compiler: Rename INTERP_QUALIFIER_* to INTERP_MODE_*.
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_interpolation_flat() const
594 {
595 return this->data.interpolation == INTERP_MODE_FLAT ||
596 this->type->contains_integer() ||
597 this->type->contains_double();
598 }
599
600 inline bool is_name_ralloced() const
601 {
602 return this->name != ir_variable::tmp_name;
603 }
604
605 /**
606 * Enable emitting extension warnings for this variable
607 */
608 void enable_extension_warning(const char *extension);
609
610 /**
611 * Get the extension warning string for this variable
612 *
613 * If warnings are not enabled, \c NULL is returned.
614 */
615 const char *get_extension_warning() const;
616
617 /**
618 * Declared type of the variable
619 */
620 const struct glsl_type *type;
621
622 /**
623 * Declared name of the variable
624 */
625 const char *name;
626
627 struct ir_variable_data {
628
629 /**
630 * Is the variable read-only?
631 *
632 * This is set for variables declared as \c const, shader inputs,
633 * and uniforms.
634 */
635 unsigned read_only:1;
636 unsigned centroid:1;
637 unsigned sample:1;
638 unsigned patch:1;
639 unsigned invariant:1;
640 unsigned precise:1;
641
642 /**
643 * Has this variable been used for reading or writing?
644 *
645 * Several GLSL semantic checks require knowledge of whether or not a
646 * variable has been used. For example, it is an error to redeclare a
647 * variable as invariant after it has been used.
648 *
649 * This is only maintained in the ast_to_hir.cpp path, not in
650 * Mesa's fixed function or ARB program paths.
651 */
652 unsigned used:1;
653
654 /**
655 * Has this variable been statically assigned?
656 *
657 * This answers whether the variable was assigned in any path of
658 * the shader during ast_to_hir. This doesn't answer whether it is
659 * still written after dead code removal, nor is it maintained in
660 * non-ast_to_hir.cpp (GLSL parsing) paths.
661 */
662 unsigned assigned:1;
663
664 /**
665 * When separate shader programs are enabled, only input/outputs between
666 * the stages of a multi-stage separate program can be safely removed
667 * from the shader interface. Other input/outputs must remains active.
668 */
669 unsigned always_active_io:1;
670
671 /**
672 * Enum indicating how the variable was declared. See
673 * ir_var_declaration_type.
674 *
675 * This is used to detect certain kinds of illegal variable redeclarations.
676 */
677 unsigned how_declared:2;
678
679 /**
680 * Storage class of the variable.
681 *
682 * \sa ir_variable_mode
683 */
684 unsigned mode:4;
685
686 /**
687 * Interpolation mode for shader inputs / outputs
688 *
689 * \sa glsl_interp_mode
690 */
691 unsigned interpolation:2;
692
693 /**
694 * \name ARB_fragment_coord_conventions
695 * @{
696 */
697 unsigned origin_upper_left:1;
698 unsigned pixel_center_integer:1;
699 /*@}*/
700
701 /**
702 * Was the location explicitly set in the shader?
703 *
704 * If the location is explicitly set in the shader, it \b cannot be changed
705 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
706 * no effect).
707 */
708 unsigned explicit_location:1;
709 unsigned explicit_index:1;
710
711 /**
712 * Was an initial binding explicitly set in the shader?
713 *
714 * If so, constant_value contains an integer ir_constant representing the
715 * initial binding point.
716 */
717 unsigned explicit_binding:1;
718
719 /**
720 * Was an initial component explicitly set in the shader?
721 */
722 unsigned explicit_component:1;
723
724 /**
725 * Does this variable have an initializer?
726 *
727 * This is used by the linker to cross-validiate initializers of global
728 * variables.
729 */
730 unsigned has_initializer:1;
731
732 /**
733 * Is this variable a generic output or input that has not yet been matched
734 * up to a variable in another stage of the pipeline?
735 *
736 * This is used by the linker as scratch storage while assigning locations
737 * to generic inputs and outputs.
738 */
739 unsigned is_unmatched_generic_inout:1;
740
741 /**
742 * Is this varying used only by transform feedback?
743 *
744 * This is used by the linker to decide if its safe to pack the varying.
745 */
746 unsigned is_xfb_only:1;
747
748 /**
749 * Was a transfor feedback buffer set in the shader?
750 */
751 unsigned explicit_xfb_buffer:1;
752
753 /**
754 * Was a transfor feedback offset set in the shader?
755 */
756 unsigned explicit_xfb_offset:1;
757
758 /**
759 * Was a transfor feedback stride set in the shader?
760 */
761 unsigned explicit_xfb_stride:1;
762
763 /**
764 * If non-zero, then this variable may be packed along with other variables
765 * into a single varying slot, so this offset should be applied when
766 * accessing components. For example, an offset of 1 means that the x
767 * component of this variable is actually stored in component y of the
768 * location specified by \c location.
769 */
770 unsigned location_frac:2;
771
772 /**
773 * Layout of the matrix. Uses glsl_matrix_layout values.
774 */
775 unsigned matrix_layout:2;
776
777 /**
778 * Non-zero if this variable was created by lowering a named interface
779 * block.
780 */
781 unsigned from_named_ifc_block:1;
782
783 /**
784 * Non-zero if the variable must be a shader input. This is useful for
785 * constraints on function parameters.
786 */
787 unsigned must_be_shader_input:1;
788
789 /**
790 * Output index for dual source blending.
791 *
792 * \note
793 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
794 * source blending.
795 */
796 unsigned index:1;
797
798 /**
799 * Precision qualifier.
800 *
801 * In desktop GLSL we do not care about precision qualifiers at all, in
802 * fact, the spec says that precision qualifiers are ignored.
803 *
804 * To make things easy, we make it so that this field is always
805 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
806 * have the same precision value and the checks we add in the compiler
807 * for this field will never break a desktop shader compile.
808 */
809 unsigned precision:2;
810
811 /**
812 * \brief Layout qualifier for gl_FragDepth.
813 *
814 * This is not equal to \c ir_depth_layout_none if and only if this
815 * variable is \c gl_FragDepth and a layout qualifier is specified.
816 */
817 ir_depth_layout depth_layout:3;
818
819 /**
820 * ARB_shader_image_load_store qualifiers.
821 */
822 unsigned image_read_only:1; /**< "readonly" qualifier. */
823 unsigned image_write_only:1; /**< "writeonly" qualifier. */
824 unsigned image_coherent:1;
825 unsigned image_volatile:1;
826 unsigned image_restrict:1;
827
828 /**
829 * ARB_shader_storage_buffer_object
830 */
831 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
832
833 unsigned implicit_sized_array:1;
834 /**
835 * Emit a warning if this variable is accessed.
836 */
837 private:
838 uint8_t warn_extension_index;
839
840 public:
841 /** Image internal format if specified explicitly, otherwise GL_NONE. */
842 uint16_t image_format;
843
844 private:
845 /**
846 * Number of state slots used
847 *
848 * \note
849 * This could be stored in as few as 7-bits, if necessary. If it is made
850 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
851 * be safe.
