glsl: Silence may unused parameter warnings in glsl/ir.h
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36
37 #ifdef __cplusplus
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 ir_type_dereference_array,
61 ir_type_dereference_record,
62 ir_type_dereference_variable,
63 ir_type_constant,
64 ir_type_expression,
65 ir_type_swizzle,
66 ir_type_texture,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_function,
71 ir_type_function_signature,
72 ir_type_if,
73 ir_type_loop,
74 ir_type_loop_jump,
75 ir_type_return,
76 ir_type_discard,
77 ir_type_emit_vertex,
78 ir_type_end_primitive,
79 ir_type_barrier,
80 ir_type_max, /**< maximum ir_type enum number, for validation */
81 ir_type_unset = ir_type_max
82 };
83
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104 void fprint(FILE *f) const;
105
106 virtual void accept(ir_visitor *) = 0;
107 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108 virtual ir_instruction *clone(void *mem_ctx,
109 struct hash_table *ht) const = 0;
110
111 bool is_rvalue() const
112 {
113 return ir_type == ir_type_dereference_array ||
114 ir_type == ir_type_dereference_record ||
115 ir_type == ir_type_dereference_variable ||
116 ir_type == ir_type_constant ||
117 ir_type == ir_type_expression ||
118 ir_type == ir_type_swizzle ||
119 ir_type == ir_type_texture;
120 }
121
122 bool is_dereference() const
123 {
124 return ir_type == ir_type_dereference_array ||
125 ir_type == ir_type_dereference_record ||
126 ir_type == ir_type_dereference_variable;
127 }
128
129 bool is_jump() const
130 {
131 return ir_type == ir_type_loop_jump ||
132 ir_type == ir_type_return ||
133 ir_type == ir_type_discard;
134 }
135
136 /**
137 * \name IR instruction downcast functions
138 *
139 * These functions either cast the object to a derived class or return
140 * \c NULL if the object's type does not match the specified derived class.
141 * Additional downcast functions will be added as needed.
142 */
143 /*@{*/
144 #define AS_BASE(TYPE) \
145 class ir_##TYPE *as_##TYPE() \
146 { \
147 assume(this != NULL); \
148 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
149 } \
150 const class ir_##TYPE *as_##TYPE() const \
151 { \
152 assume(this != NULL); \
153 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
154 }
155
156 AS_BASE(rvalue)
157 AS_BASE(dereference)
158 AS_BASE(jump)
159 #undef AS_BASE
160
161 #define AS_CHILD(TYPE) \
162 class ir_##TYPE * as_##TYPE() \
163 { \
164 assume(this != NULL); \
165 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166 } \
167 const class ir_##TYPE * as_##TYPE() const \
168 { \
169 assume(this != NULL); \
170 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171 }
172 AS_CHILD(variable)
173 AS_CHILD(function)
174 AS_CHILD(dereference_array)
175 AS_CHILD(dereference_variable)
176 AS_CHILD(dereference_record)
177 AS_CHILD(expression)
178 AS_CHILD(loop)
179 AS_CHILD(assignment)
180 AS_CHILD(call)
181 AS_CHILD(return)
182 AS_CHILD(if)
183 AS_CHILD(swizzle)
184 AS_CHILD(texture)
185 AS_CHILD(constant)
186 AS_CHILD(discard)
187 #undef AS_CHILD
188 /*@}*/
189
190 /**
191 * IR equality method: Return true if the referenced instruction would
192 * return the same value as this one.
193 *
194 * This intended to be used for CSE and algebraic optimizations, on rvalues
195 * in particular. No support for other instruction types (assignments,
196 * jumps, calls, etc.) is planned.
197 */
198 virtual bool equals(const ir_instruction *ir,
199 enum ir_node_type ignore = ir_type_unset) const;
200
201 protected:
202 ir_instruction(enum ir_node_type t)
203 : ir_type(t)
204 {
205 }
206
207 private:
208 ir_instruction()
209 {
210 assert(!"Should not get here.");
211 }
212 };
213
214
215 /**
216 * The base class for all "values"/expression trees.
217 */
218 class ir_rvalue : public ir_instruction {
219 public:
220 const struct glsl_type *type;
221
222 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224 virtual void accept(ir_visitor *v)
225 {
226 v->visit(this);
227 }
228
229 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231 virtual ir_constant *constant_expression_value(void *mem_ctx,
232 struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_storage, /**< Variable declared as an ssbo. */
327 ir_var_shader_shared, /**< Variable declared as shared. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 gl_state_index16 tokens[STATE_LENGTH];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine whether or not a variable is part of a uniform or
435 * shader storage block.
436 */
437 inline bool is_in_buffer_block() const
438 {
439 return (this->data.mode == ir_var_uniform ||
440 this->data.mode == ir_var_shader_storage) &&
441 this->interface_type != NULL;
442 }
443
444 /**
445 * Determine whether or not a variable is part of a shader storage block.
446 */
447 inline bool is_in_shader_storage_block() const
448 {
449 return this->data.mode == ir_var_shader_storage &&
450 this->interface_type != NULL;
451 }
452
453 /**
454 * Determine whether or not a variable is the declaration of an interface
455 * block
456 *
457 * For the first declaration below, there will be an \c ir_variable named
458 * "instance" whose type and whose instance_type will be the same
459 * \c glsl_type. For the second declaration, there will be an \c ir_variable
460 * named "f" whose type is float and whose instance_type is B2.
461 *
462 * "instance" is an interface instance variable, but "f" is not.
463 *
464 * uniform B1 {
465 * float f;
466 * } instance;
467 *
468 * uniform B2 {
469 * float f;
470 * };
471 */
472 inline bool is_interface_instance() const
473 {
474 return this->type->without_array() == this->interface_type;
475 }
476
477 /**
478 * Return whether this variable contains a bindless sampler/image.
479 */
480 inline bool contains_bindless() const
481 {
482 if (!this->type->contains_sampler() && !this->type->contains_image())
483 return false;
484
485 return this->data.bindless || this->data.mode != ir_var_uniform;
486 }
487
488 /**
489 * Set this->interface_type on a newly created variable.
490 */
491 void init_interface_type(const struct glsl_type *type)
492 {
493 assert(this->interface_type == NULL);
494 this->interface_type = type;
495 if (this->is_interface_instance()) {
496 this->u.max_ifc_array_access =
497 ralloc_array(this, int, type->length);
498 for (unsigned i = 0; i < type->length; i++) {
499 this->u.max_ifc_array_access[i] = -1;
500 }
501 }
502 }
503
504 /**
505 * Change this->interface_type on a variable that previously had a
506 * different, but compatible, interface_type. This is used during linking
507 * to set the size of arrays in interface blocks.
508 */
509 void change_interface_type(const struct glsl_type *type)
510 {
511 if (this->u.max_ifc_array_access != NULL) {
512 /* max_ifc_array_access has already been allocated, so make sure the
513 * new interface has the same number of fields as the old one.
514 */
515 assert(this->interface_type->length == type->length);
516 }
517 this->interface_type = type;
518 }
519
520 /**
521 * Change this->interface_type on a variable that previously had a
522 * different, and incompatible, interface_type. This is used during
523 * compilation to handle redeclaration of the built-in gl_PerVertex
524 * interface block.
525 */
526 void reinit_interface_type(const struct glsl_type *type)
527 {
528 if (this->u.max_ifc_array_access != NULL) {
529 #ifndef NDEBUG
530 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531 * it defines have been accessed yet; so it's safe to throw away the
532 * old max_ifc_array_access pointer, since all of its values are
533 * zero.
