nir: Drop "struct" from some nir_* declarations
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851 default:
852 unreachable("unknown type");
853 }
854 }
855
856 static inline nir_alu_type
857 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
858 {
859 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
860 }
861
862 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
863 nir_rounding_mode rnd);
864
865 typedef enum {
866 NIR_OP_IS_COMMUTATIVE = (1 << 0),
867 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
868 } nir_op_algebraic_property;
869
870 typedef struct {
871 const char *name;
872
873 unsigned num_inputs;
874
875 /**
876 * The number of components in the output
877 *
878 * If non-zero, this is the size of the output and input sizes are
879 * explicitly given; swizzle and writemask are still in effect, but if
880 * the output component is masked out, then the input component may
881 * still be in use.
882 *
883 * If zero, the opcode acts in the standard, per-component manner; the
884 * operation is performed on each component (except the ones that are
885 * masked out) with the input being taken from the input swizzle for
886 * that component.
887 *
888 * The size of some of the inputs may be given (i.e. non-zero) even
889 * though output_size is zero; in that case, the inputs with a zero
890 * size act per-component, while the inputs with non-zero size don't.
891 */
892 unsigned output_size;
893
894 /**
895 * The type of vector that the instruction outputs. Note that the
896 * staurate modifier is only allowed on outputs with the float type.
897 */
898
899 nir_alu_type output_type;
900
901 /**
902 * The number of components in each input
903 */
904 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
905
906 /**
907 * The type of vector that each input takes. Note that negate and
908 * absolute value are only allowed on inputs with int or float type and
909 * behave differently on the two.
910 */
911 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
912
913 nir_op_algebraic_property algebraic_properties;
914
915 /* Whether this represents a numeric conversion opcode */
916 bool is_conversion;
917 } nir_op_info;
918
919 extern const nir_op_info nir_op_infos[nir_num_opcodes];
920
921 typedef struct nir_alu_instr {
922 nir_instr instr;
923 nir_op op;
924
925 /** Indicates that this ALU instruction generates an exact value
926 *
927 * This is kind of a mixture of GLSL "precise" and "invariant" and not
928 * really equivalent to either. This indicates that the value generated by
929 * this operation is high-precision and any code transformations that touch
930 * it must ensure that the resulting value is bit-for-bit identical to the
931 * original.
932 */
933 bool exact;
934
935 nir_alu_dest dest;
936 nir_alu_src src[];
937 } nir_alu_instr;
938
939 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
940 nir_alu_instr *instr);
941 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
942 nir_alu_instr *instr);
943
944 /* is this source channel used? */
945 static inline bool
946 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
947 unsigned channel)
948 {
949 if (nir_op_infos[instr->op].input_sizes[src] > 0)
950 return channel < nir_op_infos[instr->op].input_sizes[src];
951
952 return (instr->dest.write_mask >> channel) & 1;
953 }
954
955 static inline nir_component_mask_t
956 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
957 {
958 nir_component_mask_t read_mask = 0;
959 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
960 if (!nir_alu_instr_channel_used(instr, src, c))
961 continue;
962
963 read_mask |= (1 << instr->src[src].swizzle[c]);
964 }
965 return read_mask;
966 }
967
968 /*
969 * For instructions whose destinations are SSA, get the number of channels
970 * used for a source
971 */
972 static inline unsigned
973 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
974 {
975 assert(instr->dest.dest.is_ssa);
976
977 if (nir_op_infos[instr->op].input_sizes[src] > 0)
978 return nir_op_infos[instr->op].input_sizes[src];
979
980 return instr->dest.dest.ssa.num_components;
981 }
982
983 bool nir_const_value_negative_equal(const nir_const_value *c1,
984 const nir_const_value *c2,
985 unsigned components,
986 nir_alu_type base_type,
987 unsigned bits);
988
989 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
990 unsigned src1, unsigned src2);
991
992 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
993 const nir_alu_instr *alu2,
994 unsigned src1, unsigned src2);
995
996 typedef enum {
997 nir_deref_type_var,
998 nir_deref_type_array,
999 nir_deref_type_array_wildcard,
1000 nir_deref_type_ptr_as_array,
1001 nir_deref_type_struct,
1002 nir_deref_type_cast,
1003 } nir_deref_type;
1004
1005 typedef struct {
1006 nir_instr instr;
1007
1008 /** The type of this deref instruction */
1009 nir_deref_type deref_type;
1010
1011 /** The mode of the underlying variable */
1012 nir_variable_mode mode;
1013
1014 /** The dereferenced type of the resulting pointer value */
1015 const struct glsl_type *type;
1016
1017 union {
1018 /** Variable being dereferenced if deref_type is a deref_var */
1019 nir_variable *var;
1020
1021 /** Parent deref if deref_type is not deref_var */
1022 nir_src parent;
1023 };
1024
1025 /** Additional deref parameters */
1026 union {
1027 struct {
1028 nir_src index;
1029 } arr;
1030
1031 struct {
1032 unsigned index;
1033 } strct;
1034
1035 struct {
1036 unsigned ptr_stride;
1037 } cast;
1038 };
1039
1040 /** Destination to store the resulting "pointer" */
1041 nir_dest dest;
1042 } nir_deref_instr;
1043
1044 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1045 type, nir_instr_type_deref)
1046
1047 static inline nir_deref_instr *
1048 nir_src_as_deref(nir_src src)
1049 {
1050 if (!src.is_ssa)
1051 return NULL;
1052
1053 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1054 return NULL;
1055
1056 return nir_instr_as_deref(src.ssa->parent_instr);
1057 }
1058
1059 static inline nir_deref_instr *
1060 nir_deref_instr_parent(const nir_deref_instr *instr)
1061 {
1062 if (instr->deref_type == nir_deref_type_var)
1063 return NULL;
1064 else
1065 return nir_src_as_deref(instr->parent);
1066 }
1067
1068 static inline nir_variable *
1069 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1070 {
1071 while (instr->deref_type != nir_deref_type_var) {
1072 if (instr->deref_type == nir_deref_type_cast)
1073 return NULL;
1074
1075 instr = nir_deref_instr_parent(instr);
1076 }
1077
1078 return instr->var;
1079 }
1080
1081 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1082
1083 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1084
1085 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1086
1087 typedef struct {
1088 nir_instr instr;
1089
1090 struct nir_function *callee;
1091
1092 unsigned num_params;
1093 nir_src params[];
1094 } nir_call_instr;
1095
1096 #include "nir_intrinsics.h"
1097
1098 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1099
1100 /** Represents an intrinsic
1101 *
1102 * An intrinsic is an instruction type for handling things that are
1103 * more-or-less regular operations but don't just consume and produce SSA
1104 * values like ALU operations do. Intrinsics are not for things that have
1105 * special semantic meaning such as phi nodes and parallel copies.
1106 * Examples of intrinsics include variable load/store operations, system
1107 * value loads, and the like. Even though texturing more-or-less falls
1108 * under this category, texturing is its own instruction type because
1109 * trying to represent texturing with intrinsics would lead to a
1110 * combinatorial explosion of intrinsic opcodes.
1111 *
1112 * By having a single instruction type for handling a lot of different
1113 * cases, optimization passes can look for intrinsics and, for the most
1114 * part, completely ignore them. Each intrinsic type also has a few
1115 * possible flags that govern whether or not they can be reordered or
1116 * eliminated. That way passes like dead code elimination can still work
1117 * on intrisics without understanding the meaning of each.
1118 *
1119 * Each intrinsic has some number of constant indices, some number of
1120 * variables, and some number of sources. What these sources, variables,
1121 * and indices mean depends on the intrinsic and is documented with the
1122 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1123 * instructions are the only types of instruction that can operate on
1124 * variables.
1125 */
1126 typedef struct {
1127 nir_instr instr;
1128
1129 nir_intrinsic_op intrinsic;
1130
1131 nir_dest dest;
1132
1133 /** number of components if this is a vectorized intrinsic
1134 *
1135 * Similarly to ALU operations, some intrinsics are vectorized.
1136 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1137 * For vectorized intrinsics, the num_components field specifies the
1138 * number of destination components and the number of source components
1139 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1140 */
1141 uint8_t num_components;
1142
1143 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1144
1145 nir_src src[];
1146 } nir_intrinsic_instr;
1147
1148 static inline nir_variable *
1149 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1150 {
1151 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1152 }
1153
1154 /**
1155 * \name NIR intrinsics semantic flags
1156 *
1157 * information about what the compiler can do with the intrinsics.
1158 *
1159 * \sa nir_intrinsic_info::flags
1160 */
1161 typedef enum {
1162 /**
1163 * whether the intrinsic can be safely eliminated if none of its output
1164 * value is not being used.
1165 */
1166 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1167
1168 /**
1169 * Whether the intrinsic can be reordered with respect to any other
1170 * intrinsic, i.e. whether the only reordering dependencies of the
1171 * intrinsic are due to the register reads/writes.
1172 */
1173 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1174 } nir_intrinsic_semantic_flag;
1175
1176 /**
1177 * \name NIR intrinsics const-index flag
1178 *
1179 * Indicates the usage of a const_index slot.
1180 *
1181 * \sa nir_intrinsic_info::index_map
1182 */
1183 typedef enum {
1184 /**
1185 * Generally instructions that take a offset src argument, can encode
1186 * a constant 'base' value which is added to the offset.
1187 */
1188 NIR_INTRINSIC_BASE = 1,
1189
1190 /**
1191 * For store instructions, a writemask for the store.
1192 */
1193 NIR_INTRINSIC_WRMASK = 2,
1194
1195 /**
1196 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1197 */
1198 NIR_INTRINSIC_STREAM_ID = 3,
1199
1200 /**
1201 * The clip-plane id for load_user_clip_plane intrinsic.
