glsl: stop copying struct and interface member names
[mesa.git] / src / compiler / glsl / ir_constant_expression.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ir_constant_expression.cpp
26 * Evaluate and process constant valued expressions
27 *
28 * In GLSL, constant valued expressions are used in several places. These
29 * must be processed and evaluated very early in the compilation process.
30 *
31 * * Sizes of arrays
32 * * Initializers for uniforms
33 * * Initializers for \c const variables
34 */
35
36 #include <math.h>
37 #include "main/core.h" /* for MAX2, MIN2, CLAMP */
38 #include "util/rounding.h" /* for _mesa_roundeven */
39 #include "util/half_float.h"
40 #include "ir.h"
41 #include "compiler/glsl_types.h"
42 #include "util/hash_table.h"
43
44 static float
45 dot_f(ir_constant *op0, ir_constant *op1)
46 {
47 assert(op0->type->is_float() && op1->type->is_float());
48
49 float result = 0;
50 for (unsigned c = 0; c < op0->type->components(); c++)
51 result += op0->value.f[c] * op1->value.f[c];
52
53 return result;
54 }
55
56 static double
57 dot_d(ir_constant *op0, ir_constant *op1)
58 {
59 assert(op0->type->is_double() && op1->type->is_double());
60
61 double result = 0;
62 for (unsigned c = 0; c < op0->type->components(); c++)
63 result += op0->value.d[c] * op1->value.d[c];
64
65 return result;
66 }
67
68 /* This method is the only one supported by gcc. Unions in particular
69 * are iffy, and read-through-converted-pointer is killed by strict
70 * aliasing. OTOH, the compiler sees through the memcpy, so the
71 * resulting asm is reasonable.
72 */
73 static float
74 bitcast_u2f(unsigned int u)
75 {
76 assert(sizeof(float) == sizeof(unsigned int));
77 float f;
78 memcpy(&f, &u, sizeof(f));
79 return f;
80 }
81
82 static unsigned int
83 bitcast_f2u(float f)
84 {
85 assert(sizeof(float) == sizeof(unsigned int));
86 unsigned int u;
87 memcpy(&u, &f, sizeof(f));
88 return u;
89 }
90
91 static double
92 bitcast_u642d(uint64_t u)
93 {
94 assert(sizeof(double) == sizeof(uint64_t));
95 double d;
96 memcpy(&d, &u, sizeof(d));
97 return d;
98 }
99
100 static double
101 bitcast_i642d(int64_t i)
102 {
103 assert(sizeof(double) == sizeof(int64_t));
104 double d;
105 memcpy(&d, &i, sizeof(d));
106 return d;
107 }
108
109 static double
110 bitcast_d2u64(double d)
111 {
112 assert(sizeof(double) == sizeof(uint64_t));
113 uint64_t u;
114 memcpy(&u, &d, sizeof(d));
115 return u;
116 }
117
118 static double
119 bitcast_d2i64(double d)
120 {
121 assert(sizeof(double) == sizeof(int64_t));
122 int64_t i;
123 memcpy(&i, &d, sizeof(d));
124 return i;
125 }
126
127 /**
128 * Evaluate one component of a floating-point 4x8 unpacking function.
129 */
130 typedef uint8_t
131 (*pack_1x8_func_t)(float);
132
133 /**
134 * Evaluate one component of a floating-point 2x16 unpacking function.
135 */
136 typedef uint16_t
137 (*pack_1x16_func_t)(float);
138
139 /**
140 * Evaluate one component of a floating-point 4x8 unpacking function.
141 */
142 typedef float
143 (*unpack_1x8_func_t)(uint8_t);
144
145 /**
146 * Evaluate one component of a floating-point 2x16 unpacking function.
147 */
148 typedef float
149 (*unpack_1x16_func_t)(uint16_t);
150
151 /**
152 * Evaluate a 2x16 floating-point packing function.
153 */
154 static uint32_t
155 pack_2x16(pack_1x16_func_t pack_1x16,
156 float x, float y)
157 {
158 /* From section 8.4 of the GLSL ES 3.00 spec:
159 *
160 * packSnorm2x16
161 * -------------
162 * The first component of the vector will be written to the least
163 * significant bits of the output; the last component will be written to
164 * the most significant bits.