534 */
535 for (unsigned i = 0; i < this->interface_type->length; i++)
536 assert(this->u.max_ifc_array_access[i] == -1);
537 #endif
538 ralloc_free(this->u.max_ifc_array_access);
539 this->u.max_ifc_array_access = NULL;
540 }
541 this->interface_type = NULL;
542 init_interface_type(type);
543 }
544
545 const glsl_type *get_interface_type() const
546 {
547 return this->interface_type;
548 }
549
550 enum glsl_interface_packing get_interface_type_packing() const
551 {
552 return this->interface_type->get_interface_packing();
553 }
554 /**
555 * Get the max_ifc_array_access pointer
556 *
557 * A "set" function is not needed because the array is dynmically allocated
558 * as necessary.
559 */
560 inline int *get_max_ifc_array_access()
561 {
562 assert(this->data._num_state_slots == 0);
563 return this->u.max_ifc_array_access;
564 }
565
566 inline unsigned get_num_state_slots() const
567 {
568 assert(!this->is_interface_instance()
569 || this->data._num_state_slots == 0);
570 return this->data._num_state_slots;
571 }
572
573 inline void set_num_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance()
576 || n == 0);
577 this->data._num_state_slots = n;
578 }
579
580 inline ir_state_slot *get_state_slots()
581 {
582 return this->is_interface_instance() ? NULL : this->u.state_slots;
583 }
584
585 inline const ir_state_slot *get_state_slots() const
586 {
587 return this->is_interface_instance() ? NULL : this->u.state_slots;
588 }
589
590 inline ir_state_slot *allocate_state_slots(unsigned n)
591 {
592 assert(!this->is_interface_instance());
593
594 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595 this->data._num_state_slots = 0;
596
597 if (this->u.state_slots != NULL)
598 this->data._num_state_slots = n;
599
600 return this->u.state_slots;
601 }
602
603 inline bool is_interpolation_flat() const
604 {
605 return this->data.interpolation == INTERP_MODE_FLAT ||
606 this->type->contains_integer() ||
607 this->type->contains_double();
608 }
609
610 inline bool is_name_ralloced() const
611 {
612 return this->name != ir_variable::tmp_name &&
613 this->name != this->name_storage;
614 }
615
616 /**
617 * Enable emitting extension warnings for this variable
618 */
619 void enable_extension_warning(const char *extension);
620
621 /**
622 * Get the extension warning string for this variable
623 *
624 * If warnings are not enabled, \c NULL is returned.
625 */
626 const char *get_extension_warning() const;
627
628 /**
629 * Declared type of the variable
630 */
631 const struct glsl_type *type;
632
633 /**
634 * Declared name of the variable
635 */
636 const char *name;
637
638 private:
639 /**
640 * If the name length fits into name_storage, it's used, otherwise
641 * the name is ralloc'd. shader-db mining showed that 70% of variables
642 * fit here. This is a win over ralloc where only ralloc_header has
643 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644 */
645 char name_storage[16];
646
647 public:
648 struct ir_variable_data {
649
650 /**
651 * Is the variable read-only?
652 *
653 * This is set for variables declared as \c const, shader inputs,
654 * and uniforms.
655 */
656 unsigned read_only:1;
657 unsigned centroid:1;
658 unsigned sample:1;
659 unsigned patch:1;
660 /**
661 * Was an 'invariant' qualifier explicitly set in the shader?
662 *
663 * This is used to cross validate qualifiers.
664 */
665 unsigned explicit_invariant:1;
666 /**
667 * Is the variable invariant?
668 *
669 * It can happen either by having the 'invariant' qualifier
670 * explicitly set in the shader or by being used in calculations
671 * of other invariant variables.
672 */
673 unsigned invariant:1;
674 unsigned precise:1;
675
676 /**
677 * Has this variable been used for reading or writing?
678 *
679 * Several GLSL semantic checks require knowledge of whether or not a
680 * variable has been used. For example, it is an error to redeclare a
681 * variable as invariant after it has been used.
682 *
683 * This is maintained in the ast_to_hir.cpp path and during linking,
684 * but not in Mesa's fixed function or ARB program paths.
685 */
686 unsigned used:1;
687
688 /**
689 * Has this variable been statically assigned?
690 *
691 * This answers whether the variable was assigned in any path of
692 * the shader during ast_to_hir. This doesn't answer whether it is
693 * still written after dead code removal, nor is it maintained in
694 * non-ast_to_hir.cpp (GLSL parsing) paths.
695 */
696 unsigned assigned:1;
697
698 /**
699 * When separate shader programs are enabled, only input/outputs between
700 * the stages of a multi-stage separate program can be safely removed
701 * from the shader interface. Other input/outputs must remains active.
702 */
703 unsigned always_active_io:1;
704
705 /**
706 * Enum indicating how the variable was declared. See
707 * ir_var_declaration_type.
708 *
709 * This is used to detect certain kinds of illegal variable redeclarations.
710 */
711 unsigned how_declared:2;
712
713 /**
714 * Storage class of the variable.
715 *
716 * \sa ir_variable_mode
717 */
718 unsigned mode:4;
719
720 /**
721 * Interpolation mode for shader inputs / outputs
722 *
723 * \sa glsl_interp_mode
724 */
725 unsigned interpolation:2;
726
727 /**
728 * Was the location explicitly set in the shader?
729 *
730 * If the location is explicitly set in the shader, it \b cannot be changed
731 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
732 * no effect).
733 */
734 unsigned explicit_location:1;
735 unsigned explicit_index:1;
736
737 /**
738 * Was an initial binding explicitly set in the shader?
739 *
740 * If so, constant_value contains an integer ir_constant representing the
741 * initial binding point.
742 */
743 unsigned explicit_binding:1;
744
745 /**
746 * Was an initial component explicitly set in the shader?
747 */
748 unsigned explicit_component:1;
749
750 /**
751 * Does this variable have an initializer?
752 *
753 * This is used by the linker to cross-validiate initializers of global
754 * variables.
755 */
756 unsigned has_initializer:1;
757
758 /**
759 * Is this variable a generic output or input that has not yet been matched
760 * up to a variable in another stage of the pipeline?
761 *
762 * This is used by the linker as scratch storage while assigning locations
763 * to generic inputs and outputs.
764 */
765 unsigned is_unmatched_generic_inout:1;
766
767 /**
768 * Is this varying used only by transform feedback?
769 *
770 * This is used by the linker to decide if its safe to pack the varying.
771 */
772 unsigned is_xfb_only:1;
773
774 /**
775 * Was a transform feedback buffer set in the shader?
776 */
777 unsigned explicit_xfb_buffer:1;
778
779 /**
780 * Was a transform feedback offset set in the shader?
781 */
782 unsigned explicit_xfb_offset:1;
783
784 /**
785 * Was a transform feedback stride set in the shader?
786 */
787 unsigned explicit_xfb_stride:1;
788
789 /**
790 * If non-zero, then this variable may be packed along with other variables
791 * into a single varying slot, so this offset should be applied when
792 * accessing components. For example, an offset of 1 means that the x
793 * component of this variable is actually stored in component y of the
794 * location specified by \c location.
795 */
796 unsigned location_frac:2;
797
798 /**
799 * Layout of the matrix. Uses glsl_matrix_layout values.
800 */
801 unsigned matrix_layout:2;
802
803 /**
804 * Non-zero if this variable was created by lowering a named interface
805 * block.
806 */
807 unsigned from_named_ifc_block:1;
808
809 /**
810 * Non-zero if the variable must be a shader input. This is useful for
811 * constraints on function parameters.
812 */
813 unsigned must_be_shader_input:1;
814
815 /**
816 * Output index for dual source blending.
817 *
818 * \note
819 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
820 * source blending.
821 */
822 unsigned index:1;
823
824 /**
825 * Precision qualifier.
