glsl: Separate overlapping sentinel nodes in exec_list.
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1005 ir_var_temporary);
1006 instructions->push_tail(var);
1007 instructions->push_tail(assign(var, rhs));
1008
1009 if (!error_emitted) {
1010 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1011 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1012 }
1013 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1014
1015 *out_rvalue = rvalue;
1016 } else {
1017 if (!error_emitted)
1018 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1019 *out_rvalue = NULL;
1020 }
1021
1022 return error_emitted;
1023 }
1024
1025 static ir_rvalue *
1026 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1027 {
1028 void *ctx = ralloc_parent(lvalue);
1029 ir_variable *var;
1030
1031 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1032 ir_var_temporary);
1033 instructions->push_tail(var);
1034
1035 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1036 lvalue));
1037
1038 return new(ctx) ir_dereference_variable(var);
1039 }
1040
1041
1042 ir_rvalue *
1043 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1044 {
1045 (void) instructions;
1046 (void) state;
1047
1048 return NULL;
1049 }
1050
1051 bool
1052 ast_node::has_sequence_subexpression() const
1053 {
1054 return false;
1055 }
1056
1057 void
1058 ast_node::set_is_lhs(bool /* new_value */)
1059 {
1060 }
1061
1062 void
1063 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 void
1070 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1071 struct _mesa_glsl_parse_state *state)
1072 {
1073 (void)hir(instructions, state);
1074 }
1075
1076 static ir_rvalue *
1077 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1078 {
1079 int join_op;
1080 ir_rvalue *cmp = NULL;
1081
1082 if (operation == ir_binop_all_equal)
1083 join_op = ir_binop_logic_and;
1084 else
1085 join_op = ir_binop_logic_or;
1086
1087 switch (op0->type->base_type) {
1088 case GLSL_TYPE_FLOAT:
1089 case GLSL_TYPE_UINT:
1090 case GLSL_TYPE_INT:
1091 case GLSL_TYPE_BOOL:
1092 case GLSL_TYPE_DOUBLE:
1093 return new(mem_ctx) ir_expression(operation, op0, op1);
1094
1095 case GLSL_TYPE_ARRAY: {
1096 for (unsigned int i = 0; i < op0->type->length; i++) {
1097 ir_rvalue *e0, *e1, *result;
1098
1099 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1100 new(mem_ctx) ir_constant(i));
1101 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1102 new(mem_ctx) ir_constant(i));
1103 result = do_comparison(mem_ctx, operation, e0, e1);
1104
1105 if (cmp) {
1106 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1107 } else {
1108 cmp = result;
1109 }
1110 }
1111
1112 mark_whole_array_access(op0);
1113 mark_whole_array_access(op1);
1114 break;
1115 }
1116
1117 case GLSL_TYPE_STRUCT: {
1118 for (unsigned int i = 0; i < op0->type->length; i++) {
1119 ir_rvalue *e0, *e1, *result;
1120 const char *field_name = op0->type->fields.structure[i].name;
1121
1122 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1123 field_name);
1124 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1125 field_name);
1126 result = do_comparison(mem_ctx, operation, e0, e1);
1127
1128 if (cmp) {
1129 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1130 } else {
1131 cmp = result;
1132 }
1133 }
1134 break;
1135 }
1136
1137 case GLSL_TYPE_ERROR:
1138 case GLSL_TYPE_VOID:
1139 case GLSL_TYPE_SAMPLER:
1140 case GLSL_TYPE_IMAGE:
1141 case GLSL_TYPE_INTERFACE:
1142 case GLSL_TYPE_ATOMIC_UINT:
1143 case GLSL_TYPE_SUBROUTINE:
1144 case GLSL_TYPE_FUNCTION:
1145 /* I assume a comparison of a struct containing a sampler just
1146 * ignores the sampler present in the type.
1147 */
1148 break;
1149 }
1150
1151 if (cmp == NULL)
1152 cmp = new(mem_ctx) ir_constant(true);
1153
1154 return cmp;
1155 }
1156
1157 /* For logical operations, we want to ensure that the operands are
1158 * scalar booleans. If it isn't, emit an error and return a constant
1159 * boolean to avoid triggering cascading error messages.
1160 */
1161 ir_rvalue *
1162 get_scalar_boolean_operand(exec_list *instructions,
1163 struct _mesa_glsl_parse_state *state,
1164 ast_expression *parent_expr,
1165 int operand,
1166 const char *operand_name,
1167 bool *error_emitted)
1168 {
1169 ast_expression *expr = parent_expr->subexpressions[operand];
1170 void *ctx = state;
1171 ir_rvalue *val = expr->hir(instructions, state);
1172
1173 if (val->type->is_boolean() && val->type->is_scalar())
1174 return val;
1175
1176 if (!*error_emitted) {
1177 YYLTYPE loc = expr->get_location();
1178 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1179 operand_name,
1180 parent_expr->operator_string(parent_expr->oper));
1181 *error_emitted = true;
1182 }
1183
1184 return new(ctx) ir_constant(true);
1185 }
1186
1187 /**
1188 * If name refers to a builtin array whose maximum allowed size is less than
1189 * size, report an error and return true. Otherwise return false.
1190 */
1191 void
1192 check_builtin_array_max_size(const char *name, unsigned size,
1193 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1194 {
1195 if ((strcmp("gl_TexCoord", name) == 0)
1196 && (size > state->Const.MaxTextureCoords)) {
1197 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1198 *
1199 * "The size [of gl_TexCoord] can be at most
1200 * gl_MaxTextureCoords."
1201 */
1202 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1203 "be larger than gl_MaxTextureCoords (%u)",
1204 state->Const.MaxTextureCoords);
1205 } else if (strcmp("gl_ClipDistance", name) == 0) {
1206 state->clip_dist_size = size;
1207 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1208 /* From section 7.1 (Vertex Shader Special Variables) of the
1209 * GLSL 1.30 spec:
1210 *
1211 * "The gl_ClipDistance array is predeclared as unsized and
1212 * must be sized by the shader either redeclaring it with a
1213 * size or indexing it only with integral constant
1214 * expressions. ... The size can be at most
1215 * gl_MaxClipDistances."
1216 */
1217 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1218 "be larger than gl_MaxClipDistances (%u)",
1219 state->Const.MaxClipPlanes);
1220 }
1221 } else if (strcmp("gl_CullDistance", name) == 0) {
1222 state->cull_dist_size = size;
1223 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1224 /* From the ARB_cull_distance spec:
1225 *
1226 * "The gl_CullDistance array is predeclared as unsized and
1227 * must be sized by the shader either redeclaring it with
1228 * a size or indexing it only with integral constant
1229 * expressions. The size determines the number and set of
1230 * enabled cull distances and can be at most
1231 * gl_MaxCullDistances."
1232 */
1233 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1234 "be larger than gl_MaxCullDistances (%u)",
1235 state->Const.MaxClipPlanes);
1236 }
1237 }
1238 }
1239
1240 /**
1241 * Create the constant 1, of a which is appropriate for incrementing and
1242 * decrementing values of the given GLSL type. For example, if type is vec4,
1243 * this creates a constant value of 1.0 having type float.
1244 *
1245 * If the given type is invalid for increment and decrement operators, return
1246 * a floating point 1--the error will be detected later.
1247 */
1248 static ir_rvalue *
1249 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1250 {
1251 switch (type->base_type) {
1252 case GLSL_TYPE_UINT:
1253 return new(ctx) ir_constant((unsigned) 1);
1254 case GLSL_TYPE_INT:
1255 return new(ctx) ir_constant(1);
1256 default:
1257 case GLSL_TYPE_FLOAT:
1258 return new(ctx) ir_constant(1.0f);
1259 }
1260 }
1261
1262 ir_rvalue *
1263 ast_expression::hir(exec_list *instructions,
1264 struct _mesa_glsl_parse_state *state)
1265 {
1266 return do_hir(instructions, state, true);
1267 }
1268
1269 void
1270 ast_expression::hir_no_rvalue(exec_list *instructions,
1271 struct _mesa_glsl_parse_state *state)
1272 {
1273 do_hir(instructions, state, false);
1274 }
1275
1276 void
1277 ast_expression::set_is_lhs(bool new_value)
1278 {
1279 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1280 * if we lack an identifier we can just skip it.
1281 */
1282 if (this->primary_expression.identifier == NULL)
1283 return;
1284
1285 this->is_lhs = new_value;
1286
1287 /* We need to go through the subexpressions tree to cover cases like
1288 * ast_field_selection
1289 */
1290 if (this->subexpressions[0] != NULL)
1291 this->subexpressions[0]->set_is_lhs(new_value);
1292 }
1293
1294 ir_rvalue *
1295 ast_expression::do_hir(exec_list *instructions,
1296 struct _mesa_glsl_parse_state *state,
1297 bool needs_rvalue)
1298 {
1299 void *ctx = state;
1300 static const int operations[AST_NUM_OPERATORS] = {
1301 -1, /* ast_assign doesn't convert to ir_expression. */
1302 -1, /* ast_plus doesn't convert to ir_expression. */
1303 ir_unop_neg,
1304 ir_binop_add,
1305 ir_binop_sub,
1306 ir_binop_mul,
1307 ir_binop_div,
1308 ir_binop_mod,
1309 ir_binop_lshift,
1310 ir_binop_rshift,
1311 ir_binop_less,
1312 ir_binop_greater,
1313 ir_binop_lequal,
1314 ir_binop_gequal,
1315 ir_binop_all_equal,
1316 ir_binop_any_nequal,
1317 ir_binop_bit_and,
1318 ir_binop_bit_xor,
1319 ir_binop_bit_or,
1320 ir_unop_bit_not,
1321 ir_binop_logic_and,
1322 ir_binop_logic_xor,
1323 ir_binop_logic_or,
1324 ir_unop_logic_not,
1325
1326 /* Note: The following block of expression types actually convert
1327 * to multiple IR instructions.
1328 */
1329 ir_binop_mul, /* ast_mul_assign */
1330 ir_binop_div, /* ast_div_assign */
1331 ir_binop_mod, /* ast_mod_assign */
1332 ir_binop_add, /* ast_add_assign */
1333 ir_binop_sub, /* ast_sub_assign */
1334 ir_binop_lshift, /* ast_ls_assign */
1335 ir_binop_rshift, /* ast_rs_assign */
1336 ir_binop_bit_and, /* ast_and_assign */
1337 ir_binop_bit_xor, /* ast_xor_assign */
1338 ir_binop_bit_or, /* ast_or_assign */
1339
1340 -1, /* ast_conditional doesn't convert to ir_expression. */
1341 ir_binop_add, /* ast_pre_inc. */
1342 ir_binop_sub, /* ast_pre_dec. */
1343 ir_binop_add, /* ast_post_inc. */
1344 ir_binop_sub, /* ast_post_dec. */
1345 -1, /* ast_field_selection doesn't conv to ir_expression. */
1346 -1, /* ast_array_index doesn't convert to ir_expression. */
1347 -1, /* ast_function_call doesn't conv to ir_expression. */
1348 -1, /* ast_identifier doesn't convert to ir_expression. */
1349 -1, /* ast_int_constant doesn't convert to ir_expression. */
1350 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1351 -1, /* ast_float_constant doesn't conv to ir_expression. */
1352 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1353 -1, /* ast_sequence doesn't convert to ir_expression. */
1354 };
1355 ir_rvalue *result = NULL;
1356 ir_rvalue *op[3];
1357 const struct glsl_type *type; /* a temporary variable for switch cases */
1358 bool error_emitted = false;
1359 YYLTYPE loc;
1360
1361 loc = this->get_location();
1362
1363 switch (this->oper) {
1364 case ast_aggregate:
1365 assert(!"ast_aggregate: Should never get here.");
1366 break;
1367
1368 case ast_assign: {
1369 this->subexpressions[0]->set_is_lhs(true);
1370 op[0] = this->subexpressions[0]->hir(instructions, state);
1371 op[1] = this->subexpressions[1]->hir(instructions, state);
1372
1373 error_emitted =
1374 do_assignment(instructions, state,
1375 this->subexpressions[0]->non_lvalue_description,
1376 op[0], op[1], &result, needs_rvalue, false,
1377 this->subexpressions[0]->get_location());
1378 break;
1379 }
1380
1381 case ast_plus:
1382 op[0] = this->subexpressions[0]->hir(instructions, state);
1383
1384 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1385
1386 error_emitted = type->is_error();
1387
1388 result = op[0];
1389 break;
1390
1391 case ast_neg:
1392 op[0] = this->subexpressions[0]->hir(instructions, state);
1393
1394 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1395
1396 error_emitted = type->is_error();
1397
1398 result = new(ctx) ir_expression(operations[this->oper], type,
1399 op[0], NULL);
1400 break;
1401
1402 case ast_add:
1403 case ast_sub:
1404 case ast_mul:
1405 case ast_div:
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 type = arithmetic_result_type(op[0], op[1],
1410 (this->oper == ast_mul),
1411 state, & loc);
1412 error_emitted = type->is_error();
1413
1414 result = new(ctx) ir_expression(operations[this->oper], type,
1415 op[0], op[1]);
1416 break;
1417
1418 case ast_mod:
1419 op[0] = this->subexpressions[0]->hir(instructions, state);
1420 op[1] = this->subexpressions[1]->hir(instructions, state);
1421
1422 type = modulus_result_type(op[0], op[1], state, &loc);
1423
1424 assert(operations[this->oper] == ir_binop_mod);
1425
1426 result = new(ctx) ir_expression(operations[this->oper], type,
1427 op[0], op[1]);
1428 error_emitted = type->is_error();
1429 break;
1430
1431 case ast_lshift:
1432 case ast_rshift:
1433 if (!state->check_bitwise_operations_allowed(&loc)) {
1434 error_emitted = true;
1435 }
1436
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438 op[1] = this->subexpressions[1]->hir(instructions, state);
1439 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1440 &loc);
1441 result = new(ctx) ir_expression(operations[this->oper], type,
1442 op[0], op[1]);
1443 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1444 break;
1445
1446 case ast_less:
1447 case ast_greater:
1448 case ast_lequal:
1449 case ast_gequal:
1450 op[0] = this->subexpressions[0]->hir(instructions, state);
1451 op[1] = this->subexpressions[1]->hir(instructions, state);
1452
1453 type = relational_result_type(op[0], op[1], state, & loc);
1454
1455 /* The relational operators must either generate an error or result
1456 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1457 */
1458 assert(type->is_error()
1459 || ((type->base_type == GLSL_TYPE_BOOL)
1460 && type->is_scalar()));
1461
1462 result = new(ctx) ir_expression(operations[this->oper], type,
1463 op[0], op[1]);
1464 error_emitted = type->is_error();
1465 break;
1466
1467 case ast_nequal:
1468 case ast_equal:
1469 op[0] = this->subexpressions[0]->hir(instructions, state);
1470 op[1] = this->subexpressions[1]->hir(instructions, state);
1471
1472 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1473 *
1474 * "The equality operators equal (==), and not equal (!=)
1475 * operate on all types. They result in a scalar Boolean. If
1476 * the operand types do not match, then there must be a
1477 * conversion from Section 4.1.10 "Implicit Conversions"
1478 * applied to one operand that can make them match, in which
1479 * case this conversion is done."
1480 */
1481
1482 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1483 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1484 "no operation `%1$s' exists that takes a left-hand "
1485 "operand of type 'void' or a right operand of type "
1486 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1487 error_emitted = true;
1488 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1489 && !apply_implicit_conversion(op[1]->type, op[0], state))
1490 || (op[0]->type != op[1]->type)) {
1491 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1492 "type", (this->oper == ast_equal) ? "==" : "!=");
1493 error_emitted = true;
1494 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1495 !state->check_version(120, 300, &loc,
1496 "array comparisons forbidden")) {
1497 error_emitted = true;
1498 } else if ((op[0]->type->contains_subroutine() ||
1499 op[1]->type->contains_subroutine())) {
1500 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1501 error_emitted = true;
1502 } else if ((op[0]->type->contains_opaque() ||
1503 op[1]->type->contains_opaque())) {
1504 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1505 error_emitted = true;
1506 }
1507
1508 if (error_emitted) {
1509 result = new(ctx) ir_constant(false);
1510 } else {
1511 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1512 assert(result->type == glsl_type::bool_type);
1513 }
1514 break;
1515
1516 case ast_bit_and:
1517 case ast_bit_xor:
1518 case ast_bit_or:
1519 op[0] = this->subexpressions[0]->hir(instructions, state);
1520 op[1] = this->subexpressions[1]->hir(instructions, state);
1521 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1522 result = new(ctx) ir_expression(operations[this->oper], type,
1523 op[0], op[1]);
1524 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1525 break;
1526
1527 case ast_bit_not:
1528 op[0] = this->subexpressions[0]->hir(instructions, state);
1529
1530 if (!state->check_bitwise_operations_allowed(&loc)) {
1531 error_emitted = true;
1532 }
1533
1534 if (!op[0]->type->is_integer()) {
1535 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1536 error_emitted = true;
1537 }
1538
1539 type = error_emitted ? glsl_type::error_type : op[0]->type;
1540 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1541 break;
1542
1543 case ast_logic_and: {
1544 exec_list rhs_instructions;
1545 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1546 "LHS", &error_emitted);
1547 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1548 "RHS", &error_emitted);
1549
1550 if (rhs_instructions.is_empty()) {
1551 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1552 type = result->type;
1553 } else {
1554 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1555 "and_tmp",
1556 ir_var_temporary);
1557 instructions->push_tail(tmp);
1558
1559 ir_if *const stmt = new(ctx) ir_if(op[0]);
1560 instructions->push_tail(stmt);
1561
1562 stmt->then_instructions.append_list(&rhs_instructions);
1563 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1564 ir_assignment *const then_assign =
1565 new(ctx) ir_assignment(then_deref, op[1]);
1566 stmt->then_instructions.push_tail(then_assign);
1567
1568 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1569 ir_assignment *const else_assign =
1570 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1571 stmt->else_instructions.push_tail(else_assign);
1572
1573 result = new(ctx) ir_dereference_variable(tmp);
1574 type = tmp->type;
1575 }
1576 break;
1577 }
1578
1579 case ast_logic_or: {
1580 exec_list rhs_instructions;
1581 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1582 "LHS", &error_emitted);
1583 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1584 "RHS", &error_emitted);
1585
1586 if (rhs_instructions.is_empty()) {
1587 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1588 type = result->type;
1589 } else {
1590 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1591 "or_tmp",
1592 ir_var_temporary);
1593 instructions->push_tail(tmp);
1594
1595 ir_if *const stmt = new(ctx) ir_if(op[0]);
1596 instructions->push_tail(stmt);
1597
1598 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1599 ir_assignment *const then_assign =
1600 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1601 stmt->then_instructions.push_tail(then_assign);
1602
1603 stmt->else_instructions.append_list(&rhs_instructions);
1604 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1605 ir_assignment *const else_assign =
1606 new(ctx) ir_assignment(else_deref, op[1]);
1607 stmt->else_instructions.push_tail(else_assign);
1608
1609 result = new(ctx) ir_dereference_variable(tmp);
1610 type = tmp->type;
1611 }
1612 break;
1613 }
1614
1615 case ast_logic_xor:
1616 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1617 *
1618 * "The logical binary operators and (&&), or ( | | ), and
1619 * exclusive or (^^). They operate only on two Boolean
1620 * expressions and result in a Boolean expression."
1621 */
1622 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1623 &error_emitted);
1624 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1625 &error_emitted);
1626
1627 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1628 op[0], op[1]);
1629 break;
1630
1631 case ast_logic_not:
1632 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1633 "operand", &error_emitted);
1634
1635 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1636 op[0], NULL);
1637 break;
1638
1639 case ast_mul_assign:
1640 case ast_div_assign:
1641 case ast_add_assign:
1642 case ast_sub_assign: {
1643 this->subexpressions[0]->set_is_lhs(true);
1644 op[0] = this->subexpressions[0]->hir(instructions, state);
1645 op[1] = this->subexpressions[1]->hir(instructions, state);
1646
1647 type = arithmetic_result_type(op[0], op[1],
1648 (this->oper == ast_mul_assign),
1649 state, & loc);
1650
1651 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1652 op[0], op[1]);
1653
1654 error_emitted =
1655 do_assignment(instructions, state,
1656 this->subexpressions[0]->non_lvalue_description,
1657 op[0]->clone(ctx, NULL), temp_rhs,
1658 &result, needs_rvalue, false,
1659 this->subexpressions[0]->get_location());
1660
1661 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1662 * explicitly test for this because none of the binary expression
1663 * operators allow array operands either.
1664 */
1665
1666 break;
1667 }
1668
1669 case ast_mod_assign: {
1670 this->subexpressions[0]->set_is_lhs(true);
1671 op[0] = this->subexpressions[0]->hir(instructions, state);
1672 op[1] = this->subexpressions[1]->hir(instructions, state);
1673
1674 type = modulus_result_type(op[0], op[1], state, &loc);
1675
1676 assert(operations[this->oper] == ir_binop_mod);
1677
1678 ir_rvalue *temp_rhs;
1679 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1680 op[0], op[1]);
1681
1682 error_emitted =
1683 do_assignment(instructions, state,
1684 this->subexpressions[0]->non_lvalue_description,
1685 op[0]->clone(ctx, NULL), temp_rhs,
1686 &result, needs_rvalue, false,
1687 this->subexpressions[0]->get_location());
1688 break;
1689 }
1690
1691 case ast_ls_assign:
1692 case ast_rs_assign: {
1693 this->subexpressions[0]->set_is_lhs(true);
1694 op[0] = this->subexpressions[0]->hir(instructions, state);
1695 op[1] = this->subexpressions[1]->hir(instructions, state);
1696 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1697 &loc);
1698 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1699 type, op[0], op[1]);
1700 error_emitted =
1701 do_assignment(instructions, state,
1702 this->subexpressions[0]->non_lvalue_description,
1703 op[0]->clone(ctx, NULL), temp_rhs,
1704 &result, needs_rvalue, false,
1705 this->subexpressions[0]->get_location());
1706 break;
1707 }
1708
1709 case ast_and_assign:
1710 case ast_xor_assign:
1711 case ast_or_assign: {
1712 this->subexpressions[0]->set_is_lhs(true);
1713 op[0] = this->subexpressions[0]->hir(instructions, state);
1714 op[1] = this->subexpressions[1]->hir(instructions, state);
1715 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1716 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1717 type, op[0], op[1]);
1718 error_emitted =
1719 do_assignment(instructions, state,
1720 this->subexpressions[0]->non_lvalue_description,
1721 op[0]->clone(ctx, NULL), temp_rhs,
1722 &result, needs_rvalue, false,
1723 this->subexpressions[0]->get_location());
1724 break;
1725 }
1726
1727 case ast_conditional: {
1728 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1729 *
1730 * "The ternary selection operator (?:). It operates on three
1731 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1732 * first expression, which must result in a scalar Boolean."
1733 */
1734 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1735 "condition", &error_emitted);
1736
1737 /* The :? operator is implemented by generating an anonymous temporary
1738 * followed by an if-statement. The last instruction in each branch of
1739 * the if-statement assigns a value to the anonymous temporary. This
1740 * temporary is the r-value of the expression.
1741 */
1742 exec_list then_instructions;
1743 exec_list else_instructions;
1744
1745 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1746 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1747
1748 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1749 *
1750 * "The second and third expressions can be any type, as
1751 * long their types match, or there is a conversion in
1752 * Section 4.1.10 "Implicit Conversions" that can be applied
1753 * to one of the expressions to make their types match. This
1754 * resulting matching type is the type of the entire
1755 * expression."
1756 */
1757 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1758 && !apply_implicit_conversion(op[2]->type, op[1], state))
1759 || (op[1]->type != op[2]->type)) {
1760 YYLTYPE loc = this->subexpressions[1]->get_location();
1761
1762 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1763 "operator must have matching types");
1764 error_emitted = true;
1765 type = glsl_type::error_type;
1766 } else {
1767 type = op[1]->type;
1768 }
1769
1770 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1771 *
1772 * "The second and third expressions must be the same type, but can
1773 * be of any type other than an array."
1774 */
1775 if (type->is_array() &&
1776 !state->check_version(120, 300, &loc,
1777 "second and third operands of ?: operator "
1778 "cannot be arrays")) {
1779 error_emitted = true;
1780 }
1781
1782 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1783 *
1784 * "Except for array indexing, structure member selection, and
1785 * parentheses, opaque variables are not allowed to be operands in
1786 * expressions; such use results in a compile-time error."
1787 */
1788 if (type->contains_opaque()) {
1789 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1790 "of the ?: operator");
1791 error_emitted = true;
1792 }
1793
1794 ir_constant *cond_val = op[0]->constant_expression_value();
1795
1796 if (then_instructions.is_empty()
1797 && else_instructions.is_empty()
1798 && cond_val != NULL) {
1799 result = cond_val->value.b[0] ? op[1] : op[2];
1800 } else {
1801 /* The copy to conditional_tmp reads the whole array. */
1802 if (type->is_array()) {
1803 mark_whole_array_access(op[1]);
1804 mark_whole_array_access(op[2]);
1805 }
1806
1807 ir_variable *const tmp =
1808 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1809 instructions->push_tail(tmp);
1810
1811 ir_if *const stmt = new(ctx) ir_if(op[0]);
1812 instructions->push_tail(stmt);
1813
1814 then_instructions.move_nodes_to(& stmt->then_instructions);
1815 ir_dereference *const then_deref =
1816 new(ctx) ir_dereference_variable(tmp);
1817 ir_assignment *const then_assign =
1818 new(ctx) ir_assignment(then_deref, op[1]);
1819 stmt->then_instructions.push_tail(then_assign);
1820
1821 else_instructions.move_nodes_to(& stmt->else_instructions);
1822 ir_dereference *const else_deref =
1823 new(ctx) ir_dereference_variable(tmp);
1824 ir_assignment *const else_assign =
1825 new(ctx) ir_assignment(else_deref, op[2]);
1826 stmt->else_instructions.push_tail(else_assign);
1827
1828 result = new(ctx) ir_dereference_variable(tmp);
1829 }
1830 break;
1831 }
1832
1833 case ast_pre_inc:
1834 case ast_pre_dec: {
1835 this->non_lvalue_description = (this->oper == ast_pre_inc)
1836 ? "pre-increment operation" : "pre-decrement operation";
1837
1838 op[0] = this->subexpressions[0]->hir(instructions, state);
1839 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1840
1841 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1842
1843 ir_rvalue *temp_rhs;
1844 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1845 op[0], op[1]);
1846
1847 error_emitted =
1848 do_assignment(instructions, state,
1849 this->subexpressions[0]->non_lvalue_description,
1850 op[0]->clone(ctx, NULL), temp_rhs,
1851 &result, needs_rvalue, false,
1852 this->subexpressions[0]->get_location());
1853 break;
1854 }
1855
1856 case ast_post_inc:
1857 case ast_post_dec: {
1858 this->non_lvalue_description = (this->oper == ast_post_inc)
1859 ? "post-increment operation" : "post-decrement operation";
1860 op[0] = this->subexpressions[0]->hir(instructions, state);
1861 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1862
1863 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1864
1865 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1866
1867 ir_rvalue *temp_rhs;
1868 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1869 op[0], op[1]);
1870
1871 /* Get a temporary of a copy of the lvalue before it's modified.
1872 * This may get thrown away later.
1873 */
1874 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1875
1876 ir_rvalue *junk_rvalue;
1877 error_emitted =
1878 do_assignment(instructions, state,
1879 this->subexpressions[0]->non_lvalue_description,
1880 op[0]->clone(ctx, NULL), temp_rhs,
1881 &junk_rvalue, false, false,
1882 this->subexpressions[0]->get_location());
1883
1884 break;
1885 }
1886
1887 case ast_field_selection:
1888 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1889 break;
1890
1891 case ast_array_index: {
1892 YYLTYPE index_loc = subexpressions[1]->get_location();
1893
1894 /* Getting if an array is being used uninitialized is beyond what we get
1895 * from ir_value.data.assigned. Setting is_lhs as true would force to
1896 * not raise a uninitialized warning when using an array
1897 */
1898 subexpressions[0]->set_is_lhs(true);
1899 op[0] = subexpressions[0]->hir(instructions, state);
1900 op[1] = subexpressions[1]->hir(instructions, state);
1901
1902 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1903 loc, index_loc);
1904
1905 if (result->type->is_error())
1906 error_emitted = true;
1907
1908 break;
1909 }
1910
1911 case ast_unsized_array_dim:
1912 assert(!"ast_unsized_array_dim: Should never get here.");
1913 break;
1914
1915 case ast_function_call:
1916 /* Should *NEVER* get here. ast_function_call should always be handled
1917 * by ast_function_expression::hir.
