nir: add is_in_ubo/ssbo/block helpers
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851
852 case GLSL_TYPE_SAMPLER:
853 case GLSL_TYPE_IMAGE:
854 case GLSL_TYPE_ATOMIC_UINT:
855 case GLSL_TYPE_STRUCT:
856 case GLSL_TYPE_INTERFACE:
857 case GLSL_TYPE_ARRAY:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SUBROUTINE:
860 case GLSL_TYPE_FUNCTION:
861 case GLSL_TYPE_ERROR:
862 return nir_type_invalid;
863 }
864
865 unreachable("unknown type");
866 }
867
868 static inline nir_alu_type
869 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
870 {
871 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
872 }
873
874 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
875 nir_rounding_mode rnd);
876
877 static inline nir_op
878 nir_op_vec(unsigned components)
879 {
880 switch (components) {
881 case 1: return nir_op_mov;
882 case 2: return nir_op_vec2;
883 case 3: return nir_op_vec3;
884 case 4: return nir_op_vec4;
885 default: unreachable("bad component count");
886 }
887 }
888
889 typedef enum {
890 /**
891 * Operation where the first two sources are commutative.
892 *
893 * For 2-source operations, this just mathematical commutativity. Some
894 * 3-source operations, like ffma, are only commutative in the first two
895 * sources.
896 */
897 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
898 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
899 } nir_op_algebraic_property;
900
901 typedef struct {
902 const char *name;
903
904 unsigned num_inputs;
905
906 /**
907 * The number of components in the output
908 *
909 * If non-zero, this is the size of the output and input sizes are
910 * explicitly given; swizzle and writemask are still in effect, but if
911 * the output component is masked out, then the input component may
912 * still be in use.
913 *
914 * If zero, the opcode acts in the standard, per-component manner; the
915 * operation is performed on each component (except the ones that are
916 * masked out) with the input being taken from the input swizzle for
917 * that component.
918 *
919 * The size of some of the inputs may be given (i.e. non-zero) even
920 * though output_size is zero; in that case, the inputs with a zero
921 * size act per-component, while the inputs with non-zero size don't.
922 */
923 unsigned output_size;
924
925 /**
926 * The type of vector that the instruction outputs. Note that the
927 * staurate modifier is only allowed on outputs with the float type.
928 */
929
930 nir_alu_type output_type;
931
932 /**
933 * The number of components in each input
934 */
935 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
936
937 /**
938 * The type of vector that each input takes. Note that negate and
939 * absolute value are only allowed on inputs with int or float type and
940 * behave differently on the two.
941 */
942 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
943
944 nir_op_algebraic_property algebraic_properties;
945
946 /* Whether this represents a numeric conversion opcode */
947 bool is_conversion;
948 } nir_op_info;
949
950 extern const nir_op_info nir_op_infos[nir_num_opcodes];
951
952 typedef struct nir_alu_instr {
953 nir_instr instr;
954 nir_op op;
955
956 /** Indicates that this ALU instruction generates an exact value
957 *
958 * This is kind of a mixture of GLSL "precise" and "invariant" and not
959 * really equivalent to either. This indicates that the value generated by
960 * this operation is high-precision and any code transformations that touch
961 * it must ensure that the resulting value is bit-for-bit identical to the
962 * original.
963 */
964 bool exact:1;
965
966 /**
967 * Indicates that this instruction do not cause wrapping to occur, in the
968 * form of overflow or underflow.
969 */
970 bool no_signed_wrap:1;
971 bool no_unsigned_wrap:1;
972
973 nir_alu_dest dest;
974 nir_alu_src src[];
975 } nir_alu_instr;
976
977 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
978 nir_alu_instr *instr);
979 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
980 nir_alu_instr *instr);
981
982 /* is this source channel used? */
983 static inline bool
984 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
985 unsigned channel)
986 {
987 if (nir_op_infos[instr->op].input_sizes[src] > 0)
988 return channel < nir_op_infos[instr->op].input_sizes[src];
989
990 return (instr->dest.write_mask >> channel) & 1;
991 }
992
993 static inline nir_component_mask_t
994 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
995 {
996 nir_component_mask_t read_mask = 0;
997 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
998 if (!nir_alu_instr_channel_used(instr, src, c))
999 continue;
1000
1001 read_mask |= (1 << instr->src[src].swizzle[c]);
1002 }
1003 return read_mask;
1004 }
1005
1006 /*
1007 * For instructions whose destinations are SSA, get the number of channels
1008 * used for a source
1009 */
1010 static inline unsigned
1011 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1012 {
1013 assert(instr->dest.dest.is_ssa);
1014
1015 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1016 return nir_op_infos[instr->op].input_sizes[src];
1017
1018 return instr->dest.dest.ssa.num_components;
1019 }
1020
1021 bool nir_const_value_negative_equal(const nir_const_value *c1,
1022 const nir_const_value *c2,
1023 unsigned components,
1024 nir_alu_type base_type,
1025 unsigned bits);
1026
1027 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1028 unsigned src1, unsigned src2);
1029
1030 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1031 const nir_alu_instr *alu2,
1032 unsigned src1, unsigned src2);
1033
1034 typedef enum {
1035 nir_deref_type_var,
1036 nir_deref_type_array,
1037 nir_deref_type_array_wildcard,
1038 nir_deref_type_ptr_as_array,
1039 nir_deref_type_struct,
1040 nir_deref_type_cast,
1041 } nir_deref_type;
1042
1043 typedef struct {
1044 nir_instr instr;
1045
1046 /** The type of this deref instruction */
1047 nir_deref_type deref_type;
1048
1049 /** The mode of the underlying variable */
1050 nir_variable_mode mode;
1051
1052 /** The dereferenced type of the resulting pointer value */
1053 const struct glsl_type *type;
1054
1055 union {
1056 /** Variable being dereferenced if deref_type is a deref_var */
1057 nir_variable *var;
1058
1059 /** Parent deref if deref_type is not deref_var */
1060 nir_src parent;
1061 };
1062
1063 /** Additional deref parameters */
1064 union {
1065 struct {
1066 nir_src index;
1067 } arr;
1068
1069 struct {
1070 unsigned index;
1071 } strct;
1072
1073 struct {
1074 unsigned ptr_stride;
1075 } cast;
1076 };
1077
1078 /** Destination to store the resulting "pointer" */
1079 nir_dest dest;
1080 } nir_deref_instr;
1081
1082 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1083
1084 static inline nir_deref_instr *
1085 nir_deref_instr_parent(const nir_deref_instr *instr)
1086 {
1087 if (instr->deref_type == nir_deref_type_var)
1088 return NULL;
1089 else
1090 return nir_src_as_deref(instr->parent);
1091 }
1092
1093 static inline nir_variable *
1094 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1095 {
1096 while (instr->deref_type != nir_deref_type_var) {
1097 if (instr->deref_type == nir_deref_type_cast)
1098 return NULL;
1099
1100 instr = nir_deref_instr_parent(instr);
1101 }
1102
1103 return instr->var;
1104 }
1105
1106 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1107 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1108
1109 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1110
1111 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1112
1113 typedef struct {
1114 nir_instr instr;
1115
1116 struct nir_function *callee;
1117
1118 unsigned num_params;
1119 nir_src params[];
1120 } nir_call_instr;
1121
1122 #include "nir_intrinsics.h"
1123
1124 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1125
1126 /** Represents an intrinsic
1127 *
1128 * An intrinsic is an instruction type for handling things that are
1129 * more-or-less regular operations but don't just consume and produce SSA
1130 * values like ALU operations do. Intrinsics are not for things that have
1131 * special semantic meaning such as phi nodes and parallel copies.
1132 * Examples of intrinsics include variable load/store operations, system
1133 * value loads, and the like. Even though texturing more-or-less falls
1134 * under this category, texturing is its own instruction type because
1135 * trying to represent texturing with intrinsics would lead to a
1136 * combinatorial explosion of intrinsic opcodes.
1137 *
1138 * By having a single instruction type for handling a lot of different
1139 * cases, optimization passes can look for intrinsics and, for the most
1140 * part, completely ignore them. Each intrinsic type also has a few
1141 * possible flags that govern whether or not they can be reordered or
1142 * eliminated. That way passes like dead code elimination can still work
1143 * on intrisics without understanding the meaning of each.
1144 *
1145 * Each intrinsic has some number of constant indices, some number of
1146 * variables, and some number of sources. What these sources, variables,
1147 * and indices mean depends on the intrinsic and is documented with the
1148 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1149 * instructions are the only types of instruction that can operate on
1150 * variables.
1151 */
1152 typedef struct {
1153 nir_instr instr;
1154
1155 nir_intrinsic_op intrinsic;
1156
1157 nir_dest dest;
1158
1159 /** number of components if this is a vectorized intrinsic
1160 *
1161 * Similarly to ALU operations, some intrinsics are vectorized.
1162 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1163 * For vectorized intrinsics, the num_components field specifies the
1164 * number of destination components and the number of source components
1165 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1166 */
1167 uint8_t num_components;
1168
1169 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1170
1171 nir_src src[];
1172 } nir_intrinsic_instr;
1173
1174 static inline nir_variable *
1175 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1176 {
1177 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1178 }
1179
1180 /**
1181 * \name NIR intrinsics semantic flags
1182 *
1183 * information about what the compiler can do with the intrinsics.
1184 *
1185 * \sa nir_intrinsic_info::flags
1186 */
1187 typedef enum {
1188 /**
1189 * whether the intrinsic can be safely eliminated if none of its output
1190 * value is not being used.
1191 */
1192 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1193
1194 /**
1195 * Whether the intrinsic can be reordered with respect to any other
1196 * intrinsic, i.e. whether the only reordering dependencies of the
1197 * intrinsic are due to the register reads/writes.
1198 */
1199 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1200 } nir_intrinsic_semantic_flag;
1201
1202 /**
1203 * \name NIR intrinsics const-index flag
1204 *
1205 * Indicates the usage of a const_index slot.
1206 *
1207 * \sa nir_intrinsic_info::index_map
1208 */
1209 typedef enum {
1210 /**
1211 * Generally instructions that take a offset src argument, can encode
1212 * a constant 'base' value which is added to the offset.
1213 */
1214 NIR_INTRINSIC_BASE = 1,
1215
1216 /**
1217 * For store instructions, a writemask for the store.
1218 */
1219 NIR_INTRINSIC_WRMASK,
1220
1221 /**
1222 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1223 */
1224 NIR_INTRINSIC_STREAM_ID,
1225
1226 /**
1227 * The clip-plane id for load_user_clip_plane intrinsic.
