2555cc941769cce72ac4fe4511bae15c77e901c7
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 /**
186 * Validate the types and qualifiers of an output from one stage against the
187 * matching input to another stage.
188 */
189 static void
190 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
191 const ir_variable *input,
192 const ir_variable *output,
193 gl_shader_stage consumer_stage,
194 gl_shader_stage producer_stage)
195 {
196 /* Check that the types match between stages.
197 */
198 const glsl_type *type_to_match = input->type;
199
200 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
201 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
202 consumer_stage != MESA_SHADER_FRAGMENT) ||
203 consumer_stage == MESA_SHADER_GEOMETRY;
204 if (extra_array_level) {
205 assert(type_to_match->is_array());
206 type_to_match = type_to_match->fields.array;
207 }
208
209 if (type_to_match != output->type) {
210 /* There is a bit of a special case for gl_TexCoord. This
211 * built-in is unsized by default. Applications that variable
212 * access it must redeclare it with a size. There is some
213 * language in the GLSL spec that implies the fragment shader
214 * and vertex shader do not have to agree on this size. Other
215 * driver behave this way, and one or two applications seem to
216 * rely on it.
217 *
218 * Neither declaration needs to be modified here because the array
219 * sizes are fixed later when update_array_sizes is called.
220 *
221 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
222 *
223 * "Unlike user-defined varying variables, the built-in
224 * varying variables don't have a strict one-to-one
225 * correspondence between the vertex language and the
226 * fragment language."
227 */
228 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
229 linker_error(prog,
230 "%s shader output `%s' declared as type `%s', "
231 "but %s shader input declared as type `%s'\n",
232 _mesa_shader_stage_to_string(producer_stage),
233 output->name,
234 output->type->name,
235 _mesa_shader_stage_to_string(consumer_stage),
236 input->type->name);
237 return;
238 }
239 }
240
241 /* Check that all of the qualifiers match between stages.
242 */
243
244 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
245 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
246 * conformance test suite does not verify that the qualifiers must match.
247 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
248 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
249 */
250 if (false /* always skip the centroid check */ &&
251 prog->Version < (prog->IsES ? 310 : 430) &&
252 input->data.centroid != output->data.centroid) {
253 linker_error(prog,
254 "%s shader output `%s' %s centroid qualifier, "
255 "but %s shader input %s centroid qualifier\n",
256 _mesa_shader_stage_to_string(producer_stage),
257 output->name,
258 (output->data.centroid) ? "has" : "lacks",
259 _mesa_shader_stage_to_string(consumer_stage),
260 (input->data.centroid) ? "has" : "lacks");
261 return;
262 }
263
264 if (input->data.sample != output->data.sample) {
265 linker_error(prog,
266 "%s shader output `%s' %s sample qualifier, "
267 "but %s shader input %s sample qualifier\n",
268 _mesa_shader_stage_to_string(producer_stage),
269 output->name,
270 (output->data.sample) ? "has" : "lacks",
271 _mesa_shader_stage_to_string(consumer_stage),
272 (input->data.sample) ? "has" : "lacks");
273 return;
274 }
275
276 if (input->data.patch != output->data.patch) {
277 linker_error(prog,
278 "%s shader output `%s' %s patch qualifier, "
279 "but %s shader input %s patch qualifier\n",
280 _mesa_shader_stage_to_string(producer_stage),
281 output->name,
282 (output->data.patch) ? "has" : "lacks",
283 _mesa_shader_stage_to_string(consumer_stage),
284 (input->data.patch) ? "has" : "lacks");
285 return;
286 }
287
288 if (!prog->IsES && input->data.invariant != output->data.invariant) {
289 linker_error(prog,
290 "%s shader output `%s' %s invariant qualifier, "
291 "but %s shader input %s invariant qualifier\n",
292 _mesa_shader_stage_to_string(producer_stage),
293 output->name,
294 (output->data.invariant) ? "has" : "lacks",
295 _mesa_shader_stage_to_string(consumer_stage),
296 (input->data.invariant) ? "has" : "lacks");
297 return;
298 }
299
300 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
301 * to match cross stage, they must only match within the same stage.
302 *
303 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
304 *
305 * "It is a link-time error if, within the same stage, the interpolation
306 * qualifiers of variables of the same name do not match.
307 *
308 */
309 if (input->data.interpolation != output->data.interpolation &&
310 prog->Version < 440) {
311 linker_error(prog,
312 "%s shader output `%s' specifies %s "
313 "interpolation qualifier, "
314 "but %s shader input specifies %s "
315 "interpolation qualifier\n",
316 _mesa_shader_stage_to_string(producer_stage),
317 output->name,
318 interpolation_string(output->data.interpolation),
319 _mesa_shader_stage_to_string(consumer_stage),
320 interpolation_string(input->data.interpolation));
321 return;
322 }
323 }
324
325 /**
326 * Validate front and back color outputs against single color input
327 */
328 static void
329 cross_validate_front_and_back_color(struct gl_shader_program *prog,
330 const ir_variable *input,
331 const ir_variable *front_color,
332 const ir_variable *back_color,
333 gl_shader_stage consumer_stage,
334 gl_shader_stage producer_stage)
335 {
336 if (front_color != NULL && front_color->data.assigned)
337 cross_validate_types_and_qualifiers(prog, input, front_color,
338 consumer_stage, producer_stage);
339
340 if (back_color != NULL && back_color->data.assigned)
341 cross_validate_types_and_qualifiers(prog, input, back_color,
342 consumer_stage, producer_stage);
343 }
344
345 /**
346 * Validate that outputs from one stage match inputs of another
347 */
348 void
349 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
350 gl_shader *producer, gl_shader *consumer)
351 {
352 glsl_symbol_table parameters;
353 ir_variable *explicit_locations[MAX_VARYING][4] = { {NULL, NULL} };
354
355 /* Find all shader outputs in the "producer" stage.
356 */
357 foreach_in_list(ir_instruction, node, producer->ir) {
358 ir_variable *const var = node->as_variable();
359
360 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
361 continue;
362
363 if (!var->data.explicit_location
364 || var->data.location < VARYING_SLOT_VAR0)
365 parameters.add_variable(var);
366 else {
367 /* User-defined varyings with explicit locations are handled
368 * differently because they do not need to have matching names.
369 */
370 const glsl_type *type = get_varying_type(var, producer->Stage);
371 unsigned num_elements = type->count_attribute_slots(false);
372 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
373 unsigned slot_limit = idx + num_elements;
374 unsigned last_comp;
375
376 if (var->type->without_array()->is_record()) {
377 /* The component qualifier can't be used on structs so just treat
378 * all component slots as used.
379 */
380 last_comp = 4;
381 } else {
382 unsigned dmul = var->type->is_double() ? 2 : 1;
383 last_comp = var->data.location_frac +
384 var->type->without_array()->vector_elements * dmul;
385 }
386
387 while (idx < slot_limit) {
388 for (unsigned i = var->data.location_frac; i < last_comp; i++) {
389 if (explicit_locations[idx][i] != NULL) {
390 linker_error(prog,
391 "%s shader has multiple outputs explicitly "
392 "assigned to location %d and component %d\n",
393 _mesa_shader_stage_to_string(producer->Stage),
394 idx, var->data.location_frac);
395 return;
396 }
397
398 /* Make sure all component at this location have the same type.
399 */
400 for (unsigned j = 0; j < 4; j++) {
401 if (explicit_locations[idx][j] &&
402 (explicit_locations[idx][j]->type->without_array()
403 ->base_type != var->type->without_array()->base_type)) {
404 linker_error(prog,
405 "Varyings sharing the same location must "
406 "have the same underlying numerical type. "
407 "Location %u component %u\n", idx,
408 var->data.location_frac);
409 return;
410 }
411 }
412
413 explicit_locations[idx][i] = var;
414
415 /* We need to do some special handling for doubles as dvec3 and
416 * dvec4 consume two consecutive locations. We don't need to
417 * worry about components beginning at anything other than 0 as
418 * the spec does not allow this for dvec3 and dvec4.
419 */
420 if (i == 3 && last_comp > 4) {
421 last_comp = last_comp - 4;
422 /* Bump location index and reset the component index */
423 idx++;
424 i = 0;
425 }
426 }
427 idx++;
428 }
429 }
430 }
431
432
433 /* Find all shader inputs in the "consumer" stage. Any variables that have
434 * matching outputs already in the symbol table must have the same type and
435 * qualifiers.
436 *
437 * Exception: if the consumer is the geometry shader, then the inputs
438 * should be arrays and the type of the array element should match the type
439 * of the corresponding producer output.
