Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "compiler/nir_types.h"
38 #include "compiler/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_shader_in = (1 << 0),
85 nir_var_shader_out = (1 << 1),
86 nir_var_global = (1 << 2),
87 nir_var_local = (1 << 3),
88 nir_var_uniform = (1 << 4),
89 nir_var_shader_storage = (1 << 5),
90 nir_var_system_value = (1 << 6),
91 nir_var_param = (1 << 7),
92 nir_var_shared = (1 << 8),
93 nir_var_all = ~0,
94 } nir_variable_mode;
95
96 /**
97 * Data stored in an nir_constant
98 */
99 union nir_constant_data {
100 unsigned u[16];
101 int i[16];
102 float f[16];
103 bool b[16];
104 double d[16];
105 };
106
107 typedef struct nir_constant {
108 /**
109 * Value of the constant.
110 *
111 * The field used to back the values supplied by the constant is determined
112 * by the type associated with the \c nir_variable. Constants may be
113 * scalars, vectors, or matrices.
114 */
115 union nir_constant_data value;
116
117 /* we could get this from the var->type but makes clone *much* easier to
118 * not have to care about the type.
119 */
120 unsigned num_elements;
121
122 /* Array elements / Structure Fields */
123 struct nir_constant **elements;
124 } nir_constant;
125
126 /**
127 * \brief Layout qualifiers for gl_FragDepth.
128 *
129 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
130 * with a layout qualifier.
131 */
132 typedef enum {
133 nir_depth_layout_none, /**< No depth layout is specified. */
134 nir_depth_layout_any,
135 nir_depth_layout_greater,
136 nir_depth_layout_less,
137 nir_depth_layout_unchanged
138 } nir_depth_layout;
139
140 /**
141 * Either a uniform, global variable, shader input, or shader output. Based on
142 * ir_variable - it should be easy to translate between the two.
143 */
144
145 typedef struct nir_variable {
146 struct exec_node node;
147
148 /**
149 * Declared type of the variable
150 */
151 const struct glsl_type *type;
152
153 /**
154 * Declared name of the variable
155 */
156 char *name;
157
158 struct nir_variable_data {
159 /**
160 * Storage class of the variable.
161 *
162 * \sa nir_variable_mode
163 */
164 nir_variable_mode mode;
165
166 /**
167 * Is the variable read-only?
168 *
169 * This is set for variables declared as \c const, shader inputs,
170 * and uniforms.
171 */
172 unsigned read_only:1;
173 unsigned centroid:1;
174 unsigned sample:1;
175 unsigned patch:1;
176 unsigned invariant:1;
177
178 /**
179 * Interpolation mode for shader inputs / outputs
180 *
181 * \sa glsl_interp_qualifier
182 */
183 unsigned interpolation:2;
184
185 /**
186 * \name ARB_fragment_coord_conventions
187 * @{
188 */
189 unsigned origin_upper_left:1;
190 unsigned pixel_center_integer:1;
191 /*@}*/
192
193 /**
194 * Was the location explicitly set in the shader?
195 *
196 * If the location is explicitly set in the shader, it \b cannot be changed
197 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
198 * no effect).
199 */
200 unsigned explicit_location:1;
201 unsigned explicit_index:1;
202
203 /**
204 * Was an initial binding explicitly set in the shader?
205 *
206 * If so, constant_initializer contains an integer nir_constant
207 * representing the initial binding point.
208 */
209 unsigned explicit_binding:1;
210
211 /**
212 * Does this variable have an initializer?
213 *
214 * This is used by the linker to cross-validiate initializers of global
215 * variables.
216 */
217 unsigned has_initializer:1;
218
219 /**
220 * If non-zero, then this variable may be packed along with other variables
221 * into a single varying slot, so this offset should be applied when
222 * accessing components. For example, an offset of 1 means that the x
223 * component of this variable is actually stored in component y of the
224 * location specified by \c location.
225 */
226 unsigned location_frac:2;
227
228 /**
229 * \brief Layout qualifier for gl_FragDepth.
230 *
231 * This is not equal to \c ir_depth_layout_none if and only if this
232 * variable is \c gl_FragDepth and a layout qualifier is specified.
233 */
234 nir_depth_layout depth_layout;
235
236 /**
237 * Storage location of the base of this variable
238 *
239 * The precise meaning of this field depends on the nature of the variable.
240 *
241 * - Vertex shader input: one of the values from \c gl_vert_attrib.
242 * - Vertex shader output: one of the values from \c gl_varying_slot.
243 * - Geometry shader input: one of the values from \c gl_varying_slot.
244 * - Geometry shader output: one of the values from \c gl_varying_slot.
245 * - Fragment shader input: one of the values from \c gl_varying_slot.
246 * - Fragment shader output: one of the values from \c gl_frag_result.
247 * - Uniforms: Per-stage uniform slot number for default uniform block.
248 * - Uniforms: Index within the uniform block definition for UBO members.
249 * - Non-UBO Uniforms: uniform slot number.
250 * - Other: This field is not currently used.
251 *
252 * If the variable is a uniform, shader input, or shader output, and the
253 * slot has not been assigned, the value will be -1.
254 */
255 int location;
256
257 /**
258 * The actual location of the variable in the IR. Only valid for inputs
259 * and outputs.
260 */
261 unsigned int driver_location;
262
263 /**
264 * output index for dual source blending.
265 */
266 int index;
267
268 /**
269 * Descriptor set binding for sampler or UBO.
270 */
271 int descriptor_set;
272
273 /**
274 * Initial binding point for a sampler or UBO.
275 *
276 * For array types, this represents the binding point for the first element.
277 */
278 int binding;
279
280 /**
281 * Location an atomic counter is stored at.
282 */
283 unsigned offset;
284
285 /**
286 * ARB_shader_image_load_store qualifiers.
287 */
288 struct {
289 bool read_only; /**< "readonly" qualifier. */
290 bool write_only; /**< "writeonly" qualifier. */
291 bool coherent;
292 bool _volatile;
293 bool restrict_flag;
294
295 /** Image internal format if specified explicitly, otherwise GL_NONE. */
296 GLenum format;
297 } image;
298
299 /**
300 * Highest element accessed with a constant expression array index
301 *
302 * Not used for non-array variables.
303 */
304 unsigned max_array_access;
305
306 } data;
307
308 /**
309 * Built-in state that backs this uniform
310 *
311 * Once set at variable creation, \c state_slots must remain invariant.
312 * This is because, ideally, this array would be shared by all clones of
313 * this variable in the IR tree. In other words, we'd really like for it
314 * to be a fly-weight.
315 *
316 * If the variable is not a uniform, \c num_state_slots will be zero and
317 * \c state_slots will be \c NULL.
318 */
319 /*@{*/
320 unsigned num_state_slots; /**< Number of state slots used */
321 nir_state_slot *state_slots; /**< State descriptors. */
322 /*@}*/
323
324 /**
325 * Constant expression assigned in the initializer of the variable
326 */
327 nir_constant *constant_initializer;
328
329 /**
330 * For variables that are in an interface block or are an instance of an
331 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
332 *
333 * \sa ir_variable::location
334 */
335 const struct glsl_type *interface_type;
336 } nir_variable;
337
338 #define nir_foreach_variable(var, var_list) \
339 foreach_list_typed(nir_variable, var, node, var_list)
340
341 #define nir_foreach_variable_safe(var, var_list) \
342 foreach_list_typed_safe(nir_variable, var, node, var_list)
343
344 static inline bool
345 nir_variable_is_global(const nir_variable *var)
346 {
347 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
348 }
349
350 typedef struct nir_register {
351 struct exec_node node;
352
353 unsigned num_components; /** < number of vector components */
354 unsigned num_array_elems; /** < size of array (0 for no array) */
355
356 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
357 uint8_t bit_size;
358
359 /** generic register index. */
360 unsigned index;
361
362 /** only for debug purposes, can be NULL */
363 const char *name;
364
365 /** whether this register is local (per-function) or global (per-shader) */
366 bool is_global;
367
368 /**
369 * If this flag is set to true, then accessing channels >= num_components
370 * is well-defined, and simply spills over to the next array element. This
371 * is useful for backends that can do per-component accessing, in
372 * particular scalar backends. By setting this flag and making
373 * num_components equal to 1, structures can be packed tightly into
374 * registers and then registers can be accessed per-component to get to
375 * each structure member, even if it crosses vec4 boundaries.
