nir: add some fields to nir_variable_data
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 #define NIR_STREAM_PACKED (1 << 8)
64 typedef uint8_t nir_component_mask_t;
65
66 /** Defines a cast function
67 *
68 * This macro defines a cast function from in_type to out_type where
69 * out_type is some structure type that contains a field of type out_type.
70 *
71 * Note that you have to be a bit careful as the generated cast function
72 * destroys constness.
73 */
74 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
75 type_field, type_value) \
76 static inline out_type * \
77 name(const in_type *parent) \
78 { \
79 assert(parent && parent->type_field == type_value); \
80 return exec_node_data(out_type, parent, field); \
81 }
82
83 struct nir_function;
84 struct nir_shader;
85 struct nir_instr;
86 struct nir_builder;
87
88
89 /**
90 * Description of built-in state associated with a uniform
91 *
92 * \sa nir_variable::state_slots
93 */
94 typedef struct {
95 gl_state_index16 tokens[STATE_LENGTH];
96 uint16_t swizzle;
97 } nir_state_slot;
98
99 typedef enum {
100 nir_var_shader_in = (1 << 0),
101 nir_var_shader_out = (1 << 1),
102 nir_var_shader_temp = (1 << 2),
103 nir_var_function_temp = (1 << 3),
104 nir_var_uniform = (1 << 4),
105 nir_var_mem_ubo = (1 << 5),
106 nir_var_system_value = (1 << 6),
107 nir_var_mem_ssbo = (1 << 7),
108 nir_var_mem_shared = (1 << 8),
109 nir_var_mem_global = (1 << 9),
110 nir_var_mem_push_const = (1 << 10), /* not actually used for variables */
111 nir_num_variable_modes = 11,
112 nir_var_all = (1 << nir_num_variable_modes) - 1,
113 } nir_variable_mode;
114
115 /**
116 * Rounding modes.
117 */
118 typedef enum {
119 nir_rounding_mode_undef = 0,
120 nir_rounding_mode_rtne = 1, /* round to nearest even */
121 nir_rounding_mode_ru = 2, /* round up */
122 nir_rounding_mode_rd = 3, /* round down */
123 nir_rounding_mode_rtz = 4, /* round towards zero */
124 } nir_rounding_mode;
125
126 typedef union {
127 bool b;
128 float f32;
129 double f64;
130 int8_t i8;
131 uint8_t u8;
132 int16_t i16;
133 uint16_t u16;
134 int32_t i32;
135 uint32_t u32;
136 int64_t i64;
137 uint64_t u64;
138 } nir_const_value;
139
140 #define nir_const_value_to_array(arr, c, components, m) \
141 { \
142 for (unsigned i = 0; i < components; ++i) \
143 arr[i] = c[i].m; \
144 } while (false)
145
146 static inline nir_const_value
147 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
148 {
149 nir_const_value v;
150 memset(&v, 0, sizeof(v));
151
152 switch (bit_size) {
153 case 1: v.b = x; break;
154 case 8: v.u8 = x; break;
155 case 16: v.u16 = x; break;
156 case 32: v.u32 = x; break;
157 case 64: v.u64 = x; break;
158 default:
159 unreachable("Invalid bit size");
160 }
161
162 return v;
163 }
164
165 static inline nir_const_value
166 nir_const_value_for_int(int64_t i, unsigned bit_size)
167 {
168 nir_const_value v;
169 memset(&v, 0, sizeof(v));
170
171 assert(bit_size <= 64);
172 if (bit_size < 64) {
173 assert(i >= (-(1ll << (bit_size - 1))));
174 assert(i < (1ll << (bit_size - 1)));
175 }
176
177 return nir_const_value_for_raw_uint(i, bit_size);
178 }
179
180 static inline nir_const_value
181 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
182 {
183 nir_const_value v;
184 memset(&v, 0, sizeof(v));
185
186 assert(bit_size <= 64);
187 if (bit_size < 64)
188 assert(u < (1ull << bit_size));
189
190 return nir_const_value_for_raw_uint(u, bit_size);
191 }
192
193 static inline nir_const_value
194 nir_const_value_for_bool(bool b, unsigned bit_size)
195 {
196 /* Booleans use a 0/-1 convention */
197 return nir_const_value_for_int(-(int)b, bit_size);
198 }
199
200 /* This one isn't inline because it requires half-float conversion */
201 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
202
203 static inline int64_t
204 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
205 {
206 switch (bit_size) {
207 /* int1_t uses 0/-1 convention */
208 case 1: return -(int)value.b;
209 case 8: return value.i8;
210 case 16: return value.i16;
211 case 32: return value.i32;
212 case 64: return value.i64;
213 default:
214 unreachable("Invalid bit size");
215 }
216 }
217
218 static inline uint64_t
219 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
220 {
221 switch (bit_size) {
222 case 1: return value.b;
223 case 8: return value.u8;
224 case 16: return value.u16;
225 case 32: return value.u32;
226 case 64: return value.u64;
227 default:
228 unreachable("Invalid bit size");
229 }
230 }
231
232 static inline bool
233 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
234 {
235 int64_t i = nir_const_value_as_int(value, bit_size);
236
237 /* Booleans of any size use 0/-1 convention */
238 assert(i == 0 || i == -1);
239
240 return i;
241 }
242
243 /* This one isn't inline because it requires half-float conversion */
244 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
245
246 typedef struct nir_constant {
247 /**
248 * Value of the constant.
249 *
250 * The field used to back the values supplied by the constant is determined
251 * by the type associated with the \c nir_variable. Constants may be
252 * scalars, vectors, or matrices.
253 */
254 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
255
256 /* we could get this from the var->type but makes clone *much* easier to
257 * not have to care about the type.
258 */
259 unsigned num_elements;
260
261 /* Array elements / Structure Fields */
262 struct nir_constant **elements;
263 } nir_constant;
264
265 /**
266 * \brief Layout qualifiers for gl_FragDepth.
267 *
268 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
269 * with a layout qualifier.
270 */
271 typedef enum {
272 nir_depth_layout_none, /**< No depth layout is specified. */
273 nir_depth_layout_any,
274 nir_depth_layout_greater,
275 nir_depth_layout_less,
276 nir_depth_layout_unchanged
277 } nir_depth_layout;
278
279 /**
280 * Enum keeping track of how a variable was declared.
281 */
282 typedef enum {
283 /**
284 * Normal declaration.
285 */
286 nir_var_declared_normally = 0,
287
288 /**
289 * Variable is implicitly generated by the compiler and should not be
290 * visible via the API.
291 */
292 nir_var_hidden,
293 } nir_var_declaration_type;
294
295 /**
296 * Either a uniform, global variable, shader input, or shader output. Based on
297 * ir_variable - it should be easy to translate between the two.
298 */
299
300 typedef struct nir_variable {
301 struct exec_node node;
302
303 /**
304 * Declared type of the variable
305 */
306 const struct glsl_type *type;
307
308 /**
309 * Declared name of the variable
310 */
311 char *name;
312
313 struct nir_variable_data {
314 /**
315 * Storage class of the variable.
316 *
317 * \sa nir_variable_mode
318 */
319 nir_variable_mode mode:11;
320
321 /**
322 * Is the variable read-only?
323 *
324 * This is set for variables declared as \c const, shader inputs,
325 * and uniforms.
326 */
327 unsigned read_only:1;
328 unsigned centroid:1;
329 unsigned sample:1;
330 unsigned patch:1;
331 unsigned invariant:1;
332
333 /**
334 * Precision qualifier.
335 *
336 * In desktop GLSL we do not care about precision qualifiers at all, in
337 * fact, the spec says that precision qualifiers are ignored.
338 *
339 * To make things easy, we make it so that this field is always
340 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
341 * have the same precision value and the checks we add in the compiler
342 * for this field will never break a desktop shader compile.
343 */
344 unsigned precision:2;
345
346 /**
347 * Can this variable be coalesced with another?
348 *
349 * This is set by nir_lower_io_to_temporaries to say that any
350 * copies involving this variable should stay put. Propagating it can
351 * duplicate the resulting load/store, which is not wanted, and may
352 * result in a load/store of the variable with an indirect offset which
353 * the backend may not be able to handle.
354 */
355 unsigned cannot_coalesce:1;
356
357 /**
358 * When separate shader programs are enabled, only input/outputs between
359 * the stages of a multi-stage separate program can be safely removed
360 * from the shader interface. Other input/outputs must remains active.
361 *
362 * This is also used to make sure xfb varyings that are unused by the
363 * fragment shader are not removed.
364 */
365 unsigned always_active_io:1;
366
367 /**
368 * Interpolation mode for shader inputs / outputs
369 *
370 * \sa glsl_interp_mode
371 */
372 unsigned interpolation:2;
373
374 /**
375 * If non-zero, then this variable may be packed along with other variables
376 * into a single varying slot, so this offset should be applied when
377 * accessing components. For example, an offset of 1 means that the x
378 * component of this variable is actually stored in component y of the
379 * location specified by \c location.
380 */
381 unsigned location_frac:2;
382
383 /**
384 * If true, this variable represents an array of scalars that should
385 * be tightly packed. In other words, consecutive array elements
386 * should be stored one component apart, rather than one slot apart.
387 */
388 unsigned compact:1;
389
390 /**
391 * Whether this is a fragment shader output implicitly initialized with
392 * the previous contents of the specified render target at the
393 * framebuffer location corresponding to this shader invocation.
394 */
395 unsigned fb_fetch_output:1;
396
397 /**
398 * Non-zero if this variable is considered bindless as defined by
399 * ARB_bindless_texture.
400 */
401 unsigned bindless:1;
402
403 /**
404 * Was an explicit binding set in the shader?
405 */
406 unsigned explicit_binding:1;
407
408 /**
409 * Was the location explicitly set in the shader?
410 *
411 * If the location is explicitly set in the shader, it \b cannot be changed
412 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
413 * no effect).
414 */
415 unsigned explicit_location:1;
416
417 /**
418 * Was a transfer feedback buffer set in the shader?
419 */
420 unsigned explicit_xfb_buffer:1;
421
422 /**
423 * Was a transfer feedback stride set in the shader?
424 */
425 unsigned explicit_xfb_stride:1;
426
427 /**
428 * Was an explicit offset set in the shader?
429 */
430 unsigned explicit_offset:1;
431
432 /**
433 * Non-zero if this variable was created by lowering a named interface
434 * block.
435 */
436 unsigned from_named_ifc_block:1;
437
438 /**
439 * How the variable was declared. See nir_var_declaration_type.
440 *
441 * This is used to detect variables generated by the compiler, so should
442 * not be visible via the API.
443 */
444 unsigned how_declared:2;
445
446 /**
447 * \brief Layout qualifier for gl_FragDepth.
448 *
449 * This is not equal to \c ir_depth_layout_none if and only if this
450 * variable is \c gl_FragDepth and a layout qualifier is specified.
451 */
452 nir_depth_layout depth_layout:3;
453
454 /**
455 * Vertex stream output identifier.
456 *
457 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
458 * indicate the stream of the i-th component.
459 */
460 unsigned stream:9;
461
462 /**
463 * Access flags for memory variables (SSBO/global), image uniforms, and
464 * bindless images in uniforms/inputs/outputs.
465 */
466 enum gl_access_qualifier access:8;
467
468 /**
469 * Descriptor set binding for sampler or UBO.
470 */
471 unsigned descriptor_set:5;
472
473 /**
474 * output index for dual source blending.
475 */
476 unsigned index;
477
478 /**
479 * Initial binding point for a sampler or UBO.