852 */
853 uint16_t _num_state_slots;
854
855 public:
856 /**
857 * Initial binding point for a sampler, atomic, or UBO.
858 *
859 * For array types, this represents the binding point for the first element.
860 */
861 int16_t binding;
862
863 /**
864 * Storage location of the base of this variable
865 *
866 * The precise meaning of this field depends on the nature of the variable.
867 *
868 * - Vertex shader input: one of the values from \c gl_vert_attrib.
869 * - Vertex shader output: one of the values from \c gl_varying_slot.
870 * - Geometry shader input: one of the values from \c gl_varying_slot.
871 * - Geometry shader output: one of the values from \c gl_varying_slot.
872 * - Fragment shader input: one of the values from \c gl_varying_slot.
873 * - Fragment shader output: one of the values from \c gl_frag_result.
874 * - Uniforms: Per-stage uniform slot number for default uniform block.
875 * - Uniforms: Index within the uniform block definition for UBO members.
876 * - Non-UBO Uniforms: explicit location until linking then reused to
877 * store uniform slot number.
878 * - Other: This field is not currently used.
879 *
880 * If the variable is a uniform, shader input, or shader output, and the
881 * slot has not been assigned, the value will be -1.
882 */
883 int location;
884
885 /**
886 * for glsl->tgsi/mesa IR we need to store the index into the
887 * parameters for uniforms, initially the code overloaded location
888 * but this causes problems with indirect samplers and AoA.
889 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
890 */
891 int param_index;
892
893 /**
894 * Vertex stream output identifier.
895 */
896 unsigned stream;
897
898 /**
899 * Atomic, transform feedback or block member offset.
900 */
901 unsigned offset;
902
903 /**
904 * Highest element accessed with a constant expression array index
905 *
906 * Not used for non-array variables. -1 is never accessed.
907 */
908 int max_array_access;
909
910 /**
911 * Transform feedback buffer.
912 */
913 unsigned xfb_buffer;
914
915 /**
916 * Transform feedback stride.
917 */
918 unsigned xfb_stride;
919
920 /**
921 * Allow (only) ir_variable direct access private members.
922 */
923 friend class ir_variable;
924 } data;
925
926 /**
927 * Value assigned in the initializer of a variable declared "const"
928 */
929 ir_constant *constant_value;
930
931 /**
932 * Constant expression assigned in the initializer of the variable
933 *
934 * \warning
935 * This field and \c ::constant_value are distinct. Even if the two fields
936 * refer to constants with the same value, they must point to separate
937 * objects.
938 */
939 ir_constant *constant_initializer;
940
941 private:
942 static const char *const warn_extension_table[];
943
944 union {
945 /**
946 * For variables which satisfy the is_interface_instance() predicate,
947 * this points to an array of integers such that if the ith member of
948 * the interface block is an array, max_ifc_array_access[i] is the
949 * maximum array element of that member that has been accessed. If the
950 * ith member of the interface block is not an array,
951 * max_ifc_array_access[i] is unused.
952 *
953 * For variables whose type is not an interface block, this pointer is
954 * NULL.
955 */
956 int *max_ifc_array_access;
957
958 /**
959 * Built-in state that backs this uniform
960 *
961 * Once set at variable creation, \c state_slots must remain invariant.
962 *
963 * If the variable is not a uniform, \c _num_state_slots will be zero
964 * and \c state_slots will be \c NULL.
965 */
966 ir_state_slot *state_slots;
967 } u;
968
969 /**
970 * For variables that are in an interface block or are an instance of an
971 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
972 *
973 * \sa ir_variable::location
974 */
975 const glsl_type *interface_type;
976
977 /**
978 * Name used for anonymous compiler temporaries
979 */
980 static const char tmp_name[];
981
982 public:
983 /**
984 * Should the construct keep names for ir_var_temporary variables?
985 *
986 * When this global is false, names passed to the constructor for
987 * \c ir_var_temporary variables will be dropped. Instead, the variable will
988 * be named "compiler_temp". This name will be in static storage.
989 *
990 * \warning
991 * \b NEVER change the mode of an \c ir_var_temporary.
992 *
993 * \warning
994 * This variable is \b not thread-safe. It is global, \b not
995 * per-context. It begins life false. A context can, at some point, make
996 * it true. From that point on, it will be true forever. This should be
997 * okay since it will only be set true while debugging.
998 */
999 static bool temporaries_allocate_names;
1000 };
1001
1002 /**
1003 * A function that returns whether a built-in function is available in the
1004 * current shading language (based on version, ES or desktop, and extensions).
1005 */
1006 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1007
1008 /*@{*/
1009 /**
1010 * The representation of a function instance; may be the full definition or
1011 * simply a prototype.
1012 */
1013 class ir_function_signature : public ir_instruction {
1014 /* An ir_function_signature will be part of the list of signatures in
1015 * an ir_function.
1016 */
1017 public:
1018 ir_function_signature(const glsl_type *return_type,
1019 builtin_available_predicate builtin_avail = NULL);
1020
1021 virtual ir_function_signature *clone(void *mem_ctx,
1022 struct hash_table *ht) const;
1023 ir_function_signature *clone_prototype(void *mem_ctx,
1024 struct hash_table *ht) const;
1025
1026 virtual void accept(ir_visitor *v)
1027 {
1028 v->visit(this);
1029 }
1030
1031 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1032
1033 /**
1034 * Attempt to evaluate this function as a constant expression,
1035 * given a list of the actual parameters and the variable context.
1036 * Returns NULL for non-built-ins.
1037 */
1038 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1039
1040 /**
1041 * Get the name of the function for which this is a signature
1042 */
1043 const char *function_name() const;
1044
1045 /**
1046 * Get a handle to the function for which this is a signature
1047 *
1048 * There is no setter function, this function returns a \c const pointer,
1049 * and \c ir_function_signature::_function is private for a reason. The
1050 * only way to make a connection between a function and function signature
1051 * is via \c ir_function::add_signature. This helps ensure that certain
1052 * invariants (i.e., a function signature is in the list of signatures for
1053 * its \c _function) are met.
1054 *
1055 * \sa ir_function::add_signature
1056 */
1057 inline const class ir_function *function() const
1058 {
1059 return this->_function;
1060 }
1061
1062 /**
1063 * Check whether the qualifiers match between this signature's parameters
1064 * and the supplied parameter list. If not, returns the name of the first
1065 * parameter with mismatched qualifiers (for use in error messages).
1066 */
1067 const char *qualifiers_match(exec_list *params);
1068
1069 /**
1070 * Replace the current parameter list with the given one. This is useful
1071 * if the current information came from a prototype, and either has invalid
1072 * or missing parameter names.
1073 */
1074 void replace_parameters(exec_list *new_params);
1075
1076 /**
1077 * Function return type.
1078 *
1079 * \note This discards the optional precision qualifier.
1080 */
1081 const struct glsl_type *return_type;
1082
1083 /**
1084 * List of ir_variable of function parameters.
1085 *
1086 * This represents the storage. The paramaters passed in a particular
1087 * call will be in ir_call::actual_paramaters.
