glsl: Hard-code noise to zero in builtin_functions.cpp
[mesa.git] / src / compiler / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "ir.h"
25 #include "util/half_float.h"
26 #include "compiler/glsl_types.h"
27 #include "glsl_parser_extras.h"
28
29
30 ir_rvalue::ir_rvalue(enum ir_node_type t)
31 : ir_instruction(t)
32 {
33 this->type = glsl_type::error_type;
34 }
35
36 bool ir_rvalue::is_zero() const
37 {
38 return false;
39 }
40
41 bool ir_rvalue::is_one() const
42 {
43 return false;
44 }
45
46 bool ir_rvalue::is_negative_one() const
47 {
48 return false;
49 }
50
51 /**
52 * Modify the swizzle make to move one component to another
53 *
54 * \param m IR swizzle to be modified
55 * \param from Component in the RHS that is to be swizzled
56 * \param to Desired swizzle location of \c from
57 */
58 static void
59 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
60 {
61 switch (to) {
62 case 0: m.x = from; break;
63 case 1: m.y = from; break;
64 case 2: m.z = from; break;
65 case 3: m.w = from; break;
66 default: assert(!"Should not get here.");
67 }
68 }
69
70 void
71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73 void *mem_ctx = this;
74 bool swizzled = false;
75
76 while (lhs != NULL) {
77 ir_swizzle *swiz = lhs->as_swizzle();
78
79 if (swiz == NULL)
80 break;
81
82 unsigned write_mask = 0;
83 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84
85 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 unsigned c = 0;
87
88 switch (i) {
89 case 0: c = swiz->mask.x; break;
90 case 1: c = swiz->mask.y; break;
91 case 2: c = swiz->mask.z; break;
92 case 3: c = swiz->mask.w; break;
93 default: assert(!"Should not get here.");
94 }
95
96 write_mask |= (((this->write_mask >> i) & 1) << c);
97 update_rhs_swizzle(rhs_swiz, i, c);
98 rhs_swiz.num_components = swiz->val->type->vector_elements;
99 }
100
101 this->write_mask = write_mask;
102 lhs = swiz->val;
103
104 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
105 swizzled = true;
106 }
107
108 if (swizzled) {
109 /* Now, RHS channels line up with the LHS writemask. Collapse it
110 * to just the channels that will be written.
111 */
112 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
113 int rhs_chan = 0;
114 for (int i = 0; i < 4; i++) {
115 if (write_mask & (1 << i))
116 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
117 }
118 rhs_swiz.num_components = rhs_chan;
119 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
120 }
121
122 assert((lhs == NULL) || lhs->as_dereference());
123
124 this->lhs = (ir_dereference *) lhs;
125 }
126
127 ir_variable *
128 ir_assignment::whole_variable_written()
129 {
130 ir_variable *v = this->lhs->whole_variable_referenced();
131
132 if (v == NULL)
133 return NULL;
134
135 if (v->type->is_scalar())
136 return v;
137
138 if (v->type->is_vector()) {
139 const unsigned mask = (1U << v->type->vector_elements) - 1;
140
141 if (mask != this->write_mask)
142 return NULL;
143 }
144
145 /* Either all the vector components are assigned or the variable is some
146 * composite type (and the whole thing is assigned.
147 */
148 return v;
149 }
150
151 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
152 ir_rvalue *condition, unsigned write_mask)
153 : ir_instruction(ir_type_assignment)
154 {
155 this->condition = condition;
156 this->rhs = rhs;
157 this->lhs = lhs;
158 this->write_mask = write_mask;
159
160 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
161 int lhs_components = 0;
162 for (int i = 0; i < 4; i++) {
163 if (write_mask & (1 << i))
164 lhs_components++;
165 }
166
167 assert(lhs_components == this->rhs->type->vector_elements);
168 }
169 }
170
171 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
172 ir_rvalue *condition)
173 : ir_instruction(ir_type_assignment)
174 {
175 this->condition = condition;
176 this->rhs = rhs;
177
178 /* If the RHS is a vector type, assume that all components of the vector
179 * type are being written to the LHS. The write mask comes from the RHS
180 * because we can have a case where the LHS is a vec4 and the RHS is a
181 * vec3. In that case, the assignment is:
182 *
183 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
184 */
185 if (rhs->type->is_vector())
186 this->write_mask = (1U << rhs->type->vector_elements) - 1;
187 else if (rhs->type->is_scalar())
188 this->write_mask = 1;
189 else
190 this->write_mask = 0;
191
192 this->set_lhs(lhs);
193 }
194
195 ir_expression::ir_expression(int op, const struct glsl_type *type,
196 ir_rvalue *op0, ir_rvalue *op1,
197 ir_rvalue *op2, ir_rvalue *op3)
198 : ir_rvalue(ir_type_expression)
199 {
200 this->type = type;
201 this->operation = ir_expression_operation(op);
202 this->operands[0] = op0;
203 this->operands[1] = op1;
204 this->operands[2] = op2;
205 this->operands[3] = op3;
206 init_num_operands();
207
208 #ifndef NDEBUG
209 for (unsigned i = num_operands; i < 4; i++) {
210 assert(this->operands[i] == NULL);
211 }
212
213 for (unsigned i = 0; i < num_operands; i++) {
214 assert(this->operands[i] != NULL);
215 }
216 #endif
217 }
218
219 ir_expression::ir_expression(int op, ir_rvalue *op0)
220 : ir_rvalue(ir_type_expression)
221 {
222 this->operation = ir_expression_operation(op);
223 this->operands[0] = op0;
224 this->operands[1] = NULL;
225 this->operands[2] = NULL;
226 this->operands[3] = NULL;
227
228 assert(op <= ir_last_unop);
229 init_num_operands();
230 assert(num_operands == 1);
231 assert(this->operands[0]);
232
233 switch (this->operation) {
234 case ir_unop_bit_not:
235 case ir_unop_logic_not:
236 case ir_unop_neg:
237 case ir_unop_abs:
238 case ir_unop_sign:
239 case ir_unop_rcp:
240 case ir_unop_rsq:
241 case ir_unop_sqrt:
242 case ir_unop_exp:
243 case ir_unop_log:
244 case ir_unop_exp2:
245 case ir_unop_log2:
246 case ir_unop_trunc:
247 case ir_unop_ceil:
248 case ir_unop_floor:
249 case ir_unop_fract:
250 case ir_unop_round_even:
251 case ir_unop_sin:
252 case ir_unop_cos:
253 case ir_unop_dFdx:
254 case ir_unop_dFdx_coarse:
255 case ir_unop_dFdx_fine:
256 case ir_unop_dFdy:
257 case ir_unop_dFdy_coarse:
258 case ir_unop_dFdy_fine:
259 case ir_unop_bitfield_reverse:
260 case ir_unop_interpolate_at_centroid:
261 case ir_unop_clz:
262 case ir_unop_saturate:
263 case ir_unop_atan:
264 this->type = op0->type;
265 break;
266
267 case ir_unop_f2i:
268 case ir_unop_b2i:
269 case ir_unop_u2i:
270 case ir_unop_d2i:
271 case ir_unop_bitcast_f2i:
272 case ir_unop_bit_count:
273 case ir_unop_find_msb:
274 case ir_unop_find_lsb:
275 case ir_unop_subroutine_to_int:
276 case ir_unop_i642i:
277 case ir_unop_u642i:
278 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
279 op0->type->vector_elements, 1);
280 break;
281
282 case ir_unop_b2f:
283 case ir_unop_i2f:
284 case ir_unop_u2f:
285 case ir_unop_d2f:
286 case ir_unop_f162f:
287 case ir_unop_bitcast_i2f:
288 case ir_unop_bitcast_u2f:
289 case ir_unop_i642f:
290 case ir_unop_u642f:
291 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
292 op0->type->vector_elements, 1);
293 break;
294
295 case ir_unop_f2f16:
296 case ir_unop_f2fmp:
297 case ir_unop_b2f16:
298 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16,
299 op0->type->vector_elements, 1);
300 break;
301
302 case ir_unop_f2b:
303 case ir_unop_i2b:
304 case ir_unop_d2b:
305 case ir_unop_f162b:
306 case ir_unop_i642b:
307 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
308 op0->type->vector_elements, 1);
309 break;
310
311 case ir_unop_f2d:
312 case ir_unop_i2d:
313 case ir_unop_u2d:
314 case ir_unop_i642d:
315 case ir_unop_u642d:
