nir: Support lowering vote intrinsics
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifdef DEBUG
45 #include "util/debug.h"
46 #endif /* DEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 struct gl_program;
59 struct gl_shader_program;
60
61 #define NIR_FALSE 0u
62 #define NIR_TRUE (~0u)
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 int tokens[5];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_param = (1 << 7),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109
110 typedef union {
111 float f32[4];
112 double f64[4];
113 int8_t i8[4];
114 uint8_t u8[4];
115 int16_t i16[4];
116 uint16_t u16[4];
117 int32_t i32[4];
118 uint32_t u32[4];
119 int64_t i64[4];
120 uint64_t u64[4];
121 } nir_const_value;
122
123 typedef struct nir_constant {
124 /**
125 * Value of the constant.
126 *
127 * The field used to back the values supplied by the constant is determined
128 * by the type associated with the \c nir_variable. Constants may be
129 * scalars, vectors, or matrices.
130 */
131 nir_const_value values[4];
132
133 /* we could get this from the var->type but makes clone *much* easier to
134 * not have to care about the type.
135 */
136 unsigned num_elements;
137
138 /* Array elements / Structure Fields */
139 struct nir_constant **elements;
140 } nir_constant;
141
142 /**
143 * \brief Layout qualifiers for gl_FragDepth.
144 *
145 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
146 * with a layout qualifier.
147 */
148 typedef enum {
149 nir_depth_layout_none, /**< No depth layout is specified. */
150 nir_depth_layout_any,
151 nir_depth_layout_greater,
152 nir_depth_layout_less,
153 nir_depth_layout_unchanged
154 } nir_depth_layout;
155
156 /**
157 * Either a uniform, global variable, shader input, or shader output. Based on
158 * ir_variable - it should be easy to translate between the two.
159 */
160
161 typedef struct nir_variable {
162 struct exec_node node;
163
164 /**
165 * Declared type of the variable
166 */
167 const struct glsl_type *type;
168
169 /**
170 * Declared name of the variable
171 */
172 char *name;
173
174 struct nir_variable_data {
175 /**
176 * Storage class of the variable.
177 *
178 * \sa nir_variable_mode
179 */
180 nir_variable_mode mode;
181
182 /**
183 * Is the variable read-only?
184 *
185 * This is set for variables declared as \c const, shader inputs,
186 * and uniforms.
187 */
188 unsigned read_only:1;
189 unsigned centroid:1;
190 unsigned sample:1;
191 unsigned patch:1;
192 unsigned invariant:1;
193
194 /**
195 * Interpolation mode for shader inputs / outputs
196 *
197 * \sa glsl_interp_mode
198 */
199 unsigned interpolation:2;
200
201 /**
202 * \name ARB_fragment_coord_conventions
203 * @{
204 */
205 unsigned origin_upper_left:1;
206 unsigned pixel_center_integer:1;
207 /*@}*/
208
209 /**
210 * If non-zero, then this variable may be packed along with other variables
211 * into a single varying slot, so this offset should be applied when
212 * accessing components. For example, an offset of 1 means that the x
213 * component of this variable is actually stored in component y of the
214 * location specified by \c location.
215 */
216 unsigned location_frac:2;
217
218 /**
219 * If true, this variable represents an array of scalars that should
220 * be tightly packed. In other words, consecutive array elements
221 * should be stored one component apart, rather than one slot apart.
222 */
223 bool compact:1;
224
225 /**
226 * Whether this is a fragment shader output implicitly initialized with
227 * the previous contents of the specified render target at the
228 * framebuffer location corresponding to this shader invocation.
229 */
230 unsigned fb_fetch_output:1;
231
232 /**
233 * \brief Layout qualifier for gl_FragDepth.
234 *
235 * This is not equal to \c ir_depth_layout_none if and only if this
236 * variable is \c gl_FragDepth and a layout qualifier is specified.
237 */
238 nir_depth_layout depth_layout;
239
240 /**
241 * Storage location of the base of this variable
242 *
243 * The precise meaning of this field depends on the nature of the variable.
244 *
245 * - Vertex shader input: one of the values from \c gl_vert_attrib.
246 * - Vertex shader output: one of the values from \c gl_varying_slot.
247 * - Geometry shader input: one of the values from \c gl_varying_slot.
248 * - Geometry shader output: one of the values from \c gl_varying_slot.
249 * - Fragment shader input: one of the values from \c gl_varying_slot.
250 * - Fragment shader output: one of the values from \c gl_frag_result.
251 * - Uniforms: Per-stage uniform slot number for default uniform block.
252 * - Uniforms: Index within the uniform block definition for UBO members.
253 * - Non-UBO Uniforms: uniform slot number.
254 * - Other: This field is not currently used.
255 *
256 * If the variable is a uniform, shader input, or shader output, and the
257 * slot has not been assigned, the value will be -1.
258 */
259 int location;
260
261 /**
262 * The actual location of the variable in the IR. Only valid for inputs
263 * and outputs.
264 */
265 unsigned int driver_location;
266
267 /**
268 * output index for dual source blending.
269 */
270 int index;
271
272 /**
273 * Descriptor set binding for sampler or UBO.
274 */
275 int descriptor_set;
276
277 /**
278 * Initial binding point for a sampler or UBO.
279 *
280 * For array types, this represents the binding point for the first element.
281 */
282 int binding;
283
284 /**
285 * Location an atomic counter is stored at.
286 */
287 unsigned offset;
288
289 /**
290 * ARB_shader_image_load_store qualifiers.
291 */
292 struct {
293 bool read_only; /**< "readonly" qualifier. */
294 bool write_only; /**< "writeonly" qualifier. */
295 bool coherent;
296 bool _volatile;
297 bool restrict_flag;
298
299 /** Image internal format if specified explicitly, otherwise GL_NONE. */
300 GLenum format;
301 } image;
302 } data;
303
304 /**
305 * Built-in state that backs this uniform
306 *
307 * Once set at variable creation, \c state_slots must remain invariant.
308 * This is because, ideally, this array would be shared by all clones of
309 * this variable in the IR tree. In other words, we'd really like for it
310 * to be a fly-weight.
311 *
312 * If the variable is not a uniform, \c num_state_slots will be zero and
313 * \c state_slots will be \c NULL.
314 */
315 /*@{*/
316 unsigned num_state_slots; /**< Number of state slots used */
317 nir_state_slot *state_slots; /**< State descriptors. */
318 /*@}*/
319
320 /**
321 * Constant expression assigned in the initializer of the variable
322 *
323 * This field should only be used temporarily by creators of NIR shaders
324 * and then lower_constant_initializers can be used to get rid of them.
325 * Most of the rest of NIR ignores this field or asserts that it's NULL.
326 */
327 nir_constant *constant_initializer;
328
329 /**
330 * For variables that are in an interface block or are an instance of an
331 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
332 *
333 * \sa ir_variable::location
334 */
335 const struct glsl_type *interface_type;
336 } nir_variable;
337
338 #define nir_foreach_variable(var, var_list) \
339 foreach_list_typed(nir_variable, var, node, var_list)
340
341 #define nir_foreach_variable_safe(var, var_list) \
342 foreach_list_typed_safe(nir_variable, var, node, var_list)
343
344 static inline bool
345 nir_variable_is_global(const nir_variable *var)
346 {
347 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
348 }
349
350 typedef struct nir_register {
351 struct exec_node node;
352
353 unsigned num_components; /** < number of vector components */
354 unsigned num_array_elems; /** < size of array (0 for no array) */
355
356 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
357 uint8_t bit_size;
358
359 /** generic register index. */
360 unsigned index;
361
362 /** only for debug purposes, can be NULL */
363 const char *name;
364
365 /** whether this register is local (per-function) or global (per-shader) */
366 bool is_global;
367
368 /**
369 * If this flag is set to true, then accessing channels >= num_components
370 * is well-defined, and simply spills over to the next array element. This
371 * is useful for backends that can do per-component accessing, in
372 * particular scalar backends. By setting this flag and making
373 * num_components equal to 1, structures can be packed tightly into
374 * registers and then registers can be accessed per-component to get to
375 * each structure member, even if it crosses vec4 boundaries.
376 */
377 bool is_packed;
378
379 /** set of nir_srcs where this register is used (read from) */
380 struct list_head uses;
381
382 /** set of nir_dests where this register is defined (written to) */
383 struct list_head defs;
384
385 /** set of nir_ifs where this register is used as a condition */
386 struct list_head if_uses;
387 } nir_register;
388
389 #define nir_foreach_register(reg, reg_list) \
390 foreach_list_typed(nir_register, reg, node, reg_list)
391 #define nir_foreach_register_safe(reg, reg_list) \
392 foreach_list_typed_safe(nir_register, reg, node, reg_list)
393
394 typedef enum {
395 nir_instr_type_alu,
396 nir_instr_type_call,
397 nir_instr_type_tex,
398 nir_instr_type_intrinsic,
399 nir_instr_type_load_const,
400 nir_instr_type_jump,
401 nir_instr_type_ssa_undef,
402 nir_instr_type_phi,
403 nir_instr_type_parallel_copy,
404 } nir_instr_type;
405
406 typedef struct nir_instr {
407 struct exec_node node;
408 nir_instr_type type;
409 struct nir_block *block;
410
411 /** generic instruction index. */
412 unsigned index;
413
414 /* A temporary for optimization and analysis passes to use for storing
415 * flags. For instance, DCE uses this to store the "dead/live" info.