1088 */
1089 struct exec_list parameters;
1090
1091 /** Whether or not this function has a body (which may be empty). */
1092 unsigned is_defined:1;
1093
1094 /** Whether or not this function signature is a built-in. */
1095 bool is_builtin() const;
1096
1097 /**
1098 * Whether or not this function is an intrinsic to be implemented
1099 * by the driver.
1100 */
1101 bool is_intrinsic;
1102
1103 /** Whether or not a built-in is available for this shader. */
1104 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1105
1106 /** Body of instructions in the function. */
1107 struct exec_list body;
1108
1109 private:
1110 /**
1111 * A function pointer to a predicate that answers whether a built-in
1112 * function is available in the current shader. NULL if not a built-in.
1113 */
1114 builtin_available_predicate builtin_avail;
1115
1116 /** Function of which this signature is one overload. */
1117 class ir_function *_function;
1118
1119 /** Function signature of which this one is a prototype clone */
1120 const ir_function_signature *origin;
1121
1122 friend class ir_function;
1123
1124 /**
1125 * Helper function to run a list of instructions for constant
1126 * expression evaluation.
1127 *
1128 * The hash table represents the values of the visible variables.
1129 * There are no scoping issues because the table is indexed on
1130 * ir_variable pointers, not variable names.
1131 *
1132 * Returns false if the expression is not constant, true otherwise,
1133 * and the value in *result if result is non-NULL.
1134 */
1135 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1136 struct hash_table *variable_context,
1137 ir_constant **result);
1138 };
1139
1140
1141 /**
1142 * Header for tracking multiple overloaded functions with the same name.
1143 * Contains a list of ir_function_signatures representing each of the
1144 * actual functions.
1145 */
1146 class ir_function : public ir_instruction {
1147 public:
1148 ir_function(const char *name);
1149
1150 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1151
1152 virtual void accept(ir_visitor *v)
1153 {
1154 v->visit(this);
1155 }
1156
1157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1158
1159 void add_signature(ir_function_signature *sig)
1160 {
1161 sig->_function = this;
1162 this->signatures.push_tail(sig);
1163 }
1164
1165 /**
1166 * Find a signature that matches a set of actual parameters, taking implicit
1167 * conversions into account. Also flags whether the match was exact.
1168 */
1169 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1170 const exec_list *actual_param,
1171 bool allow_builtins,
1172 bool *match_is_exact);
1173
1174 /**
1175 * Find a signature that matches a set of actual parameters, taking implicit
1176 * conversions into account.
1177 */
1178 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1179 const exec_list *actual_param,
1180 bool allow_builtins);
1181
1182 /**
1183 * Find a signature that exactly matches a set of actual parameters without
1184 * any implicit type conversions.
1185 */
1186 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1187 const exec_list *actual_ps);
1188
1189 /**
1190 * Name of the function.
1191 */
1192 const char *name;
1193
1194 /** Whether or not this function has a signature that isn't a built-in. */
1195 bool has_user_signature();
1196
1197 /**
1198 * List of ir_function_signature for each overloaded function with this name.
1199 */
1200 struct exec_list signatures;
1201
1202 /**
1203 * is this function a subroutine type declaration
1204 * e.g. subroutine void type1(float arg1);
1205 */
1206 bool is_subroutine;
1207
1208 /**
1209 * is this function associated to a subroutine type
1210 * e.g. subroutine (type1, type2) function_name { function_body };
1211 * would have num_subroutine_types 2,
1212 * and pointers to the type1 and type2 types.
1213 */
1214 int num_subroutine_types;
1215 const struct glsl_type **subroutine_types;
1216
1217 int subroutine_index;
1218 };
1219
1220 inline const char *ir_function_signature::function_name() const
1221 {
1222 return this->_function->name;
1223 }
1224 /*@}*/
1225
1226
1227 /**
1228 * IR instruction representing high-level if-statements
1229 */
1230 class ir_if : public ir_instruction {
1231 public:
1232 ir_if(ir_rvalue *condition)
1233 : ir_instruction(ir_type_if), condition(condition)
1234 {
1235 }
1236
1237 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1238
1239 virtual void accept(ir_visitor *v)
1240 {
1241 v->visit(this);
1242 }
1243
1244 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1245
1246 ir_rvalue *condition;
1247 /** List of ir_instruction for the body of the then branch */
1248 exec_list then_instructions;
1249 /** List of ir_instruction for the body of the else branch */
1250 exec_list else_instructions;
1251 };
1252
1253
1254 /**
1255 * IR instruction representing a high-level loop structure.
1256 */
1257 class ir_loop : public ir_instruction {
1258 public:
1259 ir_loop();
1260
1261 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1262
1263 virtual void accept(ir_visitor *v)
1264 {
1265 v->visit(this);
1266 }
1267
1268 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1269
1270 /** List of ir_instruction that make up the body of the loop. */
1271 exec_list body_instructions;
1272 };
1273
1274
1275 class ir_assignment : public ir_instruction {
1276 public:
1277 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1278
1279 /**
1280 * Construct an assignment with an explicit write mask
1281 *
1282 * \note
1283 * Since a write mask is supplied, the LHS must already be a bare
1284 * \c ir_dereference. The cannot be any swizzles in the LHS.
1285 */
1286 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1287 unsigned write_mask);
1288
1289 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1290
1291 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1292
1293 virtual void accept(ir_visitor *v)
1294 {
1295 v->visit(this);
1296 }
1297
1298 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1299
1300 /**
1301 * Get a whole variable written by an assignment
1302 *
1303 * If the LHS of the assignment writes a whole variable, the variable is
1304 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1305 * assignment are:
1306 *
1307 * - Assigning to a scalar
1308 * - Assigning to all components of a vector
1309 * - Whole array (or matrix) assignment
1310 * - Whole structure assignment
1311 */
1312 ir_variable *whole_variable_written();
1313
1314 /**
1315 * Set the LHS of an assignment
1316 */
1317 void set_lhs(ir_rvalue *lhs);
1318
1319 /**
1320 * Left-hand side of the assignment.
1321 *
1322 * This should be treated as read only. If you need to set the LHS of an
1323 * assignment, use \c ir_assignment::set_lhs.
1324 */
1325 ir_dereference *lhs;
1326
1327 /**
1328 * Value being assigned
1329 */
1330 ir_rvalue *rhs;
1331
1332 /**
1333 * Optional condition for the assignment.
1334 */
1335 ir_rvalue *condition;
1336
1337
1338 /**
1339 * Component mask written
1340 *
1341 * For non-vector types in the LHS, this field will be zero. For vector
1342 * types, a bit will be set for each component that is written. Note that
1343 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1344 *
1345 * A partially-set write mask means that each enabled channel gets
1346 * the value from a consecutive channel of the rhs. For example,
1347 * to write just .xyw of gl_FrontColor with color:
1348 *
1349 * (assign (constant bool (1)) (xyw)
1350 * (var_ref gl_FragColor)
1351 * (swiz xyw (var_ref color)))
1352 */
1353 unsigned write_mask:4;
1354 };
1355
1356 /* Update ir_expression::get_num_operands() and operator_strs when
1357 * updating this list.