1228 */
1229 NIR_INTRINSIC_UCP_ID,
1230
1231 /**
1232 * The amount of data, starting from BASE, that this instruction may
1233 * access. This is used to provide bounds if the offset is not constant.
1234 */
1235 NIR_INTRINSIC_RANGE,
1236
1237 /**
1238 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1239 */
1240 NIR_INTRINSIC_DESC_SET,
1241
1242 /**
1243 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1244 */
1245 NIR_INTRINSIC_BINDING,
1246
1247 /**
1248 * Component offset.
1249 */
1250 NIR_INTRINSIC_COMPONENT,
1251
1252 /**
1253 * Interpolation mode (only meaningful for FS inputs).
1254 */
1255 NIR_INTRINSIC_INTERP_MODE,
1256
1257 /**
1258 * A binary nir_op to use when performing a reduction or scan operation
1259 */
1260 NIR_INTRINSIC_REDUCTION_OP,
1261
1262 /**
1263 * Cluster size for reduction operations
1264 */
1265 NIR_INTRINSIC_CLUSTER_SIZE,
1266
1267 /**
1268 * Parameter index for a load_param intrinsic
1269 */
1270 NIR_INTRINSIC_PARAM_IDX,
1271
1272 /**
1273 * Image dimensionality for image intrinsics
1274 *
1275 * One of GLSL_SAMPLER_DIM_*
1276 */
1277 NIR_INTRINSIC_IMAGE_DIM,
1278
1279 /**
1280 * Non-zero if we are accessing an array image
1281 */
1282 NIR_INTRINSIC_IMAGE_ARRAY,
1283
1284 /**
1285 * Image format for image intrinsics
1286 */
1287 NIR_INTRINSIC_FORMAT,
1288
1289 /**
1290 * Access qualifiers for image and memory access intrinsics
1291 */
1292 NIR_INTRINSIC_ACCESS,
1293
1294 /**
1295 * Alignment for offsets and addresses
1296 *
1297 * These two parameters, specify an alignment in terms of a multiplier and
1298 * an offset. The offset or address parameter X of the intrinsic is
1299 * guaranteed to satisfy the following:
1300 *
1301 * (X - align_offset) % align_mul == 0
1302 */
1303 NIR_INTRINSIC_ALIGN_MUL,
1304 NIR_INTRINSIC_ALIGN_OFFSET,
1305
1306 /**
1307 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1308 */
1309 NIR_INTRINSIC_DESC_TYPE,
1310
1311 /**
1312 * The nir_alu_type of a uniform/input/output
1313 */
1314 NIR_INTRINSIC_TYPE,
1315
1316 /**
1317 * The swizzle mask for the instructions
1318 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1319 */
1320 NIR_INTRINSIC_SWIZZLE_MASK,
1321
1322 /* Separate source/dest access flags for copies */
1323 NIR_INTRINSIC_SRC_ACCESS = 21,
1324 NIR_INTRINSIC_DST_ACCESS = 22,
1325
1326 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1327
1328 } nir_intrinsic_index_flag;
1329
1330 #define NIR_INTRINSIC_MAX_INPUTS 5
1331
1332 typedef struct {
1333 const char *name;
1334
1335 unsigned num_srcs; /** < number of register/SSA inputs */
1336
1337 /** number of components of each input register
1338 *
1339 * If this value is 0, the number of components is given by the
1340 * num_components field of nir_intrinsic_instr. If this value is -1, the
1341 * intrinsic consumes however many components are provided and it is not
1342 * validated at all.
1343 */
1344 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1345
1346 bool has_dest;
1347
1348 /** number of components of the output register
1349 *
1350 * If this value is 0, the number of components is given by the
1351 * num_components field of nir_intrinsic_instr.
1352 */
1353 unsigned dest_components;
1354
1355 /** bitfield of legal bit sizes */
1356 unsigned dest_bit_sizes;
1357
1358 /** the number of constant indices used by the intrinsic */
1359 unsigned num_indices;
1360
1361 /** indicates the usage of intr->const_index[n] */
1362 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1363
1364 /** semantic flags for calls to this intrinsic */
1365 nir_intrinsic_semantic_flag flags;
1366 } nir_intrinsic_info;
1367
1368 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1369
1370 static inline unsigned
1371 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1372 {
1373 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1374 assert(srcn < info->num_srcs);
1375 if (info->src_components[srcn] > 0)
1376 return info->src_components[srcn];
1377 else if (info->src_components[srcn] == 0)
1378 return intr->num_components;
1379 else
1380 return nir_src_num_components(intr->src[srcn]);
1381 }
1382
1383 static inline unsigned
1384 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1385 {
1386 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1387 if (!info->has_dest)
1388 return 0;
1389 else if (info->dest_components)
1390 return info->dest_components;
1391 else
1392 return intr->num_components;
1393 }
1394
1395 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1396 static inline type \
1397 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1398 { \
1399 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1400 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1401 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1402 } \
1403 static inline void \
1404 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1405 { \
1406 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1407 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1408 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1409 }
1410
1411 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1412 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1413 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1414 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1415 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1416 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1417 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1418 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1419 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1420 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1421 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1422 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1423 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1424 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1425 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1426 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1427 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1428 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1429 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1430 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1431 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1432 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1433 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1434
1435 static inline void
1436 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1437 unsigned align_mul, unsigned align_offset)
1438 {
1439 assert(util_is_power_of_two_nonzero(align_mul));
1440 assert(align_offset < align_mul);
1441 nir_intrinsic_set_align_mul(intrin, align_mul);
1442 nir_intrinsic_set_align_offset(intrin, align_offset);
1443 }
1444
1445 /** Returns a simple alignment for a load/store intrinsic offset
1446 *
1447 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1448 * and ALIGN_OFFSET parameters, this helper takes both into account and
1449 * provides a single simple alignment parameter. The offset X is guaranteed
1450 * to satisfy X % align == 0.
1451 */
1452 static inline unsigned
1453 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1454 {
1455 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1456 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1457 assert(align_offset < align_mul);
1458 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1459 }
1460
1461 /* Converts a image_deref_* intrinsic into a image_* one */
1462 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1463 nir_ssa_def *handle, bool bindless);
1464
1465 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1466 static inline bool
1467 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1468 {
1469 if (instr->intrinsic == nir_intrinsic_load_deref ||
1470 instr->intrinsic == nir_intrinsic_load_ssbo ||
1471 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1472 instr->intrinsic == nir_intrinsic_image_deref_load ||
1473 instr->intrinsic == nir_intrinsic_image_load) {
1474 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1475 } else {
1476 const nir_intrinsic_info *info =
1477 &nir_intrinsic_infos[instr->intrinsic];
1478 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1479 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1480 }
1481 }
1482
1483 /**
1484 * \group texture information
1485 *
1486 * This gives semantic information about textures which is useful to the
1487 * frontend, the backend, and lowering passes, but not the optimizer.
1488 */
1489
1490 typedef enum {
1491 nir_tex_src_coord,
1492 nir_tex_src_projector,
1493 nir_tex_src_comparator, /* shadow comparator */
1494 nir_tex_src_offset,
1495 nir_tex_src_bias,
1496 nir_tex_src_lod,
1497 nir_tex_src_min_lod,
1498 nir_tex_src_ms_index, /* MSAA sample index */
1499 nir_tex_src_ms_mcs, /* MSAA compression value */
1500 nir_tex_src_ddx,
1501 nir_tex_src_ddy,
1502 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1503 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1504 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1505 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1506 nir_tex_src_texture_handle, /* < bindless texture handle */
1507 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1508 nir_tex_src_plane, /* < selects plane for planar textures */
1509 nir_num_tex_src_types
1510 } nir_tex_src_type;
1511
1512 typedef struct {
1513 nir_src src;
1514 nir_tex_src_type src_type;
1515 } nir_tex_src;
1516
1517 typedef enum {
1518 nir_texop_tex, /**< Regular texture look-up */
1519 nir_texop_txb, /**< Texture look-up with LOD bias */
1520 nir_texop_txl, /**< Texture look-up with explicit LOD */
1521 nir_texop_txd, /**< Texture look-up with partial derivatives */
1522 nir_texop_txf, /**< Texel fetch with explicit LOD */
1523 nir_texop_txf_ms, /**< Multisample texture fetch */
1524 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1525 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1526 nir_texop_txs, /**< Texture size */
1527 nir_texop_lod, /**< Texture lod query */
1528 nir_texop_tg4, /**< Texture gather */
1529 nir_texop_query_levels, /**< Texture levels query */
1530 nir_texop_texture_samples, /**< Texture samples query */
1531 nir_texop_samples_identical, /**< Query whether all samples are definitely
1532 * identical.
1533 */
1534 } nir_texop;
1535
1536 typedef struct {
1537 nir_instr instr;
1538
1539 enum glsl_sampler_dim sampler_dim;
1540 nir_alu_type dest_type;
1541
1542 nir_texop op;
1543 nir_dest dest;
1544 nir_tex_src *src;
1545 unsigned num_srcs, coord_components;
1546 bool is_array, is_shadow;
1547
1548 /**
1549 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1550 * components or the new-style shadow that outputs 1 component.
1551 */
1552 bool is_new_style_shadow;
1553
1554 /* gather component selector */
1555 unsigned component : 2;
1556
1557 /* gather offsets */
1558 int8_t tg4_offsets[4][2];
1559
1560 /* True if the texture index or handle is not dynamically uniform */
1561 bool texture_non_uniform;
1562
1563 /* True if the sampler index or handle is not dynamically uniform */
1564 bool sampler_non_uniform;
1565
1566 /** The texture index
1567 *
1568 * If this texture instruction has a nir_tex_src_texture_offset source,
1569 * then the texture index is given by texture_index + texture_offset.
1570 */
1571 unsigned texture_index;
1572
1573 /** The size of the texture array or 0 if it's not an array */
1574 unsigned texture_array_size;
1575
1576 /** The sampler index
1577 *
1578 * The following operations do not require a sampler and, as such, this
1579 * field should be ignored:
1580 * - nir_texop_txf
1581 * - nir_texop_txf_ms
1582 * - nir_texop_txs
1583 * - nir_texop_lod
1584 * - nir_texop_query_levels
1585 * - nir_texop_texture_samples
1586 * - nir_texop_samples_identical
1587 *
1588 * If this texture instruction has a nir_tex_src_sampler_offset source,
1589 * then the sampler index is given by sampler_index + sampler_offset.