416 */
417 uint8_t pass_flags;
418 } nir_instr;
419
420 static inline nir_instr *
421 nir_instr_next(nir_instr *instr)
422 {
423 struct exec_node *next = exec_node_get_next(&instr->node);
424 if (exec_node_is_tail_sentinel(next))
425 return NULL;
426 else
427 return exec_node_data(nir_instr, next, node);
428 }
429
430 static inline nir_instr *
431 nir_instr_prev(nir_instr *instr)
432 {
433 struct exec_node *prev = exec_node_get_prev(&instr->node);
434 if (exec_node_is_head_sentinel(prev))
435 return NULL;
436 else
437 return exec_node_data(nir_instr, prev, node);
438 }
439
440 static inline bool
441 nir_instr_is_first(const nir_instr *instr)
442 {
443 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
444 }
445
446 static inline bool
447 nir_instr_is_last(const nir_instr *instr)
448 {
449 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
450 }
451
452 typedef struct nir_ssa_def {
453 /** for debugging only, can be NULL */
454 const char* name;
455
456 /** generic SSA definition index. */
457 unsigned index;
458
459 /** Index into the live_in and live_out bitfields */
460 unsigned live_index;
461
462 nir_instr *parent_instr;
463
464 /** set of nir_instrs where this register is used (read from) */
465 struct list_head uses;
466
467 /** set of nir_ifs where this register is used as a condition */
468 struct list_head if_uses;
469
470 uint8_t num_components;
471
472 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
473 uint8_t bit_size;
474 } nir_ssa_def;
475
476 struct nir_src;
477
478 typedef struct {
479 nir_register *reg;
480 struct nir_src *indirect; /** < NULL for no indirect offset */
481 unsigned base_offset;
482
483 /* TODO use-def chain goes here */
484 } nir_reg_src;
485
486 typedef struct {
487 nir_instr *parent_instr;
488 struct list_head def_link;
489
490 nir_register *reg;
491 struct nir_src *indirect; /** < NULL for no indirect offset */
492 unsigned base_offset;
493
494 /* TODO def-use chain goes here */
495 } nir_reg_dest;
496
497 struct nir_if;
498
499 typedef struct nir_src {
500 union {
501 nir_instr *parent_instr;
502 struct nir_if *parent_if;
503 };
504
505 struct list_head use_link;
506
507 union {
508 nir_reg_src reg;
509 nir_ssa_def *ssa;
510 };
511
512 bool is_ssa;
513 } nir_src;
514
515 static inline nir_src
516 nir_src_init(void)
517 {
518 nir_src src = { { NULL } };
519 return src;
520 }
521
522 #define NIR_SRC_INIT nir_src_init()
523
524 #define nir_foreach_use(src, reg_or_ssa_def) \
525 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
526
527 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
528 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
529
530 #define nir_foreach_if_use(src, reg_or_ssa_def) \
531 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
532
533 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
534 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
535
536 typedef struct {
537 union {
538 nir_reg_dest reg;
539 nir_ssa_def ssa;
540 };
541
542 bool is_ssa;
543 } nir_dest;
544
545 static inline nir_dest
546 nir_dest_init(void)
547 {
548 nir_dest dest = { { { NULL } } };
549 return dest;
550 }
551
552 #define NIR_DEST_INIT nir_dest_init()
553
554 #define nir_foreach_def(dest, reg) \
555 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
556
557 #define nir_foreach_def_safe(dest, reg) \
558 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
559
560 static inline nir_src
561 nir_src_for_ssa(nir_ssa_def *def)
562 {
563 nir_src src = NIR_SRC_INIT;
564
565 src.is_ssa = true;
566 src.ssa = def;
567
568 return src;
569 }
570
571 static inline nir_src
572 nir_src_for_reg(nir_register *reg)
573 {
574 nir_src src = NIR_SRC_INIT;
575
576 src.is_ssa = false;
577 src.reg.reg = reg;
578 src.reg.indirect = NULL;
579 src.reg.base_offset = 0;
580
581 return src;
582 }
583
584 static inline nir_dest
585 nir_dest_for_reg(nir_register *reg)
586 {
587 nir_dest dest = NIR_DEST_INIT;
588
589 dest.reg.reg = reg;
590
591 return dest;
592 }
593
594 static inline unsigned
595 nir_src_bit_size(nir_src src)
596 {
597 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
598 }
599
600 static inline unsigned
601 nir_dest_bit_size(nir_dest dest)
602 {
603 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
604 }
605
606 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
607 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
608
609 typedef struct {
610 nir_src src;
611
612 /**
613 * \name input modifiers
614 */
615 /*@{*/
616 /**
617 * For inputs interpreted as floating point, flips the sign bit. For
618 * inputs interpreted as integers, performs the two's complement negation.
619 */
620 bool negate;
621
622 /**
623 * Clears the sign bit for floating point values, and computes the integer
624 * absolute value for integers. Note that the negate modifier acts after
625 * the absolute value modifier, therefore if both are set then all inputs
626 * will become negative.
627 */
628 bool abs;
629 /*@}*/
630
631 /**
632 * For each input component, says which component of the register it is
633 * chosen from. Note that which elements of the swizzle are used and which
634 * are ignored are based on the write mask for most opcodes - for example,
635 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
636 * a swizzle of {2, x, 1, 0} where x means "don't care."
637 */
638 uint8_t swizzle[4];
639 } nir_alu_src;
640
641 typedef struct {
642 nir_dest dest;
643
644 /**
645 * \name saturate output modifier
646 *
647 * Only valid for opcodes that output floating-point numbers. Clamps the
648 * output to between 0.0 and 1.0 inclusive.
649 */
650
651 bool saturate;
652
653 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
654 } nir_alu_dest;
655
656 typedef enum {
657 nir_type_invalid = 0, /* Not a valid type */
658 nir_type_float,
659 nir_type_int,
660 nir_type_uint,
661 nir_type_bool,
662 nir_type_bool32 = 32 | nir_type_bool,
663 nir_type_int8 = 8 | nir_type_int,
664 nir_type_int16 = 16 | nir_type_int,
665 nir_type_int32 = 32 | nir_type_int,
666 nir_type_int64 = 64 | nir_type_int,
667 nir_type_uint8 = 8 | nir_type_uint,
668 nir_type_uint16 = 16 | nir_type_uint,
669 nir_type_uint32 = 32 | nir_type_uint,
670 nir_type_uint64 = 64 | nir_type_uint,
671 nir_type_float16 = 16 | nir_type_float,
672 nir_type_float32 = 32 | nir_type_float,
673 nir_type_float64 = 64 | nir_type_float,
674 } nir_alu_type;
675
676 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
677 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
678
679 static inline unsigned
680 nir_alu_type_get_type_size(nir_alu_type type)
681 {
682 return type & NIR_ALU_TYPE_SIZE_MASK;
683 }
684
685 static inline unsigned
686 nir_alu_type_get_base_type(nir_alu_type type)
687 {
688 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
689 }
690
691 static inline nir_alu_type
692 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
693 {
694 switch (base_type) {
695 case GLSL_TYPE_BOOL:
696 return nir_type_bool32;
697 break;
698 case GLSL_TYPE_UINT:
699 return nir_type_uint32;
700 break;
701 case GLSL_TYPE_INT:
702 return nir_type_int32;
703 break;
704 case GLSL_TYPE_UINT64:
705 return nir_type_uint64;
706 break;
707 case GLSL_TYPE_INT64:
708 return nir_type_int64;
709 break;
710 case GLSL_TYPE_FLOAT:
711 return nir_type_float32;
712 break;
713 case GLSL_TYPE_DOUBLE:
714 return nir_type_float64;
715 break;
716 default:
717 unreachable("unknown type");
718 }
719 }
720
721 static inline nir_alu_type
722 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
723 {
724 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
725 }
726
727 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst);
728
729 typedef enum {
730 NIR_OP_IS_COMMUTATIVE = (1 << 0),
731 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
732 } nir_op_algebraic_property;
733
734 typedef struct {
735 const char *name;
736
737 unsigned num_inputs;
738
739 /**
740 * The number of components in the output
741 *
742 * If non-zero, this is the size of the output and input sizes are
743 * explicitly given; swizzle and writemask are still in effect, but if
744 * the output component is masked out, then the input component may
745 * still be in use.
746 *
747 * If zero, the opcode acts in the standard, per-component manner; the
748 * operation is performed on each component (except the ones that are
749 * masked out) with the input being taken from the input swizzle for
750 * that component.
751 *
752 * The size of some of the inputs may be given (i.e. non-zero) even
753 * though output_size is zero; in that case, the inputs with a zero
754 * size act per-component, while the inputs with non-zero size don't.
755 */
756 unsigned output_size;
757
758 /**
759 * The type of vector that the instruction outputs. Note that the
760 * staurate modifier is only allowed on outputs with the float type.
761 */
762
763 nir_alu_type output_type;
764
765 /**
766 * The number of components in each input
767 */
768 unsigned input_sizes[4];
769
770 /**
771 * The type of vector that each input takes. Note that negate and
772 * absolute value are only allowed on inputs with int or float type and
773 * behave differently on the two.
