nir: Add a SSA type gathering pass
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851 default:
852 unreachable("unknown type");
853 }
854 }
855
856 static inline nir_alu_type
857 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
858 {
859 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
860 }
861
862 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
863 nir_rounding_mode rnd);
864
865 typedef enum {
866 NIR_OP_IS_COMMUTATIVE = (1 << 0),
867 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
868 } nir_op_algebraic_property;
869
870 typedef struct {
871 const char *name;
872
873 unsigned num_inputs;
874
875 /**
876 * The number of components in the output
877 *
878 * If non-zero, this is the size of the output and input sizes are
879 * explicitly given; swizzle and writemask are still in effect, but if
880 * the output component is masked out, then the input component may
881 * still be in use.
882 *
883 * If zero, the opcode acts in the standard, per-component manner; the
884 * operation is performed on each component (except the ones that are
885 * masked out) with the input being taken from the input swizzle for
886 * that component.
887 *
888 * The size of some of the inputs may be given (i.e. non-zero) even
889 * though output_size is zero; in that case, the inputs with a zero
890 * size act per-component, while the inputs with non-zero size don't.
891 */
892 unsigned output_size;
893
894 /**
895 * The type of vector that the instruction outputs. Note that the
896 * staurate modifier is only allowed on outputs with the float type.
897 */
898
899 nir_alu_type output_type;
900
901 /**
902 * The number of components in each input
903 */
904 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
905
906 /**
907 * The type of vector that each input takes. Note that negate and
908 * absolute value are only allowed on inputs with int or float type and
909 * behave differently on the two.
910 */
911 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
912
913 nir_op_algebraic_property algebraic_properties;
914
915 /* Whether this represents a numeric conversion opcode */
916 bool is_conversion;
917 } nir_op_info;
918
919 extern const nir_op_info nir_op_infos[nir_num_opcodes];
920
921 typedef struct nir_alu_instr {
922 nir_instr instr;
923 nir_op op;
924
925 /** Indicates that this ALU instruction generates an exact value
926 *
927 * This is kind of a mixture of GLSL "precise" and "invariant" and not
928 * really equivalent to either. This indicates that the value generated by
929 * this operation is high-precision and any code transformations that touch
930 * it must ensure that the resulting value is bit-for-bit identical to the
931 * original.
932 */
933 bool exact;
934
935 nir_alu_dest dest;
936 nir_alu_src src[];
937 } nir_alu_instr;
938
939 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
940 nir_alu_instr *instr);
941 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
942 nir_alu_instr *instr);
943
944 /* is this source channel used? */
945 static inline bool
946 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
947 unsigned channel)
948 {
949 if (nir_op_infos[instr->op].input_sizes[src] > 0)
950 return channel < nir_op_infos[instr->op].input_sizes[src];
951
952 return (instr->dest.write_mask >> channel) & 1;
953 }
954
955 static inline nir_component_mask_t
956 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
957 {
958 nir_component_mask_t read_mask = 0;
959 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
960 if (!nir_alu_instr_channel_used(instr, src, c))
961 continue;
962
963 read_mask |= (1 << instr->src[src].swizzle[c]);
964 }
965 return read_mask;
966 }
967
968 /*
969 * For instructions whose destinations are SSA, get the number of channels
970 * used for a source
971 */
972 static inline unsigned
973 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
974 {
975 assert(instr->dest.dest.is_ssa);
976
977 if (nir_op_infos[instr->op].input_sizes[src] > 0)
978 return nir_op_infos[instr->op].input_sizes[src];
979
980 return instr->dest.dest.ssa.num_components;
981 }
982
983 bool nir_const_value_negative_equal(const nir_const_value *c1,
984 const nir_const_value *c2,
985 unsigned components,
986 nir_alu_type base_type,
987 unsigned bits);
988
989 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
990 unsigned src1, unsigned src2);
991
992 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
993 const nir_alu_instr *alu2,
994 unsigned src1, unsigned src2);
995
996 typedef enum {
997 nir_deref_type_var,
998 nir_deref_type_array,
999 nir_deref_type_array_wildcard,
1000 nir_deref_type_ptr_as_array,
1001 nir_deref_type_struct,
1002 nir_deref_type_cast,
1003 } nir_deref_type;
1004
1005 typedef struct {
1006 nir_instr instr;
1007
1008 /** The type of this deref instruction */
1009 nir_deref_type deref_type;
1010
1011 /** The mode of the underlying variable */
1012 nir_variable_mode mode;
1013
1014 /** The dereferenced type of the resulting pointer value */
1015 const struct glsl_type *type;
1016
1017 union {
1018 /** Variable being dereferenced if deref_type is a deref_var */
1019 nir_variable *var;
1020
1021 /** Parent deref if deref_type is not deref_var */
1022 nir_src parent;
1023 };
1024
1025 /** Additional deref parameters */
1026 union {
1027 struct {
1028 nir_src index;
1029 } arr;
1030
1031 struct {
1032 unsigned index;
1033 } strct;
1034
1035 struct {
1036 unsigned ptr_stride;
1037 } cast;
1038 };
1039
1040 /** Destination to store the resulting "pointer" */
1041 nir_dest dest;
1042 } nir_deref_instr;
1043
1044 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1045
1046 static inline nir_deref_instr *
1047 nir_deref_instr_parent(const nir_deref_instr *instr)
1048 {
1049 if (instr->deref_type == nir_deref_type_var)
1050 return NULL;
1051 else
1052 return nir_src_as_deref(instr->parent);
1053 }
1054
1055 static inline nir_variable *
1056 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1057 {
1058 while (instr->deref_type != nir_deref_type_var) {
1059 if (instr->deref_type == nir_deref_type_cast)
1060 return NULL;
1061
1062 instr = nir_deref_instr_parent(instr);
1063 }
1064
1065 return instr->var;
1066 }
1067
1068 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1069
1070 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1071
1072 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1073
1074 typedef struct {
1075 nir_instr instr;
1076
1077 struct nir_function *callee;
1078
1079 unsigned num_params;
1080 nir_src params[];
1081 } nir_call_instr;
1082
1083 #include "nir_intrinsics.h"
1084
1085 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1086
1087 /** Represents an intrinsic
1088 *
1089 * An intrinsic is an instruction type for handling things that are
1090 * more-or-less regular operations but don't just consume and produce SSA
1091 * values like ALU operations do. Intrinsics are not for things that have
1092 * special semantic meaning such as phi nodes and parallel copies.
1093 * Examples of intrinsics include variable load/store operations, system
1094 * value loads, and the like. Even though texturing more-or-less falls
1095 * under this category, texturing is its own instruction type because
1096 * trying to represent texturing with intrinsics would lead to a
1097 * combinatorial explosion of intrinsic opcodes.
1098 *
1099 * By having a single instruction type for handling a lot of different
1100 * cases, optimization passes can look for intrinsics and, for the most
1101 * part, completely ignore them. Each intrinsic type also has a few
1102 * possible flags that govern whether or not they can be reordered or
1103 * eliminated. That way passes like dead code elimination can still work
1104 * on intrisics without understanding the meaning of each.
1105 *
1106 * Each intrinsic has some number of constant indices, some number of
1107 * variables, and some number of sources. What these sources, variables,
1108 * and indices mean depends on the intrinsic and is documented with the
1109 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1110 * instructions are the only types of instruction that can operate on
1111 * variables.
1112 */
1113 typedef struct {
1114 nir_instr instr;
1115
1116 nir_intrinsic_op intrinsic;
1117
1118 nir_dest dest;
1119
1120 /** number of components if this is a vectorized intrinsic
1121 *
1122 * Similarly to ALU operations, some intrinsics are vectorized.
1123 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1124 * For vectorized intrinsics, the num_components field specifies the
1125 * number of destination components and the number of source components
1126 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1127 */
1128 uint8_t num_components;
1129
1130 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1131
1132 nir_src src[];
1133 } nir_intrinsic_instr;
1134
1135 static inline nir_variable *
1136 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1137 {
1138 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1139 }
1140
1141 /**
1142 * \name NIR intrinsics semantic flags
1143 *
1144 * information about what the compiler can do with the intrinsics.
1145 *
1146 * \sa nir_intrinsic_info::flags
1147 */
1148 typedef enum {
1149 /**
1150 * whether the intrinsic can be safely eliminated if none of its output
1151 * value is not being used.
1152 */
1153 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1154
1155 /**
1156 * Whether the intrinsic can be reordered with respect to any other
1157 * intrinsic, i.e. whether the only reordering dependencies of the
1158 * intrinsic are due to the register reads/writes.
1159 */
1160 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1161 } nir_intrinsic_semantic_flag;
1162
1163 /**
1164 * \name NIR intrinsics const-index flag
1165 *
1166 * Indicates the usage of a const_index slot.
1167 *
1168 * \sa nir_intrinsic_info::index_map
1169 */
1170 typedef enum {
1171 /**
1172 * Generally instructions that take a offset src argument, can encode
1173 * a constant 'base' value which is added to the offset.
1174 */
1175 NIR_INTRINSIC_BASE = 1,
1176
1177 /**
1178 * For store instructions, a writemask for the store.
1179 */
1180 NIR_INTRINSIC_WRMASK = 2,
1181
1182 /**
1183 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1184 */
1185 NIR_INTRINSIC_STREAM_ID = 3,
1186
1187 /**
1188 * The clip-plane id for load_user_clip_plane intrinsic.
1189 */
1190 NIR_INTRINSIC_UCP_ID = 4,
1191
1192 /**
1193 * The amount of data, starting from BASE, that this instruction may
1194 * access. This is used to provide bounds if the offset is not constant.
1195 */
1196 NIR_INTRINSIC_RANGE = 5,
1197
1198 /**
1199 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1200 */
1201 NIR_INTRINSIC_DESC_SET = 6,
1202
1203 /**
1204 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1205 */
1206 NIR_INTRINSIC_BINDING = 7,
1207
1208 /**
1209 * Component offset.