1202 */
1203 NIR_INTRINSIC_UCP_ID = 4,
1204
1205 /**
1206 * The amount of data, starting from BASE, that this instruction may
1207 * access. This is used to provide bounds if the offset is not constant.
1208 */
1209 NIR_INTRINSIC_RANGE = 5,
1210
1211 /**
1212 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1213 */
1214 NIR_INTRINSIC_DESC_SET = 6,
1215
1216 /**
1217 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1218 */
1219 NIR_INTRINSIC_BINDING = 7,
1220
1221 /**
1222 * Component offset.
1223 */
1224 NIR_INTRINSIC_COMPONENT = 8,
1225
1226 /**
1227 * Interpolation mode (only meaningful for FS inputs).
1228 */
1229 NIR_INTRINSIC_INTERP_MODE = 9,
1230
1231 /**
1232 * A binary nir_op to use when performing a reduction or scan operation
1233 */
1234 NIR_INTRINSIC_REDUCTION_OP = 10,
1235
1236 /**
1237 * Cluster size for reduction operations
1238 */
1239 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1240
1241 /**
1242 * Parameter index for a load_param intrinsic
1243 */
1244 NIR_INTRINSIC_PARAM_IDX = 12,
1245
1246 /**
1247 * Image dimensionality for image intrinsics
1248 *
1249 * One of GLSL_SAMPLER_DIM_*
1250 */
1251 NIR_INTRINSIC_IMAGE_DIM = 13,
1252
1253 /**
1254 * Non-zero if we are accessing an array image
1255 */
1256 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1257
1258 /**
1259 * Image format for image intrinsics
1260 */
1261 NIR_INTRINSIC_FORMAT = 15,
1262
1263 /**
1264 * Access qualifiers for image and memory access intrinsics
1265 */
1266 NIR_INTRINSIC_ACCESS = 16,
1267
1268 /**
1269 * Alignment for offsets and addresses
1270 *
1271 * These two parameters, specify an alignment in terms of a multiplier and
1272 * an offset. The offset or address parameter X of the intrinsic is
1273 * guaranteed to satisfy the following:
1274 *
1275 * (X - align_offset) % align_mul == 0
1276 */
1277 NIR_INTRINSIC_ALIGN_MUL = 17,
1278 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1279
1280 /**
1281 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1282 */
1283 NIR_INTRINSIC_DESC_TYPE = 19,
1284
1285 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1286
1287 } nir_intrinsic_index_flag;
1288
1289 #define NIR_INTRINSIC_MAX_INPUTS 5
1290
1291 typedef struct {
1292 const char *name;
1293
1294 unsigned num_srcs; /** < number of register/SSA inputs */
1295
1296 /** number of components of each input register
1297 *
1298 * If this value is 0, the number of components is given by the
1299 * num_components field of nir_intrinsic_instr. If this value is -1, the
1300 * intrinsic consumes however many components are provided and it is not
1301 * validated at all.
1302 */
1303 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1304
1305 bool has_dest;
1306
1307 /** number of components of the output register
1308 *
1309 * If this value is 0, the number of components is given by the
1310 * num_components field of nir_intrinsic_instr.
1311 */
1312 unsigned dest_components;
1313
1314 /** bitfield of legal bit sizes */
1315 unsigned dest_bit_sizes;
1316
1317 /** the number of constant indices used by the intrinsic */
1318 unsigned num_indices;
1319
1320 /** indicates the usage of intr->const_index[n] */
1321 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1322
1323 /** semantic flags for calls to this intrinsic */
1324 nir_intrinsic_semantic_flag flags;
1325 } nir_intrinsic_info;
1326
1327 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1328
1329 static inline unsigned
1330 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1331 {
1332 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1333 assert(srcn < info->num_srcs);
1334 if (info->src_components[srcn] > 0)
1335 return info->src_components[srcn];
1336 else if (info->src_components[srcn] == 0)
1337 return intr->num_components;
1338 else
1339 return nir_src_num_components(intr->src[srcn]);
1340 }
1341
1342 static inline unsigned
1343 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1344 {
1345 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1346 if (!info->has_dest)
1347 return 0;
1348 else if (info->dest_components)
1349 return info->dest_components;
1350 else
1351 return intr->num_components;
1352 }
1353
1354 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1355 static inline type \
1356 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1357 { \
1358 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1359 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1360 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1361 } \
1362 static inline void \
1363 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1364 { \
1365 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1366 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1367 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1368 }
1369
1370 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1371 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1372 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1373 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1374 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1376 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1377 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1378 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1380 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1381 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1382 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1383 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1384 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1385 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1387 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1388 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1389
1390 static inline void
1391 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1392 unsigned align_mul, unsigned align_offset)
1393 {
1394 assert(util_is_power_of_two_nonzero(align_mul));
1395 assert(align_offset < align_mul);
1396 nir_intrinsic_set_align_mul(intrin, align_mul);
1397 nir_intrinsic_set_align_offset(intrin, align_offset);
1398 }
1399
1400 /** Returns a simple alignment for a load/store intrinsic offset
1401 *
1402 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1403 * and ALIGN_OFFSET parameters, this helper takes both into account and
1404 * provides a single simple alignment parameter. The offset X is guaranteed
1405 * to satisfy X % align == 0.
1406 */
1407 static inline unsigned
1408 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1409 {
1410 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1411 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1412 assert(align_offset < align_mul);
1413 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1414 }
1415
1416 /* Converts a image_deref_* intrinsic into a image_* one */
1417 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1418 nir_ssa_def *handle, bool bindless);
1419
1420 /**
1421 * \group texture information
1422 *
1423 * This gives semantic information about textures which is useful to the
1424 * frontend, the backend, and lowering passes, but not the optimizer.
1425 */
1426
1427 typedef enum {
1428 nir_tex_src_coord,
1429 nir_tex_src_projector,
1430 nir_tex_src_comparator, /* shadow comparator */
1431 nir_tex_src_offset,
1432 nir_tex_src_bias,
1433 nir_tex_src_lod,
1434 nir_tex_src_min_lod,
1435 nir_tex_src_ms_index, /* MSAA sample index */
1436 nir_tex_src_ms_mcs, /* MSAA compression value */
1437 nir_tex_src_ddx,
1438 nir_tex_src_ddy,
1439 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1440 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1441 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1442 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1443 nir_tex_src_texture_handle, /* < bindless texture handle */
1444 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1445 nir_tex_src_plane, /* < selects plane for planar textures */
1446 nir_num_tex_src_types
1447 } nir_tex_src_type;
1448
1449 typedef struct {
1450 nir_src src;
1451 nir_tex_src_type src_type;
1452 } nir_tex_src;
1453
1454 typedef enum {
1455 nir_texop_tex, /**< Regular texture look-up */
1456 nir_texop_txb, /**< Texture look-up with LOD bias */
1457 nir_texop_txl, /**< Texture look-up with explicit LOD */
1458 nir_texop_txd, /**< Texture look-up with partial derivatives */
1459 nir_texop_txf, /**< Texel fetch with explicit LOD */
1460 nir_texop_txf_ms, /**< Multisample texture fetch */
1461 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1462 nir_texop_txs, /**< Texture size */
1463 nir_texop_lod, /**< Texture lod query */
1464 nir_texop_tg4, /**< Texture gather */
1465 nir_texop_query_levels, /**< Texture levels query */
1466 nir_texop_texture_samples, /**< Texture samples query */
1467 nir_texop_samples_identical, /**< Query whether all samples are definitely
1468 * identical.
1469 */
1470 } nir_texop;
1471
1472 typedef struct {
1473 nir_instr instr;
1474
1475 enum glsl_sampler_dim sampler_dim;
1476 nir_alu_type dest_type;
1477
1478 nir_texop op;
1479 nir_dest dest;
1480 nir_tex_src *src;
1481 unsigned num_srcs, coord_components;
1482 bool is_array, is_shadow;
1483
1484 /**
1485 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1486 * components or the new-style shadow that outputs 1 component.
1487 */
1488 bool is_new_style_shadow;
1489
1490 /* gather component selector */
1491 unsigned component : 2;
1492
1493 /* gather offsets */
1494 int8_t tg4_offsets[4][2];
1495
1496 /* True if the texture index or handle is not dynamically uniform */
1497 bool texture_non_uniform;
1498
1499 /* True if the sampler index or handle is not dynamically uniform */
1500 bool sampler_non_uniform;
1501
1502 /** The texture index
1503 *
1504 * If this texture instruction has a nir_tex_src_texture_offset source,
1505 * then the texture index is given by texture_index + texture_offset.
1506 */
1507 unsigned texture_index;
1508
1509 /** The size of the texture array or 0 if it's not an array */
1510 unsigned texture_array_size;
1511
1512 /** The sampler index
1513 *
1514 * The following operations do not require a sampler and, as such, this
1515 * field should be ignored:
1516 * - nir_texop_txf
1517 * - nir_texop_txf_ms
1518 * - nir_texop_txs
1519 * - nir_texop_lod
1520 * - nir_texop_query_levels
1521 * - nir_texop_texture_samples
1522 * - nir_texop_samples_identical
1523 *
1524 * If this texture instruction has a nir_tex_src_sampler_offset source,
1525 * then the sampler index is given by sampler_index + sampler_offset.