480 *
481 * For array types, this represents the binding point for the first element.
482 */
483 unsigned binding;
484
485 /**
486 * Storage location of the base of this variable
487 *
488 * The precise meaning of this field depends on the nature of the variable.
489 *
490 * - Vertex shader input: one of the values from \c gl_vert_attrib.
491 * - Vertex shader output: one of the values from \c gl_varying_slot.
492 * - Geometry shader input: one of the values from \c gl_varying_slot.
493 * - Geometry shader output: one of the values from \c gl_varying_slot.
494 * - Fragment shader input: one of the values from \c gl_varying_slot.
495 * - Fragment shader output: one of the values from \c gl_frag_result.
496 * - Uniforms: Per-stage uniform slot number for default uniform block.
497 * - Uniforms: Index within the uniform block definition for UBO members.
498 * - Non-UBO Uniforms: uniform slot number.
499 * - Other: This field is not currently used.
500 *
501 * If the variable is a uniform, shader input, or shader output, and the
502 * slot has not been assigned, the value will be -1.
503 */
504 int location;
505
506 /**
507 * The actual location of the variable in the IR. Only valid for inputs,
508 * outputs, and uniforms (including samplers and images).
509 */
510 unsigned driver_location;
511
512 /**
513 * Location an atomic counter or transform feedback is stored at.
514 */
515 unsigned offset;
516
517 union {
518 struct {
519 /** Image internal format if specified explicitly, otherwise GL_NONE. */
520 uint16_t format; /* GLenum */
521 } image;
522
523 struct {
524 /**
525 * Transform feedback buffer.
526 */
527 uint16_t buffer:2;
528
529 /**
530 * Transform feedback stride.
531 */
532 uint16_t stride;
533 } xfb;
534 };
535 } data;
536
537 /**
538 * Identifier for this variable generated by nir_index_vars() that is unique
539 * among other variables in the same exec_list.
540 */
541 unsigned index;
542
543 /* Number of nir_variable_data members */
544 uint16_t num_members;
545
546 /**
547 * Built-in state that backs this uniform
548 *
549 * Once set at variable creation, \c state_slots must remain invariant.
550 * This is because, ideally, this array would be shared by all clones of
551 * this variable in the IR tree. In other words, we'd really like for it
552 * to be a fly-weight.
553 *
554 * If the variable is not a uniform, \c num_state_slots will be zero and
555 * \c state_slots will be \c NULL.
556 */
557 /*@{*/
558 uint16_t num_state_slots; /**< Number of state slots used */
559 nir_state_slot *state_slots; /**< State descriptors. */
560 /*@}*/
561
562 /**
563 * Constant expression assigned in the initializer of the variable
564 *
565 * This field should only be used temporarily by creators of NIR shaders
566 * and then lower_constant_initializers can be used to get rid of them.
567 * Most of the rest of NIR ignores this field or asserts that it's NULL.
568 */
569 nir_constant *constant_initializer;
570
571 /**
572 * For variables that are in an interface block or are an instance of an
573 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
574 *
575 * \sa ir_variable::location
576 */
577 const struct glsl_type *interface_type;
578
579 /**
580 * Description of per-member data for per-member struct variables
581 *
582 * This is used for variables which are actually an amalgamation of
583 * multiple entities such as a struct of built-in values or a struct of
584 * inputs each with their own layout specifier. This is only allowed on
585 * variables with a struct or array of array of struct type.
586 */
587 struct nir_variable_data *members;
588 } nir_variable;
589
590 #define nir_foreach_variable(var, var_list) \
591 foreach_list_typed(nir_variable, var, node, var_list)
592
593 #define nir_foreach_variable_safe(var, var_list) \
594 foreach_list_typed_safe(nir_variable, var, node, var_list)
595
596 static inline bool
597 nir_variable_is_global(const nir_variable *var)
598 {
599 return var->data.mode != nir_var_function_temp;
600 }
601
602 typedef struct nir_register {
603 struct exec_node node;
604
605 unsigned num_components; /** < number of vector components */
606 unsigned num_array_elems; /** < size of array (0 for no array) */
607
608 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
609 uint8_t bit_size;
610
611 /** generic register index. */
612 unsigned index;
613
614 /** only for debug purposes, can be NULL */
615 const char *name;
616
617 /** set of nir_srcs where this register is used (read from) */
618 struct list_head uses;
619
620 /** set of nir_dests where this register is defined (written to) */
621 struct list_head defs;
622
623 /** set of nir_ifs where this register is used as a condition */
624 struct list_head if_uses;
625 } nir_register;
626
627 #define nir_foreach_register(reg, reg_list) \
628 foreach_list_typed(nir_register, reg, node, reg_list)
629 #define nir_foreach_register_safe(reg, reg_list) \
630 foreach_list_typed_safe(nir_register, reg, node, reg_list)
631
632 typedef enum PACKED {
633 nir_instr_type_alu,
634 nir_instr_type_deref,
635 nir_instr_type_call,
636 nir_instr_type_tex,
637 nir_instr_type_intrinsic,
638 nir_instr_type_load_const,
639 nir_instr_type_jump,
640 nir_instr_type_ssa_undef,
641 nir_instr_type_phi,
642 nir_instr_type_parallel_copy,
643 } nir_instr_type;
644
645 typedef struct nir_instr {
646 struct exec_node node;
647 struct nir_block *block;
648 nir_instr_type type;
649
650 /* A temporary for optimization and analysis passes to use for storing
651 * flags. For instance, DCE uses this to store the "dead/live" info.
652 */
653 uint8_t pass_flags;
654
655 /** generic instruction index. */
656 unsigned index;
657 } nir_instr;
658
659 static inline nir_instr *
660 nir_instr_next(nir_instr *instr)
661 {
662 struct exec_node *next = exec_node_get_next(&instr->node);
663 if (exec_node_is_tail_sentinel(next))
664 return NULL;
665 else
666 return exec_node_data(nir_instr, next, node);
667 }
668
669 static inline nir_instr *
670 nir_instr_prev(nir_instr *instr)
671 {
672 struct exec_node *prev = exec_node_get_prev(&instr->node);
673 if (exec_node_is_head_sentinel(prev))
674 return NULL;
675 else
676 return exec_node_data(nir_instr, prev, node);
677 }
678
679 static inline bool
680 nir_instr_is_first(const nir_instr *instr)
681 {
682 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
683 }
684
685 static inline bool
686 nir_instr_is_last(const nir_instr *instr)
687 {
688 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
689 }
690
691 typedef struct nir_ssa_def {
692 /** for debugging only, can be NULL */
693 const char* name;
694
695 /** generic SSA definition index. */
696 unsigned index;
697
698 /** Index into the live_in and live_out bitfields */
699 unsigned live_index;
700
701 /** Instruction which produces this SSA value. */
702 nir_instr *parent_instr;
703
704 /** set of nir_instrs where this register is used (read from) */
705 struct list_head uses;
706
707 /** set of nir_ifs where this register is used as a condition */
708 struct list_head if_uses;
709
710 uint8_t num_components;
711
712 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
713 uint8_t bit_size;
714 } nir_ssa_def;
715
716 struct nir_src;
717
718 typedef struct {
719 nir_register *reg;
720 struct nir_src *indirect; /** < NULL for no indirect offset */
721 unsigned base_offset;
722
723 /* TODO use-def chain goes here */
724 } nir_reg_src;
725
726 typedef struct {
727 nir_instr *parent_instr;
728 struct list_head def_link;
729
730 nir_register *reg;
731 struct nir_src *indirect; /** < NULL for no indirect offset */
732 unsigned base_offset;
733
734 /* TODO def-use chain goes here */
735 } nir_reg_dest;
736
737 struct nir_if;
738
739 typedef struct nir_src {
740 union {
741 /** Instruction that consumes this value as a source. */
742 nir_instr *parent_instr;
743 struct nir_if *parent_if;
744 };
745
746 struct list_head use_link;
747
748 union {
749 nir_reg_src reg;
750 nir_ssa_def *ssa;
751 };
752
753 bool is_ssa;
754 } nir_src;
755
756 static inline nir_src
757 nir_src_init(void)
758 {
759 nir_src src = { { NULL } };
760 return src;
761 }
762
763 #define NIR_SRC_INIT nir_src_init()
764
765 #define nir_foreach_use(src, reg_or_ssa_def) \
766 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
767
768 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
769 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
770
771 #define nir_foreach_if_use(src, reg_or_ssa_def) \
772 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
773
774 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
775 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
776
777 typedef struct {
778 union {
779 nir_reg_dest reg;
780 nir_ssa_def ssa;
781 };
782
783 bool is_ssa;
784 } nir_dest;
785
786 static inline nir_dest
787 nir_dest_init(void)
788 {
789 nir_dest dest = { { { NULL } } };
790 return dest;
791 }
792
793 #define NIR_DEST_INIT nir_dest_init()
794
795 #define nir_foreach_def(dest, reg) \
796 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
797
798 #define nir_foreach_def_safe(dest, reg) \
799 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
800
801 static inline nir_src
802 nir_src_for_ssa(nir_ssa_def *def)
803 {
804 nir_src src = NIR_SRC_INIT;
805
806 src.is_ssa = true;
807 src.ssa = def;
808
809 return src;
810 }
811
812 static inline nir_src
813 nir_src_for_reg(nir_register *reg)
814 {
815 nir_src src = NIR_SRC_INIT;
816
817 src.is_ssa = false;
818 src.reg.reg = reg;
819 src.reg.indirect = NULL;
820 src.reg.base_offset = 0;
821
822 return src;
823 }
824
825 static inline nir_dest
826 nir_dest_for_reg(nir_register *reg)
827 {
828 nir_dest dest = NIR_DEST_INIT;
829
830 dest.reg.reg = reg;
831
832 return dest;
833 }
834
835 static inline unsigned
836 nir_src_bit_size(nir_src src)
837 {
838 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
839 }
840
841 static inline unsigned
842 nir_src_num_components(nir_src src)
843 {
844 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
845 }
846
847 static inline bool
848 nir_src_is_const(nir_src src)
849 {
850 return src.is_ssa &&
851 src.ssa->parent_instr->type == nir_instr_type_load_const;
852 }
853
854 static inline unsigned
855 nir_dest_bit_size(nir_dest dest)
856 {
857 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
858 }
859
860 static inline unsigned
861 nir_dest_num_components(nir_dest dest)
862 {
863 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
864 }
865
866 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
867 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
868
869 typedef struct {
870 nir_src src;
871
872 /**
873 * \name input modifiers
874 */
875 /*@{*/
876 /**
877 * For inputs interpreted as floating point, flips the sign bit. For
878 * inputs interpreted as integers, performs the two's complement negation.
879 */
880 bool negate;
881
882 /**
883 * Clears the sign bit for floating point values, and computes the integer
884 * absolute value for integers. Note that the negate modifier acts after
885 * the absolute value modifier, therefore if both are set then all inputs
886 * will become negative.
887 */
888 bool abs;
889 /*@}*/
890
891 /**
892 * For each input component, says which component of the register it is
893 * chosen from. Note that which elements of the swizzle are used and which
894 * are ignored are based on the write mask for most opcodes - for example,
895 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
896 * a swizzle of {2, x, 1, 0} where x means "don't care."
897 */
898 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
899 } nir_alu_src;
900
901 typedef struct {
902 nir_dest dest;
903
904 /**
905 * \name saturate output modifier
906 *
907 * Only valid for opcodes that output floating-point numbers. Clamps the
908 * output to between 0.0 and 1.0 inclusive.