440 */
441 foreach_in_list(ir_instruction, node, consumer->ir) {
442 ir_variable *const input = node->as_variable();
443
444 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
445 continue;
446
447 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
448 const ir_variable *const front_color =
449 parameters.get_variable("gl_FrontColor");
450
451 const ir_variable *const back_color =
452 parameters.get_variable("gl_BackColor");
453
454 cross_validate_front_and_back_color(prog, input,
455 front_color, back_color,
456 consumer->Stage, producer->Stage);
457 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
458 const ir_variable *const front_color =
459 parameters.get_variable("gl_FrontSecondaryColor");
460
461 const ir_variable *const back_color =
462 parameters.get_variable("gl_BackSecondaryColor");
463
464 cross_validate_front_and_back_color(prog, input,
465 front_color, back_color,
466 consumer->Stage, producer->Stage);
467 } else {
468 /* The rules for connecting inputs and outputs change in the presence
469 * of explicit locations. In this case, we no longer care about the
470 * names of the variables. Instead, we care only about the
471 * explicitly assigned location.
472 */
473 ir_variable *output = NULL;
474 if (input->data.explicit_location
475 && input->data.location >= VARYING_SLOT_VAR0) {
476
477 const glsl_type *type = get_varying_type(input, consumer->Stage);
478 unsigned num_elements = type->count_attribute_slots(false);
479 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
480 unsigned slot_limit = idx + num_elements;
481
482 while (idx < slot_limit) {
483 output = explicit_locations[idx][input->data.location_frac];
484
485 if (output == NULL ||
486 input->data.location != output->data.location) {
487 linker_error(prog,
488 "%s shader input `%s' with explicit location "
489 "has no matching output\n",
490 _mesa_shader_stage_to_string(consumer->Stage),
491 input->name);
492 break;
493 }
494 idx++;
495 }
496 } else {
497 output = parameters.get_variable(input->name);
498 }
499
500 if (output != NULL) {
501 /* Interface blocks have their own validation elsewhere so don't
502 * try validating them here.
503 */
504 if (!(input->get_interface_type() &&
505 output->get_interface_type()))
506 cross_validate_types_and_qualifiers(prog, input, output,
507 consumer->Stage,
508 producer->Stage);
509 } else {
510 /* Check for input vars with unmatched output vars in prev stage
511 * taking into account that interface blocks could have a matching
512 * output but with different name, so we ignore them.
513 */
514 assert(!input->data.assigned);
515 if (input->data.used && !input->get_interface_type() &&
516 !input->data.explicit_location && !prog->SeparateShader)
517 linker_error(prog,
518 "%s shader input `%s' "
519 "has no matching output in the previous stage\n",
520 _mesa_shader_stage_to_string(consumer->Stage),
521 input->name);
522 }
523 }
524 }
525 }
526
527 /**
528 * Demote shader inputs and outputs that are not used in other stages, and
529 * remove them via dead code elimination.
530 */
531 void
532 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
533 gl_shader *sh,
534 enum ir_variable_mode mode)
535 {
536 if (is_separate_shader_object)
537 return;
538
539 foreach_in_list(ir_instruction, node, sh->ir) {
540 ir_variable *const var = node->as_variable();
541
542 if ((var == NULL) || (var->data.mode != int(mode)))
543 continue;
544
545 /* A shader 'in' or 'out' variable is only really an input or output if
546 * its value is used by other shader stages. This will cause the
547 * variable to have a location assigned.
548 */
549 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
550 assert(var->data.mode != ir_var_temporary);
551 var->data.mode = ir_var_auto;
552 }
553 }
554
555 /* Eliminate code that is now dead due to unused inputs/outputs being
556 * demoted.
557 */
558 while (do_dead_code(sh->ir, false))
559 ;
560
561 }
562
563 /**
564 * Initialize this object based on a string that was passed to
565 * glTransformFeedbackVaryings.
566 *
567 * If the input is mal-formed, this call still succeeds, but it sets
568 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
569 * will fail to find any matching variable.
570 */
571 void
572 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
573 const char *input)
574 {
575 /* We don't have to be pedantic about what is a valid GLSL variable name,
576 * because any variable with an invalid name can't exist in the IR anyway.
577 */
578
579 this->location = -1;
580 this->orig_name = input;
581 this->lowered_builtin_array_variable = none;
582 this->skip_components = 0;
583 this->next_buffer_separator = false;
584 this->matched_candidate = NULL;
585 this->stream_id = 0;
586 this->buffer = 0;
587 this->offset = 0;
588
589 if (ctx->Extensions.ARB_transform_feedback3) {
590 /* Parse gl_NextBuffer. */
591 if (strcmp(input, "gl_NextBuffer") == 0) {
592 this->next_buffer_separator = true;
593 return;
594 }
595
596 /* Parse gl_SkipComponents. */
597 if (strcmp(input, "gl_SkipComponents1") == 0)
598 this->skip_components = 1;
599 else if (strcmp(input, "gl_SkipComponents2") == 0)
600 this->skip_components = 2;
601 else if (strcmp(input, "gl_SkipComponents3") == 0)
602 this->skip_components = 3;
603 else if (strcmp(input, "gl_SkipComponents4") == 0)
604 this->skip_components = 4;
605
606 if (this->skip_components)
607 return;
608 }
609
610 /* Parse a declaration. */
611 const char *base_name_end;
612 long subscript = parse_program_resource_name(input, &base_name_end);
613 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
614 if (this->var_name == NULL) {
615 _mesa_error_no_memory(__func__);
616 return;
617 }
618
619 if (subscript >= 0) {
620 this->array_subscript = subscript;
621 this->is_subscripted = true;
622 } else {
623 this->is_subscripted = false;
624 }
625
626 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
627 * class must behave specially to account for the fact that gl_ClipDistance
628 * is converted from a float[8] to a vec4[2].
629 */
630 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
631 strcmp(this->var_name, "gl_ClipDistance") == 0) {
632 this->lowered_builtin_array_variable = clip_distance;
633 }
634
635 if (ctx->Const.LowerTessLevel &&
636 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
637 this->lowered_builtin_array_variable = tess_level_outer;
638 if (ctx->Const.LowerTessLevel &&
639 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
640 this->lowered_builtin_array_variable = tess_level_inner;
641 }
642
643
644 /**
645 * Determine whether two tfeedback_decl objects refer to the same variable and
646 * array index (if applicable).
647 */
648 bool
649 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
650 {
651 assert(x.is_varying() && y.is_varying());
652
653 if (strcmp(x.var_name, y.var_name) != 0)
654 return false;
655 if (x.is_subscripted != y.is_subscripted)
656 return false;
657 if (x.is_subscripted && x.array_subscript != y.array_subscript)
658 return false;
659 return true;
660 }
661
662
663 /**
664 * Assign a location and stream ID for this tfeedback_decl object based on the
665 * transform feedback candidate found by find_candidate.
666 *
667 * If an error occurs, the error is reported through linker_error() and false
668 * is returned.
669 */
670 bool
671 tfeedback_decl::assign_location(struct gl_context *ctx,
672 struct gl_shader_program *prog)
673 {
674 assert(this->is_varying());
675
676 unsigned fine_location
677 = this->matched_candidate->toplevel_var->data.location * 4
678 + this->matched_candidate->toplevel_var->data.location_frac
679 + this->matched_candidate->offset;
680 const unsigned dmul =
681 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
682
683 if (this->matched_candidate->type->is_array()) {
684 /* Array variable */
685 const unsigned matrix_cols =
686 this->matched_candidate->type->fields.array->matrix_columns;
687 const unsigned vector_elements =
688 this->matched_candidate->type->fields.array->vector_elements;
689 unsigned actual_array_size;
690 switch (this->lowered_builtin_array_variable) {
691 case clip_distance:
692 actual_array_size = prog->LastClipDistanceArraySize;
693 break;
694 case tess_level_outer:
695 actual_array_size = 4;
696 break;
697 case tess_level_inner:
698 actual_array_size = 2;
699 break;
700 case none:
701 default:
702 actual_array_size = this->matched_candidate->type->array_size();
703 break;
704 }
705
706 if (this->is_subscripted) {
707 /* Check array bounds. */
708 if (this->array_subscript >= actual_array_size) {
709 linker_error(prog, "Transform feedback varying %s has index "
710 "%i, but the array size is %u.",
711 this->orig_name, this->array_subscript,
712 actual_array_size);
713 return false;
714 }
715 unsigned array_elem_size = this->lowered_builtin_array_variable ?