1210 */
1211 NIR_INTRINSIC_COMPONENT = 8,
1212
1213 /**
1214 * Interpolation mode (only meaningful for FS inputs).
1215 */
1216 NIR_INTRINSIC_INTERP_MODE = 9,
1217
1218 /**
1219 * A binary nir_op to use when performing a reduction or scan operation
1220 */
1221 NIR_INTRINSIC_REDUCTION_OP = 10,
1222
1223 /**
1224 * Cluster size for reduction operations
1225 */
1226 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1227
1228 /**
1229 * Parameter index for a load_param intrinsic
1230 */
1231 NIR_INTRINSIC_PARAM_IDX = 12,
1232
1233 /**
1234 * Image dimensionality for image intrinsics
1235 *
1236 * One of GLSL_SAMPLER_DIM_*
1237 */
1238 NIR_INTRINSIC_IMAGE_DIM = 13,
1239
1240 /**
1241 * Non-zero if we are accessing an array image
1242 */
1243 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1244
1245 /**
1246 * Image format for image intrinsics
1247 */
1248 NIR_INTRINSIC_FORMAT = 15,
1249
1250 /**
1251 * Access qualifiers for image and memory access intrinsics
1252 */
1253 NIR_INTRINSIC_ACCESS = 16,
1254
1255 /**
1256 * Alignment for offsets and addresses
1257 *
1258 * These two parameters, specify an alignment in terms of a multiplier and
1259 * an offset. The offset or address parameter X of the intrinsic is
1260 * guaranteed to satisfy the following:
1261 *
1262 * (X - align_offset) % align_mul == 0
1263 */
1264 NIR_INTRINSIC_ALIGN_MUL = 17,
1265 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1266
1267 /**
1268 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1269 */
1270 NIR_INTRINSIC_DESC_TYPE = 19,
1271
1272 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1273
1274 } nir_intrinsic_index_flag;
1275
1276 #define NIR_INTRINSIC_MAX_INPUTS 5
1277
1278 typedef struct {
1279 const char *name;
1280
1281 unsigned num_srcs; /** < number of register/SSA inputs */
1282
1283 /** number of components of each input register
1284 *
1285 * If this value is 0, the number of components is given by the
1286 * num_components field of nir_intrinsic_instr. If this value is -1, the
1287 * intrinsic consumes however many components are provided and it is not
1288 * validated at all.
1289 */
1290 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1291
1292 bool has_dest;
1293
1294 /** number of components of the output register
1295 *
1296 * If this value is 0, the number of components is given by the
1297 * num_components field of nir_intrinsic_instr.
1298 */
1299 unsigned dest_components;
1300
1301 /** bitfield of legal bit sizes */
1302 unsigned dest_bit_sizes;
1303
1304 /** the number of constant indices used by the intrinsic */
1305 unsigned num_indices;
1306
1307 /** indicates the usage of intr->const_index[n] */
1308 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1309
1310 /** semantic flags for calls to this intrinsic */
1311 nir_intrinsic_semantic_flag flags;
1312 } nir_intrinsic_info;
1313
1314 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1315
1316 static inline unsigned
1317 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1318 {
1319 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1320 assert(srcn < info->num_srcs);
1321 if (info->src_components[srcn] > 0)
1322 return info->src_components[srcn];
1323 else if (info->src_components[srcn] == 0)
1324 return intr->num_components;
1325 else
1326 return nir_src_num_components(intr->src[srcn]);
1327 }
1328
1329 static inline unsigned
1330 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1331 {
1332 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1333 if (!info->has_dest)
1334 return 0;
1335 else if (info->dest_components)
1336 return info->dest_components;
1337 else
1338 return intr->num_components;
1339 }
1340
1341 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1342 static inline type \
1343 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1344 { \
1345 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1346 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1347 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1348 } \
1349 static inline void \
1350 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1351 { \
1352 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1353 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1354 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1355 }
1356
1357 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1358 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1359 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1360 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1361 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1362 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1363 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1364 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1365 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1366 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1367 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1368 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1369 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1370 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1371 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1372 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1373 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1374 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1376
1377 static inline void
1378 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1379 unsigned align_mul, unsigned align_offset)
1380 {
1381 assert(util_is_power_of_two_nonzero(align_mul));
1382 assert(align_offset < align_mul);
1383 nir_intrinsic_set_align_mul(intrin, align_mul);
1384 nir_intrinsic_set_align_offset(intrin, align_offset);
1385 }
1386
1387 /** Returns a simple alignment for a load/store intrinsic offset
1388 *
1389 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1390 * and ALIGN_OFFSET parameters, this helper takes both into account and
1391 * provides a single simple alignment parameter. The offset X is guaranteed
1392 * to satisfy X % align == 0.
1393 */
1394 static inline unsigned
1395 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1396 {
1397 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1398 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1399 assert(align_offset < align_mul);
1400 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1401 }
1402
1403 /* Converts a image_deref_* intrinsic into a image_* one */
1404 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1405 nir_ssa_def *handle, bool bindless);
1406
1407 /**
1408 * \group texture information
1409 *
1410 * This gives semantic information about textures which is useful to the
1411 * frontend, the backend, and lowering passes, but not the optimizer.
1412 */
1413
1414 typedef enum {
1415 nir_tex_src_coord,
1416 nir_tex_src_projector,
1417 nir_tex_src_comparator, /* shadow comparator */
1418 nir_tex_src_offset,
1419 nir_tex_src_bias,
1420 nir_tex_src_lod,
1421 nir_tex_src_min_lod,
1422 nir_tex_src_ms_index, /* MSAA sample index */
1423 nir_tex_src_ms_mcs, /* MSAA compression value */
1424 nir_tex_src_ddx,
1425 nir_tex_src_ddy,
1426 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1427 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1428 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1429 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1430 nir_tex_src_texture_handle, /* < bindless texture handle */
1431 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1432 nir_tex_src_plane, /* < selects plane for planar textures */
1433 nir_num_tex_src_types
1434 } nir_tex_src_type;
1435
1436 typedef struct {
1437 nir_src src;
1438 nir_tex_src_type src_type;
1439 } nir_tex_src;
1440
1441 typedef enum {
1442 nir_texop_tex, /**< Regular texture look-up */
1443 nir_texop_txb, /**< Texture look-up with LOD bias */
1444 nir_texop_txl, /**< Texture look-up with explicit LOD */
1445 nir_texop_txd, /**< Texture look-up with partial derivatives */
1446 nir_texop_txf, /**< Texel fetch with explicit LOD */
1447 nir_texop_txf_ms, /**< Multisample texture fetch */
1448 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1449 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1450 nir_texop_txs, /**< Texture size */
1451 nir_texop_lod, /**< Texture lod query */
1452 nir_texop_tg4, /**< Texture gather */
1453 nir_texop_query_levels, /**< Texture levels query */
1454 nir_texop_texture_samples, /**< Texture samples query */
1455 nir_texop_samples_identical, /**< Query whether all samples are definitely
1456 * identical.
1457 */
1458 } nir_texop;
1459
1460 typedef struct {
1461 nir_instr instr;
1462
1463 enum glsl_sampler_dim sampler_dim;
1464 nir_alu_type dest_type;
1465
1466 nir_texop op;
1467 nir_dest dest;
1468 nir_tex_src *src;
1469 unsigned num_srcs, coord_components;
1470 bool is_array, is_shadow;
1471
1472 /**
1473 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1474 * components or the new-style shadow that outputs 1 component.
1475 */
1476 bool is_new_style_shadow;
1477
1478 /* gather component selector */
1479 unsigned component : 2;
1480
1481 /* gather offsets */
1482 int8_t tg4_offsets[4][2];
1483
1484 /* True if the texture index or handle is not dynamically uniform */
1485 bool texture_non_uniform;
1486
1487 /* True if the sampler index or handle is not dynamically uniform */
1488 bool sampler_non_uniform;
1489
1490 /** The texture index
1491 *
1492 * If this texture instruction has a nir_tex_src_texture_offset source,
1493 * then the texture index is given by texture_index + texture_offset.
1494 */
1495 unsigned texture_index;
1496
1497 /** The size of the texture array or 0 if it's not an array */
1498 unsigned texture_array_size;
1499
1500 /** The sampler index
1501 *
1502 * The following operations do not require a sampler and, as such, this
1503 * field should be ignored:
1504 * - nir_texop_txf
1505 * - nir_texop_txf_ms
1506 * - nir_texop_txs
1507 * - nir_texop_lod
1508 * - nir_texop_query_levels
1509 * - nir_texop_texture_samples
1510 * - nir_texop_samples_identical
1511 *
1512 * If this texture instruction has a nir_tex_src_sampler_offset source,
1513 * then the sampler index is given by sampler_index + sampler_offset.
1514 */
1515 unsigned sampler_index;
1516 } nir_tex_instr;
1517
1518 static inline unsigned
1519 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1520 {
1521 switch (instr->op) {
1522 case nir_texop_txs: {
1523 unsigned ret;
1524 switch (instr->sampler_dim) {
1525 case GLSL_SAMPLER_DIM_1D:
1526 case GLSL_SAMPLER_DIM_BUF:
1527 ret = 1;
1528 break;
1529 case GLSL_SAMPLER_DIM_2D:
1530 case GLSL_SAMPLER_DIM_CUBE:
1531 case GLSL_SAMPLER_DIM_MS:
1532 case GLSL_SAMPLER_DIM_RECT:
1533 case GLSL_SAMPLER_DIM_EXTERNAL:
1534 case GLSL_SAMPLER_DIM_SUBPASS:
1535 ret = 2;
1536 break;
1537 case GLSL_SAMPLER_DIM_3D:
1538 ret = 3;
1539 break;
1540 default:
1541 unreachable("not reached");
1542 }
1543 if (instr->is_array)
1544 ret++;
1545 return ret;
1546 }
1547
1548 case nir_texop_lod:
1549 return 2;
1550
1551 case nir_texop_texture_samples:
1552 case nir_texop_query_levels:
1553 case nir_texop_samples_identical:
1554 return 1;
1555
1556 default:
1557 if (instr->is_shadow && instr->is_new_style_shadow)
1558 return 1;
1559
1560 return 4;
1561 }
1562 }
1563
1564 /* Returns true if this texture operation queries something about the texture
1565 * rather than actually sampling it.