909 */
910
911 bool saturate;
912
913 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
914 } nir_alu_dest;
915
916 /** NIR sized and unsized types
917 *
918 * The values in this enum are carefully chosen so that the sized type is
919 * just the unsized type OR the number of bits.
920 */
921 typedef enum {
922 nir_type_invalid = 0, /* Not a valid type */
923 nir_type_int = 2,
924 nir_type_uint = 4,
925 nir_type_bool = 6,
926 nir_type_float = 128,
927 nir_type_bool1 = 1 | nir_type_bool,
928 nir_type_bool8 = 8 | nir_type_bool,
929 nir_type_bool16 = 16 | nir_type_bool,
930 nir_type_bool32 = 32 | nir_type_bool,
931 nir_type_int1 = 1 | nir_type_int,
932 nir_type_int8 = 8 | nir_type_int,
933 nir_type_int16 = 16 | nir_type_int,
934 nir_type_int32 = 32 | nir_type_int,
935 nir_type_int64 = 64 | nir_type_int,
936 nir_type_uint1 = 1 | nir_type_uint,
937 nir_type_uint8 = 8 | nir_type_uint,
938 nir_type_uint16 = 16 | nir_type_uint,
939 nir_type_uint32 = 32 | nir_type_uint,
940 nir_type_uint64 = 64 | nir_type_uint,
941 nir_type_float16 = 16 | nir_type_float,
942 nir_type_float32 = 32 | nir_type_float,
943 nir_type_float64 = 64 | nir_type_float,
944 } nir_alu_type;
945
946 #define NIR_ALU_TYPE_SIZE_MASK 0x79
947 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
948
949 static inline unsigned
950 nir_alu_type_get_type_size(nir_alu_type type)
951 {
952 return type & NIR_ALU_TYPE_SIZE_MASK;
953 }
954
955 static inline unsigned
956 nir_alu_type_get_base_type(nir_alu_type type)
957 {
958 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
959 }
960
961 static inline nir_alu_type
962 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
963 {
964 switch (base_type) {
965 case GLSL_TYPE_BOOL:
966 return nir_type_bool1;
967 break;
968 case GLSL_TYPE_UINT:
969 return nir_type_uint32;
970 break;
971 case GLSL_TYPE_INT:
972 return nir_type_int32;
973 break;
974 case GLSL_TYPE_UINT16:
975 return nir_type_uint16;
976 break;
977 case GLSL_TYPE_INT16:
978 return nir_type_int16;
979 break;
980 case GLSL_TYPE_UINT8:
981 return nir_type_uint8;
982 case GLSL_TYPE_INT8:
983 return nir_type_int8;
984 case GLSL_TYPE_UINT64:
985 return nir_type_uint64;
986 break;
987 case GLSL_TYPE_INT64:
988 return nir_type_int64;
989 break;
990 case GLSL_TYPE_FLOAT:
991 return nir_type_float32;
992 break;
993 case GLSL_TYPE_FLOAT16:
994 return nir_type_float16;
995 break;
996 case GLSL_TYPE_DOUBLE:
997 return nir_type_float64;
998 break;
999
1000 case GLSL_TYPE_SAMPLER:
1001 case GLSL_TYPE_IMAGE:
1002 case GLSL_TYPE_ATOMIC_UINT:
1003 case GLSL_TYPE_STRUCT:
1004 case GLSL_TYPE_INTERFACE:
1005 case GLSL_TYPE_ARRAY:
1006 case GLSL_TYPE_VOID:
1007 case GLSL_TYPE_SUBROUTINE:
1008 case GLSL_TYPE_FUNCTION:
1009 case GLSL_TYPE_ERROR:
1010 return nir_type_invalid;
1011 }
1012
1013 unreachable("unknown type");
1014 }
1015
1016 static inline nir_alu_type
1017 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1018 {
1019 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1020 }
1021
1022 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1023 nir_rounding_mode rnd);
1024
1025 static inline nir_op
1026 nir_op_vec(unsigned components)
1027 {
1028 switch (components) {
1029 case 1: return nir_op_mov;
1030 case 2: return nir_op_vec2;
1031 case 3: return nir_op_vec3;
1032 case 4: return nir_op_vec4;
1033 default: unreachable("bad component count");
1034 }
1035 }
1036
1037 static inline bool
1038 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1039 {
1040 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1041 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1042 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1043 }
1044
1045 static inline bool
1046 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1047 {
1048 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1049 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1050 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1051 }
1052
1053 static inline bool
1054 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1055 {
1056 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1057 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1058 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1059 }
1060
1061 static inline bool
1062 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1063 {
1064 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1065 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1066 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1067 }
1068
1069 static inline bool
1070 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1071 {
1072 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1073 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1074 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1075 }
1076
1077 static inline bool
1078 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1079 {
1080 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1081 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1082 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1083 }
1084
1085 static inline bool
1086 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1087 {
1088 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1089 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1090 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1091 }
1092
1093 static inline nir_rounding_mode
1094 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1095 nir_alu_type type)
1096 {
1097 if (nir_alu_type_get_base_type(type) != nir_type_float)
1098 return nir_rounding_mode_undef;
1099
1100 unsigned bit_size = nir_alu_type_get_type_size(type);
1101
1102 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1103 return nir_rounding_mode_rtz;
1104 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1105 return nir_rounding_mode_rtne;
1106 return nir_rounding_mode_undef;
1107 }
1108
1109 static inline bool
1110 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1111 {
1112 bool result =
1113 nir_has_any_rounding_mode_rtne(execution_mode) ||
1114 nir_has_any_rounding_mode_rtz(execution_mode);
1115 return result;
1116 }
1117
1118 typedef enum {
1119 /**
1120 * Operation where the first two sources are commutative.
1121 *
1122 * For 2-source operations, this just mathematical commutativity. Some
1123 * 3-source operations, like ffma, are only commutative in the first two
1124 * sources.
1125 */
1126 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1127 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1128 } nir_op_algebraic_property;
1129
1130 typedef struct {
1131 const char *name;
1132
1133 unsigned num_inputs;
1134
1135 /**
1136 * The number of components in the output
1137 *
1138 * If non-zero, this is the size of the output and input sizes are
1139 * explicitly given; swizzle and writemask are still in effect, but if
1140 * the output component is masked out, then the input component may
1141 * still be in use.
1142 *
1143 * If zero, the opcode acts in the standard, per-component manner; the
1144 * operation is performed on each component (except the ones that are
1145 * masked out) with the input being taken from the input swizzle for
1146 * that component.
1147 *
1148 * The size of some of the inputs may be given (i.e. non-zero) even
1149 * though output_size is zero; in that case, the inputs with a zero
1150 * size act per-component, while the inputs with non-zero size don't.
1151 */
1152 unsigned output_size;
1153
1154 /**
1155 * The type of vector that the instruction outputs. Note that the
1156 * staurate modifier is only allowed on outputs with the float type.
1157 */
1158
1159 nir_alu_type output_type;
1160
1161 /**
1162 * The number of components in each input
1163 */
1164 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1165
1166 /**
1167 * The type of vector that each input takes. Note that negate and
1168 * absolute value are only allowed on inputs with int or float type and
1169 * behave differently on the two.
1170 */
1171 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1172
1173 nir_op_algebraic_property algebraic_properties;
1174
1175 /* Whether this represents a numeric conversion opcode */
1176 bool is_conversion;
1177 } nir_op_info;
1178
1179 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1180
1181 typedef struct nir_alu_instr {
1182 nir_instr instr;
1183 nir_op op;
1184
1185 /** Indicates that this ALU instruction generates an exact value
1186 *
1187 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1188 * really equivalent to either. This indicates that the value generated by
1189 * this operation is high-precision and any code transformations that touch
1190 * it must ensure that the resulting value is bit-for-bit identical to the
1191 * original.
1192 */
1193 bool exact:1;
1194
1195 /**
1196 * Indicates that this instruction do not cause wrapping to occur, in the
1197 * form of overflow or underflow.
1198 */
1199 bool no_signed_wrap:1;
1200 bool no_unsigned_wrap:1;
1201
1202 nir_alu_dest dest;
1203 nir_alu_src src[];
1204 } nir_alu_instr;
1205
1206 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1207 nir_alu_instr *instr);
1208 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1209 nir_alu_instr *instr);
1210
1211 /* is this source channel used? */
1212 static inline bool
1213 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1214 unsigned channel)
1215 {
1216 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1217 return channel < nir_op_infos[instr->op].input_sizes[src];
1218
1219 return (instr->dest.write_mask >> channel) & 1;
1220 }
1221
1222 static inline nir_component_mask_t
1223 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1224 {
1225 nir_component_mask_t read_mask = 0;
1226 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1227 if (!nir_alu_instr_channel_used(instr, src, c))
1228 continue;
1229
1230 read_mask |= (1 << instr->src[src].swizzle[c]);
1231 }
1232 return read_mask;
1233 }
1234
1235 /**
1236 * Get the number of channels used for a source
1237 */
1238 static inline unsigned
1239 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1240 {
1241 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1242 return nir_op_infos[instr->op].input_sizes[src];
1243
1244 return nir_dest_num_components(instr->dest.dest);
1245 }
1246
1247 static inline bool
1248 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1249 {
1250 switch (instr->op) {
1251 case nir_op_flt:
1252 case nir_op_fge:
1253 case nir_op_feq:
1254 case nir_op_fne:
1255 case nir_op_ilt:
1256 case nir_op_ult:
1257 case nir_op_ige:
1258 case nir_op_uge:
1259 case nir_op_ieq:
1260 case nir_op_ine:
1261 case nir_op_i2b1:
1262 case nir_op_f2b1:
1263 case nir_op_inot:
1264 return true;
1265 default:
1266 return false;
1267 }
1268 }
1269
1270 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1271 nir_alu_type full_type);
1272
1273 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1274 unsigned src1, unsigned src2);
1275
1276 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1277 const nir_alu_instr *alu2,
1278 unsigned src1, unsigned src2);
1279
1280 typedef enum {
1281 nir_deref_type_var,
1282 nir_deref_type_array,
1283 nir_deref_type_array_wildcard,
1284 nir_deref_type_ptr_as_array,
1285 nir_deref_type_struct,
1286 nir_deref_type_cast,
1287 } nir_deref_type;
1288
1289 typedef struct {
1290 nir_instr instr;
1291
1292 /** The type of this deref instruction */
1293 nir_deref_type deref_type;
1294
1295 /** The mode of the underlying variable */
1296 nir_variable_mode mode;
1297
1298 /** The dereferenced type of the resulting pointer value */
1299 const struct glsl_type *type;
1300
1301 union {
1302 /** Variable being dereferenced if deref_type is a deref_var */
1303 nir_variable *var;
1304
1305 /** Parent deref if deref_type is not deref_var */
1306 nir_src parent;
1307 };
1308
1309 /** Additional deref parameters */
1310 union {
1311 struct {
1312 nir_src index;
1313 } arr;
1314
1315 struct {
1316 unsigned index;
1317 } strct;
1318
1319 struct {
1320 unsigned ptr_stride;
1321 } cast;
1322 };
1323
1324 /** Destination to store the resulting "pointer" */
1325 nir_dest dest;
1326 } nir_deref_instr;
1327
1328 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1329
1330 static inline nir_deref_instr *
1331 nir_deref_instr_parent(const nir_deref_instr *instr)
1332 {
1333 if (instr->deref_type == nir_deref_type_var)
1334 return NULL;
1335 else
1336 return nir_src_as_deref(instr->parent);
1337 }
1338
1339 static inline nir_variable *
1340 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1341 {
1342 while (instr->deref_type != nir_deref_type_var) {
1343 if (instr->deref_type == nir_deref_type_cast)
1344 return NULL;
1345
1346 instr = nir_deref_instr_parent(instr);
1347 }
1348
1349 return instr->var;
1350 }
1351
1352 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1353 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1354 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1355
1356 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1357
1358 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1359
1360 typedef struct {
1361 nir_instr instr;
1362
1363 struct nir_function *callee;
1364
1365 unsigned num_params;
1366 nir_src params[];
1367 } nir_call_instr;
1368
1369 #include "nir_intrinsics.h"
1370
1371 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1372
1373 /** Represents an intrinsic
1374 *
1375 * An intrinsic is an instruction type for handling things that are
1376 * more-or-less regular operations but don't just consume and produce SSA
1377 * values like ALU operations do. Intrinsics are not for things that have
1378 * special semantic meaning such as phi nodes and parallel copies.