1590 */
1591 unsigned sampler_index;
1592 } nir_tex_instr;
1593
1594 static inline unsigned
1595 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1596 {
1597 switch (instr->op) {
1598 case nir_texop_txs: {
1599 unsigned ret;
1600 switch (instr->sampler_dim) {
1601 case GLSL_SAMPLER_DIM_1D:
1602 case GLSL_SAMPLER_DIM_BUF:
1603 ret = 1;
1604 break;
1605 case GLSL_SAMPLER_DIM_2D:
1606 case GLSL_SAMPLER_DIM_CUBE:
1607 case GLSL_SAMPLER_DIM_MS:
1608 case GLSL_SAMPLER_DIM_RECT:
1609 case GLSL_SAMPLER_DIM_EXTERNAL:
1610 case GLSL_SAMPLER_DIM_SUBPASS:
1611 ret = 2;
1612 break;
1613 case GLSL_SAMPLER_DIM_3D:
1614 ret = 3;
1615 break;
1616 default:
1617 unreachable("not reached");
1618 }
1619 if (instr->is_array)
1620 ret++;
1621 return ret;
1622 }
1623
1624 case nir_texop_lod:
1625 return 2;
1626
1627 case nir_texop_texture_samples:
1628 case nir_texop_query_levels:
1629 case nir_texop_samples_identical:
1630 return 1;
1631
1632 default:
1633 if (instr->is_shadow && instr->is_new_style_shadow)
1634 return 1;
1635
1636 return 4;
1637 }
1638 }
1639
1640 /* Returns true if this texture operation queries something about the texture
1641 * rather than actually sampling it.
1642 */
1643 static inline bool
1644 nir_tex_instr_is_query(const nir_tex_instr *instr)
1645 {
1646 switch (instr->op) {
1647 case nir_texop_txs:
1648 case nir_texop_lod:
1649 case nir_texop_texture_samples:
1650 case nir_texop_query_levels:
1651 case nir_texop_txf_ms_mcs:
1652 return true;
1653 case nir_texop_tex:
1654 case nir_texop_txb:
1655 case nir_texop_txl:
1656 case nir_texop_txd:
1657 case nir_texop_txf:
1658 case nir_texop_txf_ms:
1659 case nir_texop_txf_ms_fb:
1660 case nir_texop_tg4:
1661 return false;
1662 default:
1663 unreachable("Invalid texture opcode");
1664 }
1665 }
1666
1667 static inline bool
1668 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1669 {
1670 switch (instr->op) {
1671 case nir_op_flt:
1672 case nir_op_fge:
1673 case nir_op_feq:
1674 case nir_op_fne:
1675 case nir_op_ilt:
1676 case nir_op_ult:
1677 case nir_op_ige:
1678 case nir_op_uge:
1679 case nir_op_ieq:
1680 case nir_op_ine:
1681 case nir_op_i2b1:
1682 case nir_op_f2b1:
1683 case nir_op_inot:
1684 return true;
1685 default:
1686 return false;
1687 }
1688 }
1689
1690 static inline nir_alu_type
1691 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1692 {
1693 switch (instr->src[src].src_type) {
1694 case nir_tex_src_coord:
1695 switch (instr->op) {
1696 case nir_texop_txf:
1697 case nir_texop_txf_ms:
1698 case nir_texop_txf_ms_fb:
1699 case nir_texop_txf_ms_mcs:
1700 case nir_texop_samples_identical:
1701 return nir_type_int;
1702
1703 default:
1704 return nir_type_float;
1705 }
1706
1707 case nir_tex_src_lod:
1708 switch (instr->op) {
1709 case nir_texop_txs:
1710 case nir_texop_txf:
1711 return nir_type_int;
1712
1713 default:
1714 return nir_type_float;
1715 }
1716
1717 case nir_tex_src_projector:
1718 case nir_tex_src_comparator:
1719 case nir_tex_src_bias:
1720 case nir_tex_src_ddx:
1721 case nir_tex_src_ddy:
1722 return nir_type_float;
1723
1724 case nir_tex_src_offset:
1725 case nir_tex_src_ms_index:
1726 case nir_tex_src_texture_offset:
1727 case nir_tex_src_sampler_offset:
1728 return nir_type_int;
1729
1730 default:
1731 unreachable("Invalid texture source type");
1732 }
1733 }
1734
1735 static inline unsigned
1736 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1737 {
1738 if (instr->src[src].src_type == nir_tex_src_coord)
1739 return instr->coord_components;
1740
1741 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1742 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1743 return 4;
1744
1745 if (instr->src[src].src_type == nir_tex_src_ddx ||
1746 instr->src[src].src_type == nir_tex_src_ddy) {
1747 if (instr->is_array)
1748 return instr->coord_components - 1;
1749 else
1750 return instr->coord_components;
1751 }
1752
1753 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1754 * the offset, since a cube maps to a single face.
1755 */
1756 if (instr->src[src].src_type == nir_tex_src_offset) {
1757 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1758 return 2;
1759 else if (instr->is_array)
1760 return instr->coord_components - 1;
1761 else
1762 return instr->coord_components;
1763 }
1764
1765 return 1;
1766 }
1767
1768 static inline int
1769 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1770 {
1771 for (unsigned i = 0; i < instr->num_srcs; i++)
1772 if (instr->src[i].src_type == type)
1773 return (int) i;
1774
1775 return -1;
1776 }
1777
1778 void nir_tex_instr_add_src(nir_tex_instr *tex,
1779 nir_tex_src_type src_type,
1780 nir_src src);
1781
1782 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1783
1784 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1785
1786 typedef struct {
1787 nir_instr instr;
1788
1789 nir_ssa_def def;
1790
1791 nir_const_value value[];
1792 } nir_load_const_instr;
1793
1794 #define nir_const_load_to_arr(arr, l, m) \
1795 { \
1796 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1797 } while (false);
1798
1799 typedef enum {
1800 nir_jump_return,
1801 nir_jump_break,
1802 nir_jump_continue,
1803 } nir_jump_type;
1804
1805 typedef struct {
1806 nir_instr instr;
1807 nir_jump_type type;
1808 } nir_jump_instr;
1809
1810 /* creates a new SSA variable in an undefined state */
1811
1812 typedef struct {
1813 nir_instr instr;
1814 nir_ssa_def def;
1815 } nir_ssa_undef_instr;
1816
1817 typedef struct {
1818 struct exec_node node;
1819
1820 /* The predecessor block corresponding to this source */
1821 struct nir_block *pred;
1822
1823 nir_src src;
1824 } nir_phi_src;
1825
1826 #define nir_foreach_phi_src(phi_src, phi) \
1827 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1828 #define nir_foreach_phi_src_safe(phi_src, phi) \
1829 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1830
1831 typedef struct {
1832 nir_instr instr;
1833
1834 struct exec_list srcs; /** < list of nir_phi_src */
1835
1836 nir_dest dest;
1837 } nir_phi_instr;
1838
1839 typedef struct {
1840 struct exec_node node;
1841 nir_src src;
1842 nir_dest dest;
1843 } nir_parallel_copy_entry;
1844
1845 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1846 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1847
1848 typedef struct {
1849 nir_instr instr;
1850
1851 /* A list of nir_parallel_copy_entrys. The sources of all of the
1852 * entries are copied to the corresponding destinations "in parallel".
1853 * In other words, if we have two entries: a -> b and b -> a, the values
1854 * get swapped.
1855 */
1856 struct exec_list entries;
1857 } nir_parallel_copy_instr;
1858
1859 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1860 type, nir_instr_type_alu)
1861 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1862 type, nir_instr_type_deref)
1863 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1864 type, nir_instr_type_call)
1865 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1866 type, nir_instr_type_jump)
1867 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1868 type, nir_instr_type_tex)
1869 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1870 type, nir_instr_type_intrinsic)
1871 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1872 type, nir_instr_type_load_const)
1873 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1874 type, nir_instr_type_ssa_undef)
1875 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1876 type, nir_instr_type_phi)
1877 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1878 nir_parallel_copy_instr, instr,
1879 type, nir_instr_type_parallel_copy)
1880
1881 /*
1882 * Control flow
1883 *
1884 * Control flow consists of a tree of control flow nodes, which include
1885 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1886 * instructions that always run start-to-finish. Each basic block also keeps
1887 * track of its successors (blocks which may run immediately after the current
1888 * block) and predecessors (blocks which could have run immediately before the
1889 * current block). Each function also has a start block and an end block which
1890 * all return statements point to (which is always empty). Together, all the
1891 * blocks with their predecessors and successors make up the control flow
1892 * graph (CFG) of the function. There are helpers that modify the tree of
1893 * control flow nodes while modifying the CFG appropriately; these should be
1894 * used instead of modifying the tree directly.
1895 */
1896
1897 typedef enum {
1898 nir_cf_node_block,
1899 nir_cf_node_if,
1900 nir_cf_node_loop,
1901 nir_cf_node_function
1902 } nir_cf_node_type;
1903
1904 typedef struct nir_cf_node {
1905 struct exec_node node;
1906 nir_cf_node_type type;
1907 struct nir_cf_node *parent;
1908 } nir_cf_node;
1909
1910 typedef struct nir_block {
1911 nir_cf_node cf_node;
1912
1913 struct exec_list instr_list; /** < list of nir_instr */
1914
1915 /** generic block index; generated by nir_index_blocks */
1916 unsigned index;
1917
1918 /*
1919 * Each block can only have up to 2 successors, so we put them in a simple
1920 * array - no need for anything more complicated.
1921 */
1922 struct nir_block *successors[2];
1923
1924 /* Set of nir_block predecessors in the CFG */
1925 struct set *predecessors;
1926
1927 /*
1928 * this node's immediate dominator in the dominance tree - set to NULL for
1929 * the start block.
1930 */
1931 struct nir_block *imm_dom;
1932
1933 /* This node's children in the dominance tree */
1934 unsigned num_dom_children;
1935 struct nir_block **dom_children;
1936
1937 /* Set of nir_blocks on the dominance frontier of this block */
1938 struct set *dom_frontier;
1939
1940 /*
1941 * These two indices have the property that dom_{pre,post}_index for each
1942 * child of this block in the dominance tree will always be between
1943 * dom_pre_index and dom_post_index for this block, which makes testing if
1944 * a given block is dominated by another block an O(1) operation.