1566 */
1567 static inline bool
1568 nir_tex_instr_is_query(const nir_tex_instr *instr)
1569 {
1570 switch (instr->op) {
1571 case nir_texop_txs:
1572 case nir_texop_lod:
1573 case nir_texop_texture_samples:
1574 case nir_texop_query_levels:
1575 case nir_texop_txf_ms_mcs:
1576 return true;
1577 case nir_texop_tex:
1578 case nir_texop_txb:
1579 case nir_texop_txl:
1580 case nir_texop_txd:
1581 case nir_texop_txf:
1582 case nir_texop_txf_ms:
1583 case nir_texop_txf_ms_fb:
1584 case nir_texop_tg4:
1585 return false;
1586 default:
1587 unreachable("Invalid texture opcode");
1588 }
1589 }
1590
1591 static inline bool
1592 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1593 {
1594 switch (instr->op) {
1595 case nir_op_flt:
1596 case nir_op_fge:
1597 case nir_op_feq:
1598 case nir_op_fne:
1599 case nir_op_ilt:
1600 case nir_op_ult:
1601 case nir_op_ige:
1602 case nir_op_uge:
1603 case nir_op_ieq:
1604 case nir_op_ine:
1605 case nir_op_i2b1:
1606 case nir_op_f2b1:
1607 case nir_op_inot:
1608 case nir_op_fnot:
1609 return true;
1610 default:
1611 return false;
1612 }
1613 }
1614
1615 static inline nir_alu_type
1616 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1617 {
1618 switch (instr->src[src].src_type) {
1619 case nir_tex_src_coord:
1620 switch (instr->op) {
1621 case nir_texop_txf:
1622 case nir_texop_txf_ms:
1623 case nir_texop_txf_ms_fb:
1624 case nir_texop_txf_ms_mcs:
1625 case nir_texop_samples_identical:
1626 return nir_type_int;
1627
1628 default:
1629 return nir_type_float;
1630 }
1631
1632 case nir_tex_src_lod:
1633 switch (instr->op) {
1634 case nir_texop_txs:
1635 case nir_texop_txf:
1636 return nir_type_int;
1637
1638 default:
1639 return nir_type_float;
1640 }
1641
1642 case nir_tex_src_projector:
1643 case nir_tex_src_comparator:
1644 case nir_tex_src_bias:
1645 case nir_tex_src_ddx:
1646 case nir_tex_src_ddy:
1647 return nir_type_float;
1648
1649 case nir_tex_src_offset:
1650 case nir_tex_src_ms_index:
1651 case nir_tex_src_texture_offset:
1652 case nir_tex_src_sampler_offset:
1653 return nir_type_int;
1654
1655 default:
1656 unreachable("Invalid texture source type");
1657 }
1658 }
1659
1660 static inline unsigned
1661 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1662 {
1663 if (instr->src[src].src_type == nir_tex_src_coord)
1664 return instr->coord_components;
1665
1666 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1667 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1668 return 4;
1669
1670 if (instr->src[src].src_type == nir_tex_src_ddx ||
1671 instr->src[src].src_type == nir_tex_src_ddy) {
1672 if (instr->is_array)
1673 return instr->coord_components - 1;
1674 else
1675 return instr->coord_components;
1676 }
1677
1678 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1679 * the offset, since a cube maps to a single face.
1680 */
1681 if (instr->src[src].src_type == nir_tex_src_offset) {
1682 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1683 return 2;
1684 else if (instr->is_array)
1685 return instr->coord_components - 1;
1686 else
1687 return instr->coord_components;
1688 }
1689
1690 return 1;
1691 }
1692
1693 static inline int
1694 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1695 {
1696 for (unsigned i = 0; i < instr->num_srcs; i++)
1697 if (instr->src[i].src_type == type)
1698 return (int) i;
1699
1700 return -1;
1701 }
1702
1703 void nir_tex_instr_add_src(nir_tex_instr *tex,
1704 nir_tex_src_type src_type,
1705 nir_src src);
1706
1707 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1708
1709 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1710
1711 typedef struct {
1712 nir_instr instr;
1713
1714 nir_ssa_def def;
1715
1716 nir_const_value value[];
1717 } nir_load_const_instr;
1718
1719 #define nir_const_load_to_arr(arr, l, m) \
1720 { \
1721 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1722 } while (false);
1723
1724 typedef enum {
1725 nir_jump_return,
1726 nir_jump_break,
1727 nir_jump_continue,
1728 } nir_jump_type;
1729
1730 typedef struct {
1731 nir_instr instr;
1732 nir_jump_type type;
1733 } nir_jump_instr;
1734
1735 /* creates a new SSA variable in an undefined state */
1736
1737 typedef struct {
1738 nir_instr instr;
1739 nir_ssa_def def;
1740 } nir_ssa_undef_instr;
1741
1742 typedef struct {
1743 struct exec_node node;
1744
1745 /* The predecessor block corresponding to this source */
1746 struct nir_block *pred;
1747
1748 nir_src src;
1749 } nir_phi_src;
1750
1751 #define nir_foreach_phi_src(phi_src, phi) \
1752 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1753 #define nir_foreach_phi_src_safe(phi_src, phi) \
1754 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1755
1756 typedef struct {
1757 nir_instr instr;
1758
1759 struct exec_list srcs; /** < list of nir_phi_src */
1760
1761 nir_dest dest;
1762 } nir_phi_instr;
1763
1764 typedef struct {
1765 struct exec_node node;
1766 nir_src src;
1767 nir_dest dest;
1768 } nir_parallel_copy_entry;
1769
1770 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1771 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1772
1773 typedef struct {
1774 nir_instr instr;
1775
1776 /* A list of nir_parallel_copy_entrys. The sources of all of the
1777 * entries are copied to the corresponding destinations "in parallel".
1778 * In other words, if we have two entries: a -> b and b -> a, the values
1779 * get swapped.
1780 */
1781 struct exec_list entries;
1782 } nir_parallel_copy_instr;
1783
1784 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1785 type, nir_instr_type_alu)
1786 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1787 type, nir_instr_type_deref)
1788 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1789 type, nir_instr_type_call)
1790 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1791 type, nir_instr_type_jump)
1792 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1793 type, nir_instr_type_tex)
1794 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1795 type, nir_instr_type_intrinsic)
1796 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1797 type, nir_instr_type_load_const)
1798 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1799 type, nir_instr_type_ssa_undef)
1800 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1801 type, nir_instr_type_phi)
1802 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1803 nir_parallel_copy_instr, instr,
1804 type, nir_instr_type_parallel_copy)
1805
1806 /*
1807 * Control flow
1808 *
1809 * Control flow consists of a tree of control flow nodes, which include
1810 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1811 * instructions that always run start-to-finish. Each basic block also keeps
1812 * track of its successors (blocks which may run immediately after the current
1813 * block) and predecessors (blocks which could have run immediately before the
1814 * current block). Each function also has a start block and an end block which
1815 * all return statements point to (which is always empty). Together, all the
1816 * blocks with their predecessors and successors make up the control flow
1817 * graph (CFG) of the function. There are helpers that modify the tree of
1818 * control flow nodes while modifying the CFG appropriately; these should be
1819 * used instead of modifying the tree directly.
1820 */
1821
1822 typedef enum {
1823 nir_cf_node_block,
1824 nir_cf_node_if,
1825 nir_cf_node_loop,
1826 nir_cf_node_function
1827 } nir_cf_node_type;
1828
1829 typedef struct nir_cf_node {
1830 struct exec_node node;
1831 nir_cf_node_type type;
1832 struct nir_cf_node *parent;
1833 } nir_cf_node;
1834
1835 typedef struct nir_block {
1836 nir_cf_node cf_node;
1837
1838 struct exec_list instr_list; /** < list of nir_instr */
1839
1840 /** generic block index; generated by nir_index_blocks */
1841 unsigned index;
1842
1843 /*
1844 * Each block can only have up to 2 successors, so we put them in a simple
1845 * array - no need for anything more complicated.
1846 */
1847 struct nir_block *successors[2];
1848
1849 /* Set of nir_block predecessors in the CFG */
1850 struct set *predecessors;
1851
1852 /*
1853 * this node's immediate dominator in the dominance tree - set to NULL for
1854 * the start block.
1855 */
1856 struct nir_block *imm_dom;
1857
1858 /* This node's children in the dominance tree */
1859 unsigned num_dom_children;
1860 struct nir_block **dom_children;
1861
1862 /* Set of nir_blocks on the dominance frontier of this block */
1863 struct set *dom_frontier;
1864
1865 /*
1866 * These two indices have the property that dom_{pre,post}_index for each
1867 * child of this block in the dominance tree will always be between
1868 * dom_pre_index and dom_post_index for this block, which makes testing if
1869 * a given block is dominated by another block an O(1) operation.