316 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
317 op0->type->vector_elements, 1);
318 break;
319
320 case ir_unop_i2u:
321 case ir_unop_f2u:
322 case ir_unop_d2u:
323 case ir_unop_bitcast_f2u:
324 case ir_unop_i642u:
325 case ir_unop_u642u:
326 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
327 op0->type->vector_elements, 1);
328 break;
329
330 case ir_unop_i2i64:
331 case ir_unop_u2i64:
332 case ir_unop_b2i64:
333 case ir_unop_f2i64:
334 case ir_unop_d2i64:
335 case ir_unop_u642i64:
336 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
337 op0->type->vector_elements, 1);
338 break;
339
340 case ir_unop_i2u64:
341 case ir_unop_u2u64:
342 case ir_unop_f2u64:
343 case ir_unop_d2u64:
344 case ir_unop_i642u64:
345 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
346 op0->type->vector_elements, 1);
347 break;
348
349 case ir_unop_unpack_double_2x32:
350 case ir_unop_unpack_uint_2x32:
351 this->type = glsl_type::uvec2_type;
352 break;
353
354 case ir_unop_unpack_int_2x32:
355 this->type = glsl_type::ivec2_type;
356 break;
357
358 case ir_unop_pack_snorm_2x16:
359 case ir_unop_pack_snorm_4x8:
360 case ir_unop_pack_unorm_2x16:
361 case ir_unop_pack_unorm_4x8:
362 case ir_unop_pack_half_2x16:
363 this->type = glsl_type::uint_type;
364 break;
365
366 case ir_unop_pack_double_2x32:
367 this->type = glsl_type::double_type;
368 break;
369
370 case ir_unop_pack_int_2x32:
371 this->type = glsl_type::int64_t_type;
372 break;
373
374 case ir_unop_pack_uint_2x32:
375 this->type = glsl_type::uint64_t_type;
376 break;
377
378 case ir_unop_unpack_snorm_2x16:
379 case ir_unop_unpack_unorm_2x16:
380 case ir_unop_unpack_half_2x16:
381 this->type = glsl_type::vec2_type;
382 break;
383
384 case ir_unop_unpack_snorm_4x8:
385 case ir_unop_unpack_unorm_4x8:
386 this->type = glsl_type::vec4_type;
387 break;
388
389 case ir_unop_unpack_sampler_2x32:
390 case ir_unop_unpack_image_2x32:
391 this->type = glsl_type::uvec2_type;
392 break;
393
394 case ir_unop_pack_sampler_2x32:
395 case ir_unop_pack_image_2x32:
396 this->type = op0->type;
397 break;
398
399 case ir_unop_frexp_sig:
400 this->type = op0->type;
401 break;
402 case ir_unop_frexp_exp:
403 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
404 op0->type->vector_elements, 1);
405 break;
406
407 case ir_unop_get_buffer_size:
408 case ir_unop_ssbo_unsized_array_length:
409 this->type = glsl_type::int_type;
410 break;
411
412 case ir_unop_bitcast_i642d:
413 case ir_unop_bitcast_u642d:
414 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
415 op0->type->vector_elements, 1);
416 break;
417
418 case ir_unop_bitcast_d2i64:
419 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
420 op0->type->vector_elements, 1);
421 break;
422 case ir_unop_bitcast_d2u64:
423 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
424 op0->type->vector_elements, 1);
425 break;
426
427 default:
428 assert(!"not reached: missing automatic type setup for ir_expression");
429 this->type = op0->type;
430 break;
431 }
432 }
433
434 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
435 : ir_rvalue(ir_type_expression)
436 {
437 this->operation = ir_expression_operation(op);
438 this->operands[0] = op0;
439 this->operands[1] = op1;
440 this->operands[2] = NULL;
441 this->operands[3] = NULL;
442
443 assert(op > ir_last_unop);
444 init_num_operands();
445 assert(num_operands == 2);
446 for (unsigned i = 0; i < num_operands; i++) {
447 assert(this->operands[i] != NULL);
448 }
449
450 switch (this->operation) {
451 case ir_binop_all_equal:
452 case ir_binop_any_nequal:
453 this->type = glsl_type::bool_type;
454 break;
455
456 case ir_binop_add:
457 case ir_binop_sub:
458 case ir_binop_min:
459 case ir_binop_max:
460 case ir_binop_pow:
461 case ir_binop_mul:
462 case ir_binop_div:
463 case ir_binop_mod:
464 case ir_binop_atan2:
465 if (op0->type->is_scalar()) {
466 this->type = op1->type;
467 } else if (op1->type->is_scalar()) {
468 this->type = op0->type;
469 } else {
470 if (this->operation == ir_binop_mul) {
471 this->type = glsl_type::get_mul_type(op0->type, op1->type);
472 } else {
473 assert(op0->type == op1->type);
474 this->type = op0->type;
475 }
476 }
477 break;
478
479 case ir_binop_logic_and:
480 case ir_binop_logic_xor:
481 case ir_binop_logic_or:
482 case ir_binop_bit_and:
483 case ir_binop_bit_xor:
484 case ir_binop_bit_or:
485 assert(!op0->type->is_matrix());
486 assert(!op1->type->is_matrix());
487 if (op0->type->is_scalar()) {
488 this->type = op1->type;
489 } else if (op1->type->is_scalar()) {
490 this->type = op0->type;
491 } else {
492 assert(op0->type->vector_elements == op1->type->vector_elements);
493 this->type = op0->type;
494 }
495 break;
496
497 case ir_binop_equal:
498 case ir_binop_nequal:
499 case ir_binop_gequal:
500 case ir_binop_less:
501 assert(op0->type == op1->type);
502 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
503 op0->type->vector_elements, 1);
504 break;
505
506 case ir_binop_dot:
507 this->type = op0->type->get_base_type();
508 break;
509
510 case ir_binop_imul_high:
511 case ir_binop_mul_32x16:
512 case ir_binop_carry:
513 case ir_binop_borrow:
514 case ir_binop_lshift:
515 case ir_binop_rshift:
516 case ir_binop_ldexp:
517 case ir_binop_interpolate_at_offset:
518 case ir_binop_interpolate_at_sample:
519 this->type = op0->type;
520 break;
521
522 case ir_binop_add_sat:
523 case ir_binop_sub_sat:
524 case ir_binop_avg:
525 case ir_binop_avg_round:
526 assert(op0->type == op1->type);
527 this->type = op0->type;
528 break;
529
530 case ir_binop_abs_sub: {
531 enum glsl_base_type base;
532
533 assert(op0->type == op1->type);
534
535 switch (op0->type->base_type) {
536 case GLSL_TYPE_UINT:
537 case GLSL_TYPE_INT:
538 base = GLSL_TYPE_UINT;
539 break;
540 case GLSL_TYPE_UINT8:
541 case GLSL_TYPE_INT8:
542 base = GLSL_TYPE_UINT8;
543 break;
544 case GLSL_TYPE_UINT16:
545 case GLSL_TYPE_INT16:
546 base = GLSL_TYPE_UINT16;
547 break;
548 case GLSL_TYPE_UINT64:
549 case GLSL_TYPE_INT64:
550 base = GLSL_TYPE_UINT64;
551 break;
552 default:
553 unreachable(!"Invalid base type.");
554 }
555
556 this->type = glsl_type::get_instance(base, op0->type->vector_elements, 1);
557 break;
558 }
559
560 case ir_binop_vector_extract:
561 this->type = op0->type->get_scalar_type();
562 break;
563
564 default:
565 assert(!"not reached: missing automatic type setup for ir_expression");
566 this->type = glsl_type::float_type;
567 }
568 }
569
570 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
571 ir_rvalue *op2)
572 : ir_rvalue(ir_type_expression)
573 {
574 this->operation = ir_expression_operation(op);
575 this->operands[0] = op0;
576 this->operands[1] = op1;
577 this->operands[2] = op2;
578 this->operands[3] = NULL;
579
580 assert(op > ir_last_binop && op <= ir_last_triop);
581 init_num_operands();
582 assert(num_operands == 3);
583 for (unsigned i = 0; i < num_operands; i++) {
584 assert(this->operands[i] != NULL);
585 }
586
587 switch (this->operation) {
588 case ir_triop_fma:
589 case ir_triop_lrp:
590 case ir_triop_bitfield_extract:
591 case ir_triop_vector_insert:
592 this->type = op0->type;
593 break;
594
595 case ir_triop_csel:
596 this->type = op1->type;
597 break;
598
599 default:
600 assert(!"not reached: missing automatic type setup for ir_expression");
601 this->type = glsl_type::float_type;
602 }
603 }
604
605 /**
606 * This is only here for ir_reader to used for testing purposes. Please use
607 * the precomputed num_operands field if you need the number of operands.