1379 * Examples of intrinsics include variable load/store operations, system
1380 * value loads, and the like. Even though texturing more-or-less falls
1381 * under this category, texturing is its own instruction type because
1382 * trying to represent texturing with intrinsics would lead to a
1383 * combinatorial explosion of intrinsic opcodes.
1384 *
1385 * By having a single instruction type for handling a lot of different
1386 * cases, optimization passes can look for intrinsics and, for the most
1387 * part, completely ignore them. Each intrinsic type also has a few
1388 * possible flags that govern whether or not they can be reordered or
1389 * eliminated. That way passes like dead code elimination can still work
1390 * on intrisics without understanding the meaning of each.
1391 *
1392 * Each intrinsic has some number of constant indices, some number of
1393 * variables, and some number of sources. What these sources, variables,
1394 * and indices mean depends on the intrinsic and is documented with the
1395 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1396 * instructions are the only types of instruction that can operate on
1397 * variables.
1398 */
1399 typedef struct {
1400 nir_instr instr;
1401
1402 nir_intrinsic_op intrinsic;
1403
1404 nir_dest dest;
1405
1406 /** number of components if this is a vectorized intrinsic
1407 *
1408 * Similarly to ALU operations, some intrinsics are vectorized.
1409 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1410 * For vectorized intrinsics, the num_components field specifies the
1411 * number of destination components and the number of source components
1412 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1413 */
1414 uint8_t num_components;
1415
1416 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1417
1418 nir_src src[];
1419 } nir_intrinsic_instr;
1420
1421 static inline nir_variable *
1422 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1423 {
1424 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1425 }
1426
1427 typedef enum {
1428 /* Memory ordering. */
1429 NIR_MEMORY_ACQUIRE = 1 << 0,
1430 NIR_MEMORY_RELEASE = 1 << 1,
1431
1432 /* Memory visibility operations. */
1433 NIR_MEMORY_MAKE_AVAILABLE = 1 << 3,
1434 NIR_MEMORY_MAKE_VISIBLE = 1 << 4,
1435 } nir_memory_semantics;
1436
1437 typedef enum {
1438 NIR_SCOPE_DEVICE,
1439 NIR_SCOPE_QUEUE_FAMILY,
1440 NIR_SCOPE_WORKGROUP,
1441 NIR_SCOPE_SUBGROUP,
1442 NIR_SCOPE_INVOCATION,
1443 } nir_scope;
1444
1445 /**
1446 * \name NIR intrinsics semantic flags
1447 *
1448 * information about what the compiler can do with the intrinsics.
1449 *
1450 * \sa nir_intrinsic_info::flags
1451 */
1452 typedef enum {
1453 /**
1454 * whether the intrinsic can be safely eliminated if none of its output
1455 * value is not being used.
1456 */
1457 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1458
1459 /**
1460 * Whether the intrinsic can be reordered with respect to any other
1461 * intrinsic, i.e. whether the only reordering dependencies of the
1462 * intrinsic are due to the register reads/writes.
1463 */
1464 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1465 } nir_intrinsic_semantic_flag;
1466
1467 /**
1468 * \name NIR intrinsics const-index flag
1469 *
1470 * Indicates the usage of a const_index slot.
1471 *
1472 * \sa nir_intrinsic_info::index_map
1473 */
1474 typedef enum {
1475 /**
1476 * Generally instructions that take a offset src argument, can encode
1477 * a constant 'base' value which is added to the offset.
1478 */
1479 NIR_INTRINSIC_BASE = 1,
1480
1481 /**
1482 * For store instructions, a writemask for the store.
1483 */
1484 NIR_INTRINSIC_WRMASK,
1485
1486 /**
1487 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1488 */
1489 NIR_INTRINSIC_STREAM_ID,
1490
1491 /**
1492 * The clip-plane id for load_user_clip_plane intrinsic.
1493 */
1494 NIR_INTRINSIC_UCP_ID,
1495
1496 /**
1497 * The amount of data, starting from BASE, that this instruction may
1498 * access. This is used to provide bounds if the offset is not constant.
1499 */
1500 NIR_INTRINSIC_RANGE,
1501
1502 /**
1503 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1504 */
1505 NIR_INTRINSIC_DESC_SET,
1506
1507 /**
1508 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1509 */
1510 NIR_INTRINSIC_BINDING,
1511
1512 /**
1513 * Component offset.
1514 */
1515 NIR_INTRINSIC_COMPONENT,
1516
1517 /**
1518 * Interpolation mode (only meaningful for FS inputs).
1519 */
1520 NIR_INTRINSIC_INTERP_MODE,
1521
1522 /**
1523 * A binary nir_op to use when performing a reduction or scan operation
1524 */
1525 NIR_INTRINSIC_REDUCTION_OP,
1526
1527 /**
1528 * Cluster size for reduction operations
1529 */
1530 NIR_INTRINSIC_CLUSTER_SIZE,
1531
1532 /**
1533 * Parameter index for a load_param intrinsic
1534 */
1535 NIR_INTRINSIC_PARAM_IDX,
1536
1537 /**
1538 * Image dimensionality for image intrinsics
1539 *
1540 * One of GLSL_SAMPLER_DIM_*
1541 */
1542 NIR_INTRINSIC_IMAGE_DIM,
1543
1544 /**
1545 * Non-zero if we are accessing an array image
1546 */
1547 NIR_INTRINSIC_IMAGE_ARRAY,
1548
1549 /**
1550 * Image format for image intrinsics
1551 */
1552 NIR_INTRINSIC_FORMAT,
1553
1554 /**
1555 * Access qualifiers for image and memory access intrinsics
1556 */
1557 NIR_INTRINSIC_ACCESS,
1558
1559 /**
1560 * Alignment for offsets and addresses
1561 *
1562 * These two parameters, specify an alignment in terms of a multiplier and
1563 * an offset. The offset or address parameter X of the intrinsic is
1564 * guaranteed to satisfy the following:
1565 *
1566 * (X - align_offset) % align_mul == 0
1567 */
1568 NIR_INTRINSIC_ALIGN_MUL,
1569 NIR_INTRINSIC_ALIGN_OFFSET,
1570
1571 /**
1572 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1573 */
1574 NIR_INTRINSIC_DESC_TYPE,
1575
1576 /**
1577 * The nir_alu_type of a uniform/input/output
1578 */
1579 NIR_INTRINSIC_TYPE,
1580
1581 /**
1582 * The swizzle mask for the instructions
1583 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1584 */
1585 NIR_INTRINSIC_SWIZZLE_MASK,
1586
1587 /* Separate source/dest access flags for copies */
1588 NIR_INTRINSIC_SRC_ACCESS,
1589 NIR_INTRINSIC_DST_ACCESS,
1590
1591 /* Driver location for nir_load_patch_location_ir3 */
1592 NIR_INTRINSIC_DRIVER_LOCATION,
1593
1594 /**
1595 * Mask of nir_memory_semantics, includes ordering and visibility.
1596 */
1597 NIR_INTRINSIC_MEMORY_SEMANTICS,
1598
1599 /**
1600 * Mask of nir_variable_modes affected by the memory operation.
1601 */
1602 NIR_INTRINSIC_MEMORY_MODES,
1603
1604 /**
1605 * Value of nir_scope.
1606 */
1607 NIR_INTRINSIC_MEMORY_SCOPE,
1608
1609 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1610
1611 } nir_intrinsic_index_flag;
1612
1613 #define NIR_INTRINSIC_MAX_INPUTS 5
1614
1615 typedef struct {
1616 const char *name;
1617
1618 unsigned num_srcs; /** < number of register/SSA inputs */
1619
1620 /** number of components of each input register
1621 *
1622 * If this value is 0, the number of components is given by the
1623 * num_components field of nir_intrinsic_instr. If this value is -1, the
1624 * intrinsic consumes however many components are provided and it is not
1625 * validated at all.
1626 */
1627 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1628
1629 bool has_dest;
1630
1631 /** number of components of the output register
1632 *
1633 * If this value is 0, the number of components is given by the
1634 * num_components field of nir_intrinsic_instr.
1635 */
1636 unsigned dest_components;
1637
1638 /** bitfield of legal bit sizes */
1639 unsigned dest_bit_sizes;
1640
1641 /** the number of constant indices used by the intrinsic */
1642 unsigned num_indices;
1643
1644 /** indicates the usage of intr->const_index[n] */
1645 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1646
1647 /** semantic flags for calls to this intrinsic */
1648 nir_intrinsic_semantic_flag flags;
1649 } nir_intrinsic_info;
1650
1651 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1652
1653 static inline unsigned
1654 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1655 {
1656 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1657 assert(srcn < info->num_srcs);
1658 if (info->src_components[srcn] > 0)
1659 return info->src_components[srcn];
1660 else if (info->src_components[srcn] == 0)
1661 return intr->num_components;
1662 else
1663 return nir_src_num_components(intr->src[srcn]);
1664 }
1665
1666 static inline unsigned
1667 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1668 {
1669 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1670 if (!info->has_dest)
1671 return 0;
1672 else if (info->dest_components)
1673 return info->dest_components;
1674 else
1675 return intr->num_components;
1676 }
1677
1678 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1679 static inline type \
1680 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1681 { \
1682 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1683 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1684 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1685 } \
1686 static inline void \
1687 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1688 { \
1689 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1690 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1691 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1692 }
1693
1694 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1695 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1696 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1697 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1698 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1699 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1700 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1701 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1702 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1703 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1704 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1705 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1706 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1707 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1708 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1709 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1710 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1711 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1712 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1713 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1714 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1715 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1716 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1717 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1718 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1719 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1720 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1721
1722 static inline void
1723 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1724 unsigned align_mul, unsigned align_offset)
1725 {
1726 assert(util_is_power_of_two_nonzero(align_mul));
1727 assert(align_offset < align_mul);
1728 nir_intrinsic_set_align_mul(intrin, align_mul);
1729 nir_intrinsic_set_align_offset(intrin, align_offset);
1730 }
1731
1732 /** Returns a simple alignment for a load/store intrinsic offset
1733 *
1734 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1735 * and ALIGN_OFFSET parameters, this helper takes both into account and
1736 * provides a single simple alignment parameter. The offset X is guaranteed
1737 * to satisfy X % align == 0.