826 *
827 * In desktop GLSL we do not care about precision qualifiers at all, in
828 * fact, the spec says that precision qualifiers are ignored.
829 *
830 * To make things easy, we make it so that this field is always
831 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
832 * have the same precision value and the checks we add in the compiler
833 * for this field will never break a desktop shader compile.
834 */
835 unsigned precision:2;
836
837 /**
838 * \brief Layout qualifier for gl_FragDepth.
839 *
840 * This is not equal to \c ir_depth_layout_none if and only if this
841 * variable is \c gl_FragDepth and a layout qualifier is specified.
842 */
843 ir_depth_layout depth_layout:3;
844
845 /**
846 * Memory qualifiers.
847 */
848 unsigned memory_read_only:1; /**< "readonly" qualifier. */
849 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
850 unsigned memory_coherent:1;
851 unsigned memory_volatile:1;
852 unsigned memory_restrict:1;
853
854 /**
855 * ARB_shader_storage_buffer_object
856 */
857 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
858
859 unsigned implicit_sized_array:1;
860
861 /**
862 * Whether this is a fragment shader output implicitly initialized with
863 * the previous contents of the specified render target at the
864 * framebuffer location corresponding to this shader invocation.
865 */
866 unsigned fb_fetch_output:1;
867
868 /**
869 * Non-zero if this variable is considered bindless as defined by
870 * ARB_bindless_texture.
871 */
872 unsigned bindless:1;
873
874 /**
875 * Non-zero if this variable is considered bound as defined by
876 * ARB_bindless_texture.
877 */
878 unsigned bound:1;
879
880 /**
881 * Emit a warning if this variable is accessed.
882 */
883 private:
884 uint8_t warn_extension_index;
885
886 public:
887 /** Image internal format if specified explicitly, otherwise GL_NONE. */
888 uint16_t image_format;
889
890 private:
891 /**
892 * Number of state slots used
893 *
894 * \note
895 * This could be stored in as few as 7-bits, if necessary. If it is made
896 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
897 * be safe.
898 */
899 uint16_t _num_state_slots;
900
901 public:
902 /**
903 * Initial binding point for a sampler, atomic, or UBO.
904 *
905 * For array types, this represents the binding point for the first element.
906 */
907 int16_t binding;
908
909 /**
910 * Storage location of the base of this variable
911 *
912 * The precise meaning of this field depends on the nature of the variable.
913 *
914 * - Vertex shader input: one of the values from \c gl_vert_attrib.
915 * - Vertex shader output: one of the values from \c gl_varying_slot.
916 * - Geometry shader input: one of the values from \c gl_varying_slot.
917 * - Geometry shader output: one of the values from \c gl_varying_slot.
918 * - Fragment shader input: one of the values from \c gl_varying_slot.
919 * - Fragment shader output: one of the values from \c gl_frag_result.
920 * - Uniforms: Per-stage uniform slot number for default uniform block.
921 * - Uniforms: Index within the uniform block definition for UBO members.
922 * - Non-UBO Uniforms: explicit location until linking then reused to
923 * store uniform slot number.
924 * - Other: This field is not currently used.
925 *
926 * If the variable is a uniform, shader input, or shader output, and the
927 * slot has not been assigned, the value will be -1.
928 */
929 int location;
930
931 /**
932 * for glsl->tgsi/mesa IR we need to store the index into the
933 * parameters for uniforms, initially the code overloaded location
934 * but this causes problems with indirect samplers and AoA.
935 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
936 */
937 int param_index;
938
939 /**
940 * Vertex stream output identifier.
941 *
942 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
943 * stream of the i-th component.
944 */
945 unsigned stream;
946
947 /**
948 * Atomic, transform feedback or block member offset.
949 */
950 unsigned offset;
951
952 /**
953 * Highest element accessed with a constant expression array index
954 *
955 * Not used for non-array variables. -1 is never accessed.
956 */
957 int max_array_access;
958
959 /**
960 * Transform feedback buffer.
961 */
962 unsigned xfb_buffer;
963
964 /**
965 * Transform feedback stride.
966 */
967 unsigned xfb_stride;
968
969 /**
970 * Allow (only) ir_variable direct access private members.
971 */
972 friend class ir_variable;
973 } data;
974
975 /**
976 * Value assigned in the initializer of a variable declared "const"
977 */
978 ir_constant *constant_value;
979
980 /**
981 * Constant expression assigned in the initializer of the variable
982 *
983 * \warning
984 * This field and \c ::constant_value are distinct. Even if the two fields
985 * refer to constants with the same value, they must point to separate
986 * objects.
987 */
988 ir_constant *constant_initializer;
989
990 private:
991 static const char *const warn_extension_table[];
992
993 union {
994 /**
995 * For variables which satisfy the is_interface_instance() predicate,
996 * this points to an array of integers such that if the ith member of
997 * the interface block is an array, max_ifc_array_access[i] is the
998 * maximum array element of that member that has been accessed. If the
999 * ith member of the interface block is not an array,
1000 * max_ifc_array_access[i] is unused.
1001 *
1002 * For variables whose type is not an interface block, this pointer is
1003 * NULL.
1004 */
1005 int *max_ifc_array_access;
1006
1007 /**
1008 * Built-in state that backs this uniform
1009 *
1010 * Once set at variable creation, \c state_slots must remain invariant.
1011 *
1012 * If the variable is not a uniform, \c _num_state_slots will be zero
1013 * and \c state_slots will be \c NULL.
1014 */
1015 ir_state_slot *state_slots;
1016 } u;
1017
1018 /**
1019 * For variables that are in an interface block or are an instance of an
1020 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1021 *
1022 * \sa ir_variable::location
1023 */
1024 const glsl_type *interface_type;
1025
1026 /**
1027 * Name used for anonymous compiler temporaries
1028 */
1029 static const char tmp_name[];
1030
1031 public:
1032 /**
1033 * Should the construct keep names for ir_var_temporary variables?
1034 *
1035 * When this global is false, names passed to the constructor for
1036 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1037 * be named "compiler_temp". This name will be in static storage.
1038 *
1039 * \warning
1040 * \b NEVER change the mode of an \c ir_var_temporary.
1041 *
1042 * \warning
1043 * This variable is \b not thread-safe. It is global, \b not
1044 * per-context. It begins life false. A context can, at some point, make
1045 * it true. From that point on, it will be true forever. This should be
1046 * okay since it will only be set true while debugging.
1047 */
1048 static bool temporaries_allocate_names;
1049 };
1050
1051 /**
1052 * A function that returns whether a built-in function is available in the
1053 * current shading language (based on version, ES or desktop, and extensions).
1054 */
1055 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1056
1057 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1058 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1059
1060 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1061 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1062
1063 enum ir_intrinsic_id {
1064 ir_intrinsic_invalid = 0,
1065
1066 /**
1067 * \name Generic intrinsics
1068 *
1069 * Each of these intrinsics has a specific version for shared variables and
1070 * SSBOs.