165 *
166 * The specifications for the other packing functions contain similar
167 * language.
168 */
169 uint32_t u = 0;
170 u |= ((uint32_t) pack_1x16(x) << 0);
171 u |= ((uint32_t) pack_1x16(y) << 16);
172 return u;
173 }
174
175 /**
176 * Evaluate a 4x8 floating-point packing function.
177 */
178 static uint32_t
179 pack_4x8(pack_1x8_func_t pack_1x8,
180 float x, float y, float z, float w)
181 {
182 /* From section 8.4 of the GLSL 4.30 spec:
183 *
184 * packSnorm4x8
185 * ------------
186 * The first component of the vector will be written to the least
187 * significant bits of the output; the last component will be written to
188 * the most significant bits.
189 *
190 * The specifications for the other packing functions contain similar
191 * language.
192 */
193 uint32_t u = 0;
194 u |= ((uint32_t) pack_1x8(x) << 0);
195 u |= ((uint32_t) pack_1x8(y) << 8);
196 u |= ((uint32_t) pack_1x8(z) << 16);
197 u |= ((uint32_t) pack_1x8(w) << 24);
198 return u;
199 }
200
201 /**
202 * Evaluate a 2x16 floating-point unpacking function.
203 */
204 static void
205 unpack_2x16(unpack_1x16_func_t unpack_1x16,
206 uint32_t u,
207 float *x, float *y)
208 {
209 /* From section 8.4 of the GLSL ES 3.00 spec:
210 *
211 * unpackSnorm2x16
212 * ---------------
213 * The first component of the returned vector will be extracted from
214 * the least significant bits of the input; the last component will be
215 * extracted from the most significant bits.
216 *
217 * The specifications for the other unpacking functions contain similar
218 * language.
219 */
220 *x = unpack_1x16((uint16_t) (u & 0xffff));
221 *y = unpack_1x16((uint16_t) (u >> 16));
222 }
223
224 /**
225 * Evaluate a 4x8 floating-point unpacking function.
226 */
227 static void
228 unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u,
229 float *x, float *y, float *z, float *w)
230 {
231 /* From section 8.4 of the GLSL 4.30 spec:
232 *
233 * unpackSnorm4x8
234 * --------------
235 * The first component of the returned vector will be extracted from
236 * the least significant bits of the input; the last component will be
237 * extracted from the most significant bits.
238 *
239 * The specifications for the other unpacking functions contain similar
240 * language.
241 */
242 *x = unpack_1x8((uint8_t) (u & 0xff));
243 *y = unpack_1x8((uint8_t) (u >> 8));
244 *z = unpack_1x8((uint8_t) (u >> 16));
245 *w = unpack_1x8((uint8_t) (u >> 24));
246 }
247
248 /**
249 * Evaluate one component of packSnorm4x8.
250 */
251 static uint8_t
252 pack_snorm_1x8(float x)
253 {
254 /* From section 8.4 of the GLSL 4.30 spec:
255 *
256 * packSnorm4x8
257 * ------------
258 * The conversion for component c of v to fixed point is done as
259 * follows:
260 *
261 * packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
262 */
263 return (uint8_t)
264 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f);
265 }
266
267 /**
268 * Evaluate one component of packSnorm2x16.
269 */
270 static uint16_t
271 pack_snorm_1x16(float x)
272 {
273 /* From section 8.4 of the GLSL ES 3.00 spec:
274 *
275 * packSnorm2x16
276 * -------------
277 * The conversion for component c of v to fixed point is done as
278 * follows:
279 *
280 * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
281 */
282 return (uint16_t)
283 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f);
284 }
285
286 /**
287 * Evaluate one component of unpackSnorm4x8.