376 */
377 bool is_packed;
378
379 /** set of nir_src's where this register is used (read from) */
380 struct list_head uses;
381
382 /** set of nir_dest's where this register is defined (written to) */
383 struct list_head defs;
384
385 /** set of nir_if's where this register is used as a condition */
386 struct list_head if_uses;
387 } nir_register;
388
389 typedef enum {
390 nir_instr_type_alu,
391 nir_instr_type_call,
392 nir_instr_type_tex,
393 nir_instr_type_intrinsic,
394 nir_instr_type_load_const,
395 nir_instr_type_jump,
396 nir_instr_type_ssa_undef,
397 nir_instr_type_phi,
398 nir_instr_type_parallel_copy,
399 } nir_instr_type;
400
401 typedef struct nir_instr {
402 struct exec_node node;
403 nir_instr_type type;
404 struct nir_block *block;
405
406 /** generic instruction index. */
407 unsigned index;
408
409 /* A temporary for optimization and analysis passes to use for storing
410 * flags. For instance, DCE uses this to store the "dead/live" info.
411 */
412 uint8_t pass_flags;
413 } nir_instr;
414
415 static inline nir_instr *
416 nir_instr_next(nir_instr *instr)
417 {
418 struct exec_node *next = exec_node_get_next(&instr->node);
419 if (exec_node_is_tail_sentinel(next))
420 return NULL;
421 else
422 return exec_node_data(nir_instr, next, node);
423 }
424
425 static inline nir_instr *
426 nir_instr_prev(nir_instr *instr)
427 {
428 struct exec_node *prev = exec_node_get_prev(&instr->node);
429 if (exec_node_is_head_sentinel(prev))
430 return NULL;
431 else
432 return exec_node_data(nir_instr, prev, node);
433 }
434
435 static inline bool
436 nir_instr_is_first(nir_instr *instr)
437 {
438 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
439 }
440
441 static inline bool
442 nir_instr_is_last(nir_instr *instr)
443 {
444 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
445 }
446
447 typedef struct nir_ssa_def {
448 /** for debugging only, can be NULL */
449 const char* name;
450
451 /** generic SSA definition index. */
452 unsigned index;
453
454 /** Index into the live_in and live_out bitfields */
455 unsigned live_index;
456
457 nir_instr *parent_instr;
458
459 /** set of nir_instr's where this register is used (read from) */
460 struct list_head uses;
461
462 /** set of nir_if's where this register is used as a condition */
463 struct list_head if_uses;
464
465 uint8_t num_components;
466
467 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
468 uint8_t bit_size;
469 } nir_ssa_def;
470
471 struct nir_src;
472
473 typedef struct {
474 nir_register *reg;
475 struct nir_src *indirect; /** < NULL for no indirect offset */
476 unsigned base_offset;
477
478 /* TODO use-def chain goes here */
479 } nir_reg_src;
480
481 typedef struct {
482 nir_instr *parent_instr;
483 struct list_head def_link;
484
485 nir_register *reg;
486 struct nir_src *indirect; /** < NULL for no indirect offset */
487 unsigned base_offset;
488
489 /* TODO def-use chain goes here */
490 } nir_reg_dest;
491
492 struct nir_if;
493
494 typedef struct nir_src {
495 union {
496 nir_instr *parent_instr;
497 struct nir_if *parent_if;
498 };
499
500 struct list_head use_link;
501
502 union {
503 nir_reg_src reg;
504 nir_ssa_def *ssa;
505 };
506
507 bool is_ssa;
508 } nir_src;
509
510 #define NIR_SRC_INIT (nir_src) { { NULL } }
511
512 #define nir_foreach_use(reg_or_ssa_def, src) \
513 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
514
515 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
516 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
517
518 #define nir_foreach_if_use(reg_or_ssa_def, src) \
519 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
520
521 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
522 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
523
524 typedef struct {
525 union {
526 nir_reg_dest reg;
527 nir_ssa_def ssa;
528 };
529
530 bool is_ssa;
531 } nir_dest;
532
533 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
534
535 #define nir_foreach_def(reg, dest) \
536 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
537
538 #define nir_foreach_def_safe(reg, dest) \
539 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
540
541 static inline nir_src
542 nir_src_for_ssa(nir_ssa_def *def)
543 {
544 nir_src src = NIR_SRC_INIT;
545
546 src.is_ssa = true;
547 src.ssa = def;
548
549 return src;
550 }
551
552 static inline nir_src
553 nir_src_for_reg(nir_register *reg)
554 {
555 nir_src src = NIR_SRC_INIT;
556
557 src.is_ssa = false;
558 src.reg.reg = reg;
559 src.reg.indirect = NULL;
560 src.reg.base_offset = 0;
561
562 return src;
563 }
564
565 static inline nir_dest
566 nir_dest_for_reg(nir_register *reg)
567 {
568 nir_dest dest = NIR_DEST_INIT;
569
570 dest.reg.reg = reg;
571
572 return dest;
573 }
574
575 static inline unsigned
576 nir_src_bit_size(nir_src src)
577 {
578 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
579 }
580
581 static inline unsigned
582 nir_dest_bit_size(nir_dest dest)
583 {
584 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
585 }
586
587 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
588 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
589
590 typedef struct {
591 nir_src src;
592
593 /**
594 * \name input modifiers
595 */
596 /*@{*/
597 /**
598 * For inputs interpreted as floating point, flips the sign bit. For
599 * inputs interpreted as integers, performs the two's complement negation.
600 */
601 bool negate;
602
603 /**
604 * Clears the sign bit for floating point values, and computes the integer
605 * absolute value for integers. Note that the negate modifier acts after
606 * the absolute value modifier, therefore if both are set then all inputs
607 * will become negative.
608 */
609 bool abs;
610 /*@}*/
611
612 /**
613 * For each input component, says which component of the register it is
614 * chosen from. Note that which elements of the swizzle are used and which
615 * are ignored are based on the write mask for most opcodes - for example,
616 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
617 * a swizzle of {2, x, 1, 0} where x means "don't care."
618 */
619 uint8_t swizzle[4];
620 } nir_alu_src;
621
622 typedef struct {
623 nir_dest dest;
624
625 /**
626 * \name saturate output modifier
627 *
628 * Only valid for opcodes that output floating-point numbers. Clamps the
629 * output to between 0.0 and 1.0 inclusive.
630 */
631
632 bool saturate;
633
634 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
635 } nir_alu_dest;
636
637 typedef enum {
638 nir_type_invalid = 0, /* Not a valid type */
639 nir_type_float,
640 nir_type_int,
641 nir_type_uint,
642 nir_type_bool,
643 nir_type_bool32 = 32 | nir_type_bool,
644 nir_type_int8 = 8 | nir_type_int,
645 nir_type_int16 = 16 | nir_type_int,
646 nir_type_int32 = 32 | nir_type_int,
647 nir_type_int64 = 64 | nir_type_int,
648 nir_type_uint8 = 8 | nir_type_uint,
649 nir_type_uint16 = 16 | nir_type_uint,
650 nir_type_uint32 = 32 | nir_type_uint,
651 nir_type_uint64 = 64 | nir_type_uint,
652 nir_type_float16 = 16 | nir_type_float,
653 nir_type_float32 = 32 | nir_type_float,
654 nir_type_float64 = 64 | nir_type_float,
655 } nir_alu_type;
656
657 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
658 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
659
660 static inline unsigned
661 nir_alu_type_get_type_size(nir_alu_type type)
662 {
663 return type & NIR_ALU_TYPE_SIZE_MASK;
664 }
665
666 static inline unsigned
667 nir_alu_type_get_base_type(nir_alu_type type)
668 {
669 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
670 }
671
672 typedef enum {
673 NIR_OP_IS_COMMUTATIVE = (1 << 0),
674 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
675 } nir_op_algebraic_property;
676
677 typedef struct {
678 const char *name;
679
680 unsigned num_inputs;
681
682 /**
683 * The number of components in the output
684 *
685 * If non-zero, this is the size of the output and input sizes are
686 * explicitly given; swizzle and writemask are still in effect, but if
687 * the output component is masked out, then the input component may
688 * still be in use.