774 */
775 nir_alu_type input_types[4];
776
777 nir_op_algebraic_property algebraic_properties;
778 } nir_op_info;
779
780 extern const nir_op_info nir_op_infos[nir_num_opcodes];
781
782 typedef struct nir_alu_instr {
783 nir_instr instr;
784 nir_op op;
785
786 /** Indicates that this ALU instruction generates an exact value
787 *
788 * This is kind of a mixture of GLSL "precise" and "invariant" and not
789 * really equivalent to either. This indicates that the value generated by
790 * this operation is high-precision and any code transformations that touch
791 * it must ensure that the resulting value is bit-for-bit identical to the
792 * original.
793 */
794 bool exact;
795
796 nir_alu_dest dest;
797 nir_alu_src src[];
798 } nir_alu_instr;
799
800 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
801 nir_alu_instr *instr);
802 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
803 nir_alu_instr *instr);
804
805 /* is this source channel used? */
806 static inline bool
807 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
808 unsigned channel)
809 {
810 if (nir_op_infos[instr->op].input_sizes[src] > 0)
811 return channel < nir_op_infos[instr->op].input_sizes[src];
812
813 return (instr->dest.write_mask >> channel) & 1;
814 }
815
816 /*
817 * For instructions whose destinations are SSA, get the number of channels
818 * used for a source
819 */
820 static inline unsigned
821 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
822 {
823 assert(instr->dest.dest.is_ssa);
824
825 if (nir_op_infos[instr->op].input_sizes[src] > 0)
826 return nir_op_infos[instr->op].input_sizes[src];
827
828 return instr->dest.dest.ssa.num_components;
829 }
830
831 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
832 unsigned src1, unsigned src2);
833
834 typedef enum {
835 nir_deref_type_var,
836 nir_deref_type_array,
837 nir_deref_type_struct
838 } nir_deref_type;
839
840 typedef struct nir_deref {
841 nir_deref_type deref_type;
842 struct nir_deref *child;
843 const struct glsl_type *type;
844 } nir_deref;
845
846 typedef struct {
847 nir_deref deref;
848
849 nir_variable *var;
850 } nir_deref_var;
851
852 /* This enum describes how the array is referenced. If the deref is
853 * direct then the base_offset is used. If the deref is indirect then
854 * offset is given by base_offset + indirect. If the deref is a wildcard
855 * then the deref refers to all of the elements of the array at the same
856 * time. Wildcard dereferences are only ever allowed in copy_var
857 * intrinsics and the source and destination derefs must have matching
858 * wildcards.
859 */
860 typedef enum {
861 nir_deref_array_type_direct,
862 nir_deref_array_type_indirect,
863 nir_deref_array_type_wildcard,
864 } nir_deref_array_type;
865
866 typedef struct {
867 nir_deref deref;
868
869 nir_deref_array_type deref_array_type;
870 unsigned base_offset;
871 nir_src indirect;
872 } nir_deref_array;
873
874 typedef struct {
875 nir_deref deref;
876
877 unsigned index;
878 } nir_deref_struct;
879
880 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
881 deref_type, nir_deref_type_var)
882 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
883 deref_type, nir_deref_type_array)
884 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
885 deref_type, nir_deref_type_struct)
886
887 /* Returns the last deref in the chain. */
888 static inline nir_deref *
889 nir_deref_tail(nir_deref *deref)
890 {
891 while (deref->child)
892 deref = deref->child;
893 return deref;
894 }
895
896 typedef struct {
897 nir_instr instr;
898
899 unsigned num_params;
900 nir_deref_var **params;
901 nir_deref_var *return_deref;
902
903 struct nir_function *callee;
904 } nir_call_instr;
905
906 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
907 num_variables, num_indices, idx0, idx1, idx2, flags) \
908 nir_intrinsic_##name,
909
910 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
911
912 typedef enum {
913 #include "nir_intrinsics.h"
914 nir_num_intrinsics = nir_last_intrinsic + 1
915 } nir_intrinsic_op;
916
917 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
918
919 /** Represents an intrinsic
920 *
921 * An intrinsic is an instruction type for handling things that are
922 * more-or-less regular operations but don't just consume and produce SSA
923 * values like ALU operations do. Intrinsics are not for things that have
924 * special semantic meaning such as phi nodes and parallel copies.
925 * Examples of intrinsics include variable load/store operations, system
926 * value loads, and the like. Even though texturing more-or-less falls
927 * under this category, texturing is its own instruction type because
928 * trying to represent texturing with intrinsics would lead to a
929 * combinatorial explosion of intrinsic opcodes.
930 *
931 * By having a single instruction type for handling a lot of different
932 * cases, optimization passes can look for intrinsics and, for the most
933 * part, completely ignore them. Each intrinsic type also has a few
934 * possible flags that govern whether or not they can be reordered or
935 * eliminated. That way passes like dead code elimination can still work
936 * on intrisics without understanding the meaning of each.
937 *
938 * Each intrinsic has some number of constant indices, some number of
939 * variables, and some number of sources. What these sources, variables,
940 * and indices mean depends on the intrinsic and is documented with the
941 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
942 * instructions are the only types of instruction that can operate on
943 * variables.
944 */
945 typedef struct {
946 nir_instr instr;
947
948 nir_intrinsic_op intrinsic;
949
950 nir_dest dest;
951
952 /** number of components if this is a vectorized intrinsic
953 *
954 * Similarly to ALU operations, some intrinsics are vectorized.
955 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
956 * For vectorized intrinsics, the num_components field specifies the
957 * number of destination components and the number of source components
958 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
959 */
960 uint8_t num_components;
961
962 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
963
964 nir_deref_var *variables[2];
965
966 nir_src src[];
967 } nir_intrinsic_instr;
968
969 /**
970 * \name NIR intrinsics semantic flags
971 *
972 * information about what the compiler can do with the intrinsics.
973 *
974 * \sa nir_intrinsic_info::flags
975 */
976 typedef enum {
977 /**
978 * whether the intrinsic can be safely eliminated if none of its output
979 * value is not being used.
980 */
981 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
982
983 /**
984 * Whether the intrinsic can be reordered with respect to any other
985 * intrinsic, i.e. whether the only reordering dependencies of the
986 * intrinsic are due to the register reads/writes.
987 */
988 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
989 } nir_intrinsic_semantic_flag;
990
991 /**
992 * \name NIR intrinsics const-index flag
993 *
994 * Indicates the usage of a const_index slot.
995 *
996 * \sa nir_intrinsic_info::index_map
997 */
998 typedef enum {
999 /**
1000 * Generally instructions that take a offset src argument, can encode
1001 * a constant 'base' value which is added to the offset.
1002 */
1003 NIR_INTRINSIC_BASE = 1,
1004
1005 /**
1006 * For store instructions, a writemask for the store.
1007 */
1008 NIR_INTRINSIC_WRMASK = 2,
1009
1010 /**
1011 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1012 */
1013 NIR_INTRINSIC_STREAM_ID = 3,
1014
1015 /**
1016 * The clip-plane id for load_user_clip_plane intrinsic.
1017 */
1018 NIR_INTRINSIC_UCP_ID = 4,
1019
1020 /**
1021 * The amount of data, starting from BASE, that this instruction may
1022 * access. This is used to provide bounds if the offset is not constant.
1023 */
1024 NIR_INTRINSIC_RANGE = 5,
1025
1026 /**
1027 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1028 */
1029 NIR_INTRINSIC_DESC_SET = 6,
1030
1031 /**
1032 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1033 */
1034 NIR_INTRINSIC_BINDING = 7,
1035
1036 /**
1037 * Component offset.
1038 */
1039 NIR_INTRINSIC_COMPONENT = 8,
1040
1041 /**
1042 * Interpolation mode (only meaningful for FS inputs).
1043 */
1044 NIR_INTRINSIC_INTERP_MODE = 9,
1045
1046 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1047
1048 } nir_intrinsic_index_flag;
1049
1050 #define NIR_INTRINSIC_MAX_INPUTS 4
1051
1052 typedef struct {
1053 const char *name;
1054
1055 unsigned num_srcs; /** < number of register/SSA inputs */
1056
1057 /** number of components of each input register
1058 *
1059 * If this value is 0, the number of components is given by the
1060 * num_components field of nir_intrinsic_instr.
1061 */
1062 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1063
1064 bool has_dest;
1065
1066 /** number of components of the output register
1067 *
1068 * If this value is 0, the number of components is given by the
1069 * num_components field of nir_intrinsic_instr.
1070 */
1071 unsigned dest_components;
1072
1073 /** the number of inputs/outputs that are variables */
1074 unsigned num_variables;
1075
1076 /** the number of constant indices used by the intrinsic */
1077 unsigned num_indices;
1078
1079 /** indicates the usage of intr->const_index[n] */
1080 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1081
1082 /** semantic flags for calls to this intrinsic */
1083 nir_intrinsic_semantic_flag flags;
1084 } nir_intrinsic_info;
1085
1086 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1087
1088
1089 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1090 static inline type \
1091 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1092 { \
1093 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1094 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1095 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1096 } \
1097 static inline void \
1098 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1099 { \
1100 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1101 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1102 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1103 }
1104
1105 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1106 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1107 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1108 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1109 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1110 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1111 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1112 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1113 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1114
1115 /**
1116 * \group texture information
1117 *
1118 * This gives semantic information about textures which is useful to the
1119 * frontend, the backend, and lowering passes, but not the optimizer.