1870 */
1871 unsigned dom_pre_index, dom_post_index;
1872
1873 /* live in and out for this block; used for liveness analysis */
1874 BITSET_WORD *live_in;
1875 BITSET_WORD *live_out;
1876 } nir_block;
1877
1878 static inline nir_instr *
1879 nir_block_first_instr(nir_block *block)
1880 {
1881 struct exec_node *head = exec_list_get_head(&block->instr_list);
1882 return exec_node_data(nir_instr, head, node);
1883 }
1884
1885 static inline nir_instr *
1886 nir_block_last_instr(nir_block *block)
1887 {
1888 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1889 return exec_node_data(nir_instr, tail, node);
1890 }
1891
1892 static inline bool
1893 nir_block_ends_in_jump(nir_block *block)
1894 {
1895 return !exec_list_is_empty(&block->instr_list) &&
1896 nir_block_last_instr(block)->type == nir_instr_type_jump;
1897 }
1898
1899 #define nir_foreach_instr(instr, block) \
1900 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1901 #define nir_foreach_instr_reverse(instr, block) \
1902 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1903 #define nir_foreach_instr_safe(instr, block) \
1904 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1905 #define nir_foreach_instr_reverse_safe(instr, block) \
1906 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1907
1908 typedef enum {
1909 nir_selection_control_none = 0x0,
1910 nir_selection_control_flatten = 0x1,
1911 nir_selection_control_dont_flatten = 0x2,
1912 } nir_selection_control;
1913
1914 typedef struct nir_if {
1915 nir_cf_node cf_node;
1916 nir_src condition;
1917 nir_selection_control control;
1918
1919 struct exec_list then_list; /** < list of nir_cf_node */
1920 struct exec_list else_list; /** < list of nir_cf_node */
1921 } nir_if;
1922
1923 typedef struct {
1924 nir_if *nif;
1925
1926 /** Instruction that generates nif::condition. */
1927 nir_instr *conditional_instr;
1928
1929 /** Block within ::nif that has the break instruction. */
1930 nir_block *break_block;
1931
1932 /** Last block for the then- or else-path that does not contain the break. */
1933 nir_block *continue_from_block;
1934
1935 /** True when ::break_block is in the else-path of ::nif. */
1936 bool continue_from_then;
1937 bool induction_rhs;
1938
1939 /* This is true if the terminators exact trip count is unknown. For
1940 * example:
1941 *
1942 * for (int i = 0; i < imin(x, 4); i++)
1943 * ...
1944 *
1945 * Here loop analysis would have set a max_trip_count of 4 however we dont
1946 * know for sure that this is the exact trip count.
1947 */
1948 bool exact_trip_count_unknown;
1949
1950 struct list_head loop_terminator_link;
1951 } nir_loop_terminator;
1952
1953 typedef struct {
1954 /* Estimated cost (in number of instructions) of the loop */
1955 unsigned instr_cost;
1956
1957 /* Guessed trip count based on array indexing */
1958 unsigned guessed_trip_count;
1959
1960 /* Maximum number of times the loop is run (if known) */
1961 unsigned max_trip_count;
1962
1963 /* Do we know the exact number of times the loop will be run */
1964 bool exact_trip_count_known;
1965
1966 /* Unroll the loop regardless of its size */
1967 bool force_unroll;
1968
1969 /* Does the loop contain complex loop terminators, continues or other
1970 * complex behaviours? If this is true we can't rely on
1971 * loop_terminator_list to be complete or accurate.
1972 */
1973 bool complex_loop;
1974
1975 nir_loop_terminator *limiting_terminator;
1976
1977 /* A list of loop_terminators terminating this loop. */
1978 struct list_head loop_terminator_list;
1979 } nir_loop_info;
1980
1981 typedef enum {
1982 nir_loop_control_none = 0x0,
1983 nir_loop_control_unroll = 0x1,
1984 nir_loop_control_dont_unroll = 0x2,
1985 } nir_loop_control;
1986
1987 typedef struct {
1988 nir_cf_node cf_node;
1989
1990 struct exec_list body; /** < list of nir_cf_node */
1991
1992 nir_loop_info *info;
1993 nir_loop_control control;
1994 bool partially_unrolled;
1995 } nir_loop;
1996
1997 /**
1998 * Various bits of metadata that can may be created or required by
1999 * optimization and analysis passes
2000 */
2001 typedef enum {
2002 nir_metadata_none = 0x0,
2003 nir_metadata_block_index = 0x1,
2004 nir_metadata_dominance = 0x2,
2005 nir_metadata_live_ssa_defs = 0x4,
2006 nir_metadata_not_properly_reset = 0x8,
2007 nir_metadata_loop_analysis = 0x10,
2008 } nir_metadata;
2009
2010 typedef struct {
2011 nir_cf_node cf_node;
2012
2013 /** pointer to the function of which this is an implementation */
2014 struct nir_function *function;
2015
2016 struct exec_list body; /** < list of nir_cf_node */
2017
2018 nir_block *end_block;
2019
2020 /** list for all local variables in the function */
2021 struct exec_list locals;
2022
2023 /** list of local registers in the function */
2024 struct exec_list registers;
2025
2026 /** next available local register index */
2027 unsigned reg_alloc;
2028
2029 /** next available SSA value index */
2030 unsigned ssa_alloc;
2031
2032 /* total number of basic blocks, only valid when block_index_dirty = false */
2033 unsigned num_blocks;
2034
2035 nir_metadata valid_metadata;
2036 } nir_function_impl;
2037
2038 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2039 nir_start_block(nir_function_impl *impl)
2040 {
2041 return (nir_block *) impl->body.head_sentinel.next;
2042 }
2043
2044 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2045 nir_impl_last_block(nir_function_impl *impl)
2046 {
2047 return (nir_block *) impl->body.tail_sentinel.prev;
2048 }
2049
2050 static inline nir_cf_node *
2051 nir_cf_node_next(nir_cf_node *node)
2052 {
2053 struct exec_node *next = exec_node_get_next(&node->node);
2054 if (exec_node_is_tail_sentinel(next))
2055 return NULL;
2056 else
2057 return exec_node_data(nir_cf_node, next, node);
2058 }
2059
2060 static inline nir_cf_node *
2061 nir_cf_node_prev(nir_cf_node *node)
2062 {
2063 struct exec_node *prev = exec_node_get_prev(&node->node);
2064 if (exec_node_is_head_sentinel(prev))
2065 return NULL;
2066 else
2067 return exec_node_data(nir_cf_node, prev, node);
2068 }
2069
2070 static inline bool
2071 nir_cf_node_is_first(const nir_cf_node *node)
2072 {
2073 return exec_node_is_head_sentinel(node->node.prev);
2074 }
2075
2076 static inline bool
2077 nir_cf_node_is_last(const nir_cf_node *node)
2078 {
2079 return exec_node_is_tail_sentinel(node->node.next);
2080 }
2081
2082 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2083 type, nir_cf_node_block)
2084 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2085 type, nir_cf_node_if)
2086 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2087 type, nir_cf_node_loop)
2088 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2089 nir_function_impl, cf_node, type, nir_cf_node_function)
2090
2091 static inline nir_block *
2092 nir_if_first_then_block(nir_if *if_stmt)
2093 {
2094 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2095 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2096 }
2097
2098 static inline nir_block *
2099 nir_if_last_then_block(nir_if *if_stmt)
2100 {
2101 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2102 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2103 }
2104
2105 static inline nir_block *
2106 nir_if_first_else_block(nir_if *if_stmt)
2107 {
2108 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2109 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2110 }
2111
2112 static inline nir_block *
2113 nir_if_last_else_block(nir_if *if_stmt)
2114 {
2115 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2116 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2117 }
2118
2119 static inline nir_block *
2120 nir_loop_first_block(nir_loop *loop)
2121 {
2122 struct exec_node *head = exec_list_get_head(&loop->body);
2123 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2124 }
2125
2126 static inline nir_block *
2127 nir_loop_last_block(nir_loop *loop)
2128 {
2129 struct exec_node *tail = exec_list_get_tail(&loop->body);
2130 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2131 }
2132
2133 /**
2134 * Return true if this list of cf_nodes contains a single empty block.
2135 */
2136 static inline bool
2137 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2138 {
2139 if (exec_list_is_singular(cf_list)) {
2140 struct exec_node *head = exec_list_get_head(cf_list);
2141 nir_block *block =
2142 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2143 return exec_list_is_empty(&block->instr_list);
2144 }
2145 return false;
2146 }
2147
2148 typedef struct {
2149 uint8_t num_components;
2150 uint8_t bit_size;
2151 } nir_parameter;
2152
2153 typedef struct nir_function {
2154 struct exec_node node;
2155
2156 const char *name;
2157 struct nir_shader *shader;
2158
2159 unsigned num_params;
2160 nir_parameter *params;
2161
2162 /** The implementation of this function.
2163 *
2164 * If the function is only declared and not implemented, this is NULL.
2165 */
2166 nir_function_impl *impl;
2167
2168 bool is_entrypoint;
2169 } nir_function;
2170
2171 typedef enum {
2172 nir_lower_imul64 = (1 << 0),
2173 nir_lower_isign64 = (1 << 1),
2174 /** Lower all int64 modulus and division opcodes */
2175 nir_lower_divmod64 = (1 << 2),
2176 /** Lower all 64-bit umul_high and imul_high opcodes */
2177 nir_lower_imul_high64 = (1 << 3),
2178 nir_lower_mov64 = (1 << 4),
2179 nir_lower_icmp64 = (1 << 5),
2180 nir_lower_iadd64 = (1 << 6),
2181 nir_lower_iabs64 = (1 << 7),
2182 nir_lower_ineg64 = (1 << 8),
2183 nir_lower_logic64 = (1 << 9),
2184 nir_lower_minmax64 = (1 << 10),
2185 nir_lower_shift64 = (1 << 11),
2186 nir_lower_imul_2x32_64 = (1 << 12),
2187 } nir_lower_int64_options;
2188
2189 typedef enum {
2190 nir_lower_drcp = (1 << 0),
2191 nir_lower_dsqrt = (1 << 1),
2192 nir_lower_drsq = (1 << 2),
2193 nir_lower_dtrunc = (1 << 3),
2194 nir_lower_dfloor = (1 << 4),
2195 nir_lower_dceil = (1 << 5),
2196 nir_lower_dfract = (1 << 6),
2197 nir_lower_dround_even = (1 << 7),
2198 nir_lower_dmod = (1 << 8),
2199 nir_lower_fp64_full_software = (1 << 9),
2200 } nir_lower_doubles_options;
2201
2202 typedef struct nir_shader_compiler_options {
2203 bool lower_fdiv;
2204 bool lower_ffma;
2205 bool fuse_ffma;
2206 bool lower_flrp16;
2207 bool lower_flrp32;
2208 /** Lowers flrp when it does not support doubles */
2209 bool lower_flrp64;
2210 bool lower_fpow;
2211 bool lower_fsat;
2212 bool lower_fsqrt;
2213 bool lower_fmod16;
2214 bool lower_fmod32;
2215 bool lower_fmod64;
2216 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2217 bool lower_bitfield_extract;
2218 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2219 bool lower_bitfield_extract_to_shifts;
2220 /** Lowers bitfield_insert to bfi/bfm */
2221 bool lower_bitfield_insert;
2222 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2223 bool lower_bitfield_insert_to_shifts;
2224 /** Lowers bitfield_reverse to shifts. */
2225 bool lower_bitfield_reverse;
2226 /** Lowers bit_count to shifts. */
2227 bool lower_bit_count;
2228 /** Lowers bfm to shifts and subtracts. */
2229 bool lower_bfm;
2230 /** Lowers ifind_msb to compare and ufind_msb */
2231 bool lower_ifind_msb;
2232 /** Lowers find_lsb to ufind_msb and logic ops */
2233 bool lower_find_lsb;
2234 bool lower_uadd_carry;
2235 bool lower_usub_borrow;
2236 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2237 bool lower_mul_high;
2238 /** lowers fneg and ineg to fsub and isub. */
2239 bool lower_negate;
2240 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2241 bool lower_sub;
2242
2243 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2244 bool lower_scmp;
2245
2246 /** enables rules to lower idiv by power-of-two: */
2247 bool lower_idiv;
2248
2249 /** enables rules to lower isign to imin+imax */
2250 bool lower_isign;
2251
2252 /** enables rules to lower fsign to fsub and flt */
2253 bool lower_fsign;
2254
2255 /* Does the native fdot instruction replicate its result for four
2256 * components? If so, then opt_algebraic_late will turn all fdotN
2257 * instructions into fdot_replicatedN instructions.