1918 */
1919 assert(0);
1920 break;
1921
1922 case ast_identifier: {
1923 /* ast_identifier can appear several places in a full abstract syntax
1924 * tree. This particular use must be at location specified in the grammar
1925 * as 'variable_identifier'.
1926 */
1927 ir_variable *var =
1928 state->symbols->get_variable(this->primary_expression.identifier);
1929
1930 if (var == NULL) {
1931 /* the identifier might be a subroutine name */
1932 char *sub_name;
1933 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1934 var = state->symbols->get_variable(sub_name);
1935 ralloc_free(sub_name);
1936 }
1937
1938 if (var != NULL) {
1939 var->data.used = true;
1940 result = new(ctx) ir_dereference_variable(var);
1941
1942 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1943 && !this->is_lhs
1944 && result->variable_referenced()->data.assigned != true
1945 && !is_gl_identifier(var->name)) {
1946 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1947 this->primary_expression.identifier);
1948 }
1949 } else {
1950 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1951 this->primary_expression.identifier);
1952
1953 result = ir_rvalue::error_value(ctx);
1954 error_emitted = true;
1955 }
1956 break;
1957 }
1958
1959 case ast_int_constant:
1960 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1961 break;
1962
1963 case ast_uint_constant:
1964 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1965 break;
1966
1967 case ast_float_constant:
1968 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1969 break;
1970
1971 case ast_bool_constant:
1972 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1973 break;
1974
1975 case ast_double_constant:
1976 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1977 break;
1978
1979 case ast_sequence: {
1980 /* It should not be possible to generate a sequence in the AST without
1981 * any expressions in it.
1982 */
1983 assert(!this->expressions.is_empty());
1984
1985 /* The r-value of a sequence is the last expression in the sequence. If
1986 * the other expressions in the sequence do not have side-effects (and
1987 * therefore add instructions to the instruction list), they get dropped
1988 * on the floor.
1989 */
1990 exec_node *previous_tail_pred = NULL;
1991 YYLTYPE previous_operand_loc = loc;
1992
1993 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1994 /* If one of the operands of comma operator does not generate any
1995 * code, we want to emit a warning. At each pass through the loop
1996 * previous_tail_pred will point to the last instruction in the
1997 * stream *before* processing the previous operand. Naturally,
1998 * instructions->tail_pred will point to the last instruction in the
1999 * stream *after* processing the previous operand. If the two
2000 * pointers match, then the previous operand had no effect.
2001 *
2002 * The warning behavior here differs slightly from GCC. GCC will
2003 * only emit a warning if none of the left-hand operands have an
2004 * effect. However, it will emit a warning for each. I believe that
2005 * there are some cases in C (especially with GCC extensions) where
2006 * it is useful to have an intermediate step in a sequence have no
2007 * effect, but I don't think these cases exist in GLSL. Either way,
2008 * it would be a giant hassle to replicate that behavior.
2009 */
2010 if (previous_tail_pred == instructions->get_tail_raw()) {
2011 _mesa_glsl_warning(&previous_operand_loc, state,
2012 "left-hand operand of comma expression has "
2013 "no effect");
2014 }
2015
2016 /* tail_pred is directly accessed instead of using the get_tail()
2017 * method for performance reasons. get_tail() has extra code to
2018 * return NULL when the list is empty. We don't care about that
2019 * here, so using tail_pred directly is fine.
2020 */
2021 previous_tail_pred = instructions->get_tail_raw();
2022 previous_operand_loc = ast->get_location();
2023
2024 result = ast->hir(instructions, state);
2025 }
2026
2027 /* Any errors should have already been emitted in the loop above.
2028 */
2029 error_emitted = true;
2030 break;
2031 }
2032 }
2033 type = NULL; /* use result->type, not type. */
2034 assert(result != NULL || !needs_rvalue);
2035
2036 if (result && result->type->is_error() && !error_emitted)
2037 _mesa_glsl_error(& loc, state, "type mismatch");
2038
2039 return result;
2040 }
2041
2042 bool
2043 ast_expression::has_sequence_subexpression() const
2044 {
2045 switch (this->oper) {
2046 case ast_plus:
2047 case ast_neg:
2048 case ast_bit_not:
2049 case ast_logic_not:
2050 case ast_pre_inc:
2051 case ast_pre_dec:
2052 case ast_post_inc:
2053 case ast_post_dec:
2054 return this->subexpressions[0]->has_sequence_subexpression();
2055
2056 case ast_assign:
2057 case ast_add:
2058 case ast_sub:
2059 case ast_mul:
2060 case ast_div:
2061 case ast_mod:
2062 case ast_lshift:
2063 case ast_rshift:
2064 case ast_less:
2065 case ast_greater:
2066 case ast_lequal:
2067 case ast_gequal:
2068 case ast_nequal:
2069 case ast_equal:
2070 case ast_bit_and:
2071 case ast_bit_xor:
2072 case ast_bit_or:
2073 case ast_logic_and:
2074 case ast_logic_or:
2075 case ast_logic_xor:
2076 case ast_array_index:
2077 case ast_mul_assign:
2078 case ast_div_assign:
2079 case ast_add_assign:
2080 case ast_sub_assign:
2081 case ast_mod_assign:
2082 case ast_ls_assign:
2083 case ast_rs_assign:
2084 case ast_and_assign:
2085 case ast_xor_assign:
2086 case ast_or_assign:
2087 return this->subexpressions[0]->has_sequence_subexpression() ||
2088 this->subexpressions[1]->has_sequence_subexpression();
2089
2090 case ast_conditional:
2091 return this->subexpressions[0]->has_sequence_subexpression() ||
2092 this->subexpressions[1]->has_sequence_subexpression() ||
2093 this->subexpressions[2]->has_sequence_subexpression();
2094
2095 case ast_sequence:
2096 return true;
2097
2098 case ast_field_selection:
2099 case ast_identifier:
2100 case ast_int_constant:
2101 case ast_uint_constant:
2102 case ast_float_constant:
2103 case ast_bool_constant:
2104 case ast_double_constant:
2105 return false;
2106
2107 case ast_aggregate:
2108 return false;
2109
2110 case ast_function_call:
2111 unreachable("should be handled by ast_function_expression::hir");
2112
2113 case ast_unsized_array_dim:
2114 unreachable("ast_unsized_array_dim: Should never get here.");
2115 }
2116
2117 return false;
2118 }
2119
2120 ir_rvalue *
2121 ast_expression_statement::hir(exec_list *instructions,
2122 struct _mesa_glsl_parse_state *state)
2123 {
2124 /* It is possible to have expression statements that don't have an
2125 * expression. This is the solitary semicolon:
2126 *
2127 * for (i = 0; i < 5; i++)
2128 * ;
2129 *
2130 * In this case the expression will be NULL. Test for NULL and don't do
2131 * anything in that case.
2132 */
2133 if (expression != NULL)
2134 expression->hir_no_rvalue(instructions, state);
2135
2136 /* Statements do not have r-values.
2137 */
2138 return NULL;
2139 }
2140
2141
2142 ir_rvalue *
2143 ast_compound_statement::hir(exec_list *instructions,
2144 struct _mesa_glsl_parse_state *state)
2145 {
2146 if (new_scope)
2147 state->symbols->push_scope();
2148
2149 foreach_list_typed (ast_node, ast, link, &this->statements)
2150 ast->hir(instructions, state);
2151
2152 if (new_scope)
2153 state->symbols->pop_scope();
2154
2155 /* Compound statements do not have r-values.
2156 */
2157 return NULL;
2158 }
2159
2160 /**
2161 * Evaluate the given exec_node (which should be an ast_node representing
2162 * a single array dimension) and return its integer value.
2163 */
2164 static unsigned
2165 process_array_size(exec_node *node,
2166 struct _mesa_glsl_parse_state *state)
2167 {
2168 exec_list dummy_instructions;
2169
2170 ast_node *array_size = exec_node_data(ast_node, node, link);
2171
2172 /**
2173 * Dimensions other than the outermost dimension can by unsized if they
2174 * are immediately sized by a constructor or initializer.
2175 */
2176 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2177 return 0;
2178
2179 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2180 YYLTYPE loc = array_size->get_location();
2181
2182 if (ir == NULL) {
2183 _mesa_glsl_error(& loc, state,
2184 "array size could not be resolved");
2185 return 0;
2186 }
2187
2188 if (!ir->type->is_integer()) {
2189 _mesa_glsl_error(& loc, state,
2190 "array size must be integer type");
2191 return 0;
2192 }
2193
2194 if (!ir->type->is_scalar()) {
2195 _mesa_glsl_error(& loc, state,
2196 "array size must be scalar type");
2197 return 0;
2198 }
2199
2200 ir_constant *const size = ir->constant_expression_value();
2201 if (size == NULL ||
2202 (state->is_version(120, 300) &&
2203 array_size->has_sequence_subexpression())) {
2204 _mesa_glsl_error(& loc, state, "array size must be a "
2205 "constant valued expression");
2206 return 0;
2207 }
2208
2209 if (size->value.i[0] <= 0) {
2210 _mesa_glsl_error(& loc, state, "array size must be > 0");
2211 return 0;
2212 }
2213
2214 assert(size->type == ir->type);
2215
2216 /* If the array size is const (and we've verified that
2217 * it is) then no instructions should have been emitted
2218 * when we converted it to HIR. If they were emitted,
2219 * then either the array size isn't const after all, or
2220 * we are emitting unnecessary instructions.
2221 */
2222 assert(dummy_instructions.is_empty());
2223
2224 return size->value.u[0];
2225 }
2226
2227 static const glsl_type *
2228 process_array_type(YYLTYPE *loc, const glsl_type *base,
2229 ast_array_specifier *array_specifier,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 const glsl_type *array_type = base;
2233
2234 if (array_specifier != NULL) {
2235 if (base->is_array()) {
2236
2237 /* From page 19 (page 25) of the GLSL 1.20 spec:
2238 *
2239 * "Only one-dimensional arrays may be declared."
2240 */
2241 if (!state->check_arrays_of_arrays_allowed(loc)) {
2242 return glsl_type::error_type;
2243 }
2244 }
2245
2246 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2247 !node->is_head_sentinel(); node = node->prev) {
2248 unsigned array_size = process_array_size(node, state);
2249 array_type = glsl_type::get_array_instance(array_type, array_size);
2250 }
2251 }
2252
2253 return array_type;
2254 }
2255
2256 static bool
2257 precision_qualifier_allowed(const glsl_type *type)
2258 {
2259 /* Precision qualifiers apply to floating point, integer and opaque
2260 * types.
2261 *
2262 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2263 * "Any floating point or any integer declaration can have the type
2264 * preceded by one of these precision qualifiers [...] Literal
2265 * constants do not have precision qualifiers. Neither do Boolean
2266 * variables.
2267 *
2268 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2269 * spec also says:
2270 *
2271 * "Precision qualifiers are added for code portability with OpenGL
2272 * ES, not for functionality. They have the same syntax as in OpenGL
2273 * ES."
2274 *
2275 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2276 *
2277 * "uniform lowp sampler2D sampler;
2278 * highp vec2 coord;
2279 * ...
2280 * lowp vec4 col = texture2D (sampler, coord);
2281 * // texture2D returns lowp"
2282 *
2283 * From this, we infer that GLSL 1.30 (and later) should allow precision
2284 * qualifiers on sampler types just like float and integer types.
2285 */
2286 const glsl_type *const t = type->without_array();
2287
2288 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2289 !t->is_record();
2290 }
2291
2292 const glsl_type *
2293 ast_type_specifier::glsl_type(const char **name,
2294 struct _mesa_glsl_parse_state *state) const
2295 {
2296 const struct glsl_type *type;
2297
2298 type = state->symbols->get_type(this->type_name);
2299 *name = this->type_name;
2300
2301 YYLTYPE loc = this->get_location();
2302 type = process_array_type(&loc, type, this->array_specifier, state);
2303
2304 return type;
2305 }
2306
2307 /**
2308 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2309 *
2310 * "The precision statement
2311 *
2312 * precision precision-qualifier type;
2313 *
2314 * can be used to establish a default precision qualifier. The type field can
2315 * be either int or float or any of the sampler types, (...) If type is float,
2316 * the directive applies to non-precision-qualified floating point type
2317 * (scalar, vector, and matrix) declarations. If type is int, the directive
2318 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2319 * and unsigned) declarations."
2320 *
2321 * We use the symbol table to keep the values of the default precisions for
2322 * each 'type' in each scope and we use the 'type' string from the precision
2323 * statement as key in the symbol table. When we want to retrieve the default
2324 * precision associated with a given glsl_type we need to know the type string
2325 * associated with it. This is what this function returns.
2326 */
2327 static const char *
2328 get_type_name_for_precision_qualifier(const glsl_type *type)
2329 {
2330 switch (type->base_type) {
2331 case GLSL_TYPE_FLOAT:
2332 return "float";
2333 case GLSL_TYPE_UINT:
2334 case GLSL_TYPE_INT:
2335 return "int";
2336 case GLSL_TYPE_ATOMIC_UINT:
2337 return "atomic_uint";
2338 case GLSL_TYPE_IMAGE:
2339 /* fallthrough */
2340 case GLSL_TYPE_SAMPLER: {
2341 const unsigned type_idx =
2342 type->sampler_array + 2 * type->sampler_shadow;
2343 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2344 assert(type_idx < 4);
2345 switch (type->sampled_type) {
2346 case GLSL_TYPE_FLOAT:
2347 switch (type->sampler_dimensionality) {
2348 case GLSL_SAMPLER_DIM_1D: {
2349 assert(type->base_type == GLSL_TYPE_SAMPLER);
2350 static const char *const names[4] = {
2351 "sampler1D", "sampler1DArray",
2352 "sampler1DShadow", "sampler1DArrayShadow"
2353 };
2354 return names[type_idx];
2355 }
2356 case GLSL_SAMPLER_DIM_2D: {
2357 static const char *const names[8] = {
2358 "sampler2D", "sampler2DArray",
2359 "sampler2DShadow", "sampler2DArrayShadow",
2360 "image2D", "image2DArray", NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_3D: {
2365 static const char *const names[8] = {
2366 "sampler3D", NULL, NULL, NULL,
2367 "image3D", NULL, NULL, NULL
2368 };
2369 return names[offset + type_idx];
2370 }
2371 case GLSL_SAMPLER_DIM_CUBE: {
2372 static const char *const names[8] = {
2373 "samplerCube", "samplerCubeArray",
2374 "samplerCubeShadow", "samplerCubeArrayShadow",
2375 "imageCube", NULL, NULL, NULL
2376 };
2377 return names[offset + type_idx];
2378 }
2379 case GLSL_SAMPLER_DIM_MS: {
2380 assert(type->base_type == GLSL_TYPE_SAMPLER);
2381 static const char *const names[4] = {
2382 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_RECT: {
2387 assert(type->base_type == GLSL_TYPE_SAMPLER);
2388 static const char *const names[4] = {
2389 "samplerRect", NULL, "samplerRectShadow", NULL
2390 };
2391 return names[type_idx];
2392 }
2393 case GLSL_SAMPLER_DIM_BUF: {
2394 static const char *const names[8] = {
2395 "samplerBuffer", NULL, NULL, NULL,
2396 "imageBuffer", NULL, NULL, NULL
2397 };
2398 return names[offset + type_idx];
2399 }
2400 case GLSL_SAMPLER_DIM_EXTERNAL: {
2401 assert(type->base_type == GLSL_TYPE_SAMPLER);
2402 static const char *const names[4] = {
2403 "samplerExternalOES", NULL, NULL, NULL
2404 };
2405 return names[type_idx];
2406 }
2407 default:
2408 unreachable("Unsupported sampler/image dimensionality");
2409 } /* sampler/image float dimensionality */
2410 break;
2411 case GLSL_TYPE_INT:
2412 switch (type->sampler_dimensionality) {
2413 case GLSL_SAMPLER_DIM_1D: {
2414 assert(type->base_type == GLSL_TYPE_SAMPLER);
2415 static const char *const names[4] = {
2416 "isampler1D", "isampler1DArray", NULL, NULL
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_2D: {
2421 static const char *const names[8] = {
2422 "isampler2D", "isampler2DArray", NULL, NULL,
2423 "iimage2D", "iimage2DArray", NULL, NULL
2424 };
2425 return names[offset + type_idx];
2426 }
2427 case GLSL_SAMPLER_DIM_3D: {
2428 static const char *const names[8] = {
2429 "isampler3D", NULL, NULL, NULL,
2430 "iimage3D", NULL, NULL, NULL
2431 };
2432 return names[offset + type_idx];
2433 }
2434 case GLSL_SAMPLER_DIM_CUBE: {
2435 static const char *const names[8] = {
2436 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2437 "iimageCube", NULL, NULL, NULL
2438 };
2439 return names[offset + type_idx];
2440 }
2441 case GLSL_SAMPLER_DIM_MS: {
2442 assert(type->base_type == GLSL_TYPE_SAMPLER);
2443 static const char *const names[4] = {
2444 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2445 };
2446 return names[type_idx];
2447 }
2448 case GLSL_SAMPLER_DIM_RECT: {
2449 assert(type->base_type == GLSL_TYPE_SAMPLER);
2450 static const char *const names[4] = {
2451 "isamplerRect", NULL, "isamplerRectShadow", NULL
2452 };
2453 return names[type_idx];
2454 }
2455 case GLSL_SAMPLER_DIM_BUF: {
2456 static const char *const names[8] = {
2457 "isamplerBuffer", NULL, NULL, NULL,
2458 "iimageBuffer", NULL, NULL, NULL
2459 };
2460 return names[offset + type_idx];
2461 }
2462 default:
2463 unreachable("Unsupported isampler/iimage dimensionality");
2464 } /* sampler/image int dimensionality */
2465 break;
2466 case GLSL_TYPE_UINT:
2467 switch (type->sampler_dimensionality) {
2468 case GLSL_SAMPLER_DIM_1D: {
2469 assert(type->base_type == GLSL_TYPE_SAMPLER);
2470 static const char *const names[4] = {
2471 "usampler1D", "usampler1DArray", NULL, NULL
2472 };
2473 return names[type_idx];
2474 }
2475 case GLSL_SAMPLER_DIM_2D: {
2476 static const char *const names[8] = {
2477 "usampler2D", "usampler2DArray", NULL, NULL,
2478 "uimage2D", "uimage2DArray", NULL, NULL
2479 };
2480 return names[offset + type_idx];
2481 }
2482 case GLSL_SAMPLER_DIM_3D: {
2483 static const char *const names[8] = {
2484 "usampler3D", NULL, NULL, NULL,
2485 "uimage3D", NULL, NULL, NULL
2486 };
2487 return names[offset + type_idx];
2488 }
2489 case GLSL_SAMPLER_DIM_CUBE: {
2490 static const char *const names[8] = {
2491 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2492 "uimageCube", NULL, NULL, NULL
2493 };
2494 return names[offset + type_idx];
2495 }
2496 case GLSL_SAMPLER_DIM_MS: {
2497 assert(type->base_type == GLSL_TYPE_SAMPLER);
2498 static const char *const names[4] = {
2499 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2500 };
2501 return names[type_idx];
2502 }
2503 case GLSL_SAMPLER_DIM_RECT: {
2504 assert(type->base_type == GLSL_TYPE_SAMPLER);
2505 static const char *const names[4] = {
2506 "usamplerRect", NULL, "usamplerRectShadow", NULL
2507 };
2508 return names[type_idx];
2509 }
2510 case GLSL_SAMPLER_DIM_BUF: {
2511 static const char *const names[8] = {
2512 "usamplerBuffer", NULL, NULL, NULL,
2513 "uimageBuffer", NULL, NULL, NULL
2514 };
2515 return names[offset + type_idx];
2516 }
2517 default:
2518 unreachable("Unsupported usampler/uimage dimensionality");
2519 } /* sampler/image uint dimensionality */
2520 break;
2521 default:
2522 unreachable("Unsupported sampler/image type");
2523 } /* sampler/image type */
2524 break;
2525 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2526 break;
2527 default:
2528 unreachable("Unsupported type");
2529 } /* base type */
2530 }
2531
2532 static unsigned
2533 select_gles_precision(unsigned qual_precision,
2534 const glsl_type *type,
2535 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2536 {
2537 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2538 * In GLES we take the precision from the type qualifier if present,
2539 * otherwise, if the type of the variable allows precision qualifiers at
2540 * all, we look for the default precision qualifier for that type in the
2541 * current scope.
2542 */
2543 assert(state->es_shader);
2544
2545 unsigned precision = GLSL_PRECISION_NONE;
2546 if (qual_precision) {
2547 precision = qual_precision;
2548 } else if (precision_qualifier_allowed(type)) {
2549 const char *type_name =
2550 get_type_name_for_precision_qualifier(type->without_array());
2551 assert(type_name != NULL);
2552
2553 precision =
2554 state->symbols->get_default_precision_qualifier(type_name);
2555 if (precision == ast_precision_none) {
2556 _mesa_glsl_error(loc, state,
2557 "No precision specified in this scope for type `%s'",
2558 type->name);
2559 }
2560 }
2561 return precision;
2562 }
2563
2564 const glsl_type *
2565 ast_fully_specified_type::glsl_type(const char **name,
2566 struct _mesa_glsl_parse_state *state) const
2567 {
2568 return this->specifier->glsl_type(name, state);
2569 }
2570
2571 /**
2572 * Determine whether a toplevel variable declaration declares a varying. This
2573 * function operates by examining the variable's mode and the shader target,
2574 * so it correctly identifies linkage variables regardless of whether they are
2575 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2576 *
2577 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2578 * this function will produce undefined results.
2579 */
2580 static bool
2581 is_varying_var(ir_variable *var, gl_shader_stage target)
2582 {
2583 switch (target) {
2584 case MESA_SHADER_VERTEX:
2585 return var->data.mode == ir_var_shader_out;
2586 case MESA_SHADER_FRAGMENT:
2587 return var->data.mode == ir_var_shader_in;
2588 default:
2589 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2590 }
2591 }
2592
2593
2594 /**
2595 * Matrix layout qualifiers are only allowed on certain types
2596 */
2597 static void
2598 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2599 YYLTYPE *loc,
2600 const glsl_type *type,
2601 ir_variable *var)
2602 {
2603 if (var && !var->is_in_buffer_block()) {
2604 /* Layout qualifiers may only apply to interface blocks and fields in
2605 * them.
2606 */
2607 _mesa_glsl_error(loc, state,
2608 "uniform block layout qualifiers row_major and "
2609 "column_major may not be applied to variables "
2610 "outside of uniform blocks");
2611 } else if (!type->without_array()->is_matrix()) {
2612 /* The OpenGL ES 3.0 conformance tests did not originally allow
2613 * matrix layout qualifiers on non-matrices. However, the OpenGL
2614 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2615 * amended to specifically allow these layouts on all types. Emit
2616 * a warning so that people know their code may not be portable.
2617 */
2618 _mesa_glsl_warning(loc, state,
2619 "uniform block layout qualifiers row_major and "
2620 "column_major applied to non-matrix types may "
2621 "be rejected by older compilers");
2622 }
2623 }
2624
2625 static bool
2626 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2627 struct _mesa_glsl_parse_state *state,
2628 unsigned xfb_buffer) {
2629 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2630 _mesa_glsl_error(loc, state,
2631 "invalid xfb_buffer specified %d is larger than "
2632 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2633 xfb_buffer,
2634 state->Const.MaxTransformFeedbackBuffers - 1);
2635 return false;
2636 }
2637
2638 return true;
2639 }
2640
2641 /* From the ARB_enhanced_layouts spec:
2642 *
2643 * "Variables and block members qualified with *xfb_offset* can be
2644 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2645 * The offset must be a multiple of the size of the first component of
2646 * the first qualified variable or block member, or a compile-time error
2647 * results. Further, if applied to an aggregate containing a double,
2648 * the offset must also be a multiple of 8, and the space taken in the
2649 * buffer will be a multiple of 8.
2650 */
2651 static bool
2652 validate_xfb_offset_qualifier(YYLTYPE *loc,
2653 struct _mesa_glsl_parse_state *state,
2654 int xfb_offset, const glsl_type *type,
2655 unsigned component_size) {
2656 const glsl_type *t_without_array = type->without_array();
2657
2658 if (xfb_offset != -1 && type->is_unsized_array()) {
2659 _mesa_glsl_error(loc, state,
2660 "xfb_offset can't be used with unsized arrays.");
2661 return false;
2662 }
2663
2664 /* Make sure nested structs don't contain unsized arrays, and validate
2665 * any xfb_offsets on interface members.
2666 */
2667 if (t_without_array->is_record() || t_without_array->is_interface())
2668 for (unsigned int i = 0; i < t_without_array->length; i++) {
2669 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2670
2671 /* When the interface block doesn't have an xfb_offset qualifier then
2672 * we apply the component size rules at the member level.
2673 */
2674 if (xfb_offset == -1)
2675 component_size = member_t->contains_double() ? 8 : 4;
2676
2677 int xfb_offset = t_without_array->fields.structure[i].offset;
2678 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2679 component_size);
2680 }
2681
2682 /* Nested structs or interface block without offset may not have had an
2683 * offset applied yet so return.
2684 */
2685 if (xfb_offset == -1) {
2686 return true;
2687 }
2688
2689 if (xfb_offset % component_size) {
2690 _mesa_glsl_error(loc, state,
2691 "invalid qualifier xfb_offset=%d must be a multiple "
2692 "of the first component size of the first qualified "
2693 "variable or block member. Or double if an aggregate "
2694 "that contains a double (%d).",
2695 xfb_offset, component_size);
2696 return false;
2697 }
2698
2699 return true;
2700 }
2701
2702 static bool
2703 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2704 unsigned stream)
2705 {
2706 if (stream >= state->ctx->Const.MaxVertexStreams) {
2707 _mesa_glsl_error(loc, state,
2708 "invalid stream specified %d is larger than "
2709 "MAX_VERTEX_STREAMS - 1 (%d).",
2710 stream, state->ctx->Const.MaxVertexStreams - 1);
2711 return false;
2712 }
2713
2714 return true;
2715 }
2716
2717 static void
2718 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2719 YYLTYPE *loc,
2720 ir_variable *var,
2721 const glsl_type *type,
2722 const ast_type_qualifier *qual)
2723 {
2724 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2725 _mesa_glsl_error(loc, state,
2726 "the \"binding\" qualifier only applies to uniforms and "
2727 "shader storage buffer objects");
2728 return;
2729 }
2730
2731 unsigned qual_binding;
2732 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2733 &qual_binding)) {
2734 return;
2735 }
2736
2737 const struct gl_context *const ctx = state->ctx;
2738 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2739 unsigned max_index = qual_binding + elements - 1;
2740 const glsl_type *base_type = type->without_array();
2741
2742 if (base_type->is_interface()) {
2743 /* UBOs. From page 60 of the GLSL 4.20 specification:
2744 * "If the binding point for any uniform block instance is less than zero,
2745 * or greater than or equal to the implementation-dependent maximum
2746 * number of uniform buffer bindings, a compilation error will occur.
2747 * When the binding identifier is used with a uniform block instanced as
2748 * an array of size N, all elements of the array from binding through
2749 * binding + N – 1 must be within this range."
2750 *
2751 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2752 */
2753 if (qual->flags.q.uniform &&
2754 max_index >= ctx->Const.MaxUniformBufferBindings) {
2755 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2756 "the maximum number of UBO binding points (%d)",
2757 qual_binding, elements,
2758 ctx->Const.MaxUniformBufferBindings);
2759 return;
2760 }
2761
2762 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2763 * "If the binding point for any uniform or shader storage block instance
2764 * is less than zero, or greater than or equal to the
2765 * implementation-dependent maximum number of uniform buffer bindings, a
2766 * compile-time error will occur. When the binding identifier is used
2767 * with a uniform or shader storage block instanced as an array of size
2768 * N, all elements of the array from binding through binding + N – 1 must
2769 * be within this range."
2770 */
2771 if (qual->flags.q.buffer &&
2772 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2773 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2774 "the maximum number of SSBO binding points (%d)",
2775 qual_binding, elements,
2776 ctx->Const.MaxShaderStorageBufferBindings);
2777 return;
2778 }
2779 } else if (base_type->is_sampler()) {
2780 /* Samplers. From page 63 of the GLSL 4.20 specification:
2781 * "If the binding is less than zero, or greater than or equal to the
2782 * implementation-dependent maximum supported number of units, a
2783 * compilation error will occur. When the binding identifier is used
2784 * with an array of size N, all elements of the array from binding
2785 * through binding + N - 1 must be within this range."