716 1 : vector_elements * matrix_cols * dmul;
717 fine_location += array_elem_size * this->array_subscript;
718 this->size = 1;
719 } else {
720 this->size = actual_array_size;
721 }
722 this->vector_elements = vector_elements;
723 this->matrix_columns = matrix_cols;
724 if (this->lowered_builtin_array_variable)
725 this->type = GL_FLOAT;
726 else
727 this->type = this->matched_candidate->type->fields.array->gl_type;
728 } else {
729 /* Regular variable (scalar, vector, or matrix) */
730 if (this->is_subscripted) {
731 linker_error(prog, "Transform feedback varying %s requested, "
732 "but %s is not an array.",
733 this->orig_name, this->var_name);
734 return false;
735 }
736 this->size = 1;
737 this->vector_elements = this->matched_candidate->type->vector_elements;
738 this->matrix_columns = this->matched_candidate->type->matrix_columns;
739 this->type = this->matched_candidate->type->gl_type;
740 }
741 this->location = fine_location / 4;
742 this->location_frac = fine_location % 4;
743
744 /* From GL_EXT_transform_feedback:
745 * A program will fail to link if:
746 *
747 * * the total number of components to capture in any varying
748 * variable in <varyings> is greater than the constant
749 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
750 * buffer mode is SEPARATE_ATTRIBS_EXT;
751 */
752 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
753 this->num_components() >
754 ctx->Const.MaxTransformFeedbackSeparateComponents) {
755 linker_error(prog, "Transform feedback varying %s exceeds "
756 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
757 this->orig_name);
758 return false;
759 }
760
761 /* Only transform feedback varyings can be assigned to non-zero streams,
762 * so assign the stream id here.
763 */
764 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
765
766 unsigned array_offset = this->array_subscript * 4 * dmul;
767 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
768 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
769 this->offset = this->matched_candidate->toplevel_var->data.offset +
770 array_offset + struct_offset;
771
772 return true;
773 }
774
775
776 unsigned
777 tfeedback_decl::get_num_outputs() const
778 {
779 if (!this->is_varying()) {
780 return 0;
781 }
782 return (this->num_components() + this->location_frac + 3)/4;
783 }
784
785
786 /**
787 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
788 *
789 * If an error occurs, the error is reported through linker_error() and false
790 * is returned.
791 */
792 bool
793 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
794 struct gl_transform_feedback_info *info,
795 unsigned buffer, unsigned buffer_index,
796 const unsigned max_outputs, bool *explicit_stride,
797 bool has_xfb_qualifiers) const
798 {
799 assert(!this->next_buffer_separator);
800
801 /* Handle gl_SkipComponents. */
802 if (this->skip_components) {
803 info->Buffers[buffer].Stride += this->skip_components;
804 return true;
805 }
806
807 unsigned xfb_offset = 0;
808 if (has_xfb_qualifiers) {
809 xfb_offset = this->offset / 4;
810 } else {
811 xfb_offset = info->Buffers[buffer].Stride;
812 }
813 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
814
815 unsigned location = this->location;
816 unsigned location_frac = this->location_frac;
817 unsigned num_components = this->num_components();
818 while (num_components > 0) {
819 unsigned output_size = MIN2(num_components, 4 - location_frac);
820 assert((info->NumOutputs == 0 && max_outputs == 0) ||
821 info->NumOutputs < max_outputs);
822
823 /* From the ARB_enhanced_layouts spec:
824 *
825 * "If such a block member or variable is not written during a shader
826 * invocation, the buffer contents at the assigned offset will be
827 * undefined. Even if there are no static writes to a variable or
828 * member that is assigned a transform feedback offset, the space is
829 * still allocated in the buffer and still affects the stride."
830 */
831 if (this->is_varying_written()) {
832 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
833 info->Outputs[info->NumOutputs].OutputRegister = location;
834 info->Outputs[info->NumOutputs].NumComponents = output_size;
835 info->Outputs[info->NumOutputs].StreamId = stream_id;
836 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
837 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
838 ++info->NumOutputs;
839 }
840 info->Buffers[buffer].Stream = this->stream_id;
841 xfb_offset += output_size;
842
843 num_components -= output_size;
844 location++;
845 location_frac = 0;
846 }
847
848 if (explicit_stride && explicit_stride[buffer]) {
849 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
850 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
851 "multiple of 8 as its applied to a type that is or "
852 "contains a double.",
853 info->Buffers[buffer].Stride * 4);
854 return false;
855 }
856
857 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
858 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
859 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
860 "buffer (%d)", xfb_offset * 4,
861 info->Buffers[buffer].Stride * 4, buffer);
862 return false;
863 }
864 } else {
865 info->Buffers[buffer].Stride = xfb_offset;
866 }
867
868 /* From GL_EXT_transform_feedback:
869 * A program will fail to link if:
870 *
871 * * the total number of components to capture is greater than
872 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
873 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
874 *
875 * From GL_ARB_enhanced_layouts:
876 *
877 * "The resulting stride (implicit or explicit) must be less than or
878 * equal to the implementation-dependent constant
879 * gl_MaxTransformFeedbackInterleavedComponents."
880 */
881 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
882 has_xfb_qualifiers) &&
883 info->Buffers[buffer].Stride >
884 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
885 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
886 "limit has been exceeded.");
887 return false;
888 }
889
890 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
891 this->orig_name);
892 info->Varyings[info->NumVarying].Type = this->type;
893 info->Varyings[info->NumVarying].Size = this->size;
894 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
895 info->NumVarying++;
896 info->Buffers[buffer].NumVaryings++;
897
898 return true;
899 }
900
901
902 const tfeedback_candidate *
903 tfeedback_decl::find_candidate(gl_shader_program *prog,
904 hash_table *tfeedback_candidates)
905 {
906 const char *name = this->var_name;
907 switch (this->lowered_builtin_array_variable) {
908 case none:
909 name = this->var_name;
910 break;
911 case clip_distance:
912 name = "gl_ClipDistanceMESA";
913 break;
914 case tess_level_outer:
915 name = "gl_TessLevelOuterMESA";
916 break;
917 case tess_level_inner:
918 name = "gl_TessLevelInnerMESA";
919 break;
920 }
921 this->matched_candidate = (const tfeedback_candidate *)
922 hash_table_find(tfeedback_candidates, name);
923 if (!this->matched_candidate) {
924 /* From GL_EXT_transform_feedback:
925 * A program will fail to link if:
926 *
927 * * any variable name specified in the <varyings> array is not
928 * declared as an output in the geometry shader (if present) or
929 * the vertex shader (if no geometry shader is present);
930 */
931 linker_error(prog, "Transform feedback varying %s undeclared.",
932 this->orig_name);
933 }
934 return this->matched_candidate;
935 }
936
937
938 /**
939 * Parse all the transform feedback declarations that were passed to
940 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
941 *
942 * If an error occurs, the error is reported through linker_error() and false
943 * is returned.
944 */
945 bool
946 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
947 const void *mem_ctx, unsigned num_names,
948 char **varying_names, tfeedback_decl *decls)
949 {
950 for (unsigned i = 0; i < num_names; ++i) {
951 decls[i].init(ctx, mem_ctx, varying_names[i]);
952
953 if (!decls[i].is_varying())
954 continue;
955
956 /* From GL_EXT_transform_feedback:
957 * A program will fail to link if:
958 *
959 * * any two entries in the <varyings> array specify the same varying
960 * variable;
961 *
962 * We interpret this to mean "any two entries in the <varyings> array
963 * specify the same varying variable and array index", since transform
964 * feedback of arrays would be useless otherwise.
965 */
966 for (unsigned j = 0; j < i; ++j) {
967 if (!decls[j].is_varying())
968 continue;
969
970 if (tfeedback_decl::is_same(decls[i], decls[j])) {
971 linker_error(prog, "Transform feedback varying %s specified "
972 "more than once.", varying_names[i]);
973 return false;
974 }
975 }
976 }
977 return true;
978 }
979
980
981 static int
982 cmp_xfb_offset(const void * x_generic, const void * y_generic)
983 {
984 tfeedback_decl *x = (tfeedback_decl *) x_generic;
985 tfeedback_decl *y = (tfeedback_decl *) y_generic;
986
987 if (x->get_buffer() != y->get_buffer())
988 return x->get_buffer() - y->get_buffer();
989 return x->get_offset() - y->get_offset();
990 }
991
992 /**
993 * Store transform feedback location assignments into
994 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
995 *
996 * If an error occurs, the error is reported through linker_error() and false
997 * is returned.
998 */
999 bool
1000 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1001 unsigned num_tfeedback_decls,
1002 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1003 {
1004 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1005 * tracking the number of buffers doesn't overflow.