1738 */
1739 static inline unsigned
1740 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1741 {
1742 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1743 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1744 assert(align_offset < align_mul);
1745 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1746 }
1747
1748 /* Converts a image_deref_* intrinsic into a image_* one */
1749 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1750 nir_ssa_def *handle, bool bindless);
1751
1752 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1753 static inline bool
1754 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1755 {
1756 if (instr->intrinsic == nir_intrinsic_load_deref ||
1757 instr->intrinsic == nir_intrinsic_load_ssbo ||
1758 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1759 instr->intrinsic == nir_intrinsic_image_deref_load ||
1760 instr->intrinsic == nir_intrinsic_image_load) {
1761 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1762 } else {
1763 const nir_intrinsic_info *info =
1764 &nir_intrinsic_infos[instr->intrinsic];
1765 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1766 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1767 }
1768 }
1769
1770 /**
1771 * \group texture information
1772 *
1773 * This gives semantic information about textures which is useful to the
1774 * frontend, the backend, and lowering passes, but not the optimizer.
1775 */
1776
1777 typedef enum {
1778 nir_tex_src_coord,
1779 nir_tex_src_projector,
1780 nir_tex_src_comparator, /* shadow comparator */
1781 nir_tex_src_offset,
1782 nir_tex_src_bias,
1783 nir_tex_src_lod,
1784 nir_tex_src_min_lod,
1785 nir_tex_src_ms_index, /* MSAA sample index */
1786 nir_tex_src_ms_mcs, /* MSAA compression value */
1787 nir_tex_src_ddx,
1788 nir_tex_src_ddy,
1789 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1790 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1791 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1792 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1793 nir_tex_src_texture_handle, /* < bindless texture handle */
1794 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1795 nir_tex_src_plane, /* < selects plane for planar textures */
1796 nir_num_tex_src_types
1797 } nir_tex_src_type;
1798
1799 typedef struct {
1800 nir_src src;
1801 nir_tex_src_type src_type;
1802 } nir_tex_src;
1803
1804 typedef enum {
1805 nir_texop_tex, /**< Regular texture look-up */
1806 nir_texop_txb, /**< Texture look-up with LOD bias */
1807 nir_texop_txl, /**< Texture look-up with explicit LOD */
1808 nir_texop_txd, /**< Texture look-up with partial derivatives */
1809 nir_texop_txf, /**< Texel fetch with explicit LOD */
1810 nir_texop_txf_ms, /**< Multisample texture fetch */
1811 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1812 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1813 nir_texop_txs, /**< Texture size */
1814 nir_texop_lod, /**< Texture lod query */
1815 nir_texop_tg4, /**< Texture gather */
1816 nir_texop_query_levels, /**< Texture levels query */
1817 nir_texop_texture_samples, /**< Texture samples query */
1818 nir_texop_samples_identical, /**< Query whether all samples are definitely
1819 * identical.
1820 */
1821 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1822 } nir_texop;
1823
1824 typedef struct {
1825 nir_instr instr;
1826
1827 enum glsl_sampler_dim sampler_dim;
1828 nir_alu_type dest_type;
1829
1830 nir_texop op;
1831 nir_dest dest;
1832 nir_tex_src *src;
1833 unsigned num_srcs, coord_components;
1834 bool is_array, is_shadow;
1835
1836 /**
1837 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1838 * components or the new-style shadow that outputs 1 component.
1839 */
1840 bool is_new_style_shadow;
1841
1842 /* gather component selector */
1843 unsigned component : 2;
1844
1845 /* gather offsets */
1846 int8_t tg4_offsets[4][2];
1847
1848 /* True if the texture index or handle is not dynamically uniform */
1849 bool texture_non_uniform;
1850
1851 /* True if the sampler index or handle is not dynamically uniform */
1852 bool sampler_non_uniform;
1853
1854 /** The texture index
1855 *
1856 * If this texture instruction has a nir_tex_src_texture_offset source,
1857 * then the texture index is given by texture_index + texture_offset.
1858 */
1859 unsigned texture_index;
1860
1861 /** The size of the texture array or 0 if it's not an array */
1862 unsigned texture_array_size;
1863
1864 /** The sampler index
1865 *
1866 * The following operations do not require a sampler and, as such, this
1867 * field should be ignored:
1868 * - nir_texop_txf
1869 * - nir_texop_txf_ms
1870 * - nir_texop_txs
1871 * - nir_texop_lod
1872 * - nir_texop_query_levels
1873 * - nir_texop_texture_samples
1874 * - nir_texop_samples_identical
1875 *
1876 * If this texture instruction has a nir_tex_src_sampler_offset source,
1877 * then the sampler index is given by sampler_index + sampler_offset.
1878 */
1879 unsigned sampler_index;
1880 } nir_tex_instr;
1881
1882 static inline unsigned
1883 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1884 {
1885 switch (instr->op) {
1886 case nir_texop_txs: {
1887 unsigned ret;
1888 switch (instr->sampler_dim) {
1889 case GLSL_SAMPLER_DIM_1D:
1890 case GLSL_SAMPLER_DIM_BUF:
1891 ret = 1;
1892 break;
1893 case GLSL_SAMPLER_DIM_2D:
1894 case GLSL_SAMPLER_DIM_CUBE:
1895 case GLSL_SAMPLER_DIM_MS:
1896 case GLSL_SAMPLER_DIM_RECT:
1897 case GLSL_SAMPLER_DIM_EXTERNAL:
1898 case GLSL_SAMPLER_DIM_SUBPASS:
1899 ret = 2;
1900 break;
1901 case GLSL_SAMPLER_DIM_3D:
1902 ret = 3;
1903 break;
1904 default:
1905 unreachable("not reached");
1906 }
1907 if (instr->is_array)
1908 ret++;
1909 return ret;
1910 }
1911
1912 case nir_texop_lod:
1913 return 2;
1914
1915 case nir_texop_texture_samples:
1916 case nir_texop_query_levels:
1917 case nir_texop_samples_identical:
1918 return 1;
1919
1920 default:
1921 if (instr->is_shadow && instr->is_new_style_shadow)
1922 return 1;
1923
1924 return 4;
1925 }
1926 }
1927
1928 /* Returns true if this texture operation queries something about the texture
1929 * rather than actually sampling it.
1930 */
1931 static inline bool
1932 nir_tex_instr_is_query(const nir_tex_instr *instr)
1933 {
1934 switch (instr->op) {
1935 case nir_texop_txs:
1936 case nir_texop_lod:
1937 case nir_texop_texture_samples:
1938 case nir_texop_query_levels:
1939 case nir_texop_txf_ms_mcs:
1940 return true;
1941 case nir_texop_tex:
1942 case nir_texop_txb:
1943 case nir_texop_txl:
1944 case nir_texop_txd:
1945 case nir_texop_txf:
1946 case nir_texop_txf_ms:
1947 case nir_texop_txf_ms_fb:
1948 case nir_texop_tg4:
1949 return false;
1950 default:
1951 unreachable("Invalid texture opcode");
1952 }
1953 }
1954
1955 static inline bool
1956 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
1957 {
1958 switch (instr->op) {
1959 case nir_texop_tex:
1960 case nir_texop_txb:
1961 case nir_texop_lod:
1962 return true;
1963 default:
1964 return false;
1965 }
1966 }
1967
1968 static inline nir_alu_type
1969 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1970 {
1971 switch (instr->src[src].src_type) {
1972 case nir_tex_src_coord:
1973 switch (instr->op) {
1974 case nir_texop_txf:
1975 case nir_texop_txf_ms:
1976 case nir_texop_txf_ms_fb:
1977 case nir_texop_txf_ms_mcs:
1978 case nir_texop_samples_identical:
1979 return nir_type_int;
1980
1981 default:
1982 return nir_type_float;
1983 }
1984
1985 case nir_tex_src_lod:
1986 switch (instr->op) {
1987 case nir_texop_txs:
1988 case nir_texop_txf:
1989 return nir_type_int;
1990
1991 default:
1992 return nir_type_float;
1993 }
1994
1995 case nir_tex_src_projector:
1996 case nir_tex_src_comparator:
1997 case nir_tex_src_bias:
1998 case nir_tex_src_min_lod:
1999 case nir_tex_src_ddx:
2000 case nir_tex_src_ddy:
2001 return nir_type_float;
2002
2003 case nir_tex_src_offset:
2004 case nir_tex_src_ms_index:
2005 case nir_tex_src_plane:
2006 return nir_type_int;
2007
2008 case nir_tex_src_ms_mcs:
2009 case nir_tex_src_texture_deref:
2010 case nir_tex_src_sampler_deref:
2011 case nir_tex_src_texture_offset:
2012 case nir_tex_src_sampler_offset:
2013 case nir_tex_src_texture_handle:
2014 case nir_tex_src_sampler_handle:
2015 return nir_type_uint;
2016
2017 case nir_num_tex_src_types:
2018 unreachable("nir_num_tex_src_types is not a valid source type");
2019 }
2020
2021 unreachable("Invalid texture source type");
2022 }
2023
2024 static inline unsigned
2025 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2026 {
2027 if (instr->src[src].src_type == nir_tex_src_coord)
2028 return instr->coord_components;
2029
2030 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2031 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2032 return 4;
2033
2034 if (instr->src[src].src_type == nir_tex_src_ddx ||
2035 instr->src[src].src_type == nir_tex_src_ddy) {
2036 if (instr->is_array)
2037 return instr->coord_components - 1;
2038 else
2039 return instr->coord_components;
2040 }
2041
2042 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2043 * the offset, since a cube maps to a single face.
2044 */
2045 if (instr->src[src].src_type == nir_tex_src_offset) {
2046 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2047 return 2;
2048 else if (instr->is_array)
2049 return instr->coord_components - 1;
2050 else
2051 return instr->coord_components;
2052 }
2053
2054 return 1;
2055 }
2056
2057 static inline int
2058 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2059 {
2060 for (unsigned i = 0; i < instr->num_srcs; i++)
2061 if (instr->src[i].src_type == type)
2062 return (int) i;
2063
2064 return -1;
2065 }
2066
2067 void nir_tex_instr_add_src(nir_tex_instr *tex,
2068 nir_tex_src_type src_type,
2069 nir_src src);
2070
2071 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2072
2073 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2074
2075 typedef struct {
2076 nir_instr instr;
2077
2078 nir_ssa_def def;
2079
2080 nir_const_value value[];
2081 } nir_load_const_instr;
2082
2083 typedef enum {
2084 nir_jump_return,
2085 nir_jump_break,
2086 nir_jump_continue,
2087 } nir_jump_type;
2088
2089 typedef struct {
2090 nir_instr instr;
2091 nir_jump_type type;
2092 } nir_jump_instr;
2093
2094 /* creates a new SSA variable in an undefined state */
2095
2096 typedef struct {
2097 nir_instr instr;
2098 nir_ssa_def def;
2099 } nir_ssa_undef_instr;
2100
2101 typedef struct {
2102 struct exec_node node;
2103
2104 /* The predecessor block corresponding to this source */
2105 struct nir_block *pred;
2106
2107 nir_src src;
2108 } nir_phi_src;
2109
2110 #define nir_foreach_phi_src(phi_src, phi) \
2111 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2112 #define nir_foreach_phi_src_safe(phi_src, phi) \
2113 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2114
2115 typedef struct {
2116 nir_instr instr;
2117
2118 struct exec_list srcs; /** < list of nir_phi_src */
2119
2120 nir_dest dest;
2121 } nir_phi_instr;
2122
2123 typedef struct {
2124 struct exec_node node;
2125 nir_src src;
2126 nir_dest dest;
2127 } nir_parallel_copy_entry;
2128
2129 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2130 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2131
2132 typedef struct {
2133 nir_instr instr;
2134
2135 /* A list of nir_parallel_copy_entrys. The sources of all of the
2136 * entries are copied to the corresponding destinations "in parallel".