2786 */
2787 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2788
2789 if (max_index >= limit) {
2790 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2791 "exceeds the maximum number of texture image units "
2792 "(%u)", qual_binding, elements, limit);
2793
2794 return;
2795 }
2796 } else if (base_type->contains_atomic()) {
2797 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2798 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2799 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2800 " maximum number of atomic counter buffer bindings"
2801 "(%u)", qual_binding,
2802 ctx->Const.MaxAtomicBufferBindings);
2803
2804 return;
2805 }
2806 } else if ((state->is_version(420, 310) ||
2807 state->ARB_shading_language_420pack_enable) &&
2808 base_type->is_image()) {
2809 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2810 if (max_index >= ctx->Const.MaxImageUnits) {
2811 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2812 " maximum number of image units (%d)", max_index,
2813 ctx->Const.MaxImageUnits);
2814 return;
2815 }
2816
2817 } else {
2818 _mesa_glsl_error(loc, state,
2819 "the \"binding\" qualifier only applies to uniform "
2820 "blocks, opaque variables, or arrays thereof");
2821 return;
2822 }
2823
2824 var->data.explicit_binding = true;
2825 var->data.binding = qual_binding;
2826
2827 return;
2828 }
2829
2830
2831 static void
2832 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2833 YYLTYPE *loc,
2834 const glsl_interp_mode interpolation,
2835 const struct ast_type_qualifier *qual,
2836 const struct glsl_type *var_type,
2837 ir_variable_mode mode)
2838 {
2839 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2840 * not to vertex shader inputs nor fragment shader outputs.
2841 *
2842 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2843 * "Outputs from a vertex shader (out) and inputs to a fragment
2844 * shader (in) can be further qualified with one or more of these
2845 * interpolation qualifiers"
2846 * ...
2847 * "These interpolation qualifiers may only precede the qualifiers in,
2848 * centroid in, out, or centroid out in a declaration. They do not apply
2849 * to the deprecated storage qualifiers varying or centroid
2850 * varying. They also do not apply to inputs into a vertex shader or
2851 * outputs from a fragment shader."
2852 *
2853 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2854 * "Outputs from a shader (out) and inputs to a shader (in) can be
2855 * further qualified with one of these interpolation qualifiers."
2856 * ...
2857 * "These interpolation qualifiers may only precede the qualifiers
2858 * in, centroid in, out, or centroid out in a declaration. They do
2859 * not apply to inputs into a vertex shader or outputs from a
2860 * fragment shader."
2861 */
2862 if (state->is_version(130, 300)
2863 && interpolation != INTERP_MODE_NONE) {
2864 const char *i = interpolation_string(interpolation);
2865 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2866 _mesa_glsl_error(loc, state,
2867 "interpolation qualifier `%s' can only be applied to "
2868 "shader inputs or outputs.", i);
2869
2870 switch (state->stage) {
2871 case MESA_SHADER_VERTEX:
2872 if (mode == ir_var_shader_in) {
2873 _mesa_glsl_error(loc, state,
2874 "interpolation qualifier '%s' cannot be applied to "
2875 "vertex shader inputs", i);
2876 }
2877 break;
2878 case MESA_SHADER_FRAGMENT:
2879 if (mode == ir_var_shader_out) {
2880 _mesa_glsl_error(loc, state,
2881 "interpolation qualifier '%s' cannot be applied to "
2882 "fragment shader outputs", i);
2883 }
2884 break;
2885 default:
2886 break;
2887 }
2888 }
2889
2890 /* Interpolation qualifiers cannot be applied to 'centroid' and
2891 * 'centroid varying'.
2892 *
2893 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2894 * "interpolation qualifiers may only precede the qualifiers in,
2895 * centroid in, out, or centroid out in a declaration. They do not apply
2896 * to the deprecated storage qualifiers varying or centroid varying."
2897 *
2898 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2899 */
2900 if (state->is_version(130, 0)
2901 && interpolation != INTERP_MODE_NONE
2902 && qual->flags.q.varying) {
2903
2904 const char *i = interpolation_string(interpolation);
2905 const char *s;
2906 if (qual->flags.q.centroid)
2907 s = "centroid varying";
2908 else
2909 s = "varying";
2910
2911 _mesa_glsl_error(loc, state,
2912 "qualifier '%s' cannot be applied to the "
2913 "deprecated storage qualifier '%s'", i, s);
2914 }
2915
2916 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2917 * so must integer vertex outputs.
2918 *
2919 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2920 * "Fragment shader inputs that are signed or unsigned integers or
2921 * integer vectors must be qualified with the interpolation qualifier
2922 * flat."
2923 *
2924 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2925 * "Fragment shader inputs that are, or contain, signed or unsigned
2926 * integers or integer vectors must be qualified with the
2927 * interpolation qualifier flat."
2928 *
2929 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2930 * "Vertex shader outputs that are, or contain, signed or unsigned
2931 * integers or integer vectors must be qualified with the
2932 * interpolation qualifier flat."
2933 *
2934 * Note that prior to GLSL 1.50, this requirement applied to vertex
2935 * outputs rather than fragment inputs. That creates problems in the
2936 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2937 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2938 * apply the restriction to both vertex outputs and fragment inputs.
2939 *
2940 * Note also that the desktop GLSL specs are missing the text "or
2941 * contain"; this is presumably an oversight, since there is no
2942 * reasonable way to interpolate a fragment shader input that contains
2943 * an integer. See Khronos bug #15671.
2944 */
2945 if (state->is_version(130, 300)
2946 && var_type->contains_integer()
2947 && interpolation != INTERP_MODE_FLAT
2948 && ((state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_in)
2949 || (state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_out
2950 && state->es_shader))) {
2951 const char *shader_var_type = (state->stage == MESA_SHADER_VERTEX) ?
2952 "vertex output" : "fragment input";
2953 _mesa_glsl_error(loc, state, "if a %s is (or contains) "
2954 "an integer, then it must be qualified with 'flat'",
2955 shader_var_type);
2956 }
2957
2958 /* Double fragment inputs must be qualified with 'flat'.
2959 *
2960 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2961 * "This extension does not support interpolation of double-precision
2962 * values; doubles used as fragment shader inputs must be qualified as
2963 * "flat"."
2964 *
2965 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2966 * "Fragment shader inputs that are signed or unsigned integers, integer
2967 * vectors, or any double-precision floating-point type must be
2968 * qualified with the interpolation qualifier flat."
2969 *
2970 * Note that the GLSL specs are missing the text "or contain"; this is
2971 * presumably an oversight. See Khronos bug #15671.
2972 *
2973 * The 'double' type does not exist in GLSL ES so far.
2974 */
2975 if (state->has_double()
2976 && var_type->contains_double()
2977 && interpolation != INTERP_MODE_FLAT
2978 && state->stage == MESA_SHADER_FRAGMENT
2979 && mode == ir_var_shader_in) {
2980 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2981 "a double, then it must be qualified with 'flat'");
2982 }
2983 }
2984
2985 static glsl_interp_mode
2986 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2987 const struct glsl_type *var_type,
2988 ir_variable_mode mode,
2989 struct _mesa_glsl_parse_state *state,
2990 YYLTYPE *loc)
2991 {
2992 glsl_interp_mode interpolation;
2993 if (qual->flags.q.flat)
2994 interpolation = INTERP_MODE_FLAT;
2995 else if (qual->flags.q.noperspective)
2996 interpolation = INTERP_MODE_NOPERSPECTIVE;
2997 else if (qual->flags.q.smooth)
2998 interpolation = INTERP_MODE_SMOOTH;
2999 else if (state->es_shader &&
3000 ((mode == ir_var_shader_in &&
3001 state->stage != MESA_SHADER_VERTEX) ||
3002 (mode == ir_var_shader_out &&
3003 state->stage != MESA_SHADER_FRAGMENT)))
3004 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3005 *
3006 * "When no interpolation qualifier is present, smooth interpolation
3007 * is used."
3008 */
3009 interpolation = INTERP_MODE_SMOOTH;
3010 else
3011 interpolation = INTERP_MODE_NONE;
3012
3013 validate_interpolation_qualifier(state, loc,
3014 interpolation,
3015 qual, var_type, mode);
3016
3017 return interpolation;
3018 }
3019
3020
3021 static void
3022 apply_explicit_location(const struct ast_type_qualifier *qual,
3023 ir_variable *var,
3024 struct _mesa_glsl_parse_state *state,
3025 YYLTYPE *loc)
3026 {
3027 bool fail = false;
3028
3029 unsigned qual_location;
3030 if (!process_qualifier_constant(state, loc, "location", qual->location,
3031 &qual_location)) {
3032 return;
3033 }
3034
3035 /* Checks for GL_ARB_explicit_uniform_location. */
3036 if (qual->flags.q.uniform) {
3037 if (!state->check_explicit_uniform_location_allowed(loc, var))
3038 return;
3039
3040 const struct gl_context *const ctx = state->ctx;
3041 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3042
3043 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3044 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3045 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3046 ctx->Const.MaxUserAssignableUniformLocations);
3047 return;
3048 }
3049
3050 var->data.explicit_location = true;
3051 var->data.location = qual_location;
3052 return;
3053 }
3054
3055 /* Between GL_ARB_explicit_attrib_location an
3056 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3057 * stage can be assigned explicit locations. The checking here associates
3058 * the correct extension with the correct stage's input / output:
3059 *
3060 * input output
3061 * ----- ------
3062 * vertex explicit_loc sso
3063 * tess control sso sso
3064 * tess eval sso sso
3065 * geometry sso sso
3066 * fragment sso explicit_loc
3067 */
3068 switch (state->stage) {
3069 case MESA_SHADER_VERTEX:
3070 if (var->data.mode == ir_var_shader_in) {
3071 if (!state->check_explicit_attrib_location_allowed(loc, var))
3072 return;
3073
3074 break;
3075 }
3076
3077 if (var->data.mode == ir_var_shader_out) {
3078 if (!state->check_separate_shader_objects_allowed(loc, var))
3079 return;
3080
3081 break;
3082 }
3083
3084 fail = true;
3085 break;
3086
3087 case MESA_SHADER_TESS_CTRL:
3088 case MESA_SHADER_TESS_EVAL:
3089 case MESA_SHADER_GEOMETRY:
3090 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3091 if (!state->check_separate_shader_objects_allowed(loc, var))
3092 return;
3093
3094 break;
3095 }
3096
3097 fail = true;
3098 break;
3099
3100 case MESA_SHADER_FRAGMENT:
3101 if (var->data.mode == ir_var_shader_in) {
3102 if (!state->check_separate_shader_objects_allowed(loc, var))
3103 return;
3104
3105 break;
3106 }
3107
3108 if (var->data.mode == ir_var_shader_out) {
3109 if (!state->check_explicit_attrib_location_allowed(loc, var))
3110 return;
3111
3112 break;
3113 }
3114
3115 fail = true;
3116 break;
3117
3118 case MESA_SHADER_COMPUTE:
3119 _mesa_glsl_error(loc, state,
3120 "compute shader variables cannot be given "
3121 "explicit locations");
3122 return;
3123 };
3124
3125 if (fail) {
3126 _mesa_glsl_error(loc, state,
3127 "%s cannot be given an explicit location in %s shader",
3128 mode_string(var),
3129 _mesa_shader_stage_to_string(state->stage));
3130 } else {
3131 var->data.explicit_location = true;
3132
3133 switch (state->stage) {
3134 case MESA_SHADER_VERTEX:
3135 var->data.location = (var->data.mode == ir_var_shader_in)
3136 ? (qual_location + VERT_ATTRIB_GENERIC0)
3137 : (qual_location + VARYING_SLOT_VAR0);
3138 break;
3139
3140 case MESA_SHADER_TESS_CTRL:
3141 case MESA_SHADER_TESS_EVAL:
3142 case MESA_SHADER_GEOMETRY:
3143 if (var->data.patch)
3144 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3145 else
3146 var->data.location = qual_location + VARYING_SLOT_VAR0;
3147 break;
3148
3149 case MESA_SHADER_FRAGMENT:
3150 var->data.location = (var->data.mode == ir_var_shader_out)
3151 ? (qual_location + FRAG_RESULT_DATA0)
3152 : (qual_location + VARYING_SLOT_VAR0);
3153 break;
3154 case MESA_SHADER_COMPUTE:
3155 assert(!"Unexpected shader type");
3156 break;
3157 }
3158
3159 /* Check if index was set for the uniform instead of the function */
3160 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3161 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3162 "used with subroutine functions");
3163 return;
3164 }
3165
3166 unsigned qual_index;
3167 if (qual->flags.q.explicit_index &&
3168 process_qualifier_constant(state, loc, "index", qual->index,
3169 &qual_index)) {
3170 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3171 * Layout Qualifiers):
3172 *
3173 * "It is also a compile-time error if a fragment shader
3174 * sets a layout index to less than 0 or greater than 1."
3175 *
3176 * Older specifications don't mandate a behavior; we take
3177 * this as a clarification and always generate the error.
3178 */
3179 if (qual_index > 1) {
3180 _mesa_glsl_error(loc, state,
3181 "explicit index may only be 0 or 1");
3182 } else {
3183 var->data.explicit_index = true;
3184 var->data.index = qual_index;
3185 }
3186 }
3187 }
3188 }
3189
3190 static void
3191 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3192 ir_variable *var,
3193 struct _mesa_glsl_parse_state *state,
3194 YYLTYPE *loc)
3195 {
3196 const glsl_type *base_type = var->type->without_array();
3197
3198 if (base_type->is_image()) {
3199 if (var->data.mode != ir_var_uniform &&
3200 var->data.mode != ir_var_function_in) {
3201 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3202 "function parameters or uniform-qualified "
3203 "global variables");
3204 }
3205
3206 var->data.image_read_only |= qual->flags.q.read_only;
3207 var->data.image_write_only |= qual->flags.q.write_only;
3208 var->data.image_coherent |= qual->flags.q.coherent;
3209 var->data.image_volatile |= qual->flags.q._volatile;
3210 var->data.image_restrict |= qual->flags.q.restrict_flag;
3211 var->data.read_only = true;
3212
3213 if (qual->flags.q.explicit_image_format) {
3214 if (var->data.mode == ir_var_function_in) {
3215 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3216 "used on image function parameters");
3217 }
3218
3219 if (qual->image_base_type != base_type->sampled_type) {
3220 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3221 "base data type of the image");
3222 }
3223
3224 var->data.image_format = qual->image_format;
3225 } else {
3226 if (var->data.mode == ir_var_uniform) {
3227 if (state->es_shader) {
3228 _mesa_glsl_error(loc, state, "all image uniforms "
3229 "must have a format layout qualifier");
3230
3231 } else if (!qual->flags.q.write_only) {
3232 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3233 "`writeonly' must have a format layout "
3234 "qualifier");
3235 }
3236 }
3237
3238 var->data.image_format = GL_NONE;
3239 }
3240
3241 /* From page 70 of the GLSL ES 3.1 specification:
3242 *
3243 * "Except for image variables qualified with the format qualifiers
3244 * r32f, r32i, and r32ui, image variables must specify either memory
3245 * qualifier readonly or the memory qualifier writeonly."
3246 */
3247 if (state->es_shader &&
3248 var->data.image_format != GL_R32F &&
3249 var->data.image_format != GL_R32I &&
3250 var->data.image_format != GL_R32UI &&
3251 !var->data.image_read_only &&
3252 !var->data.image_write_only) {
3253 _mesa_glsl_error(loc, state, "image variables of format other than "
3254 "r32f, r32i or r32ui must be qualified `readonly' or "
3255 "`writeonly'");
3256 }
3257
3258 } else if (qual->flags.q.read_only ||
3259 qual->flags.q.write_only ||
3260 qual->flags.q.coherent ||
3261 qual->flags.q._volatile ||
3262 qual->flags.q.restrict_flag ||
3263 qual->flags.q.explicit_image_format) {
3264 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3265 "images");
3266 }
3267 }
3268
3269 static inline const char*
3270 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3271 {
3272 if (origin_upper_left && pixel_center_integer)
3273 return "origin_upper_left, pixel_center_integer";
3274 else if (origin_upper_left)
3275 return "origin_upper_left";
3276 else if (pixel_center_integer)
3277 return "pixel_center_integer";
3278 else
3279 return " ";
3280 }
3281
3282 static inline bool
3283 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3284 const struct ast_type_qualifier *qual)
3285 {
3286 /* If gl_FragCoord was previously declared, and the qualifiers were
3287 * different in any way, return true.
3288 */
3289 if (state->fs_redeclares_gl_fragcoord) {
3290 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3291 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3292 }
3293
3294 return false;
3295 }
3296
3297 static inline void
3298 validate_array_dimensions(const glsl_type *t,
3299 struct _mesa_glsl_parse_state *state,
3300 YYLTYPE *loc) {
3301 if (t->is_array()) {
3302 t = t->fields.array;
3303 while (t->is_array()) {
3304 if (t->is_unsized_array()) {
3305 _mesa_glsl_error(loc, state,
3306 "only the outermost array dimension can "
3307 "be unsized",
3308 t->name);
3309 break;
3310 }
3311 t = t->fields.array;
3312 }
3313 }
3314 }
3315
3316 static void
3317 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3318 ir_variable *var,
3319 struct _mesa_glsl_parse_state *state,
3320 YYLTYPE *loc)
3321 {
3322 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3323
3324 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3325 *
3326 * "Within any shader, the first redeclarations of gl_FragCoord
3327 * must appear before any use of gl_FragCoord."
3328 *
3329 * Generate a compiler error if above condition is not met by the
3330 * fragment shader.
3331 */
3332 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3333 if (earlier != NULL &&
3334 earlier->data.used &&
3335 !state->fs_redeclares_gl_fragcoord) {
3336 _mesa_glsl_error(loc, state,
3337 "gl_FragCoord used before its first redeclaration "
3338 "in fragment shader");
3339 }
3340
3341 /* Make sure all gl_FragCoord redeclarations specify the same layout
3342 * qualifiers.
3343 */
3344 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3345 const char *const qual_string =
3346 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3347 qual->flags.q.pixel_center_integer);
3348
3349 const char *const state_string =
3350 get_layout_qualifier_string(state->fs_origin_upper_left,
3351 state->fs_pixel_center_integer);
3352
3353 _mesa_glsl_error(loc, state,
3354 "gl_FragCoord redeclared with different layout "
3355 "qualifiers (%s) and (%s) ",
3356 state_string,
3357 qual_string);
3358 }
3359 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3360 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3361 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3362 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3363 state->fs_redeclares_gl_fragcoord =
3364 state->fs_origin_upper_left ||
3365 state->fs_pixel_center_integer ||
3366 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3367 }
3368
3369 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3370 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3371 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3372 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3373 const char *const qual_string = (qual->flags.q.origin_upper_left)
3374 ? "origin_upper_left" : "pixel_center_integer";
3375
3376 _mesa_glsl_error(loc, state,
3377 "layout qualifier `%s' can only be applied to "
3378 "fragment shader input `gl_FragCoord'",
3379 qual_string);
3380 }
3381
3382 if (qual->flags.q.explicit_location) {
3383 apply_explicit_location(qual, var, state, loc);
3384
3385 if (qual->flags.q.explicit_component) {
3386 unsigned qual_component;
3387 if (process_qualifier_constant(state, loc, "component",
3388 qual->component, &qual_component)) {
3389 const glsl_type *type = var->type->without_array();
3390 unsigned components = type->component_slots();
3391
3392 if (type->is_matrix() || type->is_record()) {
3393 _mesa_glsl_error(loc, state, "component layout qualifier "
3394 "cannot be applied to a matrix, a structure, "
3395 "a block, or an array containing any of "
3396 "these.");
3397 } else if (qual_component != 0 &&
3398 (qual_component + components - 1) > 3) {
3399 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3400 (qual_component + components - 1));
3401 } else if (qual_component == 1 && type->is_64bit()) {
3402 /* We don't bother checking for 3 as it should be caught by the
3403 * overflow check above.
3404 */
3405 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3406 "component 1 or 3");
3407 } else {
3408 var->data.explicit_component = true;
3409 var->data.location_frac = qual_component;
3410 }
3411 }
3412 }
3413 } else if (qual->flags.q.explicit_index) {
3414 if (!qual->flags.q.subroutine_def)
3415 _mesa_glsl_error(loc, state,
3416 "explicit index requires explicit location");
3417 } else if (qual->flags.q.explicit_component) {
3418 _mesa_glsl_error(loc, state,
3419 "explicit component requires explicit location");
3420 }
3421
3422 if (qual->flags.q.explicit_binding) {
3423 apply_explicit_binding(state, loc, var, var->type, qual);
3424 }
3425
3426 if (state->stage == MESA_SHADER_GEOMETRY &&
3427 qual->flags.q.out && qual->flags.q.stream) {
3428 unsigned qual_stream;
3429 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3430 &qual_stream) &&
3431 validate_stream_qualifier(loc, state, qual_stream)) {
3432 var->data.stream = qual_stream;
3433 }
3434 }
3435
3436 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3437 unsigned qual_xfb_buffer;
3438 if (process_qualifier_constant(state, loc, "xfb_buffer",
3439 qual->xfb_buffer, &qual_xfb_buffer) &&
3440 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3441 var->data.xfb_buffer = qual_xfb_buffer;
3442 if (qual->flags.q.explicit_xfb_buffer)
3443 var->data.explicit_xfb_buffer = true;
3444 }
3445 }
3446
3447 if (qual->flags.q.explicit_xfb_offset) {
3448 unsigned qual_xfb_offset;
3449 unsigned component_size = var->type->contains_double() ? 8 : 4;
3450
3451 if (process_qualifier_constant(state, loc, "xfb_offset",
3452 qual->offset, &qual_xfb_offset) &&
3453 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3454 var->type, component_size)) {
3455 var->data.offset = qual_xfb_offset;
3456 var->data.explicit_xfb_offset = true;
3457 }
3458 }
3459
3460 if (qual->flags.q.explicit_xfb_stride) {
3461 unsigned qual_xfb_stride;
3462 if (process_qualifier_constant(state, loc, "xfb_stride",
3463 qual->xfb_stride, &qual_xfb_stride)) {
3464 var->data.xfb_stride = qual_xfb_stride;
3465 var->data.explicit_xfb_stride = true;
3466 }
3467 }
3468
3469 if (var->type->contains_atomic()) {
3470 if (var->data.mode == ir_var_uniform) {
3471 if (var->data.explicit_binding) {
3472 unsigned *offset =
3473 &state->atomic_counter_offsets[var->data.binding];
3474
3475 if (*offset % ATOMIC_COUNTER_SIZE)
3476 _mesa_glsl_error(loc, state,
3477 "misaligned atomic counter offset");
3478
3479 var->data.offset = *offset;
3480 *offset += var->type->atomic_size();
3481
3482 } else {
3483 _mesa_glsl_error(loc, state,
3484 "atomic counters require explicit binding point");
3485 }
3486 } else if (var->data.mode != ir_var_function_in) {
3487 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3488 "function parameters or uniform-qualified "
3489 "global variables");
3490 }
3491 }
3492
3493 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3494 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3495 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3496 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3497 * These extensions and all following extensions that add the 'layout'
3498 * keyword have been modified to require the use of 'in' or 'out'.
3499 *
3500 * The following extension do not allow the deprecated keywords:
3501 *
3502 * GL_AMD_conservative_depth
3503 * GL_ARB_conservative_depth
3504 * GL_ARB_gpu_shader5
3505 * GL_ARB_separate_shader_objects
3506 * GL_ARB_tessellation_shader
3507 * GL_ARB_transform_feedback3
3508 * GL_ARB_uniform_buffer_object
3509 *
3510 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3511 * allow layout with the deprecated keywords.
3512 */
3513 const bool relaxed_layout_qualifier_checking =
3514 state->ARB_fragment_coord_conventions_enable;
3515
3516 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3517 || qual->flags.q.varying;
3518 if (qual->has_layout() && uses_deprecated_qualifier) {
3519 if (relaxed_layout_qualifier_checking) {
3520 _mesa_glsl_warning(loc, state,
3521 "`layout' qualifier may not be used with "
3522 "`attribute' or `varying'");
3523 } else {
3524 _mesa_glsl_error(loc, state,
3525 "`layout' qualifier may not be used with "
3526 "`attribute' or `varying'");
3527 }
3528 }
3529
3530 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3531 * AMD_conservative_depth.
3532 */
3533 int depth_layout_count = qual->flags.q.depth_any
3534 + qual->flags.q.depth_greater
3535 + qual->flags.q.depth_less
3536 + qual->flags.q.depth_unchanged;
3537 if (depth_layout_count > 0
3538 && !state->is_version(420, 0)
3539 && !state->AMD_conservative_depth_enable
3540 && !state->ARB_conservative_depth_enable) {
3541 _mesa_glsl_error(loc, state,
3542 "extension GL_AMD_conservative_depth or "
3543 "GL_ARB_conservative_depth must be enabled "
3544 "to use depth layout qualifiers");
3545 } else if (depth_layout_count > 0
3546 && strcmp(var->name, "gl_FragDepth") != 0) {
3547 _mesa_glsl_error(loc, state,
3548 "depth layout qualifiers can be applied only to "
3549 "gl_FragDepth");
3550 } else if (depth_layout_count > 1
3551 && strcmp(var->name, "gl_FragDepth") == 0) {
3552 _mesa_glsl_error(loc, state,
3553 "at most one depth layout qualifier can be applied to "
3554 "gl_FragDepth");
3555 }
3556 if (qual->flags.q.depth_any)
3557 var->data.depth_layout = ir_depth_layout_any;
3558 else if (qual->flags.q.depth_greater)
3559 var->data.depth_layout = ir_depth_layout_greater;
3560 else if (qual->flags.q.depth_less)
3561 var->data.depth_layout = ir_depth_layout_less;
3562 else if (qual->flags.q.depth_unchanged)
3563 var->data.depth_layout = ir_depth_layout_unchanged;
3564 else
3565 var->data.depth_layout = ir_depth_layout_none;
3566
3567 if (qual->flags.q.std140 ||
3568 qual->flags.q.std430 ||
3569 qual->flags.q.packed ||
3570 qual->flags.q.shared) {
3571 _mesa_glsl_error(loc, state,
3572 "uniform and shader storage block layout qualifiers "
3573 "std140, std430, packed, and shared can only be "
3574 "applied to uniform or shader storage blocks, not "
3575 "members");
3576 }
3577
3578 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3579 validate_matrix_layout_for_type(state, loc, var->type, var);
3580 }
3581
3582 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3583 * Inputs):
3584 *
3585 * "Fragment shaders also allow the following layout qualifier on in only
3586 * (not with variable declarations)
3587 * layout-qualifier-id
3588 * early_fragment_tests
3589 * [...]"
3590 */
3591 if (qual->flags.q.early_fragment_tests) {
3592 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3593 "valid in fragment shader input layout declaration.");
3594 }
3595 }
3596
3597 static void
3598 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3599 ir_variable *var,
3600 struct _mesa_glsl_parse_state *state,
3601 YYLTYPE *loc,
3602 bool is_parameter)
3603 {
3604 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3605
3606 if (qual->flags.q.invariant) {
3607 if (var->data.used) {
3608 _mesa_glsl_error(loc, state,
3609 "variable `%s' may not be redeclared "
3610 "`invariant' after being used",
3611 var->name);
3612 } else {
3613 var->data.invariant = 1;
3614 }
3615 }
3616
3617 if (qual->flags.q.precise) {
3618 if (var->data.used) {
3619 _mesa_glsl_error(loc, state,
3620 "variable `%s' may not be redeclared "
3621 "`precise' after being used",
3622 var->name);
3623 } else {
3624 var->data.precise = 1;
3625 }
3626 }
3627
3628 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3629 _mesa_glsl_error(loc, state,
3630 "`subroutine' may only be applied to uniforms, "
3631 "subroutine type declarations, or function definitions");
3632 }
3633
3634 if (qual->flags.q.constant || qual->flags.q.attribute
3635 || qual->flags.q.uniform
3636 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3637 var->data.read_only = 1;
3638
3639 if (qual->flags.q.centroid)
3640 var->data.centroid = 1;
3641
3642 if (qual->flags.q.sample)
3643 var->data.sample = 1;
3644
3645 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3646 if (state->es_shader) {
3647 var->data.precision =
3648 select_gles_precision(qual->precision, var->type, state, loc);
3649 }
3650
3651 if (qual->flags.q.patch)
3652 var->data.patch = 1;
3653
3654 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3655 var->type = glsl_type::error_type;
3656 _mesa_glsl_error(loc, state,
3657 "`attribute' variables may not be declared in the "
3658 "%s shader",
3659 _mesa_shader_stage_to_string(state->stage));
3660 }
3661
3662 /* Disallow layout qualifiers which may only appear on layout declarations. */
3663 if (qual->flags.q.prim_type) {
3664 _mesa_glsl_error(loc, state,
3665 "Primitive type may only be specified on GS input or output "
3666 "layout declaration, not on variables.");
3667 }
3668
3669 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3670 *
3671 * "However, the const qualifier cannot be used with out or inout."