2258 */
2259 bool fdot_replicates;
2260
2261 /** lowers ffloor to fsub+ffract: */
2262 bool lower_ffloor;
2263
2264 /** lowers ffract to fsub+ffloor: */
2265 bool lower_ffract;
2266
2267 /** lowers fceil to fneg+ffloor+fneg: */
2268 bool lower_fceil;
2269
2270 bool lower_ftrunc;
2271
2272 bool lower_ldexp;
2273
2274 bool lower_pack_half_2x16;
2275 bool lower_pack_unorm_2x16;
2276 bool lower_pack_snorm_2x16;
2277 bool lower_pack_unorm_4x8;
2278 bool lower_pack_snorm_4x8;
2279 bool lower_unpack_half_2x16;
2280 bool lower_unpack_unorm_2x16;
2281 bool lower_unpack_snorm_2x16;
2282 bool lower_unpack_unorm_4x8;
2283 bool lower_unpack_snorm_4x8;
2284
2285 bool lower_extract_byte;
2286 bool lower_extract_word;
2287
2288 bool lower_all_io_to_temps;
2289 bool lower_all_io_to_elements;
2290
2291 /**
2292 * Does the driver support real 32-bit integers? (Otherwise, integers
2293 * are simulated by floats.)
2294 */
2295 bool native_integers;
2296
2297 /* Indicates that the driver only has zero-based vertex id */
2298 bool vertex_id_zero_based;
2299
2300 /**
2301 * If enabled, gl_BaseVertex will be lowered as:
2302 * is_indexed_draw (~0/0) & firstvertex
2303 */
2304 bool lower_base_vertex;
2305
2306 /**
2307 * If enabled, gl_HelperInvocation will be lowered as:
2308 *
2309 * !((1 << sample_id) & sample_mask_in))
2310 *
2311 * This depends on some possibly hw implementation details, which may
2312 * not be true for all hw. In particular that the FS is only executed
2313 * for covered samples or for helper invocations. So, do not blindly
2314 * enable this option.
2315 *
2316 * Note: See also issue #22 in ARB_shader_image_load_store
2317 */
2318 bool lower_helper_invocation;
2319
2320 /**
2321 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2322 *
2323 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2324 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2325 */
2326 bool optimize_sample_mask_in;
2327
2328 bool lower_cs_local_index_from_id;
2329 bool lower_cs_local_id_from_index;
2330
2331 bool lower_device_index_to_zero;
2332
2333 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2334 bool lower_wpos_pntc;
2335
2336 bool lower_hadd;
2337 bool lower_add_sat;
2338
2339 /**
2340 * Should nir_lower_io() create load_interpolated_input intrinsics?
2341 *
2342 * If not, it generates regular load_input intrinsics and interpolation
2343 * information must be inferred from the list of input nir_variables.
2344 */
2345 bool use_interpolated_input_intrinsics;
2346
2347 /* Lowers when 32x32->64 bit multiplication is not supported */
2348 bool lower_mul_2x32_64;
2349
2350 unsigned max_unroll_iterations;
2351
2352 nir_lower_int64_options lower_int64_options;
2353 nir_lower_doubles_options lower_doubles_options;
2354 } nir_shader_compiler_options;
2355
2356 typedef struct nir_shader {
2357 /** list of uniforms (nir_variable) */
2358 struct exec_list uniforms;
2359
2360 /** list of inputs (nir_variable) */
2361 struct exec_list inputs;
2362
2363 /** list of outputs (nir_variable) */
2364 struct exec_list outputs;
2365
2366 /** list of shared compute variables (nir_variable) */
2367 struct exec_list shared;
2368
2369 /** Set of driver-specific options for the shader.
2370 *
2371 * The memory for the options is expected to be kept in a single static
2372 * copy by the driver.
2373 */
2374 const struct nir_shader_compiler_options *options;
2375
2376 /** Various bits of compile-time information about a given shader */
2377 struct shader_info info;
2378
2379 /** list of global variables in the shader (nir_variable) */
2380 struct exec_list globals;
2381
2382 /** list of system value variables in the shader (nir_variable) */
2383 struct exec_list system_values;
2384
2385 struct exec_list functions; /** < list of nir_function */
2386
2387 /**
2388 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2389 * access plus one
2390 */
2391 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2392
2393 /** Size in bytes of required scratch space */
2394 unsigned scratch_size;
2395
2396 /** Constant data associated with this shader.
2397 *
2398 * Constant data is loaded through load_constant intrinsics. See also
2399 * nir_opt_large_constants.
2400 */
2401 void *constant_data;
2402 unsigned constant_data_size;
2403 } nir_shader;
2404
2405 #define nir_foreach_function(func, shader) \
2406 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2407
2408 static inline nir_function_impl *
2409 nir_shader_get_entrypoint(nir_shader *shader)
2410 {
2411 nir_function *func = NULL;
2412
2413 nir_foreach_function(function, shader) {
2414 assert(func == NULL);
2415 if (function->is_entrypoint) {
2416 func = function;
2417 #ifndef NDEBUG
2418 break;
2419 #endif
2420 }
2421 }
2422
2423 if (!func)
2424 return NULL;
2425
2426 assert(func->num_params == 0);
2427 assert(func->impl);
2428 return func->impl;
2429 }
2430
2431 nir_shader *nir_shader_create(void *mem_ctx,
2432 gl_shader_stage stage,
2433 const nir_shader_compiler_options *options,
2434 shader_info *si);
2435
2436 nir_register *nir_local_reg_create(nir_function_impl *impl);
2437
2438 void nir_reg_remove(nir_register *reg);
2439
2440 /** Adds a variable to the appropriate list in nir_shader */
2441 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2442
2443 static inline void
2444 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2445 {
2446 assert(var->data.mode == nir_var_function_temp);
2447 exec_list_push_tail(&impl->locals, &var->node);
2448 }
2449
2450 /** creates a variable, sets a few defaults, and adds it to the list */
2451 nir_variable *nir_variable_create(nir_shader *shader,
2452 nir_variable_mode mode,
2453 const struct glsl_type *type,
2454 const char *name);
2455 /** creates a local variable and adds it to the list */
2456 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2457 const struct glsl_type *type,
2458 const char *name);
2459
2460 /** creates a function and adds it to the shader's list of functions */
2461 nir_function *nir_function_create(nir_shader *shader, const char *name);
2462
2463 nir_function_impl *nir_function_impl_create(nir_function *func);
2464 /** creates a function_impl that isn't tied to any particular function */
2465 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2466
2467 nir_block *nir_block_create(nir_shader *shader);
2468 nir_if *nir_if_create(nir_shader *shader);
2469 nir_loop *nir_loop_create(nir_shader *shader);
2470
2471 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2472
2473 /** requests that the given pieces of metadata be generated */
2474 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2475 /** dirties all but the preserved metadata */
2476 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2477
2478 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2479 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2480
2481 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2482 nir_deref_type deref_type);
2483
2484 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2485
2486 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2487 unsigned num_components,
2488 unsigned bit_size);
2489
2490 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2491 nir_intrinsic_op op);
2492
2493 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2494 nir_function *callee);
2495
2496 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2497
2498 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2499
2500 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2501
2502 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2503 unsigned num_components,
2504 unsigned bit_size);
2505
2506 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2507
2508 /**
2509 * NIR Cursors and Instruction Insertion API
2510 * @{
2511 *
2512 * A tiny struct representing a point to insert/extract instructions or
2513 * control flow nodes. Helps reduce the combinatorial explosion of possible
2514 * points to insert/extract.