608 */
609 unsigned
610 ir_expression::get_num_operands(ir_expression_operation op)
611 {
612 assert(op <= ir_last_opcode);
613
614 if (op <= ir_last_unop)
615 return 1;
616
617 if (op <= ir_last_binop)
618 return 2;
619
620 if (op <= ir_last_triop)
621 return 3;
622
623 if (op <= ir_last_quadop)
624 return 4;
625
626 unreachable("Could not calculate number of operands");
627 }
628
629 #include "ir_expression_operation_strings.h"
630
631 const char*
632 depth_layout_string(ir_depth_layout layout)
633 {
634 switch(layout) {
635 case ir_depth_layout_none: return "";
636 case ir_depth_layout_any: return "depth_any";
637 case ir_depth_layout_greater: return "depth_greater";
638 case ir_depth_layout_less: return "depth_less";
639 case ir_depth_layout_unchanged: return "depth_unchanged";
640
641 default:
642 assert(0);
643 return "";
644 }
645 }
646
647 ir_expression_operation
648 ir_expression::get_operator(const char *str)
649 {
650 for (int op = 0; op <= int(ir_last_opcode); op++) {
651 if (strcmp(str, ir_expression_operation_strings[op]) == 0)
652 return (ir_expression_operation) op;
653 }
654 return (ir_expression_operation) -1;
655 }
656
657 ir_variable *
658 ir_expression::variable_referenced() const
659 {
660 switch (operation) {
661 case ir_binop_vector_extract:
662 case ir_triop_vector_insert:
663 /* We get these for things like a[0] where a is a vector type. In these
664 * cases we want variable_referenced() to return the actual vector
665 * variable this is wrapping.
666 */
667 return operands[0]->variable_referenced();
668 default:
669 return ir_rvalue::variable_referenced();
670 }
671 }
672
673 ir_constant::ir_constant()
674 : ir_rvalue(ir_type_constant)
675 {
676 this->const_elements = NULL;
677 }
678
679 ir_constant::ir_constant(const struct glsl_type *type,
680 const ir_constant_data *data)
681 : ir_rvalue(ir_type_constant)
682 {
683 this->const_elements = NULL;
684
685 assert((type->base_type >= GLSL_TYPE_UINT)
686 && (type->base_type <= GLSL_TYPE_IMAGE));
687
688 this->type = type;
689 memcpy(& this->value, data, sizeof(this->value));
690 }
691
692 ir_constant::ir_constant(float16_t f16, unsigned vector_elements)
693 : ir_rvalue(ir_type_constant)
694 {
695 assert(vector_elements <= 4);
696 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16, vector_elements, 1);
697 for (unsigned i = 0; i < vector_elements; i++) {
698 this->value.f16[i] = f16.bits;
699 }
700 for (unsigned i = vector_elements; i < 16; i++) {
701 this->value.f[i] = 0;
702 }
703 }
704
705 ir_constant::ir_constant(float f, unsigned vector_elements)
706 : ir_rvalue(ir_type_constant)
707 {
708 assert(vector_elements <= 4);
709 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
710 for (unsigned i = 0; i < vector_elements; i++) {
711 this->value.f[i] = f;
712 }
713 for (unsigned i = vector_elements; i < 16; i++) {
714 this->value.f[i] = 0;
715 }
716 }
717
718 ir_constant::ir_constant(double d, unsigned vector_elements)
719 : ir_rvalue(ir_type_constant)
720 {
721 assert(vector_elements <= 4);
722 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
723 for (unsigned i = 0; i < vector_elements; i++) {
724 this->value.d[i] = d;
725 }
726 for (unsigned i = vector_elements; i < 16; i++) {
727 this->value.d[i] = 0.0;
728 }
729 }
730
731 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
732 : ir_rvalue(ir_type_constant)
733 {
734 assert(vector_elements <= 4);
735 this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
736 for (unsigned i = 0; i < vector_elements; i++) {
737 this->value.u[i] = u;
738 }
739 for (unsigned i = vector_elements; i < 16; i++) {
740 this->value.u[i] = 0;
741 }
742 }
743
744 ir_constant::ir_constant(int integer, unsigned vector_elements)
745 : ir_rvalue(ir_type_constant)
746 {
747 assert(vector_elements <= 4);
748 this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
749 for (unsigned i = 0; i < vector_elements; i++) {
750 this->value.i[i] = integer;
751 }
752 for (unsigned i = vector_elements; i < 16; i++) {
753 this->value.i[i] = 0;
754 }
755 }
756
757 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
758 : ir_rvalue(ir_type_constant)
759 {
760 assert(vector_elements <= 4);
761 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
762 for (unsigned i = 0; i < vector_elements; i++) {
763 this->value.u64[i] = u64;
764 }
765 for (unsigned i = vector_elements; i < 16; i++) {
766 this->value.u64[i] = 0;
767 }
768 }
769
770 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
771 : ir_rvalue(ir_type_constant)
772 {
773 assert(vector_elements <= 4);
774 this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
775 for (unsigned i = 0; i < vector_elements; i++) {
776 this->value.i64[i] = int64;
777 }
778 for (unsigned i = vector_elements; i < 16; i++) {
779 this->value.i64[i] = 0;
780 }
781 }
782
783 ir_constant::ir_constant(bool b, unsigned vector_elements)
784 : ir_rvalue(ir_type_constant)
785 {
786 assert(vector_elements <= 4);
787 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
788 for (unsigned i = 0; i < vector_elements; i++) {
789 this->value.b[i] = b;
790 }
791 for (unsigned i = vector_elements; i < 16; i++) {
792 this->value.b[i] = false;
793 }
794 }
795
796 ir_constant::ir_constant(const ir_constant *c, unsigned i)
797 : ir_rvalue(ir_type_constant)
798 {
799 this->const_elements = NULL;
800 this->type = c->type->get_base_type();
801
802 switch (this->type->base_type) {
803 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
804 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
805 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
806 case GLSL_TYPE_FLOAT16: this->value.f16[0] = c->value.f16[i]; break;
807 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
808 case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
809 default: assert(!"Should not get here."); break;
810 }
811 }
812
813 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
814 : ir_rvalue(ir_type_constant)
815 {
816 this->const_elements = NULL;
817 this->type = type;
818
819 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
820 || type->is_struct() || type->is_array());
821
822 /* If the constant is a record, the types of each of the entries in
823 * value_list must be a 1-for-1 match with the structure components. Each
824 * entry must also be a constant. Just move the nodes from the value_list
825 * to the list in the ir_constant.
826 */
827 if (type->is_array() || type->is_struct()) {
828 this->const_elements = ralloc_array(this, ir_constant *, type->length);
829 unsigned i = 0;
830 foreach_in_list(ir_constant, value, value_list) {
831 assert(value->as_constant() != NULL);
832
833 this->const_elements[i++] = value;
834 }
835 return;
836 }
837
838 for (unsigned i = 0; i < 16; i++) {
839 this->value.u[i] = 0;
840 }
841
842 ir_constant *value = (ir_constant *) (value_list->get_head_raw());
843
844 /* Constructors with exactly one scalar argument are special for vectors
845 * and matrices. For vectors, the scalar value is replicated to fill all
846 * the components. For matrices, the scalar fills the components of the
847 * diagonal while the rest is filled with 0.