3672 *
3673 * The same section of the GLSL 4.40 spec further clarifies this saying:
3674 *
3675 * "The const qualifier cannot be used with out or inout, or a
3676 * compile-time error results."
3677 */
3678 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3679 _mesa_glsl_error(loc, state,
3680 "`const' may not be applied to `out' or `inout' "
3681 "function parameters");
3682 }
3683
3684 /* If there is no qualifier that changes the mode of the variable, leave
3685 * the setting alone.
3686 */
3687 assert(var->data.mode != ir_var_temporary);
3688 if (qual->flags.q.in && qual->flags.q.out)
3689 var->data.mode = ir_var_function_inout;
3690 else if (qual->flags.q.in)
3691 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3692 else if (qual->flags.q.attribute
3693 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3694 var->data.mode = ir_var_shader_in;
3695 else if (qual->flags.q.out)
3696 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3697 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3698 var->data.mode = ir_var_shader_out;
3699 else if (qual->flags.q.uniform)
3700 var->data.mode = ir_var_uniform;
3701 else if (qual->flags.q.buffer)
3702 var->data.mode = ir_var_shader_storage;
3703 else if (qual->flags.q.shared_storage)
3704 var->data.mode = ir_var_shader_shared;
3705
3706 if (!is_parameter && is_varying_var(var, state->stage)) {
3707 /* User-defined ins/outs are not permitted in compute shaders. */
3708 if (state->stage == MESA_SHADER_COMPUTE) {
3709 _mesa_glsl_error(loc, state,
3710 "user-defined input and output variables are not "
3711 "permitted in compute shaders");
3712 }
3713
3714 /* This variable is being used to link data between shader stages (in
3715 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3716 * that is allowed for such purposes.
3717 *
3718 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3719 *
3720 * "The varying qualifier can be used only with the data types
3721 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3722 * these."
3723 *
3724 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3725 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3726 *
3727 * "Fragment inputs can only be signed and unsigned integers and
3728 * integer vectors, float, floating-point vectors, matrices, or
3729 * arrays of these. Structures cannot be input.
3730 *
3731 * Similar text exists in the section on vertex shader outputs.
3732 *
3733 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3734 * 3.00 spec allows structs as well. Varying structs are also allowed
3735 * in GLSL 1.50.
3736 */
3737 switch (var->type->get_scalar_type()->base_type) {
3738 case GLSL_TYPE_FLOAT:
3739 /* Ok in all GLSL versions */
3740 break;
3741 case GLSL_TYPE_UINT:
3742 case GLSL_TYPE_INT:
3743 if (state->is_version(130, 300))
3744 break;
3745 _mesa_glsl_error(loc, state,
3746 "varying variables must be of base type float in %s",
3747 state->get_version_string());
3748 break;
3749 case GLSL_TYPE_STRUCT:
3750 if (state->is_version(150, 300))
3751 break;
3752 _mesa_glsl_error(loc, state,
3753 "varying variables may not be of type struct");
3754 break;
3755 case GLSL_TYPE_DOUBLE:
3756 break;
3757 default:
3758 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3759 break;
3760 }
3761 }
3762
3763 if (state->all_invariant && (state->current_function == NULL)) {
3764 switch (state->stage) {
3765 case MESA_SHADER_VERTEX:
3766 if (var->data.mode == ir_var_shader_out)
3767 var->data.invariant = true;
3768 break;
3769 case MESA_SHADER_TESS_CTRL:
3770 case MESA_SHADER_TESS_EVAL:
3771 case MESA_SHADER_GEOMETRY:
3772 if ((var->data.mode == ir_var_shader_in)
3773 || (var->data.mode == ir_var_shader_out))
3774 var->data.invariant = true;
3775 break;
3776 case MESA_SHADER_FRAGMENT:
3777 if (var->data.mode == ir_var_shader_in)
3778 var->data.invariant = true;
3779 break;
3780 case MESA_SHADER_COMPUTE:
3781 /* Invariance isn't meaningful in compute shaders. */
3782 break;
3783 }
3784 }
3785
3786 var->data.interpolation =
3787 interpret_interpolation_qualifier(qual, var->type,
3788 (ir_variable_mode) var->data.mode,
3789 state, loc);
3790
3791 /* Does the declaration use the deprecated 'attribute' or 'varying'
3792 * keywords?
3793 */
3794 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3795 || qual->flags.q.varying;
3796
3797
3798 /* Validate auxiliary storage qualifiers */
3799
3800 /* From section 4.3.4 of the GLSL 1.30 spec:
3801 * "It is an error to use centroid in in a vertex shader."
3802 *
3803 * From section 4.3.4 of the GLSL ES 3.00 spec:
3804 * "It is an error to use centroid in or interpolation qualifiers in
3805 * a vertex shader input."
3806 */
3807
3808 /* Section 4.3.6 of the GLSL 1.30 specification states:
3809 * "It is an error to use centroid out in a fragment shader."
3810 *
3811 * The GL_ARB_shading_language_420pack extension specification states:
3812 * "It is an error to use auxiliary storage qualifiers or interpolation
3813 * qualifiers on an output in a fragment shader."
3814 */
3815 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3816 _mesa_glsl_error(loc, state,
3817 "sample qualifier may only be used on `in` or `out` "
3818 "variables between shader stages");
3819 }
3820 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3821 _mesa_glsl_error(loc, state,
3822 "centroid qualifier may only be used with `in', "
3823 "`out' or `varying' variables between shader stages");
3824 }
3825
3826 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3827 _mesa_glsl_error(loc, state,
3828 "the shared storage qualifiers can only be used with "
3829 "compute shaders");
3830 }
3831
3832 apply_image_qualifier_to_variable(qual, var, state, loc);
3833 }
3834
3835 /**
3836 * Get the variable that is being redeclared by this declaration
3837 *
3838 * Semantic checks to verify the validity of the redeclaration are also
3839 * performed. If semantic checks fail, compilation error will be emitted via
3840 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3841 *
3842 * \returns
3843 * A pointer to an existing variable in the current scope if the declaration
3844 * is a redeclaration, \c NULL otherwise.
3845 */
3846 static ir_variable *
3847 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3848 struct _mesa_glsl_parse_state *state,
3849 bool allow_all_redeclarations)
3850 {
3851 /* Check if this declaration is actually a re-declaration, either to
3852 * resize an array or add qualifiers to an existing variable.
3853 *
3854 * This is allowed for variables in the current scope, or when at
3855 * global scope (for built-ins in the implicit outer scope).
3856 */
3857 ir_variable *earlier = state->symbols->get_variable(var->name);
3858 if (earlier == NULL ||
3859 (state->current_function != NULL &&
3860 !state->symbols->name_declared_this_scope(var->name))) {
3861 return NULL;
3862 }
3863
3864
3865 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3866 *
3867 * "It is legal to declare an array without a size and then
3868 * later re-declare the same name as an array of the same
3869 * type and specify a size."
3870 */
3871 if (earlier->type->is_unsized_array() && var->type->is_array()
3872 && (var->type->fields.array == earlier->type->fields.array)) {
3873 /* FINISHME: This doesn't match the qualifiers on the two
3874 * FINISHME: declarations. It's not 100% clear whether this is
3875 * FINISHME: required or not.
3876 */
3877
3878 const int size = var->type->array_size();
3879 check_builtin_array_max_size(var->name, size, loc, state);
3880 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3881 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3882 "previous access",
3883 earlier->data.max_array_access);
3884 }
3885
3886 earlier->type = var->type;
3887 delete var;
3888 var = NULL;
3889 } else if ((state->ARB_fragment_coord_conventions_enable ||
3890 state->is_version(150, 0))
3891 && strcmp(var->name, "gl_FragCoord") == 0
3892 && earlier->type == var->type
3893 && var->data.mode == ir_var_shader_in) {
3894 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3895 * qualifiers.
3896 */
3897 earlier->data.origin_upper_left = var->data.origin_upper_left;
3898 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3899
3900 /* According to section 4.3.7 of the GLSL 1.30 spec,
3901 * the following built-in varaibles can be redeclared with an
3902 * interpolation qualifier:
3903 * * gl_FrontColor
3904 * * gl_BackColor
3905 * * gl_FrontSecondaryColor
3906 * * gl_BackSecondaryColor
3907 * * gl_Color
3908 * * gl_SecondaryColor
3909 */
3910 } else if (state->is_version(130, 0)
3911 && (strcmp(var->name, "gl_FrontColor") == 0
3912 || strcmp(var->name, "gl_BackColor") == 0
3913 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3914 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3915 || strcmp(var->name, "gl_Color") == 0
3916 || strcmp(var->name, "gl_SecondaryColor") == 0)
3917 && earlier->type == var->type
3918 && earlier->data.mode == var->data.mode) {
3919 earlier->data.interpolation = var->data.interpolation;
3920
3921 /* Layout qualifiers for gl_FragDepth. */
3922 } else if ((state->is_version(420, 0) ||
3923 state->AMD_conservative_depth_enable ||
3924 state->ARB_conservative_depth_enable)
3925 && strcmp(var->name, "gl_FragDepth") == 0
3926 && earlier->type == var->type
3927 && earlier->data.mode == var->data.mode) {
3928
3929 /** From the AMD_conservative_depth spec:
3930 * Within any shader, the first redeclarations of gl_FragDepth
3931 * must appear before any use of gl_FragDepth.
3932 */
3933 if (earlier->data.used) {
3934 _mesa_glsl_error(&loc, state,
3935 "the first redeclaration of gl_FragDepth "
3936 "must appear before any use of gl_FragDepth");
3937 }
3938
3939 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3940 if (earlier->data.depth_layout != ir_depth_layout_none
3941 && earlier->data.depth_layout != var->data.depth_layout) {
3942 _mesa_glsl_error(&loc, state,
3943 "gl_FragDepth: depth layout is declared here "
3944 "as '%s, but it was previously declared as "
3945 "'%s'",
3946 depth_layout_string(var->data.depth_layout),
3947 depth_layout_string(earlier->data.depth_layout));
3948 }
3949
3950 earlier->data.depth_layout = var->data.depth_layout;
3951
3952 } else if (allow_all_redeclarations) {
3953 if (earlier->data.mode != var->data.mode) {
3954 _mesa_glsl_error(&loc, state,
3955 "redeclaration of `%s' with incorrect qualifiers",
3956 var->name);
3957 } else if (earlier->type != var->type) {
3958 _mesa_glsl_error(&loc, state,
3959 "redeclaration of `%s' has incorrect type",
3960 var->name);
3961 }
3962 } else {
3963 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3964 }
3965
3966 return earlier;
3967 }
3968
3969 /**
3970 * Generate the IR for an initializer in a variable declaration
3971 */
3972 ir_rvalue *
3973 process_initializer(ir_variable *var, ast_declaration *decl,
3974 ast_fully_specified_type *type,
3975 exec_list *initializer_instructions,
3976 struct _mesa_glsl_parse_state *state)
3977 {
3978 ir_rvalue *result = NULL;
3979
3980 YYLTYPE initializer_loc = decl->initializer->get_location();
3981
3982 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3983 *
3984 * "All uniform variables are read-only and are initialized either
3985 * directly by an application via API commands, or indirectly by
3986 * OpenGL."
3987 */
3988 if (var->data.mode == ir_var_uniform) {
3989 state->check_version(120, 0, &initializer_loc,
3990 "cannot initialize uniform %s",
3991 var->name);
3992 }
3993
3994 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3995 *
3996 * "Buffer variables cannot have initializers."
3997 */
3998 if (var->data.mode == ir_var_shader_storage) {
3999 _mesa_glsl_error(&initializer_loc, state,
4000 "cannot initialize buffer variable %s",
4001 var->name);
4002 }
4003
4004 /* From section 4.1.7 of the GLSL 4.40 spec:
4005 *
4006 * "Opaque variables [...] are initialized only through the
4007 * OpenGL API; they cannot be declared with an initializer in a
4008 * shader."
4009 */
4010 if (var->type->contains_opaque()) {
4011 _mesa_glsl_error(&initializer_loc, state,
4012 "cannot initialize opaque variable %s",
4013 var->name);
4014 }
4015
4016 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4017 _mesa_glsl_error(&initializer_loc, state,
4018 "cannot initialize %s shader input / %s %s",
4019 _mesa_shader_stage_to_string(state->stage),
4020 (state->stage == MESA_SHADER_VERTEX)
4021 ? "attribute" : "varying",
4022 var->name);
4023 }
4024
4025 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4026 _mesa_glsl_error(&initializer_loc, state,
4027 "cannot initialize %s shader output %s",
4028 _mesa_shader_stage_to_string(state->stage),
4029 var->name);
4030 }
4031
4032 /* If the initializer is an ast_aggregate_initializer, recursively store
4033 * type information from the LHS into it, so that its hir() function can do
4034 * type checking.
4035 */
4036 if (decl->initializer->oper == ast_aggregate)
4037 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4038
4039 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4040 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4041
4042 /* Calculate the constant value if this is a const or uniform
4043 * declaration.
4044 *
4045 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4046 *
4047 * "Declarations of globals without a storage qualifier, or with
4048 * just the const qualifier, may include initializers, in which case
4049 * they will be initialized before the first line of main() is
4050 * executed. Such initializers must be a constant expression."
4051 *
4052 * The same section of the GLSL ES 3.00.4 spec has similar language.
4053 */
4054 if (type->qualifier.flags.q.constant
4055 || type->qualifier.flags.q.uniform
4056 || (state->es_shader && state->current_function == NULL)) {
4057 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4058 lhs, rhs, true);
4059 if (new_rhs != NULL) {
4060 rhs = new_rhs;
4061
4062 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4063 * says:
4064 *
4065 * "A constant expression is one of
4066 *
4067 * ...
4068 *
4069 * - an expression formed by an operator on operands that are
4070 * all constant expressions, including getting an element of
4071 * a constant array, or a field of a constant structure, or
4072 * components of a constant vector. However, the sequence
4073 * operator ( , ) and the assignment operators ( =, +=, ...)
4074 * are not included in the operators that can create a
4075 * constant expression."
4076 *
4077 * Section 12.43 (Sequence operator and constant expressions) says:
4078 *
4079 * "Should the following construct be allowed?
4080 *
4081 * float a[2,3];
4082 *
4083 * The expression within the brackets uses the sequence operator
4084 * (',') and returns the integer 3 so the construct is declaring
4085 * a single-dimensional array of size 3. In some languages, the
4086 * construct declares a two-dimensional array. It would be
4087 * preferable to make this construct illegal to avoid confusion.
4088 *
4089 * One possibility is to change the definition of the sequence
4090 * operator so that it does not return a constant-expression and
4091 * hence cannot be used to declare an array size.
4092 *
4093 * RESOLUTION: The result of a sequence operator is not a
4094 * constant-expression."
4095 *
4096 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4097 * contains language almost identical to the section 4.3.3 in the
4098 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4099 * versions.
4100 */
4101 ir_constant *constant_value = rhs->constant_expression_value();
4102 if (!constant_value ||
4103 (state->is_version(430, 300) &&
4104 decl->initializer->has_sequence_subexpression())) {
4105 const char *const variable_mode =
4106 (type->qualifier.flags.q.constant)
4107 ? "const"
4108 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4109
4110 /* If ARB_shading_language_420pack is enabled, initializers of
4111 * const-qualified local variables do not have to be constant
4112 * expressions. Const-qualified global variables must still be
4113 * initialized with constant expressions.
4114 */
4115 if (!state->has_420pack()
4116 || state->current_function == NULL) {
4117 _mesa_glsl_error(& initializer_loc, state,
4118 "initializer of %s variable `%s' must be a "
4119 "constant expression",
4120 variable_mode,
4121 decl->identifier);
4122 if (var->type->is_numeric()) {
4123 /* Reduce cascading errors. */
4124 var->constant_value = type->qualifier.flags.q.constant
4125 ? ir_constant::zero(state, var->type) : NULL;
4126 }
4127 }
4128 } else {
4129 rhs = constant_value;
4130 var->constant_value = type->qualifier.flags.q.constant
4131 ? constant_value : NULL;
4132 }
4133 } else {
4134 if (var->type->is_numeric()) {
4135 /* Reduce cascading errors. */
4136 var->constant_value = type->qualifier.flags.q.constant
4137 ? ir_constant::zero(state, var->type) : NULL;
4138 }
4139 }
4140 }
4141
4142 if (rhs && !rhs->type->is_error()) {
4143 bool temp = var->data.read_only;
4144 if (type->qualifier.flags.q.constant)
4145 var->data.read_only = false;
4146
4147 /* Never emit code to initialize a uniform.
4148 */
4149 const glsl_type *initializer_type;
4150 if (!type->qualifier.flags.q.uniform) {
4151 do_assignment(initializer_instructions, state,
4152 NULL,
4153 lhs, rhs,
4154 &result, true,
4155 true,
4156 type->get_location());
4157 initializer_type = result->type;
4158 } else
4159 initializer_type = rhs->type;
4160
4161 var->constant_initializer = rhs->constant_expression_value();
4162 var->data.has_initializer = true;
4163
4164 /* If the declared variable is an unsized array, it must inherrit
4165 * its full type from the initializer. A declaration such as
4166 *
4167 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4168 *
4169 * becomes
4170 *
4171 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4172 *
4173 * The assignment generated in the if-statement (below) will also
4174 * automatically handle this case for non-uniforms.
4175 *
4176 * If the declared variable is not an array, the types must
4177 * already match exactly. As a result, the type assignment
4178 * here can be done unconditionally. For non-uniforms the call
4179 * to do_assignment can change the type of the initializer (via
4180 * the implicit conversion rules). For uniforms the initializer
4181 * must be a constant expression, and the type of that expression
4182 * was validated above.
4183 */
4184 var->type = initializer_type;
4185
4186 var->data.read_only = temp;
4187 }
4188
4189 return result;
4190 }
4191
4192 static void
4193 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4194 YYLTYPE loc, ir_variable *var,
4195 unsigned num_vertices,
4196 unsigned *size,
4197 const char *var_category)
4198 {
4199 if (var->type->is_unsized_array()) {
4200 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4201 *
4202 * All geometry shader input unsized array declarations will be
4203 * sized by an earlier input layout qualifier, when present, as per
4204 * the following table.
4205 *
4206 * Followed by a table mapping each allowed input layout qualifier to
4207 * the corresponding input length.
4208 *
4209 * Similarly for tessellation control shader outputs.
4210 */
4211 if (num_vertices != 0)
4212 var->type = glsl_type::get_array_instance(var->type->fields.array,
4213 num_vertices);
4214 } else {
4215 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4216 * includes the following examples of compile-time errors:
4217 *
4218 * // code sequence within one shader...
4219 * in vec4 Color1[]; // size unknown
4220 * ...Color1.length()...// illegal, length() unknown
4221 * in vec4 Color2[2]; // size is 2
4222 * ...Color1.length()...// illegal, Color1 still has no size
4223 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4224 * layout(lines) in; // legal, input size is 2, matching
4225 * in vec4 Color4[3]; // illegal, contradicts layout
4226 * ...
4227 *
4228 * To detect the case illustrated by Color3, we verify that the size of
4229 * an explicitly-sized array matches the size of any previously declared
4230 * explicitly-sized array. To detect the case illustrated by Color4, we
4231 * verify that the size of an explicitly-sized array is consistent with
4232 * any previously declared input layout.
4233 */
4234 if (num_vertices != 0 && var->type->length != num_vertices) {
4235 _mesa_glsl_error(&loc, state,
4236 "%s size contradicts previously declared layout "
4237 "(size is %u, but layout requires a size of %u)",
4238 var_category, var->type->length, num_vertices);
4239 } else if (*size != 0 && var->type->length != *size) {
4240 _mesa_glsl_error(&loc, state,
4241 "%s sizes are inconsistent (size is %u, but a "
4242 "previous declaration has size %u)",
4243 var_category, var->type->length, *size);
4244 } else {
4245 *size = var->type->length;
4246 }
4247 }
4248 }
4249
4250 static void
4251 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4252 YYLTYPE loc, ir_variable *var)
4253 {
4254 unsigned num_vertices = 0;
4255
4256 if (state->tcs_output_vertices_specified) {
4257 if (!state->out_qualifier->vertices->
4258 process_qualifier_constant(state, "vertices",
4259 &num_vertices, false)) {
4260 return;
4261 }
4262
4263 if (num_vertices > state->Const.MaxPatchVertices) {
4264 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4265 "GL_MAX_PATCH_VERTICES", num_vertices);
4266 return;
4267 }
4268 }
4269
4270 if (!var->type->is_array() && !var->data.patch) {
4271 _mesa_glsl_error(&loc, state,
4272 "tessellation control shader outputs must be arrays");
4273
4274 /* To avoid cascading failures, short circuit the checks below. */
4275 return;
4276 }
4277
4278 if (var->data.patch)
4279 return;
4280
4281 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4282 &state->tcs_output_size,
4283 "tessellation control shader output");
4284 }
4285
4286 /**
4287 * Do additional processing necessary for tessellation control/evaluation shader
4288 * input declarations. This covers both interface block arrays and bare input
4289 * variables.
4290 */
4291 static void
4292 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4293 YYLTYPE loc, ir_variable *var)
4294 {
4295 if (!var->type->is_array() && !var->data.patch) {
4296 _mesa_glsl_error(&loc, state,
4297 "per-vertex tessellation shader inputs must be arrays");
4298 /* Avoid cascading failures. */
4299 return;
4300 }
4301
4302 if (var->data.patch)
4303 return;
4304
4305 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
4306 if (var->type->is_unsized_array()) {
4307 var->type = glsl_type::get_array_instance(var->type->fields.array,
4308 state->Const.MaxPatchVertices);
4309 }
4310 }
4311
4312
4313 /**
4314 * Do additional processing necessary for geometry shader input declarations
4315 * (this covers both interface blocks arrays and bare input variables).
4316 */
4317 static void
4318 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4319 YYLTYPE loc, ir_variable *var)
4320 {
4321 unsigned num_vertices = 0;
4322
4323 if (state->gs_input_prim_type_specified) {
4324 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4325 }
4326
4327 /* Geometry shader input variables must be arrays. Caller should have
4328 * reported an error for this.
4329 */
4330 if (!var->type->is_array()) {
4331 assert(state->error);
4332
4333 /* To avoid cascading failures, short circuit the checks below. */
4334 return;
4335 }
4336
4337 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4338 &state->gs_input_size,
4339 "geometry shader input");
4340 }
4341
4342 void
4343 validate_identifier(const char *identifier, YYLTYPE loc,
4344 struct _mesa_glsl_parse_state *state)
4345 {
4346 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4347 *
4348 * "Identifiers starting with "gl_" are reserved for use by
4349 * OpenGL, and may not be declared in a shader as either a
4350 * variable or a function."
4351 */
4352 if (is_gl_identifier(identifier)) {
4353 _mesa_glsl_error(&loc, state,
4354 "identifier `%s' uses reserved `gl_' prefix",
4355 identifier);
4356 } else if (strstr(identifier, "__")) {
4357 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4358 * spec:
4359 *
4360 * "In addition, all identifiers containing two
4361 * consecutive underscores (__) are reserved as
4362 * possible future keywords."
4363 *
4364 * The intention is that names containing __ are reserved for internal
4365 * use by the implementation, and names prefixed with GL_ are reserved
4366 * for use by Khronos. Names simply containing __ are dangerous to use,
4367 * but should be allowed.
4368 *
4369 * A future version of the GLSL specification will clarify this.
4370 */
4371 _mesa_glsl_warning(&loc, state,
4372 "identifier `%s' uses reserved `__' string",
4373 identifier);
4374 }
4375 }
4376
4377 ir_rvalue *
4378 ast_declarator_list::hir(exec_list *instructions,
4379 struct _mesa_glsl_parse_state *state)
4380 {
4381 void *ctx = state;
4382 const struct glsl_type *decl_type;
4383 const char *type_name = NULL;
4384 ir_rvalue *result = NULL;
4385 YYLTYPE loc = this->get_location();
4386
4387 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4388 *
4389 * "To ensure that a particular output variable is invariant, it is
4390 * necessary to use the invariant qualifier. It can either be used to
4391 * qualify a previously declared variable as being invariant
4392 *
4393 * invariant gl_Position; // make existing gl_Position be invariant"
4394 *
4395 * In these cases the parser will set the 'invariant' flag in the declarator
4396 * list, and the type will be NULL.
4397 */
4398 if (this->invariant) {
4399 assert(this->type == NULL);
4400
4401 if (state->current_function != NULL) {
4402 _mesa_glsl_error(& loc, state,
4403 "all uses of `invariant' keyword must be at global "
4404 "scope");
4405 }
4406
4407 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4408 assert(decl->array_specifier == NULL);
4409 assert(decl->initializer == NULL);
4410
4411 ir_variable *const earlier =
4412 state->symbols->get_variable(decl->identifier);
4413 if (earlier == NULL) {
4414 _mesa_glsl_error(& loc, state,
4415 "undeclared variable `%s' cannot be marked "
4416 "invariant", decl->identifier);
4417 } else if (!is_varying_var(earlier, state->stage)) {
4418 _mesa_glsl_error(&loc, state,
4419 "`%s' cannot be marked invariant; interfaces between "
4420 "shader stages only.", decl->identifier);
4421 } else if (earlier->data.used) {
4422 _mesa_glsl_error(& loc, state,
4423 "variable `%s' may not be redeclared "
4424 "`invariant' after being used",
4425 earlier->name);
4426 } else {
4427 earlier->data.invariant = true;
4428 }
4429 }
4430
4431 /* Invariant redeclarations do not have r-values.
4432 */
4433 return NULL;
4434 }
4435
4436 if (this->precise) {
4437 assert(this->type == NULL);
4438
4439 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4440 assert(decl->array_specifier == NULL);
4441 assert(decl->initializer == NULL);
4442
4443 ir_variable *const earlier =
4444 state->symbols->get_variable(decl->identifier);
4445 if (earlier == NULL) {
4446 _mesa_glsl_error(& loc, state,
4447 "undeclared variable `%s' cannot be marked "
4448 "precise", decl->identifier);
4449 } else if (state->current_function != NULL &&
4450 !state->symbols->name_declared_this_scope(decl->identifier)) {
4451 /* Note: we have to check if we're in a function, since
4452 * builtins are treated as having come from another scope.
4453 */
4454 _mesa_glsl_error(& loc, state,
4455 "variable `%s' from an outer scope may not be "
4456 "redeclared `precise' in this scope",
4457 earlier->name);
4458 } else if (earlier->data.used) {
4459 _mesa_glsl_error(& loc, state,
4460 "variable `%s' may not be redeclared "
4461 "`precise' after being used",
4462 earlier->name);
4463 } else {
4464 earlier->data.precise = true;
4465 }
4466 }
4467
4468 /* Precise redeclarations do not have r-values either. */
4469 return NULL;
4470 }
4471
4472 assert(this->type != NULL);
4473 assert(!this->invariant);
4474 assert(!this->precise);
4475
4476 /* The type specifier may contain a structure definition. Process that
4477 * before any of the variable declarations.
4478 */
4479 (void) this->type->specifier->hir(instructions, state);
4480
4481 decl_type = this->type->glsl_type(& type_name, state);
4482
4483 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4484 * "Buffer variables may only be declared inside interface blocks
4485 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4486 * shader storage blocks. It is a compile-time error to declare buffer
4487 * variables at global scope (outside a block)."
4488 */
4489 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4490 _mesa_glsl_error(&loc, state,
4491 "buffer variables cannot be declared outside "
4492 "interface blocks");
4493 }
4494
4495 /* An offset-qualified atomic counter declaration sets the default
4496 * offset for the next declaration within the same atomic counter
4497 * buffer.