2515 *
2516 * \sa nir_control_flow.h
2517 */
2518 typedef enum {
2519 nir_cursor_before_block,
2520 nir_cursor_after_block,
2521 nir_cursor_before_instr,
2522 nir_cursor_after_instr,
2523 } nir_cursor_option;
2524
2525 typedef struct {
2526 nir_cursor_option option;
2527 union {
2528 nir_block *block;
2529 nir_instr *instr;
2530 };
2531 } nir_cursor;
2532
2533 static inline nir_block *
2534 nir_cursor_current_block(nir_cursor cursor)
2535 {
2536 if (cursor.option == nir_cursor_before_instr ||
2537 cursor.option == nir_cursor_after_instr) {
2538 return cursor.instr->block;
2539 } else {
2540 return cursor.block;
2541 }
2542 }
2543
2544 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2545
2546 static inline nir_cursor
2547 nir_before_block(nir_block *block)
2548 {
2549 nir_cursor cursor;
2550 cursor.option = nir_cursor_before_block;
2551 cursor.block = block;
2552 return cursor;
2553 }
2554
2555 static inline nir_cursor
2556 nir_after_block(nir_block *block)
2557 {
2558 nir_cursor cursor;
2559 cursor.option = nir_cursor_after_block;
2560 cursor.block = block;
2561 return cursor;
2562 }
2563
2564 static inline nir_cursor
2565 nir_before_instr(nir_instr *instr)
2566 {
2567 nir_cursor cursor;
2568 cursor.option = nir_cursor_before_instr;
2569 cursor.instr = instr;
2570 return cursor;
2571 }
2572
2573 static inline nir_cursor
2574 nir_after_instr(nir_instr *instr)
2575 {
2576 nir_cursor cursor;
2577 cursor.option = nir_cursor_after_instr;
2578 cursor.instr = instr;
2579 return cursor;
2580 }
2581
2582 static inline nir_cursor
2583 nir_after_block_before_jump(nir_block *block)
2584 {
2585 nir_instr *last_instr = nir_block_last_instr(block);
2586 if (last_instr && last_instr->type == nir_instr_type_jump) {
2587 return nir_before_instr(last_instr);
2588 } else {
2589 return nir_after_block(block);
2590 }
2591 }
2592
2593 static inline nir_cursor
2594 nir_before_src(nir_src *src, bool is_if_condition)
2595 {
2596 if (is_if_condition) {
2597 nir_block *prev_block =
2598 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2599 assert(!nir_block_ends_in_jump(prev_block));
2600 return nir_after_block(prev_block);
2601 } else if (src->parent_instr->type == nir_instr_type_phi) {
2602 #ifndef NDEBUG
2603 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2604 bool found = false;
2605 nir_foreach_phi_src(phi_src, cond_phi) {
2606 if (phi_src->src.ssa == src->ssa) {
2607 found = true;
2608 break;
2609 }
2610 }
2611 assert(found);
2612 #endif
2613 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2614 * to have a more specific name.
2615 */
2616 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2617 return nir_after_block_before_jump(phi_src->pred);
2618 } else {
2619 return nir_before_instr(src->parent_instr);
2620 }
2621 }
2622
2623 static inline nir_cursor
2624 nir_before_cf_node(nir_cf_node *node)
2625 {
2626 if (node->type == nir_cf_node_block)
2627 return nir_before_block(nir_cf_node_as_block(node));
2628
2629 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2630 }
2631
2632 static inline nir_cursor
2633 nir_after_cf_node(nir_cf_node *node)
2634 {
2635 if (node->type == nir_cf_node_block)
2636 return nir_after_block(nir_cf_node_as_block(node));
2637
2638 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2639 }
2640
2641 static inline nir_cursor
2642 nir_after_phis(nir_block *block)
2643 {
2644 nir_foreach_instr(instr, block) {
2645 if (instr->type != nir_instr_type_phi)
2646 return nir_before_instr(instr);
2647 }
2648 return nir_after_block(block);
2649 }
2650
2651 static inline nir_cursor
2652 nir_after_cf_node_and_phis(nir_cf_node *node)
2653 {
2654 if (node->type == nir_cf_node_block)
2655 return nir_after_block(nir_cf_node_as_block(node));
2656
2657 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2658
2659 return nir_after_phis(block);
2660 }
2661
2662 static inline nir_cursor
2663 nir_before_cf_list(struct exec_list *cf_list)
2664 {
2665 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2666 exec_list_get_head(cf_list), node);
2667 return nir_before_cf_node(first_node);
2668 }
2669
2670 static inline nir_cursor
2671 nir_after_cf_list(struct exec_list *cf_list)
2672 {
2673 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2674 exec_list_get_tail(cf_list), node);
2675 return nir_after_cf_node(last_node);
2676 }
2677
2678 /**
2679 * Insert a NIR instruction at the given cursor.
2680 *
2681 * Note: This does not update the cursor.
2682 */
2683 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2684
2685 static inline void
2686 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2687 {
2688 nir_instr_insert(nir_before_instr(instr), before);
2689 }
2690
2691 static inline void
2692 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2693 {
2694 nir_instr_insert(nir_after_instr(instr), after);
2695 }
2696
2697 static inline void
2698 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2699 {
2700 nir_instr_insert(nir_before_block(block), before);
2701 }
2702
2703 static inline void
2704 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2705 {
2706 nir_instr_insert(nir_after_block(block), after);
2707 }
2708
2709 static inline void
2710 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2711 {
2712 nir_instr_insert(nir_before_cf_node(node), before);
2713 }
2714
2715 static inline void
2716 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2717 {
2718 nir_instr_insert(nir_after_cf_node(node), after);
2719 }
2720
2721 static inline void
2722 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2723 {
2724 nir_instr_insert(nir_before_cf_list(list), before);
2725 }
2726
2727 static inline void
2728 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2729 {
2730 nir_instr_insert(nir_after_cf_list(list), after);
2731 }
2732
2733 void nir_instr_remove_v(nir_instr *instr);
2734
2735 static inline nir_cursor
2736 nir_instr_remove(nir_instr *instr)
2737 {
2738 nir_cursor cursor;
2739 nir_instr *prev = nir_instr_prev(instr);
2740 if (prev) {
2741 cursor = nir_after_instr(prev);
2742 } else {
2743 cursor = nir_before_block(instr->block);
2744 }
2745 nir_instr_remove_v(instr);
2746 return cursor;
2747 }
2748
2749 /** @} */
2750
2751 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2752 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2753 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2754 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2755 void *state);
2756 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2757 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2758
2759 nir_const_value *nir_src_as_const_value(nir_src src);
2760
2761 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2762 static inline c_type * \
2763 nir_src_as_ ## name (nir_src src) \
2764 { \
2765 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2766 ? cast_macro(src.ssa->parent_instr) : NULL; \
2767 }
2768
2769 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2770 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2771 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2772 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2773
2774 bool nir_src_is_dynamically_uniform(nir_src src);
2775 bool nir_srcs_equal(nir_src src1, nir_src src2);
2776 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2777 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2778 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2779 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2780 nir_dest new_dest);
2781
2782 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2783 unsigned num_components, unsigned bit_size,
2784 const char *name);
2785 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2786 unsigned num_components, unsigned bit_size,
2787 const char *name);
2788 static inline void
2789 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2790 const struct glsl_type *type,
2791 const char *name)
2792 {
2793 assert(glsl_type_is_vector_or_scalar(type));
2794 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2795 glsl_get_bit_size(type), name);
2796 }
2797 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2798 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2799 nir_instr *after_me);
2800
2801 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2802
2803 /*
2804 * finds the next basic block in source-code order, returns NULL if there is
2805 * none
2806 */
2807
2808 nir_block *nir_block_cf_tree_next(nir_block *block);
2809
2810 /* Performs the opposite of nir_block_cf_tree_next() */
2811
2812 nir_block *nir_block_cf_tree_prev(nir_block *block);
2813
2814 /* Gets the first block in a CF node in source-code order */
2815
2816 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2817
2818 /* Gets the last block in a CF node in source-code order */
2819
2820 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2821
2822 /* Gets the next block after a CF node in source-code order */
2823
2824 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2825
2826 /* Macros for loops that visit blocks in source-code order */
2827
2828 #define nir_foreach_block(block, impl) \
2829 for (nir_block *block = nir_start_block(impl); block != NULL; \
2830 block = nir_block_cf_tree_next(block))
2831
2832 #define nir_foreach_block_safe(block, impl) \
2833 for (nir_block *block = nir_start_block(impl), \
2834 *next = nir_block_cf_tree_next(block); \
2835 block != NULL; \
2836 block = next, next = nir_block_cf_tree_next(block))
2837
2838 #define nir_foreach_block_reverse(block, impl) \
2839 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2840 block = nir_block_cf_tree_prev(block))
2841
2842 #define nir_foreach_block_reverse_safe(block, impl) \
2843 for (nir_block *block = nir_impl_last_block(impl), \
2844 *prev = nir_block_cf_tree_prev(block); \
2845 block != NULL; \
2846 block = prev, prev = nir_block_cf_tree_prev(block))
2847
2848 #define nir_foreach_block_in_cf_node(block, node) \
2849 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2850 block != nir_cf_node_cf_tree_next(node); \
2851 block = nir_block_cf_tree_next(block))
2852
2853 /* If the following CF node is an if, this function returns that if.
2854 * Otherwise, it returns NULL.