848 */
849 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
850 if (type->is_matrix()) {
851 /* Matrix - fill diagonal (rest is already set to 0) */
852 for (unsigned i = 0; i < type->matrix_columns; i++) {
853 switch (type->base_type) {
854 case GLSL_TYPE_FLOAT:
855 this->value.f[i * type->vector_elements + i] =
856 value->value.f[0];
857 break;
858 case GLSL_TYPE_DOUBLE:
859 this->value.d[i * type->vector_elements + i] =
860 value->value.d[0];
861 break;
862 case GLSL_TYPE_FLOAT16:
863 this->value.f16[i * type->vector_elements + i] =
864 value->value.f16[0];
865 break;
866 default:
867 assert(!"unexpected matrix base type");
868 }
869 }
870 } else {
871 /* Vector or scalar - fill all components */
872 switch (type->base_type) {
873 case GLSL_TYPE_UINT:
874 case GLSL_TYPE_INT:
875 for (unsigned i = 0; i < type->components(); i++)
876 this->value.u[i] = value->value.u[0];
877 break;
878 case GLSL_TYPE_FLOAT:
879 for (unsigned i = 0; i < type->components(); i++)
880 this->value.f[i] = value->value.f[0];
881 break;
882 case GLSL_TYPE_FLOAT16:
883 for (unsigned i = 0; i < type->components(); i++)
884 this->value.f16[i] = value->value.f16[0];
885 break;
886 case GLSL_TYPE_DOUBLE:
887 for (unsigned i = 0; i < type->components(); i++)
888 this->value.d[i] = value->value.d[0];
889 break;
890 case GLSL_TYPE_UINT64:
891 case GLSL_TYPE_INT64:
892 for (unsigned i = 0; i < type->components(); i++)
893 this->value.u64[i] = value->value.u64[0];
894 break;
895 case GLSL_TYPE_BOOL:
896 for (unsigned i = 0; i < type->components(); i++)
897 this->value.b[i] = value->value.b[0];
898 break;
899 case GLSL_TYPE_SAMPLER:
900 case GLSL_TYPE_IMAGE:
901 this->value.u64[0] = value->value.u64[0];
902 break;
903 default:
904 assert(!"Should not get here.");
905 break;
906 }
907 }
908 return;
909 }
910
911 if (type->is_matrix() && value->type->is_matrix()) {
912 assert(value->next->is_tail_sentinel());
913
914 /* From section 5.4.2 of the GLSL 1.20 spec:
915 * "If a matrix is constructed from a matrix, then each component
916 * (column i, row j) in the result that has a corresponding component
917 * (column i, row j) in the argument will be initialized from there."
918 */
919 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
920 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
921 for (unsigned i = 0; i < cols; i++) {
922 for (unsigned j = 0; j < rows; j++) {
923 const unsigned src = i * value->type->vector_elements + j;
924 const unsigned dst = i * type->vector_elements + j;
925 this->value.f[dst] = value->value.f[src];
926 }
927 }
928
929 /* "All other components will be initialized to the identity matrix." */
930 for (unsigned i = cols; i < type->matrix_columns; i++)
931 this->value.f[i * type->vector_elements + i] = 1.0;
932
933 return;
934 }
935
936 /* Use each component from each entry in the value_list to initialize one
937 * component of the constant being constructed.
938 */
939 unsigned i = 0;
940 for (;;) {
941 assert(value->as_constant() != NULL);
942 assert(!value->is_tail_sentinel());
943
944 for (unsigned j = 0; j < value->type->components(); j++) {
945 switch (type->base_type) {
946 case GLSL_TYPE_UINT:
947 this->value.u[i] = value->get_uint_component(j);
948 break;
949 case GLSL_TYPE_INT:
950 this->value.i[i] = value->get_int_component(j);
951 break;
952 case GLSL_TYPE_FLOAT:
953 this->value.f[i] = value->get_float_component(j);
954 break;
955 case GLSL_TYPE_FLOAT16:
956 this->value.f16[i] = value->get_float16_component(j);
957 break;
958 case GLSL_TYPE_BOOL:
959 this->value.b[i] = value->get_bool_component(j);
960 break;
961 case GLSL_TYPE_DOUBLE:
962 this->value.d[i] = value->get_double_component(j);
963 break;
964 case GLSL_TYPE_UINT64:
965 this->value.u64[i] = value->get_uint64_component(j);
966 break;
967 case GLSL_TYPE_INT64:
968 this->value.i64[i] = value->get_int64_component(j);
969 break;
970 default:
971 /* FINISHME: What to do? Exceptions are not the answer.
972 */
973 break;
974 }
975
976 i++;
977 if (i >= type->components())
978 break;
979 }
980
981 if (i >= type->components())
982 break; /* avoid downcasting a list sentinel */
983 value = (ir_constant *) value->next;
984 }
985 }
986
987 ir_constant *
988 ir_constant::zero(void *mem_ctx, const glsl_type *type)
989 {
990 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
991 || type->is_struct() || type->is_array());
992
993 ir_constant *c = new(mem_ctx) ir_constant;
994 c->type = type;
995 memset(&c->value, 0, sizeof(c->value));
996
997 if (type->is_array()) {
998 c->const_elements = ralloc_array(c, ir_constant *, type->length);
999
1000 for (unsigned i = 0; i < type->length; i++)
1001 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
1002 }
1003
1004 if (type->is_struct()) {
1005 c->const_elements = ralloc_array(c, ir_constant *, type->length);
1006
1007 for (unsigned i = 0; i < type->length; i++) {
1008 c->const_elements[i] =
1009 ir_constant::zero(mem_ctx, type->fields.structure[i].type);
1010 }
1011 }
1012
1013 return c;
1014 }
1015
1016 bool
1017 ir_constant::get_bool_component(unsigned i) const
1018 {
1019 switch (this->type->base_type) {
1020 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
1021 case GLSL_TYPE_INT: return this->value.i[i] != 0;
1022 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
1023 case GLSL_TYPE_FLOAT16: return ((int)_mesa_half_to_float(this->value.f16[i])) != 0;
1024 case GLSL_TYPE_BOOL: return this->value.b[i];
1025 case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
1026 case GLSL_TYPE_SAMPLER:
1027 case GLSL_TYPE_IMAGE:
1028 case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
1029 case GLSL_TYPE_INT64: return this->value.i64[i] != 0;
1030 default: assert(!"Should not get here."); break;
1031 }
1032
1033 /* Must return something to make the compiler happy. This is clearly an
1034 * error case.
1035 */
1036 return false;
1037 }
1038
1039 float
1040 ir_constant::get_float_component(unsigned i) const
1041 {
1042 switch (this->type->base_type) {
1043 case GLSL_TYPE_UINT: return (float) this->value.u[i];
1044 case GLSL_TYPE_INT: return (float) this->value.i[i];
1045 case GLSL_TYPE_FLOAT: return this->value.f[i];
1046 case GLSL_TYPE_FLOAT16: return _mesa_half_to_float(this->value.f16[i]);
1047 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
1048 case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1049 case GLSL_TYPE_SAMPLER:
1050 case GLSL_TYPE_IMAGE:
1051 case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1052 case GLSL_TYPE_INT64: return (float) this->value.i64[i];
1053 default: assert(!"Should not get here."); break;
1054 }
1055
1056 /* Must return something to make the compiler happy. This is clearly an
1057 * error case.
1058 */
1059 return 0.0;
1060 }
1061
1062 uint16_t
1063 ir_constant::get_float16_component(unsigned i) const
1064 {
1065 if (this->type->base_type == GLSL_TYPE_FLOAT16)
1066 return this->value.f16[i];
1067 else
1068 return _mesa_float_to_half(get_float_component(i));
1069 }
1070
1071 double
1072 ir_constant::get_double_component(unsigned i) const
1073 {
1074 switch (this->type->base_type) {
1075 case GLSL_TYPE_UINT: return (double) this->value.u[i];
1076 case GLSL_TYPE_INT: return (double) this->value.i[i];
1077 case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1078 case GLSL_TYPE_FLOAT16: return (double) _mesa_half_to_float(this->value.f16[i]);
1079 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
1080 case GLSL_TYPE_DOUBLE: return this->value.d[i];
1081 case GLSL_TYPE_SAMPLER:
1082 case GLSL_TYPE_IMAGE:
1083 case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1084 case GLSL_TYPE_INT64: return (double) this->value.i64[i];
1085 default: assert(!"Should not get here."); break;
1086 }
1087
1088 /* Must return something to make the compiler happy. This is clearly an
1089 * error case.
1090 */
1091 return 0.0;
1092 }
1093
1094 int
1095 ir_constant::get_int_component(unsigned i) const
1096 {
1097 switch (this->type->base_type) {
1098 case GLSL_TYPE_UINT: return this->value.u[i];
1099 case GLSL_TYPE_INT: return this->value.i[i];
1100 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1101 case GLSL_TYPE_FLOAT16: return (int) _mesa_half_to_float(this->value.f16[i]);
1102 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1103 case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1104 case GLSL_TYPE_SAMPLER:
1105 case GLSL_TYPE_IMAGE:
1106 case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1107 case GLSL_TYPE_INT64: return (int) this->value.i64[i];
1108 default: assert(!"Should not get here."); break;
1109 }
1110
1111 /* Must return something to make the compiler happy. This is clearly an
1112 * error case.