1526 */
1527 unsigned sampler_index;
1528 } nir_tex_instr;
1529
1530 static inline unsigned
1531 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1532 {
1533 switch (instr->op) {
1534 case nir_texop_txs: {
1535 unsigned ret;
1536 switch (instr->sampler_dim) {
1537 case GLSL_SAMPLER_DIM_1D:
1538 case GLSL_SAMPLER_DIM_BUF:
1539 ret = 1;
1540 break;
1541 case GLSL_SAMPLER_DIM_2D:
1542 case GLSL_SAMPLER_DIM_CUBE:
1543 case GLSL_SAMPLER_DIM_MS:
1544 case GLSL_SAMPLER_DIM_RECT:
1545 case GLSL_SAMPLER_DIM_EXTERNAL:
1546 case GLSL_SAMPLER_DIM_SUBPASS:
1547 ret = 2;
1548 break;
1549 case GLSL_SAMPLER_DIM_3D:
1550 ret = 3;
1551 break;
1552 default:
1553 unreachable("not reached");
1554 }
1555 if (instr->is_array)
1556 ret++;
1557 return ret;
1558 }
1559
1560 case nir_texop_lod:
1561 return 2;
1562
1563 case nir_texop_texture_samples:
1564 case nir_texop_query_levels:
1565 case nir_texop_samples_identical:
1566 return 1;
1567
1568 default:
1569 if (instr->is_shadow && instr->is_new_style_shadow)
1570 return 1;
1571
1572 return 4;
1573 }
1574 }
1575
1576 /* Returns true if this texture operation queries something about the texture
1577 * rather than actually sampling it.
1578 */
1579 static inline bool
1580 nir_tex_instr_is_query(const nir_tex_instr *instr)
1581 {
1582 switch (instr->op) {
1583 case nir_texop_txs:
1584 case nir_texop_lod:
1585 case nir_texop_texture_samples:
1586 case nir_texop_query_levels:
1587 case nir_texop_txf_ms_mcs:
1588 return true;
1589 case nir_texop_tex:
1590 case nir_texop_txb:
1591 case nir_texop_txl:
1592 case nir_texop_txd:
1593 case nir_texop_txf:
1594 case nir_texop_txf_ms:
1595 case nir_texop_tg4:
1596 return false;
1597 default:
1598 unreachable("Invalid texture opcode");
1599 }
1600 }
1601
1602 static inline bool
1603 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1604 {
1605 switch (instr->op) {
1606 case nir_op_flt:
1607 case nir_op_fge:
1608 case nir_op_feq:
1609 case nir_op_fne:
1610 case nir_op_ilt:
1611 case nir_op_ult:
1612 case nir_op_ige:
1613 case nir_op_uge:
1614 case nir_op_ieq:
1615 case nir_op_ine:
1616 case nir_op_i2b1:
1617 case nir_op_f2b1:
1618 case nir_op_inot:
1619 case nir_op_fnot:
1620 return true;
1621 default:
1622 return false;
1623 }
1624 }
1625
1626 static inline nir_alu_type
1627 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1628 {
1629 switch (instr->src[src].src_type) {
1630 case nir_tex_src_coord:
1631 switch (instr->op) {
1632 case nir_texop_txf:
1633 case nir_texop_txf_ms:
1634 case nir_texop_txf_ms_mcs:
1635 case nir_texop_samples_identical:
1636 return nir_type_int;
1637
1638 default:
1639 return nir_type_float;
1640 }
1641
1642 case nir_tex_src_lod:
1643 switch (instr->op) {
1644 case nir_texop_txs:
1645 case nir_texop_txf:
1646 return nir_type_int;
1647
1648 default:
1649 return nir_type_float;
1650 }
1651
1652 case nir_tex_src_projector:
1653 case nir_tex_src_comparator:
1654 case nir_tex_src_bias:
1655 case nir_tex_src_ddx:
1656 case nir_tex_src_ddy:
1657 return nir_type_float;
1658
1659 case nir_tex_src_offset:
1660 case nir_tex_src_ms_index:
1661 case nir_tex_src_texture_offset:
1662 case nir_tex_src_sampler_offset:
1663 return nir_type_int;
1664
1665 default:
1666 unreachable("Invalid texture source type");
1667 }
1668 }
1669
1670 static inline unsigned
1671 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1672 {
1673 if (instr->src[src].src_type == nir_tex_src_coord)
1674 return instr->coord_components;
1675
1676 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1677 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1678 return 4;
1679
1680 if (instr->src[src].src_type == nir_tex_src_ddx ||
1681 instr->src[src].src_type == nir_tex_src_ddy) {
1682 if (instr->is_array)
1683 return instr->coord_components - 1;
1684 else
1685 return instr->coord_components;
1686 }
1687
1688 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1689 * the offset, since a cube maps to a single face.
1690 */
1691 if (instr->src[src].src_type == nir_tex_src_offset) {
1692 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1693 return 2;
1694 else if (instr->is_array)
1695 return instr->coord_components - 1;
1696 else
1697 return instr->coord_components;
1698 }
1699
1700 return 1;
1701 }
1702
1703 static inline int
1704 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1705 {
1706 for (unsigned i = 0; i < instr->num_srcs; i++)
1707 if (instr->src[i].src_type == type)
1708 return (int) i;
1709
1710 return -1;
1711 }
1712
1713 void nir_tex_instr_add_src(nir_tex_instr *tex,
1714 nir_tex_src_type src_type,
1715 nir_src src);
1716
1717 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1718
1719 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1720
1721 typedef struct {
1722 nir_instr instr;
1723
1724 nir_ssa_def def;
1725
1726 nir_const_value value[];
1727 } nir_load_const_instr;
1728
1729 #define nir_const_load_to_arr(arr, l, m) \
1730 { \
1731 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1732 } while (false);
1733
1734 typedef enum {
1735 nir_jump_return,
1736 nir_jump_break,
1737 nir_jump_continue,
1738 } nir_jump_type;
1739
1740 typedef struct {
1741 nir_instr instr;
1742 nir_jump_type type;
1743 } nir_jump_instr;
1744
1745 /* creates a new SSA variable in an undefined state */
1746
1747 typedef struct {
1748 nir_instr instr;
1749 nir_ssa_def def;
1750 } nir_ssa_undef_instr;
1751
1752 typedef struct {
1753 struct exec_node node;
1754
1755 /* The predecessor block corresponding to this source */
1756 struct nir_block *pred;
1757
1758 nir_src src;
1759 } nir_phi_src;
1760
1761 #define nir_foreach_phi_src(phi_src, phi) \
1762 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1763 #define nir_foreach_phi_src_safe(phi_src, phi) \
1764 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1765
1766 typedef struct {
1767 nir_instr instr;
1768
1769 struct exec_list srcs; /** < list of nir_phi_src */
1770
1771 nir_dest dest;
1772 } nir_phi_instr;
1773
1774 typedef struct {
1775 struct exec_node node;
1776 nir_src src;
1777 nir_dest dest;
1778 } nir_parallel_copy_entry;
1779
1780 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1781 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1782
1783 typedef struct {
1784 nir_instr instr;
1785
1786 /* A list of nir_parallel_copy_entrys. The sources of all of the
1787 * entries are copied to the corresponding destinations "in parallel".
1788 * In other words, if we have two entries: a -> b and b -> a, the values
1789 * get swapped.
1790 */
1791 struct exec_list entries;
1792 } nir_parallel_copy_instr;
1793
1794 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1795 type, nir_instr_type_alu)
1796 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1797 type, nir_instr_type_call)
1798 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1799 type, nir_instr_type_jump)
1800 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1801 type, nir_instr_type_tex)
1802 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1803 type, nir_instr_type_intrinsic)
1804 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1805 type, nir_instr_type_load_const)
1806 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1807 type, nir_instr_type_ssa_undef)
1808 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1809 type, nir_instr_type_phi)
1810 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1811 nir_parallel_copy_instr, instr,
1812 type, nir_instr_type_parallel_copy)
1813
1814 /*
1815 * Control flow
1816 *
1817 * Control flow consists of a tree of control flow nodes, which include
1818 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1819 * instructions that always run start-to-finish. Each basic block also keeps
1820 * track of its successors (blocks which may run immediately after the current
1821 * block) and predecessors (blocks which could have run immediately before the
1822 * current block). Each function also has a start block and an end block which
1823 * all return statements point to (which is always empty). Together, all the
1824 * blocks with their predecessors and successors make up the control flow
1825 * graph (CFG) of the function. There are helpers that modify the tree of
1826 * control flow nodes while modifying the CFG appropriately; these should be
1827 * used instead of modifying the tree directly.
1828 */
1829
1830 typedef enum {
1831 nir_cf_node_block,
1832 nir_cf_node_if,
1833 nir_cf_node_loop,
1834 nir_cf_node_function
1835 } nir_cf_node_type;
1836
1837 typedef struct nir_cf_node {
1838 struct exec_node node;
1839 nir_cf_node_type type;
1840 struct nir_cf_node *parent;
1841 } nir_cf_node;
1842
1843 typedef struct nir_block {
1844 nir_cf_node cf_node;
1845
1846 struct exec_list instr_list; /** < list of nir_instr */
1847
1848 /** generic block index; generated by nir_index_blocks */
1849 unsigned index;
1850
1851 /*
1852 * Each block can only have up to 2 successors, so we put them in a simple
1853 * array - no need for anything more complicated.
1854 */
1855 struct nir_block *successors[2];
1856
1857 /* Set of nir_block predecessors in the CFG */
1858 struct set *predecessors;
1859
1860 /*
1861 * this node's immediate dominator in the dominance tree - set to NULL for
1862 * the start block.
1863 */
1864 struct nir_block *imm_dom;
1865
1866 /* This node's children in the dominance tree */
1867 unsigned num_dom_children;
1868 struct nir_block **dom_children;
1869
1870 /* Set of nir_blocks on the dominance frontier of this block */
1871 struct set *dom_frontier;
1872
1873 /*
1874 * These two indices have the property that dom_{pre,post}_index for each
1875 * child of this block in the dominance tree will always be between
1876 * dom_pre_index and dom_post_index for this block, which makes testing if
1877 * a given block is dominated by another block an O(1) operation.