4498 */
4499 if (decl_type && decl_type->contains_atomic()) {
4500 if (type->qualifier.flags.q.explicit_binding &&
4501 type->qualifier.flags.q.explicit_offset) {
4502 unsigned qual_binding;
4503 unsigned qual_offset;
4504 if (process_qualifier_constant(state, &loc, "binding",
4505 type->qualifier.binding,
4506 &qual_binding)
4507 && process_qualifier_constant(state, &loc, "offset",
4508 type->qualifier.offset,
4509 &qual_offset)) {
4510 state->atomic_counter_offsets[qual_binding] = qual_offset;
4511 }
4512 }
4513
4514 ast_type_qualifier allowed_atomic_qual_mask;
4515 allowed_atomic_qual_mask.flags.i = 0;
4516 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4517 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4518 allowed_atomic_qual_mask.flags.q.uniform = 1;
4519
4520 type->qualifier.validate_flags(&loc, state,
4521 "invalid layout qualifier for "
4522 "atomic_uint",
4523 allowed_atomic_qual_mask);
4524 }
4525
4526 if (this->declarations.is_empty()) {
4527 /* If there is no structure involved in the program text, there are two
4528 * possible scenarios:
4529 *
4530 * - The program text contained something like 'vec4;'. This is an
4531 * empty declaration. It is valid but weird. Emit a warning.
4532 *
4533 * - The program text contained something like 'S;' and 'S' is not the
4534 * name of a known structure type. This is both invalid and weird.
4535 * Emit an error.
4536 *
4537 * - The program text contained something like 'mediump float;'
4538 * when the programmer probably meant 'precision mediump
4539 * float;' Emit a warning with a description of what they
4540 * probably meant to do.
4541 *
4542 * Note that if decl_type is NULL and there is a structure involved,
4543 * there must have been some sort of error with the structure. In this
4544 * case we assume that an error was already generated on this line of
4545 * code for the structure. There is no need to generate an additional,
4546 * confusing error.
4547 */
4548 assert(this->type->specifier->structure == NULL || decl_type != NULL
4549 || state->error);
4550
4551 if (decl_type == NULL) {
4552 _mesa_glsl_error(&loc, state,
4553 "invalid type `%s' in empty declaration",
4554 type_name);
4555 } else {
4556 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4557 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4558 * spec:
4559 *
4560 * "... any declaration that leaves the size undefined is
4561 * disallowed as this would add complexity and there are no
4562 * use-cases."
4563 */
4564 if (state->es_shader && decl_type->is_unsized_array()) {
4565 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4566 "or implicitly defined");
4567 }
4568
4569 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4570 *
4571 * "The combinations of types and qualifiers that cause
4572 * compile-time or link-time errors are the same whether or not
4573 * the declaration is empty."
4574 */
4575 validate_array_dimensions(decl_type, state, &loc);
4576 }
4577
4578 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4579 /* Empty atomic counter declarations are allowed and useful
4580 * to set the default offset qualifier.
4581 */
4582 return NULL;
4583 } else if (this->type->qualifier.precision != ast_precision_none) {
4584 if (this->type->specifier->structure != NULL) {
4585 _mesa_glsl_error(&loc, state,
4586 "precision qualifiers can't be applied "
4587 "to structures");
4588 } else {
4589 static const char *const precision_names[] = {
4590 "highp",
4591 "highp",
4592 "mediump",
4593 "lowp"
4594 };
4595
4596 _mesa_glsl_warning(&loc, state,
4597 "empty declaration with precision "
4598 "qualifier, to set the default precision, "
4599 "use `precision %s %s;'",
4600 precision_names[this->type->
4601 qualifier.precision],
4602 type_name);
4603 }
4604 } else if (this->type->specifier->structure == NULL) {
4605 _mesa_glsl_warning(&loc, state, "empty declaration");
4606 }
4607 }
4608 }
4609
4610 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4611 const struct glsl_type *var_type;
4612 ir_variable *var;
4613 const char *identifier = decl->identifier;
4614 /* FINISHME: Emit a warning if a variable declaration shadows a
4615 * FINISHME: declaration at a higher scope.
4616 */
4617
4618 if ((decl_type == NULL) || decl_type->is_void()) {
4619 if (type_name != NULL) {
4620 _mesa_glsl_error(& loc, state,
4621 "invalid type `%s' in declaration of `%s'",
4622 type_name, decl->identifier);
4623 } else {
4624 _mesa_glsl_error(& loc, state,
4625 "invalid type in declaration of `%s'",
4626 decl->identifier);
4627 }
4628 continue;
4629 }
4630
4631 if (this->type->qualifier.flags.q.subroutine) {
4632 const glsl_type *t;
4633 const char *name;
4634
4635 t = state->symbols->get_type(this->type->specifier->type_name);
4636 if (!t)
4637 _mesa_glsl_error(& loc, state,
4638 "invalid type in declaration of `%s'",
4639 decl->identifier);
4640 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4641
4642 identifier = name;
4643
4644 }
4645 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4646 state);
4647
4648 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4649
4650 /* The 'varying in' and 'varying out' qualifiers can only be used with
4651 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4652 * yet.
4653 */
4654 if (this->type->qualifier.flags.q.varying) {
4655 if (this->type->qualifier.flags.q.in) {
4656 _mesa_glsl_error(& loc, state,
4657 "`varying in' qualifier in declaration of "
4658 "`%s' only valid for geometry shaders using "
4659 "ARB_geometry_shader4 or EXT_geometry_shader4",
4660 decl->identifier);
4661 } else if (this->type->qualifier.flags.q.out) {
4662 _mesa_glsl_error(& loc, state,
4663 "`varying out' qualifier in declaration of "
4664 "`%s' only valid for geometry shaders using "
4665 "ARB_geometry_shader4 or EXT_geometry_shader4",
4666 decl->identifier);
4667 }
4668 }
4669
4670 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4671 *
4672 * "Global variables can only use the qualifiers const,
4673 * attribute, uniform, or varying. Only one may be
4674 * specified.
4675 *
4676 * Local variables can only use the qualifier const."
4677 *
4678 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4679 * any extension that adds the 'layout' keyword.
4680 */
4681 if (!state->is_version(130, 300)
4682 && !state->has_explicit_attrib_location()
4683 && !state->has_separate_shader_objects()
4684 && !state->ARB_fragment_coord_conventions_enable) {
4685 if (this->type->qualifier.flags.q.out) {
4686 _mesa_glsl_error(& loc, state,
4687 "`out' qualifier in declaration of `%s' "
4688 "only valid for function parameters in %s",
4689 decl->identifier, state->get_version_string());
4690 }
4691 if (this->type->qualifier.flags.q.in) {
4692 _mesa_glsl_error(& loc, state,
4693 "`in' qualifier in declaration of `%s' "
4694 "only valid for function parameters in %s",
4695 decl->identifier, state->get_version_string());
4696 }
4697 /* FINISHME: Test for other invalid qualifiers. */
4698 }
4699
4700 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4701 & loc, false);
4702 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4703 &loc);
4704
4705 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4706 && (var->type->is_numeric() || var->type->is_boolean())
4707 && state->zero_init) {
4708 const ir_constant_data data = {0};
4709 var->data.has_initializer = true;
4710 var->constant_initializer = new(var) ir_constant(var->type, &data);
4711 }
4712
4713 if (this->type->qualifier.flags.q.invariant) {
4714 if (!is_varying_var(var, state->stage)) {
4715 _mesa_glsl_error(&loc, state,
4716 "`%s' cannot be marked invariant; interfaces between "
4717 "shader stages only", var->name);
4718 }
4719 }
4720
4721 if (state->current_function != NULL) {
4722 const char *mode = NULL;
4723 const char *extra = "";
4724
4725 /* There is no need to check for 'inout' here because the parser will
4726 * only allow that in function parameter lists.
4727 */
4728 if (this->type->qualifier.flags.q.attribute) {
4729 mode = "attribute";
4730 } else if (this->type->qualifier.flags.q.subroutine) {
4731 mode = "subroutine uniform";
4732 } else if (this->type->qualifier.flags.q.uniform) {
4733 mode = "uniform";
4734 } else if (this->type->qualifier.flags.q.varying) {
4735 mode = "varying";
4736 } else if (this->type->qualifier.flags.q.in) {
4737 mode = "in";
4738 extra = " or in function parameter list";
4739 } else if (this->type->qualifier.flags.q.out) {
4740 mode = "out";
4741 extra = " or in function parameter list";
4742 }
4743
4744 if (mode) {
4745 _mesa_glsl_error(& loc, state,
4746 "%s variable `%s' must be declared at "
4747 "global scope%s",
4748 mode, var->name, extra);
4749 }
4750 } else if (var->data.mode == ir_var_shader_in) {
4751 var->data.read_only = true;
4752
4753 if (state->stage == MESA_SHADER_VERTEX) {
4754 bool error_emitted = false;
4755
4756 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4757 *
4758 * "Vertex shader inputs can only be float, floating-point
4759 * vectors, matrices, signed and unsigned integers and integer
4760 * vectors. Vertex shader inputs can also form arrays of these
4761 * types, but not structures."
4762 *
4763 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4764 *
4765 * "Vertex shader inputs can only be float, floating-point
4766 * vectors, matrices, signed and unsigned integers and integer
4767 * vectors. They cannot be arrays or structures."
4768 *
4769 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4770 *
4771 * "The attribute qualifier can be used only with float,
4772 * floating-point vectors, and matrices. Attribute variables
4773 * cannot be declared as arrays or structures."
4774 *
4775 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4776 *
4777 * "Vertex shader inputs can only be float, floating-point
4778 * vectors, matrices, signed and unsigned integers and integer
4779 * vectors. Vertex shader inputs cannot be arrays or
4780 * structures."
4781 */
4782 const glsl_type *check_type = var->type->without_array();
4783
4784 switch (check_type->base_type) {
4785 case GLSL_TYPE_FLOAT:
4786 break;
4787 case GLSL_TYPE_UINT:
4788 case GLSL_TYPE_INT:
4789 if (state->is_version(120, 300))
4790 break;
4791 case GLSL_TYPE_DOUBLE:
4792 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4793 break;
4794 /* FALLTHROUGH */
4795 default:
4796 _mesa_glsl_error(& loc, state,
4797 "vertex shader input / attribute cannot have "
4798 "type %s`%s'",
4799 var->type->is_array() ? "array of " : "",
4800 check_type->name);
4801 error_emitted = true;
4802 }
4803
4804 if (!error_emitted && var->type->is_array() &&
4805 !state->check_version(150, 0, &loc,
4806 "vertex shader input / attribute "
4807 "cannot have array type")) {
4808 error_emitted = true;
4809 }
4810 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4811 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4812 *
4813 * Geometry shader input variables get the per-vertex values
4814 * written out by vertex shader output variables of the same
4815 * names. Since a geometry shader operates on a set of
4816 * vertices, each input varying variable (or input block, see
4817 * interface blocks below) needs to be declared as an array.
4818 */
4819 if (!var->type->is_array()) {
4820 _mesa_glsl_error(&loc, state,
4821 "geometry shader inputs must be arrays");
4822 }
4823
4824 handle_geometry_shader_input_decl(state, loc, var);
4825 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4826 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4827 *
4828 * It is a compile-time error to declare a fragment shader
4829 * input with, or that contains, any of the following types:
4830 *
4831 * * A boolean type
4832 * * An opaque type
4833 * * An array of arrays
4834 * * An array of structures
4835 * * A structure containing an array
4836 * * A structure containing a structure
4837 */
4838 if (state->es_shader) {
4839 const glsl_type *check_type = var->type->without_array();
4840 if (check_type->is_boolean() ||
4841 check_type->contains_opaque()) {
4842 _mesa_glsl_error(&loc, state,
4843 "fragment shader input cannot have type %s",
4844 check_type->name);
4845 }
4846 if (var->type->is_array() &&
4847 var->type->fields.array->is_array()) {
4848 _mesa_glsl_error(&loc, state,
4849 "%s shader output "
4850 "cannot have an array of arrays",
4851 _mesa_shader_stage_to_string(state->stage));
4852 }
4853 if (var->type->is_array() &&
4854 var->type->fields.array->is_record()) {
4855 _mesa_glsl_error(&loc, state,
4856 "fragment shader input "
4857 "cannot have an array of structs");
4858 }
4859 if (var->type->is_record()) {
4860 for (unsigned i = 0; i < var->type->length; i++) {
4861 if (var->type->fields.structure[i].type->is_array() ||
4862 var->type->fields.structure[i].type->is_record())
4863 _mesa_glsl_error(&loc, state,
4864 "fragement shader input cannot have "
4865 "a struct that contains an "
4866 "array or struct");
4867 }
4868 }
4869 }
4870 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4871 state->stage == MESA_SHADER_TESS_EVAL) {
4872 handle_tess_shader_input_decl(state, loc, var);
4873 }
4874 } else if (var->data.mode == ir_var_shader_out) {
4875 const glsl_type *check_type = var->type->without_array();
4876
4877 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4878 *
4879 * It is a compile-time error to declare a vertex, tessellation
4880 * evaluation, tessellation control, or geometry shader output
4881 * that contains any of the following:
4882 *
4883 * * A Boolean type (bool, bvec2 ...)
4884 * * An opaque type
4885 */
4886 if (check_type->is_boolean() || check_type->contains_opaque())
4887 _mesa_glsl_error(&loc, state,
4888 "%s shader output cannot have type %s",
4889 _mesa_shader_stage_to_string(state->stage),
4890 check_type->name);
4891
4892 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4893 *
4894 * It is a compile-time error to declare a fragment shader output
4895 * that contains any of the following:
4896 *
4897 * * A Boolean type (bool, bvec2 ...)
4898 * * A double-precision scalar or vector (double, dvec2 ...)
4899 * * An opaque type
4900 * * Any matrix type
4901 * * A structure
4902 */
4903 if (state->stage == MESA_SHADER_FRAGMENT) {
4904 if (check_type->is_record() || check_type->is_matrix())
4905 _mesa_glsl_error(&loc, state,
4906 "fragment shader output "
4907 "cannot have struct or matrix type");
4908 switch (check_type->base_type) {
4909 case GLSL_TYPE_UINT:
4910 case GLSL_TYPE_INT:
4911 case GLSL_TYPE_FLOAT:
4912 break;
4913 default:
4914 _mesa_glsl_error(&loc, state,
4915 "fragment shader output cannot have "
4916 "type %s", check_type->name);
4917 }
4918 }
4919
4920 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4921 *
4922 * It is a compile-time error to declare a vertex shader output
4923 * with, or that contains, any of the following types:
4924 *
4925 * * A boolean type
4926 * * An opaque type
4927 * * An array of arrays
4928 * * An array of structures
4929 * * A structure containing an array
4930 * * A structure containing a structure
4931 *
4932 * It is a compile-time error to declare a fragment shader output
4933 * with, or that contains, any of the following types:
4934 *
4935 * * A boolean type
4936 * * An opaque type
4937 * * A matrix
4938 * * A structure
4939 * * An array of array
4940 */
4941 if (state->es_shader) {
4942 if (var->type->is_array() &&
4943 var->type->fields.array->is_array()) {
4944 _mesa_glsl_error(&loc, state,
4945 "%s shader output "
4946 "cannot have an array of arrays",
4947 _mesa_shader_stage_to_string(state->stage));
4948 }
4949 if (state->stage == MESA_SHADER_VERTEX) {
4950 if (var->type->is_array() &&
4951 var->type->fields.array->is_record()) {
4952 _mesa_glsl_error(&loc, state,
4953 "vertex shader output "
4954 "cannot have an array of structs");
4955 }
4956 if (var->type->is_record()) {
4957 for (unsigned i = 0; i < var->type->length; i++) {
4958 if (var->type->fields.structure[i].type->is_array() ||
4959 var->type->fields.structure[i].type->is_record())
4960 _mesa_glsl_error(&loc, state,
4961 "vertex shader output cannot have a "
4962 "struct that contains an "
4963 "array or struct");
4964 }
4965 }
4966 }
4967 }
4968
4969 if (state->stage == MESA_SHADER_TESS_CTRL) {
4970 handle_tess_ctrl_shader_output_decl(state, loc, var);
4971 }
4972 } else if (var->type->contains_subroutine()) {
4973 /* declare subroutine uniforms as hidden */
4974 var->data.how_declared = ir_var_hidden;
4975 }
4976
4977 /* From section 4.3.4 of the GLSL 4.00 spec:
4978 * "Input variables may not be declared using the patch in qualifier
4979 * in tessellation control or geometry shaders."
4980 *
4981 * From section 4.3.6 of the GLSL 4.00 spec:
4982 * "It is an error to use patch out in a vertex, tessellation
4983 * evaluation, or geometry shader."
4984 *
4985 * This doesn't explicitly forbid using them in a fragment shader, but
4986 * that's probably just an oversight.
4987 */
4988 if (state->stage != MESA_SHADER_TESS_EVAL
4989 && this->type->qualifier.flags.q.patch
4990 && this->type->qualifier.flags.q.in) {
4991
4992 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4993 "tessellation evaluation shader");
4994 }
4995
4996 if (state->stage != MESA_SHADER_TESS_CTRL
4997 && this->type->qualifier.flags.q.patch
4998 && this->type->qualifier.flags.q.out) {
4999
5000 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5001 "tessellation control shader");
5002 }
5003
5004 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5005 */
5006 if (this->type->qualifier.precision != ast_precision_none) {
5007 state->check_precision_qualifiers_allowed(&loc);
5008 }
5009
5010 if (this->type->qualifier.precision != ast_precision_none &&
5011 !precision_qualifier_allowed(var->type)) {
5012 _mesa_glsl_error(&loc, state,
5013 "precision qualifiers apply only to floating point"
5014 ", integer and opaque types");
5015 }
5016
5017 /* From section 4.1.7 of the GLSL 4.40 spec:
5018 *
5019 * "[Opaque types] can only be declared as function
5020 * parameters or uniform-qualified variables."
5021 */
5022 if (var_type->contains_opaque() &&
5023 !this->type->qualifier.flags.q.uniform) {
5024 _mesa_glsl_error(&loc, state,
5025 "opaque variables must be declared uniform");
5026 }
5027
5028 /* Process the initializer and add its instructions to a temporary
5029 * list. This list will be added to the instruction stream (below) after
5030 * the declaration is added. This is done because in some cases (such as
5031 * redeclarations) the declaration may not actually be added to the
5032 * instruction stream.
5033 */
5034 exec_list initializer_instructions;
5035
5036 /* Examine var name here since var may get deleted in the next call */
5037 bool var_is_gl_id = is_gl_identifier(var->name);
5038
5039 ir_variable *earlier =
5040 get_variable_being_redeclared(var, decl->get_location(), state,
5041 false /* allow_all_redeclarations */);
5042 if (earlier != NULL) {
5043 if (var_is_gl_id &&
5044 earlier->data.how_declared == ir_var_declared_in_block) {
5045 _mesa_glsl_error(&loc, state,
5046 "`%s' has already been redeclared using "
5047 "gl_PerVertex", earlier->name);
5048 }
5049 earlier->data.how_declared = ir_var_declared_normally;
5050 }
5051
5052 if (decl->initializer != NULL) {
5053 result = process_initializer((earlier == NULL) ? var : earlier,
5054 decl, this->type,
5055 &initializer_instructions, state);
5056 } else {
5057 validate_array_dimensions(var_type, state, &loc);
5058 }
5059
5060 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5061 *
5062 * "It is an error to write to a const variable outside of
5063 * its declaration, so they must be initialized when
5064 * declared."
5065 */
5066 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5067 _mesa_glsl_error(& loc, state,
5068 "const declaration of `%s' must be initialized",
5069 decl->identifier);
5070 }
5071
5072 if (state->es_shader) {
5073 const glsl_type *const t = (earlier == NULL)
5074 ? var->type : earlier->type;
5075
5076 if (t->is_unsized_array())
5077 /* Section 10.17 of the GLSL ES 1.00 specification states that
5078 * unsized array declarations have been removed from the language.
5079 * Arrays that are sized using an initializer are still explicitly
5080 * sized. However, GLSL ES 1.00 does not allow array
5081 * initializers. That is only allowed in GLSL ES 3.00.
5082 *
5083 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5084 *
5085 * "An array type can also be formed without specifying a size
5086 * if the definition includes an initializer:
5087 *
5088 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5089 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5090 *
5091 * float a[5];
5092 * float b[] = a;"
5093 */
5094 _mesa_glsl_error(& loc, state,
5095 "unsized array declarations are not allowed in "
5096 "GLSL ES");
5097 }
5098
5099 /* If the declaration is not a redeclaration, there are a few additional
5100 * semantic checks that must be applied. In addition, variable that was
5101 * created for the declaration should be added to the IR stream.
5102 */
5103 if (earlier == NULL) {
5104 validate_identifier(decl->identifier, loc, state);
5105
5106 /* Add the variable to the symbol table. Note that the initializer's
5107 * IR was already processed earlier (though it hasn't been emitted
5108 * yet), without the variable in scope.
5109 *
5110 * This differs from most C-like languages, but it follows the GLSL
5111 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5112 * spec:
5113 *
5114 * "Within a declaration, the scope of a name starts immediately
5115 * after the initializer if present or immediately after the name
5116 * being declared if not."
5117 */
5118 if (!state->symbols->add_variable(var)) {
5119 YYLTYPE loc = this->get_location();
5120 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5121 "current scope", decl->identifier);
5122 continue;
5123 }
5124
5125 /* Push the variable declaration to the top. It means that all the
5126 * variable declarations will appear in a funny last-to-first order,
5127 * but otherwise we run into trouble if a function is prototyped, a
5128 * global var is decled, then the function is defined with usage of
5129 * the global var. See glslparsertest's CorrectModule.frag.
5130 */
5131 instructions->push_head(var);
5132 }
5133
5134 instructions->append_list(&initializer_instructions);
5135 }
5136
5137
5138 /* Generally, variable declarations do not have r-values. However,
5139 * one is used for the declaration in
5140 *
5141 * while (bool b = some_condition()) {
5142 * ...
5143 * }
5144 *
5145 * so we return the rvalue from the last seen declaration here.
5146 */
5147 return result;
5148 }
5149
5150
5151 ir_rvalue *
5152 ast_parameter_declarator::hir(exec_list *instructions,
5153 struct _mesa_glsl_parse_state *state)
5154 {
5155 void *ctx = state;
5156 const struct glsl_type *type;
5157 const char *name = NULL;
5158 YYLTYPE loc = this->get_location();
5159
5160 type = this->type->glsl_type(& name, state);
5161
5162 if (type == NULL) {
5163 if (name != NULL) {
5164 _mesa_glsl_error(& loc, state,
5165 "invalid type `%s' in declaration of `%s'",
5166 name, this->identifier);
5167 } else {
5168 _mesa_glsl_error(& loc, state,
5169 "invalid type in declaration of `%s'",
5170 this->identifier);
5171 }
5172
5173 type = glsl_type::error_type;
5174 }
5175
5176 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5177 *
5178 * "Functions that accept no input arguments need not use void in the
5179 * argument list because prototypes (or definitions) are required and
5180 * therefore there is no ambiguity when an empty argument list "( )" is
5181 * declared. The idiom "(void)" as a parameter list is provided for
5182 * convenience."
5183 *
5184 * Placing this check here prevents a void parameter being set up
5185 * for a function, which avoids tripping up checks for main taking
5186 * parameters and lookups of an unnamed symbol.
5187 */
5188 if (type->is_void()) {
5189 if (this->identifier != NULL)
5190 _mesa_glsl_error(& loc, state,
5191 "named parameter cannot have type `void'");
5192
5193 is_void = true;
5194 return NULL;
5195 }
5196
5197 if (formal_parameter && (this->identifier == NULL)) {
5198 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5199 return NULL;
5200 }
5201
5202 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5203 * call already handled the "vec4[..] foo" case.
5204 */
5205 type = process_array_type(&loc, type, this->array_specifier, state);
5206
5207 if (!type->is_error() && type->is_unsized_array()) {
5208 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5209 "a declared size");
5210 type = glsl_type::error_type;
5211 }
5212
5213 is_void = false;
5214 ir_variable *var = new(ctx)
5215 ir_variable(type, this->identifier, ir_var_function_in);
5216
5217 /* Apply any specified qualifiers to the parameter declaration. Note that
5218 * for function parameters the default mode is 'in'.
5219 */
5220 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5221 true);
5222
5223 /* From section 4.1.7 of the GLSL 4.40 spec:
5224 *
5225 * "Opaque variables cannot be treated as l-values; hence cannot
5226 * be used as out or inout function parameters, nor can they be
5227 * assigned into."
5228 */
5229 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5230 && type->contains_opaque()) {
5231 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5232 "contain opaque variables");
5233 type = glsl_type::error_type;
5234 }
5235
5236 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5237 *
5238 * "When calling a function, expressions that do not evaluate to
5239 * l-values cannot be passed to parameters declared as out or inout."
5240 *
5241 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5242 *
5243 * "Other binary or unary expressions, non-dereferenced arrays,
5244 * function names, swizzles with repeated fields, and constants
5245 * cannot be l-values."
5246 *
5247 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5248 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5249 */
5250 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5251 && type->is_array()
5252 && !state->check_version(120, 100, &loc,
5253 "arrays cannot be out or inout parameters")) {
5254 type = glsl_type::error_type;
5255 }
5256
5257 instructions->push_tail(var);
5258
5259 /* Parameter declarations do not have r-values.
5260 */
5261 return NULL;
5262 }
5263
5264
5265 void
5266 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5267 bool formal,
5268 exec_list *ir_parameters,
5269 _mesa_glsl_parse_state *state)
5270 {
5271 ast_parameter_declarator *void_param = NULL;
5272 unsigned count = 0;
5273
5274 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5275 param->formal_parameter = formal;
5276 param->hir(ir_parameters, state);
5277
5278 if (param->is_void)
5279 void_param = param;
5280
5281 count++;
5282 }
5283
5284 if ((void_param != NULL) && (count > 1)) {
5285 YYLTYPE loc = void_param->get_location();
5286
5287 _mesa_glsl_error(& loc, state,
5288 "`void' parameter must be only parameter");
5289 }
5290 }
5291
5292
5293 void
5294 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5295 {
5296 /* IR invariants disallow function declarations or definitions
5297 * nested within other function definitions. But there is no
5298 * requirement about the relative order of function declarations
5299 * and definitions with respect to one another. So simply insert
5300 * the new ir_function block at the end of the toplevel instruction
5301 * list.
5302 */
5303 state->toplevel_ir->push_tail(f);
5304 }
5305
5306
5307 ir_rvalue *
5308 ast_function::hir(exec_list *instructions,
5309 struct _mesa_glsl_parse_state *state)
5310 {
5311 void *ctx = state;
5312 ir_function *f = NULL;
5313 ir_function_signature *sig = NULL;
5314 exec_list hir_parameters;
5315 YYLTYPE loc = this->get_location();
5316
5317 const char *const name = identifier;
5318
5319 /* New functions are always added to the top-level IR instruction stream,
5320 * so this instruction list pointer is ignored. See also emit_function
5321 * (called below).
5322 */
5323 (void) instructions;
5324
5325 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5326 *
5327 * "Function declarations (prototypes) cannot occur inside of functions;
5328 * they must be at global scope, or for the built-in functions, outside
5329 * the global scope."
5330 *
5331 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5332 *
5333 * "User defined functions may only be defined within the global scope."
5334 *
5335 * Note that this language does not appear in GLSL 1.10.
5336 */
5337 if ((state->current_function != NULL) &&
5338 state->is_version(120, 100)) {
5339 YYLTYPE loc = this->get_location();
5340 _mesa_glsl_error(&loc, state,
5341 "declaration of function `%s' not allowed within "
5342 "function body", name);
5343 }
5344
5345 validate_identifier(name, this->get_location(), state);
5346
5347 /* Convert the list of function parameters to HIR now so that they can be
5348 * used below to compare this function's signature with previously seen
5349 * signatures for functions with the same name.
5350 */
5351 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5352 is_definition,
5353 & hir_parameters, state);
5354
5355 const char *return_type_name;
5356 const glsl_type *return_type =
5357 this->return_type->glsl_type(& return_type_name, state);
5358
5359 if (!return_type) {
5360 YYLTYPE loc = this->get_location();
5361 _mesa_glsl_error(&loc, state,
5362 "function `%s' has undeclared return type `%s'",
5363 name, return_type_name);
5364 return_type = glsl_type::error_type;
5365 }
5366
5367 /* ARB_shader_subroutine states:
5368 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5369 * subroutine(...) to a function declaration."