1113 */
1114 return 0;
1115 }
1116
1117 unsigned
1118 ir_constant::get_uint_component(unsigned i) const
1119 {
1120 switch (this->type->base_type) {
1121 case GLSL_TYPE_UINT: return this->value.u[i];
1122 case GLSL_TYPE_INT: return this->value.i[i];
1123 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1124 case GLSL_TYPE_FLOAT16: return (unsigned) _mesa_half_to_float(this->value.f16[i]);
1125 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1126 case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1127 case GLSL_TYPE_SAMPLER:
1128 case GLSL_TYPE_IMAGE:
1129 case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1130 case GLSL_TYPE_INT64: return (unsigned) this->value.i64[i];
1131 default: assert(!"Should not get here."); break;
1132 }
1133
1134 /* Must return something to make the compiler happy. This is clearly an
1135 * error case.
1136 */
1137 return 0;
1138 }
1139
1140 int64_t
1141 ir_constant::get_int64_component(unsigned i) const
1142 {
1143 switch (this->type->base_type) {
1144 case GLSL_TYPE_UINT: return this->value.u[i];
1145 case GLSL_TYPE_INT: return this->value.i[i];
1146 case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1147 case GLSL_TYPE_FLOAT16: return (int64_t) _mesa_half_to_float(this->value.f16[i]);
1148 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1149 case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1150 case GLSL_TYPE_SAMPLER:
1151 case GLSL_TYPE_IMAGE:
1152 case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1153 case GLSL_TYPE_INT64: return this->value.i64[i];
1154 default: assert(!"Should not get here."); break;
1155 }
1156
1157 /* Must return something to make the compiler happy. This is clearly an
1158 * error case.
1159 */
1160 return 0;
1161 }
1162
1163 uint64_t
1164 ir_constant::get_uint64_component(unsigned i) const
1165 {
1166 switch (this->type->base_type) {
1167 case GLSL_TYPE_UINT: return this->value.u[i];
1168 case GLSL_TYPE_INT: return this->value.i[i];
1169 case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1170 case GLSL_TYPE_FLOAT16: return (uint64_t) _mesa_half_to_float(this->value.f16[i]);
1171 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1172 case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1173 case GLSL_TYPE_SAMPLER:
1174 case GLSL_TYPE_IMAGE:
1175 case GLSL_TYPE_UINT64: return this->value.u64[i];
1176 case GLSL_TYPE_INT64: return (uint64_t) this->value.i64[i];
1177 default: assert(!"Should not get here."); break;
1178 }
1179
1180 /* Must return something to make the compiler happy. This is clearly an
1181 * error case.
1182 */
1183 return 0;
1184 }
1185
1186 ir_constant *
1187 ir_constant::get_array_element(unsigned i) const
1188 {
1189 assert(this->type->is_array());
1190
1191 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1192 *
1193 * "Behavior is undefined if a shader subscripts an array with an index
1194 * less than 0 or greater than or equal to the size the array was
1195 * declared with."
1196 *
1197 * Most out-of-bounds accesses are removed before things could get this far.
1198 * There are cases where non-constant array index values can get constant
1199 * folded.
1200 */
1201 if (int(i) < 0)
1202 i = 0;
1203 else if (i >= this->type->length)
1204 i = this->type->length - 1;
1205
1206 return const_elements[i];
1207 }
1208
1209 ir_constant *
1210 ir_constant::get_record_field(int idx)
1211 {
1212 assert(this->type->is_struct());
1213 assert(idx >= 0 && (unsigned) idx < this->type->length);
1214
1215 return const_elements[idx];
1216 }
1217
1218 void
1219 ir_constant::copy_offset(ir_constant *src, int offset)
1220 {
1221 switch (this->type->base_type) {
1222 case GLSL_TYPE_UINT:
1223 case GLSL_TYPE_INT:
1224 case GLSL_TYPE_FLOAT:
1225 case GLSL_TYPE_FLOAT16:
1226 case GLSL_TYPE_DOUBLE:
1227 case GLSL_TYPE_SAMPLER:
1228 case GLSL_TYPE_IMAGE:
1229 case GLSL_TYPE_UINT64:
1230 case GLSL_TYPE_INT64:
1231 case GLSL_TYPE_BOOL: {
1232 unsigned int size = src->type->components();
1233 assert (size <= this->type->components() - offset);
1234 for (unsigned int i=0; i<size; i++) {
1235 switch (this->type->base_type) {
1236 case GLSL_TYPE_UINT:
1237 value.u[i+offset] = src->get_uint_component(i);
1238 break;
1239 case GLSL_TYPE_INT:
1240 value.i[i+offset] = src->get_int_component(i);
1241 break;
1242 case GLSL_TYPE_FLOAT:
1243 value.f[i+offset] = src->get_float_component(i);
1244 break;
1245 case GLSL_TYPE_FLOAT16:
1246 value.f16[i+offset] = src->get_float16_component(i);
1247 break;
1248 case GLSL_TYPE_BOOL:
1249 value.b[i+offset] = src->get_bool_component(i);
1250 break;
1251 case GLSL_TYPE_DOUBLE:
1252 value.d[i+offset] = src->get_double_component(i);
1253 break;
1254 case GLSL_TYPE_SAMPLER:
1255 case GLSL_TYPE_IMAGE:
1256 case GLSL_TYPE_UINT64:
1257 value.u64[i+offset] = src->get_uint64_component(i);
1258 break;
1259 case GLSL_TYPE_INT64:
1260 value.i64[i+offset] = src->get_int64_component(i);
1261 break;
1262 default: // Shut up the compiler
1263 break;
1264 }
1265 }
1266 break;
1267 }
1268
1269 case GLSL_TYPE_STRUCT:
1270 case GLSL_TYPE_ARRAY: {
1271 assert (src->type == this->type);
1272 for (unsigned i = 0; i < this->type->length; i++) {
1273 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1274 }
1275 break;
1276 }
1277
1278 default:
1279 assert(!"Should not get here.");
1280 break;
1281 }
1282 }
1283
1284 void
1285 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1286 {
1287 assert (!type->is_array() && !type->is_struct());
1288
1289 if (!type->is_vector() && !type->is_matrix()) {
1290 offset = 0;
1291 mask = 1;
1292 }
1293
1294 int id = 0;
1295 for (int i=0; i<4; i++) {
1296 if (mask & (1 << i)) {
1297 switch (this->type->base_type) {
1298 case GLSL_TYPE_UINT:
1299 value.u[i+offset] = src->get_uint_component(id++);
1300 break;
1301 case GLSL_TYPE_INT:
1302 value.i[i+offset] = src->get_int_component(id++);
1303 break;
1304 case GLSL_TYPE_FLOAT:
1305 value.f[i+offset] = src->get_float_component(id++);
1306 break;
1307 case GLSL_TYPE_FLOAT16:
1308 value.f16[i+offset] = src->get_float16_component(id++);
1309 break;
1310 case GLSL_TYPE_BOOL:
1311 value.b[i+offset] = src->get_bool_component(id++);
1312 break;
1313 case GLSL_TYPE_DOUBLE:
1314 value.d[i+offset] = src->get_double_component(id++);
1315 break;
1316 case GLSL_TYPE_SAMPLER:
1317 case GLSL_TYPE_IMAGE:
1318 case GLSL_TYPE_UINT64:
1319 value.u64[i+offset] = src->get_uint64_component(id++);
1320 break;
1321 case GLSL_TYPE_INT64:
1322 value.i64[i+offset] = src->get_int64_component(id++);
1323 break;
1324 default:
1325 assert(!"Should not get here.");
1326 return;
1327 }
1328 }
1329 }
1330 }
1331
1332 bool
1333 ir_constant::has_value(const ir_constant *c) const
1334 {
1335 if (this->type != c->type)
1336 return false;
1337
1338 if (this->type->is_array() || this->type->is_struct()) {
1339 for (unsigned i = 0; i < this->type->length; i++) {
1340 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1341 return false;
1342 }
1343 return true;
1344 }
1345
1346 for (unsigned i = 0; i < this->type->components(); i++) {
1347 switch (this->type->base_type) {
1348 case GLSL_TYPE_UINT:
1349 if (this->value.u[i] != c->value.u[i])
1350 return false;
1351 break;
1352 case GLSL_TYPE_INT:
1353 if (this->value.i[i] != c->value.i[i])
1354 return false;
1355 break;
1356 case GLSL_TYPE_FLOAT:
1357 if (this->value.f[i] != c->value.f[i])
1358 return false;
1359 break;
1360 case GLSL_TYPE_FLOAT16:
1361 /* Convert to float to make sure NaN and ±0.0 compares correctly */
1362 if (_mesa_half_to_float(this->value.f16[i]) !=
1363 _mesa_half_to_float(c->value.f16[i]))
1364 return false;
1365 break;
1366 case GLSL_TYPE_BOOL:
1367 if (this->value.b[i] != c->value.b[i])
1368 return false;
1369 break;
1370 case GLSL_TYPE_DOUBLE:
1371 if (this->value.d[i] != c->value.d[i])
1372 return false;
1373 break;
1374 case GLSL_TYPE_SAMPLER:
1375 case GLSL_TYPE_IMAGE:
1376 case GLSL_TYPE_UINT64:
1377 if (this->value.u64[i] != c->value.u64[i])
1378 return false;
1379 break;
1380 case GLSL_TYPE_INT64:
1381 if (this->value.i64[i] != c->value.i64[i])
1382 return false;
1383 break;
1384 default:
1385 assert(!"Should not get here.");
1386 return false;
1387 }
1388 }
1389
1390 return true;
1391 }
1392
1393 bool
1394 ir_constant::is_value(float f, int i) const
1395 {
1396 if (!this->type->is_scalar() && !this->type->is_vector())
1397 return false;
1398
1399 /* Only accept boolean values for 0/1. */
1400 if (int(bool(i)) != i && this->type->is_boolean())
1401 return false;
1402
1403 for (unsigned c = 0; c < this->type->vector_elements; c++) {
1404 switch (this->type->base_type) {
1405 case GLSL_TYPE_FLOAT:
1406 if (this->value.f[c] != f)
1407 return false;
1408 break;
1409 case GLSL_TYPE_FLOAT16:
1410 if (_mesa_half_to_float(this->value.f16[c]) != f)
1411 return false;
1412 break;
1413 case GLSL_TYPE_INT:
1414 if (this->value.i[c] != i)
1415 return false;
1416 break;
1417 case GLSL_TYPE_UINT:
1418 if (this->value.u[c] != unsigned(i))
1419 return false;
1420 break;
1421 case GLSL_TYPE_BOOL:
1422 if (this->value.b[c] != bool(i))
1423 return false;
1424 break;
1425 case GLSL_TYPE_DOUBLE:
1426 if (this->value.d[c] != double(f))
1427 return false;
1428 break;
1429 case GLSL_TYPE_SAMPLER:
1430 case GLSL_TYPE_IMAGE:
1431 case GLSL_TYPE_UINT64:
1432 if (this->value.u64[c] != uint64_t(i))
1433 return false;
1434 break;
1435 case GLSL_TYPE_INT64:
1436 if (this->value.i64[c] != i)
1437 return false;
1438 break;
1439 default:
1440 /* The only other base types are structures, arrays, and samplers.