2137 * In other words, if we have two entries: a -> b and b -> a, the values
2138 * get swapped.
2139 */
2140 struct exec_list entries;
2141 } nir_parallel_copy_instr;
2142
2143 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2144 type, nir_instr_type_alu)
2145 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2146 type, nir_instr_type_deref)
2147 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2148 type, nir_instr_type_call)
2149 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2150 type, nir_instr_type_jump)
2151 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2152 type, nir_instr_type_tex)
2153 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2154 type, nir_instr_type_intrinsic)
2155 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2156 type, nir_instr_type_load_const)
2157 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2158 type, nir_instr_type_ssa_undef)
2159 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2160 type, nir_instr_type_phi)
2161 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2162 nir_parallel_copy_instr, instr,
2163 type, nir_instr_type_parallel_copy)
2164
2165
2166 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2167 static inline type \
2168 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2169 { \
2170 assert(nir_src_is_const(src)); \
2171 nir_load_const_instr *load = \
2172 nir_instr_as_load_const(src.ssa->parent_instr); \
2173 assert(comp < load->def.num_components); \
2174 return nir_const_value_as_##suffix(load->value[comp], \
2175 load->def.bit_size); \
2176 } \
2177 \
2178 static inline type \
2179 nir_src_as_##suffix(nir_src src) \
2180 { \
2181 assert(nir_src_num_components(src) == 1); \
2182 return nir_src_comp_as_##suffix(src, 0); \
2183 }
2184
2185 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2186 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2187 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2188 NIR_DEFINE_SRC_AS_CONST(double, float)
2189
2190 #undef NIR_DEFINE_SRC_AS_CONST
2191
2192
2193 typedef struct {
2194 nir_ssa_def *def;
2195 unsigned comp;
2196 } nir_ssa_scalar;
2197
2198 static inline bool
2199 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2200 {
2201 return s.def->parent_instr->type == nir_instr_type_load_const;
2202 }
2203
2204 static inline nir_const_value
2205 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2206 {
2207 assert(s.comp < s.def->num_components);
2208 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2209 return load->value[s.comp];
2210 }
2211
2212 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2213 static inline type \
2214 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2215 { \
2216 return nir_const_value_as_##suffix( \
2217 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2218 }
2219
2220 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2221 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2222 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2223 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2224
2225 #undef NIR_DEFINE_SCALAR_AS_CONST
2226
2227 static inline bool
2228 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2229 {
2230 return s.def->parent_instr->type == nir_instr_type_alu;
2231 }
2232
2233 static inline nir_op
2234 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2235 {
2236 return nir_instr_as_alu(s.def->parent_instr)->op;
2237 }
2238
2239 static inline nir_ssa_scalar
2240 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2241 {
2242 nir_ssa_scalar out = { NULL, 0 };
2243
2244 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2245 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2246
2247 /* Our component must be written */
2248 assert(s.comp < s.def->num_components);
2249 assert(alu->dest.write_mask & (1u << s.comp));
2250
2251 assert(alu->src[alu_src_idx].src.is_ssa);
2252 out.def = alu->src[alu_src_idx].src.ssa;
2253
2254 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2255 /* The ALU src is unsized so the source component follows the
2256 * destination component.
2257 */
2258 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2259 } else {
2260 /* This is a sized source so all source components work together to
2261 * produce all the destination components. Since we need to return a
2262 * scalar, this only works if the source is a scalar.
2263 */
2264 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2265 out.comp = alu->src[alu_src_idx].swizzle[0];
2266 }
2267 assert(out.comp < out.def->num_components);
2268
2269 return out;
2270 }
2271
2272
2273 /*
2274 * Control flow
2275 *
2276 * Control flow consists of a tree of control flow nodes, which include
2277 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2278 * instructions that always run start-to-finish. Each basic block also keeps
2279 * track of its successors (blocks which may run immediately after the current
2280 * block) and predecessors (blocks which could have run immediately before the
2281 * current block). Each function also has a start block and an end block which
2282 * all return statements point to (which is always empty). Together, all the
2283 * blocks with their predecessors and successors make up the control flow
2284 * graph (CFG) of the function. There are helpers that modify the tree of
2285 * control flow nodes while modifying the CFG appropriately; these should be
2286 * used instead of modifying the tree directly.
2287 */
2288
2289 typedef enum {
2290 nir_cf_node_block,
2291 nir_cf_node_if,
2292 nir_cf_node_loop,
2293 nir_cf_node_function
2294 } nir_cf_node_type;
2295
2296 typedef struct nir_cf_node {
2297 struct exec_node node;
2298 nir_cf_node_type type;
2299 struct nir_cf_node *parent;
2300 } nir_cf_node;
2301
2302 typedef struct nir_block {
2303 nir_cf_node cf_node;
2304
2305 struct exec_list instr_list; /** < list of nir_instr */
2306
2307 /** generic block index; generated by nir_index_blocks */
2308 unsigned index;
2309
2310 /*
2311 * Each block can only have up to 2 successors, so we put them in a simple
2312 * array - no need for anything more complicated.
2313 */
2314 struct nir_block *successors[2];
2315
2316 /* Set of nir_block predecessors in the CFG */
2317 struct set *predecessors;
2318
2319 /*
2320 * this node's immediate dominator in the dominance tree - set to NULL for
2321 * the start block.
2322 */
2323 struct nir_block *imm_dom;
2324
2325 /* This node's children in the dominance tree */
2326 unsigned num_dom_children;
2327 struct nir_block **dom_children;
2328
2329 /* Set of nir_blocks on the dominance frontier of this block */
2330 struct set *dom_frontier;
2331
2332 /*
2333 * These two indices have the property that dom_{pre,post}_index for each
2334 * child of this block in the dominance tree will always be between
2335 * dom_pre_index and dom_post_index for this block, which makes testing if
2336 * a given block is dominated by another block an O(1) operation.
2337 */
2338 unsigned dom_pre_index, dom_post_index;
2339
2340 /* live in and out for this block; used for liveness analysis */
2341 BITSET_WORD *live_in;
2342 BITSET_WORD *live_out;
2343 } nir_block;
2344
2345 static inline nir_instr *
2346 nir_block_first_instr(nir_block *block)
2347 {
2348 struct exec_node *head = exec_list_get_head(&block->instr_list);
2349 return exec_node_data(nir_instr, head, node);
2350 }
2351
2352 static inline nir_instr *
2353 nir_block_last_instr(nir_block *block)
2354 {
2355 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2356 return exec_node_data(nir_instr, tail, node);
2357 }
2358
2359 static inline bool
2360 nir_block_ends_in_jump(nir_block *block)
2361 {
2362 return !exec_list_is_empty(&block->instr_list) &&
2363 nir_block_last_instr(block)->type == nir_instr_type_jump;
2364 }
2365
2366 #define nir_foreach_instr(instr, block) \
2367 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2368 #define nir_foreach_instr_reverse(instr, block) \
2369 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2370 #define nir_foreach_instr_safe(instr, block) \
2371 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2372 #define nir_foreach_instr_reverse_safe(instr, block) \
2373 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2374
2375 typedef enum {
2376 nir_selection_control_none = 0x0,
2377 nir_selection_control_flatten = 0x1,
2378 nir_selection_control_dont_flatten = 0x2,
2379 } nir_selection_control;
2380
2381 typedef struct nir_if {
2382 nir_cf_node cf_node;
2383 nir_src condition;
2384 nir_selection_control control;
2385
2386 struct exec_list then_list; /** < list of nir_cf_node */
2387 struct exec_list else_list; /** < list of nir_cf_node */
2388 } nir_if;
2389
2390 typedef struct {
2391 nir_if *nif;
2392
2393 /** Instruction that generates nif::condition. */
2394 nir_instr *conditional_instr;
2395
2396 /** Block within ::nif that has the break instruction. */
2397 nir_block *break_block;
2398
2399 /** Last block for the then- or else-path that does not contain the break. */
2400 nir_block *continue_from_block;
2401
2402 /** True when ::break_block is in the else-path of ::nif. */
2403 bool continue_from_then;
2404 bool induction_rhs;
2405
2406 /* This is true if the terminators exact trip count is unknown. For
2407 * example:
2408 *
2409 * for (int i = 0; i < imin(x, 4); i++)
2410 * ...
2411 *
2412 * Here loop analysis would have set a max_trip_count of 4 however we dont
2413 * know for sure that this is the exact trip count.
2414 */
2415 bool exact_trip_count_unknown;
2416
2417 struct list_head loop_terminator_link;
2418 } nir_loop_terminator;
2419
2420 typedef struct {
2421 /* Estimated cost (in number of instructions) of the loop */
2422 unsigned instr_cost;
2423
2424 /* Guessed trip count based on array indexing */
2425 unsigned guessed_trip_count;
2426
2427 /* Maximum number of times the loop is run (if known) */
2428 unsigned max_trip_count;
2429
2430 /* Do we know the exact number of times the loop will be run */
2431 bool exact_trip_count_known;
2432
2433 /* Unroll the loop regardless of its size */
2434 bool force_unroll;
2435
2436 /* Does the loop contain complex loop terminators, continues or other
2437 * complex behaviours? If this is true we can't rely on
2438 * loop_terminator_list to be complete or accurate.