1071 */
1072 /*@{*/
1073 ir_intrinsic_generic_load,
1074 ir_intrinsic_generic_store,
1075 ir_intrinsic_generic_atomic_add,
1076 ir_intrinsic_generic_atomic_and,
1077 ir_intrinsic_generic_atomic_or,
1078 ir_intrinsic_generic_atomic_xor,
1079 ir_intrinsic_generic_atomic_min,
1080 ir_intrinsic_generic_atomic_max,
1081 ir_intrinsic_generic_atomic_exchange,
1082 ir_intrinsic_generic_atomic_comp_swap,
1083 /*@}*/
1084
1085 ir_intrinsic_atomic_counter_read,
1086 ir_intrinsic_atomic_counter_increment,
1087 ir_intrinsic_atomic_counter_predecrement,
1088 ir_intrinsic_atomic_counter_add,
1089 ir_intrinsic_atomic_counter_and,
1090 ir_intrinsic_atomic_counter_or,
1091 ir_intrinsic_atomic_counter_xor,
1092 ir_intrinsic_atomic_counter_min,
1093 ir_intrinsic_atomic_counter_max,
1094 ir_intrinsic_atomic_counter_exchange,
1095 ir_intrinsic_atomic_counter_comp_swap,
1096
1097 ir_intrinsic_image_load,
1098 ir_intrinsic_image_store,
1099 ir_intrinsic_image_atomic_add,
1100 ir_intrinsic_image_atomic_and,
1101 ir_intrinsic_image_atomic_or,
1102 ir_intrinsic_image_atomic_xor,
1103 ir_intrinsic_image_atomic_min,
1104 ir_intrinsic_image_atomic_max,
1105 ir_intrinsic_image_atomic_exchange,
1106 ir_intrinsic_image_atomic_comp_swap,
1107 ir_intrinsic_image_size,
1108 ir_intrinsic_image_samples,
1109
1110 ir_intrinsic_ssbo_load,
1111 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1112 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1113 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1114 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1115 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1116 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1117 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1118 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1119 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1120
1121 ir_intrinsic_memory_barrier,
1122 ir_intrinsic_shader_clock,
1123 ir_intrinsic_group_memory_barrier,
1124 ir_intrinsic_memory_barrier_atomic_counter,
1125 ir_intrinsic_memory_barrier_buffer,
1126 ir_intrinsic_memory_barrier_image,
1127 ir_intrinsic_memory_barrier_shared,
1128 ir_intrinsic_begin_invocation_interlock,
1129 ir_intrinsic_end_invocation_interlock,
1130
1131 ir_intrinsic_vote_all,
1132 ir_intrinsic_vote_any,
1133 ir_intrinsic_vote_eq,
1134 ir_intrinsic_ballot,
1135 ir_intrinsic_read_invocation,
1136 ir_intrinsic_read_first_invocation,
1137
1138 ir_intrinsic_shared_load,
1139 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1140 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1141 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1142 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1143 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1144 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1145 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1146 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1147 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1148 };
1149
1150 /*@{*/
1151 /**
1152 * The representation of a function instance; may be the full definition or
1153 * simply a prototype.
1154 */
1155 class ir_function_signature : public ir_instruction {
1156 /* An ir_function_signature will be part of the list of signatures in
1157 * an ir_function.
1158 */
1159 public:
1160 ir_function_signature(const glsl_type *return_type,
1161 builtin_available_predicate builtin_avail = NULL);
1162
1163 virtual ir_function_signature *clone(void *mem_ctx,
1164 struct hash_table *ht) const;
1165 ir_function_signature *clone_prototype(void *mem_ctx,
1166 struct hash_table *ht) const;
1167
1168 virtual void accept(ir_visitor *v)
1169 {
1170 v->visit(this);
1171 }
1172
1173 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1174
1175 /**
1176 * Attempt to evaluate this function as a constant expression,
1177 * given a list of the actual parameters and the variable context.
1178 * Returns NULL for non-built-ins.
1179 */
1180 ir_constant *constant_expression_value(void *mem_ctx,
1181 exec_list *actual_parameters,
1182 struct hash_table *variable_context);
1183
1184 /**
1185 * Get the name of the function for which this is a signature
1186 */
1187 const char *function_name() const;
1188
1189 /**
1190 * Get a handle to the function for which this is a signature
1191 *
1192 * There is no setter function, this function returns a \c const pointer,
1193 * and \c ir_function_signature::_function is private for a reason. The
1194 * only way to make a connection between a function and function signature
1195 * is via \c ir_function::add_signature. This helps ensure that certain
1196 * invariants (i.e., a function signature is in the list of signatures for
1197 * its \c _function) are met.
1198 *
1199 * \sa ir_function::add_signature
1200 */
1201 inline const class ir_function *function() const
1202 {
1203 return this->_function;
1204 }
1205
1206 /**
1207 * Check whether the qualifiers match between this signature's parameters
1208 * and the supplied parameter list. If not, returns the name of the first
1209 * parameter with mismatched qualifiers (for use in error messages).
1210 */
1211 const char *qualifiers_match(exec_list *params);
1212
1213 /**
1214 * Replace the current parameter list with the given one. This is useful
1215 * if the current information came from a prototype, and either has invalid
1216 * or missing parameter names.
1217 */
1218 void replace_parameters(exec_list *new_params);
1219
1220 /**
1221 * Function return type.
1222 *
1223 * \note This discards the optional precision qualifier.
1224 */
1225 const struct glsl_type *return_type;
1226
1227 /**
1228 * List of ir_variable of function parameters.
1229 *
1230 * This represents the storage. The paramaters passed in a particular
1231 * call will be in ir_call::actual_paramaters.
1232 */
1233 struct exec_list parameters;
1234
1235 /** Whether or not this function has a body (which may be empty). */
1236 unsigned is_defined:1;
1237
1238 /** Whether or not this function signature is a built-in. */
1239 bool is_builtin() const;
1240
1241 /**
1242 * Whether or not this function is an intrinsic to be implemented
1243 * by the driver.
1244 */
1245 inline bool is_intrinsic() const
1246 {
1247 return intrinsic_id != ir_intrinsic_invalid;
1248 }
1249
1250 /** Indentifier for this intrinsic. */
1251 enum ir_intrinsic_id intrinsic_id;
1252
1253 /** Whether or not a built-in is available for this shader. */
1254 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1255
1256 /** Body of instructions in the function. */
1257 struct exec_list body;
1258
1259 private:
1260 /**
1261 * A function pointer to a predicate that answers whether a built-in
1262 * function is available in the current shader. NULL if not a built-in.
1263 */
1264 builtin_available_predicate builtin_avail;
1265
1266 /** Function of which this signature is one overload. */
1267 class ir_function *_function;
1268
1269 /** Function signature of which this one is a prototype clone */
1270 const ir_function_signature *origin;
1271
1272 friend class ir_function;
1273
1274 /**
1275 * Helper function to run a list of instructions for constant
1276 * expression evaluation.
1277 *
1278 * The hash table represents the values of the visible variables.
1279 * There are no scoping issues because the table is indexed on
1280 * ir_variable pointers, not variable names.
1281 *
1282 * Returns false if the expression is not constant, true otherwise,
1283 * and the value in *result if result is non-NULL.
1284 */
1285 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1286 const struct exec_list &body,
1287 struct hash_table *variable_context,
1288 ir_constant **result);
1289 };
1290
1291
1292 /**
1293 * Header for tracking multiple overloaded functions with the same name.
1294 * Contains a list of ir_function_signatures representing each of the
1295 * actual functions.
1296 */
1297 class ir_function : public ir_instruction {
1298 public:
1299 ir_function(const char *name);
1300
1301 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1302
1303 virtual void accept(ir_visitor *v)
1304 {
1305 v->visit(this);
1306 }
1307
1308 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1309
1310 void add_signature(ir_function_signature *sig)
1311 {
1312 sig->_function = this;
1313 this->signatures.push_tail(sig);
1314 }
1315
1316 /**
1317 * Find a signature that matches a set of actual parameters, taking implicit
1318 * conversions into account. Also flags whether the match was exact.
1319 */
1320 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1321 const exec_list *actual_param,
1322 bool allow_builtins,
1323 bool *match_is_exact);
1324
1325 /**
1326 * Find a signature that matches a set of actual parameters, taking implicit
1327 * conversions into account.