689 *
690 * If zero, the opcode acts in the standard, per-component manner; the
691 * operation is performed on each component (except the ones that are
692 * masked out) with the input being taken from the input swizzle for
693 * that component.
694 *
695 * The size of some of the inputs may be given (i.e. non-zero) even
696 * though output_size is zero; in that case, the inputs with a zero
697 * size act per-component, while the inputs with non-zero size don't.
698 */
699 unsigned output_size;
700
701 /**
702 * The type of vector that the instruction outputs. Note that the
703 * staurate modifier is only allowed on outputs with the float type.
704 */
705
706 nir_alu_type output_type;
707
708 /**
709 * The number of components in each input
710 */
711 unsigned input_sizes[4];
712
713 /**
714 * The type of vector that each input takes. Note that negate and
715 * absolute value are only allowed on inputs with int or float type and
716 * behave differently on the two.
717 */
718 nir_alu_type input_types[4];
719
720 nir_op_algebraic_property algebraic_properties;
721 } nir_op_info;
722
723 extern const nir_op_info nir_op_infos[nir_num_opcodes];
724
725 typedef struct nir_alu_instr {
726 nir_instr instr;
727 nir_op op;
728
729 /** Indicates that this ALU instruction generates an exact value
730 *
731 * This is kind of a mixture of GLSL "precise" and "invariant" and not
732 * really equivalent to either. This indicates that the value generated by
733 * this operation is high-precision and any code transformations that touch
734 * it must ensure that the resulting value is bit-for-bit identical to the
735 * original.
736 */
737 bool exact;
738
739 nir_alu_dest dest;
740 nir_alu_src src[];
741 } nir_alu_instr;
742
743 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
744 nir_alu_instr *instr);
745 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
746 nir_alu_instr *instr);
747
748 /* is this source channel used? */
749 static inline bool
750 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
751 {
752 if (nir_op_infos[instr->op].input_sizes[src] > 0)
753 return channel < nir_op_infos[instr->op].input_sizes[src];
754
755 return (instr->dest.write_mask >> channel) & 1;
756 }
757
758 /*
759 * For instructions whose destinations are SSA, get the number of channels
760 * used for a source
761 */
762 static inline unsigned
763 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
764 {
765 assert(instr->dest.dest.is_ssa);
766
767 if (nir_op_infos[instr->op].input_sizes[src] > 0)
768 return nir_op_infos[instr->op].input_sizes[src];
769
770 return instr->dest.dest.ssa.num_components;
771 }
772
773 typedef enum {
774 nir_deref_type_var,
775 nir_deref_type_array,
776 nir_deref_type_struct
777 } nir_deref_type;
778
779 typedef struct nir_deref {
780 nir_deref_type deref_type;
781 struct nir_deref *child;
782 const struct glsl_type *type;
783 } nir_deref;
784
785 typedef struct {
786 nir_deref deref;
787
788 nir_variable *var;
789 } nir_deref_var;
790
791 /* This enum describes how the array is referenced. If the deref is
792 * direct then the base_offset is used. If the deref is indirect then then
793 * offset is given by base_offset + indirect. If the deref is a wildcard
794 * then the deref refers to all of the elements of the array at the same
795 * time. Wildcard dereferences are only ever allowed in copy_var
796 * intrinsics and the source and destination derefs must have matching
797 * wildcards.
798 */
799 typedef enum {
800 nir_deref_array_type_direct,
801 nir_deref_array_type_indirect,
802 nir_deref_array_type_wildcard,
803 } nir_deref_array_type;
804
805 typedef struct {
806 nir_deref deref;
807
808 nir_deref_array_type deref_array_type;
809 unsigned base_offset;
810 nir_src indirect;
811 } nir_deref_array;
812
813 typedef struct {
814 nir_deref deref;
815
816 unsigned index;
817 } nir_deref_struct;
818
819 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
820 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
821 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
822
823 /* Returns the last deref in the chain. */
824 static inline nir_deref *
825 nir_deref_tail(nir_deref *deref)
826 {
827 while (deref->child)
828 deref = deref->child;
829 return deref;
830 }
831
832 typedef struct {
833 nir_instr instr;
834
835 unsigned num_params;
836 nir_deref_var **params;
837 nir_deref_var *return_deref;
838
839 struct nir_function *callee;
840 } nir_call_instr;
841
842 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
843 num_variables, num_indices, idx0, idx1, idx2, flags) \
844 nir_intrinsic_##name,
845
846 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
847
848 typedef enum {
849 #include "nir_intrinsics.h"
850 nir_num_intrinsics = nir_last_intrinsic + 1
851 } nir_intrinsic_op;
852
853 #undef INTRINSIC
854 #undef LAST_INTRINSIC
855
856 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
857
858 /** Represents an intrinsic
859 *
860 * An intrinsic is an instruction type for handling things that are
861 * more-or-less regular operations but don't just consume and produce SSA
862 * values like ALU operations do. Intrinsics are not for things that have
863 * special semantic meaning such as phi nodes and parallel copies.
864 * Examples of intrinsics include variable load/store operations, system
865 * value loads, and the like. Even though texturing more-or-less falls
866 * under this category, texturing is its own instruction type because
867 * trying to represent texturing with intrinsics would lead to a
868 * combinatorial explosion of intrinsic opcodes.
869 *
870 * By having a single instruction type for handling a lot of different
871 * cases, optimization passes can look for intrinsics and, for the most
872 * part, completely ignore them. Each intrinsic type also has a few
873 * possible flags that govern whether or not they can be reordered or
874 * eliminated. That way passes like dead code elimination can still work
875 * on intrisics without understanding the meaning of each.
876 *
877 * Each intrinsic has some number of constant indices, some number of
878 * variables, and some number of sources. What these sources, variables,
879 * and indices mean depends on the intrinsic and is documented with the
880 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
881 * instructions are the only types of instruction that can operate on
882 * variables.
883 */
884 typedef struct {
885 nir_instr instr;
886
887 nir_intrinsic_op intrinsic;
888
889 nir_dest dest;
890
891 /** number of components if this is a vectorized intrinsic
892 *
893 * Similarly to ALU operations, some intrinsics are vectorized.
894 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
895 * For vectorized intrinsics, the num_components field specifies the
896 * number of destination components and the number of source components
897 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
898 */
899 uint8_t num_components;
900
901 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
902
903 nir_deref_var *variables[2];
904
905 nir_src src[];
906 } nir_intrinsic_instr;
907
908 /**
909 * \name NIR intrinsics semantic flags
910 *
911 * information about what the compiler can do with the intrinsics.
912 *
913 * \sa nir_intrinsic_info::flags
914 */
915 typedef enum {
916 /**
917 * whether the intrinsic can be safely eliminated if none of its output
918 * value is not being used.
919 */
920 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
921
922 /**
923 * Whether the intrinsic can be reordered with respect to any other
924 * intrinsic, i.e. whether the only reordering dependencies of the
925 * intrinsic are due to the register reads/writes.
926 */
927 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
928 } nir_intrinsic_semantic_flag;
929
930 /**
931 * \name NIR intrinsics const-index flag
932 *
933 * Indicates the usage of a const_index slot.
934 *
935 * \sa nir_intrinsic_info::index_map
936 */
937 typedef enum {
938 /**
939 * Generally instructions that take a offset src argument, can encode
940 * a constant 'base' value which is added to the offset.
941 */
942 NIR_INTRINSIC_BASE = 1,
943
944 /**
945 * For store instructions, a writemask for the store.
946 */
947 NIR_INTRINSIC_WRMASK = 2,
948
949 /**
950 * The stream-id for GS emit_vertex/end_primitive intrinsics.
951 */
952 NIR_INTRINSIC_STREAM_ID = 3,
953
954 /**
955 * The clip-plane id for load_user_clip_plane intrinsic.
956 */
957 NIR_INTRINSIC_UCP_ID = 4,
958
959 /**
960 * The ammount of data, starting from BASE, that this instruction may
961 * access. This is used to provide bounds if the offset is not constant.