1120 */
1121
1122 typedef enum {
1123 nir_tex_src_coord,
1124 nir_tex_src_projector,
1125 nir_tex_src_comparator, /* shadow comparator */
1126 nir_tex_src_offset,
1127 nir_tex_src_bias,
1128 nir_tex_src_lod,
1129 nir_tex_src_ms_index, /* MSAA sample index */
1130 nir_tex_src_ms_mcs, /* MSAA compression value */
1131 nir_tex_src_ddx,
1132 nir_tex_src_ddy,
1133 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1134 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1135 nir_tex_src_plane, /* < selects plane for planar textures */
1136 nir_num_tex_src_types
1137 } nir_tex_src_type;
1138
1139 typedef struct {
1140 nir_src src;
1141 nir_tex_src_type src_type;
1142 } nir_tex_src;
1143
1144 typedef enum {
1145 nir_texop_tex, /**< Regular texture look-up */
1146 nir_texop_txb, /**< Texture look-up with LOD bias */
1147 nir_texop_txl, /**< Texture look-up with explicit LOD */
1148 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1149 nir_texop_txf, /**< Texel fetch with explicit LOD */
1150 nir_texop_txf_ms, /**< Multisample texture fetch */
1151 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1152 nir_texop_txs, /**< Texture size */
1153 nir_texop_lod, /**< Texture lod query */
1154 nir_texop_tg4, /**< Texture gather */
1155 nir_texop_query_levels, /**< Texture levels query */
1156 nir_texop_texture_samples, /**< Texture samples query */
1157 nir_texop_samples_identical, /**< Query whether all samples are definitely
1158 * identical.
1159 */
1160 } nir_texop;
1161
1162 typedef struct {
1163 nir_instr instr;
1164
1165 enum glsl_sampler_dim sampler_dim;
1166 nir_alu_type dest_type;
1167
1168 nir_texop op;
1169 nir_dest dest;
1170 nir_tex_src *src;
1171 unsigned num_srcs, coord_components;
1172 bool is_array, is_shadow;
1173
1174 /**
1175 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1176 * components or the new-style shadow that outputs 1 component.
1177 */
1178 bool is_new_style_shadow;
1179
1180 /* gather component selector */
1181 unsigned component : 2;
1182
1183 /** The texture index
1184 *
1185 * If this texture instruction has a nir_tex_src_texture_offset source,
1186 * then the texture index is given by texture_index + texture_offset.
1187 */
1188 unsigned texture_index;
1189
1190 /** The size of the texture array or 0 if it's not an array */
1191 unsigned texture_array_size;
1192
1193 /** The texture deref
1194 *
1195 * If this is null, use texture_index instead.
1196 */
1197 nir_deref_var *texture;
1198
1199 /** The sampler index
1200 *
1201 * The following operations do not require a sampler and, as such, this
1202 * field should be ignored:
1203 * - nir_texop_txf
1204 * - nir_texop_txf_ms
1205 * - nir_texop_txs
1206 * - nir_texop_lod
1207 * - nir_texop_tg4
1208 * - nir_texop_query_levels
1209 * - nir_texop_texture_samples
1210 * - nir_texop_samples_identical
1211 *
1212 * If this texture instruction has a nir_tex_src_sampler_offset source,
1213 * then the sampler index is given by sampler_index + sampler_offset.
1214 */
1215 unsigned sampler_index;
1216
1217 /** The sampler deref
1218 *
1219 * If this is null, use sampler_index instead.
1220 */
1221 nir_deref_var *sampler;
1222 } nir_tex_instr;
1223
1224 static inline unsigned
1225 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1226 {
1227 switch (instr->op) {
1228 case nir_texop_txs: {
1229 unsigned ret;
1230 switch (instr->sampler_dim) {
1231 case GLSL_SAMPLER_DIM_1D:
1232 case GLSL_SAMPLER_DIM_BUF:
1233 ret = 1;
1234 break;
1235 case GLSL_SAMPLER_DIM_2D:
1236 case GLSL_SAMPLER_DIM_CUBE:
1237 case GLSL_SAMPLER_DIM_MS:
1238 case GLSL_SAMPLER_DIM_RECT:
1239 case GLSL_SAMPLER_DIM_EXTERNAL:
1240 case GLSL_SAMPLER_DIM_SUBPASS:
1241 ret = 2;
1242 break;
1243 case GLSL_SAMPLER_DIM_3D:
1244 ret = 3;
1245 break;
1246 default:
1247 unreachable("not reached");
1248 }
1249 if (instr->is_array)
1250 ret++;
1251 return ret;
1252 }
1253
1254 case nir_texop_lod:
1255 return 2;
1256
1257 case nir_texop_texture_samples:
1258 case nir_texop_query_levels:
1259 case nir_texop_samples_identical:
1260 return 1;
1261
1262 default:
1263 if (instr->is_shadow && instr->is_new_style_shadow)
1264 return 1;
1265
1266 return 4;
1267 }
1268 }
1269
1270 /* Returns true if this texture operation queries something about the texture
1271 * rather than actually sampling it.
1272 */
1273 static inline bool
1274 nir_tex_instr_is_query(const nir_tex_instr *instr)
1275 {
1276 switch (instr->op) {
1277 case nir_texop_txs:
1278 case nir_texop_lod:
1279 case nir_texop_texture_samples:
1280 case nir_texop_query_levels:
1281 case nir_texop_txf_ms_mcs:
1282 return true;
1283 case nir_texop_tex:
1284 case nir_texop_txb:
1285 case nir_texop_txl:
1286 case nir_texop_txd:
1287 case nir_texop_txf:
1288 case nir_texop_txf_ms:
1289 case nir_texop_tg4:
1290 return false;
1291 default:
1292 unreachable("Invalid texture opcode");
1293 }
1294 }
1295
1296 static inline nir_alu_type
1297 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1298 {
1299 switch (instr->src[src].src_type) {
1300 case nir_tex_src_coord:
1301 switch (instr->op) {
1302 case nir_texop_txf:
1303 case nir_texop_txf_ms:
1304 case nir_texop_txf_ms_mcs:
1305 case nir_texop_samples_identical:
1306 return nir_type_int;
1307
1308 default:
1309 return nir_type_float;
1310 }
1311
1312 case nir_tex_src_lod:
1313 switch (instr->op) {
1314 case nir_texop_txs:
1315 case nir_texop_txf:
1316 return nir_type_int;
1317
1318 default:
1319 return nir_type_float;
1320 }
1321
1322 case nir_tex_src_projector:
1323 case nir_tex_src_comparator:
1324 case nir_tex_src_bias:
1325 case nir_tex_src_ddx:
1326 case nir_tex_src_ddy:
1327 return nir_type_float;
1328
1329 case nir_tex_src_offset:
1330 case nir_tex_src_ms_index:
1331 case nir_tex_src_texture_offset:
1332 case nir_tex_src_sampler_offset:
1333 return nir_type_int;
1334
1335 default:
1336 unreachable("Invalid texture source type");
1337 }
1338 }
1339
1340 static inline unsigned
1341 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1342 {
1343 if (instr->src[src].src_type == nir_tex_src_coord)
1344 return instr->coord_components;
1345
1346 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1347 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1348 return 4;
1349
1350 if (instr->src[src].src_type == nir_tex_src_offset ||
1351 instr->src[src].src_type == nir_tex_src_ddx ||
1352 instr->src[src].src_type == nir_tex_src_ddy) {
1353 if (instr->is_array)
1354 return instr->coord_components - 1;
1355 else
1356 return instr->coord_components;
1357 }
1358
1359 return 1;
1360 }
1361
1362 static inline int
1363 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1364 {
1365 for (unsigned i = 0; i < instr->num_srcs; i++)
1366 if (instr->src[i].src_type == type)
1367 return (int) i;
1368
1369 return -1;
1370 }
1371
1372 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1373
1374 typedef struct {
1375 nir_instr instr;
1376
1377 nir_const_value value;
1378
1379 nir_ssa_def def;
1380 } nir_load_const_instr;
1381
1382 typedef enum {
1383 nir_jump_return,
1384 nir_jump_break,
1385 nir_jump_continue,
1386 } nir_jump_type;
1387
1388 typedef struct {
1389 nir_instr instr;
1390 nir_jump_type type;
1391 } nir_jump_instr;
1392
1393 /* creates a new SSA variable in an undefined state */
1394
1395 typedef struct {
1396 nir_instr instr;
1397 nir_ssa_def def;
1398 } nir_ssa_undef_instr;
1399
1400 typedef struct {
1401 struct exec_node node;
1402
1403 /* The predecessor block corresponding to this source */
1404 struct nir_block *pred;
1405
1406 nir_src src;
1407 } nir_phi_src;
1408
1409 #define nir_foreach_phi_src(phi_src, phi) \
1410 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1411 #define nir_foreach_phi_src_safe(phi_src, phi) \
1412 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1413
1414 typedef struct {
1415 nir_instr instr;
1416
1417 struct exec_list srcs; /** < list of nir_phi_src */
1418
1419 nir_dest dest;
1420 } nir_phi_instr;
1421
1422 typedef struct {
1423 struct exec_node node;
1424 nir_src src;
1425 nir_dest dest;
1426 } nir_parallel_copy_entry;
1427
1428 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1429 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1430
1431 typedef struct {
1432 nir_instr instr;
1433
1434 /* A list of nir_parallel_copy_entrys. The sources of all of the
1435 * entries are copied to the corresponding destinations "in parallel".
