831 * the total size of the work group exceeds
7832 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7833 * report it at compile time as well.
7834 */
7835 GLuint64 total_invocations = 1;
7836 unsigned qual_local_size[3];
7837 for (int i = 0; i < 3; i++) {
7838
7839 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7840 'x' + i);
7841 /* Infer a local_size of 1 for unspecified dimensions */
7842 if (this->local_size[i] == NULL) {
7843 qual_local_size[i] = 1;
7844 } else if (!this->local_size[i]->
7845 process_qualifier_constant(state, local_size_str,
7846 &qual_local_size[i], false)) {
7847 ralloc_free(local_size_str);
7848 return NULL;
7849 }
7850 ralloc_free(local_size_str);
7851
7852 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7853 _mesa_glsl_error(&loc, state,
7854 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7855 " (%d)", 'x' + i,
7856 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7857 break;
7858 }
7859 total_invocations *= qual_local_size[i];
7860 if (total_invocations >
7861 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7862 _mesa_glsl_error(&loc, state,
7863 "product of local_sizes exceeds "
7864 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7865 state->ctx->Const.MaxComputeWorkGroupInvocations);
7866 break;
7867 }
7868 }
7869
7870 /* If any compute input layout declaration preceded this one, make sure it
7871 * was consistent with this one.
7872 */
7873 if (state->cs_input_local_size_specified) {
7874 for (int i = 0; i < 3; i++) {
7875 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7876 _mesa_glsl_error(&loc, state,
7877 "compute shader input layout does not match"
7878 " previous declaration");
7879 return NULL;
7880 }
7881 }
7882 }
7883
7884 state->cs_input_local_size_specified = true;
7885 for (int i = 0; i < 3; i++)
7886 state->cs_input_local_size[i] = qual_local_size[i];
7887
7888 /* We may now declare the built-in constant gl_WorkGroupSize (see
7889 * builtin_variable_generator::generate_constants() for why we didn't
7890 * declare it earlier).
7891 */
7892 ir_variable *var = new(state->symbols)
7893 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7894 var->data.how_declared = ir_var_declared_implicitly;
7895 var->data.read_only = true;
7896 instructions->push_tail(var);
7897 state->symbols->add_variable(var);
7898 ir_constant_data data;
7899 memset(&data, 0, sizeof(data));
7900 for (int i = 0; i < 3; i++)
7901 data.u[i] = qual_local_size[i];
7902 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7903 var->constant_initializer =
7904 new(var) ir_constant(glsl_type::uvec3_type, &data);
7905 var->data.has_initializer = true;
7906
7907 return NULL;
7908 }
7909
7910
7911 static void
7912 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7913 exec_list *instructions)
7914 {
7915 bool gl_FragColor_assigned = false;
7916 bool gl_FragData_assigned = false;
7917 bool gl_FragSecondaryColor_assigned = false;
7918 bool gl_FragSecondaryData_assigned = false;
7919 bool user_defined_fs_output_assigned = false;
7920 ir_variable *user_defined_fs_output = NULL;
7921
7922 /* It would be nice to have proper location information. */
7923 YYLTYPE loc;
7924 memset(&loc, 0, sizeof(loc));
7925
7926 foreach_in_list(ir_instruction, node, instructions) {
7927 ir_variable *var = node->as_variable();
7928
7929 if (!var || !var->data.assigned)
7930 continue;
7931
7932 if (strcmp(var->name, "gl_FragColor") == 0)
7933 gl_FragColor_assigned = true;
7934 else if (strcmp(var->name, "gl_FragData") == 0)
7935 gl_FragData_assigned = true;
7936 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7937 gl_FragSecondaryColor_assigned = true;
7938 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7939 gl_FragSecondaryData_assigned = true;
7940 else if (!is_gl_identifier(var->name)) {
7941 if (state->stage == MESA_SHADER_FRAGMENT &&
7942 var->data.mode == ir_var_shader_out) {
7943 user_defined_fs_output_assigned = true;
7944 user_defined_fs_output = var;
7945 }
7946 }
7947 }
7948
7949 /* From the GLSL 1.30 spec:
7950 *
7951 * "If a shader statically assigns a value to gl_FragColor, it
7952 * may not assign a value to any element of gl_FragData. If a
7953 * shader statically writes a value to any element of
7954 * gl_FragData, it may not assign a value to
7955 * gl_FragColor. That is, a shader may assign values to either
7956 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7957 * linked together must also consistently write just one of
7958 * these variables. Similarly, if user declared output
7959 * variables are in use (statically assigned to), then the
7960 * built-in variables gl_FragColor and gl_FragData may not be
7961 * assigned to. These incorrect usages all generate compile
7962 * time errors."
7963 */
7964 if (gl_FragColor_assigned && gl_FragData_assigned) {
7965 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7966 "`gl_FragColor' and `gl_FragData'");
7967 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7968 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7969 "`gl_FragColor' and `%s'",
7970 user_defined_fs_output->name);
7971 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7972 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7973 "`gl_FragSecondaryColorEXT' and"
7974 " `gl_FragSecondaryDataEXT'");
7975 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7976 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7977 "`gl_FragColor' and"
7978 " `gl_FragSecondaryDataEXT'");
7979 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7980 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7981 "`gl_FragData' and"
7982 " `gl_FragSecondaryColorEXT'");
7983 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7984 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7985 "`gl_FragData' and `%s'",
7986 user_defined_fs_output->name);
7987 }
7988
7989 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7990 !state->EXT_blend_func_extended_enable) {
7991 _mesa_glsl_error(&loc, state,
7992 "Dual source blending requires EXT_blend_func_extended");
7993 }
7994 }
7995
7996
7997 static void
7998 remove_per_vertex_blocks(exec_list *instructions,
7999 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8000 {
8001 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8002 * if it exists in this shader type.
8003 */
8004 const glsl_type *per_vertex = NULL;
8005 switch (mode) {
8006 case ir_var_shader_in:
8007 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8008 per_vertex = gl_in->get_interface_type();
8009 break;
8010 case ir_var_shader_out:
8011 if (ir_variable *gl_Position =
8012 state->symbols->get_variable("gl_Position")) {
8013 per_vertex = gl_Position->get_interface_type();
8014 }
8015 break;
8016 default:
8017 assert(!"Unexpected mode");
8018 break;
8019 }
8020
8021 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8022 * need to do anything.
8023 */
8024 if (per_vertex == NULL)
8025 return;
8026
8027 /* If the interface block is used by the shader, then we don't need to do
8028 * anything.
8029 */
8030 interface_block_usage_visitor v(mode, per_vertex);
8031 v.run(instructions);
8032 if (v.usage_found())
8033 return;
8034
8035 /* Remove any ir_variable declarations that refer to the interface block
8036 * we're removing.
8037 */
8038 foreach_in_list_safe(ir_instruction, node, instructions) {
8039 ir_variable *const var = node->as_variable();
8040 if (var != NULL && var->get_interface_type() == per_vertex &&
8041 var->data.mode == mode) {
8042 state->symbols->disable_variable(var->name);
8043 var->remove();
8044 }
8045 }
8046 }