1328 */
1329 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1330 const exec_list *actual_param,
1331 bool allow_builtins);
1332
1333 /**
1334 * Find a signature that exactly matches a set of actual parameters without
1335 * any implicit type conversions.
1336 */
1337 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1338 const exec_list *actual_ps);
1339
1340 /**
1341 * Name of the function.
1342 */
1343 const char *name;
1344
1345 /** Whether or not this function has a signature that isn't a built-in. */
1346 bool has_user_signature();
1347
1348 /**
1349 * List of ir_function_signature for each overloaded function with this name.
1350 */
1351 struct exec_list signatures;
1352
1353 /**
1354 * is this function a subroutine type declaration
1355 * e.g. subroutine void type1(float arg1);
1356 */
1357 bool is_subroutine;
1358
1359 /**
1360 * is this function associated to a subroutine type
1361 * e.g. subroutine (type1, type2) function_name { function_body };
1362 * would have num_subroutine_types 2,
1363 * and pointers to the type1 and type2 types.
1364 */
1365 int num_subroutine_types;
1366 const struct glsl_type **subroutine_types;
1367
1368 int subroutine_index;
1369 };
1370
1371 inline const char *ir_function_signature::function_name() const
1372 {
1373 return this->_function->name;
1374 }
1375 /*@}*/
1376
1377
1378 /**
1379 * IR instruction representing high-level if-statements
1380 */
1381 class ir_if : public ir_instruction {
1382 public:
1383 ir_if(ir_rvalue *condition)
1384 : ir_instruction(ir_type_if), condition(condition)
1385 {
1386 }
1387
1388 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1389
1390 virtual void accept(ir_visitor *v)
1391 {
1392 v->visit(this);
1393 }
1394
1395 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1396
1397 ir_rvalue *condition;
1398 /** List of ir_instruction for the body of the then branch */
1399 exec_list then_instructions;
1400 /** List of ir_instruction for the body of the else branch */
1401 exec_list else_instructions;
1402 };
1403
1404
1405 /**
1406 * IR instruction representing a high-level loop structure.
1407 */
1408 class ir_loop : public ir_instruction {
1409 public:
1410 ir_loop();
1411
1412 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1413
1414 virtual void accept(ir_visitor *v)
1415 {
1416 v->visit(this);
1417 }
1418
1419 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1420
1421 /** List of ir_instruction that make up the body of the loop. */
1422 exec_list body_instructions;
1423 };
1424
1425
1426 class ir_assignment : public ir_instruction {
1427 public:
1428 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1429
1430 /**
1431 * Construct an assignment with an explicit write mask
1432 *
1433 * \note
1434 * Since a write mask is supplied, the LHS must already be a bare
1435 * \c ir_dereference. The cannot be any swizzles in the LHS.
1436 */
1437 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1438 unsigned write_mask);
1439
1440 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1441
1442 virtual ir_constant *constant_expression_value(void *mem_ctx,
1443 struct hash_table *variable_context = NULL);
1444
1445 virtual void accept(ir_visitor *v)
1446 {
1447 v->visit(this);
1448 }
1449
1450 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1451
1452 /**
1453 * Get a whole variable written by an assignment
1454 *
1455 * If the LHS of the assignment writes a whole variable, the variable is
1456 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1457 * assignment are:
1458 *
1459 * - Assigning to a scalar
1460 * - Assigning to all components of a vector
1461 * - Whole array (or matrix) assignment
1462 * - Whole structure assignment
1463 */
1464 ir_variable *whole_variable_written();
1465
1466 /**
1467 * Set the LHS of an assignment
1468 */
1469 void set_lhs(ir_rvalue *lhs);
1470
1471 /**
1472 * Left-hand side of the assignment.
1473 *
1474 * This should be treated as read only. If you need to set the LHS of an
1475 * assignment, use \c ir_assignment::set_lhs.
1476 */
1477 ir_dereference *lhs;
1478
1479 /**
1480 * Value being assigned
1481 */
1482 ir_rvalue *rhs;
1483
1484 /**
1485 * Optional condition for the assignment.
1486 */
1487 ir_rvalue *condition;
1488
1489
1490 /**
1491 * Component mask written
1492 *
1493 * For non-vector types in the LHS, this field will be zero. For vector
1494 * types, a bit will be set for each component that is written. Note that
1495 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1496 *
1497 * A partially-set write mask means that each enabled channel gets
1498 * the value from a consecutive channel of the rhs. For example,
1499 * to write just .xyw of gl_FrontColor with color:
1500 *
1501 * (assign (constant bool (1)) (xyw)
1502 * (var_ref gl_FragColor)
1503 * (swiz xyw (var_ref color)))
1504 */
1505 unsigned write_mask:4;
1506 };
1507
1508 #include "ir_expression_operation.h"
1509
1510 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1511 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1512
1513 class ir_expression : public ir_rvalue {
1514 public:
1515 ir_expression(int op, const struct glsl_type *type,
1516 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1517 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1518
1519 /**
1520 * Constructor for unary operation expressions
1521 */
1522 ir_expression(int op, ir_rvalue *);
1523
1524 /**
1525 * Constructor for binary operation expressions
1526 */
1527 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1528
1529 /**
1530 * Constructor for ternary operation expressions
1531 */
1532 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1533
1534 virtual bool equals(const ir_instruction *ir,
1535 enum ir_node_type ignore = ir_type_unset) const;
1536
1537 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1538
1539 /**
1540 * Attempt to constant-fold the expression
1541 *
1542 * The "variable_context" hash table links ir_variable * to ir_constant *
1543 * that represent the variables' values. \c NULL represents an empty
1544 * context.
1545 *
1546 * If the expression cannot be constant folded, this method will return
1547 * \c NULL.
1548 */
1549 virtual ir_constant *constant_expression_value(void *mem_ctx,
1550 struct hash_table *variable_context = NULL);
1551
1552 /**
1553 * This is only here for ir_reader to used for testing purposes please use
1554 * the precomputed num_operands field if you need the number of operands.
1555 */
1556 static unsigned get_num_operands(ir_expression_operation);
1557
1558 /**
1559 * Return whether the expression operates on vectors horizontally.
1560 */
1561 bool is_horizontal() const
1562 {
1563 return operation == ir_binop_all_equal ||
1564 operation == ir_binop_any_nequal ||
1565 operation == ir_binop_dot ||
1566 operation == ir_binop_vector_extract ||
1567 operation == ir_triop_vector_insert ||
1568 operation == ir_binop_ubo_load ||
1569 operation == ir_quadop_vector;
1570 }
1571
1572 /**
1573 * Do a reverse-lookup to translate the given string into an operator.
1574 */
1575 static ir_expression_operation get_operator(const char *);
1576
1577 virtual void accept(ir_visitor *v)
1578 {
1579 v->visit(this);
1580 }
1581
1582 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1583
1584 virtual ir_variable *variable_referenced() const;
1585
1586 /**
1587 * Determine the number of operands used by an expression
1588 */
1589 void init_num_operands()
1590 {
1591 if (operation == ir_quadop_vector) {
1592 num_operands = this->type->vector_elements;
1593 } else {
1594 num_operands = get_num_operands(operation);
1595 }
1596 }
1597
1598 ir_expression_operation operation;
1599 ir_rvalue *operands[4];
1600 uint8_t num_operands;
1601 };
1602
1603
1604 /**
1605 * HIR instruction representing a high-level function call, containing a list
1606 * of parameters and returning a value in the supplied temporary.