1436 * In other words, if we have two entries: a -> b and b -> a, the values
1437 * get swapped.
1438 */
1439 struct exec_list entries;
1440 } nir_parallel_copy_instr;
1441
1442 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1443 type, nir_instr_type_alu)
1444 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1445 type, nir_instr_type_call)
1446 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1447 type, nir_instr_type_jump)
1448 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1449 type, nir_instr_type_tex)
1450 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1451 type, nir_instr_type_intrinsic)
1452 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1453 type, nir_instr_type_load_const)
1454 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1455 type, nir_instr_type_ssa_undef)
1456 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1457 type, nir_instr_type_phi)
1458 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1459 nir_parallel_copy_instr, instr,
1460 type, nir_instr_type_parallel_copy)
1461
1462 /*
1463 * Control flow
1464 *
1465 * Control flow consists of a tree of control flow nodes, which include
1466 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1467 * instructions that always run start-to-finish. Each basic block also keeps
1468 * track of its successors (blocks which may run immediately after the current
1469 * block) and predecessors (blocks which could have run immediately before the
1470 * current block). Each function also has a start block and an end block which
1471 * all return statements point to (which is always empty). Together, all the
1472 * blocks with their predecessors and successors make up the control flow
1473 * graph (CFG) of the function. There are helpers that modify the tree of
1474 * control flow nodes while modifying the CFG appropriately; these should be
1475 * used instead of modifying the tree directly.
1476 */
1477
1478 typedef enum {
1479 nir_cf_node_block,
1480 nir_cf_node_if,
1481 nir_cf_node_loop,
1482 nir_cf_node_function
1483 } nir_cf_node_type;
1484
1485 typedef struct nir_cf_node {
1486 struct exec_node node;
1487 nir_cf_node_type type;
1488 struct nir_cf_node *parent;
1489 } nir_cf_node;
1490
1491 typedef struct nir_block {
1492 nir_cf_node cf_node;
1493
1494 struct exec_list instr_list; /** < list of nir_instr */
1495
1496 /** generic block index; generated by nir_index_blocks */
1497 unsigned index;
1498
1499 /*
1500 * Each block can only have up to 2 successors, so we put them in a simple
1501 * array - no need for anything more complicated.
1502 */
1503 struct nir_block *successors[2];
1504
1505 /* Set of nir_block predecessors in the CFG */
1506 struct set *predecessors;
1507
1508 /*
1509 * this node's immediate dominator in the dominance tree - set to NULL for
1510 * the start block.
1511 */
1512 struct nir_block *imm_dom;
1513
1514 /* This node's children in the dominance tree */
1515 unsigned num_dom_children;
1516 struct nir_block **dom_children;
1517
1518 /* Set of nir_blocks on the dominance frontier of this block */
1519 struct set *dom_frontier;
1520
1521 /*
1522 * These two indices have the property that dom_{pre,post}_index for each
1523 * child of this block in the dominance tree will always be between
1524 * dom_pre_index and dom_post_index for this block, which makes testing if
1525 * a given block is dominated by another block an O(1) operation.
1526 */
1527 unsigned dom_pre_index, dom_post_index;
1528
1529 /* live in and out for this block; used for liveness analysis */
1530 BITSET_WORD *live_in;
1531 BITSET_WORD *live_out;
1532 } nir_block;
1533
1534 static inline nir_instr *
1535 nir_block_first_instr(nir_block *block)
1536 {
1537 struct exec_node *head = exec_list_get_head(&block->instr_list);
1538 return exec_node_data(nir_instr, head, node);
1539 }
1540
1541 static inline nir_instr *
1542 nir_block_last_instr(nir_block *block)
1543 {
1544 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1545 return exec_node_data(nir_instr, tail, node);
1546 }
1547
1548 #define nir_foreach_instr(instr, block) \
1549 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1550 #define nir_foreach_instr_reverse(instr, block) \
1551 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1552 #define nir_foreach_instr_safe(instr, block) \
1553 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1554 #define nir_foreach_instr_reverse_safe(instr, block) \
1555 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1556
1557 typedef struct nir_if {
1558 nir_cf_node cf_node;
1559 nir_src condition;
1560
1561 struct exec_list then_list; /** < list of nir_cf_node */
1562 struct exec_list else_list; /** < list of nir_cf_node */
1563 } nir_if;
1564
1565 typedef struct {
1566 nir_if *nif;
1567
1568 nir_instr *conditional_instr;
1569
1570 nir_block *break_block;
1571 nir_block *continue_from_block;
1572
1573 bool continue_from_then;
1574
1575 struct list_head loop_terminator_link;
1576 } nir_loop_terminator;
1577
1578 typedef struct {
1579 /* Number of instructions in the loop */
1580 unsigned num_instructions;
1581
1582 /* How many times the loop is run (if known) */
1583 unsigned trip_count;
1584 bool is_trip_count_known;
1585
1586 /* Unroll the loop regardless of its size */
1587 bool force_unroll;
1588
1589 nir_loop_terminator *limiting_terminator;
1590
1591 /* A list of loop_terminators terminating this loop. */
1592 struct list_head loop_terminator_list;
1593 } nir_loop_info;
1594
1595 typedef struct {
1596 nir_cf_node cf_node;
1597
1598 struct exec_list body; /** < list of nir_cf_node */
1599
1600 nir_loop_info *info;
1601 } nir_loop;
1602
1603 /**
1604 * Various bits of metadata that can may be created or required by
1605 * optimization and analysis passes
1606 */
1607 typedef enum {
1608 nir_metadata_none = 0x0,
1609 nir_metadata_block_index = 0x1,
1610 nir_metadata_dominance = 0x2,
1611 nir_metadata_live_ssa_defs = 0x4,
1612 nir_metadata_not_properly_reset = 0x8,
1613 nir_metadata_loop_analysis = 0x10,
1614 } nir_metadata;
1615
1616 typedef struct {
1617 nir_cf_node cf_node;
1618
1619 /** pointer to the function of which this is an implementation */
1620 struct nir_function *function;
1621
1622 struct exec_list body; /** < list of nir_cf_node */
1623
1624 nir_block *end_block;
1625
1626 /** list for all local variables in the function */
1627 struct exec_list locals;
1628
1629 /** array of variables used as parameters */
1630 unsigned num_params;
1631 nir_variable **params;
1632
1633 /** variable used to hold the result of the function */
1634 nir_variable *return_var;
1635
1636 /** list of local registers in the function */
1637 struct exec_list registers;
1638
1639 /** next available local register index */
1640 unsigned reg_alloc;
1641
1642 /** next available SSA value index */
1643 unsigned ssa_alloc;
1644
1645 /* total number of basic blocks, only valid when block_index_dirty = false */
1646 unsigned num_blocks;
1647
1648 nir_metadata valid_metadata;
1649 } nir_function_impl;
1650
1651 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1652 nir_start_block(nir_function_impl *impl)
1653 {
1654 return (nir_block *) impl->body.head_sentinel.next;
1655 }
1656
1657 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1658 nir_impl_last_block(nir_function_impl *impl)
1659 {
1660 return (nir_block *) impl->body.tail_sentinel.prev;
1661 }
1662
1663 static inline nir_cf_node *
1664 nir_cf_node_next(nir_cf_node *node)
1665 {
1666 struct exec_node *next = exec_node_get_next(&node->node);
1667 if (exec_node_is_tail_sentinel(next))
1668 return NULL;
1669 else
1670 return exec_node_data(nir_cf_node, next, node);
1671 }
1672
1673 static inline nir_cf_node *
1674 nir_cf_node_prev(nir_cf_node *node)
1675 {
1676 struct exec_node *prev = exec_node_get_prev(&node->node);
1677 if (exec_node_is_head_sentinel(prev))
1678 return NULL;
1679 else
1680 return exec_node_data(nir_cf_node, prev, node);
1681 }
1682
1683 static inline bool
1684 nir_cf_node_is_first(const nir_cf_node *node)
1685 {
1686 return exec_node_is_head_sentinel(node->node.prev);
1687 }
1688
1689 static inline bool
1690 nir_cf_node_is_last(const nir_cf_node *node)
1691 {
1692 return exec_node_is_tail_sentinel(node->node.next);
1693 }
1694
1695 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1696 type, nir_cf_node_block)
1697 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1698 type, nir_cf_node_if)
1699 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1700 type, nir_cf_node_loop)
1701 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1702 nir_function_impl, cf_node, type, nir_cf_node_function)
1703
1704 static inline nir_block *
1705 nir_if_first_then_block(nir_if *if_stmt)
1706 {
1707 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1708 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1709 }
1710
1711 static inline nir_block *
1712 nir_if_last_then_block(nir_if *if_stmt)
1713 {
1714 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1715 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1716 }
1717
1718 static inline nir_block *
1719 nir_if_first_else_block(nir_if *if_stmt)
1720 {
1721 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1722 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1723 }
1724
1725 static inline nir_block *
1726 nir_if_last_else_block(nir_if *if_stmt)
1727 {
1728 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1729 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1730 }
1731
1732 static inline nir_block *
1733 nir_loop_first_block(nir_loop *loop)
1734 {
1735 struct exec_node *head = exec_list_get_head(&loop->body);
1736 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1737 }
1738
1739 static inline nir_block *
1740 nir_loop_last_block(nir_loop *loop)
1741 {
1742 struct exec_node *tail = exec_list_get_tail(&loop->body);
1743 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1744 }
1745
1746 typedef enum {
1747 nir_parameter_in,
1748 nir_parameter_out,
1749 nir_parameter_inout,
1750 } nir_parameter_type;
1751
1752 typedef struct {
1753 nir_parameter_type param_type;
1754 const struct glsl_type *type;
1755 } nir_parameter;
1756
1757 typedef struct nir_function {
1758 struct exec_node node;
1759
1760 const char *name;
1761 struct nir_shader *shader;
1762
1763 unsigned num_params;
1764 nir_parameter *params;
1765 const struct glsl_type *return_type;
1766
1767 /** The implementation of this function.