1006 */
1007 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1008
1009 bool separate_attribs_mode =
1010 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1011
1012 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1013 ralloc_free(prog->LinkedTransformFeedback.Outputs);
1014
1015 memset(&prog->LinkedTransformFeedback, 0,
1016 sizeof(prog->LinkedTransformFeedback));
1017
1018 /* The xfb_offset qualifier does not have to be used in increasing order
1019 * however some drivers expect to receive the list of transform feedback
1020 * declarations in order so sort it now for convenience.
1021 */
1022 if (has_xfb_qualifiers)
1023 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1024 cmp_xfb_offset);
1025
1026 prog->LinkedTransformFeedback.Varyings =
1027 rzalloc_array(prog,
1028 struct gl_transform_feedback_varying_info,
1029 num_tfeedback_decls);
1030
1031 unsigned num_outputs = 0;
1032 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1033 if (tfeedback_decls[i].is_varying_written())
1034 num_outputs += tfeedback_decls[i].get_num_outputs();
1035 }
1036
1037 prog->LinkedTransformFeedback.Outputs =
1038 rzalloc_array(prog,
1039 struct gl_transform_feedback_output,
1040 num_outputs);
1041
1042 unsigned num_buffers = 0;
1043 unsigned buffers = 0;
1044
1045 if (!has_xfb_qualifiers && separate_attribs_mode) {
1046 /* GL_SEPARATE_ATTRIBS */
1047 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1048 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1049 num_buffers, num_buffers, num_outputs,
1050 NULL, has_xfb_qualifiers))
1051 return false;
1052
1053 buffers |= 1 << num_buffers;
1054 num_buffers++;
1055 }
1056 }
1057 else {
1058 /* GL_INVERLEAVED_ATTRIBS */
1059 int buffer_stream_id = -1;
1060 unsigned buffer =
1061 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1062 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1063
1064 /* Apply any xfb_stride global qualifiers */
1065 if (has_xfb_qualifiers) {
1066 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1067 if (prog->TransformFeedback.BufferStride[j]) {
1068 buffers |= 1 << j;
1069 explicit_stride[j] = true;
1070 prog->LinkedTransformFeedback.Buffers[j].Stride =
1071 prog->TransformFeedback.BufferStride[j] / 4;
1072 }
1073 }
1074 }
1075
1076 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1077 if (has_xfb_qualifiers &&
1078 buffer != tfeedback_decls[i].get_buffer()) {
1079 /* we have moved to the next buffer so reset stream id */
1080 buffer_stream_id = -1;
1081 num_buffers++;
1082 }
1083
1084 if (tfeedback_decls[i].is_next_buffer_separator()) {
1085 num_buffers++;
1086 buffer_stream_id = -1;
1087 continue;
1088 } else if (buffer_stream_id == -1) {
1089 /* First varying writing to this buffer: remember its stream */
1090 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1091 } else if (buffer_stream_id !=
1092 (int) tfeedback_decls[i].get_stream_id()) {
1093 /* Varying writes to the same buffer from a different stream */
1094 linker_error(prog,
1095 "Transform feedback can't capture varyings belonging "
1096 "to different vertex streams in a single buffer. "
1097 "Varying %s writes to buffer from stream %u, other "
1098 "varyings in the same buffer write from stream %u.",
1099 tfeedback_decls[i].name(),
1100 tfeedback_decls[i].get_stream_id(),
1101 buffer_stream_id);
1102 return false;
1103 }
1104
1105 if (has_xfb_qualifiers) {
1106 buffer = tfeedback_decls[i].get_buffer();
1107 } else {
1108 buffer = num_buffers;
1109 }
1110 buffers |= 1 << buffer;
1111
1112 if (!tfeedback_decls[i].store(ctx, prog,
1113 &prog->LinkedTransformFeedback,
1114 buffer, num_buffers, num_outputs,
1115 explicit_stride, has_xfb_qualifiers))
1116 return false;
1117 }
1118 }
1119
1120 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1121
1122 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1123 return true;
1124 }
1125
1126 namespace {
1127
1128 /**
1129 * Data structure recording the relationship between outputs of one shader
1130 * stage (the "producer") and inputs of another (the "consumer").
1131 */
1132 class varying_matches
1133 {
1134 public:
1135 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1136 gl_shader_stage producer_stage,
1137 gl_shader_stage consumer_stage);
1138 ~varying_matches();
1139 void record(ir_variable *producer_var, ir_variable *consumer_var);
1140 unsigned assign_locations(struct gl_shader_program *prog,
1141 uint64_t reserved_slots, bool separate_shader);
1142 void store_locations() const;
1143
1144 private:
1145 bool is_varying_packing_safe(const glsl_type *type,
1146 const ir_variable *var);
1147
1148 /**
1149 * If true, this driver disables varying packing, so all varyings need to
1150 * be aligned on slot boundaries, and take up a number of slots equal to
1151 * their number of matrix columns times their array size.
1152 *
1153 * Packing may also be disabled because our current packing method is not
1154 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1155 * guaranteed to match across stages.
1156 */
1157 const bool disable_varying_packing;
1158
1159 /**
1160 * If true, this driver has transform feedback enabled. The transform
1161 * feedback code requires at least some packing be done even when varying
1162 * packing is disabled, fortunately where transform feedback requires
1163 * packing it's safe to override the disabled setting. See
1164 * is_varying_packing_safe().
1165 */
1166 const bool xfb_enabled;
1167
1168 /**
1169 * Enum representing the order in which varyings are packed within a
1170 * packing class.
1171 *
1172 * Currently we pack vec4's first, then vec2's, then scalar values, then
1173 * vec3's. This order ensures that the only vectors that are at risk of
1174 * having to be "double parked" (split between two adjacent varying slots)
1175 * are the vec3's.
1176 */
1177 enum packing_order_enum {
1178 PACKING_ORDER_VEC4,
1179 PACKING_ORDER_VEC2,
1180 PACKING_ORDER_SCALAR,
1181 PACKING_ORDER_VEC3,
1182 };
1183
1184 static unsigned compute_packing_class(const ir_variable *var);
1185 static packing_order_enum compute_packing_order(const ir_variable *var);
1186 static int match_comparator(const void *x_generic, const void *y_generic);
1187 static int xfb_comparator(const void *x_generic, const void *y_generic);
1188
1189 /**
1190 * Structure recording the relationship between a single producer output
1191 * and a single consumer input.
1192 */
1193 struct match {
1194 /**
1195 * Packing class for this varying, computed by compute_packing_class().
1196 */
1197 unsigned packing_class;
1198
1199 /**
1200 * Packing order for this varying, computed by compute_packing_order().
1201 */
1202 packing_order_enum packing_order;
1203 unsigned num_components;
1204
1205 /**
1206 * The output variable in the producer stage.
1207 */
1208 ir_variable *producer_var;
1209
1210 /**
1211 * The input variable in the consumer stage.
1212 */
1213 ir_variable *consumer_var;
1214
1215 /**
1216 * The location which has been assigned for this varying. This is
1217 * expressed in multiples of a float, with the first generic varying
1218 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1219 * value 0.
1220 */
1221 unsigned generic_location;
1222 } *matches;
1223
1224 /**
1225 * The number of elements in the \c matches array that are currently in
1226 * use.
1227 */
1228 unsigned num_matches;
1229
1230 /**
1231 * The number of elements that were set aside for the \c matches array when
1232 * it was allocated.
1233 */
1234 unsigned matches_capacity;
1235
1236 gl_shader_stage producer_stage;
1237 gl_shader_stage consumer_stage;
1238 };
1239
1240 } /* anonymous namespace */
1241
1242 varying_matches::varying_matches(bool disable_varying_packing,
1243 bool xfb_enabled,
1244 gl_shader_stage producer_stage,
1245 gl_shader_stage consumer_stage)
1246 : disable_varying_packing(disable_varying_packing),
1247 xfb_enabled(xfb_enabled),
1248 producer_stage(producer_stage),
1249 consumer_stage(consumer_stage)
1250 {
1251 /* Note: this initial capacity is rather arbitrarily chosen to be large
1252 * enough for many cases without wasting an unreasonable amount of space.
1253 * varying_matches::record() will resize the array if there are more than
1254 * this number of varyings.
1255 */
1256 this->matches_capacity = 8;
1257 this->matches = (match *)
1258 malloc(sizeof(*this->matches) * this->matches_capacity);
1259 this->num_matches = 0;
1260 }
1261
1262
1263 varying_matches::~varying_matches()
1264 {
1265 free(this->matches);
1266 }
1267
1268
1269 /**
1270 * Packing is always safe on individual arrays, structure and matices. It is
1271 * also safe if the varying is only used for transform feedback.