1878 */
1879 unsigned dom_pre_index, dom_post_index;
1880
1881 /* live in and out for this block; used for liveness analysis */
1882 BITSET_WORD *live_in;
1883 BITSET_WORD *live_out;
1884 } nir_block;
1885
1886 static inline nir_instr *
1887 nir_block_first_instr(nir_block *block)
1888 {
1889 struct exec_node *head = exec_list_get_head(&block->instr_list);
1890 return exec_node_data(nir_instr, head, node);
1891 }
1892
1893 static inline nir_instr *
1894 nir_block_last_instr(nir_block *block)
1895 {
1896 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1897 return exec_node_data(nir_instr, tail, node);
1898 }
1899
1900 static inline bool
1901 nir_block_ends_in_jump(nir_block *block)
1902 {
1903 return !exec_list_is_empty(&block->instr_list) &&
1904 nir_block_last_instr(block)->type == nir_instr_type_jump;
1905 }
1906
1907 #define nir_foreach_instr(instr, block) \
1908 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1909 #define nir_foreach_instr_reverse(instr, block) \
1910 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1911 #define nir_foreach_instr_safe(instr, block) \
1912 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1913 #define nir_foreach_instr_reverse_safe(instr, block) \
1914 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1915
1916 typedef enum {
1917 nir_selection_control_none = 0x0,
1918 nir_selection_control_flatten = 0x1,
1919 nir_selection_control_dont_flatten = 0x2,
1920 } nir_selection_control;
1921
1922 typedef struct nir_if {
1923 nir_cf_node cf_node;
1924 nir_src condition;
1925 nir_selection_control control;
1926
1927 struct exec_list then_list; /** < list of nir_cf_node */
1928 struct exec_list else_list; /** < list of nir_cf_node */
1929 } nir_if;
1930
1931 typedef struct {
1932 nir_if *nif;
1933
1934 /** Instruction that generates nif::condition. */
1935 nir_instr *conditional_instr;
1936
1937 /** Block within ::nif that has the break instruction. */
1938 nir_block *break_block;
1939
1940 /** Last block for the then- or else-path that does not contain the break. */
1941 nir_block *continue_from_block;
1942
1943 /** True when ::break_block is in the else-path of ::nif. */
1944 bool continue_from_then;
1945 bool induction_rhs;
1946
1947 /* This is true if the terminators exact trip count is unknown. For
1948 * example:
1949 *
1950 * for (int i = 0; i < imin(x, 4); i++)
1951 * ...
1952 *
1953 * Here loop analysis would have set a max_trip_count of 4 however we dont
1954 * know for sure that this is the exact trip count.
1955 */
1956 bool exact_trip_count_unknown;
1957
1958 struct list_head loop_terminator_link;
1959 } nir_loop_terminator;
1960
1961 typedef struct {
1962 /* Estimated cost (in number of instructions) of the loop */
1963 unsigned instr_cost;
1964
1965 /* Guessed trip count based on array indexing */
1966 unsigned guessed_trip_count;
1967
1968 /* Maximum number of times the loop is run (if known) */
1969 unsigned max_trip_count;
1970
1971 /* Do we know the exact number of times the loop will be run */
1972 bool exact_trip_count_known;
1973
1974 /* Unroll the loop regardless of its size */
1975 bool force_unroll;
1976
1977 /* Does the loop contain complex loop terminators, continues or other
1978 * complex behaviours? If this is true we can't rely on
1979 * loop_terminator_list to be complete or accurate.
1980 */
1981 bool complex_loop;
1982
1983 nir_loop_terminator *limiting_terminator;
1984
1985 /* A list of loop_terminators terminating this loop. */
1986 struct list_head loop_terminator_list;
1987 } nir_loop_info;
1988
1989 typedef enum {
1990 nir_loop_control_none = 0x0,
1991 nir_loop_control_unroll = 0x1,
1992 nir_loop_control_dont_unroll = 0x2,
1993 } nir_loop_control;
1994
1995 typedef struct {
1996 nir_cf_node cf_node;
1997
1998 struct exec_list body; /** < list of nir_cf_node */
1999
2000 nir_loop_info *info;
2001 nir_loop_control control;
2002 bool partially_unrolled;
2003 } nir_loop;
2004
2005 /**
2006 * Various bits of metadata that can may be created or required by
2007 * optimization and analysis passes
2008 */
2009 typedef enum {
2010 nir_metadata_none = 0x0,
2011 nir_metadata_block_index = 0x1,
2012 nir_metadata_dominance = 0x2,
2013 nir_metadata_live_ssa_defs = 0x4,
2014 nir_metadata_not_properly_reset = 0x8,
2015 nir_metadata_loop_analysis = 0x10,
2016 } nir_metadata;
2017
2018 typedef struct {
2019 nir_cf_node cf_node;
2020
2021 /** pointer to the function of which this is an implementation */
2022 struct nir_function *function;
2023
2024 struct exec_list body; /** < list of nir_cf_node */
2025
2026 nir_block *end_block;
2027
2028 /** list for all local variables in the function */
2029 struct exec_list locals;
2030
2031 /** list of local registers in the function */
2032 struct exec_list registers;
2033
2034 /** next available local register index */
2035 unsigned reg_alloc;
2036
2037 /** next available SSA value index */
2038 unsigned ssa_alloc;
2039
2040 /* total number of basic blocks, only valid when block_index_dirty = false */
2041 unsigned num_blocks;
2042
2043 nir_metadata valid_metadata;
2044 } nir_function_impl;
2045
2046 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2047 nir_start_block(nir_function_impl *impl)
2048 {
2049 return (nir_block *) impl->body.head_sentinel.next;
2050 }
2051
2052 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2053 nir_impl_last_block(nir_function_impl *impl)
2054 {
2055 return (nir_block *) impl->body.tail_sentinel.prev;
2056 }
2057
2058 static inline nir_cf_node *
2059 nir_cf_node_next(nir_cf_node *node)
2060 {
2061 struct exec_node *next = exec_node_get_next(&node->node);
2062 if (exec_node_is_tail_sentinel(next))
2063 return NULL;
2064 else
2065 return exec_node_data(nir_cf_node, next, node);
2066 }
2067
2068 static inline nir_cf_node *
2069 nir_cf_node_prev(nir_cf_node *node)
2070 {
2071 struct exec_node *prev = exec_node_get_prev(&node->node);
2072 if (exec_node_is_head_sentinel(prev))
2073 return NULL;
2074 else
2075 return exec_node_data(nir_cf_node, prev, node);
2076 }
2077
2078 static inline bool
2079 nir_cf_node_is_first(const nir_cf_node *node)
2080 {
2081 return exec_node_is_head_sentinel(node->node.prev);
2082 }
2083
2084 static inline bool
2085 nir_cf_node_is_last(const nir_cf_node *node)
2086 {
2087 return exec_node_is_tail_sentinel(node->node.next);
2088 }
2089
2090 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2091 type, nir_cf_node_block)
2092 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2093 type, nir_cf_node_if)
2094 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2095 type, nir_cf_node_loop)
2096 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2097 nir_function_impl, cf_node, type, nir_cf_node_function)
2098
2099 static inline nir_block *
2100 nir_if_first_then_block(nir_if *if_stmt)
2101 {
2102 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2103 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2104 }
2105
2106 static inline nir_block *
2107 nir_if_last_then_block(nir_if *if_stmt)
2108 {
2109 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2110 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2111 }
2112
2113 static inline nir_block *
2114 nir_if_first_else_block(nir_if *if_stmt)
2115 {
2116 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2117 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2118 }
2119
2120 static inline nir_block *
2121 nir_if_last_else_block(nir_if *if_stmt)
2122 {
2123 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2124 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2125 }
2126
2127 static inline nir_block *
2128 nir_loop_first_block(nir_loop *loop)
2129 {
2130 struct exec_node *head = exec_list_get_head(&loop->body);
2131 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2132 }
2133
2134 static inline nir_block *
2135 nir_loop_last_block(nir_loop *loop)
2136 {
2137 struct exec_node *tail = exec_list_get_tail(&loop->body);
2138 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2139 }
2140
2141 typedef struct {
2142 uint8_t num_components;
2143 uint8_t bit_size;
2144 } nir_parameter;
2145
2146 typedef struct nir_function {
2147 struct exec_node node;
2148
2149 const char *name;
2150 struct nir_shader *shader;
2151
2152 unsigned num_params;
2153 nir_parameter *params;
2154
2155 /** The implementation of this function.
2156 *
2157 * If the function is only declared and not implemented, this is NULL.