1358 */
1359 enum ir_expression_operation {
1360 ir_unop_bit_not,
1361 ir_unop_logic_not,
1362 ir_unop_neg,
1363 ir_unop_abs,
1364 ir_unop_sign,
1365 ir_unop_rcp,
1366 ir_unop_rsq,
1367 ir_unop_sqrt,
1368 ir_unop_exp, /**< Log base e on gentype */
1369 ir_unop_log, /**< Natural log on gentype */
1370 ir_unop_exp2,
1371 ir_unop_log2,
1372 ir_unop_f2i, /**< Float-to-integer conversion. */
1373 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1374 ir_unop_i2f, /**< Integer-to-float conversion. */
1375 ir_unop_f2b, /**< Float-to-boolean conversion */
1376 ir_unop_b2f, /**< Boolean-to-float conversion */
1377 ir_unop_i2b, /**< int-to-boolean conversion */
1378 ir_unop_b2i, /**< Boolean-to-int conversion */
1379 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1380 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1381 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1382 ir_unop_d2f, /**< Double-to-float conversion. */
1383 ir_unop_f2d, /**< Float-to-double conversion. */
1384 ir_unop_d2i, /**< Double-to-integer conversion. */
1385 ir_unop_i2d, /**< Integer-to-double conversion. */
1386 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1387 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1388 ir_unop_d2b, /**< Double-to-boolean conversion. */
1389 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1390 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1391 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1392 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1393
1394 /**
1395 * \name Unary floating-point rounding operations.
1396 */
1397 /*@{*/
1398 ir_unop_trunc,
1399 ir_unop_ceil,
1400 ir_unop_floor,
1401 ir_unop_fract,
1402 ir_unop_round_even,
1403 /*@}*/
1404
1405 /**
1406 * \name Trigonometric operations.
1407 */
1408 /*@{*/
1409 ir_unop_sin,
1410 ir_unop_cos,
1411 /*@}*/
1412
1413 /**
1414 * \name Partial derivatives.
1415 */
1416 /*@{*/
1417 ir_unop_dFdx,
1418 ir_unop_dFdx_coarse,
1419 ir_unop_dFdx_fine,
1420 ir_unop_dFdy,
1421 ir_unop_dFdy_coarse,
1422 ir_unop_dFdy_fine,
1423 /*@}*/
1424
1425 /**
1426 * \name Floating point pack and unpack operations.
1427 */
1428 /*@{*/
1429 ir_unop_pack_snorm_2x16,
1430 ir_unop_pack_snorm_4x8,
1431 ir_unop_pack_unorm_2x16,
1432 ir_unop_pack_unorm_4x8,
1433 ir_unop_pack_half_2x16,
1434 ir_unop_unpack_snorm_2x16,
1435 ir_unop_unpack_snorm_4x8,
1436 ir_unop_unpack_unorm_2x16,
1437 ir_unop_unpack_unorm_4x8,
1438 ir_unop_unpack_half_2x16,
1439 /*@}*/
1440
1441 /**
1442 * \name Bit operations, part of ARB_gpu_shader5.
1443 */
1444 /*@{*/
1445 ir_unop_bitfield_reverse,
1446 ir_unop_bit_count,
1447 ir_unop_find_msb,
1448 ir_unop_find_lsb,
1449 /*@}*/
1450
1451 ir_unop_saturate,
1452
1453 /**
1454 * \name Double packing, part of ARB_gpu_shader_fp64.
1455 */
1456 /*@{*/
1457 ir_unop_pack_double_2x32,
1458 ir_unop_unpack_double_2x32,
1459 /*@}*/
1460
1461 ir_unop_frexp_sig,
1462 ir_unop_frexp_exp,
1463
1464 ir_unop_noise,
1465
1466 ir_unop_subroutine_to_int,
1467 /**
1468 * Interpolate fs input at centroid
1469 *
1470 * operand0 is the fs input.
1471 */
1472 ir_unop_interpolate_at_centroid,
1473
1474 /**
1475 * Ask the driver for the total size of a buffer block.
1476 *
1477 * operand0 is the ir_constant buffer block index in the linked shader.
1478 */
1479 ir_unop_get_buffer_size,
1480
1481 /**
1482 * Calculate length of an unsized array inside a buffer block.
1483 * This opcode is going to be replaced in a lowering pass inside
1484 * the linker.
1485 *
1486 * operand0 is the unsized array's ir_value for the calculation
1487 * of its length.
1488 */
1489 ir_unop_ssbo_unsized_array_length,
1490
1491 /**
1492 * Vote among threads on the value of the boolean argument.
1493 */
1494 ir_unop_vote_any,
1495 ir_unop_vote_all,
1496 ir_unop_vote_eq,
1497
1498 /**
1499 * A sentinel marking the last of the unary operations.
1500 */
1501 ir_last_unop = ir_unop_vote_eq,
1502
1503 ir_binop_add,
1504 ir_binop_sub,
1505 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1506 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1507 ir_binop_div,
1508
1509 /**
1510 * Returns the carry resulting from the addition of the two arguments.
1511 */
1512 /*@{*/
1513 ir_binop_carry,
1514 /*@}*/
1515
1516 /**
1517 * Returns the borrow resulting from the subtraction of the second argument
1518 * from the first argument.
1519 */
1520 /*@{*/
1521 ir_binop_borrow,
1522 /*@}*/
1523
1524 /**
1525 * Takes one of two combinations of arguments:
1526 *
1527 * - mod(vecN, vecN)
1528 * - mod(vecN, float)
1529 *
1530 * Does not take integer types.
1531 */
1532 ir_binop_mod,
1533
1534 /**
1535 * \name Binary comparison operators which return a boolean vector.
1536 * The type of both operands must be equal.
1537 */
1538 /*@{*/
1539 ir_binop_less,
1540 ir_binop_greater,
1541 ir_binop_lequal,
1542 ir_binop_gequal,
1543 ir_binop_equal,
1544 ir_binop_nequal,
1545 /**
1546 * Returns single boolean for whether all components of operands[0]
1547 * equal the components of operands[1].
1548 */
1549 ir_binop_all_equal,
1550 /**
1551 * Returns single boolean for whether any component of operands[0]
1552 * is not equal to the corresponding component of operands[1].
1553 */
1554 ir_binop_any_nequal,
1555 /*@}*/
1556
1557 /**
1558 * \name Bit-wise binary operations.
1559 */
1560 /*@{*/
1561 ir_binop_lshift,
1562 ir_binop_rshift,
1563 ir_binop_bit_and,
1564 ir_binop_bit_xor,
1565 ir_binop_bit_or,
1566 /*@}*/
1567
1568 ir_binop_logic_and,
1569 ir_binop_logic_xor,
1570 ir_binop_logic_or,
1571
1572 ir_binop_dot,
1573 ir_binop_min,
1574 ir_binop_max,
1575
1576 ir_binop_pow,
1577
1578 /**
1579 * Load a value the size of a given GLSL type from a uniform block.
1580 *
1581 * operand0 is the ir_constant uniform block index in the linked shader.
1582 * operand1 is a byte offset within the uniform block.