2855 */
2856 nir_if *nir_block_get_following_if(nir_block *block);
2857
2858 nir_loop *nir_block_get_following_loop(nir_block *block);
2859
2860 void nir_index_local_regs(nir_function_impl *impl);
2861 void nir_index_ssa_defs(nir_function_impl *impl);
2862 unsigned nir_index_instrs(nir_function_impl *impl);
2863
2864 void nir_index_blocks(nir_function_impl *impl);
2865
2866 void nir_print_shader(nir_shader *shader, FILE *fp);
2867 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2868 void nir_print_instr(const nir_instr *instr, FILE *fp);
2869 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2870
2871 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2872 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2873 const nir_function_impl *fi);
2874 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2875 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2876
2877 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2878
2879 #ifndef NDEBUG
2880 void nir_validate_shader(nir_shader *shader, const char *when);
2881 void nir_metadata_set_validation_flag(nir_shader *shader);
2882 void nir_metadata_check_validation_flag(nir_shader *shader);
2883
2884 static inline bool
2885 should_skip_nir(const char *name)
2886 {
2887 static const char *list = NULL;
2888 if (!list) {
2889 /* Comma separated list of names to skip. */
2890 list = getenv("NIR_SKIP");
2891 if (!list)
2892 list = "";
2893 }
2894
2895 if (!list[0])
2896 return false;
2897
2898 return comma_separated_list_contains(list, name);
2899 }
2900
2901 static inline bool
2902 should_clone_nir(void)
2903 {
2904 static int should_clone = -1;
2905 if (should_clone < 0)
2906 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2907
2908 return should_clone;
2909 }
2910
2911 static inline bool
2912 should_serialize_deserialize_nir(void)
2913 {
2914 static int test_serialize = -1;
2915 if (test_serialize < 0)
2916 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2917
2918 return test_serialize;
2919 }
2920
2921 static inline bool
2922 should_print_nir(void)
2923 {
2924 static int should_print = -1;
2925 if (should_print < 0)
2926 should_print = env_var_as_boolean("NIR_PRINT", false);
2927
2928 return should_print;
2929 }
2930 #else
2931 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2932 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2933 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2934 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2935 static inline bool should_clone_nir(void) { return false; }
2936 static inline bool should_serialize_deserialize_nir(void) { return false; }
2937 static inline bool should_print_nir(void) { return false; }
2938 #endif /* NDEBUG */
2939
2940 #define _PASS(pass, nir, do_pass) do { \
2941 if (should_skip_nir(#pass)) { \
2942 printf("skipping %s\n", #pass); \
2943 break; \
2944 } \
2945 do_pass \
2946 nir_validate_shader(nir, "after " #pass); \
2947 if (should_clone_nir()) { \
2948 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2949 ralloc_free(nir); \
2950 nir = clone; \
2951 } \
2952 if (should_serialize_deserialize_nir()) { \
2953 void *mem_ctx = ralloc_parent(nir); \
2954 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2955 } \
2956 } while (0)
2957
2958 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2959 nir_metadata_set_validation_flag(nir); \
2960 if (should_print_nir()) \
2961 printf("%s\n", #pass); \
2962 if (pass(nir, ##__VA_ARGS__)) { \
2963 progress = true; \
2964 if (should_print_nir()) \
2965 nir_print_shader(nir, stdout); \
2966 nir_metadata_check_validation_flag(nir); \
2967 } \
2968 )
2969
2970 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2971 if (should_print_nir()) \
2972 printf("%s\n", #pass); \
2973 pass(nir, ##__VA_ARGS__); \
2974 if (should_print_nir()) \
2975 nir_print_shader(nir, stdout); \
2976 )
2977
2978 #define NIR_SKIP(name) should_skip_nir(#name)
2979
2980 void nir_calc_dominance_impl(nir_function_impl *impl);
2981 void nir_calc_dominance(nir_shader *shader);
2982
2983 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2984 bool nir_block_dominates(nir_block *parent, nir_block *child);
2985
2986 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2987 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2988
2989 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2990 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2991
2992 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2993 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2994
2995 int nir_gs_count_vertices(const nir_shader *shader);
2996
2997 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2998 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2999 bool nir_split_var_copies(nir_shader *shader);
3000 bool nir_split_per_member_structs(nir_shader *shader);
3001 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3002
3003 bool nir_lower_returns_impl(nir_function_impl *impl);
3004 bool nir_lower_returns(nir_shader *shader);
3005
3006 void nir_inline_function_impl(struct nir_builder *b,
3007 const nir_function_impl *impl,
3008 nir_ssa_def **params);
3009 bool nir_inline_functions(nir_shader *shader);
3010
3011 bool nir_propagate_invariant(nir_shader *shader);
3012
3013 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3014 void nir_lower_deref_copy_instr(struct nir_builder *b,
3015 nir_intrinsic_instr *copy);
3016 bool nir_lower_var_copies(nir_shader *shader);
3017
3018 void nir_fixup_deref_modes(nir_shader *shader);
3019
3020 bool nir_lower_global_vars_to_local(nir_shader *shader);
3021
3022 typedef enum {
3023 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3024 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3025 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3026 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3027 } nir_lower_array_deref_of_vec_options;
3028
3029 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3030 nir_lower_array_deref_of_vec_options options);
3031
3032 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3033
3034 bool nir_lower_locals_to_regs(nir_shader *shader);
3035
3036 void nir_lower_io_to_temporaries(nir_shader *shader,
3037 nir_function_impl *entrypoint,
3038 bool outputs, bool inputs);
3039
3040 bool nir_lower_vars_to_scratch(nir_shader *shader,
3041 nir_variable_mode modes,
3042 int size_threshold,
3043 glsl_type_size_align_func size_align);
3044
3045 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3046
3047 void nir_gather_ssa_types(nir_function_impl *impl,
3048 BITSET_WORD *float_types,
3049 BITSET_WORD *int_types);
3050
3051 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3052 int (*type_size)(const struct glsl_type *, bool));
3053
3054 /* Some helpers to do very simple linking */
3055 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3056 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3057 uint64_t *used_by_other_stage,
3058 uint64_t *used_by_other_stage_patches);
3059 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3060 bool default_to_smooth_interp);
3061 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3062 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3063
3064 typedef enum {
3065 /* If set, this forces all non-flat fragment shader inputs to be
3066 * interpolated as if with the "sample" qualifier. This requires
3067 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3068 */
3069 nir_lower_io_force_sample_interpolation = (1 << 1),
3070 } nir_lower_io_options;
3071 bool nir_lower_io(nir_shader *shader,
3072 nir_variable_mode modes,
3073 int (*type_size)(const struct glsl_type *, bool),
3074 nir_lower_io_options);
3075
3076 typedef enum {
3077 /**
3078 * An address format which is a simple 32-bit global GPU address.
3079 */
3080 nir_address_format_32bit_global,
3081
3082 /**
3083 * An address format which is a simple 64-bit global GPU address.
3084 */
3085 nir_address_format_64bit_global,
3086
3087 /**
3088 * An address format which is a bounds-checked 64-bit global GPU address.
3089 *
3090 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3091 * address stored with the low bits in .x and high bits in .y, .z is a
3092 * size, and .w is an offset. When the final I/O operation is lowered, .w
3093 * is checked against .z and the operation is predicated on the result.
3094 */
3095 nir_address_format_64bit_bounded_global,
3096
3097 /**
3098 * An address format which is comprised of a vec2 where the first
3099 * component is a buffer index and the second is an offset.
3100 */
3101 nir_address_format_32bit_index_offset,
3102 } nir_address_format;
3103
3104 static inline unsigned
3105 nir_address_format_bit_size(nir_address_format addr_format)
3106 {
3107 switch (addr_format) {
3108 case nir_address_format_32bit_global: return 32;
3109 case nir_address_format_64bit_global: return 64;
3110 case nir_address_format_64bit_bounded_global: return 32;
3111 case nir_address_format_32bit_index_offset: return 32;
3112 }
3113 unreachable("Invalid address format");
3114 }
3115
3116 static inline unsigned
3117 nir_address_format_num_components(nir_address_format addr_format)
3118 {
3119 switch (addr_format) {
3120 case nir_address_format_32bit_global: return 1;
3121 case nir_address_format_64bit_global: return 1;
3122 case nir_address_format_64bit_bounded_global: return 4;
3123 case nir_address_format_32bit_index_offset: return 2;
3124 }
3125 unreachable("Invalid address format");
3126 }
3127
3128 static inline const struct glsl_type *
3129 nir_address_format_to_glsl_type(nir_address_format addr_format)
3130 {
3131 unsigned bit_size = nir_address_format_bit_size(addr_format);
3132 assert(bit_size == 32 || bit_size == 64);
3133 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3134 nir_address_format_num_components(addr_format));
3135 }
3136
3137 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3138 nir_deref_instr *deref,
3139 nir_ssa_def *base_addr,
3140 nir_address_format addr_format);
3141 void nir_lower_explicit_io_instr(struct nir_builder *b,
3142 nir_intrinsic_instr *io_instr,
3143 nir_ssa_def *addr,
3144 nir_address_format addr_format);
3145
3146 bool nir_lower_explicit_io(nir_shader *shader,
3147 nir_variable_mode modes,
3148 nir_address_format);
3149
3150 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3151 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3152
3153 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3154
3155 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3156 bool nir_lower_regs_to_ssa(nir_shader *shader);
3157 bool nir_lower_vars_to_ssa(nir_shader *shader);
3158
3159 bool nir_remove_dead_derefs(nir_shader *shader);
3160 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3161 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3162 bool nir_lower_constant_initializers(nir_shader *shader,
3163 nir_variable_mode modes);
3164
3165 bool nir_move_load_const(nir_shader *shader);
3166 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3167 bool nir_lower_vec_to_movs(nir_shader *shader);
3168 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3169 bool alpha_to_one);
3170 bool nir_lower_alu(nir_shader *shader);
3171 bool nir_lower_alu_to_scalar(nir_shader *shader);
3172 bool nir_lower_bool_to_float(nir_shader *shader);
3173 bool nir_lower_bool_to_int32(nir_shader *shader);
3174 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3175 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3176 bool nir_lower_phis_to_scalar(nir_shader *shader);
3177 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3178 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3179 bool outputs_only);
3180 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3181 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3182 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3183
3184 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3185 void nir_lower_viewport_transform(nir_shader *shader);
3186 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3187
3188 typedef struct nir_lower_subgroups_options {
3189 uint8_t subgroup_size;
3190 uint8_t ballot_bit_size;
3191 bool lower_to_scalar:1;
3192 bool lower_vote_trivial:1;
3193 bool lower_vote_eq_to_ballot:1;
3194 bool lower_subgroup_masks:1;
3195 bool lower_shuffle:1;
3196 bool lower_shuffle_to_32bit:1;
3197 bool lower_quad:1;
3198 } nir_lower_subgroups_options;
3199
3200 bool nir_lower_subgroups(nir_shader *shader,
3201 const nir_lower_subgroups_options *options);
3202
3203 bool nir_lower_system_values(nir_shader *shader);
3204
3205 enum PACKED nir_lower_tex_packing {
3206 nir_lower_tex_packing_none = 0,
3207 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3208 * or unsigned ints based on the sampler type
3209 */
3210 nir_lower_tex_packing_16,
3211 /* The sampler returns 1 32-bit word of 4x8 unorm */
3212 nir_lower_tex_packing_8,
3213 };
3214
3215 typedef struct nir_lower_tex_options {
3216 /**
3217 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3218 * sampler types a texture projector is lowered.