1945 */
1946 unsigned dom_pre_index, dom_post_index;
1947
1948 /* live in and out for this block; used for liveness analysis */
1949 BITSET_WORD *live_in;
1950 BITSET_WORD *live_out;
1951 } nir_block;
1952
1953 static inline nir_instr *
1954 nir_block_first_instr(nir_block *block)
1955 {
1956 struct exec_node *head = exec_list_get_head(&block->instr_list);
1957 return exec_node_data(nir_instr, head, node);
1958 }
1959
1960 static inline nir_instr *
1961 nir_block_last_instr(nir_block *block)
1962 {
1963 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1964 return exec_node_data(nir_instr, tail, node);
1965 }
1966
1967 static inline bool
1968 nir_block_ends_in_jump(nir_block *block)
1969 {
1970 return !exec_list_is_empty(&block->instr_list) &&
1971 nir_block_last_instr(block)->type == nir_instr_type_jump;
1972 }
1973
1974 #define nir_foreach_instr(instr, block) \
1975 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1976 #define nir_foreach_instr_reverse(instr, block) \
1977 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1978 #define nir_foreach_instr_safe(instr, block) \
1979 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1980 #define nir_foreach_instr_reverse_safe(instr, block) \
1981 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1982
1983 typedef enum {
1984 nir_selection_control_none = 0x0,
1985 nir_selection_control_flatten = 0x1,
1986 nir_selection_control_dont_flatten = 0x2,
1987 } nir_selection_control;
1988
1989 typedef struct nir_if {
1990 nir_cf_node cf_node;
1991 nir_src condition;
1992 nir_selection_control control;
1993
1994 struct exec_list then_list; /** < list of nir_cf_node */
1995 struct exec_list else_list; /** < list of nir_cf_node */
1996 } nir_if;
1997
1998 typedef struct {
1999 nir_if *nif;
2000
2001 /** Instruction that generates nif::condition. */
2002 nir_instr *conditional_instr;
2003
2004 /** Block within ::nif that has the break instruction. */
2005 nir_block *break_block;
2006
2007 /** Last block for the then- or else-path that does not contain the break. */
2008 nir_block *continue_from_block;
2009
2010 /** True when ::break_block is in the else-path of ::nif. */
2011 bool continue_from_then;
2012 bool induction_rhs;
2013
2014 /* This is true if the terminators exact trip count is unknown. For
2015 * example:
2016 *
2017 * for (int i = 0; i < imin(x, 4); i++)
2018 * ...
2019 *
2020 * Here loop analysis would have set a max_trip_count of 4 however we dont
2021 * know for sure that this is the exact trip count.
2022 */
2023 bool exact_trip_count_unknown;
2024
2025 struct list_head loop_terminator_link;
2026 } nir_loop_terminator;
2027
2028 typedef struct {
2029 /* Estimated cost (in number of instructions) of the loop */
2030 unsigned instr_cost;
2031
2032 /* Guessed trip count based on array indexing */
2033 unsigned guessed_trip_count;
2034
2035 /* Maximum number of times the loop is run (if known) */
2036 unsigned max_trip_count;
2037
2038 /* Do we know the exact number of times the loop will be run */
2039 bool exact_trip_count_known;
2040
2041 /* Unroll the loop regardless of its size */
2042 bool force_unroll;
2043
2044 /* Does the loop contain complex loop terminators, continues or other
2045 * complex behaviours? If this is true we can't rely on
2046 * loop_terminator_list to be complete or accurate.
2047 */
2048 bool complex_loop;
2049
2050 nir_loop_terminator *limiting_terminator;
2051
2052 /* A list of loop_terminators terminating this loop. */
2053 struct list_head loop_terminator_list;
2054 } nir_loop_info;
2055
2056 typedef enum {
2057 nir_loop_control_none = 0x0,
2058 nir_loop_control_unroll = 0x1,
2059 nir_loop_control_dont_unroll = 0x2,
2060 } nir_loop_control;
2061
2062 typedef struct {
2063 nir_cf_node cf_node;
2064
2065 struct exec_list body; /** < list of nir_cf_node */
2066
2067 nir_loop_info *info;
2068 nir_loop_control control;
2069 bool partially_unrolled;
2070 } nir_loop;
2071
2072 /**
2073 * Various bits of metadata that can may be created or required by
2074 * optimization and analysis passes
2075 */
2076 typedef enum {
2077 nir_metadata_none = 0x0,
2078 nir_metadata_block_index = 0x1,
2079 nir_metadata_dominance = 0x2,
2080 nir_metadata_live_ssa_defs = 0x4,
2081 nir_metadata_not_properly_reset = 0x8,
2082 nir_metadata_loop_analysis = 0x10,
2083 } nir_metadata;
2084
2085 typedef struct {
2086 nir_cf_node cf_node;
2087
2088 /** pointer to the function of which this is an implementation */
2089 struct nir_function *function;
2090
2091 struct exec_list body; /** < list of nir_cf_node */
2092
2093 nir_block *end_block;
2094
2095 /** list for all local variables in the function */
2096 struct exec_list locals;
2097
2098 /** list of local registers in the function */
2099 struct exec_list registers;
2100
2101 /** next available local register index */
2102 unsigned reg_alloc;
2103
2104 /** next available SSA value index */
2105 unsigned ssa_alloc;
2106
2107 /* total number of basic blocks, only valid when block_index_dirty = false */
2108 unsigned num_blocks;
2109
2110 nir_metadata valid_metadata;
2111 } nir_function_impl;
2112
2113 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2114 nir_start_block(nir_function_impl *impl)
2115 {
2116 return (nir_block *) impl->body.head_sentinel.next;
2117 }
2118
2119 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2120 nir_impl_last_block(nir_function_impl *impl)
2121 {
2122 return (nir_block *) impl->body.tail_sentinel.prev;
2123 }
2124
2125 static inline nir_cf_node *
2126 nir_cf_node_next(nir_cf_node *node)
2127 {
2128 struct exec_node *next = exec_node_get_next(&node->node);
2129 if (exec_node_is_tail_sentinel(next))
2130 return NULL;
2131 else
2132 return exec_node_data(nir_cf_node, next, node);
2133 }
2134
2135 static inline nir_cf_node *
2136 nir_cf_node_prev(nir_cf_node *node)
2137 {
2138 struct exec_node *prev = exec_node_get_prev(&node->node);
2139 if (exec_node_is_head_sentinel(prev))
2140 return NULL;
2141 else
2142 return exec_node_data(nir_cf_node, prev, node);
2143 }
2144
2145 static inline bool
2146 nir_cf_node_is_first(const nir_cf_node *node)
2147 {
2148 return exec_node_is_head_sentinel(node->node.prev);
2149 }
2150
2151 static inline bool
2152 nir_cf_node_is_last(const nir_cf_node *node)
2153 {
2154 return exec_node_is_tail_sentinel(node->node.next);
2155 }
2156
2157 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2158 type, nir_cf_node_block)
2159 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2160 type, nir_cf_node_if)
2161 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2162 type, nir_cf_node_loop)
2163 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2164 nir_function_impl, cf_node, type, nir_cf_node_function)
2165
2166 static inline nir_block *
2167 nir_if_first_then_block(nir_if *if_stmt)
2168 {
2169 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2170 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2171 }
2172
2173 static inline nir_block *
2174 nir_if_last_then_block(nir_if *if_stmt)
2175 {
2176 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2177 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2178 }
2179
2180 static inline nir_block *
2181 nir_if_first_else_block(nir_if *if_stmt)
2182 {
2183 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2184 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2185 }
2186
2187 static inline nir_block *
2188 nir_if_last_else_block(nir_if *if_stmt)
2189 {
2190 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2191 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2192 }
2193
2194 static inline nir_block *
2195 nir_loop_first_block(nir_loop *loop)
2196 {
2197 struct exec_node *head = exec_list_get_head(&loop->body);
2198 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2199 }
2200
2201 static inline nir_block *
2202 nir_loop_last_block(nir_loop *loop)
2203 {
2204 struct exec_node *tail = exec_list_get_tail(&loop->body);
2205 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2206 }
2207
2208 /**
2209 * Return true if this list of cf_nodes contains a single empty block.
2210 */
2211 static inline bool
2212 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2213 {
2214 if (exec_list_is_singular(cf_list)) {
2215 struct exec_node *head = exec_list_get_head(cf_list);
2216 nir_block *block =
2217 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2218 return exec_list_is_empty(&block->instr_list);
2219 }
2220 return false;
2221 }
2222
2223 typedef struct {
2224 uint8_t num_components;
2225 uint8_t bit_size;
2226 } nir_parameter;
2227
2228 typedef struct nir_function {
2229 struct exec_node node;
2230
2231 const char *name;
2232 struct nir_shader *shader;
2233
2234 unsigned num_params;
2235 nir_parameter *params;
2236
2237 /** The implementation of this function.
2238 *
2239 * If the function is only declared and not implemented, this is NULL.