1583 */
1584 ir_binop_ubo_load,
1585
1586 /**
1587 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1588 */
1589 /*@{*/
1590 ir_binop_ldexp,
1591 /*@}*/
1592
1593 /**
1594 * Extract a scalar from a vector
1595 *
1596 * operand0 is the vector
1597 * operand1 is the index of the field to read from operand0
1598 */
1599 ir_binop_vector_extract,
1600
1601 /**
1602 * Interpolate fs input at offset
1603 *
1604 * operand0 is the fs input
1605 * operand1 is the offset from the pixel center
1606 */
1607 ir_binop_interpolate_at_offset,
1608
1609 /**
1610 * Interpolate fs input at sample position
1611 *
1612 * operand0 is the fs input
1613 * operand1 is the sample ID
1614 */
1615 ir_binop_interpolate_at_sample,
1616
1617 /**
1618 * A sentinel marking the last of the binary operations.
1619 */
1620 ir_last_binop = ir_binop_interpolate_at_sample,
1621
1622 /**
1623 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1624 */
1625 /*@{*/
1626 ir_triop_fma,
1627 /*@}*/
1628
1629 ir_triop_lrp,
1630
1631 /**
1632 * \name Conditional Select
1633 *
1634 * A vector conditional select instruction (like ?:, but operating per-
1635 * component on vectors).
1636 *
1637 * \see lower_instructions_visitor::ldexp_to_arith
1638 */
1639 /*@{*/
1640 ir_triop_csel,
1641 /*@}*/
1642
1643 ir_triop_bitfield_extract,
1644
1645 /**
1646 * Generate a value with one field of a vector changed
1647 *
1648 * operand0 is the vector
1649 * operand1 is the value to write into the vector result
1650 * operand2 is the index in operand0 to be modified
1651 */
1652 ir_triop_vector_insert,
1653
1654 /**
1655 * A sentinel marking the last of the ternary operations.
1656 */
1657 ir_last_triop = ir_triop_vector_insert,
1658
1659 ir_quadop_bitfield_insert,
1660
1661 ir_quadop_vector,
1662
1663 /**
1664 * A sentinel marking the last of the ternary operations.
1665 */
1666 ir_last_quadop = ir_quadop_vector,
1667
1668 /**
1669 * A sentinel marking the last of all operations.
1670 */
1671 ir_last_opcode = ir_quadop_vector
1672 };
1673
1674 class ir_expression : public ir_rvalue {
1675 public:
1676 ir_expression(int op, const struct glsl_type *type,
1677 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1678 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1679
1680 /**
1681 * Constructor for unary operation expressions
1682 */
1683 ir_expression(int op, ir_rvalue *);
1684
1685 /**
1686 * Constructor for binary operation expressions
1687 */
1688 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1689
1690 /**
1691 * Constructor for ternary operation expressions
1692 */
1693 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1694
1695 virtual bool equals(const ir_instruction *ir,
1696 enum ir_node_type ignore = ir_type_unset) const;
1697
1698 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1699
1700 /**
1701 * Attempt to constant-fold the expression
1702 *
1703 * The "variable_context" hash table links ir_variable * to ir_constant *
1704 * that represent the variables' values. \c NULL represents an empty
1705 * context.
1706 *
1707 * If the expression cannot be constant folded, this method will return
1708 * \c NULL.
1709 */
1710 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1711
1712 /**
1713 * Determine the number of operands used by an expression
1714 */
1715 static unsigned int get_num_operands(ir_expression_operation);
1716
1717 /**
1718 * Determine the number of operands used by an expression
1719 */
1720 unsigned int get_num_operands() const
1721 {
1722 return (this->operation == ir_quadop_vector)
1723 ? this->type->vector_elements : get_num_operands(operation);
1724 }
1725
1726 /**
1727 * Return whether the expression operates on vectors horizontally.
1728 */
1729 bool is_horizontal() const
1730 {
1731 return operation == ir_binop_all_equal ||
1732 operation == ir_binop_any_nequal ||
1733 operation == ir_binop_dot ||
1734 operation == ir_binop_vector_extract ||
1735 operation == ir_triop_vector_insert ||
1736 operation == ir_binop_ubo_load ||
1737 operation == ir_quadop_vector;
1738 }
1739
1740 /**
1741 * Return a string representing this expression's operator.
1742 */
1743 const char *operator_string();
1744
1745 /**
1746 * Return a string representing this expression's operator.
1747 */
1748 static const char *operator_string(ir_expression_operation);
1749
1750
1751 /**
1752 * Do a reverse-lookup to translate the given string into an operator.
1753 */
1754 static ir_expression_operation get_operator(const char *);
1755
1756 virtual void accept(ir_visitor *v)
1757 {
1758 v->visit(this);
1759 }
1760
1761 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1762
1763 virtual ir_variable *variable_referenced() const;
1764
1765 ir_expression_operation operation;
1766 ir_rvalue *operands[4];
1767 };
1768
1769
1770 /**
1771 * HIR instruction representing a high-level function call, containing a list
1772 * of parameters and returning a value in the supplied temporary.
1773 */
1774 class ir_call : public ir_instruction {
1775 public:
1776 ir_call(ir_function_signature *callee,
1777 ir_dereference_variable *return_deref,
1778 exec_list *actual_parameters)
1779 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1780 {
1781 assert(callee->return_type != NULL);
1782 actual_parameters->move_nodes_to(& this->actual_parameters);
1783 this->use_builtin = callee->is_builtin();
1784 }
1785
1786 ir_call(ir_function_signature *callee,
1787 ir_dereference_variable *return_deref,
1788 exec_list *actual_parameters,
1789 ir_variable *var, ir_rvalue *array_idx)
1790 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1791 {
1792 assert(callee->return_type != NULL);
1793 actual_parameters->move_nodes_to(& this->actual_parameters);
1794 this->use_builtin = callee->is_builtin();
1795 }
1796
1797 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1798
1799 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1800
1801 virtual void accept(ir_visitor *v)
1802 {
1803 v->visit(this);
1804 }
1805
1806 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1807
1808 /**
1809 * Get the name of the function being called.
1810 */
1811 const char *callee_name() const
1812 {
1813 return callee->function_name();
1814 }
1815
1816 /**
1817 * Generates an inline version of the function before @ir,
1818 * storing the return value in return_deref.
1819 */
1820 void generate_inline(ir_instruction *ir);
1821
1822 /**
1823 * Storage for the function's return value.
1824 * This must be NULL if the return type is void.
1825 */
1826 ir_dereference_variable *return_deref;
1827
1828 /**
1829 * The specific function signature being called.
1830 */
1831 ir_function_signature *callee;
1832
1833 /* List of ir_rvalue of paramaters passed in this call. */
1834 exec_list actual_parameters;
1835
1836 /** Should this call only bind to a built-in function? */
1837 bool use_builtin;
1838
1839 /*
1840 * ARB_shader_subroutine support -
1841 * the subroutine uniform variable and array index
1842 * rvalue to be used in the lowering pass later.
1843 */
1844 ir_variable *sub_var;
1845 ir_rvalue *array_idx;
1846 };
1847
1848
1849 /**
1850 * \name Jump-like IR instructions.
1851 *
1852 * These include \c break, \c continue, \c return, and \c discard.