1272 */
1273 bool
1274 varying_matches::is_varying_packing_safe(const glsl_type *type,
1275 const ir_variable *var)
1276 {
1277 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1278 consumer_stage == MESA_SHADER_TESS_CTRL ||
1279 producer_stage == MESA_SHADER_TESS_CTRL)
1280 return false;
1281
1282 return xfb_enabled && (type->is_array() || type->is_record() ||
1283 type->is_matrix() || var->data.is_xfb_only);
1284 }
1285
1286
1287 /**
1288 * Record the given producer/consumer variable pair in the list of variables
1289 * that should later be assigned locations.
1290 *
1291 * It is permissible for \c consumer_var to be NULL (this happens if a
1292 * variable is output by the producer and consumed by transform feedback, but
1293 * not consumed by the consumer).
1294 *
1295 * If \c producer_var has already been paired up with a consumer_var, or
1296 * producer_var is part of fixed pipeline functionality (and hence already has
1297 * a location assigned), this function has no effect.
1298 *
1299 * Note: as a side effect this function may change the interpolation type of
1300 * \c producer_var, but only when the change couldn't possibly affect
1301 * rendering.
1302 */
1303 void
1304 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1305 {
1306 assert(producer_var != NULL || consumer_var != NULL);
1307
1308 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1309 producer_var->data.explicit_location)) ||
1310 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1311 consumer_var->data.explicit_location))) {
1312 /* Either a location already exists for this variable (since it is part
1313 * of fixed functionality), or it has already been recorded as part of a
1314 * previous match.
1315 */
1316 return;
1317 }
1318
1319 bool needs_flat_qualifier = consumer_var == NULL &&
1320 (producer_var->type->contains_integer() ||
1321 producer_var->type->contains_double());
1322
1323 if (needs_flat_qualifier ||
1324 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1325 /* Since this varying is not being consumed by the fragment shader, its
1326 * interpolation type varying cannot possibly affect rendering.
1327 * Also, this variable is non-flat and is (or contains) an integer
1328 * or a double.
1329 * If the consumer stage is unknown, don't modify the interpolation
1330 * type as it could affect rendering later with separate shaders.
1331 *
1332 * lower_packed_varyings requires all integer varyings to flat,
1333 * regardless of where they appear. We can trivially satisfy that
1334 * requirement by changing the interpolation type to flat here.
1335 */
1336 if (producer_var) {
1337 producer_var->data.centroid = false;
1338 producer_var->data.sample = false;
1339 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1340 }
1341
1342 if (consumer_var) {
1343 consumer_var->data.centroid = false;
1344 consumer_var->data.sample = false;
1345 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1346 }
1347 }
1348
1349 if (this->num_matches == this->matches_capacity) {
1350 this->matches_capacity *= 2;
1351 this->matches = (match *)
1352 realloc(this->matches,
1353 sizeof(*this->matches) * this->matches_capacity);
1354 }
1355
1356 const ir_variable *const var = (producer_var != NULL)
1357 ? producer_var : consumer_var;
1358 const gl_shader_stage stage = (producer_var != NULL)
1359 ? producer_stage : consumer_stage;
1360 const glsl_type *type = get_varying_type(var, stage);
1361
1362 this->matches[this->num_matches].packing_class
1363 = this->compute_packing_class(var);
1364 this->matches[this->num_matches].packing_order
1365 = this->compute_packing_order(var);
1366 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1367 unsigned slots = type->count_attribute_slots(false);
1368 this->matches[this->num_matches].num_components = slots * 4;
1369 } else {
1370 this->matches[this->num_matches].num_components
1371 = type->component_slots();
1372 }
1373 this->matches[this->num_matches].producer_var = producer_var;
1374 this->matches[this->num_matches].consumer_var = consumer_var;
1375 this->num_matches++;
1376 if (producer_var)
1377 producer_var->data.is_unmatched_generic_inout = 0;
1378 if (consumer_var)
1379 consumer_var->data.is_unmatched_generic_inout = 0;
1380 }
1381
1382
1383 /**
1384 * Choose locations for all of the variable matches that were previously
1385 * passed to varying_matches::record().
1386 */
1387 unsigned
1388 varying_matches::assign_locations(struct gl_shader_program *prog,
1389 uint64_t reserved_slots,
1390 bool separate_shader)
1391 {
1392 /* If packing has been disabled then we cannot safely sort the varyings by
1393 * class as it may mean we are using a version of OpenGL where
1394 * interpolation qualifiers are not guaranteed to be matching across
1395 * shaders, sorting in this case could result in mismatching shader
1396 * interfaces.
1397 * When packing is disabled the sort orders varyings used by transform
1398 * feedback first, but also depends on *undefined behaviour* of qsort to
1399 * reverse the order of the varyings. See: xfb_comparator().
1400 */
1401 if (!this->disable_varying_packing) {
1402 /* Sort varying matches into an order that makes them easy to pack. */
1403 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1404 &varying_matches::match_comparator);
1405 } else {
1406 /* Only sort varyings that are only used by transform feedback. */
1407 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1408 &varying_matches::xfb_comparator);
1409 }
1410
1411 unsigned generic_location = 0;
1412 unsigned generic_patch_location = MAX_VARYING*4;
1413 bool previous_var_xfb_only = false;
1414
1415 for (unsigned i = 0; i < this->num_matches; i++) {
1416 unsigned *location = &generic_location;
1417
1418 const ir_variable *var;
1419 const glsl_type *type;
1420 bool is_vertex_input = false;
1421 if (matches[i].consumer_var) {
1422 var = matches[i].consumer_var;
1423 type = get_varying_type(var, consumer_stage);
1424 if (consumer_stage == MESA_SHADER_VERTEX)
1425 is_vertex_input = true;
1426 } else {
1427 var = matches[i].producer_var;
1428 type = get_varying_type(var, producer_stage);
1429 }
1430
1431 if (var->data.patch)
1432 location = &generic_patch_location;
1433
1434 /* Advance to the next slot if this varying has a different packing
1435 * class than the previous one, and we're not already on a slot
1436 * boundary.
1437 *
1438 * Also advance to the next slot if packing is disabled. This makes sure
1439 * we don't assign varyings the same locations which is possible
1440 * because we still pack individual arrays, records and matrices even
1441 * when packing is disabled. Note we don't advance to the next slot if
1442 * we can pack varyings together that are only used for transform
1443 * feedback.
1444 */
1445 if ((this->disable_varying_packing &&
1446 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1447 (i > 0 && this->matches[i - 1].packing_class
1448 != this->matches[i].packing_class )) {
1449 *location = ALIGN(*location, 4);
1450 }
1451
1452 previous_var_xfb_only = var->data.is_xfb_only;
1453
1454 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1455 unsigned slot_end;
1456 if (this->disable_varying_packing &&
1457 !is_varying_packing_safe(type, var))
1458 slot_end = 4;
1459 else
1460 slot_end = type->without_array()->vector_elements;
1461 slot_end += *location - 1;
1462
1463 /* FIXME: We could be smarter in the below code and loop back over
1464 * trying to fill any locations that we skipped because we couldn't pack
1465 * the varying between an explicit location. For now just let the user
1466 * hit the linking error if we run out of room and suggest they use
1467 * explicit locations.
1468 */
1469 for (unsigned j = 0; j < num_elements; j++) {
1470 while ((slot_end < MAX_VARYING * 4u) &&
1471 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1472 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1473
1474 *location = ALIGN(*location + 1, 4);
1475 slot_end = *location;
1476
1477 /* reset the counter and try again */
1478 j = 0;
1479 }
1480
1481 /* Increase the slot to make sure there is enough room for next
1482 * array element.
1483 */
1484 if (this->disable_varying_packing &&
1485 !is_varying_packing_safe(type, var))
1486 slot_end += 4;
1487 else
1488 slot_end += type->without_array()->vector_elements;
1489 }
1490
1491 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1492 linker_error(prog, "insufficient contiguous locations available for "
1493 "%s it is possible an array or struct could not be "
1494 "packed between varyings with explicit locations. Try "
1495 "using an explicit location for arrays and structs.",
1496 var->name);
1497 }
1498
1499 this->matches[i].generic_location = *location;
1500
1501 *location += this->matches[i].num_components;
1502 }
1503
1504 return (generic_location + 3) / 4;
1505 }
1506
1507
1508 /**
1509 * Update the producer and consumer shaders to reflect the locations
1510 * assignments that were made by varying_matches::assign_locations().