288 */
289 static float
290 unpack_snorm_1x8(uint8_t u)
291 {
292 /* From section 8.4 of the GLSL 4.30 spec:
293 *
294 * unpackSnorm4x8
295 * --------------
296 * The conversion for unpacked fixed-point value f to floating point is
297 * done as follows:
298 *
299 * unpackSnorm4x8: clamp(f / 127.0, -1, +1)
300 */
301 return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f);
302 }
303
304 /**
305 * Evaluate one component of unpackSnorm2x16.
306 */
307 static float
308 unpack_snorm_1x16(uint16_t u)
309 {
310 /* From section 8.4 of the GLSL ES 3.00 spec:
311 *
312 * unpackSnorm2x16
313 * ---------------
314 * The conversion for unpacked fixed-point value f to floating point is
315 * done as follows:
316 *
317 * unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
318 */
319 return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f);
320 }
321
322 /**
323 * Evaluate one component packUnorm4x8.
324 */
325 static uint8_t
326 pack_unorm_1x8(float x)
327 {
328 /* From section 8.4 of the GLSL 4.30 spec:
329 *
330 * packUnorm4x8
331 * ------------
332 * The conversion for component c of v to fixed point is done as
333 * follows:
334 *
335 * packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
336 */
337 return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f);
338 }
339
340 /**
341 * Evaluate one component packUnorm2x16.
342 */
343 static uint16_t
344 pack_unorm_1x16(float x)
345 {
346 /* From section 8.4 of the GLSL ES 3.00 spec:
347 *
348 * packUnorm2x16
349 * -------------
350 * The conversion for component c of v to fixed point is done as
351 * follows:
352 *
353 * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
354 */
355 return (uint16_t) (int)
356 _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f);
357 }
358
359 /**
360 * Evaluate one component of unpackUnorm4x8.
361 */
362 static float
363 unpack_unorm_1x8(uint8_t u)
364 {
365 /* From section 8.4 of the GLSL 4.30 spec:
366 *
367 * unpackUnorm4x8
368 * --------------
369 * The conversion for unpacked fixed-point value f to floating point is
370 * done as follows:
371 *
372 * unpackUnorm4x8: f / 255.0
373 */
374 return (float) u / 255.0f;
375 }
376
377 /**
378 * Evaluate one component of unpackUnorm2x16.
379 */
380 static float
381 unpack_unorm_1x16(uint16_t u)
382 {
383 /* From section 8.4 of the GLSL ES 3.00 spec:
384 *
385 * unpackUnorm2x16
386 * ---------------
387 * The conversion for unpacked fixed-point value f to floating point is
388 * done as follows:
389 *
390 * unpackUnorm2x16: f / 65535.0
391 */
392 return (float) u / 65535.0f;
393 }
394
395 /**
396 * Evaluate one component of packHalf2x16.
397 */
398 static uint16_t
399 pack_half_1x16(float x)
400 {
401 return _mesa_float_to_half(x);
402 }
403
404 /**
405 * Evaluate one component of unpackHalf2x16.
406 */
407 static float
408 unpack_half_1x16(uint16_t u)
409 {
410 return _mesa_half_to_float(u);
411 }
412
413 /**
414 * Get the constant that is ultimately referenced by an r-value, in a constant
415 * expression evaluation context.
416 *
417 * The offset is used when the reference is to a specific column of a matrix.
418 */
419 static bool
420 constant_referenced(const ir_dereference *deref,
421 struct hash_table *variable_context,
422 ir_constant *&store, int &offset)
423 {
424 store = NULL;
425 offset = 0;
426
427 if (variable_context == NULL)
428 return false;
429
430 switch (deref->ir_type) {
431 case ir_type_dereference_array: {
432 const ir_dereference_array *const da =
433 (const ir_dereference_array *) deref;
434
435 ir_constant *const index_c =
436 da->array_index->constant_expression_value(variable_context);
437
438 if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer())
439 break;
440
441 const int index = index_c->type->base_type == GLSL_TYPE_INT ?