2439 */
2440 bool complex_loop;
2441
2442 nir_loop_terminator *limiting_terminator;
2443
2444 /* A list of loop_terminators terminating this loop. */
2445 struct list_head loop_terminator_list;
2446 } nir_loop_info;
2447
2448 typedef enum {
2449 nir_loop_control_none = 0x0,
2450 nir_loop_control_unroll = 0x1,
2451 nir_loop_control_dont_unroll = 0x2,
2452 } nir_loop_control;
2453
2454 typedef struct {
2455 nir_cf_node cf_node;
2456
2457 struct exec_list body; /** < list of nir_cf_node */
2458
2459 nir_loop_info *info;
2460 nir_loop_control control;
2461 bool partially_unrolled;
2462 } nir_loop;
2463
2464 /**
2465 * Various bits of metadata that can may be created or required by
2466 * optimization and analysis passes
2467 */
2468 typedef enum {
2469 nir_metadata_none = 0x0,
2470 nir_metadata_block_index = 0x1,
2471 nir_metadata_dominance = 0x2,
2472 nir_metadata_live_ssa_defs = 0x4,
2473 nir_metadata_not_properly_reset = 0x8,
2474 nir_metadata_loop_analysis = 0x10,
2475 } nir_metadata;
2476
2477 typedef struct {
2478 nir_cf_node cf_node;
2479
2480 /** pointer to the function of which this is an implementation */
2481 struct nir_function *function;
2482
2483 struct exec_list body; /** < list of nir_cf_node */
2484
2485 nir_block *end_block;
2486
2487 /** list for all local variables in the function */
2488 struct exec_list locals;
2489
2490 /** list of local registers in the function */
2491 struct exec_list registers;
2492
2493 /** next available local register index */
2494 unsigned reg_alloc;
2495
2496 /** next available SSA value index */
2497 unsigned ssa_alloc;
2498
2499 /* total number of basic blocks, only valid when block_index_dirty = false */
2500 unsigned num_blocks;
2501
2502 nir_metadata valid_metadata;
2503 } nir_function_impl;
2504
2505 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2506 nir_start_block(nir_function_impl *impl)
2507 {
2508 return (nir_block *) impl->body.head_sentinel.next;
2509 }
2510
2511 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2512 nir_impl_last_block(nir_function_impl *impl)
2513 {
2514 return (nir_block *) impl->body.tail_sentinel.prev;
2515 }
2516
2517 static inline nir_cf_node *
2518 nir_cf_node_next(nir_cf_node *node)
2519 {
2520 struct exec_node *next = exec_node_get_next(&node->node);
2521 if (exec_node_is_tail_sentinel(next))
2522 return NULL;
2523 else
2524 return exec_node_data(nir_cf_node, next, node);
2525 }
2526
2527 static inline nir_cf_node *
2528 nir_cf_node_prev(nir_cf_node *node)
2529 {
2530 struct exec_node *prev = exec_node_get_prev(&node->node);
2531 if (exec_node_is_head_sentinel(prev))
2532 return NULL;
2533 else
2534 return exec_node_data(nir_cf_node, prev, node);
2535 }
2536
2537 static inline bool
2538 nir_cf_node_is_first(const nir_cf_node *node)
2539 {
2540 return exec_node_is_head_sentinel(node->node.prev);
2541 }
2542
2543 static inline bool
2544 nir_cf_node_is_last(const nir_cf_node *node)
2545 {
2546 return exec_node_is_tail_sentinel(node->node.next);
2547 }
2548
2549 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2550 type, nir_cf_node_block)
2551 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2552 type, nir_cf_node_if)
2553 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2554 type, nir_cf_node_loop)
2555 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2556 nir_function_impl, cf_node, type, nir_cf_node_function)
2557
2558 static inline nir_block *
2559 nir_if_first_then_block(nir_if *if_stmt)
2560 {
2561 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2562 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2563 }
2564
2565 static inline nir_block *
2566 nir_if_last_then_block(nir_if *if_stmt)
2567 {
2568 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2569 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2570 }
2571
2572 static inline nir_block *
2573 nir_if_first_else_block(nir_if *if_stmt)
2574 {
2575 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2576 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2577 }
2578
2579 static inline nir_block *
2580 nir_if_last_else_block(nir_if *if_stmt)
2581 {
2582 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2583 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2584 }
2585
2586 static inline nir_block *
2587 nir_loop_first_block(nir_loop *loop)
2588 {
2589 struct exec_node *head = exec_list_get_head(&loop->body);
2590 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2591 }
2592
2593 static inline nir_block *
2594 nir_loop_last_block(nir_loop *loop)
2595 {
2596 struct exec_node *tail = exec_list_get_tail(&loop->body);
2597 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2598 }
2599
2600 /**
2601 * Return true if this list of cf_nodes contains a single empty block.
2602 */
2603 static inline bool
2604 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2605 {
2606 if (exec_list_is_singular(cf_list)) {
2607 struct exec_node *head = exec_list_get_head(cf_list);
2608 nir_block *block =
2609 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2610 return exec_list_is_empty(&block->instr_list);
2611 }
2612 return false;
2613 }
2614
2615 typedef struct {
2616 uint8_t num_components;
2617 uint8_t bit_size;
2618 } nir_parameter;
2619
2620 typedef struct nir_function {
2621 struct exec_node node;
2622
2623 const char *name;
2624 struct nir_shader *shader;
2625
2626 unsigned num_params;
2627 nir_parameter *params;
2628
2629 /** The implementation of this function.
2630 *
2631 * If the function is only declared and not implemented, this is NULL.
2632 */
2633 nir_function_impl *impl;
2634
2635 bool is_entrypoint;
2636 } nir_function;
2637
2638 typedef enum {
2639 nir_lower_imul64 = (1 << 0),
2640 nir_lower_isign64 = (1 << 1),
2641 /** Lower all int64 modulus and division opcodes */
2642 nir_lower_divmod64 = (1 << 2),
2643 /** Lower all 64-bit umul_high and imul_high opcodes */
2644 nir_lower_imul_high64 = (1 << 3),
2645 nir_lower_mov64 = (1 << 4),
2646 nir_lower_icmp64 = (1 << 5),
2647 nir_lower_iadd64 = (1 << 6),
2648 nir_lower_iabs64 = (1 << 7),
2649 nir_lower_ineg64 = (1 << 8),
2650 nir_lower_logic64 = (1 << 9),
2651 nir_lower_minmax64 = (1 << 10),
2652 nir_lower_shift64 = (1 << 11),
2653 nir_lower_imul_2x32_64 = (1 << 12),
2654 nir_lower_extract64 = (1 << 13),
2655 nir_lower_ufind_msb64 = (1 << 14),
2656 } nir_lower_int64_options;
2657
2658 typedef enum {
2659 nir_lower_drcp = (1 << 0),
2660 nir_lower_dsqrt = (1 << 1),
2661 nir_lower_drsq = (1 << 2),
2662 nir_lower_dtrunc = (1 << 3),
2663 nir_lower_dfloor = (1 << 4),
2664 nir_lower_dceil = (1 << 5),
2665 nir_lower_dfract = (1 << 6),
2666 nir_lower_dround_even = (1 << 7),
2667 nir_lower_dmod = (1 << 8),
2668 nir_lower_dsub = (1 << 9),
2669 nir_lower_ddiv = (1 << 10),
2670 nir_lower_fp64_full_software = (1 << 11),
2671 } nir_lower_doubles_options;
2672
2673 typedef enum {
2674 nir_divergence_single_prim_per_subgroup = (1 << 0),
2675 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2676 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2677 nir_divergence_view_index_uniform = (1 << 3),
2678 } nir_divergence_options;
2679
2680 typedef struct nir_shader_compiler_options {
2681 bool lower_fdiv;
2682 bool lower_ffma;
2683 bool fuse_ffma;
2684 bool lower_flrp16;
2685 bool lower_flrp32;
2686 /** Lowers flrp when it does not support doubles */
2687 bool lower_flrp64;
2688 bool lower_fpow;
2689 bool lower_fsat;
2690 bool lower_fsqrt;
2691 bool lower_sincos;
2692 bool lower_fmod;
2693 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2694 bool lower_bitfield_extract;
2695 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2696 bool lower_bitfield_extract_to_shifts;
2697 /** Lowers bitfield_insert to bfi/bfm */
2698 bool lower_bitfield_insert;
2699 /** Lowers bitfield_insert to compares, and shifts. */
2700 bool lower_bitfield_insert_to_shifts;
2701 /** Lowers bitfield_insert to bfm/bitfield_select. */
2702 bool lower_bitfield_insert_to_bitfield_select;
2703 /** Lowers bitfield_reverse to shifts. */
2704 bool lower_bitfield_reverse;
2705 /** Lowers bit_count to shifts. */
2706 bool lower_bit_count;
2707 /** Lowers ifind_msb to compare and ufind_msb */
2708 bool lower_ifind_msb;
2709 /** Lowers find_lsb to ufind_msb and logic ops */
2710 bool lower_find_lsb;
2711 bool lower_uadd_carry;
2712 bool lower_usub_borrow;
2713 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2714 bool lower_mul_high;
2715 /** lowers fneg and ineg to fsub and isub. */
2716 bool lower_negate;
2717 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2718 bool lower_sub;
2719
2720 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2721 bool lower_scmp;
2722
2723 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
2724 bool lower_vector_cmp;
2725
2726 /** enables rules to lower idiv by power-of-two: */
2727 bool lower_idiv;
2728
2729 /** enable rules to avoid bit ops */
2730 bool lower_bitops;
2731
2732 /** enables rules to lower isign to imin+imax */
2733 bool lower_isign;
2734
2735 /** enables rules to lower fsign to fsub and flt */
2736 bool lower_fsign;
2737
2738 /* lower fdph to fdot4 */
2739 bool lower_fdph;
2740
2741 /** lower fdot to fmul and fsum/fadd. */
2742 bool lower_fdot;
2743
2744 /* Does the native fdot instruction replicate its result for four
2745 * components? If so, then opt_algebraic_late will turn all fdotN
2746 * instructions into fdot_replicatedN instructions.
2747 */
2748 bool fdot_replicates;
2749
2750 /** lowers ffloor to fsub+ffract: */
2751 bool lower_ffloor;
2752
2753 /** lowers ffract to fsub+ffloor: */
2754 bool lower_ffract;
2755
2756 /** lowers fceil to fneg+ffloor+fneg: */
2757 bool lower_fceil;
2758
2759 bool lower_ftrunc;
2760
2761 bool lower_ldexp;
2762
2763 bool lower_pack_half_2x16;
2764 bool lower_pack_unorm_2x16;
2765 bool lower_pack_snorm_2x16;
2766 bool lower_pack_unorm_4x8;
2767 bool lower_pack_snorm_4x8;
2768 bool lower_unpack_half_2x16;
2769 bool lower_unpack_unorm_2x16;
2770 bool lower_unpack_snorm_2x16;
2771 bool lower_unpack_unorm_4x8;
2772 bool lower_unpack_snorm_4x8;
2773
2774 bool lower_extract_byte;
2775 bool lower_extract_word;
2776
2777 bool lower_all_io_to_temps;
2778 bool lower_all_io_to_elements;
2779
2780 /* Indicates that the driver only has zero-based vertex id */
2781 bool vertex_id_zero_based;
2782
2783 /**
2784 * If enabled, gl_BaseVertex will be lowered as:
2785 * is_indexed_draw (~0/0) & firstvertex
2786 */
2787 bool lower_base_vertex;
2788
2789 /**
2790 * If enabled, gl_HelperInvocation will be lowered as:
2791 *
2792 * !((1 << sample_id) & sample_mask_in))
2793 *
2794 * This depends on some possibly hw implementation details, which may
2795 * not be true for all hw. In particular that the FS is only executed
2796 * for covered samples or for helper invocations. So, do not blindly
2797 * enable this option.
2798 *
2799 * Note: See also issue #22 in ARB_shader_image_load_store
2800 */
2801 bool lower_helper_invocation;
2802
2803 /**
2804 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2805 *
2806 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2807 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2808 */
2809 bool optimize_sample_mask_in;
2810
2811 bool lower_cs_local_index_from_id;
2812 bool lower_cs_local_id_from_index;
2813
2814 bool lower_device_index_to_zero;
2815
2816 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2817 bool lower_wpos_pntc;
2818
2819 bool lower_hadd;
2820 bool lower_add_sat;
2821
2822 /**
2823 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2824 * for IO purposes and would prefer loads/stores be vectorized.
2825 */
2826 bool vectorize_io;
2827 bool lower_to_scalar;
2828
2829 /**
2830 * Should nir_lower_io() create load_interpolated_input intrinsics?
2831 *
2832 * If not, it generates regular load_input intrinsics and interpolation
2833 * information must be inferred from the list of input nir_variables.
2834 */
2835 bool use_interpolated_input_intrinsics;
2836
2837 /* Lowers when 32x32->64 bit multiplication is not supported */
2838 bool lower_mul_2x32_64;
2839
2840 /* Lowers when rotate instruction is not supported */
2841 bool lower_rotate;
2842
2843 /**
2844 * Backend supports imul24, and would like to use it (when possible)
2845 * for address/offset calculation. If true, driver should call
2846 * nir_lower_amul(). (If not set, amul will automatically be lowered
2847 * to imul.)
2848 */
2849 bool has_imul24;
2850
2851 /**
2852 * Is this the Intel vec4 backend?
2853 *
2854 * Used to inhibit algebraic optimizations that are known to be harmful on
2855 * the Intel vec4 backend. This is generally applicable to any
2856 * optimization that might cause more immediate values to be used in
2857 * 3-source (e.g., ffma and flrp) instructions.