1511 */
1512 void
1513 varying_matches::store_locations() const
1514 {
1515 for (unsigned i = 0; i < this->num_matches; i++) {
1516 ir_variable *producer_var = this->matches[i].producer_var;
1517 ir_variable *consumer_var = this->matches[i].consumer_var;
1518 unsigned generic_location = this->matches[i].generic_location;
1519 unsigned slot = generic_location / 4;
1520 unsigned offset = generic_location % 4;
1521
1522 if (producer_var) {
1523 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1524 producer_var->data.location_frac = offset;
1525 }
1526
1527 if (consumer_var) {
1528 assert(consumer_var->data.location == -1);
1529 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1530 consumer_var->data.location_frac = offset;
1531 }
1532 }
1533 }
1534
1535
1536 /**
1537 * Compute the "packing class" of the given varying. This is an unsigned
1538 * integer with the property that two variables in the same packing class can
1539 * be safely backed into the same vec4.
1540 */
1541 unsigned
1542 varying_matches::compute_packing_class(const ir_variable *var)
1543 {
1544 /* Without help from the back-end, there is no way to pack together
1545 * variables with different interpolation types, because
1546 * lower_packed_varyings must choose exactly one interpolation type for
1547 * each packed varying it creates.
1548 *
1549 * However, we can safely pack together floats, ints, and uints, because:
1550 *
1551 * - varyings of base type "int" and "uint" must use the "flat"
1552 * interpolation type, which can only occur in GLSL 1.30 and above.
1553 *
1554 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1555 * can store flat floats as ints without losing any information (using
1556 * the ir_unop_bitcast_* opcodes).
1557 *
1558 * Therefore, the packing class depends only on the interpolation type.
1559 */
1560 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1561 (var->data.patch << 2);
1562 packing_class *= 4;
1563 packing_class += var->data.interpolation;
1564 return packing_class;
1565 }
1566
1567
1568 /**
1569 * Compute the "packing order" of the given varying. This is a sort key we
1570 * use to determine when to attempt to pack the given varying relative to
1571 * other varyings in the same packing class.
1572 */
1573 varying_matches::packing_order_enum
1574 varying_matches::compute_packing_order(const ir_variable *var)
1575 {
1576 const glsl_type *element_type = var->type;
1577
1578 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1579 element_type = element_type->fields.array;
1580 }
1581
1582 switch (element_type->component_slots() % 4) {
1583 case 1: return PACKING_ORDER_SCALAR;
1584 case 2: return PACKING_ORDER_VEC2;
1585 case 3: return PACKING_ORDER_VEC3;
1586 case 0: return PACKING_ORDER_VEC4;
1587 default:
1588 assert(!"Unexpected value of vector_elements");
1589 return PACKING_ORDER_VEC4;
1590 }
1591 }
1592
1593
1594 /**
1595 * Comparison function passed to qsort() to sort varyings by packing_class and
1596 * then by packing_order.
1597 */
1598 int
1599 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1600 {
1601 const match *x = (const match *) x_generic;
1602 const match *y = (const match *) y_generic;
1603
1604 if (x->packing_class != y->packing_class)
1605 return x->packing_class - y->packing_class;
1606 return x->packing_order - y->packing_order;
1607 }
1608
1609
1610 /**
1611 * Comparison function passed to qsort() to sort varyings used only by
1612 * transform feedback when packing of other varyings is disabled.
1613 */
1614 int
1615 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1616 {
1617 const match *x = (const match *) x_generic;
1618
1619 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1620 return match_comparator(x_generic, y_generic);
1621
1622 /* FIXME: When the comparator returns 0 it means the elements being
1623 * compared are equivalent. However the qsort documentation says:
1624 *
1625 * "The order of equivalent elements is undefined."
1626 *
1627 * In practice the sort ends up reversing the order of the varyings which
1628 * means locations are also assigned in this reversed order and happens to
1629 * be what we want. This is also whats happening in
1630 * varying_matches::match_comparator().
1631 */
1632 return 0;
1633 }
1634
1635
1636 /**
1637 * Is the given variable a varying variable to be counted against the
1638 * limit in ctx->Const.MaxVarying?
1639 * This includes variables such as texcoords, colors and generic
1640 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1641 */
1642 static bool
1643 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1644 {
1645 /* Only fragment shaders will take a varying variable as an input */
1646 if (stage == MESA_SHADER_FRAGMENT &&
1647 var->data.mode == ir_var_shader_in) {
1648 switch (var->data.location) {
1649 case VARYING_SLOT_POS:
1650 case VARYING_SLOT_FACE:
1651 case VARYING_SLOT_PNTC:
1652 return false;
1653 default:
1654 return true;
1655 }
1656 }
1657 return false;
1658 }
1659
1660
1661 /**
1662 * Visitor class that generates tfeedback_candidate structs describing all
1663 * possible targets of transform feedback.
1664 *
1665 * tfeedback_candidate structs are stored in the hash table
1666 * tfeedback_candidates, which is passed to the constructor. This hash table
1667 * maps varying names to instances of the tfeedback_candidate struct.
1668 */
1669 class tfeedback_candidate_generator : public program_resource_visitor
1670 {
1671 public:
1672 tfeedback_candidate_generator(void *mem_ctx,
1673 hash_table *tfeedback_candidates)
1674 : mem_ctx(mem_ctx),
1675 tfeedback_candidates(tfeedback_candidates),
1676 toplevel_var(NULL),
1677 varying_floats(0)
1678 {
1679 }
1680
1681 void process(ir_variable *var)
1682 {
1683 /* All named varying interface blocks should be flattened by now */
1684 assert(!var->is_interface_instance());
1685
1686 this->toplevel_var = var;
1687 this->varying_floats = 0;
1688 program_resource_visitor::process(var);
1689 }
1690
1691 private:
1692 virtual void visit_field(const glsl_type *type, const char *name,
1693 bool row_major)
1694 {
1695 assert(!type->without_array()->is_record());
1696 assert(!type->without_array()->is_interface());
1697
1698 (void) row_major;
1699
1700 tfeedback_candidate *candidate
1701 = rzalloc(this->mem_ctx, tfeedback_candidate);
1702 candidate->toplevel_var = this->toplevel_var;
1703 candidate->type = type;
1704 candidate->offset = this->varying_floats;
1705 hash_table_insert(this->tfeedback_candidates, candidate,
1706 ralloc_strdup(this->mem_ctx, name));
1707 this->varying_floats += type->component_slots();
1708 }
1709
1710 /**
1711 * Memory context used to allocate hash table keys and values.
1712 */
1713 void * const mem_ctx;
1714
1715 /**
1716 * Hash table in which tfeedback_candidate objects should be stored.
1717 */
1718 hash_table * const tfeedback_candidates;
1719
1720 /**
1721 * Pointer to the toplevel variable that is being traversed.
1722 */
1723 ir_variable *toplevel_var;
1724
1725 /**
1726 * Total number of varying floats that have been visited so far. This is
1727 * used to determine the offset to each varying within the toplevel
1728 * variable.
1729 */
1730 unsigned varying_floats;
1731 };
1732
1733
1734 namespace linker {
1735
1736 void
1737 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1738 hash_table *consumer_inputs,
1739 hash_table *consumer_interface_inputs,
1740 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1741 {
1742 memset(consumer_inputs_with_locations,
1743 0,
1744 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1745
1746 foreach_in_list(ir_instruction, node, ir) {
1747 ir_variable *const input_var = node->as_variable();
1748
1749 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1750 /* All interface blocks should have been lowered by this point */
1751 assert(!input_var->type->is_interface());
1752
1753 if (input_var->data.explicit_location) {
1754 /* assign_varying_locations only cares about finding the
1755 * ir_variable at the start of a contiguous location block.
1756 *
1757 * - For !producer, consumer_inputs_with_locations isn't used.
1758 *
1759 * - For !consumer, consumer_inputs_with_locations is empty.
1760 *
1761 * For consumer && producer, if you were trying to set some
1762 * ir_variable to the middle of a location block on the other side
1763 * of producer/consumer, cross_validate_outputs_to_inputs() should
1764 * be link-erroring due to either type mismatch or location
1765 * overlaps. If the variables do match up, then they've got a
1766 * matching data.location and you only looked at
1767 * consumer_inputs_with_locations[var->data.location], not any
1768 * following entries for the array/structure.
1769 */
1770 consumer_inputs_with_locations[input_var->data.location] =
1771 input_var;
1772 } else if (input_var->get_interface_type() != NULL) {
1773 char *const iface_field_name =
1774 ralloc_asprintf(mem_ctx, "%s.%s",
1775 input_var->get_interface_type()->without_array()->name,
1776 input_var->name);
1777 hash_table_insert(consumer_interface_inputs, input_var,
1778 iface_field_name);
1779 } else {
1780 hash_table_insert(consumer_inputs, input_var,
1781 ralloc_strdup(mem_ctx, input_var->name));
1782 }
1783 }
1784 }
1785 }
1786
1787 /**
1788 * Find a variable from the consumer that "matches" the specified variable
1789 *
1790 * This function only finds inputs with names that match. There is no
1791 * validation (here) that the types, etc. are compatible.