442 index_c->get_int_component(0) :
443 index_c->get_uint_component(0);
444
445 ir_constant *substore;
446 int suboffset;
447
448 const ir_dereference *const deref = da->array->as_dereference();
449 if (!deref)
450 break;
451
452 if (!constant_referenced(deref, variable_context, substore, suboffset))
453 break;
454
455 const glsl_type *const vt = da->array->type;
456 if (vt->is_array()) {
457 store = substore->get_array_element(index);
458 offset = 0;
459 } else if (vt->is_matrix()) {
460 store = substore;
461 offset = index * vt->vector_elements;
462 } else if (vt->is_vector()) {
463 store = substore;
464 offset = suboffset + index;
465 }
466
467 break;
468 }
469
470 case ir_type_dereference_record: {
471 const ir_dereference_record *const dr =
472 (const ir_dereference_record *) deref;
473
474 const ir_dereference *const deref = dr->record->as_dereference();
475 if (!deref)
476 break;
477
478 ir_constant *substore;
479 int suboffset;
480
481 if (!constant_referenced(deref, variable_context, substore, suboffset))
482 break;
483
484 /* Since we're dropping it on the floor...
485 */
486 assert(suboffset == 0);
487
488 store = substore->get_record_field(dr->field_idx);
489 break;
490 }
491
492 case ir_type_dereference_variable: {
493 const ir_dereference_variable *const dv =
494 (const ir_dereference_variable *) deref;
495
496 hash_entry *entry = _mesa_hash_table_search(variable_context, dv->var);
497 if (entry)
498 store = (ir_constant *) entry->data;
499 break;
500 }
501
502 default:
503 assert(!"Should not get here.");
504 break;
505 }
506
507 return store != NULL;
508 }
509
510
511 ir_constant *
512 ir_rvalue::constant_expression_value(struct hash_table *)
513 {
514 assert(this->type->is_error());
515 return NULL;
516 }
517
518 static uint32_t
519 bitfield_reverse(uint32_t v)
520 {
521 /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
522 uint32_t r = v; // r will be reversed bits of v; first get LSB of v
523 int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
524
525 for (v >>= 1; v; v >>= 1) {
526 r <<= 1;
527 r |= v & 1;
528 s--;
529 }
530 r <<= s; // shift when v's highest bits are zero
531
532 return r;
533 }
534
535 static int
536 find_msb_uint(uint32_t v)
537 {
538 int count = 0;
539
540 /* If v == 0, then the loop will terminate when count == 32. In that case
541 * 31-count will produce the -1 result required by GLSL findMSB().
542 */
543 while (((v & (1u << 31)) == 0) && count != 32) {
544 count++;
545 v <<= 1;
546 }
547
548 return 31 - count;
549 }
550
551 static int
552 find_msb_int(int32_t v)
553 {
554 /* If v is signed, findMSB() returns the position of the most significant
555 * zero bit.
556 */
557 return find_msb_uint(v < 0 ? ~v : v);
558 }
559
560 static float
561 ldexpf_flush_subnormal(float x, int exp)
562 {
563 const float result = ldexpf(x, exp);
564
565 /* Flush subnormal values to zero. */
566 return !isnormal(result) ? copysignf(0.0f, x) : result;
567 }
568
569 static double
570 ldexp_flush_subnormal(double x, int exp)
571 {
572 const double result = ldexp(x, exp);
573
574 /* Flush subnormal values to zero. */
575 return !isnormal(result) ? copysign(0.0, x) : result;
576 }
577
578 static uint32_t
579 bitfield_extract_uint(uint32_t value, int offset, int bits)
580 {
581 if (bits == 0)
582 return 0;
583 else if (offset < 0 || bits < 0)
584 return 0; /* Undefined, per spec. */
585 else if (offset + bits > 32)
586 return 0; /* Undefined, per spec. */
587 else {
588 value <<= 32 - bits - offset;
589 value >>= 32 - bits;
590 return value;
591 }
592 }
593
594 static int32_t
595 bitfield_extract_int(int32_t value, int offset, int bits)
596 {
597 if (bits == 0)
598 return 0;
599 else if (offset < 0 || bits < 0)
600 return 0; /* Undefined, per spec. */
601 else if (offset + bits > 32)
602 return 0; /* Undefined, per spec. */
603 else {
604 value <<= 32 - bits - offset;
605 value >>= 32 - bits;
606 return value;
607 }
608 }
609
610 static uint32_t
611 bitfield_insert(uint32_t base, uint32_t insert, int offset, int bits)