1607 */
1608 class ir_call : public ir_instruction {
1609 public:
1610 ir_call(ir_function_signature *callee,
1611 ir_dereference_variable *return_deref,
1612 exec_list *actual_parameters)
1613 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1614 {
1615 assert(callee->return_type != NULL);
1616 actual_parameters->move_nodes_to(& this->actual_parameters);
1617 }
1618
1619 ir_call(ir_function_signature *callee,
1620 ir_dereference_variable *return_deref,
1621 exec_list *actual_parameters,
1622 ir_variable *var, ir_rvalue *array_idx)
1623 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1624 {
1625 assert(callee->return_type != NULL);
1626 actual_parameters->move_nodes_to(& this->actual_parameters);
1627 }
1628
1629 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1630
1631 virtual ir_constant *constant_expression_value(void *mem_ctx,
1632 struct hash_table *variable_context = NULL);
1633
1634 virtual void accept(ir_visitor *v)
1635 {
1636 v->visit(this);
1637 }
1638
1639 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1640
1641 /**
1642 * Get the name of the function being called.
1643 */
1644 const char *callee_name() const
1645 {
1646 return callee->function_name();
1647 }
1648
1649 /**
1650 * Generates an inline version of the function before @ir,
1651 * storing the return value in return_deref.
1652 */
1653 void generate_inline(ir_instruction *ir);
1654
1655 /**
1656 * Storage for the function's return value.
1657 * This must be NULL if the return type is void.
1658 */
1659 ir_dereference_variable *return_deref;
1660
1661 /**
1662 * The specific function signature being called.
1663 */
1664 ir_function_signature *callee;
1665
1666 /* List of ir_rvalue of paramaters passed in this call. */
1667 exec_list actual_parameters;
1668
1669 /*
1670 * ARB_shader_subroutine support -
1671 * the subroutine uniform variable and array index
1672 * rvalue to be used in the lowering pass later.
1673 */
1674 ir_variable *sub_var;
1675 ir_rvalue *array_idx;
1676 };
1677
1678
1679 /**
1680 * \name Jump-like IR instructions.
1681 *
1682 * These include \c break, \c continue, \c return, and \c discard.
1683 */
1684 /*@{*/
1685 class ir_jump : public ir_instruction {
1686 protected:
1687 ir_jump(enum ir_node_type t)
1688 : ir_instruction(t)
1689 {
1690 }
1691 };
1692
1693 class ir_return : public ir_jump {
1694 public:
1695 ir_return()
1696 : ir_jump(ir_type_return), value(NULL)
1697 {
1698 }
1699
1700 ir_return(ir_rvalue *value)
1701 : ir_jump(ir_type_return), value(value)
1702 {
1703 }
1704
1705 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1706
1707 ir_rvalue *get_value() const
1708 {
1709 return value;
1710 }
1711
1712 virtual void accept(ir_visitor *v)
1713 {
1714 v->visit(this);
1715 }
1716
1717 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1718
1719 ir_rvalue *value;
1720 };
1721
1722
1723 /**
1724 * Jump instructions used inside loops
1725 *
1726 * These include \c break and \c continue. The \c break within a loop is
1727 * different from the \c break within a switch-statement.
1728 *
1729 * \sa ir_switch_jump
1730 */
1731 class ir_loop_jump : public ir_jump {
1732 public:
1733 enum jump_mode {
1734 jump_break,
1735 jump_continue
1736 };
1737
1738 ir_loop_jump(jump_mode mode)
1739 : ir_jump(ir_type_loop_jump)
1740 {
1741 this->mode = mode;
1742 }
1743
1744 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1745
1746 virtual void accept(ir_visitor *v)
1747 {
1748 v->visit(this);
1749 }
1750
1751 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1752
1753 bool is_break() const
1754 {
1755 return mode == jump_break;
1756 }
1757
1758 bool is_continue() const
1759 {
1760 return mode == jump_continue;
1761 }
1762
1763 /** Mode selector for the jump instruction. */
1764 enum jump_mode mode;
1765 };
1766
1767 /**
1768 * IR instruction representing discard statements.
1769 */
1770 class ir_discard : public ir_jump {
1771 public:
1772 ir_discard()
1773 : ir_jump(ir_type_discard)
1774 {
1775 this->condition = NULL;
1776 }
1777
1778 ir_discard(ir_rvalue *cond)
1779 : ir_jump(ir_type_discard)
1780 {
1781 this->condition = cond;
1782 }
1783
1784 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1785
1786 virtual void accept(ir_visitor *v)
1787 {
1788 v->visit(this);
1789 }
1790
1791 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1792
1793 ir_rvalue *condition;
1794 };
1795 /*@}*/
1796
1797
1798 /**
1799 * Texture sampling opcodes used in ir_texture
1800 */
1801 enum ir_texture_opcode {
1802 ir_tex, /**< Regular texture look-up */
1803 ir_txb, /**< Texture look-up with LOD bias */
1804 ir_txl, /**< Texture look-up with explicit LOD */
1805 ir_txd, /**< Texture look-up with partial derivatvies */
1806 ir_txf, /**< Texel fetch with explicit LOD */
1807 ir_txf_ms, /**< Multisample texture fetch */
1808 ir_txs, /**< Texture size */
1809 ir_lod, /**< Texture lod query */
1810 ir_tg4, /**< Texture gather */
1811 ir_query_levels, /**< Texture levels query */
1812 ir_texture_samples, /**< Texture samples query */
1813 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1814 };
1815
1816
1817 /**
1818 * IR instruction to sample a texture
1819 *
1820 * The specific form of the IR instruction depends on the \c mode value
1821 * selected from \c ir_texture_opcodes. In the printed IR, these will
1822 * appear as:
1823 *
1824 * Texel offset (0 or an expression)
1825 * | Projection divisor
1826 * | | Shadow comparator
1827 * | | |
1828 * v v v
1829 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1830 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1831 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1832 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1833 * (txf <type> <sampler> <coordinate> 0 <lod>)
1834 * (txf_ms
1835 * <type> <sampler> <coordinate> <sample_index>)
1836 * (txs <type> <sampler> <lod>)
1837 * (lod <type> <sampler> <coordinate>)
1838 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1839 * (query_levels <type> <sampler>)
1840 * (samples_identical <sampler> <coordinate>)
1841 */
1842 class ir_texture : public ir_rvalue {
1843 public:
1844 ir_texture(enum ir_texture_opcode op)
1845 : ir_rvalue(ir_type_texture),
1846 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1847 shadow_comparator(NULL), offset(NULL)
1848 {
1849 memset(&lod_info, 0, sizeof(lod_info));
1850 }
1851
1852 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1853
1854 virtual ir_constant *constant_expression_value(void *mem_ctx,
1855 struct hash_table *variable_context = NULL);
1856
1857 virtual void accept(ir_visitor *v)
1858 {
1859 v->visit(this);
1860 }
1861
1862 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1863
1864 virtual bool equals(const ir_instruction *ir,
1865 enum ir_node_type ignore = ir_type_unset) const;
1866
1867 /**
1868 * Return a string representing the ir_texture_opcode.
1869 */
1870 const char *opcode_string();
1871
1872 /** Set the sampler and type. */
1873 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1874
1875 /**
1876 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1877 */
1878 static ir_texture_opcode get_opcode(const char *);
1879
1880 enum ir_texture_opcode op;
1881
1882 /** Sampler to use for the texture access. */
1883 ir_dereference *sampler;
1884
1885 /** Texture coordinate to sample */
1886 ir_rvalue *coordinate;
1887
1888 /**
1889 * Value used for projective divide.
1890 *
1891 * If there is no projective divide (the common case), this will be
1892 * \c NULL. Optimization passes should check for this to point to a constant
1893 * of 1.0 and replace that with \c NULL.
1894 */
1895 ir_rvalue *projector;
1896
1897 /**
1898 * Coordinate used for comparison on shadow look-ups.
1899 *
1900 * If there is no shadow comparison, this will be \c NULL. For the
1901 * \c ir_txf opcode, this *must* be \c NULL.