1792 */
1793 ir_variable *
1794 get_matching_input(void *mem_ctx,
1795 const ir_variable *output_var,
1796 hash_table *consumer_inputs,
1797 hash_table *consumer_interface_inputs,
1798 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1799 {
1800 ir_variable *input_var;
1801
1802 if (output_var->data.explicit_location) {
1803 input_var = consumer_inputs_with_locations[output_var->data.location];
1804 } else if (output_var->get_interface_type() != NULL) {
1805 char *const iface_field_name =
1806 ralloc_asprintf(mem_ctx, "%s.%s",
1807 output_var->get_interface_type()->without_array()->name,
1808 output_var->name);
1809 input_var =
1810 (ir_variable *) hash_table_find(consumer_interface_inputs,
1811 iface_field_name);
1812 } else {
1813 input_var =
1814 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1815 }
1816
1817 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1818 ? NULL : input_var;
1819 }
1820
1821 }
1822
1823 static int
1824 io_variable_cmp(const void *_a, const void *_b)
1825 {
1826 const ir_variable *const a = *(const ir_variable **) _a;
1827 const ir_variable *const b = *(const ir_variable **) _b;
1828
1829 if (a->data.explicit_location && b->data.explicit_location)
1830 return b->data.location - a->data.location;
1831
1832 if (a->data.explicit_location && !b->data.explicit_location)
1833 return 1;
1834
1835 if (!a->data.explicit_location && b->data.explicit_location)
1836 return -1;
1837
1838 return -strcmp(a->name, b->name);
1839 }
1840
1841 /**
1842 * Sort the shader IO variables into canonical order
1843 */
1844 static void
1845 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1846 {
1847 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1848 unsigned num_variables = 0;
1849
1850 foreach_in_list(ir_instruction, node, ir) {
1851 ir_variable *const var = node->as_variable();
1852
1853 if (var == NULL || var->data.mode != io_mode)
1854 continue;
1855
1856 /* If we have already encountered more I/O variables that could
1857 * successfully link, bail.
1858 */
1859 if (num_variables == ARRAY_SIZE(var_table))
1860 return;
1861
1862 var_table[num_variables++] = var;
1863 }
1864
1865 if (num_variables == 0)
1866 return;
1867
1868 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1869 * we're going to push the variables on to the IR list as a stack, so we
1870 * want the last variable (in canonical order) to be first in the list.
1871 */
1872 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1873
1874 /* Remove the variable from it's current location in the IR, and put it at
1875 * the front.
1876 */
1877 for (unsigned i = 0; i < num_variables; i++) {
1878 var_table[i]->remove();
1879 ir->push_head(var_table[i]);
1880 }
1881 }
1882
1883 /**
1884 * Generate a bitfield map of the explicit locations for shader varyings.
1885 *
1886 * In theory a 32 bits value will be enough but a 64 bits value is future proof.
1887 */
1888 uint64_t
1889 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1890 {
1891 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1892 assert(MAX_VARYING <= 64); /* avoid an overflow of the returned value */
1893
1894 uint64_t slots = 0;
1895 int var_slot;
1896
1897 if (!stage)
1898 return slots;
1899
1900 foreach_in_list(ir_instruction, node, stage->ir) {
1901 ir_variable *const var = node->as_variable();
1902
1903 if (var == NULL || var->data.mode != io_mode ||
1904 !var->data.explicit_location ||
1905 var->data.location < VARYING_SLOT_VAR0)
1906 continue;
1907
1908 var_slot = var->data.location - VARYING_SLOT_VAR0;
1909
1910 unsigned num_elements = get_varying_type(var, stage->Stage)
1911 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1912 for (unsigned i = 0; i < num_elements; i++) {
1913 if (var_slot >= 0 && var_slot < MAX_VARYING)
1914 slots |= UINT64_C(1) << var_slot;
1915 var_slot += 1;
1916 }
1917 }
1918
1919 return slots;
1920 }
1921
1922
1923 /**
1924 * Assign locations for all variables that are produced in one pipeline stage
1925 * (the "producer") and consumed in the next stage (the "consumer").
1926 *
1927 * Variables produced by the producer may also be consumed by transform
1928 * feedback.
1929 *
1930 * \param num_tfeedback_decls is the number of declarations indicating
1931 * variables that may be consumed by transform feedback.
1932 *
1933 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1934 * representing the result of parsing the strings passed to
1935 * glTransformFeedbackVaryings(). assign_location() will be called for
1936 * each of these objects that matches one of the outputs of the
1937 * producer.
1938 *
1939 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1940 * be NULL. In this case, varying locations are assigned solely based on the
1941 * requirements of transform feedback.
1942 */
1943 bool
1944 assign_varying_locations(struct gl_context *ctx,
1945 void *mem_ctx,
1946 struct gl_shader_program *prog,
1947 gl_shader *producer, gl_shader *consumer,
1948 unsigned num_tfeedback_decls,
1949 tfeedback_decl *tfeedback_decls)
1950 {
1951 /* Tessellation shaders treat inputs and outputs as shared memory and can
1952 * access inputs and outputs of other invocations.
1953 * Therefore, they can't be lowered to temps easily (and definitely not
1954 * efficiently).
1955 */
1956 bool unpackable_tess =
1957 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1958 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1959 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1960
1961 /* Transform feedback code assumes varying arrays are packed, so if the
1962 * driver has disabled varying packing, make sure to at least enable
1963 * packing required by transform feedback.
1964 */
1965 bool xfb_enabled =
1966 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1967
1968 /* Disable varying packing for GL 4.4+ as there is no guarantee
1969 * that interpolation qualifiers will match between shaders in these
1970 * versions. We also disable packing on outerward facing interfaces for
1971 * SSO because in ES we need to retain the unpacked varying information
1972 * for draw time validation. For desktop GL we could allow packing for
1973 * versions < 4.4 but its just safer not to do packing.
1974 *
1975 * Packing is still enabled on individual arrays, structs, and matrices as
1976 * these are required by the transform feedback code and it is still safe
1977 * to do so. We also enable packing when a varying is only used for
1978 * transform feedback and its not a SSO.
1979 *
1980 * Varying packing currently only packs together varyings with matching
1981 * interpolation qualifiers as the backends assume all packed components
1982 * are to be processed in the same way. Therefore we cannot do packing in
1983 * these versions of GL without the risk of mismatching interfaces.
1984 *
1985 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1986 *
1987 * "The type and presence of interpolation qualifiers of variables with
1988 * the same name declared in all linked shaders for the same cross-stage
1989 * interface must match, otherwise the link command will fail.
1990 *
1991 * When comparing an output from one stage to an input of a subsequent
1992 * stage, the input and output don't match if their interpolation
1993 * qualifiers (or lack thereof) are not the same."
1994 *
1995 * This text was also in at least revison 7 of the 4.40 spec but is no
1996 * longer in revision 9 and not in the 4.50 spec.
1997 */
1998 bool disable_varying_packing =
1999 ctx->Const.DisableVaryingPacking || unpackable_tess;
2000 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
2001 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
2002 disable_varying_packing = true;
2003
2004 varying_matches matches(disable_varying_packing, xfb_enabled,
2005 producer ? producer->Stage : (gl_shader_stage)-1,
2006 consumer ? consumer->Stage : (gl_shader_stage)-1);
2007 hash_table *tfeedback_candidates
2008 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2009 hash_table *consumer_inputs
2010 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2011 hash_table *consumer_interface_inputs
2012 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2013 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2014 NULL,
2015 };
2016
2017 unsigned consumer_vertices = 0;
2018 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2019 consumer_vertices = prog->Geom.VerticesIn;
2020
2021 /* Operate in a total of four passes.
2022 *
2023 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2024 * that inputs / outputs of separable shaders will be assigned
2025 * predictable locations regardless of the order in which declarations
2026 * appeared in the shader source.
2027 *
2028 * 2. Assign locations for any matching inputs and outputs.
2029 *
2030 * 3. Mark output variables in the producer that do not have locations as
2031 * not being outputs. This lets the optimizer eliminate them.
2032 *
2033 * 4. Mark input variables in the consumer that do not have locations as
2034 * not being inputs. This lets the optimizer eliminate them.