2240 */
2241 nir_function_impl *impl;
2242
2243 bool is_entrypoint;
2244 } nir_function;
2245
2246 typedef enum {
2247 nir_lower_imul64 = (1 << 0),
2248 nir_lower_isign64 = (1 << 1),
2249 /** Lower all int64 modulus and division opcodes */
2250 nir_lower_divmod64 = (1 << 2),
2251 /** Lower all 64-bit umul_high and imul_high opcodes */
2252 nir_lower_imul_high64 = (1 << 3),
2253 nir_lower_mov64 = (1 << 4),
2254 nir_lower_icmp64 = (1 << 5),
2255 nir_lower_iadd64 = (1 << 6),
2256 nir_lower_iabs64 = (1 << 7),
2257 nir_lower_ineg64 = (1 << 8),
2258 nir_lower_logic64 = (1 << 9),
2259 nir_lower_minmax64 = (1 << 10),
2260 nir_lower_shift64 = (1 << 11),
2261 nir_lower_imul_2x32_64 = (1 << 12),
2262 } nir_lower_int64_options;
2263
2264 typedef enum {
2265 nir_lower_drcp = (1 << 0),
2266 nir_lower_dsqrt = (1 << 1),
2267 nir_lower_drsq = (1 << 2),
2268 nir_lower_dtrunc = (1 << 3),
2269 nir_lower_dfloor = (1 << 4),
2270 nir_lower_dceil = (1 << 5),
2271 nir_lower_dfract = (1 << 6),
2272 nir_lower_dround_even = (1 << 7),
2273 nir_lower_dmod = (1 << 8),
2274 nir_lower_fp64_full_software = (1 << 9),
2275 } nir_lower_doubles_options;
2276
2277 typedef struct nir_shader_compiler_options {
2278 bool lower_fdiv;
2279 bool lower_ffma;
2280 bool fuse_ffma;
2281 bool lower_flrp16;
2282 bool lower_flrp32;
2283 /** Lowers flrp when it does not support doubles */
2284 bool lower_flrp64;
2285 bool lower_fpow;
2286 bool lower_fsat;
2287 bool lower_fsqrt;
2288 bool lower_fmod;
2289 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2290 bool lower_bitfield_extract;
2291 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2292 bool lower_bitfield_extract_to_shifts;
2293 /** Lowers bitfield_insert to bfi/bfm */
2294 bool lower_bitfield_insert;
2295 /** Lowers bitfield_insert to compares, and shifts. */
2296 bool lower_bitfield_insert_to_shifts;
2297 /** Lowers bitfield_insert to bfm/bitfield_select. */
2298 bool lower_bitfield_insert_to_bitfield_select;
2299 /** Lowers bitfield_reverse to shifts. */
2300 bool lower_bitfield_reverse;
2301 /** Lowers bit_count to shifts. */
2302 bool lower_bit_count;
2303 /** Lowers ifind_msb to compare and ufind_msb */
2304 bool lower_ifind_msb;
2305 /** Lowers find_lsb to ufind_msb and logic ops */
2306 bool lower_find_lsb;
2307 bool lower_uadd_carry;
2308 bool lower_usub_borrow;
2309 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2310 bool lower_mul_high;
2311 /** lowers fneg and ineg to fsub and isub. */
2312 bool lower_negate;
2313 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2314 bool lower_sub;
2315
2316 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2317 bool lower_scmp;
2318
2319 /** enables rules to lower idiv by power-of-two: */
2320 bool lower_idiv;
2321
2322 /** enable rules to avoid bit shifts */
2323 bool lower_bitshift;
2324
2325 /** enables rules to lower isign to imin+imax */
2326 bool lower_isign;
2327
2328 /** enables rules to lower fsign to fsub and flt */
2329 bool lower_fsign;
2330
2331 /* Does the native fdot instruction replicate its result for four
2332 * components? If so, then opt_algebraic_late will turn all fdotN
2333 * instructions into fdot_replicatedN instructions.
2334 */
2335 bool fdot_replicates;
2336
2337 /** lowers ffloor to fsub+ffract: */
2338 bool lower_ffloor;
2339
2340 /** lowers ffract to fsub+ffloor: */
2341 bool lower_ffract;
2342
2343 /** lowers fceil to fneg+ffloor+fneg: */
2344 bool lower_fceil;
2345
2346 bool lower_ftrunc;
2347
2348 bool lower_ldexp;
2349
2350 bool lower_pack_half_2x16;
2351 bool lower_pack_unorm_2x16;
2352 bool lower_pack_snorm_2x16;
2353 bool lower_pack_unorm_4x8;
2354 bool lower_pack_snorm_4x8;
2355 bool lower_unpack_half_2x16;
2356 bool lower_unpack_unorm_2x16;
2357 bool lower_unpack_snorm_2x16;
2358 bool lower_unpack_unorm_4x8;
2359 bool lower_unpack_snorm_4x8;
2360
2361 bool lower_extract_byte;
2362 bool lower_extract_word;
2363
2364 bool lower_all_io_to_temps;
2365 bool lower_all_io_to_elements;
2366
2367 /* Indicates that the driver only has zero-based vertex id */
2368 bool vertex_id_zero_based;
2369
2370 /**
2371 * If enabled, gl_BaseVertex will be lowered as:
2372 * is_indexed_draw (~0/0) & firstvertex
2373 */
2374 bool lower_base_vertex;
2375
2376 /**
2377 * If enabled, gl_HelperInvocation will be lowered as:
2378 *
2379 * !((1 << sample_id) & sample_mask_in))
2380 *
2381 * This depends on some possibly hw implementation details, which may
2382 * not be true for all hw. In particular that the FS is only executed
2383 * for covered samples or for helper invocations. So, do not blindly
2384 * enable this option.
2385 *
2386 * Note: See also issue #22 in ARB_shader_image_load_store
2387 */
2388 bool lower_helper_invocation;
2389
2390 /**
2391 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2392 *
2393 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2394 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2395 */
2396 bool optimize_sample_mask_in;
2397
2398 bool lower_cs_local_index_from_id;
2399 bool lower_cs_local_id_from_index;
2400
2401 bool lower_device_index_to_zero;
2402
2403 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2404 bool lower_wpos_pntc;
2405
2406 bool lower_hadd;
2407 bool lower_add_sat;
2408
2409 /**
2410 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2411 * for IO purposes and would prefer loads/stores be vectorized.
2412 */
2413 bool vectorize_io;
2414
2415 /**
2416 * Should nir_lower_io() create load_interpolated_input intrinsics?
2417 *
2418 * If not, it generates regular load_input intrinsics and interpolation
2419 * information must be inferred from the list of input nir_variables.
2420 */
2421 bool use_interpolated_input_intrinsics;
2422
2423 /* Lowers when 32x32->64 bit multiplication is not supported */
2424 bool lower_mul_2x32_64;
2425
2426 unsigned max_unroll_iterations;
2427
2428 nir_lower_int64_options lower_int64_options;
2429 nir_lower_doubles_options lower_doubles_options;
2430 } nir_shader_compiler_options;
2431
2432 typedef struct nir_shader {
2433 /** list of uniforms (nir_variable) */
2434 struct exec_list uniforms;
2435
2436 /** list of inputs (nir_variable) */
2437 struct exec_list inputs;
2438
2439 /** list of outputs (nir_variable) */
2440 struct exec_list outputs;
2441
2442 /** list of shared compute variables (nir_variable) */
2443 struct exec_list shared;
2444
2445 /** Set of driver-specific options for the shader.
2446 *
2447 * The memory for the options is expected to be kept in a single static
2448 * copy by the driver.
2449 */
2450 const struct nir_shader_compiler_options *options;
2451
2452 /** Various bits of compile-time information about a given shader */
2453 struct shader_info info;
2454
2455 /** list of global variables in the shader (nir_variable) */
2456 struct exec_list globals;
2457
2458 /** list of system value variables in the shader (nir_variable) */
2459 struct exec_list system_values;
2460
2461 struct exec_list functions; /** < list of nir_function */
2462
2463 /**
2464 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2465 * access plus one
2466 */
2467 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2468
2469 /** Size in bytes of required scratch space */
2470 unsigned scratch_size;
2471
2472 /** Constant data associated with this shader.
2473 *
2474 * Constant data is loaded through load_constant intrinsics. See also
2475 * nir_opt_large_constants.
2476 */
2477 void *constant_data;
2478 unsigned constant_data_size;
2479 } nir_shader;
2480
2481 #define nir_foreach_function(func, shader) \
2482 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2483
2484 static inline nir_function_impl *
2485 nir_shader_get_entrypoint(nir_shader *shader)
2486 {
2487 nir_function *func = NULL;
2488
2489 nir_foreach_function(function, shader) {
2490 assert(func == NULL);
2491 if (function->is_entrypoint) {
2492 func = function;
2493 #ifndef NDEBUG
2494 break;
2495 #endif
2496 }
2497 }
2498
2499 if (!func)
2500 return NULL;
2501
2502 assert(func->num_params == 0);
2503 assert(func->impl);
2504 return func->impl;
2505 }
2506
2507 nir_shader *nir_shader_create(void *mem_ctx,
2508 gl_shader_stage stage,
2509 const nir_shader_compiler_options *options,
2510 shader_info *si);
2511
2512 nir_register *nir_local_reg_create(nir_function_impl *impl);
2513
2514 void nir_reg_remove(nir_register *reg);
2515
2516 /** Adds a variable to the appropriate list in nir_shader */
2517 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2518
2519 static inline void
2520 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2521 {
2522 assert(var->data.mode == nir_var_function_temp);
2523 exec_list_push_tail(&impl->locals, &var->node);
2524 }
2525
2526 /** creates a variable, sets a few defaults, and adds it to the list */
2527 nir_variable *nir_variable_create(nir_shader *shader,
2528 nir_variable_mode mode,
2529 const struct glsl_type *type,
2530 const char *name);
2531 /** creates a local variable and adds it to the list */
2532 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2533 const struct glsl_type *type,
2534 const char *name);
2535
2536 /** creates a function and adds it to the shader's list of functions */
2537 nir_function *nir_function_create(nir_shader *shader, const char *name);
2538
2539 nir_function_impl *nir_function_impl_create(nir_function *func);
2540 /** creates a function_impl that isn't tied to any particular function */
2541 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2542
2543 nir_block *nir_block_create(nir_shader *shader);
2544 nir_if *nir_if_create(nir_shader *shader);
2545 nir_loop *nir_loop_create(nir_shader *shader);
2546
2547 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2548
2549 /** requests that the given pieces of metadata be generated */
2550 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2551 /** dirties all but the preserved metadata */
2552 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2553
2554 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2555 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2556
2557 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2558 nir_deref_type deref_type);
2559
2560 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2561
2562 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2563 unsigned num_components,
2564 unsigned bit_size);
2565
2566 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2567 nir_intrinsic_op op);
2568
2569 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2570 nir_function *callee);
2571
2572 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2573
2574 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2575
2576 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2577
2578 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2579 unsigned num_components,
2580 unsigned bit_size);
2581
2582 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2583
2584 /**
2585 * NIR Cursors and Instruction Insertion API
2586 * @{
2587 *
2588 * A tiny struct representing a point to insert/extract instructions or
2589 * control flow nodes. Helps reduce the combinatorial explosion of possible
2590 * points to insert/extract.