1853 */
1854 /*@{*/
1855 class ir_jump : public ir_instruction {
1856 protected:
1857 ir_jump(enum ir_node_type t)
1858 : ir_instruction(t)
1859 {
1860 }
1861 };
1862
1863 class ir_return : public ir_jump {
1864 public:
1865 ir_return()
1866 : ir_jump(ir_type_return), value(NULL)
1867 {
1868 }
1869
1870 ir_return(ir_rvalue *value)
1871 : ir_jump(ir_type_return), value(value)
1872 {
1873 }
1874
1875 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1876
1877 ir_rvalue *get_value() const
1878 {
1879 return value;
1880 }
1881
1882 virtual void accept(ir_visitor *v)
1883 {
1884 v->visit(this);
1885 }
1886
1887 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1888
1889 ir_rvalue *value;
1890 };
1891
1892
1893 /**
1894 * Jump instructions used inside loops
1895 *
1896 * These include \c break and \c continue. The \c break within a loop is
1897 * different from the \c break within a switch-statement.
1898 *
1899 * \sa ir_switch_jump
1900 */
1901 class ir_loop_jump : public ir_jump {
1902 public:
1903 enum jump_mode {
1904 jump_break,
1905 jump_continue
1906 };
1907
1908 ir_loop_jump(jump_mode mode)
1909 : ir_jump(ir_type_loop_jump)
1910 {
1911 this->mode = mode;
1912 }
1913
1914 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1915
1916 virtual void accept(ir_visitor *v)
1917 {
1918 v->visit(this);
1919 }
1920
1921 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1922
1923 bool is_break() const
1924 {
1925 return mode == jump_break;
1926 }
1927
1928 bool is_continue() const
1929 {
1930 return mode == jump_continue;
1931 }
1932
1933 /** Mode selector for the jump instruction. */
1934 enum jump_mode mode;
1935 };
1936
1937 /**
1938 * IR instruction representing discard statements.
1939 */
1940 class ir_discard : public ir_jump {
1941 public:
1942 ir_discard()
1943 : ir_jump(ir_type_discard)
1944 {
1945 this->condition = NULL;
1946 }
1947
1948 ir_discard(ir_rvalue *cond)
1949 : ir_jump(ir_type_discard)
1950 {
1951 this->condition = cond;
1952 }
1953
1954 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1955
1956 virtual void accept(ir_visitor *v)
1957 {
1958 v->visit(this);
1959 }
1960
1961 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1962
1963 ir_rvalue *condition;
1964 };
1965 /*@}*/
1966
1967
1968 /**
1969 * Texture sampling opcodes used in ir_texture
1970 */
1971 enum ir_texture_opcode {
1972 ir_tex, /**< Regular texture look-up */
1973 ir_txb, /**< Texture look-up with LOD bias */
1974 ir_txl, /**< Texture look-up with explicit LOD */
1975 ir_txd, /**< Texture look-up with partial derivatvies */
1976 ir_txf, /**< Texel fetch with explicit LOD */
1977 ir_txf_ms, /**< Multisample texture fetch */
1978 ir_txs, /**< Texture size */
1979 ir_lod, /**< Texture lod query */
1980 ir_tg4, /**< Texture gather */
1981 ir_query_levels, /**< Texture levels query */
1982 ir_texture_samples, /**< Texture samples query */
1983 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1984 };
1985
1986
1987 /**
1988 * IR instruction to sample a texture
1989 *
1990 * The specific form of the IR instruction depends on the \c mode value
1991 * selected from \c ir_texture_opcodes. In the printed IR, these will
1992 * appear as:
1993 *
1994 * Texel offset (0 or an expression)
1995 * | Projection divisor
1996 * | | Shadow comparitor
1997 * | | |
1998 * v v v
1999 * (tex <type> <sampler> <coordinate> 0 1 ( ))
2000 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
2001 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
2002 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
2003 * (txf <type> <sampler> <coordinate> 0 <lod>)
2004 * (txf_ms
2005 * <type> <sampler> <coordinate> <sample_index>)
2006 * (txs <type> <sampler> <lod>)
2007 * (lod <type> <sampler> <coordinate>)
2008 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
2009 * (query_levels <type> <sampler>)
2010 * (samples_identical <sampler> <coordinate>)
2011 */
2012 class ir_texture : public ir_rvalue {
2013 public:
2014 ir_texture(enum ir_texture_opcode op)
2015 : ir_rvalue(ir_type_texture),
2016 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
2017 shadow_comparitor(NULL), offset(NULL)
2018 {
2019 memset(&lod_info, 0, sizeof(lod_info));
2020 }
2021
2022 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2023
2024 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2025
2026 virtual void accept(ir_visitor *v)
2027 {
2028 v->visit(this);
2029 }
2030
2031 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2032
2033 virtual bool equals(const ir_instruction *ir,
2034 enum ir_node_type ignore = ir_type_unset) const;
2035
2036 /**
2037 * Return a string representing the ir_texture_opcode.
2038 */
2039 const char *opcode_string();
2040
2041 /** Set the sampler and type. */
2042 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2043
2044 /**
2045 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2046 */
2047 static ir_texture_opcode get_opcode(const char *);
2048
2049 enum ir_texture_opcode op;
2050
2051 /** Sampler to use for the texture access. */
2052 ir_dereference *sampler;
2053
2054 /** Texture coordinate to sample */
2055 ir_rvalue *coordinate;
2056
2057 /**
2058 * Value used for projective divide.
2059 *
2060 * If there is no projective divide (the common case), this will be
2061 * \c NULL. Optimization passes should check for this to point to a constant
2062 * of 1.0 and replace that with \c NULL.
2063 */
2064 ir_rvalue *projector;
2065
2066 /**
2067 * Coordinate used for comparison on shadow look-ups.
2068 *
2069 * If there is no shadow comparison, this will be \c NULL. For the
2070 * \c ir_txf opcode, this *must* be \c NULL.
2071 */
2072 ir_rvalue *shadow_comparitor;
2073
2074 /** Texel offset. */
2075 ir_rvalue *offset;
2076
2077 union {
2078 ir_rvalue *lod; /**< Floating point LOD */
2079 ir_rvalue *bias; /**< Floating point LOD bias */
2080 ir_rvalue *sample_index; /**< MSAA sample index */
2081 ir_rvalue *component; /**< Gather component selector */
2082 struct {
2083 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2084 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2085 } grad;
2086 } lod_info;
2087 };
2088
2089
2090 struct ir_swizzle_mask {
2091 unsigned x:2;
2092 unsigned y:2;
2093 unsigned z:2;
2094 unsigned w:2;
2095
2096 /**
2097 * Number of components in the swizzle.
2098 */
2099 unsigned num_components:3;
2100
2101 /**
2102 * Does the swizzle contain duplicate components?
2103 *
2104 * L-value swizzles cannot contain duplicate components.
2105 */
2106 unsigned has_duplicates:1;
2107 };
2108
2109
2110 class ir_swizzle : public ir_rvalue {
2111 public:
2112 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2113 unsigned count);
2114
2115 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2116
2117 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2118
2119 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2120
2121 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2122
2123 /**
2124 * Construct an ir_swizzle from the textual representation. Can fail.