612 {
613 if (bits == 0)
614 return base;
615 else if (offset < 0 || bits < 0)
616 return 0; /* Undefined, per spec. */
617 else if (offset + bits > 32)
618 return 0; /* Undefined, per spec. */
619 else {
620 unsigned insert_mask = ((1ull << bits) - 1) << offset;
621
622 insert <<= offset;
623 insert &= insert_mask;
624 base &= ~insert_mask;
625
626 return base | insert;
627 }
628 }
629
630 ir_constant *
631 ir_expression::constant_expression_value(struct hash_table *variable_context)
632 {
633 if (this->type->is_error())
634 return NULL;
635
636 ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, };
637 ir_constant_data data;
638
639 memset(&data, 0, sizeof(data));
640
641 for (unsigned operand = 0; operand < this->num_operands; operand++) {
642 op[operand] = this->operands[operand]->constant_expression_value(variable_context);
643 if (!op[operand])
644 return NULL;
645 }
646
647 if (op[1] != NULL)
648 switch (this->operation) {
649 case ir_binop_lshift:
650 case ir_binop_rshift:
651 case ir_binop_ldexp:
652 case ir_binop_interpolate_at_offset:
653 case ir_binop_interpolate_at_sample:
654 case ir_binop_vector_extract:
655 case ir_triop_csel:
656 case ir_triop_bitfield_extract:
657 break;
658
659 default:
660 assert(op[0]->type->base_type == op[1]->type->base_type);
661 break;
662 }
663
664 bool op0_scalar = op[0]->type->is_scalar();
665 bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
666
667 /* When iterating over a vector or matrix's components, we want to increase
668 * the loop counter. However, for scalars, we want to stay at 0.
669 */
670 unsigned c0_inc = op0_scalar ? 0 : 1;
671 unsigned c1_inc = op1_scalar ? 0 : 1;
672 unsigned components;
673 if (op1_scalar || !op[1]) {
674 components = op[0]->type->components();
675 } else {
676 components = op[1]->type->components();
677 }
678
679 void *ctx = ralloc_parent(this);
680
681 /* Handle array operations here, rather than below. */
682 if (op[0]->type->is_array()) {
683 assert(op[1] != NULL && op[1]->type->is_array());
684 switch (this->operation) {
685 case ir_binop_all_equal:
686 return new(ctx) ir_constant(op[0]->has_value(op[1]));
687 case ir_binop_any_nequal:
688 return new(ctx) ir_constant(!op[0]->has_value(op[1]));
689 default:
690 break;
691 }
692 return NULL;
693 }
694
695 #include "ir_expression_operation_constant.h"
696
697 return new(ctx) ir_constant(this->type, &data);
698 }
699
700
701 ir_constant *
702 ir_texture::constant_expression_value(struct hash_table *)
703 {
704 /* texture lookups aren't constant expressions */
705 return NULL;
706 }
707
708
709 ir_constant *
710 ir_swizzle::constant_expression_value(struct hash_table *variable_context)
711 {
712 ir_constant *v = this->val->constant_expression_value(variable_context);
713
714 if (v != NULL) {
715 ir_constant_data data = { { 0 } };
716
717 const unsigned swiz_idx[4] = {
718 this->mask.x, this->mask.y, this->mask.z, this->mask.w
719 };
720
721 for (unsigned i = 0; i < this->mask.num_components; i++) {
722 switch (v->type->base_type) {
723 case GLSL_TYPE_UINT:
724 case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
725 case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
726 case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
727 case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break;
728 default: assert(!"Should not get here."); break;
729 }
730 }
731
732 void *ctx = ralloc_parent(this);
733 return new(ctx) ir_constant(this->type, &data);
734 }
735 return NULL;
736 }
737
738
739 ir_constant *
740 ir_dereference_variable::constant_expression_value(struct hash_table *variable_context)
741 {
742 assert(var);
743
744 /* Give priority to the context hashtable, if it exists */
745 if (variable_context) {
746 hash_entry *entry = _mesa_hash_table_search(variable_context, var);
747
748 if(entry)
749 return (ir_constant *) entry->data;
750 }
751
752 /* The constant_value of a uniform variable is its initializer,
753 * not the lifetime constant value of the uniform.