5370 */
5371 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5372 YYLTYPE loc = this->get_location();
5373 _mesa_glsl_error(&loc, state,
5374 "function declaration `%s' cannot have subroutine prepended",
5375 name);
5376 }
5377
5378 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5379 * "No qualifier is allowed on the return type of a function."
5380 */
5381 if (this->return_type->has_qualifiers(state)) {
5382 YYLTYPE loc = this->get_location();
5383 _mesa_glsl_error(& loc, state,
5384 "function `%s' return type has qualifiers", name);
5385 }
5386
5387 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5388 *
5389 * "Arrays are allowed as arguments and as the return type. In both
5390 * cases, the array must be explicitly sized."
5391 */
5392 if (return_type->is_unsized_array()) {
5393 YYLTYPE loc = this->get_location();
5394 _mesa_glsl_error(& loc, state,
5395 "function `%s' return type array must be explicitly "
5396 "sized", name);
5397 }
5398
5399 /* From section 4.1.7 of the GLSL 4.40 spec:
5400 *
5401 * "[Opaque types] can only be declared as function parameters
5402 * or uniform-qualified variables."
5403 */
5404 if (return_type->contains_opaque()) {
5405 YYLTYPE loc = this->get_location();
5406 _mesa_glsl_error(&loc, state,
5407 "function `%s' return type can't contain an opaque type",
5408 name);
5409 }
5410
5411 /**/
5412 if (return_type->is_subroutine()) {
5413 YYLTYPE loc = this->get_location();
5414 _mesa_glsl_error(&loc, state,
5415 "function `%s' return type can't be a subroutine type",
5416 name);
5417 }
5418
5419
5420 /* Create an ir_function if one doesn't already exist. */
5421 f = state->symbols->get_function(name);
5422 if (f == NULL) {
5423 f = new(ctx) ir_function(name);
5424 if (!this->return_type->qualifier.flags.q.subroutine) {
5425 if (!state->symbols->add_function(f)) {
5426 /* This function name shadows a non-function use of the same name. */
5427 YYLTYPE loc = this->get_location();
5428 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5429 "non-function", name);
5430 return NULL;
5431 }
5432 }
5433 emit_function(state, f);
5434 }
5435
5436 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5437 *
5438 * "A shader cannot redefine or overload built-in functions."
5439 *
5440 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5441 *
5442 * "User code can overload the built-in functions but cannot redefine
5443 * them."
5444 */
5445 if (state->es_shader && state->language_version >= 300) {
5446 /* Local shader has no exact candidates; check the built-ins. */
5447 _mesa_glsl_initialize_builtin_functions();
5448 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5449 YYLTYPE loc = this->get_location();
5450 _mesa_glsl_error(& loc, state,
5451 "A shader cannot redefine or overload built-in "
5452 "function `%s' in GLSL ES 3.00", name);
5453 return NULL;
5454 }
5455 }
5456
5457 /* Verify that this function's signature either doesn't match a previously
5458 * seen signature for a function with the same name, or, if a match is found,
5459 * that the previously seen signature does not have an associated definition.
5460 */
5461 if (state->es_shader || f->has_user_signature()) {
5462 sig = f->exact_matching_signature(state, &hir_parameters);
5463 if (sig != NULL) {
5464 const char *badvar = sig->qualifiers_match(&hir_parameters);
5465 if (badvar != NULL) {
5466 YYLTYPE loc = this->get_location();
5467
5468 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5469 "qualifiers don't match prototype", name, badvar);
5470 }
5471
5472 if (sig->return_type != return_type) {
5473 YYLTYPE loc = this->get_location();
5474
5475 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5476 "match prototype", name);
5477 }
5478
5479 if (sig->is_defined) {
5480 if (is_definition) {
5481 YYLTYPE loc = this->get_location();
5482 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5483 } else {
5484 /* We just encountered a prototype that exactly matches a
5485 * function that's already been defined. This is redundant,
5486 * and we should ignore it.
5487 */
5488 return NULL;
5489 }
5490 }
5491 }
5492 }
5493
5494 /* Verify the return type of main() */
5495 if (strcmp(name, "main") == 0) {
5496 if (! return_type->is_void()) {
5497 YYLTYPE loc = this->get_location();
5498
5499 _mesa_glsl_error(& loc, state, "main() must return void");
5500 }
5501
5502 if (!hir_parameters.is_empty()) {
5503 YYLTYPE loc = this->get_location();
5504
5505 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5506 }
5507 }
5508
5509 /* Finish storing the information about this new function in its signature.
5510 */
5511 if (sig == NULL) {
5512 sig = new(ctx) ir_function_signature(return_type);
5513 f->add_signature(sig);
5514 }
5515
5516 sig->replace_parameters(&hir_parameters);
5517 signature = sig;
5518
5519 if (this->return_type->qualifier.flags.q.subroutine_def) {
5520 int idx;
5521
5522 if (this->return_type->qualifier.flags.q.explicit_index) {
5523 unsigned qual_index;
5524 if (process_qualifier_constant(state, &loc, "index",
5525 this->return_type->qualifier.index,
5526 &qual_index)) {
5527 if (!state->has_explicit_uniform_location()) {
5528 _mesa_glsl_error(&loc, state, "subroutine index requires "
5529 "GL_ARB_explicit_uniform_location or "
5530 "GLSL 4.30");
5531 } else if (qual_index >= MAX_SUBROUTINES) {
5532 _mesa_glsl_error(&loc, state,
5533 "invalid subroutine index (%d) index must "
5534 "be a number between 0 and "
5535 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5536 MAX_SUBROUTINES - 1);
5537 } else {
5538 f->subroutine_index = qual_index;
5539 }
5540 }
5541 }
5542
5543 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5544 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5545 f->num_subroutine_types);
5546 idx = 0;
5547 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5548 const struct glsl_type *type;
5549 /* the subroutine type must be already declared */
5550 type = state->symbols->get_type(decl->identifier);
5551 if (!type) {
5552 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5553 }
5554
5555 for (int i = 0; i < state->num_subroutine_types; i++) {
5556 ir_function *fn = state->subroutine_types[i];
5557 ir_function_signature *tsig = NULL;
5558
5559 if (strcmp(fn->name, decl->identifier))
5560 continue;
5561
5562 tsig = fn->matching_signature(state, &sig->parameters,
5563 false);
5564 if (!tsig) {
5565 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5566 } else {
5567 if (tsig->return_type != sig->return_type) {
5568 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5569 }
5570 }
5571 }
5572 f->subroutine_types[idx++] = type;
5573 }
5574 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5575 ir_function *,
5576 state->num_subroutines + 1);
5577 state->subroutines[state->num_subroutines] = f;
5578 state->num_subroutines++;
5579
5580 }
5581
5582 if (this->return_type->qualifier.flags.q.subroutine) {
5583 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5584 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5585 return NULL;
5586 }
5587 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5588 ir_function *,
5589 state->num_subroutine_types + 1);
5590 state->subroutine_types[state->num_subroutine_types] = f;
5591 state->num_subroutine_types++;
5592
5593 f->is_subroutine = true;
5594 }
5595
5596 /* Function declarations (prototypes) do not have r-values.
5597 */
5598 return NULL;
5599 }
5600
5601
5602 ir_rvalue *
5603 ast_function_definition::hir(exec_list *instructions,
5604 struct _mesa_glsl_parse_state *state)
5605 {
5606 prototype->is_definition = true;
5607 prototype->hir(instructions, state);
5608
5609 ir_function_signature *signature = prototype->signature;
5610 if (signature == NULL)
5611 return NULL;
5612
5613 assert(state->current_function == NULL);
5614 state->current_function = signature;
5615 state->found_return = false;
5616
5617 /* Duplicate parameters declared in the prototype as concrete variables.
5618 * Add these to the symbol table.
5619 */
5620 state->symbols->push_scope();
5621 foreach_in_list(ir_variable, var, &signature->parameters) {
5622 assert(var->as_variable() != NULL);
5623
5624 /* The only way a parameter would "exist" is if two parameters have
5625 * the same name.
5626 */
5627 if (state->symbols->name_declared_this_scope(var->name)) {
5628 YYLTYPE loc = this->get_location();
5629
5630 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5631 } else {
5632 state->symbols->add_variable(var);
5633 }
5634 }
5635
5636 /* Convert the body of the function to HIR. */
5637 this->body->hir(&signature->body, state);
5638 signature->is_defined = true;
5639
5640 state->symbols->pop_scope();
5641
5642 assert(state->current_function == signature);
5643 state->current_function = NULL;
5644
5645 if (!signature->return_type->is_void() && !state->found_return) {
5646 YYLTYPE loc = this->get_location();
5647 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5648 "%s, but no return statement",
5649 signature->function_name(),
5650 signature->return_type->name);
5651 }
5652
5653 /* Function definitions do not have r-values.
5654 */
5655 return NULL;
5656 }
5657
5658
5659 ir_rvalue *
5660 ast_jump_statement::hir(exec_list *instructions,
5661 struct _mesa_glsl_parse_state *state)
5662 {
5663 void *ctx = state;
5664
5665 switch (mode) {
5666 case ast_return: {
5667 ir_return *inst;
5668 assert(state->current_function);
5669
5670 if (opt_return_value) {
5671 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5672
5673 /* The value of the return type can be NULL if the shader says
5674 * 'return foo();' and foo() is a function that returns void.
5675 *
5676 * NOTE: The GLSL spec doesn't say that this is an error. The type
5677 * of the return value is void. If the return type of the function is
5678 * also void, then this should compile without error. Seriously.
5679 */
5680 const glsl_type *const ret_type =
5681 (ret == NULL) ? glsl_type::void_type : ret->type;
5682
5683 /* Implicit conversions are not allowed for return values prior to
5684 * ARB_shading_language_420pack.
5685 */
5686 if (state->current_function->return_type != ret_type) {
5687 YYLTYPE loc = this->get_location();
5688
5689 if (state->has_420pack()) {
5690 if (!apply_implicit_conversion(state->current_function->return_type,
5691 ret, state)) {
5692 _mesa_glsl_error(& loc, state,
5693 "could not implicitly convert return value "
5694 "to %s, in function `%s'",
5695 state->current_function->return_type->name,
5696 state->current_function->function_name());
5697 }
5698 } else {
5699 _mesa_glsl_error(& loc, state,
5700 "`return' with wrong type %s, in function `%s' "
5701 "returning %s",
5702 ret_type->name,
5703 state->current_function->function_name(),
5704 state->current_function->return_type->name);
5705 }
5706 } else if (state->current_function->return_type->base_type ==
5707 GLSL_TYPE_VOID) {
5708 YYLTYPE loc = this->get_location();
5709
5710 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5711 * specs add a clarification:
5712 *
5713 * "A void function can only use return without a return argument, even if
5714 * the return argument has void type. Return statements only accept values:
5715 *
5716 * void func1() { }
5717 * void func2() { return func1(); } // illegal return statement"
5718 */
5719 _mesa_glsl_error(& loc, state,
5720 "void functions can only use `return' without a "
5721 "return argument");
5722 }
5723
5724 inst = new(ctx) ir_return(ret);
5725 } else {
5726 if (state->current_function->return_type->base_type !=
5727 GLSL_TYPE_VOID) {
5728 YYLTYPE loc = this->get_location();
5729
5730 _mesa_glsl_error(& loc, state,
5731 "`return' with no value, in function %s returning "
5732 "non-void",
5733 state->current_function->function_name());
5734 }
5735 inst = new(ctx) ir_return;
5736 }
5737
5738 state->found_return = true;
5739 instructions->push_tail(inst);
5740 break;
5741 }
5742
5743 case ast_discard:
5744 if (state->stage != MESA_SHADER_FRAGMENT) {
5745 YYLTYPE loc = this->get_location();
5746
5747 _mesa_glsl_error(& loc, state,
5748 "`discard' may only appear in a fragment shader");
5749 }
5750 instructions->push_tail(new(ctx) ir_discard);
5751 break;
5752
5753 case ast_break:
5754 case ast_continue:
5755 if (mode == ast_continue &&
5756 state->loop_nesting_ast == NULL) {
5757 YYLTYPE loc = this->get_location();
5758
5759 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5760 } else if (mode == ast_break &&
5761 state->loop_nesting_ast == NULL &&
5762 state->switch_state.switch_nesting_ast == NULL) {
5763 YYLTYPE loc = this->get_location();
5764
5765 _mesa_glsl_error(& loc, state,
5766 "break may only appear in a loop or a switch");
5767 } else {
5768 /* For a loop, inline the for loop expression again, since we don't
5769 * know where near the end of the loop body the normal copy of it is
5770 * going to be placed. Same goes for the condition for a do-while
5771 * loop.
5772 */
5773 if (state->loop_nesting_ast != NULL &&
5774 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5775 if (state->loop_nesting_ast->rest_expression) {
5776 state->loop_nesting_ast->rest_expression->hir(instructions,
5777 state);
5778 }
5779 if (state->loop_nesting_ast->mode ==
5780 ast_iteration_statement::ast_do_while) {
5781 state->loop_nesting_ast->condition_to_hir(instructions, state);
5782 }
5783 }
5784
5785 if (state->switch_state.is_switch_innermost &&
5786 mode == ast_continue) {
5787 /* Set 'continue_inside' to true. */
5788 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5789 ir_dereference_variable *deref_continue_inside_var =
5790 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5791 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5792 true_val));
5793
5794 /* Break out from the switch, continue for the loop will
5795 * be called right after switch. */
5796 ir_loop_jump *const jump =
5797 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5798 instructions->push_tail(jump);
5799
5800 } else if (state->switch_state.is_switch_innermost &&
5801 mode == ast_break) {
5802 /* Force break out of switch by inserting a break. */
5803 ir_loop_jump *const jump =
5804 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5805 instructions->push_tail(jump);
5806 } else {
5807 ir_loop_jump *const jump =
5808 new(ctx) ir_loop_jump((mode == ast_break)
5809 ? ir_loop_jump::jump_break
5810 : ir_loop_jump::jump_continue);
5811 instructions->push_tail(jump);
5812 }
5813 }
5814
5815 break;
5816 }
5817
5818 /* Jump instructions do not have r-values.
5819 */
5820 return NULL;
5821 }
5822
5823
5824 ir_rvalue *
5825 ast_selection_statement::hir(exec_list *instructions,
5826 struct _mesa_glsl_parse_state *state)
5827 {
5828 void *ctx = state;
5829
5830 ir_rvalue *const condition = this->condition->hir(instructions, state);
5831
5832 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5833 *
5834 * "Any expression whose type evaluates to a Boolean can be used as the
5835 * conditional expression bool-expression. Vector types are not accepted
5836 * as the expression to if."
5837 *
5838 * The checks are separated so that higher quality diagnostics can be
5839 * generated for cases where both rules are violated.
5840 */
5841 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5842 YYLTYPE loc = this->condition->get_location();
5843
5844 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5845 "boolean");
5846 }
5847
5848 ir_if *const stmt = new(ctx) ir_if(condition);
5849
5850 if (then_statement != NULL) {
5851 state->symbols->push_scope();
5852 then_statement->hir(& stmt->then_instructions, state);
5853 state->symbols->pop_scope();
5854 }
5855
5856 if (else_statement != NULL) {
5857 state->symbols->push_scope();
5858 else_statement->hir(& stmt->else_instructions, state);
5859 state->symbols->pop_scope();
5860 }
5861
5862 instructions->push_tail(stmt);
5863
5864 /* if-statements do not have r-values.
5865 */
5866 return NULL;
5867 }
5868
5869
5870 ir_rvalue *
5871 ast_switch_statement::hir(exec_list *instructions,
5872 struct _mesa_glsl_parse_state *state)
5873 {
5874 void *ctx = state;
5875
5876 ir_rvalue *const test_expression =
5877 this->test_expression->hir(instructions, state);
5878
5879 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5880 *
5881 * "The type of init-expression in a switch statement must be a
5882 * scalar integer."
5883 */
5884 if (!test_expression->type->is_scalar() ||
5885 !test_expression->type->is_integer()) {
5886 YYLTYPE loc = this->test_expression->get_location();
5887
5888 _mesa_glsl_error(& loc,
5889 state,
5890 "switch-statement expression must be scalar "
5891 "integer");
5892 }
5893
5894 /* Track the switch-statement nesting in a stack-like manner.
5895 */
5896 struct glsl_switch_state saved = state->switch_state;
5897
5898 state->switch_state.is_switch_innermost = true;
5899 state->switch_state.switch_nesting_ast = this;
5900 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5901 hash_table_pointer_compare);
5902 state->switch_state.previous_default = NULL;
5903
5904 /* Initalize is_fallthru state to false.
5905 */
5906 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5907 state->switch_state.is_fallthru_var =
5908 new(ctx) ir_variable(glsl_type::bool_type,
5909 "switch_is_fallthru_tmp",
5910 ir_var_temporary);
5911 instructions->push_tail(state->switch_state.is_fallthru_var);
5912
5913 ir_dereference_variable *deref_is_fallthru_var =
5914 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5915 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5916 is_fallthru_val));
5917
5918 /* Initialize continue_inside state to false.
5919 */
5920 state->switch_state.continue_inside =
5921 new(ctx) ir_variable(glsl_type::bool_type,
5922 "continue_inside_tmp",
5923 ir_var_temporary);
5924 instructions->push_tail(state->switch_state.continue_inside);
5925
5926 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5927 ir_dereference_variable *deref_continue_inside_var =
5928 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5929 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5930 false_val));
5931
5932 state->switch_state.run_default =
5933 new(ctx) ir_variable(glsl_type::bool_type,
5934 "run_default_tmp",
5935 ir_var_temporary);
5936 instructions->push_tail(state->switch_state.run_default);
5937
5938 /* Loop around the switch is used for flow control. */
5939 ir_loop * loop = new(ctx) ir_loop();
5940 instructions->push_tail(loop);
5941
5942 /* Cache test expression.
5943 */
5944 test_to_hir(&loop->body_instructions, state);
5945
5946 /* Emit code for body of switch stmt.
5947 */
5948 body->hir(&loop->body_instructions, state);
5949
5950 /* Insert a break at the end to exit loop. */
5951 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5952 loop->body_instructions.push_tail(jump);
5953
5954 /* If we are inside loop, check if continue got called inside switch. */
5955 if (state->loop_nesting_ast != NULL) {
5956 ir_dereference_variable *deref_continue_inside =
5957 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5958 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5959 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5960
5961 if (state->loop_nesting_ast != NULL) {
5962 if (state->loop_nesting_ast->rest_expression) {
5963 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5964 state);
5965 }
5966 if (state->loop_nesting_ast->mode ==
5967 ast_iteration_statement::ast_do_while) {
5968 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5969 }
5970 }
5971 irif->then_instructions.push_tail(jump);
5972 instructions->push_tail(irif);
5973 }
5974
5975 hash_table_dtor(state->switch_state.labels_ht);
5976
5977 state->switch_state = saved;
5978
5979 /* Switch statements do not have r-values. */
5980 return NULL;
5981 }
5982
5983
5984 void
5985 ast_switch_statement::test_to_hir(exec_list *instructions,
5986 struct _mesa_glsl_parse_state *state)
5987 {
5988 void *ctx = state;
5989
5990 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5991 * on the switch test case. The first one would be already raised when
5992 * getting the test_expression at ast_switch_statement::hir
5993 */
5994 test_expression->set_is_lhs(true);
5995 /* Cache value of test expression. */
5996 ir_rvalue *const test_val =
5997 test_expression->hir(instructions,
5998 state);
5999
6000 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6001 "switch_test_tmp",
6002 ir_var_temporary);
6003 ir_dereference_variable *deref_test_var =
6004 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6005
6006 instructions->push_tail(state->switch_state.test_var);
6007 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6008 }
6009
6010
6011 ir_rvalue *
6012 ast_switch_body::hir(exec_list *instructions,
6013 struct _mesa_glsl_parse_state *state)
6014 {
6015 if (stmts != NULL)
6016 stmts->hir(instructions, state);
6017
6018 /* Switch bodies do not have r-values. */
6019 return NULL;
6020 }
6021
6022 ir_rvalue *
6023 ast_case_statement_list::hir(exec_list *instructions,
6024 struct _mesa_glsl_parse_state *state)
6025 {
6026 exec_list default_case, after_default, tmp;
6027
6028 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6029 case_stmt->hir(&tmp, state);
6030
6031 /* Default case. */
6032 if (state->switch_state.previous_default && default_case.is_empty()) {
6033 default_case.append_list(&tmp);
6034 continue;
6035 }
6036
6037 /* If default case found, append 'after_default' list. */
6038 if (!default_case.is_empty())
6039 after_default.append_list(&tmp);
6040 else
6041 instructions->append_list(&tmp);
6042 }
6043
6044 /* Handle the default case. This is done here because default might not be
6045 * the last case. We need to add checks against following cases first to see
6046 * if default should be chosen or not.
6047 */
6048 if (!default_case.is_empty()) {
6049
6050 ir_rvalue *const true_val = new (state) ir_constant(true);
6051 ir_dereference_variable *deref_run_default_var =
6052 new(state) ir_dereference_variable(state->switch_state.run_default);
6053
6054 /* Choose to run default case initially, following conditional
6055 * assignments might change this.
6056 */
6057 ir_assignment *const init_var =
6058 new(state) ir_assignment(deref_run_default_var, true_val);
6059 instructions->push_tail(init_var);
6060
6061 /* Default case was the last one, no checks required. */
6062 if (after_default.is_empty()) {
6063 instructions->append_list(&default_case);
6064 return NULL;
6065 }
6066
6067 foreach_in_list(ir_instruction, ir, &after_default) {
6068 ir_assignment *assign = ir->as_assignment();
6069
6070 if (!assign)
6071 continue;
6072
6073 /* Clone the check between case label and init expression. */
6074 ir_expression *exp = (ir_expression*) assign->condition;
6075 ir_expression *clone = exp->clone(state, NULL);
6076
6077 ir_dereference_variable *deref_var =
6078 new(state) ir_dereference_variable(state->switch_state.run_default);
6079 ir_rvalue *const false_val = new (state) ir_constant(false);
6080
6081 ir_assignment *const set_false =
6082 new(state) ir_assignment(deref_var, false_val, clone);
6083
6084 instructions->push_tail(set_false);
6085 }
6086
6087 /* Append default case and all cases after it. */
6088 instructions->append_list(&default_case);
6089 instructions->append_list(&after_default);
6090 }
6091
6092 /* Case statements do not have r-values. */
6093 return NULL;
6094 }
6095
6096 ir_rvalue *
6097 ast_case_statement::hir(exec_list *instructions,
6098 struct _mesa_glsl_parse_state *state)
6099 {
6100 labels->hir(instructions, state);
6101
6102 /* Guard case statements depending on fallthru state. */
6103 ir_dereference_variable *const deref_fallthru_guard =
6104 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6105 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6106
6107 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6108 stmt->hir(& test_fallthru->then_instructions, state);
6109
6110 instructions->push_tail(test_fallthru);
6111
6112 /* Case statements do not have r-values. */
6113 return NULL;
6114 }
6115
6116
6117 ir_rvalue *
6118 ast_case_label_list::hir(exec_list *instructions,
6119 struct _mesa_glsl_parse_state *state)
6120 {
6121 foreach_list_typed (ast_case_label, label, link, & this->labels)
6122 label->hir(instructions, state);
6123
6124 /* Case labels do not have r-values. */
6125 return NULL;
6126 }
6127
6128 ir_rvalue *
6129 ast_case_label::hir(exec_list *instructions,
6130 struct _mesa_glsl_parse_state *state)
6131 {
6132 void *ctx = state;
6133
6134 ir_dereference_variable *deref_fallthru_var =
6135 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6136
6137 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6138
6139 /* If not default case, ... */
6140 if (this->test_value != NULL) {
6141 /* Conditionally set fallthru state based on
6142 * comparison of cached test expression value to case label.
6143 */
6144 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6145 ir_constant *label_const = label_rval->constant_expression_value();
6146
6147 if (!label_const) {
6148 YYLTYPE loc = this->test_value->get_location();
6149
6150 _mesa_glsl_error(& loc, state,
6151 "switch statement case label must be a "
6152 "constant expression");
6153
6154 /* Stuff a dummy value in to allow processing to continue. */
6155 label_const = new(ctx) ir_constant(0);
6156 } else {
6157 ast_expression *previous_label = (ast_expression *)
6158 hash_table_find(state->switch_state.labels_ht,
6159 (void *)(uintptr_t)label_const->value.u[0]);
6160
6161 if (previous_label) {
6162 YYLTYPE loc = this->test_value->get_location();
6163 _mesa_glsl_error(& loc, state, "duplicate case value");
6164
6165 loc = previous_label->get_location();
6166 _mesa_glsl_error(& loc, state, "this is the previous case label");
6167 } else {
6168 hash_table_insert(state->switch_state.labels_ht,
6169 this->test_value,
6170 (void *)(uintptr_t)label_const->value.u[0]);
6171 }
6172 }
6173
6174 ir_dereference_variable *deref_test_var =
6175 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6176
6177 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6178 label_const,
6179 deref_test_var);
6180
6181 /*
6182 * From GLSL 4.40 specification section 6.2 ("Selection"):
6183 *
6184 * "The type of the init-expression value in a switch statement must
6185 * be a scalar int or uint. The type of the constant-expression value
6186 * in a case label also must be a scalar int or uint. When any pair
6187 * of these values is tested for "equal value" and the types do not
6188 * match, an implicit conversion will be done to convert the int to a
6189 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6190 * is done."
6191 */
6192 if (label_const->type != state->switch_state.test_var->type) {
6193 YYLTYPE loc = this->test_value->get_location();
6194
6195 const glsl_type *type_a = label_const->type;
6196 const glsl_type *type_b = state->switch_state.test_var->type;
6197
6198 /* Check if int->uint implicit conversion is supported. */
6199 bool integer_conversion_supported =
6200 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6201 state);
6202
6203 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6204 !integer_conversion_supported) {
6205 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6206 "init-expression and case label (%s != %s)",
6207 type_a->name, type_b->name);
6208 } else {
6209 /* Conversion of the case label. */
6210 if (type_a->base_type == GLSL_TYPE_INT) {
6211 if (!apply_implicit_conversion(glsl_type::uint_type,
6212 test_cond->operands[0], state))
6213 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6214 } else {
6215 /* Conversion of the init-expression value. */
6216 if (!apply_implicit_conversion(glsl_type::uint_type,
6217 test_cond->operands[1], state))
6218 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6219 }
6220 }
6221 }
6222
6223 ir_assignment *set_fallthru_on_test =
6224 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6225
6226 instructions->push_tail(set_fallthru_on_test);
6227 } else { /* default case */
6228 if (state->switch_state.previous_default) {
6229 YYLTYPE loc = this->get_location();
6230 _mesa_glsl_error(& loc, state,
6231 "multiple default labels in one switch");
6232
6233 loc = state->switch_state.previous_default->get_location();
6234 _mesa_glsl_error(& loc, state, "this is the first default label");
6235 }
6236 state->switch_state.previous_default = this;
6237
6238 /* Set fallthru condition on 'run_default' bool. */
6239 ir_dereference_variable *deref_run_default =
6240 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6241 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6242 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6243 cond_true,
6244 deref_run_default);
6245
6246 /* Set falltrhu state. */
6247 ir_assignment *set_fallthru =
6248 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6249
6250 instructions->push_tail(set_fallthru);
6251 }
6252
6253 /* Case statements do not have r-values. */
6254 return NULL;
6255 }
6256
6257 void
6258 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6259 struct _mesa_glsl_parse_state *state)
6260 {
6261 void *ctx = state;
6262
6263 if (condition != NULL) {
6264 ir_rvalue *const cond =
6265 condition->hir(instructions, state);
6266
6267 if ((cond == NULL)
6268 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6269 YYLTYPE loc = condition->get_location();
6270
6271 _mesa_glsl_error(& loc, state,
6272 "loop condition must be scalar boolean");
6273 } else {
6274 /* As the first code in the loop body, generate a block that looks
6275 * like 'if (!condition) break;' as the loop termination condition.
6276 */
6277 ir_rvalue *const not_cond =
6278 new(ctx) ir_expression(ir_unop_logic_not, cond);
6279
6280 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6281
6282 ir_jump *const break_stmt =
6283 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6284
6285 if_stmt->then_instructions.push_tail(break_stmt);
6286 instructions->push_tail(if_stmt);
6287 }
6288 }
6289 }
6290
6291
6292 ir_rvalue *
6293 ast_iteration_statement::hir(exec_list *instructions,
6294 struct _mesa_glsl_parse_state *state)
6295 {
6296 void *ctx = state;
6297
6298 /* For-loops and while-loops start a new scope, but do-while loops do not.