962 */
963 NIR_INTRINSIC_RANGE = 5,
964
965 /**
966 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
967 */
968 NIR_INTRINSIC_DESC_SET = 6,
969
970 /**
971 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
972 */
973 NIR_INTRINSIC_BINDING = 7,
974
975 NIR_INTRINSIC_NUM_INDEX_FLAGS,
976
977 } nir_intrinsic_index_flag;
978
979 #define NIR_INTRINSIC_MAX_INPUTS 4
980
981 typedef struct {
982 const char *name;
983
984 unsigned num_srcs; /** < number of register/SSA inputs */
985
986 /** number of components of each input register
987 *
988 * If this value is 0, the number of components is given by the
989 * num_components field of nir_intrinsic_instr.
990 */
991 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
992
993 bool has_dest;
994
995 /** number of components of the output register
996 *
997 * If this value is 0, the number of components is given by the
998 * num_components field of nir_intrinsic_instr.
999 */
1000 unsigned dest_components;
1001
1002 /** the number of inputs/outputs that are variables */
1003 unsigned num_variables;
1004
1005 /** the number of constant indices used by the intrinsic */
1006 unsigned num_indices;
1007
1008 /** indicates the usage of intr->const_index[n] */
1009 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1010
1011 /** semantic flags for calls to this intrinsic */
1012 nir_intrinsic_semantic_flag flags;
1013 } nir_intrinsic_info;
1014
1015 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1016
1017
1018 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1019 static inline type \
1020 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1021 { \
1022 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1023 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1024 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1025 } \
1026 static inline void \
1027 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1028 { \
1029 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1030 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1031 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1032 }
1033
1034 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1035 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1036 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1037 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1038 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1039 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1040 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1041
1042 /**
1043 * \group texture information
1044 *
1045 * This gives semantic information about textures which is useful to the
1046 * frontend, the backend, and lowering passes, but not the optimizer.
1047 */
1048
1049 typedef enum {
1050 nir_tex_src_coord,
1051 nir_tex_src_projector,
1052 nir_tex_src_comparitor, /* shadow comparitor */
1053 nir_tex_src_offset,
1054 nir_tex_src_bias,
1055 nir_tex_src_lod,
1056 nir_tex_src_ms_index, /* MSAA sample index */
1057 nir_tex_src_ddx,
1058 nir_tex_src_ddy,
1059 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1060 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1061 nir_num_tex_src_types
1062 } nir_tex_src_type;
1063
1064 typedef struct {
1065 nir_src src;
1066 nir_tex_src_type src_type;
1067 } nir_tex_src;
1068
1069 typedef enum {
1070 nir_texop_tex, /**< Regular texture look-up */
1071 nir_texop_txb, /**< Texture look-up with LOD bias */
1072 nir_texop_txl, /**< Texture look-up with explicit LOD */
1073 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1074 nir_texop_txf, /**< Texel fetch with explicit LOD */
1075 nir_texop_txf_ms, /**< Multisample texture fetch */
1076 nir_texop_txs, /**< Texture size */
1077 nir_texop_lod, /**< Texture lod query */
1078 nir_texop_tg4, /**< Texture gather */
1079 nir_texop_query_levels, /**< Texture levels query */
1080 nir_texop_texture_samples, /**< Texture samples query */
1081 nir_texop_samples_identical, /**< Query whether all samples are definitely
1082 * identical.
1083 */
1084 } nir_texop;
1085
1086 typedef struct {
1087 nir_instr instr;
1088
1089 enum glsl_sampler_dim sampler_dim;
1090 nir_alu_type dest_type;
1091
1092 nir_texop op;
1093 nir_dest dest;
1094 nir_tex_src *src;
1095 unsigned num_srcs, coord_components;
1096 bool is_array, is_shadow;
1097
1098 /**
1099 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1100 * components or the new-style shadow that outputs 1 component.
1101 */
1102 bool is_new_style_shadow;
1103
1104 /* gather component selector */
1105 unsigned component : 2;
1106
1107 /** The texture index
1108 *
1109 * If this texture instruction has a nir_tex_src_texture_offset source,
1110 * then the texture index is given by texture_index + texture_offset.
1111 */
1112 unsigned texture_index;
1113
1114 /** The size of the texture array or 0 if it's not an array */
1115 unsigned texture_array_size;
1116
1117 /** The texture deref
1118 *
1119 * If this is null, use texture_index instead.
1120 */
1121 nir_deref_var *texture;
1122
1123 /** The sampler index
1124 *
1125 * The following operations do not require a sampler and, as such, this
1126 * field should be ignored:
1127 * - nir_texop_txf
1128 * - nir_texop_txf_ms
1129 * - nir_texop_txs
1130 * - nir_texop_lod
1131 * - nir_texop_tg4
1132 * - nir_texop_query_levels
1133 * - nir_texop_texture_samples
1134 * - nir_texop_samples_identical
1135 *
1136 * If this texture instruction has a nir_tex_src_sampler_offset source,
1137 * then the sampler index is given by sampler_index + sampler_offset.
1138 */
1139 unsigned sampler_index;
1140
1141 /** The sampler deref
1142 *
1143 * If this is null, use sampler_index instead.
1144 */
1145 nir_deref_var *sampler;
1146 } nir_tex_instr;
1147
1148 static inline unsigned
1149 nir_tex_instr_dest_size(nir_tex_instr *instr)
1150 {
1151 switch (instr->op) {
1152 case nir_texop_txs: {
1153 unsigned ret;
1154 switch (instr->sampler_dim) {
1155 case GLSL_SAMPLER_DIM_1D:
1156 case GLSL_SAMPLER_DIM_BUF:
1157 ret = 1;
1158 break;
1159 case GLSL_SAMPLER_DIM_2D:
1160 case GLSL_SAMPLER_DIM_CUBE:
1161 case GLSL_SAMPLER_DIM_MS:
1162 case GLSL_SAMPLER_DIM_RECT:
1163 case GLSL_SAMPLER_DIM_EXTERNAL:
1164 ret = 2;
1165 break;
1166 case GLSL_SAMPLER_DIM_3D:
1167 ret = 3;
1168 break;
1169 default:
1170 unreachable("not reached");
1171 }
1172 if (instr->is_array)
1173 ret++;
1174 return ret;
1175 }
1176
1177 case nir_texop_lod:
1178 return 2;
1179
1180 case nir_texop_texture_samples:
1181 case nir_texop_query_levels:
1182 case nir_texop_samples_identical:
1183 return 1;
1184
1185 default:
1186 if (instr->is_shadow && instr->is_new_style_shadow)
1187 return 1;
1188
1189 return 4;
1190 }
1191 }
1192
1193 /* Returns true if this texture operation queries something about the texture
1194 * rather than actually sampling it.