1441 * Samplers cannot be constants, and the others should have been
1442 * filtered out above.
1443 */
1444 assert(!"Should not get here.");
1445 return false;
1446 }
1447 }
1448
1449 return true;
1450 }
1451
1452 bool
1453 ir_constant::is_zero() const
1454 {
1455 return is_value(0.0, 0);
1456 }
1457
1458 bool
1459 ir_constant::is_one() const
1460 {
1461 return is_value(1.0, 1);
1462 }
1463
1464 bool
1465 ir_constant::is_negative_one() const
1466 {
1467 return is_value(-1.0, -1);
1468 }
1469
1470 bool
1471 ir_constant::is_uint16_constant() const
1472 {
1473 if (!type->is_integer_32())
1474 return false;
1475
1476 return value.u[0] < (1 << 16);
1477 }
1478
1479 ir_loop::ir_loop()
1480 : ir_instruction(ir_type_loop)
1481 {
1482 }
1483
1484
1485 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1486 : ir_dereference(ir_type_dereference_variable)
1487 {
1488 assert(var != NULL);
1489
1490 this->var = var;
1491 this->type = var->type;
1492 }
1493
1494
1495 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1496 ir_rvalue *array_index)
1497 : ir_dereference(ir_type_dereference_array)
1498 {
1499 this->array_index = array_index;
1500 this->set_array(value);
1501 }
1502
1503
1504 ir_dereference_array::ir_dereference_array(ir_variable *var,
1505 ir_rvalue *array_index)
1506 : ir_dereference(ir_type_dereference_array)
1507 {
1508 void *ctx = ralloc_parent(var);
1509
1510 this->array_index = array_index;
1511 this->set_array(new(ctx) ir_dereference_variable(var));
1512 }
1513
1514
1515 void
1516 ir_dereference_array::set_array(ir_rvalue *value)
1517 {
1518 assert(value != NULL);
1519
1520 this->array = value;
1521
1522 const glsl_type *const vt = this->array->type;
1523
1524 if (vt->is_array()) {
1525 type = vt->fields.array;
1526 } else if (vt->is_matrix()) {
1527 type = vt->column_type();
1528 } else if (vt->is_vector()) {
1529 type = vt->get_base_type();
1530 }
1531 }
1532
1533
1534 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1535 const char *field)
1536 : ir_dereference(ir_type_dereference_record)
1537 {
1538 assert(value != NULL);
1539
1540 this->record = value;
1541 this->type = this->record->type->field_type(field);
1542 this->field_idx = this->record->type->field_index(field);
1543 }
1544
1545
1546 ir_dereference_record::ir_dereference_record(ir_variable *var,
1547 const char *field)
1548 : ir_dereference(ir_type_dereference_record)
1549 {
1550 void *ctx = ralloc_parent(var);
1551
1552 this->record = new(ctx) ir_dereference_variable(var);
1553 this->type = this->record->type->field_type(field);
1554 this->field_idx = this->record->type->field_index(field);
1555 }
1556
1557 bool
1558 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1559 {
1560 ir_variable *var = this->variable_referenced();
1561
1562 /* Every l-value derference chain eventually ends in a variable.
1563 */
1564 if ((var == NULL) || var->data.read_only)
1565 return false;
1566
1567 /* From section 4.1.7 of the ARB_bindless_texture spec:
1568 *
1569 * "Samplers can be used as l-values, so can be assigned into and used as
1570 * "out" and "inout" function parameters."
1571 *
1572 * From section 4.1.X of the ARB_bindless_texture spec:
1573 *
1574 * "Images can be used as l-values, so can be assigned into and used as
1575 * "out" and "inout" function parameters."
1576 */
1577 if ((!state || state->has_bindless()) &&
1578 (this->type->contains_sampler() || this->type->contains_image()))
1579 return true;
1580
1581 /* From section 4.1.7 of the GLSL 4.40 spec:
1582 *
1583 * "Opaque variables cannot be treated as l-values; hence cannot
1584 * be used as out or inout function parameters, nor can they be
1585 * assigned into."
1586 */
1587 if (this->type->contains_opaque())
1588 return false;
1589
1590 return true;
1591 }
1592
1593
1594 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1595
1596 const char *ir_texture::opcode_string()
1597 {
1598 assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1599 return tex_opcode_strs[op];
1600 }
1601
1602 ir_texture_opcode
1603 ir_texture::get_opcode(const char *str)
1604 {
1605 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1606 for (int op = 0; op < count; op++) {
1607 if (strcmp(str, tex_opcode_strs[op]) == 0)
1608 return (ir_texture_opcode) op;
1609 }
1610 return (ir_texture_opcode) -1;
1611 }
1612
1613
1614 void
1615 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1616 {
1617 assert(sampler != NULL);
1618 assert(type != NULL);
1619 this->sampler = sampler;
1620 this->type = type;
1621
1622 if (this->op == ir_txs || this->op == ir_query_levels ||
1623 this->op == ir_texture_samples) {
1624 assert(type->base_type == GLSL_TYPE_INT);
1625 } else if (this->op == ir_lod) {
1626 assert(type->vector_elements == 2);
1627 assert(type->is_float());
1628 } else if (this->op == ir_samples_identical) {
1629 assert(type == glsl_type::bool_type);
1630 assert(sampler->type->is_sampler());
1631 assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1632 } else {
1633 assert(sampler->type->sampled_type == (int) type->base_type);
1634 if (sampler->type->sampler_shadow)
1635 assert(type->vector_elements == 4 || type->vector_elements == 1);
1636 else
1637 assert(type->vector_elements == 4);
1638 }
1639 }
1640
1641
1642 void
1643 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1644 {
1645 assert((count >= 1) && (count <= 4));
1646
1647 memset(&this->mask, 0, sizeof(this->mask));
1648 this->mask.num_components = count;
1649
1650 unsigned dup_mask = 0;
1651 switch (count) {
1652 case 4:
1653 assert(comp[3] <= 3);
1654 dup_mask |= (1U << comp[3])
1655 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1656 this->mask.w = comp[3];
1657
1658 case 3:
1659 assert(comp[2] <= 3);
1660 dup_mask |= (1U << comp[2])
1661 & ((1U << comp[0]) | (1U << comp[1]));
1662 this->mask.z = comp[2];
1663
1664 case 2:
1665 assert(comp[1] <= 3);
1666 dup_mask |= (1U << comp[1])
1667 & ((1U << comp[0]));
1668 this->mask.y = comp[1];
1669
1670 case 1:
1671 assert(comp[0] <= 3);
1672 this->mask.x = comp[0];
1673 }
1674
1675 this->mask.has_duplicates = dup_mask != 0;
1676
1677 /* Based on the number of elements in the swizzle and the base type
1678 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1679 * generate the type of the resulting value.