6299 */
6300 if (mode != ast_do_while)
6301 state->symbols->push_scope();
6302
6303 if (init_statement != NULL)
6304 init_statement->hir(instructions, state);
6305
6306 ir_loop *const stmt = new(ctx) ir_loop();
6307 instructions->push_tail(stmt);
6308
6309 /* Track the current loop nesting. */
6310 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6311
6312 state->loop_nesting_ast = this;
6313
6314 /* Likewise, indicate that following code is closest to a loop,
6315 * NOT closest to a switch.
6316 */
6317 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6318 state->switch_state.is_switch_innermost = false;
6319
6320 if (mode != ast_do_while)
6321 condition_to_hir(&stmt->body_instructions, state);
6322
6323 if (body != NULL)
6324 body->hir(& stmt->body_instructions, state);
6325
6326 if (rest_expression != NULL)
6327 rest_expression->hir(& stmt->body_instructions, state);
6328
6329 if (mode == ast_do_while)
6330 condition_to_hir(&stmt->body_instructions, state);
6331
6332 if (mode != ast_do_while)
6333 state->symbols->pop_scope();
6334
6335 /* Restore previous nesting before returning. */
6336 state->loop_nesting_ast = nesting_ast;
6337 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6338
6339 /* Loops do not have r-values.
6340 */
6341 return NULL;
6342 }
6343
6344
6345 /**
6346 * Determine if the given type is valid for establishing a default precision
6347 * qualifier.
6348 *
6349 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6350 *
6351 * "The precision statement
6352 *
6353 * precision precision-qualifier type;
6354 *
6355 * can be used to establish a default precision qualifier. The type field
6356 * can be either int or float or any of the sampler types, and the
6357 * precision-qualifier can be lowp, mediump, or highp."
6358 *
6359 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6360 * qualifiers on sampler types, but this seems like an oversight (since the
6361 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6362 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6363 * version.
6364 */
6365 static bool
6366 is_valid_default_precision_type(const struct glsl_type *const type)
6367 {
6368 if (type == NULL)
6369 return false;
6370
6371 switch (type->base_type) {
6372 case GLSL_TYPE_INT:
6373 case GLSL_TYPE_FLOAT:
6374 /* "int" and "float" are valid, but vectors and matrices are not. */
6375 return type->vector_elements == 1 && type->matrix_columns == 1;
6376 case GLSL_TYPE_SAMPLER:
6377 case GLSL_TYPE_IMAGE:
6378 case GLSL_TYPE_ATOMIC_UINT:
6379 return true;
6380 default:
6381 return false;
6382 }
6383 }
6384
6385
6386 ir_rvalue *
6387 ast_type_specifier::hir(exec_list *instructions,
6388 struct _mesa_glsl_parse_state *state)
6389 {
6390 if (this->default_precision == ast_precision_none && this->structure == NULL)
6391 return NULL;
6392
6393 YYLTYPE loc = this->get_location();
6394
6395 /* If this is a precision statement, check that the type to which it is
6396 * applied is either float or int.
6397 *
6398 * From section 4.5.3 of the GLSL 1.30 spec:
6399 * "The precision statement
6400 * precision precision-qualifier type;
6401 * can be used to establish a default precision qualifier. The type
6402 * field can be either int or float [...]. Any other types or
6403 * qualifiers will result in an error.
6404 */
6405 if (this->default_precision != ast_precision_none) {
6406 if (!state->check_precision_qualifiers_allowed(&loc))
6407 return NULL;
6408
6409 if (this->structure != NULL) {
6410 _mesa_glsl_error(&loc, state,
6411 "precision qualifiers do not apply to structures");
6412 return NULL;
6413 }
6414
6415 if (this->array_specifier != NULL) {
6416 _mesa_glsl_error(&loc, state,
6417 "default precision statements do not apply to "
6418 "arrays");
6419 return NULL;
6420 }
6421
6422 const struct glsl_type *const type =
6423 state->symbols->get_type(this->type_name);
6424 if (!is_valid_default_precision_type(type)) {
6425 _mesa_glsl_error(&loc, state,
6426 "default precision statements apply only to "
6427 "float, int, and opaque types");
6428 return NULL;
6429 }
6430
6431 if (state->es_shader) {
6432 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6433 * spec says:
6434 *
6435 * "Non-precision qualified declarations will use the precision
6436 * qualifier specified in the most recent precision statement
6437 * that is still in scope. The precision statement has the same
6438 * scoping rules as variable declarations. If it is declared
6439 * inside a compound statement, its effect stops at the end of
6440 * the innermost statement it was declared in. Precision
6441 * statements in nested scopes override precision statements in
6442 * outer scopes. Multiple precision statements for the same basic
6443 * type can appear inside the same scope, with later statements
6444 * overriding earlier statements within that scope."
6445 *
6446 * Default precision specifications follow the same scope rules as
6447 * variables. So, we can track the state of the default precision
6448 * qualifiers in the symbol table, and the rules will just work. This
6449 * is a slight abuse of the symbol table, but it has the semantics
6450 * that we want.
6451 */
6452 state->symbols->add_default_precision_qualifier(this->type_name,
6453 this->default_precision);
6454 }
6455
6456 /* FINISHME: Translate precision statements into IR. */
6457 return NULL;
6458 }
6459
6460 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6461 * process_record_constructor() can do type-checking on C-style initializer
6462 * expressions of structs, but ast_struct_specifier should only be translated
6463 * to HIR if it is declaring the type of a structure.
6464 *
6465 * The ->is_declaration field is false for initializers of variables
6466 * declared separately from the struct's type definition.
6467 *
6468 * struct S { ... }; (is_declaration = true)
6469 * struct T { ... } t = { ... }; (is_declaration = true)
6470 * S s = { ... }; (is_declaration = false)
6471 */
6472 if (this->structure != NULL && this->structure->is_declaration)
6473 return this->structure->hir(instructions, state);
6474
6475 return NULL;
6476 }
6477
6478
6479 /**
6480 * Process a structure or interface block tree into an array of structure fields
6481 *
6482 * After parsing, where there are some syntax differnces, structures and
6483 * interface blocks are almost identical. They are similar enough that the
6484 * AST for each can be processed the same way into a set of
6485 * \c glsl_struct_field to describe the members.
6486 *
6487 * If we're processing an interface block, var_mode should be the type of the
6488 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6489 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6490 * ir_var_auto.
6491 *
6492 * \return
6493 * The number of fields processed. A pointer to the array structure fields is
6494 * stored in \c *fields_ret.
6495 */
6496 static unsigned
6497 ast_process_struct_or_iface_block_members(exec_list *instructions,
6498 struct _mesa_glsl_parse_state *state,
6499 exec_list *declarations,
6500 glsl_struct_field **fields_ret,
6501 bool is_interface,
6502 enum glsl_matrix_layout matrix_layout,
6503 bool allow_reserved_names,
6504 ir_variable_mode var_mode,
6505 ast_type_qualifier *layout,
6506 unsigned block_stream,
6507 unsigned block_xfb_buffer,
6508 unsigned block_xfb_offset,
6509 unsigned expl_location,
6510 unsigned expl_align)
6511 {
6512 unsigned decl_count = 0;
6513 unsigned next_offset = 0;
6514
6515 /* Make an initial pass over the list of fields to determine how
6516 * many there are. Each element in this list is an ast_declarator_list.
6517 * This means that we actually need to count the number of elements in the
6518 * 'declarations' list in each of the elements.
6519 */
6520 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6521 decl_count += decl_list->declarations.length();
6522 }
6523
6524 /* Allocate storage for the fields and process the field
6525 * declarations. As the declarations are processed, try to also convert
6526 * the types to HIR. This ensures that structure definitions embedded in
6527 * other structure definitions or in interface blocks are processed.
6528 */
6529 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6530 decl_count);
6531
6532 bool first_member = true;
6533 bool first_member_has_explicit_location = false;
6534
6535 unsigned i = 0;
6536 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6537 const char *type_name;
6538 YYLTYPE loc = decl_list->get_location();
6539
6540 decl_list->type->specifier->hir(instructions, state);
6541
6542 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6543 *
6544 * "Anonymous structures are not supported; so embedded structures
6545 * must have a declarator. A name given to an embedded struct is
6546 * scoped at the same level as the struct it is embedded in."
6547 *
6548 * The same section of the GLSL 1.20 spec says:
6549 *
6550 * "Anonymous structures are not supported. Embedded structures are
6551 * not supported."
6552 *
6553 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6554 * embedded structures in 1.10 only.
6555 */
6556 if (state->language_version != 110 &&
6557 decl_list->type->specifier->structure != NULL)
6558 _mesa_glsl_error(&loc, state,
6559 "embedded structure declarations are not allowed");
6560
6561 const glsl_type *decl_type =
6562 decl_list->type->glsl_type(& type_name, state);
6563
6564 const struct ast_type_qualifier *const qual =
6565 &decl_list->type->qualifier;
6566
6567 /* From section 4.3.9 of the GLSL 4.40 spec:
6568 *
6569 * "[In interface blocks] opaque types are not allowed."
6570 *
6571 * It should be impossible for decl_type to be NULL here. Cases that
6572 * might naturally lead to decl_type being NULL, especially for the
6573 * is_interface case, will have resulted in compilation having
6574 * already halted due to a syntax error.
6575 */
6576 assert(decl_type);
6577
6578 if (is_interface) {
6579 if (decl_type->contains_opaque()) {
6580 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6581 "interface block contains opaque variable");
6582 }
6583 } else {
6584 if (decl_type->contains_atomic()) {
6585 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6586 *
6587 * "Members of structures cannot be declared as atomic counter
6588 * types."
6589 */
6590 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6591 }
6592
6593 if (decl_type->contains_image()) {
6594 /* FINISHME: Same problem as with atomic counters.
6595 * FINISHME: Request clarification from Khronos and add
6596 * FINISHME: spec quotation here.
6597 */
6598 _mesa_glsl_error(&loc, state, "image in structure");
6599 }
6600 }
6601
6602 if (qual->flags.q.explicit_binding) {
6603 _mesa_glsl_error(&loc, state,
6604 "binding layout qualifier cannot be applied "
6605 "to struct or interface block members");
6606 }
6607
6608 if (is_interface) {
6609 if (!first_member) {
6610 if (!layout->flags.q.explicit_location &&
6611 ((first_member_has_explicit_location &&
6612 !qual->flags.q.explicit_location) ||
6613 (!first_member_has_explicit_location &&
6614 qual->flags.q.explicit_location))) {
6615 _mesa_glsl_error(&loc, state,
6616 "when block-level location layout qualifier "
6617 "is not supplied either all members must "
6618 "have a location layout qualifier or all "
6619 "members must not have a location layout "
6620 "qualifier");
6621 }
6622 } else {
6623 first_member = false;
6624 first_member_has_explicit_location =
6625 qual->flags.q.explicit_location;
6626 }
6627 }
6628
6629 if (qual->flags.q.std140 ||
6630 qual->flags.q.std430 ||
6631 qual->flags.q.packed ||
6632 qual->flags.q.shared) {
6633 _mesa_glsl_error(&loc, state,
6634 "uniform/shader storage block layout qualifiers "
6635 "std140, std430, packed, and shared can only be "
6636 "applied to uniform/shader storage blocks, not "
6637 "members");
6638 }
6639
6640 if (qual->flags.q.constant) {
6641 _mesa_glsl_error(&loc, state,
6642 "const storage qualifier cannot be applied "
6643 "to struct or interface block members");
6644 }
6645
6646 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6647 *
6648 * "A block member may be declared with a stream identifier, but
6649 * the specified stream must match the stream associated with the
6650 * containing block."
6651 */
6652 if (qual->flags.q.explicit_stream) {
6653 unsigned qual_stream;
6654 if (process_qualifier_constant(state, &loc, "stream",
6655 qual->stream, &qual_stream) &&
6656 qual_stream != block_stream) {
6657 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6658 "interface block member does not match "
6659 "the interface block (%u vs %u)", qual_stream,
6660 block_stream);
6661 }
6662 }
6663
6664 int xfb_buffer;
6665 unsigned explicit_xfb_buffer = 0;
6666 if (qual->flags.q.explicit_xfb_buffer) {
6667 unsigned qual_xfb_buffer;
6668 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6669 qual->xfb_buffer, &qual_xfb_buffer)) {
6670 explicit_xfb_buffer = 1;
6671 if (qual_xfb_buffer != block_xfb_buffer)
6672 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6673 "interface block member does not match "
6674 "the interface block (%u vs %u)",
6675 qual_xfb_buffer, block_xfb_buffer);
6676 }
6677 xfb_buffer = (int) qual_xfb_buffer;
6678 } else {
6679 if (layout)
6680 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6681 xfb_buffer = (int) block_xfb_buffer;
6682 }
6683
6684 int xfb_stride = -1;
6685 if (qual->flags.q.explicit_xfb_stride) {
6686 unsigned qual_xfb_stride;
6687 if (process_qualifier_constant(state, &loc, "xfb_stride",
6688 qual->xfb_stride, &qual_xfb_stride)) {
6689 xfb_stride = (int) qual_xfb_stride;
6690 }
6691 }
6692
6693 if (qual->flags.q.uniform && qual->has_interpolation()) {
6694 _mesa_glsl_error(&loc, state,
6695 "interpolation qualifiers cannot be used "
6696 "with uniform interface blocks");
6697 }
6698
6699 if ((qual->flags.q.uniform || !is_interface) &&
6700 qual->has_auxiliary_storage()) {
6701 _mesa_glsl_error(&loc, state,
6702 "auxiliary storage qualifiers cannot be used "
6703 "in uniform blocks or structures.");
6704 }
6705
6706 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6707 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6708 _mesa_glsl_error(&loc, state,
6709 "row_major and column_major can only be "
6710 "applied to interface blocks");
6711 } else
6712 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6713 }
6714
6715 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6716 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6717 "readonly and writeonly.");
6718 }
6719
6720 foreach_list_typed (ast_declaration, decl, link,
6721 &decl_list->declarations) {
6722 YYLTYPE loc = decl->get_location();
6723
6724 if (!allow_reserved_names)
6725 validate_identifier(decl->identifier, loc, state);
6726
6727 const struct glsl_type *field_type =
6728 process_array_type(&loc, decl_type, decl->array_specifier, state);
6729 validate_array_dimensions(field_type, state, &loc);
6730 fields[i].type = field_type;
6731 fields[i].name = decl->identifier;
6732 fields[i].interpolation =
6733 interpret_interpolation_qualifier(qual, field_type,
6734 var_mode, state, &loc);
6735 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6736 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6737 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6738 fields[i].precision = qual->precision;
6739 fields[i].offset = -1;
6740 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6741 fields[i].xfb_buffer = xfb_buffer;
6742 fields[i].xfb_stride = xfb_stride;
6743
6744 if (qual->flags.q.explicit_location) {
6745 unsigned qual_location;
6746 if (process_qualifier_constant(state, &loc, "location",
6747 qual->location, &qual_location)) {
6748 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6749 expl_location = fields[i].location +
6750 fields[i].type->count_attribute_slots(false);
6751 }
6752 } else {
6753 if (layout && layout->flags.q.explicit_location) {
6754 fields[i].location = expl_location;
6755 expl_location += fields[i].type->count_attribute_slots(false);
6756 } else {
6757 fields[i].location = -1;
6758 }
6759 }
6760
6761 /* Offset can only be used with std430 and std140 layouts an initial
6762 * value of 0 is used for error detection.
6763 */
6764 unsigned align = 0;
6765 unsigned size = 0;
6766 if (layout) {
6767 bool row_major;
6768 if (qual->flags.q.row_major ||
6769 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6770 row_major = true;
6771 } else {
6772 row_major = false;
6773 }
6774
6775 if(layout->flags.q.std140) {
6776 align = field_type->std140_base_alignment(row_major);
6777 size = field_type->std140_size(row_major);
6778 } else if (layout->flags.q.std430) {
6779 align = field_type->std430_base_alignment(row_major);
6780 size = field_type->std430_size(row_major);
6781 }
6782 }
6783
6784 if (qual->flags.q.explicit_offset) {
6785 unsigned qual_offset;
6786 if (process_qualifier_constant(state, &loc, "offset",
6787 qual->offset, &qual_offset)) {
6788 if (align != 0 && size != 0) {
6789 if (next_offset > qual_offset)
6790 _mesa_glsl_error(&loc, state, "layout qualifier "
6791 "offset overlaps previous member");
6792
6793 if (qual_offset % align) {
6794 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6795 "must be a multiple of the base "
6796 "alignment of %s", field_type->name);
6797 }
6798 fields[i].offset = qual_offset;
6799 next_offset = glsl_align(qual_offset + size, align);
6800 } else {
6801 _mesa_glsl_error(&loc, state, "offset can only be used "
6802 "with std430 and std140 layouts");
6803 }
6804 }
6805 }
6806
6807 if (qual->flags.q.explicit_align || expl_align != 0) {
6808 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6809 next_offset;
6810 if (align == 0 || size == 0) {
6811 _mesa_glsl_error(&loc, state, "align can only be used with "
6812 "std430 and std140 layouts");
6813 } else if (qual->flags.q.explicit_align) {
6814 unsigned member_align;
6815 if (process_qualifier_constant(state, &loc, "align",
6816 qual->align, &member_align)) {
6817 if (member_align == 0 ||
6818 member_align & (member_align - 1)) {
6819 _mesa_glsl_error(&loc, state, "align layout qualifier "
6820 "in not a power of 2");
6821 } else {
6822 fields[i].offset = glsl_align(offset, member_align);
6823 next_offset = glsl_align(fields[i].offset + size, align);
6824 }
6825 }
6826 } else {
6827 fields[i].offset = glsl_align(offset, expl_align);
6828 next_offset = glsl_align(fields[i].offset + size, align);
6829 }
6830 } else if (!qual->flags.q.explicit_offset) {
6831 if (align != 0 && size != 0)
6832 next_offset = glsl_align(next_offset + size, align);
6833 }
6834
6835 /* From the ARB_enhanced_layouts spec:
6836 *
6837 * "The given offset applies to the first component of the first
6838 * member of the qualified entity. Then, within the qualified
6839 * entity, subsequent components are each assigned, in order, to
6840 * the next available offset aligned to a multiple of that
6841 * component's size. Aggregate types are flattened down to the
6842 * component level to get this sequence of components."
6843 */
6844 if (qual->flags.q.explicit_xfb_offset) {
6845 unsigned xfb_offset;
6846 if (process_qualifier_constant(state, &loc, "xfb_offset",
6847 qual->offset, &xfb_offset)) {
6848 fields[i].offset = xfb_offset;
6849 block_xfb_offset = fields[i].offset +
6850 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6851 }
6852 } else {
6853 if (layout && layout->flags.q.explicit_xfb_offset) {
6854 unsigned align = field_type->is_64bit() ? 8 : 4;
6855 fields[i].offset = glsl_align(block_xfb_offset, align);
6856 block_xfb_offset +=
6857 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6858 }
6859 }
6860
6861 /* Propogate row- / column-major information down the fields of the
6862 * structure or interface block. Structures need this data because
6863 * the structure may contain a structure that contains ... a matrix
6864 * that need the proper layout.
6865 */
6866 if (is_interface && layout &&
6867 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6868 (field_type->without_array()->is_matrix()
6869 || field_type->without_array()->is_record())) {
6870 /* If no layout is specified for the field, inherit the layout
6871 * from the block.
6872 */
6873 fields[i].matrix_layout = matrix_layout;
6874
6875 if (qual->flags.q.row_major)
6876 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6877 else if (qual->flags.q.column_major)
6878 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6879
6880 /* If we're processing an uniform or buffer block, the matrix
6881 * layout must be decided by this point.
6882 */
6883 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6884 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6885 }
6886
6887 /* Image qualifiers are allowed on buffer variables, which can only
6888 * be defined inside shader storage buffer objects
6889 */
6890 if (layout && var_mode == ir_var_shader_storage) {
6891 /* For readonly and writeonly qualifiers the field definition,
6892 * if set, overwrites the layout qualifier.
6893 */
6894 if (qual->flags.q.read_only) {
6895 fields[i].image_read_only = true;
6896 fields[i].image_write_only = false;
6897 } else if (qual->flags.q.write_only) {
6898 fields[i].image_read_only = false;
6899 fields[i].image_write_only = true;
6900 } else {
6901 fields[i].image_read_only = layout->flags.q.read_only;
6902 fields[i].image_write_only = layout->flags.q.write_only;
6903 }
6904
6905 /* For other qualifiers, we set the flag if either the layout
6906 * qualifier or the field qualifier are set
6907 */
6908 fields[i].image_coherent = qual->flags.q.coherent ||
6909 layout->flags.q.coherent;
6910 fields[i].image_volatile = qual->flags.q._volatile ||
6911 layout->flags.q._volatile;
6912 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6913 layout->flags.q.restrict_flag;
6914 }
6915
6916 i++;
6917 }
6918 }
6919
6920 assert(i == decl_count);
6921
6922 *fields_ret = fields;
6923 return decl_count;
6924 }
6925
6926
6927 ir_rvalue *
6928 ast_struct_specifier::hir(exec_list *instructions,
6929 struct _mesa_glsl_parse_state *state)
6930 {
6931 YYLTYPE loc = this->get_location();
6932
6933 unsigned expl_location = 0;
6934 if (layout && layout->flags.q.explicit_location) {
6935 if (!process_qualifier_constant(state, &loc, "location",
6936 layout->location, &expl_location)) {
6937 return NULL;
6938 } else {
6939 expl_location = VARYING_SLOT_VAR0 + expl_location;
6940 }
6941 }
6942
6943 glsl_struct_field *fields;
6944 unsigned decl_count =
6945 ast_process_struct_or_iface_block_members(instructions,
6946 state,
6947 &this->declarations,
6948 &fields,
6949 false,
6950 GLSL_MATRIX_LAYOUT_INHERITED,
6951 false /* allow_reserved_names */,
6952 ir_var_auto,
6953 layout,
6954 0, /* for interface only */
6955 0, /* for interface only */
6956 0, /* for interface only */
6957 expl_location,
6958 0 /* for interface only */);
6959
6960 validate_identifier(this->name, loc, state);
6961
6962 const glsl_type *t =
6963 glsl_type::get_record_instance(fields, decl_count, this->name);
6964
6965 if (!state->symbols->add_type(name, t)) {
6966 const glsl_type *match = state->symbols->get_type(name);
6967 /* allow struct matching for desktop GL - older UE4 does this */
6968 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
6969 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
6970 else
6971 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6972 } else {
6973 const glsl_type **s = reralloc(state, state->user_structures,
6974 const glsl_type *,
6975 state->num_user_structures + 1);
6976 if (s != NULL) {
6977 s[state->num_user_structures] = t;
6978 state->user_structures = s;
6979 state->num_user_structures++;
6980 }
6981 }
6982
6983 /* Structure type definitions do not have r-values.
6984 */
6985 return NULL;
6986 }
6987
6988
6989 /**
6990 * Visitor class which detects whether a given interface block has been used.
6991 */
6992 class interface_block_usage_visitor : public ir_hierarchical_visitor
6993 {
6994 public:
6995 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6996 : mode(mode), block(block), found(false)
6997 {
6998 }
6999
7000 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7001 {
7002 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7003 found = true;
7004 return visit_stop;
7005 }
7006 return visit_continue;
7007 }
7008
7009 bool usage_found() const
7010 {
7011 return this->found;
7012 }
7013
7014 private:
7015 ir_variable_mode mode;
7016 const glsl_type *block;
7017 bool found;
7018 };
7019
7020 static bool
7021 is_unsized_array_last_element(ir_variable *v)
7022 {
7023 const glsl_type *interface_type = v->get_interface_type();
7024 int length = interface_type->length;
7025
7026 assert(v->type->is_unsized_array());
7027
7028 /* Check if it is the last element of the interface */
7029 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7030 return true;
7031 return false;
7032 }
7033
7034 static void
7035 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7036 {
7037 var->data.image_read_only = field.image_read_only;
7038 var->data.image_write_only = field.image_write_only;
7039 var->data.image_coherent = field.image_coherent;
7040 var->data.image_volatile = field.image_volatile;
7041 var->data.image_restrict = field.image_restrict;
7042 }
7043
7044 ir_rvalue *
7045 ast_interface_block::hir(exec_list *instructions,
7046 struct _mesa_glsl_parse_state *state)
7047 {
7048 YYLTYPE loc = this->get_location();
7049
7050 /* Interface blocks must be declared at global scope */
7051 if (state->current_function != NULL) {
7052 _mesa_glsl_error(&loc, state,
7053 "Interface block `%s' must be declared "
7054 "at global scope",
7055 this->block_name);
7056 }
7057
7058 if (!this->layout.flags.q.buffer &&
7059 this->layout.flags.q.std430) {
7060 _mesa_glsl_error(&loc, state,
7061 "std430 storage block layout qualifier is supported "
7062 "only for shader storage blocks");
7063 }
7064
7065 /* The ast_interface_block has a list of ast_declarator_lists. We
7066 * need to turn those into ir_variables with an association
7067 * with this uniform block.
7068 */
7069 enum glsl_interface_packing packing;
7070 if (this->layout.flags.q.shared) {
7071 packing = GLSL_INTERFACE_PACKING_SHARED;
7072 } else if (this->layout.flags.q.packed) {
7073 packing = GLSL_INTERFACE_PACKING_PACKED;
7074 } else if (this->layout.flags.q.std430) {
7075 packing = GLSL_INTERFACE_PACKING_STD430;
7076 } else {
7077 /* The default layout is std140.
7078 */
7079 packing = GLSL_INTERFACE_PACKING_STD140;
7080 }
7081
7082 ir_variable_mode var_mode;
7083 const char *iface_type_name;
7084 if (this->layout.flags.q.in) {
7085 var_mode = ir_var_shader_in;
7086 iface_type_name = "in";
7087 } else if (this->layout.flags.q.out) {
7088 var_mode = ir_var_shader_out;
7089 iface_type_name = "out";
7090 } else if (this->layout.flags.q.uniform) {
7091 var_mode = ir_var_uniform;
7092 iface_type_name = "uniform";
7093 } else if (this->layout.flags.q.buffer) {
7094 var_mode = ir_var_shader_storage;
7095 iface_type_name = "buffer";
7096 } else {
7097 var_mode = ir_var_auto;
7098 iface_type_name = "UNKNOWN";
7099 assert(!"interface block layout qualifier not found!");
7100 }
7101
7102 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7103 if (this->layout.flags.q.row_major)
7104 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7105 else if (this->layout.flags.q.column_major)
7106 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7107
7108 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7109 exec_list declared_variables;
7110 glsl_struct_field *fields;
7111
7112 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7113 * that we don't have incompatible qualifiers
7114 */
7115 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7116 _mesa_glsl_error(&loc, state,
7117 "Interface block sets both readonly and writeonly");
7118 }
7119
7120 if (this->layout.flags.q.explicit_component) {
7121 _mesa_glsl_error(&loc, state, "component layout qualifier cannot be "
7122 "applied to a matrix, a structure, a block, or an "
7123 "array containing any of these.");
7124 }
7125
7126 unsigned qual_stream;
7127 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7128 &qual_stream) ||
7129 !validate_stream_qualifier(&loc, state, qual_stream)) {
7130 /* If the stream qualifier is invalid it doesn't make sense to continue
7131 * on and try to compare stream layouts on member variables against it
7132 * so just return early.
7133 */
7134 return NULL;
7135 }
7136
7137 unsigned qual_xfb_buffer;
7138 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7139 layout.xfb_buffer, &qual_xfb_buffer) ||
7140 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7141 return NULL;
7142 }
7143
7144 unsigned qual_xfb_offset;
7145 if (layout.flags.q.explicit_xfb_offset) {
7146 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7147 layout.offset, &qual_xfb_offset)) {
7148 return NULL;
7149 }
7150 }
7151
7152 unsigned qual_xfb_stride;
7153 if (layout.flags.q.explicit_xfb_stride) {
7154 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7155 layout.xfb_stride, &qual_xfb_stride)) {
7156 return NULL;
7157 }
7158 }
7159
7160 unsigned expl_location = 0;
7161 if (layout.flags.q.explicit_location) {
7162 if (!process_qualifier_constant(state, &loc, "location",
7163 layout.location, &expl_location)) {
7164 return NULL;
7165 } else {
7166 expl_location = VARYING_SLOT_VAR0 + expl_location;
7167 }
7168 }
7169
7170 unsigned expl_align = 0;
7171 if (layout.flags.q.explicit_align) {
7172 if (!process_qualifier_constant(state, &loc, "align",
7173 layout.align, &expl_align)) {
7174 return NULL;
7175 } else {
7176 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7177 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7178 "power of 2.");
7179 return NULL;
7180 }
7181 }
7182 }
7183
7184 unsigned int num_variables =
7185 ast_process_struct_or_iface_block_members(&declared_variables,
7186 state,
7187 &this->declarations,
7188 &fields,
7189 true,
7190 matrix_layout,
7191 redeclaring_per_vertex,
7192 var_mode,
7193 &this->layout,
7194 qual_stream,
7195 qual_xfb_buffer,
7196 qual_xfb_offset,
7197 expl_location,
7198 expl_align);
7199
7200 if (!redeclaring_per_vertex) {
7201 validate_identifier(this->block_name, loc, state);
7202
7203 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7204 *
7205 * "Block names have no other use within a shader beyond interface
7206 * matching; it is a compile-time error to use a block name at global
7207 * scope for anything other than as a block name."