1195 */
1196 static inline bool
1197 nir_tex_instr_is_query(nir_tex_instr *instr)
1198 {
1199 switch (instr->op) {
1200 case nir_texop_txs:
1201 case nir_texop_lod:
1202 case nir_texop_texture_samples:
1203 case nir_texop_query_levels:
1204 return true;
1205 case nir_texop_tex:
1206 case nir_texop_txb:
1207 case nir_texop_txl:
1208 case nir_texop_txd:
1209 case nir_texop_txf:
1210 case nir_texop_txf_ms:
1211 case nir_texop_tg4:
1212 return false;
1213 default:
1214 unreachable("Invalid texture opcode");
1215 }
1216 }
1217
1218 static inline unsigned
1219 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1220 {
1221 if (instr->src[src].src_type == nir_tex_src_coord)
1222 return instr->coord_components;
1223
1224
1225 if (instr->src[src].src_type == nir_tex_src_offset ||
1226 instr->src[src].src_type == nir_tex_src_ddx ||
1227 instr->src[src].src_type == nir_tex_src_ddy) {
1228 if (instr->is_array)
1229 return instr->coord_components - 1;
1230 else
1231 return instr->coord_components;
1232 }
1233
1234 return 1;
1235 }
1236
1237 static inline int
1238 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1239 {
1240 for (unsigned i = 0; i < instr->num_srcs; i++)
1241 if (instr->src[i].src_type == type)
1242 return (int) i;
1243
1244 return -1;
1245 }
1246
1247 typedef struct {
1248 union {
1249 float f32[4];
1250 double f64[4];
1251 int32_t i32[4];
1252 uint32_t u32[4];
1253 int64_t i64[4];
1254 uint64_t u64[4];
1255 };
1256 } nir_const_value;
1257
1258 typedef struct {
1259 nir_instr instr;
1260
1261 nir_const_value value;
1262
1263 nir_ssa_def def;
1264 } nir_load_const_instr;
1265
1266 typedef enum {
1267 nir_jump_return,
1268 nir_jump_break,
1269 nir_jump_continue,
1270 } nir_jump_type;
1271
1272 typedef struct {
1273 nir_instr instr;
1274 nir_jump_type type;
1275 } nir_jump_instr;
1276
1277 /* creates a new SSA variable in an undefined state */
1278
1279 typedef struct {
1280 nir_instr instr;
1281 nir_ssa_def def;
1282 } nir_ssa_undef_instr;
1283
1284 typedef struct {
1285 struct exec_node node;
1286
1287 /* The predecessor block corresponding to this source */
1288 struct nir_block *pred;
1289
1290 nir_src src;
1291 } nir_phi_src;
1292
1293 #define nir_foreach_phi_src(phi, entry) \
1294 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1295 #define nir_foreach_phi_src_safe(phi, entry) \
1296 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1297
1298 typedef struct {
1299 nir_instr instr;
1300
1301 struct exec_list srcs; /** < list of nir_phi_src */
1302
1303 nir_dest dest;
1304 } nir_phi_instr;
1305
1306 typedef struct {
1307 struct exec_node node;
1308 nir_src src;
1309 nir_dest dest;
1310 } nir_parallel_copy_entry;
1311
1312 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1313 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1314
1315 typedef struct {
1316 nir_instr instr;
1317
1318 /* A list of nir_parallel_copy_entry's. The sources of all of the
1319 * entries are copied to the corresponding destinations "in parallel".
1320 * In other words, if we have two entries: a -> b and b -> a, the values
1321 * get swapped.
1322 */
1323 struct exec_list entries;
1324 } nir_parallel_copy_instr;
1325
1326 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1327 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1328 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1329 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1330 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1331 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1332 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1333 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1334 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1335 nir_parallel_copy_instr, instr)
1336
1337 /*
1338 * Control flow
1339 *
1340 * Control flow consists of a tree of control flow nodes, which include
1341 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1342 * instructions that always run start-to-finish. Each basic block also keeps
1343 * track of its successors (blocks which may run immediately after the current
1344 * block) and predecessors (blocks which could have run immediately before the
1345 * current block). Each function also has a start block and an end block which
1346 * all return statements point to (which is always empty). Together, all the
1347 * blocks with their predecessors and successors make up the control flow
1348 * graph (CFG) of the function. There are helpers that modify the tree of
1349 * control flow nodes while modifying the CFG appropriately; these should be
1350 * used instead of modifying the tree directly.
1351 */
1352
1353 typedef enum {
1354 nir_cf_node_block,
1355 nir_cf_node_if,
1356 nir_cf_node_loop,
1357 nir_cf_node_function
1358 } nir_cf_node_type;
1359
1360 typedef struct nir_cf_node {
1361 struct exec_node node;
1362 nir_cf_node_type type;
1363 struct nir_cf_node *parent;
1364 } nir_cf_node;
1365
1366 typedef struct nir_block {
1367 nir_cf_node cf_node;
1368
1369 struct exec_list instr_list; /** < list of nir_instr */
1370
1371 /** generic block index; generated by nir_index_blocks */
1372 unsigned index;
1373
1374 /*
1375 * Each block can only have up to 2 successors, so we put them in a simple
1376 * array - no need for anything more complicated.
1377 */
1378 struct nir_block *successors[2];
1379
1380 /* Set of nir_block predecessors in the CFG */
1381 struct set *predecessors;
1382
1383 /*
1384 * this node's immediate dominator in the dominance tree - set to NULL for
1385 * the start block.
1386 */
1387 struct nir_block *imm_dom;
1388
1389 /* This node's children in the dominance tree */
1390 unsigned num_dom_children;
1391 struct nir_block **dom_children;
1392
1393 /* Set of nir_block's on the dominance frontier of this block */
1394 struct set *dom_frontier;
1395
1396 /*
1397 * These two indices have the property that dom_{pre,post}_index for each
1398 * child of this block in the dominance tree will always be between
1399 * dom_pre_index and dom_post_index for this block, which makes testing if
1400 * a given block is dominated by another block an O(1) operation.
1401 */
1402 unsigned dom_pre_index, dom_post_index;
1403
1404 /* live in and out for this block; used for liveness analysis */
1405 BITSET_WORD *live_in;
1406 BITSET_WORD *live_out;
1407 } nir_block;
1408
1409 static inline nir_instr *
1410 nir_block_first_instr(nir_block *block)
1411 {
1412 struct exec_node *head = exec_list_get_head(&block->instr_list);
1413 return exec_node_data(nir_instr, head, node);
1414 }
1415
1416 static inline nir_instr *
1417 nir_block_last_instr(nir_block *block)
1418 {
1419 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1420 return exec_node_data(nir_instr, tail, node);
1421 }
1422
1423 #define nir_foreach_instr(block, instr) \
1424 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1425 #define nir_foreach_instr_reverse(block, instr) \
1426 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1427 #define nir_foreach_instr_safe(block, instr) \
1428 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1429 #define nir_foreach_instr_reverse_safe(block, instr) \
1430 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1431
1432 typedef struct nir_if {
1433 nir_cf_node cf_node;
1434 nir_src condition;
1435
1436 struct exec_list then_list; /** < list of nir_cf_node */
1437 struct exec_list else_list; /** < list of nir_cf_node */
1438 } nir_if;
1439
1440 static inline nir_cf_node *
1441 nir_if_first_then_node(nir_if *if_stmt)
1442 {
1443 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1444 return exec_node_data(nir_cf_node, head, node);
1445 }
1446
1447 static inline nir_cf_node *
1448 nir_if_last_then_node(nir_if *if_stmt)
1449 {
1450 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1451 return exec_node_data(nir_cf_node, tail, node);
1452 }
1453
1454 static inline nir_cf_node *
1455 nir_if_first_else_node(nir_if *if_stmt)
1456 {
1457 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1458 return exec_node_data(nir_cf_node, head, node);
1459 }
1460
1461 static inline nir_cf_node *
1462 nir_if_last_else_node(nir_if *if_stmt)
1463 {
1464 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1465 return exec_node_data(nir_cf_node, tail, node);
1466 }
1467
1468 typedef struct {
1469 nir_cf_node cf_node;
1470
1471 struct exec_list body; /** < list of nir_cf_node */
1472 } nir_loop;
1473
1474 static inline nir_cf_node *
1475 nir_loop_first_cf_node(nir_loop *loop)
1476 {
1477 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1478 }
1479
1480 static inline nir_cf_node *
1481 nir_loop_last_cf_node(nir_loop *loop)
1482 {
1483 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1484 }
1485
1486 /**
1487 * Various bits of metadata that can may be created or required by
1488 * optimization and analysis passes
1489 */
1490 typedef enum {
1491 nir_metadata_none = 0x0,
1492 nir_metadata_block_index = 0x1,
1493 nir_metadata_dominance = 0x2,
1494 nir_metadata_live_ssa_defs = 0x4,
1495 nir_metadata_not_properly_reset = 0x8,
1496 } nir_metadata;
1497
1498 typedef struct {
1499 nir_cf_node cf_node;
1500
1501 /** pointer to the function of which this is an implementation */
1502 struct nir_function *function;
1503
1504 struct exec_list body; /** < list of nir_cf_node */
1505
1506 nir_block *end_block;
1507
1508 /** list for all local variables in the function */
1509 struct exec_list locals;
1510
1511 /** array of variables used as parameters */
1512 unsigned num_params;
1513 nir_variable **params;
1514
1515 /** variable used to hold the result of the function */
1516 nir_variable *return_var;
1517
1518 /** list of local registers in the function */
1519 struct exec_list registers;
1520
1521 /** next available local register index */
1522 unsigned reg_alloc;
1523
1524 /** next available SSA value index */
1525 unsigned ssa_alloc;
1526
1527 /* total number of basic blocks, only valid when block_index_dirty = false */
1528 unsigned num_blocks;
1529
1530 nir_metadata valid_metadata;
1531 } nir_function_impl;
1532
1533 static inline nir_block *
1534 nir_start_block(nir_function_impl *impl)
1535 {
1536 return (nir_block *) exec_list_get_head(&impl->body);
1537 }
1538
1539 static inline nir_cf_node *
1540 nir_cf_node_next(nir_cf_node *node)
1541 {
1542 struct exec_node *next = exec_node_get_next(&node->node);
1543 if (exec_node_is_tail_sentinel(next))
1544 return NULL;
1545 else
1546 return exec_node_data(nir_cf_node, next, node);
1547 }
1548
1549 static inline nir_cf_node *
1550 nir_cf_node_prev(nir_cf_node *node)
1551 {
1552 struct exec_node *prev = exec_node_get_prev(&node->node);
1553 if (exec_node_is_head_sentinel(prev))
1554 return NULL;
1555 else
1556 return exec_node_data(nir_cf_node, prev, node);
1557 }
1558
1559 static inline bool
1560 nir_cf_node_is_first(const nir_cf_node *node)
1561 {
1562 return exec_node_is_head_sentinel(node->node.prev);
1563 }
1564
1565 static inline bool
1566 nir_cf_node_is_last(const nir_cf_node *node)
1567 {
1568 return exec_node_is_tail_sentinel(node->node.next);
1569 }
1570
1571 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1572 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1573 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1574 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1575
1576 typedef enum {
1577 nir_parameter_in,
1578 nir_parameter_out,
1579 nir_parameter_inout,
1580 } nir_parameter_type;
1581
1582 typedef struct {
1583 nir_parameter_type param_type;
1584 const struct glsl_type *type;
1585 } nir_parameter;
1586
1587 typedef struct nir_function {
1588 struct exec_node node;
1589
1590 const char *name;
1591 struct nir_shader *shader;
1592
1593 unsigned num_params;
1594 nir_parameter *params;
1595 const struct glsl_type *return_type;
1596
1597 /** The implementation of this function.