1680 */
1681 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1682 }
1683
1684 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1685 unsigned w, unsigned count)
1686 : ir_rvalue(ir_type_swizzle), val(val)
1687 {
1688 const unsigned components[4] = { x, y, z, w };
1689 this->init_mask(components, count);
1690 }
1691
1692 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1693 unsigned count)
1694 : ir_rvalue(ir_type_swizzle), val(val)
1695 {
1696 this->init_mask(comp, count);
1697 }
1698
1699 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1700 : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1701 {
1702 this->type = glsl_type::get_instance(val->type->base_type,
1703 mask.num_components, 1);
1704 }
1705
1706 #define X 1
1707 #define R 5
1708 #define S 9
1709 #define I 13
1710
1711 ir_swizzle *
1712 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1713 {
1714 void *ctx = ralloc_parent(val);
1715
1716 /* For each possible swizzle character, this table encodes the value in
1717 * \c idx_map that represents the 0th element of the vector. For invalid
1718 * swizzle characters (e.g., 'k'), a special value is used that will allow
1719 * detection of errors.
1720 */
1721 static const unsigned char base_idx[26] = {
1722 /* a b c d e f g h i j k l m */
1723 R, R, I, I, I, I, R, I, I, I, I, I, I,
1724 /* n o p q r s t u v w x y z */
1725 I, I, S, S, R, S, S, I, I, X, X, X, X
1726 };
1727
1728 /* Each valid swizzle character has an entry in the previous table. This
1729 * table encodes the base index encoded in the previous table plus the actual
1730 * index of the swizzle character. When processing swizzles, the first
1731 * character in the string is indexed in the previous table. Each character
1732 * in the string is indexed in this table, and the value found there has the
1733 * value form the first table subtracted. The result must be on the range
1734 * [0,3].
1735 *
1736 * For example, the string "wzyx" will get X from the first table. Each of
1737 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1738 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1739 *
1740 * The string "wzrg" will get X from the first table. Each of the characters
1741 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1742 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1743 * [0,3], the error is detected.
1744 */
1745 static const unsigned char idx_map[26] = {
1746 /* a b c d e f g h i j k l m */
1747 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1748 /* n o p q r s t u v w x y z */
1749 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1750 };
1751
1752 int swiz_idx[4] = { 0, 0, 0, 0 };
1753 unsigned i;
1754
1755
1756 /* Validate the first character in the swizzle string and look up the base
1757 * index value as described above.
1758 */
1759 if ((str[0] < 'a') || (str[0] > 'z'))
1760 return NULL;
1761
1762 const unsigned base = base_idx[str[0] - 'a'];
1763
1764
1765 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1766 /* Validate the next character, and, as described above, convert it to a
1767 * swizzle index.
1768 */
1769 if ((str[i] < 'a') || (str[i] > 'z'))
1770 return NULL;
1771
1772 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1773 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1774 return NULL;
1775 }
1776
1777 if (str[i] != '\0')
1778 return NULL;
1779
1780 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1781 swiz_idx[3], i);
1782 }
1783
1784 #undef X
1785 #undef R
1786 #undef S
1787 #undef I
1788
1789 ir_variable *
1790 ir_swizzle::variable_referenced() const
1791 {
1792 return this->val->variable_referenced();
1793 }
1794
1795
1796 bool ir_variable::temporaries_allocate_names = false;
1797
1798 const char ir_variable::tmp_name[] = "compiler_temp";
1799
1800 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1801 ir_variable_mode mode)
1802 : ir_instruction(ir_type_variable)
1803 {
1804 this->type = type;
1805
1806 if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1807 name = NULL;
1808
1809 /* The ir_variable clone method may call this constructor with name set to
1810 * tmp_name.
1811 */
1812 assert(name != NULL
1813 || mode == ir_var_temporary
1814 || mode == ir_var_function_in
1815 || mode == ir_var_function_out
1816 || mode == ir_var_function_inout);
1817 assert(name != ir_variable::tmp_name
1818 || mode == ir_var_temporary);
1819 if (mode == ir_var_temporary
1820 && (name == NULL || name == ir_variable::tmp_name)) {
1821 this->name = ir_variable::tmp_name;
1822 } else if (name == NULL ||
1823 strlen(name) < ARRAY_SIZE(this->name_storage)) {
1824 strcpy(this->name_storage, name ? name : "");
1825 this->name = this->name_storage;
1826 } else {
1827 this->name = ralloc_strdup(this, name);
1828 }
1829
1830 this->u.max_ifc_array_access = NULL;
1831
1832 this->data.explicit_location = false;
1833 this->data.explicit_index = false;
1834 this->data.explicit_binding = false;
1835 this->data.explicit_component = false;
1836 this->data.has_initializer = false;
1837 this->data.is_unmatched_generic_inout = false;
1838 this->data.is_xfb_only = false;
1839 this->data.explicit_xfb_buffer = false;
1840 this->data.explicit_xfb_offset = false;
1841 this->data.explicit_xfb_stride = false;
1842 this->data.location = -1;
1843 this->data.location_frac = 0;
1844 this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
1845 this->data.from_named_ifc_block = false;
1846 this->data.must_be_shader_input = false;
1847 this->data.index = 0;
1848 this->data.binding = 0;
1849 this->data.warn_extension_index = 0;
1850 this->constant_value = NULL;
1851 this->constant_initializer = NULL;
1852 this->data.depth_layout = ir_depth_layout_none;
1853 this->data.used = false;
1854 this->data.assigned = false;
1855 this->data.always_active_io = false;
1856 this->data.read_only = false;
1857 this->data.centroid = false;
1858 this->data.sample = false;
1859 this->data.patch = false;
1860 this->data.explicit_invariant = false;
1861 this->data.invariant = false;
1862 this->data.precise = false;
1863 this->data.how_declared = ir_var_declared_normally;
1864 this->data.mode = mode;
1865 this->data.interpolation = INTERP_MODE_NONE;
1866 this->data.max_array_access = -1;
1867 this->data.offset = 0;
1868 this->data.precision = GLSL_PRECISION_NONE;
1869 this->data.memory_read_only = false;
1870 this->data.memory_write_only = false;
1871 this->data.memory_coherent = false;
1872 this->data.memory_volatile = false;
1873 this->data.memory_restrict = false;
1874 this->data.from_ssbo_unsized_array = false;
1875 this->data.implicit_sized_array = false;
1876 this->data.fb_fetch_output = false;
1877 this->data.bindless = false;
1878 this->data.bound = false;
1879 this->data.image_format = PIPE_FORMAT_NONE;
1880 this->data._num_state_slots = 0;
1881 this->data.param_index = 0;
1882 this->data.stream = 0;
1883 this->data.xfb_buffer = -1;
1884 this->data.xfb_stride = -1;
1885
1886 this->interface_type = NULL;
1887
1888 if (type != NULL) {
1889 if (type->is_interface())
1890 this->init_interface_type(type);
1891 else if (type->without_array()->is_interface())
1892 this->init_interface_type(type->without_array());
1893 }
1894 }
1895
1896
1897 const char *
1898 interpolation_string(unsigned interpolation)
1899 {
1900 switch (interpolation) {
1901 case INTERP_MODE_NONE: return "no";
1902 case INTERP_MODE_SMOOTH: return "smooth";
1903 case INTERP_MODE_FLAT: return "flat";
1904 case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
1905 }
1906
1907 assert(!"Should not get here.");
1908 return "";
1909 }
1910
1911 const char *const ir_variable::warn_extension_table[] = {
1912 "",
1913 "GL_ARB_shader_stencil_export",
1914 "GL_AMD_shader_stencil_export",
1915 };
1916
1917 void
1918 ir_variable::enable_extension_warning(const char *extension)
1919 {
1920 for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
1921 if (strcmp(warn_extension_table[i], extension) == 0) {
1922 this->data.warn_extension_index = i;
1923 return;
1924 }
1925 }
1926
1927 assert(!"Should not get here.");
1928 this->data.warn_extension_index = 0;
1929 }
1930
1931 const char *
1932 ir_variable::get_extension_warning() const
1933 {
1934 return this->data.warn_extension_index == 0
1935 ? NULL : warn_extension_table[this->data.warn_extension_index];
1936 }
1937
1938 ir_function_signature::ir_function_signature(const glsl_type *return_type,
1939 builtin_available_predicate b)
1940 : ir_instruction(ir_type_function_signature),
1941 return_type(return_type), is_defined(false),
1942 return_precision(GLSL_PRECISION_NONE),
1943 intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
1944 {
1945 this->origin = NULL;
1946 }
1947
1948
1949 bool
1950 ir_function_signature::is_builtin() const
1951 {
1952 return builtin_avail != NULL;
1953 }
1954
1955
1956 bool
1957 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
1958 {
1959 /* We can't call the predicate without a state pointer, so just say that
1960 * the signature is available. At compile time, we need the filtering,
1961 * but also receive a valid state pointer. At link time, we're resolving
1962 * imported built-in prototypes to their definitions, which will always
1963 * be an exact match. So we can skip the filtering.