2591 *
2592 * \sa nir_control_flow.h
2593 */
2594 typedef enum {
2595 nir_cursor_before_block,
2596 nir_cursor_after_block,
2597 nir_cursor_before_instr,
2598 nir_cursor_after_instr,
2599 } nir_cursor_option;
2600
2601 typedef struct {
2602 nir_cursor_option option;
2603 union {
2604 nir_block *block;
2605 nir_instr *instr;
2606 };
2607 } nir_cursor;
2608
2609 static inline nir_block *
2610 nir_cursor_current_block(nir_cursor cursor)
2611 {
2612 if (cursor.option == nir_cursor_before_instr ||
2613 cursor.option == nir_cursor_after_instr) {
2614 return cursor.instr->block;
2615 } else {
2616 return cursor.block;
2617 }
2618 }
2619
2620 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2621
2622 static inline nir_cursor
2623 nir_before_block(nir_block *block)
2624 {
2625 nir_cursor cursor;
2626 cursor.option = nir_cursor_before_block;
2627 cursor.block = block;
2628 return cursor;
2629 }
2630
2631 static inline nir_cursor
2632 nir_after_block(nir_block *block)
2633 {
2634 nir_cursor cursor;
2635 cursor.option = nir_cursor_after_block;
2636 cursor.block = block;
2637 return cursor;
2638 }
2639
2640 static inline nir_cursor
2641 nir_before_instr(nir_instr *instr)
2642 {
2643 nir_cursor cursor;
2644 cursor.option = nir_cursor_before_instr;
2645 cursor.instr = instr;
2646 return cursor;
2647 }
2648
2649 static inline nir_cursor
2650 nir_after_instr(nir_instr *instr)
2651 {
2652 nir_cursor cursor;
2653 cursor.option = nir_cursor_after_instr;
2654 cursor.instr = instr;
2655 return cursor;
2656 }
2657
2658 static inline nir_cursor
2659 nir_after_block_before_jump(nir_block *block)
2660 {
2661 nir_instr *last_instr = nir_block_last_instr(block);
2662 if (last_instr && last_instr->type == nir_instr_type_jump) {
2663 return nir_before_instr(last_instr);
2664 } else {
2665 return nir_after_block(block);
2666 }
2667 }
2668
2669 static inline nir_cursor
2670 nir_before_src(nir_src *src, bool is_if_condition)
2671 {
2672 if (is_if_condition) {
2673 nir_block *prev_block =
2674 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2675 assert(!nir_block_ends_in_jump(prev_block));
2676 return nir_after_block(prev_block);
2677 } else if (src->parent_instr->type == nir_instr_type_phi) {
2678 #ifndef NDEBUG
2679 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2680 bool found = false;
2681 nir_foreach_phi_src(phi_src, cond_phi) {
2682 if (phi_src->src.ssa == src->ssa) {
2683 found = true;
2684 break;
2685 }
2686 }
2687 assert(found);
2688 #endif
2689 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2690 * to have a more specific name.
2691 */
2692 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2693 return nir_after_block_before_jump(phi_src->pred);
2694 } else {
2695 return nir_before_instr(src->parent_instr);
2696 }
2697 }
2698
2699 static inline nir_cursor
2700 nir_before_cf_node(nir_cf_node *node)
2701 {
2702 if (node->type == nir_cf_node_block)
2703 return nir_before_block(nir_cf_node_as_block(node));
2704
2705 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2706 }
2707
2708 static inline nir_cursor
2709 nir_after_cf_node(nir_cf_node *node)
2710 {
2711 if (node->type == nir_cf_node_block)
2712 return nir_after_block(nir_cf_node_as_block(node));
2713
2714 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2715 }
2716
2717 static inline nir_cursor
2718 nir_after_phis(nir_block *block)
2719 {
2720 nir_foreach_instr(instr, block) {
2721 if (instr->type != nir_instr_type_phi)
2722 return nir_before_instr(instr);
2723 }
2724 return nir_after_block(block);
2725 }
2726
2727 static inline nir_cursor
2728 nir_after_cf_node_and_phis(nir_cf_node *node)
2729 {
2730 if (node->type == nir_cf_node_block)
2731 return nir_after_block(nir_cf_node_as_block(node));
2732
2733 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2734
2735 return nir_after_phis(block);
2736 }
2737
2738 static inline nir_cursor
2739 nir_before_cf_list(struct exec_list *cf_list)
2740 {
2741 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2742 exec_list_get_head(cf_list), node);
2743 return nir_before_cf_node(first_node);
2744 }
2745
2746 static inline nir_cursor
2747 nir_after_cf_list(struct exec_list *cf_list)
2748 {
2749 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2750 exec_list_get_tail(cf_list), node);
2751 return nir_after_cf_node(last_node);
2752 }
2753
2754 /**
2755 * Insert a NIR instruction at the given cursor.
2756 *
2757 * Note: This does not update the cursor.
2758 */
2759 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2760
2761 static inline void
2762 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2763 {
2764 nir_instr_insert(nir_before_instr(instr), before);
2765 }
2766
2767 static inline void
2768 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2769 {
2770 nir_instr_insert(nir_after_instr(instr), after);
2771 }
2772
2773 static inline void
2774 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2775 {
2776 nir_instr_insert(nir_before_block(block), before);
2777 }
2778
2779 static inline void
2780 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2781 {
2782 nir_instr_insert(nir_after_block(block), after);
2783 }
2784
2785 static inline void
2786 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2787 {
2788 nir_instr_insert(nir_before_cf_node(node), before);
2789 }
2790
2791 static inline void
2792 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2793 {
2794 nir_instr_insert(nir_after_cf_node(node), after);
2795 }
2796
2797 static inline void
2798 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2799 {
2800 nir_instr_insert(nir_before_cf_list(list), before);
2801 }
2802
2803 static inline void
2804 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2805 {
2806 nir_instr_insert(nir_after_cf_list(list), after);
2807 }
2808
2809 void nir_instr_remove_v(nir_instr *instr);
2810
2811 static inline nir_cursor
2812 nir_instr_remove(nir_instr *instr)
2813 {
2814 nir_cursor cursor;
2815 nir_instr *prev = nir_instr_prev(instr);
2816 if (prev) {
2817 cursor = nir_after_instr(prev);
2818 } else {
2819 cursor = nir_before_block(instr->block);
2820 }
2821 nir_instr_remove_v(instr);
2822 return cursor;
2823 }
2824
2825 /** @} */
2826
2827 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2828 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2829 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2830 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2831 void *state);
2832 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2833 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2834
2835 nir_const_value *nir_src_as_const_value(nir_src src);
2836
2837 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2838 static inline c_type * \
2839 nir_src_as_ ## name (nir_src src) \
2840 { \
2841 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2842 ? cast_macro(src.ssa->parent_instr) : NULL; \
2843 }
2844
2845 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2846 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2847 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2848 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2849
2850 bool nir_src_is_dynamically_uniform(nir_src src);
2851 bool nir_srcs_equal(nir_src src1, nir_src src2);
2852 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2853 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2854 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2855 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2856 nir_dest new_dest);
2857
2858 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2859 unsigned num_components, unsigned bit_size,
2860 const char *name);
2861 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2862 unsigned num_components, unsigned bit_size,
2863 const char *name);
2864 static inline void
2865 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2866 const struct glsl_type *type,
2867 const char *name)
2868 {
2869 assert(glsl_type_is_vector_or_scalar(type));
2870 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2871 glsl_get_bit_size(type), name);
2872 }
2873 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2874 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2875 nir_instr *after_me);
2876
2877 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2878
2879 /*
2880 * finds the next basic block in source-code order, returns NULL if there is
2881 * none
2882 */
2883
2884 nir_block *nir_block_cf_tree_next(nir_block *block);
2885
2886 /* Performs the opposite of nir_block_cf_tree_next() */
2887
2888 nir_block *nir_block_cf_tree_prev(nir_block *block);
2889
2890 /* Gets the first block in a CF node in source-code order */
2891
2892 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2893
2894 /* Gets the last block in a CF node in source-code order */
2895
2896 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2897
2898 /* Gets the next block after a CF node in source-code order */
2899
2900 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2901
2902 /* Macros for loops that visit blocks in source-code order */
2903
2904 #define nir_foreach_block(block, impl) \
2905 for (nir_block *block = nir_start_block(impl); block != NULL; \
2906 block = nir_block_cf_tree_next(block))
2907
2908 #define nir_foreach_block_safe(block, impl) \
2909 for (nir_block *block = nir_start_block(impl), \
2910 *next = nir_block_cf_tree_next(block); \
2911 block != NULL; \
2912 block = next, next = nir_block_cf_tree_next(block))
2913
2914 #define nir_foreach_block_reverse(block, impl) \
2915 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2916 block = nir_block_cf_tree_prev(block))
2917
2918 #define nir_foreach_block_reverse_safe(block, impl) \
2919 for (nir_block *block = nir_impl_last_block(impl), \
2920 *prev = nir_block_cf_tree_prev(block); \
2921 block != NULL; \
2922 block = prev, prev = nir_block_cf_tree_prev(block))
2923
2924 #define nir_foreach_block_in_cf_node(block, node) \
2925 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2926 block != nir_cf_node_cf_tree_next(node); \
2927 block = nir_block_cf_tree_next(block))
2928
2929 /* If the following CF node is an if, this function returns that if.
2930 * Otherwise, it returns NULL.