1902 */
1903 ir_rvalue *shadow_comparator;
1904
1905 /** Texel offset. */
1906 ir_rvalue *offset;
1907
1908 union {
1909 ir_rvalue *lod; /**< Floating point LOD */
1910 ir_rvalue *bias; /**< Floating point LOD bias */
1911 ir_rvalue *sample_index; /**< MSAA sample index */
1912 ir_rvalue *component; /**< Gather component selector */
1913 struct {
1914 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1915 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1916 } grad;
1917 } lod_info;
1918 };
1919
1920
1921 struct ir_swizzle_mask {
1922 unsigned x:2;
1923 unsigned y:2;
1924 unsigned z:2;
1925 unsigned w:2;
1926
1927 /**
1928 * Number of components in the swizzle.
1929 */
1930 unsigned num_components:3;
1931
1932 /**
1933 * Does the swizzle contain duplicate components?
1934 *
1935 * L-value swizzles cannot contain duplicate components.
1936 */
1937 unsigned has_duplicates:1;
1938 };
1939
1940
1941 class ir_swizzle : public ir_rvalue {
1942 public:
1943 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1944 unsigned count);
1945
1946 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1947
1948 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1949
1950 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1951
1952 virtual ir_constant *constant_expression_value(void *mem_ctx,
1953 struct hash_table *variable_context = NULL);
1954
1955 /**
1956 * Construct an ir_swizzle from the textual representation. Can fail.
1957 */
1958 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1959
1960 virtual void accept(ir_visitor *v)
1961 {
1962 v->visit(this);
1963 }
1964
1965 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1966
1967 virtual bool equals(const ir_instruction *ir,
1968 enum ir_node_type ignore = ir_type_unset) const;
1969
1970 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1971 {
1972 return val->is_lvalue(state) && !mask.has_duplicates;
1973 }
1974
1975 /**
1976 * Get the variable that is ultimately referenced by an r-value
1977 */
1978 virtual ir_variable *variable_referenced() const;
1979
1980 ir_rvalue *val;
1981 ir_swizzle_mask mask;
1982
1983 private:
1984 /**
1985 * Initialize the mask component of a swizzle
1986 *
1987 * This is used by the \c ir_swizzle constructors.
1988 */
1989 void init_mask(const unsigned *components, unsigned count);
1990 };
1991
1992
1993 class ir_dereference : public ir_rvalue {
1994 public:
1995 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1996
1997 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
1998
1999 /**
2000 * Get the variable that is ultimately referenced by an r-value
2001 */
2002 virtual ir_variable *variable_referenced() const = 0;
2003
2004 protected:
2005 ir_dereference(enum ir_node_type t)
2006 : ir_rvalue(t)
2007 {
2008 }
2009 };
2010
2011
2012 class ir_dereference_variable : public ir_dereference {
2013 public:
2014 ir_dereference_variable(ir_variable *var);
2015
2016 virtual ir_dereference_variable *clone(void *mem_ctx,
2017 struct hash_table *) const;
2018
2019 virtual ir_constant *constant_expression_value(void *mem_ctx,
2020 struct hash_table *variable_context = NULL);
2021
2022 virtual bool equals(const ir_instruction *ir,
2023 enum ir_node_type ignore = ir_type_unset) const;
2024
2025 /**
2026 * Get the variable that is ultimately referenced by an r-value
2027 */
2028 virtual ir_variable *variable_referenced() const
2029 {
2030 return this->var;
2031 }
2032
2033 virtual ir_variable *whole_variable_referenced()
2034 {
2035 /* ir_dereference_variable objects always dereference the entire
2036 * variable. However, if this dereference is dereferenced by anything
2037 * else, the complete deferefernce chain is not a whole-variable
2038 * dereference. This method should only be called on the top most
2039 * ir_rvalue in a dereference chain.
2040 */
2041 return this->var;
2042 }
2043
2044 virtual void accept(ir_visitor *v)
2045 {
2046 v->visit(this);
2047 }
2048
2049 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2050
2051 /**
2052 * Object being dereferenced.
2053 */
2054 ir_variable *var;
2055 };
2056
2057
2058 class ir_dereference_array : public ir_dereference {
2059 public:
2060 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2061
2062 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2063
2064 virtual ir_dereference_array *clone(void *mem_ctx,
2065 struct hash_table *) const;
2066
2067 virtual ir_constant *constant_expression_value(void *mem_ctx,
2068 struct hash_table *variable_context = NULL);
2069
2070 virtual bool equals(const ir_instruction *ir,
2071 enum ir_node_type ignore = ir_type_unset) const;
2072
2073 /**
2074 * Get the variable that is ultimately referenced by an r-value
2075 */
2076 virtual ir_variable *variable_referenced() const
2077 {
2078 return this->array->variable_referenced();
2079 }
2080
2081 virtual void accept(ir_visitor *v)
2082 {
2083 v->visit(this);
2084 }
2085
2086 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2087
2088 ir_rvalue *array;
2089 ir_rvalue *array_index;
2090
2091 private:
2092 void set_array(ir_rvalue *value);
2093 };
2094
2095
2096 class ir_dereference_record : public ir_dereference {
2097 public:
2098 ir_dereference_record(ir_rvalue *value, const char *field);
2099
2100 ir_dereference_record(ir_variable *var, const char *field);
2101
2102 virtual ir_dereference_record *clone(void *mem_ctx,
2103 struct hash_table *) const;
2104
2105 virtual ir_constant *constant_expression_value(void *mem_ctx,
2106 struct hash_table *variable_context = NULL);
2107
2108 /**
2109 * Get the variable that is ultimately referenced by an r-value
2110 */
2111 virtual ir_variable *variable_referenced() const
2112 {
2113 return this->record->variable_referenced();
2114 }
2115
2116 virtual void accept(ir_visitor *v)
2117 {
2118 v->visit(this);
2119 }
2120
2121 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2122
2123 ir_rvalue *record;
2124 int field_idx;
2125 };
2126
2127
2128 /**
2129 * Data stored in an ir_constant
2130 */
2131 union ir_constant_data {
2132 unsigned u[16];
2133 int i[16];
2134 float f[16];
2135 bool b[16];
2136 double d[16];
2137 uint64_t u64[16];
2138 int64_t i64[16];
2139 };
2140
2141
2142 class ir_constant : public ir_rvalue {
2143 public:
2144 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2145 ir_constant(bool b, unsigned vector_elements=1);
2146 ir_constant(unsigned int u, unsigned vector_elements=1);
2147 ir_constant(int i, unsigned vector_elements=1);
2148 ir_constant(float f, unsigned vector_elements=1);
2149 ir_constant(double d, unsigned vector_elements=1);
2150 ir_constant(uint64_t u64, unsigned vector_elements=1);
2151 ir_constant(int64_t i64, unsigned vector_elements=1);
2152
2153 /**
2154 * Construct an ir_constant from a list of ir_constant values
2155 */
2156 ir_constant(const struct glsl_type *type, exec_list *values);
2157
2158 /**
2159 * Construct an ir_constant from a scalar component of another ir_constant
2160 *
2161 * The new \c ir_constant inherits the type of the component from the
2162 * source constant.
2163 *
2164 * \note
2165 * In the case of a matrix constant, the new constant is a scalar, \b not
2166 * a vector.
2167 */
2168 ir_constant(const ir_constant *c, unsigned i);
2169
2170 /**
2171 * Return a new ir_constant of the specified type containing all zeros.