2125 */
2126 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2127
2128 virtual void accept(ir_visitor *v)
2129 {
2130 v->visit(this);
2131 }
2132
2133 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2134
2135 virtual bool equals(const ir_instruction *ir,
2136 enum ir_node_type ignore = ir_type_unset) const;
2137
2138 bool is_lvalue() const
2139 {
2140 return val->is_lvalue() && !mask.has_duplicates;
2141 }
2142
2143 /**
2144 * Get the variable that is ultimately referenced by an r-value
2145 */
2146 virtual ir_variable *variable_referenced() const;
2147
2148 ir_rvalue *val;
2149 ir_swizzle_mask mask;
2150
2151 private:
2152 /**
2153 * Initialize the mask component of a swizzle
2154 *
2155 * This is used by the \c ir_swizzle constructors.
2156 */
2157 void init_mask(const unsigned *components, unsigned count);
2158 };
2159
2160
2161 class ir_dereference : public ir_rvalue {
2162 public:
2163 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2164
2165 bool is_lvalue() const;
2166
2167 /**
2168 * Get the variable that is ultimately referenced by an r-value
2169 */
2170 virtual ir_variable *variable_referenced() const = 0;
2171
2172 protected:
2173 ir_dereference(enum ir_node_type t)
2174 : ir_rvalue(t)
2175 {
2176 }
2177 };
2178
2179
2180 class ir_dereference_variable : public ir_dereference {
2181 public:
2182 ir_dereference_variable(ir_variable *var);
2183
2184 virtual ir_dereference_variable *clone(void *mem_ctx,
2185 struct hash_table *) const;
2186
2187 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2188
2189 virtual bool equals(const ir_instruction *ir,
2190 enum ir_node_type ignore = ir_type_unset) const;
2191
2192 /**
2193 * Get the variable that is ultimately referenced by an r-value
2194 */
2195 virtual ir_variable *variable_referenced() const
2196 {
2197 return this->var;
2198 }
2199
2200 virtual ir_variable *whole_variable_referenced()
2201 {
2202 /* ir_dereference_variable objects always dereference the entire
2203 * variable. However, if this dereference is dereferenced by anything
2204 * else, the complete deferefernce chain is not a whole-variable
2205 * dereference. This method should only be called on the top most
2206 * ir_rvalue in a dereference chain.
2207 */
2208 return this->var;
2209 }
2210
2211 virtual void accept(ir_visitor *v)
2212 {
2213 v->visit(this);
2214 }
2215
2216 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2217
2218 /**
2219 * Object being dereferenced.
2220 */
2221 ir_variable *var;
2222 };
2223
2224
2225 class ir_dereference_array : public ir_dereference {
2226 public:
2227 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2228
2229 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2230
2231 virtual ir_dereference_array *clone(void *mem_ctx,
2232 struct hash_table *) const;
2233
2234 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2235
2236 virtual bool equals(const ir_instruction *ir,
2237 enum ir_node_type ignore = ir_type_unset) const;
2238
2239 /**
2240 * Get the variable that is ultimately referenced by an r-value
2241 */
2242 virtual ir_variable *variable_referenced() const
2243 {
2244 return this->array->variable_referenced();
2245 }
2246
2247 virtual void accept(ir_visitor *v)
2248 {
2249 v->visit(this);
2250 }
2251
2252 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2253
2254 ir_rvalue *array;
2255 ir_rvalue *array_index;
2256
2257 private:
2258 void set_array(ir_rvalue *value);
2259 };
2260
2261
2262 class ir_dereference_record : public ir_dereference {
2263 public:
2264 ir_dereference_record(ir_rvalue *value, const char *field);
2265
2266 ir_dereference_record(ir_variable *var, const char *field);
2267
2268 virtual ir_dereference_record *clone(void *mem_ctx,
2269 struct hash_table *) const;
2270
2271 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2272
2273 /**
2274 * Get the variable that is ultimately referenced by an r-value
2275 */
2276 virtual ir_variable *variable_referenced() const
2277 {
2278 return this->record->variable_referenced();
2279 }
2280
2281 virtual void accept(ir_visitor *v)
2282 {
2283 v->visit(this);
2284 }
2285
2286 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2287
2288 ir_rvalue *record;
2289 const char *field;
2290 };
2291
2292
2293 /**
2294 * Data stored in an ir_constant
2295 */
2296 union ir_constant_data {
2297 unsigned u[16];
2298 int i[16];
2299 float f[16];
2300 bool b[16];
2301 double d[16];
2302 };
2303
2304
2305 class ir_constant : public ir_rvalue {
2306 public:
2307 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2308 ir_constant(bool b, unsigned vector_elements=1);
2309 ir_constant(unsigned int u, unsigned vector_elements=1);
2310 ir_constant(int i, unsigned vector_elements=1);
2311 ir_constant(float f, unsigned vector_elements=1);
2312 ir_constant(double d, unsigned vector_elements=1);
2313
2314 /**
2315 * Construct an ir_constant from a list of ir_constant values
2316 */
2317 ir_constant(const struct glsl_type *type, exec_list *values);
2318
2319 /**
2320 * Construct an ir_constant from a scalar component of another ir_constant
2321 *
2322 * The new \c ir_constant inherits the type of the component from the
2323 * source constant.
2324 *
2325 * \note
2326 * In the case of a matrix constant, the new constant is a scalar, \b not
2327 * a vector.
2328 */
2329 ir_constant(const ir_constant *c, unsigned i);
2330
2331 /**
2332 * Return a new ir_constant of the specified type containing all zeros.
2333 */
2334 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2335
2336 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2337
2338 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2339
2340 virtual void accept(ir_visitor *v)
2341 {
2342 v->visit(this);
2343 }
2344
2345 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2346
2347 virtual bool equals(const ir_instruction *ir,
2348 enum ir_node_type ignore = ir_type_unset) const;
2349
2350 /**
2351 * Get a particular component of a constant as a specific type
2352 *
2353 * This is useful, for example, to get a value from an integer constant
2354 * as a float or bool. This appears frequently when constructors are
2355 * called with all constant parameters.
2356 */
2357 /*@{*/
2358 bool get_bool_component(unsigned i) const;
2359 float get_float_component(unsigned i) const;
2360 double get_double_component(unsigned i) const;
2361 int get_int_component(unsigned i) const;
2362 unsigned get_uint_component(unsigned i) const;
2363 /*@}*/
2364
2365 ir_constant *get_array_element(unsigned i) const;
2366
2367 ir_constant *get_record_field(const char *name);
2368
2369 /**
2370 * Copy the values on another constant at a given offset.
2371 *
2372 * The offset is ignored for array or struct copies, it's only for
2373 * scalars or vectors into vectors or matrices.
2374 *
2375 * With identical types on both sides and zero offset it's clone()
2376 * without creating a new object.
2377 */
2378
2379 void copy_offset(ir_constant *src, int offset);
2380
2381 /**
2382 * Copy the values on another constant at a given offset and
2383 * following an assign-like mask.
2384 *
2385 * The mask is ignored for scalars.
2386 *
2387 * Note that this function only handles what assign can handle,
2388 * i.e. at most a vector as source and a column of a matrix as
2389 * destination.