2035 */
2036 if (consumer)
2037 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2038
2039 if (producer)
2040 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2041
2042 if (consumer)
2043 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2044 consumer_inputs,
2045 consumer_interface_inputs,
2046 consumer_inputs_with_locations);
2047
2048 if (producer) {
2049 foreach_in_list(ir_instruction, node, producer->ir) {
2050 ir_variable *const output_var = node->as_variable();
2051
2052 if ((output_var == NULL) ||
2053 (output_var->data.mode != ir_var_shader_out))
2054 continue;
2055
2056 /* Only geometry shaders can use non-zero streams */
2057 assert(output_var->data.stream == 0 ||
2058 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2059 producer->Stage == MESA_SHADER_GEOMETRY));
2060
2061 if (num_tfeedback_decls > 0) {
2062 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2063 g.process(output_var);
2064 }
2065
2066 ir_variable *const input_var =
2067 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2068 consumer_interface_inputs,
2069 consumer_inputs_with_locations);
2070
2071 /* If a matching input variable was found, add this ouptut (and the
2072 * input) to the set. If this is a separable program and there is no
2073 * consumer stage, add the output.
2074 *
2075 * Always add TCS outputs. They are shared by all invocations
2076 * within a patch and can be used as shared memory.
2077 */
2078 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2079 producer->Type == GL_TESS_CONTROL_SHADER) {
2080 matches.record(output_var, input_var);
2081 }
2082
2083 /* Only stream 0 outputs can be consumed in the next stage */
2084 if (input_var && output_var->data.stream != 0) {
2085 linker_error(prog, "output %s is assigned to stream=%d but "
2086 "is linked to an input, which requires stream=0",
2087 output_var->name, output_var->data.stream);
2088 return false;
2089 }
2090 }
2091 } else {
2092 /* If there's no producer stage, then this must be a separable program.
2093 * For example, we may have a program that has just a fragment shader.
2094 * Later this program will be used with some arbitrary vertex (or
2095 * geometry) shader program. This means that locations must be assigned
2096 * for all the inputs.
2097 */
2098 foreach_in_list(ir_instruction, node, consumer->ir) {
2099 ir_variable *const input_var = node->as_variable();
2100
2101 if ((input_var == NULL) ||
2102 (input_var->data.mode != ir_var_shader_in))
2103 continue;
2104
2105 matches.record(NULL, input_var);
2106 }
2107 }
2108
2109 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2110 if (!tfeedback_decls[i].is_varying())
2111 continue;
2112
2113 const tfeedback_candidate *matched_candidate
2114 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2115
2116 if (matched_candidate == NULL) {
2117 hash_table_dtor(tfeedback_candidates);
2118 hash_table_dtor(consumer_inputs);
2119 hash_table_dtor(consumer_interface_inputs);
2120 return false;
2121 }
2122
2123 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2124 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2125 matches.record(matched_candidate->toplevel_var, NULL);
2126 }
2127 }
2128
2129 const uint64_t reserved_slots =
2130 reserved_varying_slot(producer, ir_var_shader_out) |
2131 reserved_varying_slot(consumer, ir_var_shader_in);
2132
2133 const unsigned slots_used = matches.assign_locations(prog, reserved_slots,
2134 prog->SeparateShader);
2135 matches.store_locations();
2136
2137 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2138 if (!tfeedback_decls[i].is_varying())
2139 continue;
2140
2141 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2142 hash_table_dtor(tfeedback_candidates);
2143 hash_table_dtor(consumer_inputs);
2144 hash_table_dtor(consumer_interface_inputs);
2145 return false;
2146 }
2147 }
2148
2149 hash_table_dtor(tfeedback_candidates);
2150 hash_table_dtor(consumer_inputs);
2151 hash_table_dtor(consumer_interface_inputs);
2152
2153 if (consumer && producer) {
2154 foreach_in_list(ir_instruction, node, consumer->ir) {
2155 ir_variable *const var = node->as_variable();
2156
2157 if (var && var->data.mode == ir_var_shader_in &&
2158 var->data.is_unmatched_generic_inout) {
2159 if (!prog->IsES && prog->Version <= 120) {
2160 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2161 *
2162 * Only those varying variables used (i.e. read) in
2163 * the fragment shader executable must be written to
2164 * by the vertex shader executable; declaring
2165 * superfluous varying variables in a vertex shader is
2166 * permissible.
2167 *
2168 * We interpret this text as meaning that the VS must
2169 * write the variable for the FS to read it. See
2170 * "glsl1-varying read but not written" in piglit.
2171 */
2172 linker_error(prog, "%s shader varying %s not written "
2173 "by %s shader\n.",
2174 _mesa_shader_stage_to_string(consumer->Stage),
2175 var->name,
2176 _mesa_shader_stage_to_string(producer->Stage));
2177 } else {
2178 linker_warning(prog, "%s shader varying %s not written "
2179 "by %s shader\n.",
2180 _mesa_shader_stage_to_string(consumer->Stage),
2181 var->name,
2182 _mesa_shader_stage_to_string(producer->Stage));
2183 }
2184 }
2185 }
2186
2187 /* Now that validation is done its safe to remove unused varyings. As
2188 * we have both a producer and consumer its safe to remove unused
2189 * varyings even if the program is a SSO because the stages are being
2190 * linked together i.e. we have a multi-stage SSO.
2191 */
2192 remove_unused_shader_inputs_and_outputs(false, producer,
2193 ir_var_shader_out);
2194 remove_unused_shader_inputs_and_outputs(false, consumer,
2195 ir_var_shader_in);
2196 }
2197
2198 if (producer) {
2199 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2200 0, producer, disable_varying_packing,
2201 xfb_enabled);
2202 }
2203
2204 if (consumer) {
2205 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2206 consumer_vertices, consumer,
2207 disable_varying_packing, xfb_enabled);
2208 }
2209
2210 return true;
2211 }
2212
2213 bool
2214 check_against_output_limit(struct gl_context *ctx,
2215 struct gl_shader_program *prog,
2216 gl_shader *producer)
2217 {
2218 unsigned output_vectors = 0;
2219
2220 foreach_in_list(ir_instruction, node, producer->ir) {
2221 ir_variable *const var = node->as_variable();
2222
2223 if (var && var->data.mode == ir_var_shader_out &&
2224 var_counts_against_varying_limit(producer->Stage, var)) {
2225 /* outputs for fragment shader can't be doubles */
2226 output_vectors += var->type->count_attribute_slots(false);
2227 }
2228 }
2229
2230 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2231 unsigned max_output_components =
2232 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2233
2234 const unsigned output_components = output_vectors * 4;
2235 if (output_components > max_output_components) {
2236 if (ctx->API == API_OPENGLES2 || prog->IsES)
2237 linker_error(prog, "%s shader uses too many output vectors "
2238 "(%u > %u)\n",
2239 _mesa_shader_stage_to_string(producer->Stage),
2240 output_vectors,
2241 max_output_components / 4);
2242 else
2243 linker_error(prog, "%s shader uses too many output components "
2244 "(%u > %u)\n",
2245 _mesa_shader_stage_to_string(producer->Stage),
2246 output_components,
2247 max_output_components);
2248
2249 return false;
2250 }
2251
2252 return true;
2253 }
2254
2255 bool
2256 check_against_input_limit(struct gl_context *ctx,
2257 struct gl_shader_program *prog,
2258 gl_shader *consumer)
2259 {
2260 unsigned input_vectors = 0;
2261
2262 foreach_in_list(ir_instruction, node, consumer->ir) {
2263 ir_variable *const var = node->as_variable();
2264
2265 if (var && var->data.mode == ir_var_shader_in &&
2266 var_counts_against_varying_limit(consumer->Stage, var)) {
2267 /* vertex inputs aren't varying counted */
2268 input_vectors += var->type->count_attribute_slots(false);
2269 }
2270 }
2271
2272 assert(consumer->Stage != MESA_SHADER_VERTEX);
2273 unsigned max_input_components =
2274 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2275
2276 const unsigned input_components = input_vectors * 4;
2277 if (input_components > max_input_components) {
2278 if (ctx->API == API_OPENGLES2 || prog->IsES)
2279 linker_error(prog, "%s shader uses too many input vectors "
2280 "(%u > %u)\n",
2281 _mesa_shader_stage_to_string(consumer->Stage),
2282 input_vectors,
2283 max_input_components / 4);
2284 else
2285 linker_error(prog, "%s shader uses too many input components "
2286 "(%u > %u)\n",
2287 _mesa_shader_stage_to_string(consumer->Stage),
2288 input_components,
2289 max_input_components);
2290
2291 return false;
2292 }
2293
2294 return true;
2295 }