1598 *
1599 * If the function is only declared and not implemented, this is NULL.
1600 */
1601 nir_function_impl *impl;
1602 } nir_function;
1603
1604 typedef struct nir_shader_compiler_options {
1605 bool lower_fdiv;
1606 bool lower_ffma;
1607 bool lower_flrp;
1608 bool lower_fpow;
1609 bool lower_fsat;
1610 bool lower_fsqrt;
1611 bool lower_fmod;
1612 bool lower_bitfield_extract;
1613 bool lower_bitfield_insert;
1614 bool lower_uadd_carry;
1615 bool lower_usub_borrow;
1616 /** lowers fneg and ineg to fsub and isub. */
1617 bool lower_negate;
1618 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1619 bool lower_sub;
1620
1621 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1622 bool lower_scmp;
1623
1624 /* Does the native fdot instruction replicate its result for four
1625 * components? If so, then opt_algebraic_late will turn all fdotN
1626 * instructions into fdot_replicatedN instructions.
1627 */
1628 bool fdot_replicates;
1629
1630 /** lowers ffract to fsub+ffloor: */
1631 bool lower_ffract;
1632
1633 bool lower_pack_half_2x16;
1634 bool lower_pack_unorm_2x16;
1635 bool lower_pack_snorm_2x16;
1636 bool lower_pack_unorm_4x8;
1637 bool lower_pack_snorm_4x8;
1638 bool lower_unpack_half_2x16;
1639 bool lower_unpack_unorm_2x16;
1640 bool lower_unpack_snorm_2x16;
1641 bool lower_unpack_unorm_4x8;
1642 bool lower_unpack_snorm_4x8;
1643
1644 bool lower_extract_byte;
1645 bool lower_extract_word;
1646
1647 /**
1648 * Does the driver support real 32-bit integers? (Otherwise, integers
1649 * are simulated by floats.)
1650 */
1651 bool native_integers;
1652
1653 /* Indicates that the driver only has zero-based vertex id */
1654 bool vertex_id_zero_based;
1655 } nir_shader_compiler_options;
1656
1657 typedef struct nir_shader_info {
1658 const char *name;
1659
1660 /* Descriptive name provided by the client; may be NULL */
1661 const char *label;
1662
1663 /* Number of textures used by this shader */
1664 unsigned num_textures;
1665 /* Number of uniform buffers used by this shader */
1666 unsigned num_ubos;
1667 /* Number of atomic buffers used by this shader */
1668 unsigned num_abos;
1669 /* Number of shader storage buffers used by this shader */
1670 unsigned num_ssbos;
1671 /* Number of images used by this shader */
1672 unsigned num_images;
1673
1674 /* Which inputs are actually read */
1675 uint64_t inputs_read;
1676 /* Which outputs are actually written */
1677 uint64_t outputs_written;
1678 /* Which system values are actually read */
1679 uint64_t system_values_read;
1680
1681 /* Which patch inputs are actually read */
1682 uint32_t patch_inputs_read;
1683 /* Which patch outputs are actually written */
1684 uint32_t patch_outputs_written;
1685
1686 /* Whether or not this shader ever uses textureGather() */
1687 bool uses_texture_gather;
1688
1689 /* Whether or not this shader uses the gl_ClipDistance output */
1690 bool uses_clip_distance_out;
1691
1692 /* Whether or not separate shader objects were used */
1693 bool separate_shader;
1694
1695 /** Was this shader linked with any transform feedback varyings? */
1696 bool has_transform_feedback_varyings;
1697
1698 union {
1699 struct {
1700 /** The number of vertices recieves per input primitive */
1701 unsigned vertices_in;
1702
1703 /** The output primitive type (GL enum value) */
1704 unsigned output_primitive;
1705
1706 /** The maximum number of vertices the geometry shader might write. */
1707 unsigned vertices_out;
1708
1709 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1710 unsigned invocations;
1711
1712 /** Whether or not this shader uses EndPrimitive */
1713 bool uses_end_primitive;
1714
1715 /** Whether or not this shader uses non-zero streams */
1716 bool uses_streams;
1717 } gs;
1718
1719 struct {
1720 bool uses_discard;
1721
1722 /**
1723 * Whether early fragment tests are enabled as defined by
1724 * ARB_shader_image_load_store.
1725 */
1726 bool early_fragment_tests;
1727
1728 /** gl_FragDepth layout for ARB_conservative_depth. */
1729 enum gl_frag_depth_layout depth_layout;
1730 } fs;
1731
1732 struct {
1733 unsigned local_size[3];
1734 } cs;
1735
1736 struct {
1737 /** The number of vertices in the TCS output patch. */
1738 unsigned vertices_out;
1739 } tcs;
1740 };
1741 } nir_shader_info;
1742
1743 typedef struct nir_shader {
1744 /** list of uniforms (nir_variable) */
1745 struct exec_list uniforms;
1746
1747 /** list of inputs (nir_variable) */
1748 struct exec_list inputs;
1749
1750 /** list of outputs (nir_variable) */
1751 struct exec_list outputs;
1752
1753 /** list of shared compute variables (nir_variable) */
1754 struct exec_list shared;
1755
1756 /** Set of driver-specific options for the shader.
1757 *
1758 * The memory for the options is expected to be kept in a single static
1759 * copy by the driver.