3219 */
3220 unsigned lower_txp;
3221
3222 /**
3223 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3224 */
3225 bool lower_txf_offset;
3226
3227 /**
3228 * If true, lower away nir_tex_src_offset for all rect textures.
3229 */
3230 bool lower_rect_offset;
3231
3232 /**
3233 * If true, lower rect textures to 2D, using txs to fetch the
3234 * texture dimensions and dividing the texture coords by the
3235 * texture dims to normalize.
3236 */
3237 bool lower_rect;
3238
3239 /**
3240 * If true, convert yuv to rgb.
3241 */
3242 unsigned lower_y_uv_external;
3243 unsigned lower_y_u_v_external;
3244 unsigned lower_yx_xuxv_external;
3245 unsigned lower_xy_uxvx_external;
3246 unsigned lower_ayuv_external;
3247 unsigned lower_xyuv_external;
3248
3249 /**
3250 * To emulate certain texture wrap modes, this can be used
3251 * to saturate the specified tex coord to [0.0, 1.0]. The
3252 * bits are according to sampler #, ie. if, for example:
3253 *
3254 * (conf->saturate_s & (1 << n))
3255 *
3256 * is true, then the s coord for sampler n is saturated.
3257 *
3258 * Note that clamping must happen *after* projector lowering
3259 * so any projected texture sample instruction with a clamped
3260 * coordinate gets automatically lowered, regardless of the
3261 * 'lower_txp' setting.
3262 */
3263 unsigned saturate_s;
3264 unsigned saturate_t;
3265 unsigned saturate_r;
3266
3267 /* Bitmask of textures that need swizzling.
3268 *
3269 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3270 * swizzles[texture_index] is applied to the result of the texturing
3271 * operation.
3272 */
3273 unsigned swizzle_result;
3274
3275 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3276 * while 4 and 5 represent 0 and 1 respectively.
3277 */
3278 uint8_t swizzles[32][4];
3279
3280 /* Can be used to scale sampled values in range required by the format. */
3281 float scale_factors[32];
3282
3283 /**
3284 * Bitmap of textures that need srgb to linear conversion. If
3285 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3286 * of the texture are lowered to linear.
3287 */
3288 unsigned lower_srgb;
3289
3290 /**
3291 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3292 * LODs to nir_texop_txl.
3293 */
3294 bool lower_tex_without_implicit_lod;
3295
3296 /**
3297 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3298 */
3299 bool lower_txd_cube_map;
3300
3301 /**
3302 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3303 */
3304 bool lower_txd_3d;
3305
3306 /**
3307 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3308 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3309 * with lower_txd_cube_map.
3310 */
3311 bool lower_txd_shadow;
3312
3313 /**
3314 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3315 * Implies lower_txd_cube_map and lower_txd_shadow.
3316 */
3317 bool lower_txd;
3318
3319 /**
3320 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3321 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3322 */
3323 bool lower_txb_shadow_clamp;
3324
3325 /**
3326 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3327 * with nir_texop_txl. This includes cube maps.
3328 */
3329 bool lower_txd_shadow_clamp;
3330
3331 /**
3332 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3333 * with nir_texop_txl. This includes cube maps.
3334 */
3335 bool lower_txd_offset_clamp;
3336
3337 /**
3338 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3339 * sampler is bindless.
3340 */
3341 bool lower_txd_clamp_bindless_sampler;
3342
3343 /**
3344 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3345 * sampler index is not statically determinable to be less than 16.
3346 */
3347 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3348
3349 /**
3350 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3351 * mixed-up tg4 locations.
3352 */
3353 bool lower_tg4_broadcom_swizzle;
3354
3355 /**
3356 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3357 */
3358 bool lower_tg4_offsets;
3359
3360 enum nir_lower_tex_packing lower_tex_packing[32];
3361 } nir_lower_tex_options;
3362
3363 bool nir_lower_tex(nir_shader *shader,
3364 const nir_lower_tex_options *options);
3365
3366 enum nir_lower_non_uniform_access_type {
3367 nir_lower_non_uniform_ubo_access = (1 << 0),
3368 nir_lower_non_uniform_ssbo_access = (1 << 1),
3369 nir_lower_non_uniform_texture_access = (1 << 2),
3370 nir_lower_non_uniform_image_access = (1 << 3),
3371 };
3372
3373 bool nir_lower_non_uniform_access(nir_shader *shader,
3374 enum nir_lower_non_uniform_access_type);
3375
3376 bool nir_lower_idiv(nir_shader *shader);
3377
3378 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3379 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3380 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3381
3382 bool nir_lower_frexp(nir_shader *nir);
3383
3384 void nir_lower_two_sided_color(nir_shader *shader);
3385
3386 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3387
3388 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3389 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3390 const gl_state_index16 *uniform_state_tokens);
3391
3392 typedef struct nir_lower_wpos_ytransform_options {
3393 gl_state_index16 state_tokens[STATE_LENGTH];
3394 bool fs_coord_origin_upper_left :1;
3395 bool fs_coord_origin_lower_left :1;
3396 bool fs_coord_pixel_center_integer :1;
3397 bool fs_coord_pixel_center_half_integer :1;
3398 } nir_lower_wpos_ytransform_options;
3399
3400 bool nir_lower_wpos_ytransform(nir_shader *shader,
3401 const nir_lower_wpos_ytransform_options *options);
3402 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3403
3404 bool nir_lower_fb_read(nir_shader *shader);
3405
3406 typedef struct nir_lower_drawpixels_options {
3407 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3408 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3409 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3410 unsigned drawpix_sampler;
3411 unsigned pixelmap_sampler;
3412 bool pixel_maps :1;
3413 bool scale_and_bias :1;
3414 } nir_lower_drawpixels_options;
3415
3416 void nir_lower_drawpixels(nir_shader *shader,
3417 const nir_lower_drawpixels_options *options);
3418
3419 typedef struct nir_lower_bitmap_options {
3420 unsigned sampler;
3421 bool swizzle_xxxx;
3422 } nir_lower_bitmap_options;
3423
3424 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3425
3426 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3427
3428 typedef enum {
3429 nir_lower_int_source_mods = 1 << 0,
3430 nir_lower_float_source_mods = 1 << 1,
3431 nir_lower_triop_abs = 1 << 2,
3432 nir_lower_all_source_mods = (1 << 3) - 1
3433 } nir_lower_to_source_mods_flags;
3434
3435
3436 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3437
3438 bool nir_lower_gs_intrinsics(nir_shader *shader);
3439
3440 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3441
3442 bool nir_lower_bit_size(nir_shader *shader,
3443 nir_lower_bit_size_callback callback,
3444 void *callback_data);
3445
3446 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3447 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3448
3449 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3450 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3451 nir_lower_doubles_options options);
3452 bool nir_lower_pack(nir_shader *shader);
3453
3454 bool nir_normalize_cubemap_coords(nir_shader *shader);
3455
3456 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3457
3458 void nir_loop_analyze_impl(nir_function_impl *impl,
3459 nir_variable_mode indirect_mask);
3460
3461 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3462
3463 bool nir_repair_ssa_impl(nir_function_impl *impl);
3464 bool nir_repair_ssa(nir_shader *shader);
3465
3466 void nir_convert_loop_to_lcssa(nir_loop *loop);
3467
3468 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3469 * registers. If false, convert all values (even those not involved in a phi
3470 * node) to registers.
3471 */
3472 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3473
3474 bool nir_lower_phis_to_regs_block(nir_block *block);
3475 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3476 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3477
3478 bool nir_opt_comparison_pre(nir_shader *shader);
3479
3480 bool nir_opt_algebraic(nir_shader *shader);
3481 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3482 bool nir_opt_algebraic_late(nir_shader *shader);
3483 bool nir_opt_constant_folding(nir_shader *shader);
3484
3485 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3486
3487 bool nir_copy_prop(nir_shader *shader);
3488
3489 bool nir_opt_copy_prop_vars(nir_shader *shader);
3490
3491 bool nir_opt_cse(nir_shader *shader);
3492
3493 bool nir_opt_dce(nir_shader *shader);
3494
3495 bool nir_opt_dead_cf(nir_shader *shader);
3496
3497 bool nir_opt_dead_write_vars(nir_shader *shader);
3498
3499 bool nir_opt_deref_impl(nir_function_impl *impl);
3500 bool nir_opt_deref(nir_shader *shader);
3501
3502 bool nir_opt_find_array_copies(nir_shader *shader);
3503
3504 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3505
3506 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3507
3508 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3509
3510 bool nir_opt_intrinsics(nir_shader *shader);
3511
3512 bool nir_opt_large_constants(nir_shader *shader,
3513 glsl_type_size_align_func size_align,
3514 unsigned threshold);
3515
3516 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3517
3518 bool nir_opt_move_comparisons(nir_shader *shader);
3519
3520 bool nir_opt_move_load_ubo(nir_shader *shader);
3521
3522 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3523 bool indirect_load_ok, bool expensive_alu_ok);
3524
3525 bool nir_opt_remove_phis(nir_shader *shader);
3526
3527 bool nir_opt_shrink_load(nir_shader *shader);
3528
3529 bool nir_opt_trivial_continues(nir_shader *shader);
3530
3531 bool nir_opt_undef(nir_shader *shader);
3532
3533 bool nir_opt_conditional_discard(nir_shader *shader);
3534
3535 void nir_strip(nir_shader *shader);
3536
3537 void nir_sweep(nir_shader *shader);
3538
3539 void nir_remap_dual_slot_attributes(nir_shader *shader,
3540 uint64_t *dual_slot_inputs);
3541 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3542
3543 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3544 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3545
3546 #ifdef __cplusplus
3547 } /* extern "C" */
3548 #endif
3549
3550 #endif /* NIR_H */