754 */
755 if (var->data.mode == ir_var_uniform)
756 return NULL;
757
758 if (!var->constant_value)
759 return NULL;
760
761 return var->constant_value->clone(ralloc_parent(var), NULL);
762 }
763
764
765 ir_constant *
766 ir_dereference_array::constant_expression_value(struct hash_table *variable_context)
767 {
768 ir_constant *array = this->array->constant_expression_value(variable_context);
769 ir_constant *idx = this->array_index->constant_expression_value(variable_context);
770
771 if ((array != NULL) && (idx != NULL)) {
772 void *ctx = ralloc_parent(this);
773 if (array->type->is_matrix()) {
774 /* Array access of a matrix results in a vector.
775 */
776 const unsigned column = idx->value.u[0];
777
778 const glsl_type *const column_type = array->type->column_type();
779
780 /* Offset in the constant matrix to the first element of the column
781 * to be extracted.
782 */
783 const unsigned mat_idx = column * column_type->vector_elements;
784
785 ir_constant_data data = { { 0 } };
786
787 switch (column_type->base_type) {
788 case GLSL_TYPE_UINT:
789 case GLSL_TYPE_INT:
790 for (unsigned i = 0; i < column_type->vector_elements; i++)
791 data.u[i] = array->value.u[mat_idx + i];
792
793 break;
794
795 case GLSL_TYPE_FLOAT:
796 for (unsigned i = 0; i < column_type->vector_elements; i++)
797 data.f[i] = array->value.f[mat_idx + i];
798
799 break;
800
801 case GLSL_TYPE_DOUBLE:
802 for (unsigned i = 0; i < column_type->vector_elements; i++)
803 data.d[i] = array->value.d[mat_idx + i];
804
805 break;
806
807 default:
808 assert(!"Should not get here.");
809 break;
810 }
811
812 return new(ctx) ir_constant(column_type, &data);
813 } else if (array->type->is_vector()) {
814 const unsigned component = idx->value.u[0];
815
816 return new(ctx) ir_constant(array, component);
817 } else {
818 const unsigned index = idx->value.u[0];
819 return array->get_array_element(index)->clone(ctx, NULL);
820 }
821 }
822 return NULL;
823 }
824
825
826 ir_constant *
827 ir_dereference_record::constant_expression_value(struct hash_table *)
828 {
829 ir_constant *v = this->record->constant_expression_value();
830
831 return (v != NULL) ? v->get_record_field(this->field_idx) : NULL;
832 }
833
834
835 ir_constant *
836 ir_assignment::constant_expression_value(struct hash_table *)
837 {
838 /* FINISHME: Handle CEs involving assignment (return RHS) */
839 return NULL;
840 }
841
842
843 ir_constant *
844 ir_constant::constant_expression_value(struct hash_table *)
845 {
846 return this;
847 }
848
849
850 ir_constant *
851 ir_call::constant_expression_value(struct hash_table *variable_context)
852 {
853 return this->callee->constant_expression_value(&this->actual_parameters, variable_context);
854 }
855
856
857 bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body,
858 struct hash_table *variable_context,
859 ir_constant **result)
860 {
861 foreach_in_list(ir_instruction, inst, &body) {
862 switch(inst->ir_type) {
863
864 /* (declare () type symbol) */
865 case ir_type_variable: {
866 ir_variable *var = inst->as_variable();
867 _mesa_hash_table_insert(variable_context, var, ir_constant::zero(this, var->type));
868 break;
869 }
870
871 /* (assign [condition] (write-mask) (ref) (value)) */
872 case ir_type_assignment: {
873 ir_assignment *asg = inst->as_assignment();
874 if (asg->condition) {
875 ir_constant *cond = asg->condition->constant_expression_value(variable_context);
876 if (!cond)
877 return false;
878 if (!cond->get_bool_component(0))
879 break;
880 }
881
882 ir_constant *store = NULL;
883 int offset = 0;
884
885 if (!constant_referenced(asg->lhs, variable_context, store, offset))
886 return false;
887
888 ir_constant *value = asg->rhs->constant_expression_value(variable_context);
889
890 if (!value)
891 return false;
892
893 store->copy_masked_offset(value, offset, asg->write_mask);
894 break;
895 }
896
897 /* (return (expression)) */
898 case ir_type_return:
899 assert (result);
900 *result = inst->as_return()->value->constant_expression_value(variable_context);
901 return *result != NULL;
902
903 /* (call name (ref) (params))*/
904 case ir_type_call: {
905 ir_call *call = inst->as_call();
906
907 /* Just say no to void functions in constant expressions. We
908 * don't need them at that point.