1760 */
1761 const struct nir_shader_compiler_options *options;
1762
1763 /** Various bits of compile-time information about a given shader */
1764 struct nir_shader_info info;
1765
1766 /** list of global variables in the shader (nir_variable) */
1767 struct exec_list globals;
1768
1769 /** list of system value variables in the shader (nir_variable) */
1770 struct exec_list system_values;
1771
1772 struct exec_list functions; /** < list of nir_function */
1773
1774 /** list of global register in the shader */
1775 struct exec_list registers;
1776
1777 /** next available global register index */
1778 unsigned reg_alloc;
1779
1780 /**
1781 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1782 * access plus one
1783 */
1784 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1785
1786 /** The shader stage, such as MESA_SHADER_VERTEX. */
1787 gl_shader_stage stage;
1788 } nir_shader;
1789
1790 static inline nir_function *
1791 nir_shader_get_entrypoint(nir_shader *shader)
1792 {
1793 assert(exec_list_length(&shader->functions) == 1);
1794 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1795 nir_function *func = exec_node_data(nir_function, func_node, node);
1796 assert(func->return_type == glsl_void_type());
1797 assert(func->num_params == 0);
1798 return func;
1799 }
1800
1801 #define nir_foreach_function(shader, func) \
1802 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1803
1804 nir_shader *nir_shader_create(void *mem_ctx,
1805 gl_shader_stage stage,
1806 const nir_shader_compiler_options *options);
1807
1808 /** creates a register, including assigning it an index and adding it to the list */
1809 nir_register *nir_global_reg_create(nir_shader *shader);
1810
1811 nir_register *nir_local_reg_create(nir_function_impl *impl);
1812
1813 void nir_reg_remove(nir_register *reg);
1814
1815 /** Adds a variable to the appropreate list in nir_shader */
1816 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1817
1818 static inline void
1819 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1820 {
1821 assert(var->data.mode == nir_var_local);
1822 exec_list_push_tail(&impl->locals, &var->node);
1823 }
1824
1825 /** creates a variable, sets a few defaults, and adds it to the list */
1826 nir_variable *nir_variable_create(nir_shader *shader,
1827 nir_variable_mode mode,
1828 const struct glsl_type *type,
1829 const char *name);
1830 /** creates a local variable and adds it to the list */
1831 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1832 const struct glsl_type *type,
1833 const char *name);
1834
1835 /** creates a function and adds it to the shader's list of functions */
1836 nir_function *nir_function_create(nir_shader *shader, const char *name);
1837
1838 nir_function_impl *nir_function_impl_create(nir_function *func);
1839 /** creates a function_impl that isn't tied to any particular function */
1840 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1841
1842 nir_block *nir_block_create(nir_shader *shader);
1843 nir_if *nir_if_create(nir_shader *shader);
1844 nir_loop *nir_loop_create(nir_shader *shader);
1845
1846 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1847
1848 /** requests that the given pieces of metadata be generated */
1849 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1850 /** dirties all but the preserved metadata */
1851 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1852
1853 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1854 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1855
1856 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1857
1858 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1859 unsigned num_components,
1860 unsigned bit_size);
1861
1862 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1863 nir_intrinsic_op op);
1864
1865 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1866 nir_function *callee);
1867
1868 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1869
1870 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1871
1872 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1873
1874 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1875 unsigned num_components,
1876 unsigned bit_size);
1877
1878 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1879 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1880 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1881
1882 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1883
1884 nir_load_const_instr *
1885 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1886
1887 /**
1888 * NIR Cursors and Instruction Insertion API
1889 * @{
1890 *
1891 * A tiny struct representing a point to insert/extract instructions or
1892 * control flow nodes. Helps reduce the combinatorial explosion of possible
1893 * points to insert/extract.
1894 *
1895 * \sa nir_control_flow.h
1896 */
1897 typedef enum {
1898 nir_cursor_before_block,
1899 nir_cursor_after_block,
1900 nir_cursor_before_instr,
1901 nir_cursor_after_instr,
1902 } nir_cursor_option;
1903
1904 typedef struct {
1905 nir_cursor_option option;
1906 union {
1907 nir_block *block;
1908 nir_instr *instr;
1909 };
1910 } nir_cursor;
1911
1912 static inline nir_block *
1913 nir_cursor_current_block(nir_cursor cursor)
1914 {
1915 if (cursor.option == nir_cursor_before_instr ||
1916 cursor.option == nir_cursor_after_instr) {
1917 return cursor.instr->block;
1918 } else {
1919 return cursor.block;
1920 }
1921 }
1922
1923 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1924
1925 static inline nir_cursor
1926 nir_before_block(nir_block *block)
1927 {
1928 nir_cursor cursor;
1929 cursor.option = nir_cursor_before_block;
1930 cursor.block = block;
1931 return cursor;
1932 }
1933
1934 static inline nir_cursor
1935 nir_after_block(nir_block *block)
1936 {
1937 nir_cursor cursor;
1938 cursor.option = nir_cursor_after_block;
1939 cursor.block = block;
1940 return cursor;
1941 }
1942
1943 static inline nir_cursor
1944 nir_before_instr(nir_instr *instr)
1945 {
1946 nir_cursor cursor;
1947 cursor.option = nir_cursor_before_instr;
1948 cursor.instr = instr;
1949 return cursor;
1950 }
1951
1952 static inline nir_cursor
1953 nir_after_instr(nir_instr *instr)
1954 {
1955 nir_cursor cursor;
1956 cursor.option = nir_cursor_after_instr;
1957 cursor.instr = instr;
1958 return cursor;
1959 }
1960
1961 static inline nir_cursor
1962 nir_after_block_before_jump(nir_block *block)
1963 {
1964 nir_instr *last_instr = nir_block_last_instr(block);
1965 if (last_instr && last_instr->type == nir_instr_type_jump) {
1966 return nir_before_instr(last_instr);
1967 } else {
1968 return nir_after_block(block);
1969 }
1970 }
1971
1972 static inline nir_cursor
1973 nir_before_cf_node(nir_cf_node *node)
1974 {
1975 if (node->type == nir_cf_node_block)
1976 return nir_before_block(nir_cf_node_as_block(node));
1977
1978 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1979 }
1980
1981 static inline nir_cursor
1982 nir_after_cf_node(nir_cf_node *node)
1983 {
1984 if (node->type == nir_cf_node_block)
1985 return nir_after_block(nir_cf_node_as_block(node));
1986
1987 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1988 }
1989
1990 static inline nir_cursor
1991 nir_after_cf_node_and_phis(nir_cf_node *node)
1992 {
1993 if (node->type == nir_cf_node_block)
1994 return nir_after_block(nir_cf_node_as_block(node));
1995
1996 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
1997 assert(block->cf_node.type == nir_cf_node_block);
1998
1999 nir_foreach_instr(block, instr) {
2000 if (instr->type != nir_instr_type_phi)
2001 return nir_before_instr(instr);
2002 }
2003 return nir_after_block(block);
2004 }
2005
2006 static inline nir_cursor
2007 nir_before_cf_list(struct exec_list *cf_list)
2008 {
2009 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2010 exec_list_get_head(cf_list), node);
2011 return nir_before_cf_node(first_node);
2012 }
2013
2014 static inline nir_cursor
2015 nir_after_cf_list(struct exec_list *cf_list)
2016 {
2017 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2018 exec_list_get_tail(cf_list), node);
2019 return nir_after_cf_node(last_node);
2020 }
2021
2022 /**
2023 * Insert a NIR instruction at the given cursor.
2024 *
2025 * Note: This does not update the cursor.
2026 */
2027 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2028
2029 static inline void
2030 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2031 {
2032 nir_instr_insert(nir_before_instr(instr), before);
2033 }
2034
2035 static inline void
2036 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2037 {
2038 nir_instr_insert(nir_after_instr(instr), after);
2039 }
2040
2041 static inline void
2042 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2043 {
2044 nir_instr_insert(nir_before_block(block), before);
2045 }
2046
2047 static inline void
2048 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2049 {
2050 nir_instr_insert(nir_after_block(block), after);
2051 }
2052
2053 static inline void
2054 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2055 {
2056 nir_instr_insert(nir_before_cf_node(node), before);
2057 }
2058
2059 static inline void
2060 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2061 {
2062 nir_instr_insert(nir_after_cf_node(node), after);
2063 }
2064
2065 static inline void
2066 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2067 {
2068 nir_instr_insert(nir_before_cf_list(list), before);
2069 }
2070
2071 static inline void
2072 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2073 {
2074 nir_instr_insert(nir_after_cf_list(list), after);
2075 }
2076
2077 void nir_instr_remove(nir_instr *instr);
2078
2079 /** @} */
2080
2081 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2082 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2083 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2084 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2085 void *state);
2086 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2087 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2088
2089 nir_const_value *nir_src_as_const_value(nir_src src);
2090 bool nir_src_is_dynamically_uniform(nir_src src);
2091 bool nir_srcs_equal(nir_src src1, nir_src src2);
2092 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2093 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2094 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2095 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2096 nir_dest new_dest);
2097
2098 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2099 unsigned num_components, unsigned bit_size,
2100 const char *name);
2101 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2102 unsigned num_components, unsigned bit_size,
2103 const char *name);
2104 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2105 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2106 nir_instr *after_me);
2107
2108 /* visits basic blocks in source-code order */
2109 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
2110 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
2111 void *state);
2112 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
2113 void *state);
2114 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
2115 void *state);
2116
2117 /* If the following CF node is an if, this function returns that if.