7208 */
7209 ir_variable *var = state->symbols->get_variable(this->block_name);
7210 if (var && !var->type->is_interface()) {
7211 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7212 "already used in the scope.",
7213 this->block_name);
7214 }
7215 }
7216
7217 const glsl_type *earlier_per_vertex = NULL;
7218 if (redeclaring_per_vertex) {
7219 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7220 * the named interface block gl_in, we can find it by looking at the
7221 * previous declaration of gl_in. Otherwise we can find it by looking
7222 * at the previous decalartion of any of the built-in outputs,
7223 * e.g. gl_Position.
7224 *
7225 * Also check that the instance name and array-ness of the redeclaration
7226 * are correct.
7227 */
7228 switch (var_mode) {
7229 case ir_var_shader_in:
7230 if (ir_variable *earlier_gl_in =
7231 state->symbols->get_variable("gl_in")) {
7232 earlier_per_vertex = earlier_gl_in->get_interface_type();
7233 } else {
7234 _mesa_glsl_error(&loc, state,
7235 "redeclaration of gl_PerVertex input not allowed "
7236 "in the %s shader",
7237 _mesa_shader_stage_to_string(state->stage));
7238 }
7239 if (this->instance_name == NULL ||
7240 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7241 !this->array_specifier->is_single_dimension()) {
7242 _mesa_glsl_error(&loc, state,
7243 "gl_PerVertex input must be redeclared as "
7244 "gl_in[]");
7245 }
7246 break;
7247 case ir_var_shader_out:
7248 if (ir_variable *earlier_gl_Position =
7249 state->symbols->get_variable("gl_Position")) {
7250 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7251 } else if (ir_variable *earlier_gl_out =
7252 state->symbols->get_variable("gl_out")) {
7253 earlier_per_vertex = earlier_gl_out->get_interface_type();
7254 } else {
7255 _mesa_glsl_error(&loc, state,
7256 "redeclaration of gl_PerVertex output not "
7257 "allowed in the %s shader",
7258 _mesa_shader_stage_to_string(state->stage));
7259 }
7260 if (state->stage == MESA_SHADER_TESS_CTRL) {
7261 if (this->instance_name == NULL ||
7262 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7263 _mesa_glsl_error(&loc, state,
7264 "gl_PerVertex output must be redeclared as "
7265 "gl_out[]");
7266 }
7267 } else {
7268 if (this->instance_name != NULL) {
7269 _mesa_glsl_error(&loc, state,
7270 "gl_PerVertex output may not be redeclared with "
7271 "an instance name");
7272 }
7273 }
7274 break;
7275 default:
7276 _mesa_glsl_error(&loc, state,
7277 "gl_PerVertex must be declared as an input or an "
7278 "output");
7279 break;
7280 }
7281
7282 if (earlier_per_vertex == NULL) {
7283 /* An error has already been reported. Bail out to avoid null
7284 * dereferences later in this function.
7285 */
7286 return NULL;
7287 }
7288
7289 /* Copy locations from the old gl_PerVertex interface block. */
7290 for (unsigned i = 0; i < num_variables; i++) {
7291 int j = earlier_per_vertex->field_index(fields[i].name);
7292 if (j == -1) {
7293 _mesa_glsl_error(&loc, state,
7294 "redeclaration of gl_PerVertex must be a subset "
7295 "of the built-in members of gl_PerVertex");
7296 } else {
7297 fields[i].location =
7298 earlier_per_vertex->fields.structure[j].location;
7299 fields[i].offset =
7300 earlier_per_vertex->fields.structure[j].offset;
7301 fields[i].interpolation =
7302 earlier_per_vertex->fields.structure[j].interpolation;
7303 fields[i].centroid =
7304 earlier_per_vertex->fields.structure[j].centroid;
7305 fields[i].sample =
7306 earlier_per_vertex->fields.structure[j].sample;
7307 fields[i].patch =
7308 earlier_per_vertex->fields.structure[j].patch;
7309 fields[i].precision =
7310 earlier_per_vertex->fields.structure[j].precision;
7311 fields[i].explicit_xfb_buffer =
7312 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7313 fields[i].xfb_buffer =
7314 earlier_per_vertex->fields.structure[j].xfb_buffer;
7315 fields[i].xfb_stride =
7316 earlier_per_vertex->fields.structure[j].xfb_stride;
7317 }
7318 }
7319
7320 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7321 * spec:
7322 *
7323 * If a built-in interface block is redeclared, it must appear in
7324 * the shader before any use of any member included in the built-in
7325 * declaration, or a compilation error will result.
7326 *
7327 * This appears to be a clarification to the behaviour established for
7328 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7329 * regardless of GLSL version.
7330 */
7331 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7332 v.run(instructions);
7333 if (v.usage_found()) {
7334 _mesa_glsl_error(&loc, state,
7335 "redeclaration of a built-in interface block must "
7336 "appear before any use of any member of the "
7337 "interface block");
7338 }
7339 }
7340
7341 const glsl_type *block_type =
7342 glsl_type::get_interface_instance(fields,
7343 num_variables,
7344 packing,
7345 this->block_name);
7346
7347 unsigned component_size = block_type->contains_double() ? 8 : 4;
7348 int xfb_offset =
7349 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7350 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7351 component_size);
7352
7353 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7354 YYLTYPE loc = this->get_location();
7355 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7356 "already taken in the current scope",
7357 this->block_name, iface_type_name);
7358 }
7359
7360 /* Since interface blocks cannot contain statements, it should be
7361 * impossible for the block to generate any instructions.
7362 */
7363 assert(declared_variables.is_empty());
7364
7365 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7366 *
7367 * Geometry shader input variables get the per-vertex values written
7368 * out by vertex shader output variables of the same names. Since a
7369 * geometry shader operates on a set of vertices, each input varying
7370 * variable (or input block, see interface blocks below) needs to be
7371 * declared as an array.
7372 */
7373 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7374 var_mode == ir_var_shader_in) {
7375 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7376 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7377 state->stage == MESA_SHADER_TESS_EVAL) &&
7378 this->array_specifier == NULL &&
7379 var_mode == ir_var_shader_in) {
7380 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7381 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7382 this->array_specifier == NULL &&
7383 var_mode == ir_var_shader_out) {
7384 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7385 }
7386
7387
7388 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7389 * says:
7390 *
7391 * "If an instance name (instance-name) is used, then it puts all the
7392 * members inside a scope within its own name space, accessed with the
7393 * field selector ( . ) operator (analogously to structures)."
7394 */
7395 if (this->instance_name) {
7396 if (redeclaring_per_vertex) {
7397 /* When a built-in in an unnamed interface block is redeclared,
7398 * get_variable_being_redeclared() calls
7399 * check_builtin_array_max_size() to make sure that built-in array
7400 * variables aren't redeclared to illegal sizes. But we're looking
7401 * at a redeclaration of a named built-in interface block. So we
7402 * have to manually call check_builtin_array_max_size() for all parts
7403 * of the interface that are arrays.
7404 */
7405 for (unsigned i = 0; i < num_variables; i++) {
7406 if (fields[i].type->is_array()) {
7407 const unsigned size = fields[i].type->array_size();
7408 check_builtin_array_max_size(fields[i].name, size, loc, state);
7409 }
7410 }
7411 } else {
7412 validate_identifier(this->instance_name, loc, state);
7413 }
7414
7415 ir_variable *var;
7416
7417 if (this->array_specifier != NULL) {
7418 const glsl_type *block_array_type =
7419 process_array_type(&loc, block_type, this->array_specifier, state);
7420
7421 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7422 *
7423 * For uniform blocks declared an array, each individual array
7424 * element corresponds to a separate buffer object backing one
7425 * instance of the block. As the array size indicates the number
7426 * of buffer objects needed, uniform block array declarations
7427 * must specify an array size.
7428 *
7429 * And a few paragraphs later:
7430 *
7431 * Geometry shader input blocks must be declared as arrays and
7432 * follow the array declaration and linking rules for all
7433 * geometry shader inputs. All other input and output block
7434 * arrays must specify an array size.
7435 *
7436 * The same applies to tessellation shaders.
7437 *
7438 * The upshot of this is that the only circumstance where an
7439 * interface array size *doesn't* need to be specified is on a
7440 * geometry shader input, tessellation control shader input,
7441 * tessellation control shader output, and tessellation evaluation
7442 * shader input.
7443 */
7444 if (block_array_type->is_unsized_array()) {
7445 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7446 state->stage == MESA_SHADER_TESS_CTRL ||
7447 state->stage == MESA_SHADER_TESS_EVAL;
7448 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7449
7450 if (this->layout.flags.q.in) {
7451 if (!allow_inputs)
7452 _mesa_glsl_error(&loc, state,
7453 "unsized input block arrays not allowed in "
7454 "%s shader",
7455 _mesa_shader_stage_to_string(state->stage));
7456 } else if (this->layout.flags.q.out) {
7457 if (!allow_outputs)
7458 _mesa_glsl_error(&loc, state,
7459 "unsized output block arrays not allowed in "
7460 "%s shader",
7461 _mesa_shader_stage_to_string(state->stage));
7462 } else {
7463 /* by elimination, this is a uniform block array */
7464 _mesa_glsl_error(&loc, state,
7465 "unsized uniform block arrays not allowed in "
7466 "%s shader",
7467 _mesa_shader_stage_to_string(state->stage));
7468 }
7469 }
7470
7471 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7472 *
7473 * * Arrays of arrays of blocks are not allowed
7474 */
7475 if (state->es_shader && block_array_type->is_array() &&
7476 block_array_type->fields.array->is_array()) {
7477 _mesa_glsl_error(&loc, state,
7478 "arrays of arrays interface blocks are "
7479 "not allowed");
7480 }
7481
7482 var = new(state) ir_variable(block_array_type,
7483 this->instance_name,
7484 var_mode);
7485 } else {
7486 var = new(state) ir_variable(block_type,
7487 this->instance_name,
7488 var_mode);
7489 }
7490
7491 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7492 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7493
7494 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7495 var->data.read_only = true;
7496
7497 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7498 handle_geometry_shader_input_decl(state, loc, var);
7499 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7500 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7501 handle_tess_shader_input_decl(state, loc, var);
7502 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7503 handle_tess_ctrl_shader_output_decl(state, loc, var);
7504
7505 for (unsigned i = 0; i < num_variables; i++) {
7506 if (var->data.mode == ir_var_shader_storage)
7507 apply_memory_qualifiers(var, fields[i]);
7508 }
7509
7510 if (ir_variable *earlier =
7511 state->symbols->get_variable(this->instance_name)) {
7512 if (!redeclaring_per_vertex) {
7513 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7514 this->instance_name);
7515 }
7516 earlier->data.how_declared = ir_var_declared_normally;
7517 earlier->type = var->type;
7518 earlier->reinit_interface_type(block_type);
7519 delete var;
7520 } else {
7521 if (this->layout.flags.q.explicit_binding) {
7522 apply_explicit_binding(state, &loc, var, var->type,
7523 &this->layout);
7524 }
7525
7526 var->data.stream = qual_stream;
7527 if (layout.flags.q.explicit_location) {
7528 var->data.location = expl_location;
7529 var->data.explicit_location = true;
7530 }
7531
7532 state->symbols->add_variable(var);
7533 instructions->push_tail(var);
7534 }
7535 } else {
7536 /* In order to have an array size, the block must also be declared with
7537 * an instance name.
7538 */
7539 assert(this->array_specifier == NULL);
7540
7541 for (unsigned i = 0; i < num_variables; i++) {
7542 ir_variable *var =
7543 new(state) ir_variable(fields[i].type,
7544 ralloc_strdup(state, fields[i].name),
7545 var_mode);
7546 var->data.interpolation = fields[i].interpolation;
7547 var->data.centroid = fields[i].centroid;
7548 var->data.sample = fields[i].sample;
7549 var->data.patch = fields[i].patch;
7550 var->data.stream = qual_stream;
7551 var->data.location = fields[i].location;
7552
7553 if (fields[i].location != -1)
7554 var->data.explicit_location = true;
7555
7556 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7557 var->data.xfb_buffer = fields[i].xfb_buffer;
7558
7559 if (fields[i].offset != -1)
7560 var->data.explicit_xfb_offset = true;
7561 var->data.offset = fields[i].offset;
7562
7563 var->init_interface_type(block_type);
7564
7565 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7566 var->data.read_only = true;
7567
7568 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7569 if (state->es_shader) {
7570 var->data.precision =
7571 select_gles_precision(fields[i].precision, fields[i].type,
7572 state, &loc);
7573 }
7574
7575 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7576 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7577 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7578 } else {
7579 var->data.matrix_layout = fields[i].matrix_layout;
7580 }
7581
7582 if (var->data.mode == ir_var_shader_storage)
7583 apply_memory_qualifiers(var, fields[i]);
7584
7585 /* Examine var name here since var may get deleted in the next call */
7586 bool var_is_gl_id = is_gl_identifier(var->name);
7587
7588 if (redeclaring_per_vertex) {
7589 ir_variable *earlier =
7590 get_variable_being_redeclared(var, loc, state,
7591 true /* allow_all_redeclarations */);
7592 if (!var_is_gl_id || earlier == NULL) {
7593 _mesa_glsl_error(&loc, state,
7594 "redeclaration of gl_PerVertex can only "
7595 "include built-in variables");
7596 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7597 _mesa_glsl_error(&loc, state,
7598 "`%s' has already been redeclared",
7599 earlier->name);
7600 } else {
7601 earlier->data.how_declared = ir_var_declared_in_block;
7602 earlier->reinit_interface_type(block_type);
7603 }
7604 continue;
7605 }
7606
7607 if (state->symbols->get_variable(var->name) != NULL)
7608 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7609
7610 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7611 * The UBO declaration itself doesn't get an ir_variable unless it
7612 * has an instance name. This is ugly.
7613 */
7614 if (this->layout.flags.q.explicit_binding) {
7615 apply_explicit_binding(state, &loc, var,
7616 var->get_interface_type(), &this->layout);
7617 }
7618
7619 if (var->type->is_unsized_array()) {
7620 if (var->is_in_shader_storage_block()) {
7621 if (is_unsized_array_last_element(var)) {
7622 var->data.from_ssbo_unsized_array = true;
7623 }
7624 } else {
7625 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7626 *
7627 * "If an array is declared as the last member of a shader storage
7628 * block and the size is not specified at compile-time, it is
7629 * sized at run-time. In all other cases, arrays are sized only
7630 * at compile-time."
7631 */
7632 if (state->es_shader) {
7633 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7634 "definition: only last member of a shader "
7635 "storage block can be defined as unsized "
7636 "array", fields[i].name);
7637 }
7638 }
7639 }
7640
7641 state->symbols->add_variable(var);
7642 instructions->push_tail(var);
7643 }
7644
7645 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7646 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7647 *
7648 * It is also a compilation error ... to redeclare a built-in
7649 * block and then use a member from that built-in block that was
7650 * not included in the redeclaration.
7651 *
7652 * This appears to be a clarification to the behaviour established
7653 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7654 * behaviour regardless of GLSL version.
7655 *
7656 * To prevent the shader from using a member that was not included in
7657 * the redeclaration, we disable any ir_variables that are still
7658 * associated with the old declaration of gl_PerVertex (since we've
7659 * already updated all of the variables contained in the new
7660 * gl_PerVertex to point to it).
7661 *
7662 * As a side effect this will prevent
7663 * validate_intrastage_interface_blocks() from getting confused and
7664 * thinking there are conflicting definitions of gl_PerVertex in the
7665 * shader.
7666 */
7667 foreach_in_list_safe(ir_instruction, node, instructions) {
7668 ir_variable *const var = node->as_variable();
7669 if (var != NULL &&
7670 var->get_interface_type() == earlier_per_vertex &&
7671 var->data.mode == var_mode) {
7672 if (var->data.how_declared == ir_var_declared_normally) {
7673 _mesa_glsl_error(&loc, state,
7674 "redeclaration of gl_PerVertex cannot "
7675 "follow a redeclaration of `%s'",
7676 var->name);
7677 }
7678 state->symbols->disable_variable(var->name);
7679 var->remove();
7680 }
7681 }
7682 }
7683 }
7684
7685 return NULL;
7686 }
7687
7688
7689 ir_rvalue *
7690 ast_tcs_output_layout::hir(exec_list *instructions,
7691 struct _mesa_glsl_parse_state *state)
7692 {
7693 YYLTYPE loc = this->get_location();
7694
7695 unsigned num_vertices;
7696 if (!state->out_qualifier->vertices->
7697 process_qualifier_constant(state, "vertices", &num_vertices,
7698 false)) {
7699 /* return here to stop cascading incorrect error messages */
7700 return NULL;
7701 }
7702
7703 /* If any shader outputs occurred before this declaration and specified an
7704 * array size, make sure the size they specified is consistent with the
7705 * primitive type.
7706 */
7707 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7708 _mesa_glsl_error(&loc, state,
7709 "this tessellation control shader output layout "
7710 "specifies %u vertices, but a previous output "
7711 "is declared with size %u",
7712 num_vertices, state->tcs_output_size);
7713 return NULL;
7714 }
7715
7716 state->tcs_output_vertices_specified = true;
7717
7718 /* If any shader outputs occurred before this declaration and did not
7719 * specify an array size, their size is determined now.
7720 */
7721 foreach_in_list (ir_instruction, node, instructions) {
7722 ir_variable *var = node->as_variable();
7723 if (var == NULL || var->data.mode != ir_var_shader_out)
7724 continue;
7725
7726 /* Note: Not all tessellation control shader output are arrays. */
7727 if (!var->type->is_unsized_array() || var->data.patch)
7728 continue;
7729
7730 if (var->data.max_array_access >= (int)num_vertices) {
7731 _mesa_glsl_error(&loc, state,
7732 "this tessellation control shader output layout "
7733 "specifies %u vertices, but an access to element "
7734 "%u of output `%s' already exists", num_vertices,
7735 var->data.max_array_access, var->name);
7736 } else {
7737 var->type = glsl_type::get_array_instance(var->type->fields.array,
7738 num_vertices);
7739 }
7740 }
7741
7742 return NULL;
7743 }
7744
7745
7746 ir_rvalue *
7747 ast_gs_input_layout::hir(exec_list *instructions,
7748 struct _mesa_glsl_parse_state *state)
7749 {
7750 YYLTYPE loc = this->get_location();
7751
7752 /* If any geometry input layout declaration preceded this one, make sure it
7753 * was consistent with this one.
7754 */
7755 if (state->gs_input_prim_type_specified &&
7756 state->in_qualifier->prim_type != this->prim_type) {
7757 _mesa_glsl_error(&loc, state,
7758 "geometry shader input layout does not match"
7759 " previous declaration");
7760 return NULL;
7761 }
7762
7763 /* If any shader inputs occurred before this declaration and specified an
7764 * array size, make sure the size they specified is consistent with the
7765 * primitive type.
7766 */
7767 unsigned num_vertices = vertices_per_prim(this->prim_type);
7768 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7769 _mesa_glsl_error(&loc, state,
7770 "this geometry shader input layout implies %u vertices"
7771 " per primitive, but a previous input is declared"
7772 " with size %u", num_vertices, state->gs_input_size);
7773 return NULL;
7774 }
7775
7776 state->gs_input_prim_type_specified = true;
7777
7778 /* If any shader inputs occurred before this declaration and did not
7779 * specify an array size, their size is determined now.
7780 */
7781 foreach_in_list(ir_instruction, node, instructions) {
7782 ir_variable *var = node->as_variable();
7783 if (var == NULL || var->data.mode != ir_var_shader_in)
7784 continue;
7785
7786 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7787 * array; skip it.
7788 */
7789
7790 if (var->type->is_unsized_array()) {
7791 if (var->data.max_array_access >= (int)num_vertices) {
7792 _mesa_glsl_error(&loc, state,
7793 "this geometry shader input layout implies %u"
7794 " vertices, but an access to element %u of input"
7795 " `%s' already exists", num_vertices,
7796 var->data.max_array_access, var->name);
7797 } else {
7798 var->type = glsl_type::get_array_instance(var->type->fields.array,
7799 num_vertices);
7800 }
7801 }
7802 }
7803
7804 return NULL;
7805 }
7806
7807
7808 ir_rvalue *
7809 ast_cs_input_layout::hir(exec_list *instructions,
7810 struct _mesa_glsl_parse_state *state)
7811 {
7812 YYLTYPE loc = this->get_location();
7813
7814 /* From the ARB_compute_shader specification:
7815 *
7816 * If the local size of the shader in any dimension is greater
7817 * than the maximum size supported by the implementation for that
7818 * dimension, a compile-time error results.
7819 *
7820 * It is not clear from the spec how the error should be reported if
7821 * the total size of the work group exceeds
7822 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7823 * report it at compile time as well.
7824 */
7825 GLuint64 total_invocations = 1;
7826 unsigned qual_local_size[3];
7827 for (int i = 0; i < 3; i++) {
7828
7829 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7830 'x' + i);
7831 /* Infer a local_size of 1 for unspecified dimensions */
7832 if (this->local_size[i] == NULL) {
7833 qual_local_size[i] = 1;
7834 } else if (!this->local_size[i]->
7835 process_qualifier_constant(state, local_size_str,
7836 &qual_local_size[i], false)) {
7837 ralloc_free(local_size_str);
7838 return NULL;
7839 }
7840 ralloc_free(local_size_str);
7841
7842 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7843 _mesa_glsl_error(&loc, state,
7844 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7845 " (%d)", 'x' + i,
7846 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7847 break;
7848 }
7849 total_invocations *= qual_local_size[i];
7850 if (total_invocations >
7851 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7852 _mesa_glsl_error(&loc, state,
7853 "product of local_sizes exceeds "
7854 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7855 state->ctx->Const.MaxComputeWorkGroupInvocations);
7856 break;
7857 }
7858 }
7859
7860 /* If any compute input layout declaration preceded this one, make sure it
7861 * was consistent with this one.
7862 */
7863 if (state->cs_input_local_size_specified) {
7864 for (int i = 0; i < 3; i++) {
7865 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7866 _mesa_glsl_error(&loc, state,
7867 "compute shader input layout does not match"
7868 " previous declaration");
7869 return NULL;
7870 }
7871 }
7872 }
7873
7874 state->cs_input_local_size_specified = true;
7875 for (int i = 0; i < 3; i++)
7876 state->cs_input_local_size[i] = qual_local_size[i];
7877
7878 /* We may now declare the built-in constant gl_WorkGroupSize (see
7879 * builtin_variable_generator::generate_constants() for why we didn't
7880 * declare it earlier).
7881 */
7882 ir_variable *var = new(state->symbols)
7883 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7884 var->data.how_declared = ir_var_declared_implicitly;
7885 var->data.read_only = true;
7886 instructions->push_tail(var);
7887 state->symbols->add_variable(var);
7888 ir_constant_data data;
7889 memset(&data, 0, sizeof(data));
7890 for (int i = 0; i < 3; i++)
7891 data.u[i] = qual_local_size[i];
7892 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7893 var->constant_initializer =
7894 new(var) ir_constant(glsl_type::uvec3_type, &data);
7895 var->data.has_initializer = true;
7896
7897 return NULL;
7898 }
7899
7900
7901 static void
7902 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7903 exec_list *instructions)
7904 {
7905 bool gl_FragColor_assigned = false;
7906 bool gl_FragData_assigned = false;
7907 bool gl_FragSecondaryColor_assigned = false;
7908 bool gl_FragSecondaryData_assigned = false;
7909 bool user_defined_fs_output_assigned = false;
7910 ir_variable *user_defined_fs_output = NULL;
7911
7912 /* It would be nice to have proper location information. */
7913 YYLTYPE loc;
7914 memset(&loc, 0, sizeof(loc));
7915
7916 foreach_in_list(ir_instruction, node, instructions) {
7917 ir_variable *var = node->as_variable();
7918
7919 if (!var || !var->data.assigned)
7920 continue;
7921
7922 if (strcmp(var->name, "gl_FragColor") == 0)
7923 gl_FragColor_assigned = true;
7924 else if (strcmp(var->name, "gl_FragData") == 0)
7925 gl_FragData_assigned = true;
7926 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7927 gl_FragSecondaryColor_assigned = true;
7928 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7929 gl_FragSecondaryData_assigned = true;
7930 else if (!is_gl_identifier(var->name)) {
7931 if (state->stage == MESA_SHADER_FRAGMENT &&
7932 var->data.mode == ir_var_shader_out) {
7933 user_defined_fs_output_assigned = true;
7934 user_defined_fs_output = var;
7935 }
7936 }
7937 }
7938
7939 /* From the GLSL 1.30 spec:
7940 *
7941 * "If a shader statically assigns a value to gl_FragColor, it
7942 * may not assign a value to any element of gl_FragData. If a
7943 * shader statically writes a value to any element of
7944 * gl_FragData, it may not assign a value to
7945 * gl_FragColor. That is, a shader may assign values to either
7946 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7947 * linked together must also consistently write just one of
7948 * these variables. Similarly, if user declared output
7949 * variables are in use (statically assigned to), then the
7950 * built-in variables gl_FragColor and gl_FragData may not be
7951 * assigned to. These incorrect usages all generate compile
7952 * time errors."
7953 */
7954 if (gl_FragColor_assigned && gl_FragData_assigned) {
7955 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7956 "`gl_FragColor' and `gl_FragData'");
7957 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7958 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7959 "`gl_FragColor' and `%s'",
7960 user_defined_fs_output->name);
7961 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7962 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7963 "`gl_FragSecondaryColorEXT' and"
7964 " `gl_FragSecondaryDataEXT'");
7965 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7966 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7967 "`gl_FragColor' and"
7968 " `gl_FragSecondaryDataEXT'");
7969 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7970 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7971 "`gl_FragData' and"
7972 " `gl_FragSecondaryColorEXT'");
7973 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7974 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7975 "`gl_FragData' and `%s'",
7976 user_defined_fs_output->name);
7977 }
7978
7979 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7980 !state->EXT_blend_func_extended_enable) {
7981 _mesa_glsl_error(&loc, state,
7982 "Dual source blending requires EXT_blend_func_extended");
7983 }
7984 }
7985
7986
7987 static void
7988 remove_per_vertex_blocks(exec_list *instructions,
7989 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7990 {
7991 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7992 * if it exists in this shader type.
7993 */
7994 const glsl_type *per_vertex = NULL;
7995 switch (mode) {
7996 case ir_var_shader_in:
7997 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7998 per_vertex = gl_in->get_interface_type();
7999 break;
8000 case ir_var_shader_out:
8001 if (ir_variable *gl_Position =
8002 state->symbols->get_variable("gl_Position")) {
8003 per_vertex = gl_Position->get_interface_type();
8004 }
8005 break;
8006 default:
8007 assert(!"Unexpected mode");
8008 break;
8009 }
8010
8011 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8012 * need to do anything.
8013 */
8014 if (per_vertex == NULL)
8015 return;
8016
8017 /* If the interface block is used by the shader, then we don't need to do
8018 * anything.
8019 */
8020 interface_block_usage_visitor v(mode, per_vertex);
8021 v.run(instructions);
8022 if (v.usage_found())
8023 return;
8024
8025 /* Remove any ir_variable declarations that refer to the interface block
8026 * we're removing.
8027 */
8028 foreach_in_list_safe(ir_instruction, node, instructions) {
8029 ir_variable *const var = node->as_variable();
8030 if (var != NULL && var->get_interface_type() == per_vertex &&
8031 var->data.mode == mode) {
8032 state->symbols->disable_variable(var->name);
8033 var->remove();
8034 }
8035 }
8036 }