2158 */
2159 nir_function_impl *impl;
2160
2161 bool is_entrypoint;
2162 } nir_function;
2163
2164 typedef enum {
2165 nir_lower_imul64 = (1 << 0),
2166 nir_lower_isign64 = (1 << 1),
2167 /** Lower all int64 modulus and division opcodes */
2168 nir_lower_divmod64 = (1 << 2),
2169 /** Lower all 64-bit umul_high and imul_high opcodes */
2170 nir_lower_imul_high64 = (1 << 3),
2171 nir_lower_mov64 = (1 << 4),
2172 nir_lower_icmp64 = (1 << 5),
2173 nir_lower_iadd64 = (1 << 6),
2174 nir_lower_iabs64 = (1 << 7),
2175 nir_lower_ineg64 = (1 << 8),
2176 nir_lower_logic64 = (1 << 9),
2177 nir_lower_minmax64 = (1 << 10),
2178 nir_lower_shift64 = (1 << 11),
2179 nir_lower_imul_2x32_64 = (1 << 12),
2180 } nir_lower_int64_options;
2181
2182 typedef enum {
2183 nir_lower_drcp = (1 << 0),
2184 nir_lower_dsqrt = (1 << 1),
2185 nir_lower_drsq = (1 << 2),
2186 nir_lower_dtrunc = (1 << 3),
2187 nir_lower_dfloor = (1 << 4),
2188 nir_lower_dceil = (1 << 5),
2189 nir_lower_dfract = (1 << 6),
2190 nir_lower_dround_even = (1 << 7),
2191 nir_lower_dmod = (1 << 8),
2192 nir_lower_fp64_full_software = (1 << 9),
2193 } nir_lower_doubles_options;
2194
2195 typedef struct nir_shader_compiler_options {
2196 bool lower_fdiv;
2197 bool lower_ffma;
2198 bool fuse_ffma;
2199 bool lower_flrp16;
2200 bool lower_flrp32;
2201 /** Lowers flrp when it does not support doubles */
2202 bool lower_flrp64;
2203 bool lower_fpow;
2204 bool lower_fsat;
2205 bool lower_fsqrt;
2206 bool lower_fmod16;
2207 bool lower_fmod32;
2208 bool lower_fmod64;
2209 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2210 bool lower_bitfield_extract;
2211 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2212 bool lower_bitfield_extract_to_shifts;
2213 /** Lowers bitfield_insert to bfi/bfm */
2214 bool lower_bitfield_insert;
2215 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2216 bool lower_bitfield_insert_to_shifts;
2217 /** Lowers bitfield_reverse to shifts. */
2218 bool lower_bitfield_reverse;
2219 /** Lowers bit_count to shifts. */
2220 bool lower_bit_count;
2221 /** Lowers bfm to shifts and subtracts. */
2222 bool lower_bfm;
2223 /** Lowers ifind_msb to compare and ufind_msb */
2224 bool lower_ifind_msb;
2225 /** Lowers find_lsb to ufind_msb and logic ops */
2226 bool lower_find_lsb;
2227 bool lower_uadd_carry;
2228 bool lower_usub_borrow;
2229 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2230 bool lower_mul_high;
2231 /** lowers fneg and ineg to fsub and isub. */
2232 bool lower_negate;
2233 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2234 bool lower_sub;
2235
2236 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2237 bool lower_scmp;
2238
2239 /** enables rules to lower idiv by power-of-two: */
2240 bool lower_idiv;
2241
2242 /** enables rules to lower isign to imin+imax */
2243 bool lower_isign;
2244
2245 /* Does the native fdot instruction replicate its result for four
2246 * components? If so, then opt_algebraic_late will turn all fdotN
2247 * instructions into fdot_replicatedN instructions.
2248 */
2249 bool fdot_replicates;
2250
2251 /** lowers ffloor to fsub+ffract: */
2252 bool lower_ffloor;
2253
2254 /** lowers ffract to fsub+ffloor: */
2255 bool lower_ffract;
2256
2257 /** lowers fceil to fneg+ffloor+fneg: */
2258 bool lower_fceil;
2259
2260 bool lower_ftrunc;
2261
2262 bool lower_ldexp;
2263
2264 bool lower_pack_half_2x16;
2265 bool lower_pack_unorm_2x16;
2266 bool lower_pack_snorm_2x16;
2267 bool lower_pack_unorm_4x8;
2268 bool lower_pack_snorm_4x8;
2269 bool lower_unpack_half_2x16;
2270 bool lower_unpack_unorm_2x16;
2271 bool lower_unpack_snorm_2x16;
2272 bool lower_unpack_unorm_4x8;
2273 bool lower_unpack_snorm_4x8;
2274
2275 bool lower_extract_byte;
2276 bool lower_extract_word;
2277
2278 bool lower_all_io_to_temps;
2279 bool lower_all_io_to_elements;
2280
2281 /**
2282 * Does the driver support real 32-bit integers? (Otherwise, integers
2283 * are simulated by floats.)
2284 */
2285 bool native_integers;
2286
2287 /* Indicates that the driver only has zero-based vertex id */
2288 bool vertex_id_zero_based;
2289
2290 /**
2291 * If enabled, gl_BaseVertex will be lowered as:
2292 * is_indexed_draw (~0/0) & firstvertex
2293 */
2294 bool lower_base_vertex;
2295
2296 /**
2297 * If enabled, gl_HelperInvocation will be lowered as:
2298 *
2299 * !((1 << sample_id) & sample_mask_in))
2300 *
2301 * This depends on some possibly hw implementation details, which may
2302 * not be true for all hw. In particular that the FS is only executed
2303 * for covered samples or for helper invocations. So, do not blindly
2304 * enable this option.
2305 *
2306 * Note: See also issue #22 in ARB_shader_image_load_store
2307 */
2308 bool lower_helper_invocation;
2309
2310 /**
2311 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2312 *
2313 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2314 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2315 */
2316 bool optimize_sample_mask_in;
2317
2318 bool lower_cs_local_index_from_id;
2319 bool lower_cs_local_id_from_index;
2320
2321 bool lower_device_index_to_zero;
2322
2323 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2324 bool lower_wpos_pntc;
2325
2326 bool lower_hadd;
2327 bool lower_add_sat;
2328
2329 /**
2330 * Should nir_lower_io() create load_interpolated_input intrinsics?
2331 *
2332 * If not, it generates regular load_input intrinsics and interpolation
2333 * information must be inferred from the list of input nir_variables.
2334 */
2335 bool use_interpolated_input_intrinsics;
2336
2337 /* Lowers when 32x32->64 bit multiplication is not supported */
2338 bool lower_mul_2x32_64;
2339
2340 unsigned max_unroll_iterations;
2341
2342 nir_lower_int64_options lower_int64_options;
2343 nir_lower_doubles_options lower_doubles_options;
2344 } nir_shader_compiler_options;
2345
2346 typedef struct nir_shader {
2347 /** list of uniforms (nir_variable) */
2348 struct exec_list uniforms;
2349
2350 /** list of inputs (nir_variable) */
2351 struct exec_list inputs;
2352
2353 /** list of outputs (nir_variable) */
2354 struct exec_list outputs;
2355
2356 /** list of shared compute variables (nir_variable) */
2357 struct exec_list shared;
2358
2359 /** Set of driver-specific options for the shader.
2360 *
2361 * The memory for the options is expected to be kept in a single static
2362 * copy by the driver.
2363 */
2364 const struct nir_shader_compiler_options *options;
2365
2366 /** Various bits of compile-time information about a given shader */
2367 struct shader_info info;
2368
2369 /** list of global variables in the shader (nir_variable) */
2370 struct exec_list globals;
2371
2372 /** list of system value variables in the shader (nir_variable) */
2373 struct exec_list system_values;
2374
2375 struct exec_list functions; /** < list of nir_function */
2376
2377 /**
2378 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2379 * access plus one
2380 */
2381 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2382
2383 /** Size in bytes of required scratch space */
2384 unsigned scratch_size;
2385
2386 /** Constant data associated with this shader.
2387 *
2388 * Constant data is loaded through load_constant intrinsics. See also
2389 * nir_opt_large_constants.
2390 */
2391 void *constant_data;
2392 unsigned constant_data_size;
2393 } nir_shader;
2394
2395 #define nir_foreach_function(func, shader) \
2396 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2397
2398 static inline nir_function_impl *
2399 nir_shader_get_entrypoint(nir_shader *shader)
2400 {
2401 nir_function *func = NULL;
2402
2403 nir_foreach_function(function, shader) {
2404 assert(func == NULL);
2405 if (function->is_entrypoint) {
2406 func = function;
2407 #ifndef NDEBUG
2408 break;
2409 #endif
2410 }
2411 }
2412
2413 if (!func)
2414 return NULL;
2415
2416 assert(func->num_params == 0);
2417 assert(func->impl);
2418 return func->impl;
2419 }
2420
2421 nir_shader *nir_shader_create(void *mem_ctx,
2422 gl_shader_stage stage,
2423 const nir_shader_compiler_options *options,
2424 shader_info *si);
2425
2426 nir_register *nir_local_reg_create(nir_function_impl *impl);
2427
2428 void nir_reg_remove(nir_register *reg);
2429
2430 /** Adds a variable to the appropriate list in nir_shader */
2431 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2432
2433 static inline void
2434 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2435 {
2436 assert(var->data.mode == nir_var_function_temp);
2437 exec_list_push_tail(&impl->locals, &var->node);
2438 }
2439
2440 /** creates a variable, sets a few defaults, and adds it to the list */
2441 nir_variable *nir_variable_create(nir_shader *shader,
2442 nir_variable_mode mode,
2443 const struct glsl_type *type,
2444 const char *name);
2445 /** creates a local variable and adds it to the list */
2446 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2447 const struct glsl_type *type,
2448 const char *name);
2449
2450 /** creates a function and adds it to the shader's list of functions */
2451 nir_function *nir_function_create(nir_shader *shader, const char *name);
2452
2453 nir_function_impl *nir_function_impl_create(nir_function *func);
2454 /** creates a function_impl that isn't tied to any particular function */
2455 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2456
2457 nir_block *nir_block_create(nir_shader *shader);
2458 nir_if *nir_if_create(nir_shader *shader);
2459 nir_loop *nir_loop_create(nir_shader *shader);
2460
2461 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2462
2463 /** requests that the given pieces of metadata be generated */
2464 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2465 /** dirties all but the preserved metadata */
2466 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2467
2468 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2469 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2470
2471 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2472 nir_deref_type deref_type);
2473
2474 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2475
2476 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2477 unsigned num_components,
2478 unsigned bit_size);
2479
2480 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2481 nir_intrinsic_op op);
2482
2483 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2484 nir_function *callee);
2485
2486 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2487
2488 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2489
2490 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2491
2492 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2493 unsigned num_components,
2494 unsigned bit_size);
2495
2496 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2497
2498 /**
2499 * NIR Cursors and Instruction Insertion API
2500 * @{
2501 *
2502 * A tiny struct representing a point to insert/extract instructions or
2503 * control flow nodes. Helps reduce the combinatorial explosion of possible
2504 * points to insert/extract.