2931 */
2932 nir_if *nir_block_get_following_if(nir_block *block);
2933
2934 nir_loop *nir_block_get_following_loop(nir_block *block);
2935
2936 void nir_index_local_regs(nir_function_impl *impl);
2937 void nir_index_ssa_defs(nir_function_impl *impl);
2938 unsigned nir_index_instrs(nir_function_impl *impl);
2939
2940 void nir_index_blocks(nir_function_impl *impl);
2941
2942 void nir_print_shader(nir_shader *shader, FILE *fp);
2943 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2944 void nir_print_instr(const nir_instr *instr, FILE *fp);
2945 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2946
2947 /** Shallow clone of a single ALU instruction. */
2948 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
2949
2950 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2951 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2952 const nir_function_impl *fi);
2953 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2954 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2955
2956 void nir_shader_replace(nir_shader *dest, nir_shader *src);
2957
2958 void nir_shader_serialize_deserialize(nir_shader *s);
2959
2960 #ifndef NDEBUG
2961 void nir_validate_shader(nir_shader *shader, const char *when);
2962 void nir_metadata_set_validation_flag(nir_shader *shader);
2963 void nir_metadata_check_validation_flag(nir_shader *shader);
2964
2965 static inline bool
2966 should_skip_nir(const char *name)
2967 {
2968 static const char *list = NULL;
2969 if (!list) {
2970 /* Comma separated list of names to skip. */
2971 list = getenv("NIR_SKIP");
2972 if (!list)
2973 list = "";
2974 }
2975
2976 if (!list[0])
2977 return false;
2978
2979 return comma_separated_list_contains(list, name);
2980 }
2981
2982 static inline bool
2983 should_clone_nir(void)
2984 {
2985 static int should_clone = -1;
2986 if (should_clone < 0)
2987 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2988
2989 return should_clone;
2990 }
2991
2992 static inline bool
2993 should_serialize_deserialize_nir(void)
2994 {
2995 static int test_serialize = -1;
2996 if (test_serialize < 0)
2997 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2998
2999 return test_serialize;
3000 }
3001
3002 static inline bool
3003 should_print_nir(void)
3004 {
3005 static int should_print = -1;
3006 if (should_print < 0)
3007 should_print = env_var_as_boolean("NIR_PRINT", false);
3008
3009 return should_print;
3010 }
3011 #else
3012 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3013 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3014 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3015 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3016 static inline bool should_clone_nir(void) { return false; }
3017 static inline bool should_serialize_deserialize_nir(void) { return false; }
3018 static inline bool should_print_nir(void) { return false; }
3019 #endif /* NDEBUG */
3020
3021 #define _PASS(pass, nir, do_pass) do { \
3022 if (should_skip_nir(#pass)) { \
3023 printf("skipping %s\n", #pass); \
3024 break; \
3025 } \
3026 do_pass \
3027 nir_validate_shader(nir, "after " #pass); \
3028 if (should_clone_nir()) { \
3029 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3030 nir_shader_replace(nir, clone); \
3031 } \
3032 if (should_serialize_deserialize_nir()) { \
3033 nir_shader_serialize_deserialize(nir); \
3034 } \
3035 } while (0)
3036
3037 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3038 nir_metadata_set_validation_flag(nir); \
3039 if (should_print_nir()) \
3040 printf("%s\n", #pass); \
3041 if (pass(nir, ##__VA_ARGS__)) { \
3042 progress = true; \
3043 if (should_print_nir()) \
3044 nir_print_shader(nir, stdout); \
3045 nir_metadata_check_validation_flag(nir); \
3046 } \
3047 )
3048
3049 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3050 if (should_print_nir()) \
3051 printf("%s\n", #pass); \
3052 pass(nir, ##__VA_ARGS__); \
3053 if (should_print_nir()) \
3054 nir_print_shader(nir, stdout); \
3055 )
3056
3057 #define NIR_SKIP(name) should_skip_nir(#name)
3058
3059 void nir_calc_dominance_impl(nir_function_impl *impl);
3060 void nir_calc_dominance(nir_shader *shader);
3061
3062 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3063 bool nir_block_dominates(nir_block *parent, nir_block *child);
3064
3065 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3066 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3067
3068 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3069 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3070
3071 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3072 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3073
3074 int nir_gs_count_vertices(const nir_shader *shader);
3075
3076 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3077 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3078 bool nir_split_var_copies(nir_shader *shader);
3079 bool nir_split_per_member_structs(nir_shader *shader);
3080 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3081
3082 bool nir_lower_returns_impl(nir_function_impl *impl);
3083 bool nir_lower_returns(nir_shader *shader);
3084
3085 void nir_inline_function_impl(struct nir_builder *b,
3086 const nir_function_impl *impl,
3087 nir_ssa_def **params);
3088 bool nir_inline_functions(nir_shader *shader);
3089
3090 bool nir_propagate_invariant(nir_shader *shader);
3091
3092 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3093 void nir_lower_deref_copy_instr(struct nir_builder *b,
3094 nir_intrinsic_instr *copy);
3095 bool nir_lower_var_copies(nir_shader *shader);
3096
3097 void nir_fixup_deref_modes(nir_shader *shader);
3098
3099 bool nir_lower_global_vars_to_local(nir_shader *shader);
3100
3101 typedef enum {
3102 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3103 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3104 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3105 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3106 } nir_lower_array_deref_of_vec_options;
3107
3108 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3109 nir_lower_array_deref_of_vec_options options);
3110
3111 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3112
3113 bool nir_lower_locals_to_regs(nir_shader *shader);
3114
3115 void nir_lower_io_to_temporaries(nir_shader *shader,
3116 nir_function_impl *entrypoint,
3117 bool outputs, bool inputs);
3118
3119 bool nir_lower_vars_to_scratch(nir_shader *shader,
3120 nir_variable_mode modes,
3121 int size_threshold,
3122 glsl_type_size_align_func size_align);
3123
3124 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3125
3126 void nir_gather_ssa_types(nir_function_impl *impl,
3127 BITSET_WORD *float_types,
3128 BITSET_WORD *int_types);
3129
3130 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3131 int (*type_size)(const struct glsl_type *, bool));
3132
3133 /* Some helpers to do very simple linking */
3134 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3135 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3136 uint64_t *used_by_other_stage,
3137 uint64_t *used_by_other_stage_patches);
3138 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3139 bool default_to_smooth_interp);
3140 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3141 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3142
3143 typedef enum {
3144 /* If set, this forces all non-flat fragment shader inputs to be
3145 * interpolated as if with the "sample" qualifier. This requires
3146 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3147 */
3148 nir_lower_io_force_sample_interpolation = (1 << 1),
3149 } nir_lower_io_options;
3150 bool nir_lower_io(nir_shader *shader,
3151 nir_variable_mode modes,
3152 int (*type_size)(const struct glsl_type *, bool),
3153 nir_lower_io_options);
3154
3155 typedef enum {
3156 /**
3157 * An address format which is a simple 32-bit global GPU address.
3158 */
3159 nir_address_format_32bit_global,
3160
3161 /**
3162 * An address format which is a simple 64-bit global GPU address.
3163 */
3164 nir_address_format_64bit_global,
3165
3166 /**
3167 * An address format which is a bounds-checked 64-bit global GPU address.
3168 *
3169 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3170 * address stored with the low bits in .x and high bits in .y, .z is a
3171 * size, and .w is an offset. When the final I/O operation is lowered, .w
3172 * is checked against .z and the operation is predicated on the result.
3173 */
3174 nir_address_format_64bit_bounded_global,
3175
3176 /**
3177 * An address format which is comprised of a vec2 where the first
3178 * component is a buffer index and the second is an offset.
3179 */
3180 nir_address_format_32bit_index_offset,
3181
3182 /**
3183 * An address format which is a simple 32-bit offset.
3184 */
3185 nir_address_format_32bit_offset,
3186
3187 /**
3188 * An address format representing a purely logical addressing model. In
3189 * this model, all deref chains must be complete from the dereference
3190 * operation to the variable. Cast derefs are not allowed. These
3191 * addresses will be 32-bit scalars but the format is immaterial because
3192 * you can always chase the chain.
3193 */
3194 nir_address_format_logical,
3195 } nir_address_format;
3196
3197 static inline unsigned
3198 nir_address_format_bit_size(nir_address_format addr_format)
3199 {
3200 switch (addr_format) {
3201 case nir_address_format_32bit_global: return 32;
3202 case nir_address_format_64bit_global: return 64;
3203 case nir_address_format_64bit_bounded_global: return 32;
3204 case nir_address_format_32bit_index_offset: return 32;
3205 case nir_address_format_32bit_offset: return 32;
3206 case nir_address_format_logical: return 32;
3207 }
3208 unreachable("Invalid address format");
3209 }
3210
3211 static inline unsigned
3212 nir_address_format_num_components(nir_address_format addr_format)
3213 {
3214 switch (addr_format) {
3215 case nir_address_format_32bit_global: return 1;
3216 case nir_address_format_64bit_global: return 1;
3217 case nir_address_format_64bit_bounded_global: return 4;
3218 case nir_address_format_32bit_index_offset: return 2;
3219 case nir_address_format_32bit_offset: return 1;
3220 case nir_address_format_logical: return 1;
3221 }
3222 unreachable("Invalid address format");
3223 }
3224
3225 static inline const struct glsl_type *
3226 nir_address_format_to_glsl_type(nir_address_format addr_format)
3227 {
3228 unsigned bit_size = nir_address_format_bit_size(addr_format);
3229 assert(bit_size == 32 || bit_size == 64);
3230 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3231 nir_address_format_num_components(addr_format));
3232 }
3233
3234 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3235
3236 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3237 nir_address_format addr_format);
3238
3239 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3240 nir_address_format addr_format);
3241
3242 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3243 nir_deref_instr *deref,
3244 nir_ssa_def *base_addr,
3245 nir_address_format addr_format);
3246 void nir_lower_explicit_io_instr(struct nir_builder *b,
3247 nir_intrinsic_instr *io_instr,
3248 nir_ssa_def *addr,
3249 nir_address_format addr_format);
3250
3251 bool nir_lower_explicit_io(nir_shader *shader,
3252 nir_variable_mode modes,
3253 nir_address_format);
3254
3255 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3256 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3257
3258 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3259
3260 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3261 bool nir_lower_regs_to_ssa(nir_shader *shader);
3262 bool nir_lower_vars_to_ssa(nir_shader *shader);
3263
3264 bool nir_remove_dead_derefs(nir_shader *shader);
3265 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3266 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3267 bool nir_lower_constant_initializers(nir_shader *shader,
3268 nir_variable_mode modes);
3269
3270 bool nir_move_load_const(nir_shader *shader);
3271 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3272 bool nir_lower_vec_to_movs(nir_shader *shader);
3273 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3274 bool alpha_to_one);
3275 bool nir_lower_alu(nir_shader *shader);
3276
3277 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3278 bool always_precise, bool have_ffma);
3279
3280 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3281 bool nir_lower_bool_to_float(nir_shader *shader);
3282 bool nir_lower_bool_to_int32(nir_shader *shader);
3283 bool nir_lower_int_to_float(nir_shader *shader);
3284 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3285 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3286 bool nir_lower_phis_to_scalar(nir_shader *shader);
3287 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3288 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3289 bool outputs_only);
3290 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3291 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3292 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3293
3294 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3295 void nir_lower_viewport_transform(nir_shader *shader);
3296 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3297
3298 typedef struct nir_lower_subgroups_options {
3299 uint8_t subgroup_size;
3300 uint8_t ballot_bit_size;
3301 bool lower_to_scalar:1;
3302 bool lower_vote_trivial:1;
3303 bool lower_vote_eq_to_ballot:1;
3304 bool lower_subgroup_masks:1;
3305 bool lower_shuffle:1;
3306 bool lower_shuffle_to_32bit:1;
3307 bool lower_quad:1;
3308 } nir_lower_subgroups_options;
3309
3310 bool nir_lower_subgroups(nir_shader *shader,
3311 const nir_lower_subgroups_options *options);
3312
3313 bool nir_lower_system_values(nir_shader *shader);
3314
3315 enum PACKED nir_lower_tex_packing {
3316 nir_lower_tex_packing_none = 0,
3317 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3318 * or unsigned ints based on the sampler type
3319 */
3320 nir_lower_tex_packing_16,
3321 /* The sampler returns 1 32-bit word of 4x8 unorm */
3322 nir_lower_tex_packing_8,
3323 };
3324
3325 typedef struct nir_lower_tex_options {
3326 /**
3327 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3328 * sampler types a texture projector is lowered.
3329 */
3330 unsigned lower_txp;
3331
3332 /**
3333 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3334 */
3335 bool lower_txf_offset;
3336
3337 /**
3338 * If true, lower away nir_tex_src_offset for all rect textures.