1768 *
1769 * If the function is only declared and not implemented, this is NULL.
1770 */
1771 nir_function_impl *impl;
1772 } nir_function;
1773
1774 typedef struct nir_shader_compiler_options {
1775 bool lower_fdiv;
1776 bool lower_ffma;
1777 bool fuse_ffma;
1778 bool lower_flrp32;
1779 /** Lowers flrp when it does not support doubles */
1780 bool lower_flrp64;
1781 bool lower_fpow;
1782 bool lower_fsat;
1783 bool lower_fsqrt;
1784 bool lower_fmod32;
1785 bool lower_fmod64;
1786 bool lower_bitfield_extract;
1787 bool lower_bitfield_insert;
1788 bool lower_uadd_carry;
1789 bool lower_usub_borrow;
1790 /** lowers fneg and ineg to fsub and isub. */
1791 bool lower_negate;
1792 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1793 bool lower_sub;
1794
1795 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1796 bool lower_scmp;
1797
1798 /** enables rules to lower idiv by power-of-two: */
1799 bool lower_idiv;
1800
1801 /* Does the native fdot instruction replicate its result for four
1802 * components? If so, then opt_algebraic_late will turn all fdotN
1803 * instructions into fdot_replicatedN instructions.
1804 */
1805 bool fdot_replicates;
1806
1807 /** lowers ffract to fsub+ffloor: */
1808 bool lower_ffract;
1809
1810 bool lower_pack_half_2x16;
1811 bool lower_pack_unorm_2x16;
1812 bool lower_pack_snorm_2x16;
1813 bool lower_pack_unorm_4x8;
1814 bool lower_pack_snorm_4x8;
1815 bool lower_unpack_half_2x16;
1816 bool lower_unpack_unorm_2x16;
1817 bool lower_unpack_snorm_2x16;
1818 bool lower_unpack_unorm_4x8;
1819 bool lower_unpack_snorm_4x8;
1820
1821 bool lower_extract_byte;
1822 bool lower_extract_word;
1823
1824 bool lower_vote_trivial;
1825
1826 /**
1827 * Does the driver support real 32-bit integers? (Otherwise, integers
1828 * are simulated by floats.)
1829 */
1830 bool native_integers;
1831
1832 /* Indicates that the driver only has zero-based vertex id */
1833 bool vertex_id_zero_based;
1834
1835 bool lower_cs_local_index_from_id;
1836
1837 /**
1838 * Should nir_lower_io() create load_interpolated_input intrinsics?
1839 *
1840 * If not, it generates regular load_input intrinsics and interpolation
1841 * information must be inferred from the list of input nir_variables.
1842 */
1843 bool use_interpolated_input_intrinsics;
1844
1845 unsigned max_unroll_iterations;
1846 } nir_shader_compiler_options;
1847
1848 typedef struct nir_shader {
1849 /** list of uniforms (nir_variable) */
1850 struct exec_list uniforms;
1851
1852 /** list of inputs (nir_variable) */
1853 struct exec_list inputs;
1854
1855 /** list of outputs (nir_variable) */
1856 struct exec_list outputs;
1857
1858 /** list of shared compute variables (nir_variable) */
1859 struct exec_list shared;
1860
1861 /** Set of driver-specific options for the shader.
1862 *
1863 * The memory for the options is expected to be kept in a single static
1864 * copy by the driver.
1865 */
1866 const struct nir_shader_compiler_options *options;
1867
1868 /** Various bits of compile-time information about a given shader */
1869 struct shader_info info;
1870
1871 /** list of global variables in the shader (nir_variable) */
1872 struct exec_list globals;
1873
1874 /** list of system value variables in the shader (nir_variable) */
1875 struct exec_list system_values;
1876
1877 struct exec_list functions; /** < list of nir_function */
1878
1879 /** list of global register in the shader */
1880 struct exec_list registers;
1881
1882 /** next available global register index */
1883 unsigned reg_alloc;
1884
1885 /**
1886 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1887 * access plus one
1888 */
1889 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1890
1891 /** The shader stage, such as MESA_SHADER_VERTEX. */
1892 gl_shader_stage stage;
1893 } nir_shader;
1894
1895 static inline nir_function_impl *
1896 nir_shader_get_entrypoint(nir_shader *shader)
1897 {
1898 assert(exec_list_length(&shader->functions) == 1);
1899 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1900 nir_function *func = exec_node_data(nir_function, func_node, node);
1901 assert(func->return_type == glsl_void_type());
1902 assert(func->num_params == 0);
1903 assert(func->impl);
1904 return func->impl;
1905 }
1906
1907 #define nir_foreach_function(func, shader) \
1908 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1909
1910 nir_shader *nir_shader_create(void *mem_ctx,
1911 gl_shader_stage stage,
1912 const nir_shader_compiler_options *options,
1913 shader_info *si);
1914
1915 /** creates a register, including assigning it an index and adding it to the list */
1916 nir_register *nir_global_reg_create(nir_shader *shader);
1917
1918 nir_register *nir_local_reg_create(nir_function_impl *impl);
1919
1920 void nir_reg_remove(nir_register *reg);
1921
1922 /** Adds a variable to the appropriate list in nir_shader */
1923 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1924
1925 static inline void
1926 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1927 {
1928 assert(var->data.mode == nir_var_local);
1929 exec_list_push_tail(&impl->locals, &var->node);
1930 }
1931
1932 /** creates a variable, sets a few defaults, and adds it to the list */
1933 nir_variable *nir_variable_create(nir_shader *shader,
1934 nir_variable_mode mode,
1935 const struct glsl_type *type,
1936 const char *name);
1937 /** creates a local variable and adds it to the list */
1938 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1939 const struct glsl_type *type,
1940 const char *name);
1941
1942 /** creates a function and adds it to the shader's list of functions */
1943 nir_function *nir_function_create(nir_shader *shader, const char *name);
1944
1945 nir_function_impl *nir_function_impl_create(nir_function *func);
1946 /** creates a function_impl that isn't tied to any particular function */
1947 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1948
1949 nir_block *nir_block_create(nir_shader *shader);
1950 nir_if *nir_if_create(nir_shader *shader);
1951 nir_loop *nir_loop_create(nir_shader *shader);
1952
1953 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1954
1955 /** requests that the given pieces of metadata be generated */
1956 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1957 /** dirties all but the preserved metadata */
1958 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1959
1960 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1961 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1962
1963 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1964
1965 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1966 unsigned num_components,
1967 unsigned bit_size);
1968
1969 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1970 nir_intrinsic_op op);
1971
1972 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1973 nir_function *callee);
1974
1975 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1976
1977 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1978
1979 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1980
1981 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1982 unsigned num_components,
1983 unsigned bit_size);
1984
1985 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1986 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1987 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1988
1989 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1990 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1991 nir_deref_foreach_leaf_cb cb, void *state);
1992
1993 nir_load_const_instr *
1994 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1995
1996 /**
1997 * NIR Cursors and Instruction Insertion API
1998 * @{
1999 *
2000 * A tiny struct representing a point to insert/extract instructions or
2001 * control flow nodes. Helps reduce the combinatorial explosion of possible
2002 * points to insert/extract.