909 */
910
911 if (!call->return_deref)
912 return false;
913
914 ir_constant *store = NULL;
915 int offset = 0;
916
917 if (!constant_referenced(call->return_deref, variable_context,
918 store, offset))
919 return false;
920
921 ir_constant *value = call->constant_expression_value(variable_context);
922
923 if(!value)
924 return false;
925
926 store->copy_offset(value, offset);
927 break;
928 }
929
930 /* (if condition (then-instructions) (else-instructions)) */
931 case ir_type_if: {
932 ir_if *iif = inst->as_if();
933
934 ir_constant *cond = iif->condition->constant_expression_value(variable_context);
935 if (!cond || !cond->type->is_boolean())
936 return false;
937
938 exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions;
939
940 *result = NULL;
941 if (!constant_expression_evaluate_expression_list(branch, variable_context, result))
942 return false;
943
944 /* If there was a return in the branch chosen, drop out now. */
945 if (*result)
946 return true;
947
948 break;
949 }
950
951 /* Every other expression type, we drop out. */
952 default:
953 return false;
954 }
955 }
956
957 /* Reaching the end of the block is not an error condition */
958 if (result)
959 *result = NULL;
960
961 return true;
962 }
963
964 ir_constant *
965 ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context)
966 {
967 const glsl_type *type = this->return_type;
968 if (type == glsl_type::void_type)
969 return NULL;
970
971 /* From the GLSL 1.20 spec, page 23:
972 * "Function calls to user-defined functions (non-built-in functions)
973 * cannot be used to form constant expressions."
974 */
975 if (!this->is_builtin())
976 return NULL;
977
978 /*
979 * Of the builtin functions, only the texture lookups and the noise
980 * ones must not be used in constant expressions. They all include
981 * specific opcodes so they don't need to be special-cased at this
982 * point.
983 */
984
985 /* Initialize the table of dereferencable names with the function
986 * parameters. Verify their const-ness on the way.
987 *
988 * We expect the correctness of the number of parameters to have
989 * been checked earlier.
990 */
991 hash_table *deref_hash = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
992 _mesa_key_pointer_equal);
993
994 /* If "origin" is non-NULL, then the function body is there. So we
995 * have to use the variable objects from the object with the body,
996 * but the parameter instanciation on the current object.
997 */
998 const exec_node *parameter_info = origin ? origin->parameters.get_head_raw() : parameters.get_head_raw();
999
1000 foreach_in_list(ir_rvalue, n, actual_parameters) {
1001 ir_constant *constant = n->constant_expression_value(variable_context);
1002 if (constant == NULL) {
1003 _mesa_hash_table_destroy(deref_hash, NULL);
1004 return NULL;
1005 }
1006
1007
1008 ir_variable *var = (ir_variable *)parameter_info;
1009 _mesa_hash_table_insert(deref_hash, var, constant);
1010
1011 parameter_info = parameter_info->next;
1012 }
1013
1014 ir_constant *result = NULL;
1015
1016 /* Now run the builtin function until something non-constant
1017 * happens or we get the result.
1018 */
1019 if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result)
1020 result = result->clone(ralloc_parent(this), NULL);
1021
1022 _mesa_hash_table_destroy(deref_hash, NULL);
1023
1024 return result;
1025 }