2118 * Otherwise, it returns NULL.
2119 */
2120 nir_if *nir_block_get_following_if(nir_block *block);
2121
2122 nir_loop *nir_block_get_following_loop(nir_block *block);
2123
2124 void nir_index_local_regs(nir_function_impl *impl);
2125 void nir_index_global_regs(nir_shader *shader);
2126 void nir_index_ssa_defs(nir_function_impl *impl);
2127 unsigned nir_index_instrs(nir_function_impl *impl);
2128
2129 void nir_index_blocks(nir_function_impl *impl);
2130
2131 void nir_print_shader(nir_shader *shader, FILE *fp);
2132 void nir_print_instr(const nir_instr *instr, FILE *fp);
2133
2134 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2135 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2136 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2137 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2138
2139 #ifdef DEBUG
2140 void nir_validate_shader(nir_shader *shader);
2141 void nir_metadata_set_validation_flag(nir_shader *shader);
2142 void nir_metadata_check_validation_flag(nir_shader *shader);
2143
2144 #include "util/debug.h"
2145 static inline bool
2146 should_clone_nir(void)
2147 {
2148 static int should_clone = -1;
2149 if (should_clone < 0)
2150 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2151
2152 return should_clone;
2153 }
2154 #else
2155 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2156 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2157 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2158 static inline bool should_clone_nir(void) { return false; }
2159 #endif /* DEBUG */
2160
2161 #define _PASS(nir, do_pass) do { \
2162 do_pass \
2163 nir_validate_shader(nir); \
2164 if (should_clone_nir()) { \
2165 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2166 ralloc_free(nir); \
2167 nir = clone; \
2168 } \
2169 } while (0)
2170
2171 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2172 nir_metadata_set_validation_flag(nir); \
2173 if (pass(nir, ##__VA_ARGS__)) { \
2174 progress = true; \
2175 nir_metadata_check_validation_flag(nir); \
2176 } \
2177 )
2178
2179 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2180 pass(nir, ##__VA_ARGS__); \
2181 )
2182
2183 void nir_calc_dominance_impl(nir_function_impl *impl);
2184 void nir_calc_dominance(nir_shader *shader);
2185
2186 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2187 bool nir_block_dominates(nir_block *parent, nir_block *child);
2188
2189 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2190 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2191
2192 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2193 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2194
2195 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2196 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2197
2198 int nir_gs_count_vertices(const nir_shader *shader);
2199
2200 bool nir_split_var_copies(nir_shader *shader);
2201
2202 bool nir_lower_returns_impl(nir_function_impl *impl);
2203 bool nir_lower_returns(nir_shader *shader);
2204
2205 bool nir_inline_functions(nir_shader *shader);
2206
2207 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2208 void nir_lower_var_copies(nir_shader *shader);
2209
2210 bool nir_lower_global_vars_to_local(nir_shader *shader);
2211
2212 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2213
2214 bool nir_lower_locals_to_regs(nir_shader *shader);
2215
2216 void nir_lower_outputs_to_temporaries(nir_shader *shader,
2217 nir_function *entrypoint);
2218 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2219
2220 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2221
2222 void nir_assign_var_locations(struct exec_list *var_list,
2223 unsigned *size,
2224 int (*type_size)(const struct glsl_type *));
2225
2226 void nir_lower_io(nir_shader *shader,
2227 nir_variable_mode modes,
2228 int (*type_size)(const struct glsl_type *));
2229 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2230 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2231
2232 void nir_lower_vars_to_ssa(nir_shader *shader);
2233
2234 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2235
2236 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2237 bool nir_lower_vec_to_movs(nir_shader *shader);
2238 void nir_lower_alu_to_scalar(nir_shader *shader);
2239 void nir_lower_load_const_to_scalar(nir_shader *shader);
2240
2241 void nir_lower_phis_to_scalar(nir_shader *shader);
2242
2243 void nir_lower_samplers(nir_shader *shader,
2244 const struct gl_shader_program *shader_program);
2245
2246 bool nir_lower_system_values(nir_shader *shader);
2247
2248 typedef struct nir_lower_tex_options {
2249 /**
2250 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2251 * sampler types a texture projector is lowered.
2252 */
2253 unsigned lower_txp;
2254
2255 /**
2256 * If true, lower rect textures to 2D, using txs to fetch the
2257 * texture dimensions and dividing the texture coords by the
2258 * texture dims to normalize.
2259 */
2260 bool lower_rect;
2261
2262 /**
2263 * To emulate certain texture wrap modes, this can be used
2264 * to saturate the specified tex coord to [0.0, 1.0]. The
2265 * bits are according to sampler #, ie. if, for example:
2266 *
2267 * (conf->saturate_s & (1 << n))
2268 *
2269 * is true, then the s coord for sampler n is saturated.
2270 *
2271 * Note that clamping must happen *after* projector lowering
2272 * so any projected texture sample instruction with a clamped
2273 * coordinate gets automatically lowered, regardless of the
2274 * 'lower_txp' setting.
2275 */
2276 unsigned saturate_s;
2277 unsigned saturate_t;
2278 unsigned saturate_r;
2279
2280 /* Bitmask of textures that need swizzling.
2281 *
2282 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2283 * swizzles[texture_index] is applied to the result of the texturing
2284 * operation.
2285 */
2286 unsigned swizzle_result;
2287
2288 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2289 * while 4 and 5 represent 0 and 1 respectively.
2290 */
2291 uint8_t swizzles[32][4];
2292 } nir_lower_tex_options;
2293
2294 bool nir_lower_tex(nir_shader *shader,
2295 const nir_lower_tex_options *options);
2296
2297 void nir_lower_idiv(nir_shader *shader);
2298
2299 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2300 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2301
2302 void nir_lower_two_sided_color(nir_shader *shader);
2303
2304 void nir_lower_atomics(nir_shader *shader,
2305 const struct gl_shader_program *shader_program);
2306 void nir_lower_to_source_mods(nir_shader *shader);
2307
2308 bool nir_lower_gs_intrinsics(nir_shader *shader);
2309
2310 void nir_lower_double_pack(nir_shader *shader);
2311
2312 bool nir_normalize_cubemap_coords(nir_shader *shader);
2313
2314 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2315 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2316
2317 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2318 void nir_convert_to_ssa(nir_shader *shader);
2319
2320 bool nir_repair_ssa_impl(nir_function_impl *impl);
2321 bool nir_repair_ssa(nir_shader *shader);
2322
2323 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2324 * registers. If false, convert all values (even those not involved in a phi
2325 * node) to registers.
2326 */
2327 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2328
2329 bool nir_opt_algebraic(nir_shader *shader);
2330 bool nir_opt_algebraic_late(nir_shader *shader);
2331 bool nir_opt_constant_folding(nir_shader *shader);
2332
2333 bool nir_opt_global_to_local(nir_shader *shader);
2334
2335 bool nir_copy_prop(nir_shader *shader);
2336
2337 bool nir_opt_cse(nir_shader *shader);
2338
2339 bool nir_opt_dce(nir_shader *shader);
2340
2341 bool nir_opt_dead_cf(nir_shader *shader);
2342
2343 void nir_opt_gcm(nir_shader *shader);
2344
2345 bool nir_opt_peephole_select(nir_shader *shader);
2346
2347 bool nir_opt_remove_phis(nir_shader *shader);
2348
2349 bool nir_opt_undef(nir_shader *shader);
2350
2351 void nir_sweep(nir_shader *shader);
2352
2353 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2354 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2355
2356 #ifdef __cplusplus
2357 } /* extern "C" */
2358 #endif