2003 *
2004 * \sa nir_control_flow.h
2005 */
2006 typedef enum {
2007 nir_cursor_before_block,
2008 nir_cursor_after_block,
2009 nir_cursor_before_instr,
2010 nir_cursor_after_instr,
2011 } nir_cursor_option;
2012
2013 typedef struct {
2014 nir_cursor_option option;
2015 union {
2016 nir_block *block;
2017 nir_instr *instr;
2018 };
2019 } nir_cursor;
2020
2021 static inline nir_block *
2022 nir_cursor_current_block(nir_cursor cursor)
2023 {
2024 if (cursor.option == nir_cursor_before_instr ||
2025 cursor.option == nir_cursor_after_instr) {
2026 return cursor.instr->block;
2027 } else {
2028 return cursor.block;
2029 }
2030 }
2031
2032 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2033
2034 static inline nir_cursor
2035 nir_before_block(nir_block *block)
2036 {
2037 nir_cursor cursor;
2038 cursor.option = nir_cursor_before_block;
2039 cursor.block = block;
2040 return cursor;
2041 }
2042
2043 static inline nir_cursor
2044 nir_after_block(nir_block *block)
2045 {
2046 nir_cursor cursor;
2047 cursor.option = nir_cursor_after_block;
2048 cursor.block = block;
2049 return cursor;
2050 }
2051
2052 static inline nir_cursor
2053 nir_before_instr(nir_instr *instr)
2054 {
2055 nir_cursor cursor;
2056 cursor.option = nir_cursor_before_instr;
2057 cursor.instr = instr;
2058 return cursor;
2059 }
2060
2061 static inline nir_cursor
2062 nir_after_instr(nir_instr *instr)
2063 {
2064 nir_cursor cursor;
2065 cursor.option = nir_cursor_after_instr;
2066 cursor.instr = instr;
2067 return cursor;
2068 }
2069
2070 static inline nir_cursor
2071 nir_after_block_before_jump(nir_block *block)
2072 {
2073 nir_instr *last_instr = nir_block_last_instr(block);
2074 if (last_instr && last_instr->type == nir_instr_type_jump) {
2075 return nir_before_instr(last_instr);
2076 } else {
2077 return nir_after_block(block);
2078 }
2079 }
2080
2081 static inline nir_cursor
2082 nir_before_cf_node(nir_cf_node *node)
2083 {
2084 if (node->type == nir_cf_node_block)
2085 return nir_before_block(nir_cf_node_as_block(node));
2086
2087 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2088 }
2089
2090 static inline nir_cursor
2091 nir_after_cf_node(nir_cf_node *node)
2092 {
2093 if (node->type == nir_cf_node_block)
2094 return nir_after_block(nir_cf_node_as_block(node));
2095
2096 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2097 }
2098
2099 static inline nir_cursor
2100 nir_after_phis(nir_block *block)
2101 {
2102 nir_foreach_instr(instr, block) {
2103 if (instr->type != nir_instr_type_phi)
2104 return nir_before_instr(instr);
2105 }
2106 return nir_after_block(block);
2107 }
2108
2109 static inline nir_cursor
2110 nir_after_cf_node_and_phis(nir_cf_node *node)
2111 {
2112 if (node->type == nir_cf_node_block)
2113 return nir_after_block(nir_cf_node_as_block(node));
2114
2115 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2116
2117 return nir_after_phis(block);
2118 }
2119
2120 static inline nir_cursor
2121 nir_before_cf_list(struct exec_list *cf_list)
2122 {
2123 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2124 exec_list_get_head(cf_list), node);
2125 return nir_before_cf_node(first_node);
2126 }
2127
2128 static inline nir_cursor
2129 nir_after_cf_list(struct exec_list *cf_list)
2130 {
2131 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2132 exec_list_get_tail(cf_list), node);
2133 return nir_after_cf_node(last_node);
2134 }
2135
2136 /**
2137 * Insert a NIR instruction at the given cursor.
2138 *
2139 * Note: This does not update the cursor.
2140 */
2141 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2142
2143 static inline void
2144 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2145 {
2146 nir_instr_insert(nir_before_instr(instr), before);
2147 }
2148
2149 static inline void
2150 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2151 {
2152 nir_instr_insert(nir_after_instr(instr), after);
2153 }
2154
2155 static inline void
2156 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2157 {
2158 nir_instr_insert(nir_before_block(block), before);
2159 }
2160
2161 static inline void
2162 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2163 {
2164 nir_instr_insert(nir_after_block(block), after);
2165 }
2166
2167 static inline void
2168 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2169 {
2170 nir_instr_insert(nir_before_cf_node(node), before);
2171 }
2172
2173 static inline void
2174 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2175 {
2176 nir_instr_insert(nir_after_cf_node(node), after);
2177 }
2178
2179 static inline void
2180 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2181 {
2182 nir_instr_insert(nir_before_cf_list(list), before);
2183 }
2184
2185 static inline void
2186 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2187 {
2188 nir_instr_insert(nir_after_cf_list(list), after);
2189 }
2190
2191 void nir_instr_remove(nir_instr *instr);
2192
2193 /** @} */
2194
2195 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2196 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2197 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2198 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2199 void *state);
2200 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2201 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2202
2203 nir_const_value *nir_src_as_const_value(nir_src src);
2204 bool nir_src_is_dynamically_uniform(nir_src src);
2205 bool nir_srcs_equal(nir_src src1, nir_src src2);
2206 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2207 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2208 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2209 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2210 nir_dest new_dest);
2211
2212 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2213 unsigned num_components, unsigned bit_size,
2214 const char *name);
2215 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2216 unsigned num_components, unsigned bit_size,
2217 const char *name);
2218 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2219 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2220 nir_instr *after_me);
2221
2222 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2223
2224 /*
2225 * finds the next basic block in source-code order, returns NULL if there is
2226 * none
2227 */
2228
2229 nir_block *nir_block_cf_tree_next(nir_block *block);
2230
2231 /* Performs the opposite of nir_block_cf_tree_next() */
2232
2233 nir_block *nir_block_cf_tree_prev(nir_block *block);
2234
2235 /* Gets the first block in a CF node in source-code order */
2236
2237 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2238
2239 /* Gets the last block in a CF node in source-code order */
2240
2241 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2242
2243 /* Gets the next block after a CF node in source-code order */
2244
2245 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2246
2247 /* Macros for loops that visit blocks in source-code order */
2248
2249 #define nir_foreach_block(block, impl) \
2250 for (nir_block *block = nir_start_block(impl); block != NULL; \
2251 block = nir_block_cf_tree_next(block))
2252
2253 #define nir_foreach_block_safe(block, impl) \
2254 for (nir_block *block = nir_start_block(impl), \
2255 *next = nir_block_cf_tree_next(block); \
2256 block != NULL; \
2257 block = next, next = nir_block_cf_tree_next(block))
2258
2259 #define nir_foreach_block_reverse(block, impl) \
2260 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2261 block = nir_block_cf_tree_prev(block))
2262
2263 #define nir_foreach_block_reverse_safe(block, impl) \
2264 for (nir_block *block = nir_impl_last_block(impl), \
2265 *prev = nir_block_cf_tree_prev(block); \
2266 block != NULL; \
2267 block = prev, prev = nir_block_cf_tree_prev(block))
2268
2269 #define nir_foreach_block_in_cf_node(block, node) \
2270 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2271 block != nir_cf_node_cf_tree_next(node); \
2272 block = nir_block_cf_tree_next(block))
2273
2274 /* If the following CF node is an if, this function returns that if.
2275 * Otherwise, it returns NULL.
2276 */
2277 nir_if *nir_block_get_following_if(nir_block *block);
2278
2279 nir_loop *nir_block_get_following_loop(nir_block *block);
2280
2281 void nir_index_local_regs(nir_function_impl *impl);
2282 void nir_index_global_regs(nir_shader *shader);
2283 void nir_index_ssa_defs(nir_function_impl *impl);
2284 unsigned nir_index_instrs(nir_function_impl *impl);
2285
2286 void nir_index_blocks(nir_function_impl *impl);
2287
2288 void nir_print_shader(nir_shader *shader, FILE *fp);
2289 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2290 void nir_print_instr(const nir_instr *instr, FILE *fp);
2291
2292 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2293 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2294 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2295 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2296 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2297 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2298
2299 #ifdef DEBUG
2300 void nir_validate_shader(nir_shader *shader);
2301 void nir_metadata_set_validation_flag(nir_shader *shader);
2302 void nir_metadata_check_validation_flag(nir_shader *shader);
2303
2304 static inline bool
2305 should_clone_nir(void)
2306 {
2307 static int should_clone = -1;
2308 if (should_clone < 0)
2309 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2310
2311 return should_clone;
2312 }
2313
2314 static inline bool
2315 should_print_nir(void)
2316 {
2317 static int should_print = -1;
2318 if (should_print < 0)
2319 should_print = env_var_as_boolean("NIR_PRINT", false);
2320
2321 return should_print;
2322 }
2323 #else
2324 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2325 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2326 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2327 static inline bool should_clone_nir(void) { return false; }
2328 static inline bool should_print_nir(void) { return false; }
2329 #endif /* DEBUG */
2330
2331 #define _PASS(nir, do_pass) do { \
2332 do_pass \
2333 nir_validate_shader(nir); \
2334 if (should_clone_nir()) { \
2335 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2336 ralloc_free(nir); \
2337 nir = clone; \
2338 } \
2339 } while (0)
2340
2341 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2342 nir_metadata_set_validation_flag(nir); \
2343 if (should_print_nir()) \
2344 printf("%s\n", #pass); \
2345 if (pass(nir, ##__VA_ARGS__)) { \
2346 progress = true; \
2347 if (should_print_nir()) \
2348 nir_print_shader(nir, stdout); \
2349 nir_metadata_check_validation_flag(nir); \
2350 } \
2351 )
2352
2353 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2354 if (should_print_nir()) \
2355 printf("%s\n", #pass); \
2356 pass(nir, ##__VA_ARGS__); \
2357 if (should_print_nir()) \
2358 nir_print_shader(nir, stdout); \
2359 )
2360
2361 void nir_calc_dominance_impl(nir_function_impl *impl);
2362 void nir_calc_dominance(nir_shader *shader);
2363
2364 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2365 bool nir_block_dominates(nir_block *parent, nir_block *child);
2366
2367 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2368 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2369
2370 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2371 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2372
2373 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2374 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2375
2376 int nir_gs_count_vertices(const nir_shader *shader);
2377
2378 bool nir_split_var_copies(nir_shader *shader);
2379
2380 bool nir_lower_returns_impl(nir_function_impl *impl);
2381 bool nir_lower_returns(nir_shader *shader);
2382
2383 bool nir_inline_functions(nir_shader *shader);
2384
2385 bool nir_propagate_invariant(nir_shader *shader);
2386
2387 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2388 bool nir_lower_var_copies(nir_shader *shader);
2389
2390 bool nir_lower_global_vars_to_local(nir_shader *shader);
2391
2392 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2393
2394 bool nir_lower_locals_to_regs(nir_shader *shader);
2395
2396 void nir_lower_io_to_temporaries(nir_shader *shader,
2397 nir_function_impl *entrypoint,
2398 bool outputs, bool inputs);
2399
2400 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2401
2402 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2403 int (*type_size)(const struct glsl_type *));
2404
2405 typedef enum {
2406 /* If set, this forces all non-flat fragment shader inputs to be
2407 * interpolated as if with the "sample" qualifier. This requires
2408 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2409 */
2410 nir_lower_io_force_sample_interpolation = (1 << 1),
2411 } nir_lower_io_options;
2412 bool nir_lower_io(nir_shader *shader,
2413 nir_variable_mode modes,
2414 int (*type_size)(const struct glsl_type *),
2415 nir_lower_io_options);
2416 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2417 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2418
2419 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2420
2421 void nir_lower_io_types(nir_shader *shader);
2422 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2423 bool nir_lower_regs_to_ssa(nir_shader *shader);
2424 bool nir_lower_vars_to_ssa(nir_shader *shader);
2425
2426 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2427 bool nir_lower_constant_initializers(nir_shader *shader,
2428 nir_variable_mode modes);
2429
2430 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2431 bool nir_lower_vec_to_movs(nir_shader *shader);
2432 bool nir_lower_alu_to_scalar(nir_shader *shader);
2433 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2434
2435 bool nir_lower_phis_to_scalar(nir_shader *shader);
2436 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2437
2438 bool nir_lower_samplers(nir_shader *shader,
2439 const struct gl_shader_program *shader_program);
2440
2441 bool nir_lower_system_values(nir_shader *shader);
2442
2443 typedef struct nir_lower_tex_options {
2444 /**
2445 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2446 * sampler types a texture projector is lowered.