1964 */
1965 if (state == NULL)
1966 return true;
1967
1968 assert(builtin_avail != NULL);
1969 return builtin_avail(state);
1970 }
1971
1972
1973 static bool
1974 modes_match(unsigned a, unsigned b)
1975 {
1976 if (a == b)
1977 return true;
1978
1979 /* Accept "in" vs. "const in" */
1980 if ((a == ir_var_const_in && b == ir_var_function_in) ||
1981 (b == ir_var_const_in && a == ir_var_function_in))
1982 return true;
1983
1984 return false;
1985 }
1986
1987
1988 const char *
1989 ir_function_signature::qualifiers_match(exec_list *params)
1990 {
1991 /* check that the qualifiers match. */
1992 foreach_two_lists(a_node, &this->parameters, b_node, params) {
1993 ir_variable *a = (ir_variable *) a_node;
1994 ir_variable *b = (ir_variable *) b_node;
1995
1996 if (a->data.read_only != b->data.read_only ||
1997 !modes_match(a->data.mode, b->data.mode) ||
1998 a->data.interpolation != b->data.interpolation ||
1999 a->data.centroid != b->data.centroid ||
2000 a->data.sample != b->data.sample ||
2001 a->data.patch != b->data.patch ||
2002 a->data.memory_read_only != b->data.memory_read_only ||
2003 a->data.memory_write_only != b->data.memory_write_only ||
2004 a->data.memory_coherent != b->data.memory_coherent ||
2005 a->data.memory_volatile != b->data.memory_volatile ||
2006 a->data.memory_restrict != b->data.memory_restrict) {
2007
2008 /* parameter a's qualifiers don't match */
2009 return a->name;
2010 }
2011 }
2012 return NULL;
2013 }
2014
2015
2016 void
2017 ir_function_signature::replace_parameters(exec_list *new_params)
2018 {
2019 /* Destroy all of the previous parameter information. If the previous
2020 * parameter information comes from the function prototype, it may either
2021 * specify incorrect parameter names or not have names at all.
2022 */
2023 new_params->move_nodes_to(&parameters);
2024 }
2025
2026
2027 ir_function::ir_function(const char *name)
2028 : ir_instruction(ir_type_function)
2029 {
2030 this->subroutine_index = -1;
2031 this->name = ralloc_strdup(this, name);
2032 }
2033
2034
2035 bool
2036 ir_function::has_user_signature()
2037 {
2038 foreach_in_list(ir_function_signature, sig, &this->signatures) {
2039 if (!sig->is_builtin())
2040 return true;
2041 }
2042 return false;
2043 }
2044
2045
2046 ir_rvalue *
2047 ir_rvalue::error_value(void *mem_ctx)
2048 {
2049 ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
2050
2051 v->type = glsl_type::error_type;
2052 return v;
2053 }
2054
2055
2056 void
2057 visit_exec_list(exec_list *list, ir_visitor *visitor)
2058 {
2059 foreach_in_list_safe(ir_instruction, node, list) {
2060 node->accept(visitor);
2061 }
2062 }
2063
2064
2065 static void
2066 steal_memory(ir_instruction *ir, void *new_ctx)
2067 {
2068 ir_variable *var = ir->as_variable();
2069 ir_function *fn = ir->as_function();
2070 ir_constant *constant = ir->as_constant();
2071 if (var != NULL && var->constant_value != NULL)
2072 steal_memory(var->constant_value, ir);
2073
2074 if (var != NULL && var->constant_initializer != NULL)
2075 steal_memory(var->constant_initializer, ir);
2076
2077 if (fn != NULL && fn->subroutine_types)
2078 ralloc_steal(new_ctx, fn->subroutine_types);
2079
2080 /* The components of aggregate constants are not visited by the normal
2081 * visitor, so steal their values by hand.
2082 */
2083 if (constant != NULL &&
2084 (constant->type->is_array() || constant->type->is_struct())) {
2085 for (unsigned int i = 0; i < constant->type->length; i++) {
2086 steal_memory(constant->const_elements[i], ir);
2087 }
2088 }
2089
2090 ralloc_steal(new_ctx, ir);
2091 }
2092
2093
2094 void
2095 reparent_ir(exec_list *list, void *mem_ctx)
2096 {
2097 foreach_in_list(ir_instruction, node, list) {
2098 visit_tree(node, steal_memory, mem_ctx);
2099 }
2100 }
2101
2102
2103 static ir_rvalue *
2104 try_min_one(ir_rvalue *ir)
2105 {
2106 ir_expression *expr = ir->as_expression();
2107
2108 if (!expr || expr->operation != ir_binop_min)
2109 return NULL;
2110
2111 if (expr->operands[0]->is_one())
2112 return expr->operands[1];
2113
2114 if (expr->operands[1]->is_one())
2115 return expr->operands[0];
2116
2117 return NULL;
2118 }
2119
2120 static ir_rvalue *
2121 try_max_zero(ir_rvalue *ir)
2122 {
2123 ir_expression *expr = ir->as_expression();
2124
2125 if (!expr || expr->operation != ir_binop_max)
2126 return NULL;
2127
2128 if (expr->operands[0]->is_zero())
2129 return expr->operands[1];
2130
2131 if (expr->operands[1]->is_zero())
2132 return expr->operands[0];
2133
2134 return NULL;
2135 }
2136
2137 ir_rvalue *
2138 ir_rvalue::as_rvalue_to_saturate()
2139 {
2140 ir_expression *expr = this->as_expression();
2141
2142 if (!expr)
2143 return NULL;
2144
2145 ir_rvalue *max_zero = try_max_zero(expr);
2146 if (max_zero) {
2147 return try_min_one(max_zero);
2148 } else {
2149 ir_rvalue *min_one = try_min_one(expr);
2150 if (min_one) {
2151 return try_max_zero(min_one);
2152 }
2153 }
2154
2155 return NULL;
2156 }
2157
2158
2159 unsigned
2160 vertices_per_prim(GLenum prim)
2161 {
2162 switch (prim) {
2163 case GL_POINTS:
2164 return 1;
2165 case GL_LINES:
2166 return 2;
2167 case GL_TRIANGLES:
2168 return 3;
2169 case GL_LINES_ADJACENCY:
2170 return 4;
2171 case GL_TRIANGLES_ADJACENCY:
2172 return 6;
2173 default:
2174 assert(!"Bad primitive");
2175 return 3;
2176 }
2177 }
2178
2179 /**
2180 * Generate a string describing the mode of a variable
2181 */
2182 const char *
2183 mode_string(const ir_variable *var)
2184 {
2185 switch (var->data.mode) {
2186 case ir_var_auto:
2187 return (var->data.read_only) ? "global constant" : "global variable";
2188
2189 case ir_var_uniform:
2190 return "uniform";
2191
2192 case ir_var_shader_storage:
2193 return "buffer";
2194
2195 case ir_var_shader_in:
2196 return "shader input";
2197
2198 case ir_var_shader_out:
2199 return "shader output";
2200
2201 case ir_var_function_in:
2202 case ir_var_const_in:
2203 return "function input";
2204
2205 case ir_var_function_out:
2206 return "function output";
2207
2208 case ir_var_function_inout:
2209 return "function inout";
2210
2211 case ir_var_system_value:
2212 return "shader input";
2213
2214 case ir_var_temporary:
2215 return "compiler temporary";
2216
2217 case ir_var_mode_count:
2218 break;
2219 }
2220
2221 assert(!"Should not get here.");
2222 return "invalid variable";
2223 }