2390 */
2391
2392 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2393
2394 /**
2395 * Determine whether a constant has the same value as another constant
2396 *
2397 * \sa ir_constant::is_zero, ir_constant::is_one,
2398 * ir_constant::is_negative_one
2399 */
2400 bool has_value(const ir_constant *) const;
2401
2402 /**
2403 * Return true if this ir_constant represents the given value.
2404 *
2405 * For vectors, this checks that each component is the given value.
2406 */
2407 virtual bool is_value(float f, int i) const;
2408 virtual bool is_zero() const;
2409 virtual bool is_one() const;
2410 virtual bool is_negative_one() const;
2411
2412 /**
2413 * Return true for constants that could be stored as 16-bit unsigned values.
2414 *
2415 * Note that this will return true even for signed integer ir_constants, as
2416 * long as the value is non-negative and fits in 16-bits.
2417 */
2418 virtual bool is_uint16_constant() const;
2419
2420 /**
2421 * Value of the constant.
2422 *
2423 * The field used to back the values supplied by the constant is determined
2424 * by the type associated with the \c ir_instruction. Constants may be
2425 * scalars, vectors, or matrices.
2426 */
2427 union ir_constant_data value;
2428
2429 /* Array elements */
2430 ir_constant **array_elements;
2431
2432 /* Structure fields */
2433 exec_list components;
2434
2435 private:
2436 /**
2437 * Parameterless constructor only used by the clone method
2438 */
2439 ir_constant(void);
2440 };
2441
2442 /**
2443 * IR instruction to emit a vertex in a geometry shader.
2444 */
2445 class ir_emit_vertex : public ir_instruction {
2446 public:
2447 ir_emit_vertex(ir_rvalue *stream)
2448 : ir_instruction(ir_type_emit_vertex),
2449 stream(stream)
2450 {
2451 assert(stream);
2452 }
2453
2454 virtual void accept(ir_visitor *v)
2455 {
2456 v->visit(this);
2457 }
2458
2459 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2460 {
2461 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2462 }
2463
2464 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2465
2466 int stream_id() const
2467 {
2468 return stream->as_constant()->value.i[0];
2469 }
2470
2471 ir_rvalue *stream;
2472 };
2473
2474 /**
2475 * IR instruction to complete the current primitive and start a new one in a
2476 * geometry shader.
2477 */
2478 class ir_end_primitive : public ir_instruction {
2479 public:
2480 ir_end_primitive(ir_rvalue *stream)
2481 : ir_instruction(ir_type_end_primitive),
2482 stream(stream)
2483 {
2484 assert(stream);
2485 }
2486
2487 virtual void accept(ir_visitor *v)
2488 {
2489 v->visit(this);
2490 }
2491
2492 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2493 {
2494 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2495 }
2496
2497 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2498
2499 int stream_id() const
2500 {
2501 return stream->as_constant()->value.i[0];
2502 }
2503
2504 ir_rvalue *stream;
2505 };
2506
2507 /**
2508 * IR instruction for tessellation control and compute shader barrier.
2509 */
2510 class ir_barrier : public ir_instruction {
2511 public:
2512 ir_barrier()
2513 : ir_instruction(ir_type_barrier)
2514 {
2515 }
2516
2517 virtual void accept(ir_visitor *v)
2518 {
2519 v->visit(this);
2520 }
2521
2522 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2523 {
2524 return new(mem_ctx) ir_barrier();
2525 }
2526
2527 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2528 };
2529
2530 /*@}*/
2531
2532 /**
2533 * Apply a visitor to each IR node in a list
2534 */
2535 void
2536 visit_exec_list(exec_list *list, ir_visitor *visitor);
2537
2538 /**
2539 * Validate invariants on each IR node in a list
2540 */
2541 void validate_ir_tree(exec_list *instructions);
2542
2543 struct _mesa_glsl_parse_state;
2544 struct gl_shader_program;
2545
2546 /**
2547 * Detect whether an unlinked shader contains static recursion
2548 *
2549 * If the list of instructions is determined to contain static recursion,
2550 * \c _mesa_glsl_error will be called to emit error messages for each function
2551 * that is in the recursion cycle.
2552 */
2553 void
2554 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2555 exec_list *instructions);
2556
2557 /**
2558 * Detect whether a linked shader contains static recursion
2559 *
2560 * If the list of instructions is determined to contain static recursion,
2561 * \c link_error_printf will be called to emit error messages for each function
2562 * that is in the recursion cycle. In addition,
2563 * \c gl_shader_program::LinkStatus will be set to false.
2564 */
2565 void
2566 detect_recursion_linked(struct gl_shader_program *prog,
2567 exec_list *instructions);
2568
2569 /**
2570 * Make a clone of each IR instruction in a list
2571 *
2572 * \param in List of IR instructions that are to be cloned
2573 * \param out List to hold the cloned instructions
2574 */
2575 void
2576 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2577
2578 extern void
2579 _mesa_glsl_initialize_variables(exec_list *instructions,
2580 struct _mesa_glsl_parse_state *state);
2581
2582 extern void
2583 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2584 gl_shader *shader);
2585
2586 extern void
2587 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2588
2589 extern void
2590 _mesa_glsl_initialize_builtin_functions();
2591
2592 extern ir_function_signature *
2593 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2594 const char *name, exec_list *actual_parameters);
2595
2596 extern ir_function *
2597 _mesa_glsl_find_builtin_function_by_name(const char *name);
2598
2599 extern gl_shader *
2600 _mesa_glsl_get_builtin_function_shader(void);
2601
2602 extern ir_function_signature *
2603 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2604
2605 extern void
2606 _mesa_glsl_release_functions(void);
2607
2608 extern void
2609 _mesa_glsl_release_builtin_functions(void);
2610
2611 extern void
2612 reparent_ir(exec_list *list, void *mem_ctx);
2613
2614 struct glsl_symbol_table;
2615
2616 extern void
2617 import_prototypes(const exec_list *source, exec_list *dest,
2618 struct glsl_symbol_table *symbols, void *mem_ctx);
2619
2620 extern bool
2621 ir_has_call(ir_instruction *ir);
2622
2623 extern void
2624 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2625 gl_shader_stage shader_stage);
2626
2627 extern char *
2628 prototype_string(const glsl_type *return_type, const char *name,
2629 exec_list *parameters);
2630
2631 const char *
2632 mode_string(const ir_variable *var);
2633
2634 /**
2635 * Built-in / reserved GL variables names start with "gl_"
2636 */
2637 static inline bool
2638 is_gl_identifier(const char *s)
2639 {
2640 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2641 }
2642
2643 extern "C" {
2644 #endif /* __cplusplus */
2645
2646 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2647 struct _mesa_glsl_parse_state *state);
2648
2649 extern void
2650 fprint_ir(FILE *f, const void *instruction);
2651
2652 extern const struct gl_builtin_uniform_desc *
2653 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2654
2655 #ifdef __cplusplus
2656 } /* extern "C" */
2657 #endif
2658
2659 unsigned
2660 vertices_per_prim(GLenum prim);
2661
2662 #endif /* IR_H */