2505 *
2506 * \sa nir_control_flow.h
2507 */
2508 typedef enum {
2509 nir_cursor_before_block,
2510 nir_cursor_after_block,
2511 nir_cursor_before_instr,
2512 nir_cursor_after_instr,
2513 } nir_cursor_option;
2514
2515 typedef struct {
2516 nir_cursor_option option;
2517 union {
2518 nir_block *block;
2519 nir_instr *instr;
2520 };
2521 } nir_cursor;
2522
2523 static inline nir_block *
2524 nir_cursor_current_block(nir_cursor cursor)
2525 {
2526 if (cursor.option == nir_cursor_before_instr ||
2527 cursor.option == nir_cursor_after_instr) {
2528 return cursor.instr->block;
2529 } else {
2530 return cursor.block;
2531 }
2532 }
2533
2534 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2535
2536 static inline nir_cursor
2537 nir_before_block(nir_block *block)
2538 {
2539 nir_cursor cursor;
2540 cursor.option = nir_cursor_before_block;
2541 cursor.block = block;
2542 return cursor;
2543 }
2544
2545 static inline nir_cursor
2546 nir_after_block(nir_block *block)
2547 {
2548 nir_cursor cursor;
2549 cursor.option = nir_cursor_after_block;
2550 cursor.block = block;
2551 return cursor;
2552 }
2553
2554 static inline nir_cursor
2555 nir_before_instr(nir_instr *instr)
2556 {
2557 nir_cursor cursor;
2558 cursor.option = nir_cursor_before_instr;
2559 cursor.instr = instr;
2560 return cursor;
2561 }
2562
2563 static inline nir_cursor
2564 nir_after_instr(nir_instr *instr)
2565 {
2566 nir_cursor cursor;
2567 cursor.option = nir_cursor_after_instr;
2568 cursor.instr = instr;
2569 return cursor;
2570 }
2571
2572 static inline nir_cursor
2573 nir_after_block_before_jump(nir_block *block)
2574 {
2575 nir_instr *last_instr = nir_block_last_instr(block);
2576 if (last_instr && last_instr->type == nir_instr_type_jump) {
2577 return nir_before_instr(last_instr);
2578 } else {
2579 return nir_after_block(block);
2580 }
2581 }
2582
2583 static inline nir_cursor
2584 nir_before_src(nir_src *src, bool is_if_condition)
2585 {
2586 if (is_if_condition) {
2587 nir_block *prev_block =
2588 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2589 assert(!nir_block_ends_in_jump(prev_block));
2590 return nir_after_block(prev_block);
2591 } else if (src->parent_instr->type == nir_instr_type_phi) {
2592 #ifndef NDEBUG
2593 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2594 bool found = false;
2595 nir_foreach_phi_src(phi_src, cond_phi) {
2596 if (phi_src->src.ssa == src->ssa) {
2597 found = true;
2598 break;
2599 }
2600 }
2601 assert(found);
2602 #endif
2603 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2604 * to have a more specific name.
2605 */
2606 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2607 return nir_after_block_before_jump(phi_src->pred);
2608 } else {
2609 return nir_before_instr(src->parent_instr);
2610 }
2611 }
2612
2613 static inline nir_cursor
2614 nir_before_cf_node(nir_cf_node *node)
2615 {
2616 if (node->type == nir_cf_node_block)
2617 return nir_before_block(nir_cf_node_as_block(node));
2618
2619 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2620 }
2621
2622 static inline nir_cursor
2623 nir_after_cf_node(nir_cf_node *node)
2624 {
2625 if (node->type == nir_cf_node_block)
2626 return nir_after_block(nir_cf_node_as_block(node));
2627
2628 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2629 }
2630
2631 static inline nir_cursor
2632 nir_after_phis(nir_block *block)
2633 {
2634 nir_foreach_instr(instr, block) {
2635 if (instr->type != nir_instr_type_phi)
2636 return nir_before_instr(instr);
2637 }
2638 return nir_after_block(block);
2639 }
2640
2641 static inline nir_cursor
2642 nir_after_cf_node_and_phis(nir_cf_node *node)
2643 {
2644 if (node->type == nir_cf_node_block)
2645 return nir_after_block(nir_cf_node_as_block(node));
2646
2647 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2648
2649 return nir_after_phis(block);
2650 }
2651
2652 static inline nir_cursor
2653 nir_before_cf_list(struct exec_list *cf_list)
2654 {
2655 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2656 exec_list_get_head(cf_list), node);
2657 return nir_before_cf_node(first_node);
2658 }
2659
2660 static inline nir_cursor
2661 nir_after_cf_list(struct exec_list *cf_list)
2662 {
2663 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2664 exec_list_get_tail(cf_list), node);
2665 return nir_after_cf_node(last_node);
2666 }
2667
2668 /**
2669 * Insert a NIR instruction at the given cursor.
2670 *
2671 * Note: This does not update the cursor.
2672 */
2673 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2674
2675 static inline void
2676 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2677 {
2678 nir_instr_insert(nir_before_instr(instr), before);
2679 }
2680
2681 static inline void
2682 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2683 {
2684 nir_instr_insert(nir_after_instr(instr), after);
2685 }
2686
2687 static inline void
2688 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2689 {
2690 nir_instr_insert(nir_before_block(block), before);
2691 }
2692
2693 static inline void
2694 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2695 {
2696 nir_instr_insert(nir_after_block(block), after);
2697 }
2698
2699 static inline void
2700 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2701 {
2702 nir_instr_insert(nir_before_cf_node(node), before);
2703 }
2704
2705 static inline void
2706 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2707 {
2708 nir_instr_insert(nir_after_cf_node(node), after);
2709 }
2710
2711 static inline void
2712 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2713 {
2714 nir_instr_insert(nir_before_cf_list(list), before);
2715 }
2716
2717 static inline void
2718 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2719 {
2720 nir_instr_insert(nir_after_cf_list(list), after);
2721 }
2722
2723 void nir_instr_remove_v(nir_instr *instr);
2724
2725 static inline nir_cursor
2726 nir_instr_remove(nir_instr *instr)
2727 {
2728 nir_cursor cursor;
2729 nir_instr *prev = nir_instr_prev(instr);
2730 if (prev) {
2731 cursor = nir_after_instr(prev);
2732 } else {
2733 cursor = nir_before_block(instr->block);
2734 }
2735 nir_instr_remove_v(instr);
2736 return cursor;
2737 }
2738
2739 /** @} */
2740
2741 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2742 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2743 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2744 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2745 void *state);
2746 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2747 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2748
2749 nir_const_value *nir_src_as_const_value(nir_src src);
2750
2751 static inline struct nir_instr *
2752 nir_src_instr(const struct nir_src *src)
2753 {
2754 return src->is_ssa ? src->ssa->parent_instr : NULL;
2755 }
2756
2757 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2758 static inline c_type * \
2759 nir_src_as_ ## name (nir_src *src) \
2760 { \
2761 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2762 ? cast_macro(src->ssa->parent_instr) : NULL; \
2763 } \
2764 static inline const c_type * \
2765 nir_src_as_ ## name ## _const(const nir_src *src) \
2766 { \
2767 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2768 ? cast_macro(src->ssa->parent_instr) : NULL; \
2769 }
2770
2771 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2772
2773 bool nir_src_is_dynamically_uniform(nir_src src);
2774 bool nir_srcs_equal(nir_src src1, nir_src src2);
2775 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2776 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2777 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2778 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2779 nir_dest new_dest);
2780
2781 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2782 unsigned num_components, unsigned bit_size,
2783 const char *name);
2784 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2785 unsigned num_components, unsigned bit_size,
2786 const char *name);
2787 static inline void
2788 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2789 const struct glsl_type *type,
2790 const char *name)
2791 {
2792 assert(glsl_type_is_vector_or_scalar(type));
2793 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2794 glsl_get_bit_size(type), name);
2795 }
2796 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2797 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2798 nir_instr *after_me);
2799
2800 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2801
2802 /*
2803 * finds the next basic block in source-code order, returns NULL if there is
2804 * none
2805 */
2806
2807 nir_block *nir_block_cf_tree_next(nir_block *block);
2808
2809 /* Performs the opposite of nir_block_cf_tree_next() */
2810
2811 nir_block *nir_block_cf_tree_prev(nir_block *block);
2812
2813 /* Gets the first block in a CF node in source-code order */
2814
2815 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2816
2817 /* Gets the last block in a CF node in source-code order */
2818
2819 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2820
2821 /* Gets the next block after a CF node in source-code order */
2822
2823 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2824
2825 /* Macros for loops that visit blocks in source-code order */
2826
2827 #define nir_foreach_block(block, impl) \
2828 for (nir_block *block = nir_start_block(impl); block != NULL; \
2829 block = nir_block_cf_tree_next(block))
2830
2831 #define nir_foreach_block_safe(block, impl) \
2832 for (nir_block *block = nir_start_block(impl), \
2833 *next = nir_block_cf_tree_next(block); \
2834 block != NULL; \
2835 block = next, next = nir_block_cf_tree_next(block))
2836
2837 #define nir_foreach_block_reverse(block, impl) \
2838 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2839 block = nir_block_cf_tree_prev(block))
2840
2841 #define nir_foreach_block_reverse_safe(block, impl) \
2842 for (nir_block *block = nir_impl_last_block(impl), \
2843 *prev = nir_block_cf_tree_prev(block); \
2844 block != NULL; \
2845 block = prev, prev = nir_block_cf_tree_prev(block))
2846
2847 #define nir_foreach_block_in_cf_node(block, node) \
2848 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2849 block != nir_cf_node_cf_tree_next(node); \
2850 block = nir_block_cf_tree_next(block))
2851
2852 /* If the following CF node is an if, this function returns that if.