3339 */
3340 bool lower_rect_offset;
3341
3342 /**
3343 * If true, lower rect textures to 2D, using txs to fetch the
3344 * texture dimensions and dividing the texture coords by the
3345 * texture dims to normalize.
3346 */
3347 bool lower_rect;
3348
3349 /**
3350 * If true, convert yuv to rgb.
3351 */
3352 unsigned lower_y_uv_external;
3353 unsigned lower_y_u_v_external;
3354 unsigned lower_yx_xuxv_external;
3355 unsigned lower_xy_uxvx_external;
3356 unsigned lower_ayuv_external;
3357 unsigned lower_xyuv_external;
3358
3359 /**
3360 * To emulate certain texture wrap modes, this can be used
3361 * to saturate the specified tex coord to [0.0, 1.0]. The
3362 * bits are according to sampler #, ie. if, for example:
3363 *
3364 * (conf->saturate_s & (1 << n))
3365 *
3366 * is true, then the s coord for sampler n is saturated.
3367 *
3368 * Note that clamping must happen *after* projector lowering
3369 * so any projected texture sample instruction with a clamped
3370 * coordinate gets automatically lowered, regardless of the
3371 * 'lower_txp' setting.
3372 */
3373 unsigned saturate_s;
3374 unsigned saturate_t;
3375 unsigned saturate_r;
3376
3377 /* Bitmask of textures that need swizzling.
3378 *
3379 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3380 * swizzles[texture_index] is applied to the result of the texturing
3381 * operation.
3382 */
3383 unsigned swizzle_result;
3384
3385 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3386 * while 4 and 5 represent 0 and 1 respectively.
3387 */
3388 uint8_t swizzles[32][4];
3389
3390 /* Can be used to scale sampled values in range required by the format. */
3391 float scale_factors[32];
3392
3393 /**
3394 * Bitmap of textures that need srgb to linear conversion. If
3395 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3396 * of the texture are lowered to linear.
3397 */
3398 unsigned lower_srgb;
3399
3400 /**
3401 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3402 * LODs to nir_texop_txl.
3403 */
3404 bool lower_tex_without_implicit_lod;
3405
3406 /**
3407 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3408 */
3409 bool lower_txd_cube_map;
3410
3411 /**
3412 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3413 */
3414 bool lower_txd_3d;
3415
3416 /**
3417 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3418 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3419 * with lower_txd_cube_map.
3420 */
3421 bool lower_txd_shadow;
3422
3423 /**
3424 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3425 * Implies lower_txd_cube_map and lower_txd_shadow.
3426 */
3427 bool lower_txd;
3428
3429 /**
3430 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3431 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3432 */
3433 bool lower_txb_shadow_clamp;
3434
3435 /**
3436 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3437 * with nir_texop_txl. This includes cube maps.
3438 */
3439 bool lower_txd_shadow_clamp;
3440
3441 /**
3442 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3443 * with nir_texop_txl. This includes cube maps.
3444 */
3445 bool lower_txd_offset_clamp;
3446
3447 /**
3448 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3449 * sampler is bindless.
3450 */
3451 bool lower_txd_clamp_bindless_sampler;
3452
3453 /**
3454 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3455 * sampler index is not statically determinable to be less than 16.
3456 */
3457 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3458
3459 /**
3460 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3461 * 0-lod followed by a nir_ishr.
3462 */
3463 bool lower_txs_lod;
3464
3465 /**
3466 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3467 * mixed-up tg4 locations.
3468 */
3469 bool lower_tg4_broadcom_swizzle;
3470
3471 /**
3472 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3473 */
3474 bool lower_tg4_offsets;
3475
3476 enum nir_lower_tex_packing lower_tex_packing[32];
3477 } nir_lower_tex_options;
3478
3479 bool nir_lower_tex(nir_shader *shader,
3480 const nir_lower_tex_options *options);
3481
3482 enum nir_lower_non_uniform_access_type {
3483 nir_lower_non_uniform_ubo_access = (1 << 0),
3484 nir_lower_non_uniform_ssbo_access = (1 << 1),
3485 nir_lower_non_uniform_texture_access = (1 << 2),
3486 nir_lower_non_uniform_image_access = (1 << 3),
3487 };
3488
3489 bool nir_lower_non_uniform_access(nir_shader *shader,
3490 enum nir_lower_non_uniform_access_type);
3491
3492 bool nir_lower_idiv(nir_shader *shader);
3493
3494 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3495 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3496 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3497
3498 bool nir_lower_frexp(nir_shader *nir);
3499
3500 void nir_lower_two_sided_color(nir_shader *shader);
3501
3502 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3503
3504 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3505 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3506 const gl_state_index16 *uniform_state_tokens);
3507
3508 typedef struct nir_lower_wpos_ytransform_options {
3509 gl_state_index16 state_tokens[STATE_LENGTH];
3510 bool fs_coord_origin_upper_left :1;
3511 bool fs_coord_origin_lower_left :1;
3512 bool fs_coord_pixel_center_integer :1;
3513 bool fs_coord_pixel_center_half_integer :1;
3514 } nir_lower_wpos_ytransform_options;
3515
3516 bool nir_lower_wpos_ytransform(nir_shader *shader,
3517 const nir_lower_wpos_ytransform_options *options);
3518 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3519
3520 bool nir_lower_fb_read(nir_shader *shader);
3521
3522 typedef struct nir_lower_drawpixels_options {
3523 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3524 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3525 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3526 unsigned drawpix_sampler;
3527 unsigned pixelmap_sampler;
3528 bool pixel_maps :1;
3529 bool scale_and_bias :1;
3530 } nir_lower_drawpixels_options;
3531
3532 void nir_lower_drawpixels(nir_shader *shader,
3533 const nir_lower_drawpixels_options *options);
3534
3535 typedef struct nir_lower_bitmap_options {
3536 unsigned sampler;
3537 bool swizzle_xxxx;
3538 } nir_lower_bitmap_options;
3539
3540 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3541
3542 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3543
3544 typedef enum {
3545 nir_lower_int_source_mods = 1 << 0,
3546 nir_lower_float_source_mods = 1 << 1,
3547 nir_lower_triop_abs = 1 << 2,
3548 nir_lower_all_source_mods = (1 << 3) - 1
3549 } nir_lower_to_source_mods_flags;
3550
3551
3552 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3553
3554 bool nir_lower_gs_intrinsics(nir_shader *shader);
3555
3556 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3557
3558 bool nir_lower_bit_size(nir_shader *shader,
3559 nir_lower_bit_size_callback callback,
3560 void *callback_data);
3561
3562 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3563 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3564
3565 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3566 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3567 nir_lower_doubles_options options);
3568 bool nir_lower_pack(nir_shader *shader);
3569
3570 bool nir_normalize_cubemap_coords(nir_shader *shader);
3571
3572 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3573
3574 void nir_loop_analyze_impl(nir_function_impl *impl,
3575 nir_variable_mode indirect_mask);
3576
3577 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3578
3579 bool nir_repair_ssa_impl(nir_function_impl *impl);
3580 bool nir_repair_ssa(nir_shader *shader);
3581
3582 void nir_convert_loop_to_lcssa(nir_loop *loop);
3583
3584 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3585 * registers. If false, convert all values (even those not involved in a phi
3586 * node) to registers.
3587 */
3588 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3589
3590 bool nir_lower_phis_to_regs_block(nir_block *block);
3591 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3592 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3593
3594 bool nir_opt_comparison_pre(nir_shader *shader);
3595
3596 bool nir_opt_algebraic(nir_shader *shader);
3597 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3598 bool nir_opt_algebraic_late(nir_shader *shader);
3599 bool nir_opt_constant_folding(nir_shader *shader);
3600
3601 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3602
3603 bool nir_copy_prop(nir_shader *shader);
3604
3605 bool nir_opt_copy_prop_vars(nir_shader *shader);
3606
3607 bool nir_opt_cse(nir_shader *shader);
3608
3609 bool nir_opt_dce(nir_shader *shader);
3610
3611 bool nir_opt_dead_cf(nir_shader *shader);
3612
3613 bool nir_opt_dead_write_vars(nir_shader *shader);
3614
3615 bool nir_opt_deref_impl(nir_function_impl *impl);
3616 bool nir_opt_deref(nir_shader *shader);
3617
3618 bool nir_opt_find_array_copies(nir_shader *shader);
3619
3620 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3621
3622 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3623
3624 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3625
3626 bool nir_opt_intrinsics(nir_shader *shader);
3627
3628 bool nir_opt_large_constants(nir_shader *shader,
3629 glsl_type_size_align_func size_align,
3630 unsigned threshold);
3631
3632 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3633
3634 bool nir_opt_move_comparisons(nir_shader *shader);
3635
3636 bool nir_opt_move_load_ubo(nir_shader *shader);
3637
3638 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3639 bool indirect_load_ok, bool expensive_alu_ok);
3640
3641 bool nir_opt_rematerialize_compares(nir_shader *shader);
3642
3643 bool nir_opt_remove_phis(nir_shader *shader);
3644
3645 bool nir_opt_shrink_load(nir_shader *shader);
3646
3647 bool nir_opt_trivial_continues(nir_shader *shader);
3648
3649 bool nir_opt_undef(nir_shader *shader);
3650
3651 bool nir_opt_vectorize(nir_shader *shader);
3652
3653 bool nir_opt_conditional_discard(nir_shader *shader);
3654
3655 void nir_strip(nir_shader *shader);
3656
3657 void nir_sweep(nir_shader *shader);
3658
3659 void nir_remap_dual_slot_attributes(nir_shader *shader,
3660 uint64_t *dual_slot_inputs);
3661 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3662
3663 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3664 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3665
3666 bool nir_lower_sincos(nir_shader *shader);
3667
3668 static inline bool
3669 nir_variable_is_in_ubo(const nir_variable *var)
3670 {
3671 return (var->data.mode == nir_var_mem_ubo &&
3672 var->interface_type != NULL);
3673 }
3674
3675 static inline bool
3676 nir_variable_is_in_ssbo(const nir_variable *var)
3677 {
3678 return (var->data.mode == nir_var_mem_ssbo &&
3679 var->interface_type != NULL);
3680 }
3681
3682 static inline bool
3683 nir_variable_is_in_block(const nir_variable *var)
3684 {
3685 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
3686 }
3687
3688 #ifdef __cplusplus
3689 } /* extern "C" */
3690 #endif
3691
3692 #endif /* NIR_H */