2447 */
2448 unsigned lower_txp;
2449
2450 /**
2451 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2452 */
2453 bool lower_txf_offset;
2454
2455 /**
2456 * If true, lower away nir_tex_src_offset for all rect textures.
2457 */
2458 bool lower_rect_offset;
2459
2460 /**
2461 * If true, lower rect textures to 2D, using txs to fetch the
2462 * texture dimensions and dividing the texture coords by the
2463 * texture dims to normalize.
2464 */
2465 bool lower_rect;
2466
2467 /**
2468 * If true, convert yuv to rgb.
2469 */
2470 unsigned lower_y_uv_external;
2471 unsigned lower_y_u_v_external;
2472 unsigned lower_yx_xuxv_external;
2473 unsigned lower_xy_uxvx_external;
2474
2475 /**
2476 * To emulate certain texture wrap modes, this can be used
2477 * to saturate the specified tex coord to [0.0, 1.0]. The
2478 * bits are according to sampler #, ie. if, for example:
2479 *
2480 * (conf->saturate_s & (1 << n))
2481 *
2482 * is true, then the s coord for sampler n is saturated.
2483 *
2484 * Note that clamping must happen *after* projector lowering
2485 * so any projected texture sample instruction with a clamped
2486 * coordinate gets automatically lowered, regardless of the
2487 * 'lower_txp' setting.
2488 */
2489 unsigned saturate_s;
2490 unsigned saturate_t;
2491 unsigned saturate_r;
2492
2493 /* Bitmask of textures that need swizzling.
2494 *
2495 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2496 * swizzles[texture_index] is applied to the result of the texturing
2497 * operation.
2498 */
2499 unsigned swizzle_result;
2500
2501 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2502 * while 4 and 5 represent 0 and 1 respectively.
2503 */
2504 uint8_t swizzles[32][4];
2505
2506 /**
2507 * Bitmap of textures that need srgb to linear conversion. If
2508 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2509 * of the texture are lowered to linear.
2510 */
2511 unsigned lower_srgb;
2512
2513 /**
2514 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2515 */
2516 bool lower_txd_cube_map;
2517
2518 /**
2519 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2520 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2521 * with lower_txd_cube_map.
2522 */
2523 bool lower_txd_shadow;
2524 } nir_lower_tex_options;
2525
2526 bool nir_lower_tex(nir_shader *shader,
2527 const nir_lower_tex_options *options);
2528
2529 bool nir_lower_idiv(nir_shader *shader);
2530
2531 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2532 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2533 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2534
2535 void nir_lower_two_sided_color(nir_shader *shader);
2536
2537 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2538
2539 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2540 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2541
2542 typedef struct nir_lower_wpos_ytransform_options {
2543 int state_tokens[5];
2544 bool fs_coord_origin_upper_left :1;
2545 bool fs_coord_origin_lower_left :1;
2546 bool fs_coord_pixel_center_integer :1;
2547 bool fs_coord_pixel_center_half_integer :1;
2548 } nir_lower_wpos_ytransform_options;
2549
2550 bool nir_lower_wpos_ytransform(nir_shader *shader,
2551 const nir_lower_wpos_ytransform_options *options);
2552 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2553
2554 typedef struct nir_lower_drawpixels_options {
2555 int texcoord_state_tokens[5];
2556 int scale_state_tokens[5];
2557 int bias_state_tokens[5];
2558 unsigned drawpix_sampler;
2559 unsigned pixelmap_sampler;
2560 bool pixel_maps :1;
2561 bool scale_and_bias :1;
2562 } nir_lower_drawpixels_options;
2563
2564 void nir_lower_drawpixels(nir_shader *shader,
2565 const nir_lower_drawpixels_options *options);
2566
2567 typedef struct nir_lower_bitmap_options {
2568 unsigned sampler;
2569 bool swizzle_xxxx;
2570 } nir_lower_bitmap_options;
2571
2572 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2573
2574 bool nir_lower_atomics(nir_shader *shader,
2575 const struct gl_shader_program *shader_program);
2576 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2577 bool nir_lower_to_source_mods(nir_shader *shader);
2578
2579 bool nir_lower_gs_intrinsics(nir_shader *shader);
2580
2581 typedef enum {
2582 nir_lower_imul64 = (1 << 0),
2583 nir_lower_isign64 = (1 << 1),
2584 /** Lower all int64 modulus and division opcodes */
2585 nir_lower_divmod64 = (1 << 2),
2586 } nir_lower_int64_options;
2587
2588 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2589
2590 typedef enum {
2591 nir_lower_drcp = (1 << 0),
2592 nir_lower_dsqrt = (1 << 1),
2593 nir_lower_drsq = (1 << 2),
2594 nir_lower_dtrunc = (1 << 3),
2595 nir_lower_dfloor = (1 << 4),
2596 nir_lower_dceil = (1 << 5),
2597 nir_lower_dfract = (1 << 6),
2598 nir_lower_dround_even = (1 << 7),
2599 nir_lower_dmod = (1 << 8)
2600 } nir_lower_doubles_options;
2601
2602 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2603 bool nir_lower_64bit_pack(nir_shader *shader);
2604
2605 bool nir_normalize_cubemap_coords(nir_shader *shader);
2606
2607 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2608
2609 void nir_loop_analyze_impl(nir_function_impl *impl,
2610 nir_variable_mode indirect_mask);
2611
2612 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2613
2614 bool nir_repair_ssa_impl(nir_function_impl *impl);
2615 bool nir_repair_ssa(nir_shader *shader);
2616
2617 void nir_convert_loop_to_lcssa(nir_loop *loop);
2618
2619 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2620 * registers. If false, convert all values (even those not involved in a phi
2621 * node) to registers.
2622 */
2623 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2624
2625 bool nir_lower_phis_to_regs_block(nir_block *block);
2626 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2627
2628 bool nir_opt_algebraic(nir_shader *shader);
2629 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2630 bool nir_opt_algebraic_late(nir_shader *shader);
2631 bool nir_opt_constant_folding(nir_shader *shader);
2632
2633 bool nir_opt_global_to_local(nir_shader *shader);
2634
2635 bool nir_copy_prop(nir_shader *shader);
2636
2637 bool nir_opt_copy_prop_vars(nir_shader *shader);
2638
2639 bool nir_opt_cse(nir_shader *shader);
2640
2641 bool nir_opt_dce(nir_shader *shader);
2642
2643 bool nir_opt_dead_cf(nir_shader *shader);
2644
2645 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2646
2647 bool nir_opt_if(nir_shader *shader);
2648
2649 bool nir_opt_intrinsics(nir_shader *shader);
2650
2651 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2652
2653 bool nir_opt_move_comparisons(nir_shader *shader);
2654
2655 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2656
2657 bool nir_opt_remove_phis(nir_shader *shader);
2658
2659 bool nir_opt_trivial_continues(nir_shader *shader);
2660
2661 bool nir_opt_undef(nir_shader *shader);
2662
2663 bool nir_opt_conditional_discard(nir_shader *shader);
2664
2665 void nir_sweep(nir_shader *shader);
2666
2667 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2668 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2669
2670 #ifdef __cplusplus
2671 } /* extern "C" */
2672 #endif
2673
2674 #endif /* NIR_H */