2853 * Otherwise, it returns NULL.
2854 */
2855 nir_if *nir_block_get_following_if(nir_block *block);
2856
2857 nir_loop *nir_block_get_following_loop(nir_block *block);
2858
2859 void nir_index_local_regs(nir_function_impl *impl);
2860 void nir_index_ssa_defs(nir_function_impl *impl);
2861 unsigned nir_index_instrs(nir_function_impl *impl);
2862
2863 void nir_index_blocks(nir_function_impl *impl);
2864
2865 void nir_print_shader(nir_shader *shader, FILE *fp);
2866 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2867 void nir_print_instr(const nir_instr *instr, FILE *fp);
2868 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2869
2870 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2871 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2872 const nir_function_impl *fi);
2873 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2874 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2875
2876 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2877
2878 #ifndef NDEBUG
2879 void nir_validate_shader(nir_shader *shader, const char *when);
2880 void nir_metadata_set_validation_flag(nir_shader *shader);
2881 void nir_metadata_check_validation_flag(nir_shader *shader);
2882
2883 static inline bool
2884 should_skip_nir(const char *name)
2885 {
2886 static const char *list = NULL;
2887 if (!list) {
2888 /* Comma separated list of names to skip. */
2889 list = getenv("NIR_SKIP");
2890 if (!list)
2891 list = "";
2892 }
2893
2894 if (!list[0])
2895 return false;
2896
2897 return comma_separated_list_contains(list, name);
2898 }
2899
2900 static inline bool
2901 should_clone_nir(void)
2902 {
2903 static int should_clone = -1;
2904 if (should_clone < 0)
2905 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2906
2907 return should_clone;
2908 }
2909
2910 static inline bool
2911 should_serialize_deserialize_nir(void)
2912 {
2913 static int test_serialize = -1;
2914 if (test_serialize < 0)
2915 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2916
2917 return test_serialize;
2918 }
2919
2920 static inline bool
2921 should_print_nir(void)
2922 {
2923 static int should_print = -1;
2924 if (should_print < 0)
2925 should_print = env_var_as_boolean("NIR_PRINT", false);
2926
2927 return should_print;
2928 }
2929 #else
2930 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2931 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2932 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2933 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2934 static inline bool should_clone_nir(void) { return false; }
2935 static inline bool should_serialize_deserialize_nir(void) { return false; }
2936 static inline bool should_print_nir(void) { return false; }
2937 #endif /* NDEBUG */
2938
2939 #define _PASS(pass, nir, do_pass) do { \
2940 if (should_skip_nir(#pass)) { \
2941 printf("skipping %s\n", #pass); \
2942 break; \
2943 } \
2944 do_pass \
2945 nir_validate_shader(nir, "after " #pass); \
2946 if (should_clone_nir()) { \
2947 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2948 ralloc_free(nir); \
2949 nir = clone; \
2950 } \
2951 if (should_serialize_deserialize_nir()) { \
2952 void *mem_ctx = ralloc_parent(nir); \
2953 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2954 } \
2955 } while (0)
2956
2957 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2958 nir_metadata_set_validation_flag(nir); \
2959 if (should_print_nir()) \
2960 printf("%s\n", #pass); \
2961 if (pass(nir, ##__VA_ARGS__)) { \
2962 progress = true; \
2963 if (should_print_nir()) \
2964 nir_print_shader(nir, stdout); \
2965 nir_metadata_check_validation_flag(nir); \
2966 } \
2967 )
2968
2969 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2970 if (should_print_nir()) \
2971 printf("%s\n", #pass); \
2972 pass(nir, ##__VA_ARGS__); \
2973 if (should_print_nir()) \
2974 nir_print_shader(nir, stdout); \
2975 )
2976
2977 #define NIR_SKIP(name) should_skip_nir(#name)
2978
2979 void nir_calc_dominance_impl(nir_function_impl *impl);
2980 void nir_calc_dominance(nir_shader *shader);
2981
2982 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2983 bool nir_block_dominates(nir_block *parent, nir_block *child);
2984
2985 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2986 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2987
2988 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2989 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2990
2991 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2992 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2993
2994 int nir_gs_count_vertices(const nir_shader *shader);
2995
2996 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2997 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2998 bool nir_split_var_copies(nir_shader *shader);
2999 bool nir_split_per_member_structs(nir_shader *shader);
3000 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3001
3002 bool nir_lower_returns_impl(nir_function_impl *impl);
3003 bool nir_lower_returns(nir_shader *shader);
3004
3005 void nir_inline_function_impl(struct nir_builder *b,
3006 const nir_function_impl *impl,
3007 nir_ssa_def **params);
3008 bool nir_inline_functions(nir_shader *shader);
3009
3010 bool nir_propagate_invariant(nir_shader *shader);
3011
3012 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3013 void nir_lower_deref_copy_instr(struct nir_builder *b,
3014 nir_intrinsic_instr *copy);
3015 bool nir_lower_var_copies(nir_shader *shader);
3016
3017 void nir_fixup_deref_modes(nir_shader *shader);
3018
3019 bool nir_lower_global_vars_to_local(nir_shader *shader);
3020
3021 typedef enum {
3022 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3023 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3024 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3025 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3026 } nir_lower_array_deref_of_vec_options;
3027
3028 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3029 nir_lower_array_deref_of_vec_options options);
3030
3031 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3032
3033 bool nir_lower_locals_to_regs(nir_shader *shader);
3034
3035 void nir_lower_io_to_temporaries(nir_shader *shader,
3036 nir_function_impl *entrypoint,
3037 bool outputs, bool inputs);
3038
3039 bool nir_lower_vars_to_scratch(nir_shader *shader,
3040 nir_variable_mode modes,
3041 int size_threshold,
3042 glsl_type_size_align_func size_align);
3043
3044 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3045
3046 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3047 int (*type_size)(const struct glsl_type *, bool));
3048
3049 /* Some helpers to do very simple linking */
3050 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3051 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3052 uint64_t *used_by_other_stage,
3053 uint64_t *used_by_other_stage_patches);
3054 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3055 bool default_to_smooth_interp);
3056 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3057 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3058
3059 typedef enum {
3060 /* If set, this forces all non-flat fragment shader inputs to be
3061 * interpolated as if with the "sample" qualifier. This requires
3062 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3063 */
3064 nir_lower_io_force_sample_interpolation = (1 << 1),
3065 } nir_lower_io_options;
3066 bool nir_lower_io(nir_shader *shader,
3067 nir_variable_mode modes,
3068 int (*type_size)(const struct glsl_type *, bool),
3069 nir_lower_io_options);
3070
3071 typedef enum {
3072 /**
3073 * An address format which is a simple 32-bit global GPU address.
3074 */
3075 nir_address_format_32bit_global,
3076
3077 /**
3078 * An address format which is a simple 64-bit global GPU address.
3079 */
3080 nir_address_format_64bit_global,
3081
3082 /**
3083 * An address format which is a bounds-checked 64-bit global GPU address.
3084 *
3085 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3086 * address stored with the low bits in .x and high bits in .y, .z is a
3087 * size, and .w is an offset. When the final I/O operation is lowered, .w
3088 * is checked against .z and the operation is predicated on the result.
3089 */
3090 nir_address_format_64bit_bounded_global,
3091
3092 /**
3093 * An address format which is comprised of a vec2 where the first
3094 * component is a buffer index and the second is an offset.
3095 */
3096 nir_address_format_32bit_index_offset,
3097 } nir_address_format;
3098 bool nir_lower_explicit_io(nir_shader *shader,
3099 nir_variable_mode modes,
3100 nir_address_format);
3101
3102 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3103 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3104
3105 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3106
3107 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3108 bool nir_lower_regs_to_ssa(nir_shader *shader);
3109 bool nir_lower_vars_to_ssa(nir_shader *shader);
3110
3111 bool nir_remove_dead_derefs(nir_shader *shader);
3112 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3113 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3114 bool nir_lower_constant_initializers(nir_shader *shader,
3115 nir_variable_mode modes);
3116
3117 bool nir_move_load_const(nir_shader *shader);
3118 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3119 bool nir_lower_vec_to_movs(nir_shader *shader);
3120 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3121 bool alpha_to_one);
3122 bool nir_lower_alu(nir_shader *shader);
3123 bool nir_lower_alu_to_scalar(nir_shader *shader);
3124 bool nir_lower_bool_to_float(nir_shader *shader);
3125 bool nir_lower_bool_to_int32(nir_shader *shader);
3126 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3127 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3128 bool nir_lower_phis_to_scalar(nir_shader *shader);
3129 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3130 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3131 bool outputs_only);
3132 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3133 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3134 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3135
3136 void nir_lower_viewport_transform(nir_shader *shader);
3137 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3138
3139 typedef struct nir_lower_subgroups_options {
3140 uint8_t subgroup_size;
3141 uint8_t ballot_bit_size;
3142 bool lower_to_scalar:1;
3143 bool lower_vote_trivial:1;
3144 bool lower_vote_eq_to_ballot:1;
3145 bool lower_subgroup_masks:1;
3146 bool lower_shuffle:1;
3147 bool lower_shuffle_to_32bit:1;
3148 bool lower_quad:1;
3149 } nir_lower_subgroups_options;
3150
3151 bool nir_lower_subgroups(nir_shader *shader,
3152 const nir_lower_subgroups_options *options);
3153
3154 bool nir_lower_system_values(nir_shader *shader);
3155
3156 enum PACKED nir_lower_tex_packing {
3157 nir_lower_tex_packing_none = 0,
3158 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3159 * or unsigned ints based on the sampler type
3160 */
3161 nir_lower_tex_packing_16,
3162 /* The sampler returns 1 32-bit word of 4x8 unorm */
3163 nir_lower_tex_packing_8,
3164 };
3165
3166 typedef struct nir_lower_tex_options {
3167 /**
3168 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3169 * sampler types a texture projector is lowered.