2172 */
2173 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2174
2175 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2176
2177 virtual ir_constant *constant_expression_value(void *mem_ctx,
2178 struct hash_table *variable_context = NULL);
2179
2180 virtual void accept(ir_visitor *v)
2181 {
2182 v->visit(this);
2183 }
2184
2185 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2186
2187 virtual bool equals(const ir_instruction *ir,
2188 enum ir_node_type ignore = ir_type_unset) const;
2189
2190 /**
2191 * Get a particular component of a constant as a specific type
2192 *
2193 * This is useful, for example, to get a value from an integer constant
2194 * as a float or bool. This appears frequently when constructors are
2195 * called with all constant parameters.
2196 */
2197 /*@{*/
2198 bool get_bool_component(unsigned i) const;
2199 float get_float_component(unsigned i) const;
2200 double get_double_component(unsigned i) const;
2201 int get_int_component(unsigned i) const;
2202 unsigned get_uint_component(unsigned i) const;
2203 int64_t get_int64_component(unsigned i) const;
2204 uint64_t get_uint64_component(unsigned i) const;
2205 /*@}*/
2206
2207 ir_constant *get_array_element(unsigned i) const;
2208
2209 ir_constant *get_record_field(int idx);
2210
2211 /**
2212 * Copy the values on another constant at a given offset.
2213 *
2214 * The offset is ignored for array or struct copies, it's only for
2215 * scalars or vectors into vectors or matrices.
2216 *
2217 * With identical types on both sides and zero offset it's clone()
2218 * without creating a new object.
2219 */
2220
2221 void copy_offset(ir_constant *src, int offset);
2222
2223 /**
2224 * Copy the values on another constant at a given offset and
2225 * following an assign-like mask.
2226 *
2227 * The mask is ignored for scalars.
2228 *
2229 * Note that this function only handles what assign can handle,
2230 * i.e. at most a vector as source and a column of a matrix as
2231 * destination.
2232 */
2233
2234 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2235
2236 /**
2237 * Determine whether a constant has the same value as another constant
2238 *
2239 * \sa ir_constant::is_zero, ir_constant::is_one,
2240 * ir_constant::is_negative_one
2241 */
2242 bool has_value(const ir_constant *) const;
2243
2244 /**
2245 * Return true if this ir_constant represents the given value.
2246 *
2247 * For vectors, this checks that each component is the given value.
2248 */
2249 virtual bool is_value(float f, int i) const;
2250 virtual bool is_zero() const;
2251 virtual bool is_one() const;
2252 virtual bool is_negative_one() const;
2253
2254 /**
2255 * Return true for constants that could be stored as 16-bit unsigned values.
2256 *
2257 * Note that this will return true even for signed integer ir_constants, as
2258 * long as the value is non-negative and fits in 16-bits.
2259 */
2260 virtual bool is_uint16_constant() const;
2261
2262 /**
2263 * Value of the constant.
2264 *
2265 * The field used to back the values supplied by the constant is determined
2266 * by the type associated with the \c ir_instruction. Constants may be
2267 * scalars, vectors, or matrices.
2268 */
2269 union ir_constant_data value;
2270
2271 /* Array elements and structure fields */
2272 ir_constant **const_elements;
2273
2274 private:
2275 /**
2276 * Parameterless constructor only used by the clone method
2277 */
2278 ir_constant(void);
2279 };
2280
2281 /**
2282 * IR instruction to emit a vertex in a geometry shader.
2283 */
2284 class ir_emit_vertex : public ir_instruction {
2285 public:
2286 ir_emit_vertex(ir_rvalue *stream)
2287 : ir_instruction(ir_type_emit_vertex),
2288 stream(stream)
2289 {
2290 assert(stream);
2291 }
2292
2293 virtual void accept(ir_visitor *v)
2294 {
2295 v->visit(this);
2296 }
2297
2298 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2299 {
2300 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2301 }
2302
2303 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2304
2305 int stream_id() const
2306 {
2307 return stream->as_constant()->value.i[0];
2308 }
2309
2310 ir_rvalue *stream;
2311 };
2312
2313 /**
2314 * IR instruction to complete the current primitive and start a new one in a
2315 * geometry shader.
2316 */
2317 class ir_end_primitive : public ir_instruction {
2318 public:
2319 ir_end_primitive(ir_rvalue *stream)
2320 : ir_instruction(ir_type_end_primitive),
2321 stream(stream)
2322 {
2323 assert(stream);
2324 }
2325
2326 virtual void accept(ir_visitor *v)
2327 {
2328 v->visit(this);
2329 }
2330
2331 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2332 {
2333 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2334 }
2335
2336 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2337
2338 int stream_id() const
2339 {
2340 return stream->as_constant()->value.i[0];
2341 }
2342
2343 ir_rvalue *stream;
2344 };
2345
2346 /**
2347 * IR instruction for tessellation control and compute shader barrier.
2348 */
2349 class ir_barrier : public ir_instruction {
2350 public:
2351 ir_barrier()
2352 : ir_instruction(ir_type_barrier)
2353 {
2354 }
2355
2356 virtual void accept(ir_visitor *v)
2357 {
2358 v->visit(this);
2359 }
2360
2361 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2362 {
2363 return new(mem_ctx) ir_barrier();
2364 }
2365
2366 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2367 };
2368
2369 /*@}*/
2370
2371 /**
2372 * Apply a visitor to each IR node in a list
2373 */
2374 void
2375 visit_exec_list(exec_list *list, ir_visitor *visitor);
2376
2377 /**
2378 * Validate invariants on each IR node in a list
2379 */
2380 void validate_ir_tree(exec_list *instructions);
2381
2382 struct _mesa_glsl_parse_state;
2383 struct gl_shader_program;
2384
2385 /**
2386 * Detect whether an unlinked shader contains static recursion
2387 *
2388 * If the list of instructions is determined to contain static recursion,
2389 * \c _mesa_glsl_error will be called to emit error messages for each function
2390 * that is in the recursion cycle.
2391 */
2392 void
2393 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2394 exec_list *instructions);
2395
2396 /**
2397 * Detect whether a linked shader contains static recursion
2398 *
2399 * If the list of instructions is determined to contain static recursion,
2400 * \c link_error_printf will be called to emit error messages for each function
2401 * that is in the recursion cycle. In addition,
2402 * \c gl_shader_program::LinkStatus will be set to false.
2403 */
2404 void
2405 detect_recursion_linked(struct gl_shader_program *prog,
2406 exec_list *instructions);
2407
2408 /**
2409 * Make a clone of each IR instruction in a list
2410 *
2411 * \param in List of IR instructions that are to be cloned
2412 * \param out List to hold the cloned instructions
2413 */
2414 void
2415 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2416
2417 extern void
2418 _mesa_glsl_initialize_variables(exec_list *instructions,
2419 struct _mesa_glsl_parse_state *state);
2420
2421 extern void
2422 reparent_ir(exec_list *list, void *mem_ctx);
2423
2424 extern void
2425 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2426 gl_shader_stage shader_stage);
2427
2428 extern char *
2429 prototype_string(const glsl_type *return_type, const char *name,
2430 exec_list *parameters);
2431
2432 const char *
2433 mode_string(const ir_variable *var);
2434
2435 /**
2436 * Built-in / reserved GL variables names start with "gl_"
2437 */
2438 static inline bool
2439 is_gl_identifier(const char *s)
2440 {
2441 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2442 }
2443
2444 extern "C" {
2445 #endif /* __cplusplus */
2446
2447 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2448 struct _mesa_glsl_parse_state *state);
2449
2450 extern void
2451 fprint_ir(FILE *f, const void *instruction);
2452
2453 extern const struct gl_builtin_uniform_desc *
2454 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2455
2456 #ifdef __cplusplus
2457 } /* extern "C" */
2458 #endif
2459
2460 unsigned
2461 vertices_per_prim(GLenum prim);
2462
2463 #endif /* IR_H */