3170 */
3171 unsigned lower_txp;
3172
3173 /**
3174 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3175 */
3176 bool lower_txf_offset;
3177
3178 /**
3179 * If true, lower away nir_tex_src_offset for all rect textures.
3180 */
3181 bool lower_rect_offset;
3182
3183 /**
3184 * If true, lower rect textures to 2D, using txs to fetch the
3185 * texture dimensions and dividing the texture coords by the
3186 * texture dims to normalize.
3187 */
3188 bool lower_rect;
3189
3190 /**
3191 * If true, convert yuv to rgb.
3192 */
3193 unsigned lower_y_uv_external;
3194 unsigned lower_y_u_v_external;
3195 unsigned lower_yx_xuxv_external;
3196 unsigned lower_xy_uxvx_external;
3197 unsigned lower_ayuv_external;
3198 unsigned lower_xyuv_external;
3199
3200 /**
3201 * To emulate certain texture wrap modes, this can be used
3202 * to saturate the specified tex coord to [0.0, 1.0]. The
3203 * bits are according to sampler #, ie. if, for example:
3204 *
3205 * (conf->saturate_s & (1 << n))
3206 *
3207 * is true, then the s coord for sampler n is saturated.
3208 *
3209 * Note that clamping must happen *after* projector lowering
3210 * so any projected texture sample instruction with a clamped
3211 * coordinate gets automatically lowered, regardless of the
3212 * 'lower_txp' setting.
3213 */
3214 unsigned saturate_s;
3215 unsigned saturate_t;
3216 unsigned saturate_r;
3217
3218 /* Bitmask of textures that need swizzling.
3219 *
3220 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3221 * swizzles[texture_index] is applied to the result of the texturing
3222 * operation.
3223 */
3224 unsigned swizzle_result;
3225
3226 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3227 * while 4 and 5 represent 0 and 1 respectively.
3228 */
3229 uint8_t swizzles[32][4];
3230
3231 /* Can be used to scale sampled values in range required by the format. */
3232 float scale_factors[32];
3233
3234 /**
3235 * Bitmap of textures that need srgb to linear conversion. If
3236 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3237 * of the texture are lowered to linear.
3238 */
3239 unsigned lower_srgb;
3240
3241 /**
3242 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3243 */
3244 bool lower_txd_cube_map;
3245
3246 /**
3247 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3248 */
3249 bool lower_txd_3d;
3250
3251 /**
3252 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3253 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3254 * with lower_txd_cube_map.
3255 */
3256 bool lower_txd_shadow;
3257
3258 /**
3259 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3260 * Implies lower_txd_cube_map and lower_txd_shadow.
3261 */
3262 bool lower_txd;
3263
3264 /**
3265 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3266 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3267 */
3268 bool lower_txb_shadow_clamp;
3269
3270 /**
3271 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3272 * with nir_texop_txl. This includes cube maps.
3273 */
3274 bool lower_txd_shadow_clamp;
3275
3276 /**
3277 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3278 * with nir_texop_txl. This includes cube maps.
3279 */
3280 bool lower_txd_offset_clamp;
3281
3282 /**
3283 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3284 * sampler index is not statically determinable to be less than 16.
3285 */
3286 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3287
3288 /**
3289 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3290 * mixed-up tg4 locations.
3291 */
3292 bool lower_tg4_broadcom_swizzle;
3293
3294 /**
3295 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3296 */
3297 bool lower_tg4_offsets;
3298
3299 enum nir_lower_tex_packing lower_tex_packing[32];
3300 } nir_lower_tex_options;
3301
3302 bool nir_lower_tex(nir_shader *shader,
3303 const nir_lower_tex_options *options);
3304
3305 enum nir_lower_non_uniform_access_type {
3306 nir_lower_non_uniform_ubo_access = (1 << 0),
3307 nir_lower_non_uniform_ssbo_access = (1 << 1),
3308 nir_lower_non_uniform_texture_access = (1 << 2),
3309 nir_lower_non_uniform_image_access = (1 << 3),
3310 };
3311
3312 bool nir_lower_non_uniform_access(nir_shader *shader,
3313 enum nir_lower_non_uniform_access_type);
3314
3315 bool nir_lower_idiv(nir_shader *shader);
3316
3317 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3318 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3319 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3320
3321 bool nir_lower_frexp(nir_shader *nir);
3322
3323 void nir_lower_two_sided_color(nir_shader *shader);
3324
3325 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3326
3327 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3328 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3329 const gl_state_index16 *uniform_state_tokens);
3330
3331 typedef struct nir_lower_wpos_ytransform_options {
3332 gl_state_index16 state_tokens[STATE_LENGTH];
3333 bool fs_coord_origin_upper_left :1;
3334 bool fs_coord_origin_lower_left :1;
3335 bool fs_coord_pixel_center_integer :1;
3336 bool fs_coord_pixel_center_half_integer :1;
3337 } nir_lower_wpos_ytransform_options;
3338
3339 bool nir_lower_wpos_ytransform(nir_shader *shader,
3340 const nir_lower_wpos_ytransform_options *options);
3341 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3342
3343 typedef struct nir_lower_drawpixels_options {
3344 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3345 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3346 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3347 unsigned drawpix_sampler;
3348 unsigned pixelmap_sampler;
3349 bool pixel_maps :1;
3350 bool scale_and_bias :1;
3351 } nir_lower_drawpixels_options;
3352
3353 void nir_lower_drawpixels(nir_shader *shader,
3354 const nir_lower_drawpixels_options *options);
3355
3356 typedef struct nir_lower_bitmap_options {
3357 unsigned sampler;
3358 bool swizzle_xxxx;
3359 } nir_lower_bitmap_options;
3360
3361 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3362
3363 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3364
3365 typedef enum {
3366 nir_lower_int_source_mods = 1 << 0,
3367 nir_lower_float_source_mods = 1 << 1,
3368 nir_lower_triop_abs = 1 << 2,
3369 nir_lower_all_source_mods = (1 << 3) - 1
3370 } nir_lower_to_source_mods_flags;
3371
3372
3373 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3374
3375 bool nir_lower_gs_intrinsics(nir_shader *shader);
3376
3377 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3378
3379 bool nir_lower_bit_size(nir_shader *shader,
3380 nir_lower_bit_size_callback callback,
3381 void *callback_data);
3382
3383 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3384 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3385
3386 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3387 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3388 nir_lower_doubles_options options);
3389 bool nir_lower_pack(nir_shader *shader);
3390
3391 bool nir_normalize_cubemap_coords(nir_shader *shader);
3392
3393 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3394
3395 void nir_loop_analyze_impl(nir_function_impl *impl,
3396 nir_variable_mode indirect_mask);
3397
3398 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3399
3400 bool nir_repair_ssa_impl(nir_function_impl *impl);
3401 bool nir_repair_ssa(nir_shader *shader);
3402
3403 void nir_convert_loop_to_lcssa(nir_loop *loop);
3404
3405 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3406 * registers. If false, convert all values (even those not involved in a phi
3407 * node) to registers.
3408 */
3409 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3410
3411 bool nir_lower_phis_to_regs_block(nir_block *block);
3412 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3413 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3414
3415 bool nir_opt_comparison_pre(nir_shader *shader);
3416
3417 bool nir_opt_algebraic(nir_shader *shader);
3418 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3419 bool nir_opt_algebraic_late(nir_shader *shader);
3420 bool nir_opt_constant_folding(nir_shader *shader);
3421
3422 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3423
3424 bool nir_copy_prop(nir_shader *shader);
3425
3426 bool nir_opt_copy_prop_vars(nir_shader *shader);
3427
3428 bool nir_opt_cse(nir_shader *shader);
3429
3430 bool nir_opt_dce(nir_shader *shader);
3431
3432 bool nir_opt_dead_cf(nir_shader *shader);
3433
3434 bool nir_opt_dead_write_vars(nir_shader *shader);
3435
3436 bool nir_opt_deref_impl(nir_function_impl *impl);
3437 bool nir_opt_deref(nir_shader *shader);
3438
3439 bool nir_opt_find_array_copies(nir_shader *shader);
3440
3441 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3442
3443 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3444
3445 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3446
3447 bool nir_opt_intrinsics(nir_shader *shader);
3448
3449 bool nir_opt_large_constants(nir_shader *shader,
3450 glsl_type_size_align_func size_align,
3451 unsigned threshold);
3452
3453 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3454
3455 bool nir_opt_move_comparisons(nir_shader *shader);
3456
3457 bool nir_opt_move_load_ubo(nir_shader *shader);
3458
3459 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3460 bool indirect_load_ok, bool expensive_alu_ok);
3461
3462 bool nir_opt_remove_phis(nir_shader *shader);
3463
3464 bool nir_opt_shrink_load(nir_shader *shader);
3465
3466 bool nir_opt_trivial_continues(nir_shader *shader);
3467
3468 bool nir_opt_undef(nir_shader *shader);
3469
3470 bool nir_opt_conditional_discard(nir_shader *shader);
3471
3472 void nir_strip(nir_shader *shader);
3473
3474 void nir_sweep(nir_shader *shader);
3475
3476 void nir_remap_dual_slot_attributes(nir_shader *shader,
3477 uint64_t *dual_slot_inputs);
3478 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3479
3480 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3481 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3482
3483 #ifdef __cplusplus
3484 } /* extern "C" */
3485 #endif
3486
3487 #endif /* NIR_H */