2858 */
2859 bool intel_vec4;
2860
2861 unsigned max_unroll_iterations;
2862
2863 nir_lower_int64_options lower_int64_options;
2864 nir_lower_doubles_options lower_doubles_options;
2865 } nir_shader_compiler_options;
2866
2867 typedef struct nir_shader {
2868 /** list of uniforms (nir_variable) */
2869 struct exec_list uniforms;
2870
2871 /** list of inputs (nir_variable) */
2872 struct exec_list inputs;
2873
2874 /** list of outputs (nir_variable) */
2875 struct exec_list outputs;
2876
2877 /** list of shared compute variables (nir_variable) */
2878 struct exec_list shared;
2879
2880 /** Set of driver-specific options for the shader.
2881 *
2882 * The memory for the options is expected to be kept in a single static
2883 * copy by the driver.
2884 */
2885 const struct nir_shader_compiler_options *options;
2886
2887 /** Various bits of compile-time information about a given shader */
2888 struct shader_info info;
2889
2890 /** list of global variables in the shader (nir_variable) */
2891 struct exec_list globals;
2892
2893 /** list of system value variables in the shader (nir_variable) */
2894 struct exec_list system_values;
2895
2896 struct exec_list functions; /** < list of nir_function */
2897
2898 /**
2899 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2900 * access plus one
2901 */
2902 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2903
2904 /** Size in bytes of required scratch space */
2905 unsigned scratch_size;
2906
2907 /** Constant data associated with this shader.
2908 *
2909 * Constant data is loaded through load_constant intrinsics. See also
2910 * nir_opt_large_constants.
2911 */
2912 void *constant_data;
2913 unsigned constant_data_size;
2914 } nir_shader;
2915
2916 #define nir_foreach_function(func, shader) \
2917 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2918
2919 static inline nir_function_impl *
2920 nir_shader_get_entrypoint(nir_shader *shader)
2921 {
2922 nir_function *func = NULL;
2923
2924 nir_foreach_function(function, shader) {
2925 assert(func == NULL);
2926 if (function->is_entrypoint) {
2927 func = function;
2928 #ifndef NDEBUG
2929 break;
2930 #endif
2931 }
2932 }
2933
2934 if (!func)
2935 return NULL;
2936
2937 assert(func->num_params == 0);
2938 assert(func->impl);
2939 return func->impl;
2940 }
2941
2942 nir_shader *nir_shader_create(void *mem_ctx,
2943 gl_shader_stage stage,
2944 const nir_shader_compiler_options *options,
2945 shader_info *si);
2946
2947 nir_register *nir_local_reg_create(nir_function_impl *impl);
2948
2949 void nir_reg_remove(nir_register *reg);
2950
2951 /** Adds a variable to the appropriate list in nir_shader */
2952 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2953
2954 static inline void
2955 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2956 {
2957 assert(var->data.mode == nir_var_function_temp);
2958 exec_list_push_tail(&impl->locals, &var->node);
2959 }
2960
2961 /** creates a variable, sets a few defaults, and adds it to the list */
2962 nir_variable *nir_variable_create(nir_shader *shader,
2963 nir_variable_mode mode,
2964 const struct glsl_type *type,
2965 const char *name);
2966 /** creates a local variable and adds it to the list */
2967 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2968 const struct glsl_type *type,
2969 const char *name);
2970
2971 /** creates a function and adds it to the shader's list of functions */
2972 nir_function *nir_function_create(nir_shader *shader, const char *name);
2973
2974 nir_function_impl *nir_function_impl_create(nir_function *func);
2975 /** creates a function_impl that isn't tied to any particular function */
2976 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2977
2978 nir_block *nir_block_create(nir_shader *shader);
2979 nir_if *nir_if_create(nir_shader *shader);
2980 nir_loop *nir_loop_create(nir_shader *shader);
2981
2982 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2983
2984 /** requests that the given pieces of metadata be generated */
2985 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2986 /** dirties all but the preserved metadata */
2987 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2988
2989 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2990 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2991
2992 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2993 nir_deref_type deref_type);
2994
2995 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2996
2997 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2998 unsigned num_components,
2999 unsigned bit_size);
3000
3001 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3002 nir_intrinsic_op op);
3003
3004 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3005 nir_function *callee);
3006
3007 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3008
3009 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3010
3011 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3012
3013 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3014 unsigned num_components,
3015 unsigned bit_size);
3016
3017 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3018
3019 /**
3020 * NIR Cursors and Instruction Insertion API
3021 * @{
3022 *
3023 * A tiny struct representing a point to insert/extract instructions or
3024 * control flow nodes. Helps reduce the combinatorial explosion of possible
3025 * points to insert/extract.
3026 *
3027 * \sa nir_control_flow.h
3028 */
3029 typedef enum {
3030 nir_cursor_before_block,
3031 nir_cursor_after_block,
3032 nir_cursor_before_instr,
3033 nir_cursor_after_instr,
3034 } nir_cursor_option;
3035
3036 typedef struct {
3037 nir_cursor_option option;
3038 union {
3039 nir_block *block;
3040 nir_instr *instr;
3041 };
3042 } nir_cursor;
3043
3044 static inline nir_block *
3045 nir_cursor_current_block(nir_cursor cursor)
3046 {
3047 if (cursor.option == nir_cursor_before_instr ||
3048 cursor.option == nir_cursor_after_instr) {
3049 return cursor.instr->block;
3050 } else {
3051 return cursor.block;
3052 }
3053 }
3054
3055 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3056
3057 static inline nir_cursor
3058 nir_before_block(nir_block *block)
3059 {
3060 nir_cursor cursor;
3061 cursor.option = nir_cursor_before_block;
3062 cursor.block = block;
3063 return cursor;
3064 }
3065
3066 static inline nir_cursor
3067 nir_after_block(nir_block *block)
3068 {
3069 nir_cursor cursor;
3070 cursor.option = nir_cursor_after_block;
3071 cursor.block = block;
3072 return cursor;
3073 }
3074
3075 static inline nir_cursor
3076 nir_before_instr(nir_instr *instr)
3077 {
3078 nir_cursor cursor;
3079 cursor.option = nir_cursor_before_instr;
3080 cursor.instr = instr;
3081 return cursor;
3082 }
3083
3084 static inline nir_cursor
3085 nir_after_instr(nir_instr *instr)
3086 {
3087 nir_cursor cursor;
3088 cursor.option = nir_cursor_after_instr;
3089 cursor.instr = instr;
3090 return cursor;
3091 }
3092
3093 static inline nir_cursor
3094 nir_after_block_before_jump(nir_block *block)
3095 {
3096 nir_instr *last_instr = nir_block_last_instr(block);
3097 if (last_instr && last_instr->type == nir_instr_type_jump) {
3098 return nir_before_instr(last_instr);
3099 } else {
3100 return nir_after_block(block);
3101 }
3102 }
3103
3104 static inline nir_cursor
3105 nir_before_src(nir_src *src, bool is_if_condition)
3106 {
3107 if (is_if_condition) {
3108 nir_block *prev_block =
3109 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3110 assert(!nir_block_ends_in_jump(prev_block));
3111 return nir_after_block(prev_block);
3112 } else if (src->parent_instr->type == nir_instr_type_phi) {
3113 #ifndef NDEBUG
3114 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3115 bool found = false;
3116 nir_foreach_phi_src(phi_src, cond_phi) {
3117 if (phi_src->src.ssa == src->ssa) {
3118 found = true;
3119 break;
3120 }
3121 }
3122 assert(found);
3123 #endif
3124 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3125 * to have a more specific name.
3126 */
3127 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3128 return nir_after_block_before_jump(phi_src->pred);
3129 } else {
3130 return nir_before_instr(src->parent_instr);
3131 }
3132 }
3133
3134 static inline nir_cursor
3135 nir_before_cf_node(nir_cf_node *node)
3136 {
3137 if (node->type == nir_cf_node_block)
3138 return nir_before_block(nir_cf_node_as_block(node));
3139
3140 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3141 }
3142
3143 static inline nir_cursor
3144 nir_after_cf_node(nir_cf_node *node)
3145 {
3146 if (node->type == nir_cf_node_block)
3147 return nir_after_block(nir_cf_node_as_block(node));
3148
3149 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3150 }
3151
3152 static inline nir_cursor
3153 nir_after_phis(nir_block *block)
3154 {
3155 nir_foreach_instr(instr, block) {
3156 if (instr->type != nir_instr_type_phi)
3157 return nir_before_instr(instr);
3158 }
3159 return nir_after_block(block);
3160 }
3161
3162 static inline nir_cursor
3163 nir_after_cf_node_and_phis(nir_cf_node *node)
3164 {
3165 if (node->type == nir_cf_node_block)
3166 return nir_after_block(nir_cf_node_as_block(node));
3167
3168 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3169
3170 return nir_after_phis(block);
3171 }
3172
3173 static inline nir_cursor
3174 nir_before_cf_list(struct exec_list *cf_list)
3175 {
3176 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3177 exec_list_get_head(cf_list), node);
3178 return nir_before_cf_node(first_node);
3179 }
3180
3181 static inline nir_cursor
3182 nir_after_cf_list(struct exec_list *cf_list)
3183 {
3184 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3185 exec_list_get_tail(cf_list), node);
3186 return nir_after_cf_node(last_node);
3187 }
3188
3189 /**
3190 * Insert a NIR instruction at the given cursor.
3191 *
3192 * Note: This does not update the cursor.
3193 */
3194 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3195
3196 static inline void
3197 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3198 {
3199 nir_instr_insert(nir_before_instr(instr), before);
3200 }
3201
3202 static inline void
3203 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3204 {
3205 nir_instr_insert(nir_after_instr(instr), after);
3206 }
3207
3208 static inline void
3209 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3210 {
3211 nir_instr_insert(nir_before_block(block), before);
3212 }
3213
3214 static inline void
3215 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3216 {
3217 nir_instr_insert(nir_after_block(block), after);
3218 }
3219
3220 static inline void
3221 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3222 {
3223 nir_instr_insert(nir_before_cf_node(node), before);
3224 }
3225
3226 static inline void
3227 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3228 {
3229 nir_instr_insert(nir_after_cf_node(node), after);
3230 }
3231
3232 static inline void
3233 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3234 {
3235 nir_instr_insert(nir_before_cf_list(list), before);
3236 }
3237
3238 static inline void
3239 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3240 {
3241 nir_instr_insert(nir_after_cf_list(list), after);
3242 }
3243
3244 void nir_instr_remove_v(nir_instr *instr);
3245
3246 static inline nir_cursor
3247 nir_instr_remove(nir_instr *instr)
3248 {
3249 nir_cursor cursor;
3250 nir_instr *prev = nir_instr_prev(instr);
3251 if (prev) {
3252 cursor = nir_after_instr(prev);
3253 } else {
3254 cursor = nir_before_block(instr->block);
3255 }
3256 nir_instr_remove_v(instr);
3257 return cursor;
3258 }
3259
3260 /** @} */
3261
3262 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3263
3264 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3265 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3266 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3267 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3268 void *state);
3269 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3270 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3271
3272 nir_const_value *nir_src_as_const_value(nir_src src);
3273
3274 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3275 static inline c_type * \
3276 nir_src_as_ ## name (nir_src src) \
3277 { \
3278 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3279 ? cast_macro(src.ssa->parent_instr) : NULL; \
3280 }
3281
3282 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3283 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3284 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3285 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3286
3287 bool nir_src_is_dynamically_uniform(nir_src src);
3288 bool nir_srcs_equal(nir_src src1, nir_src src2);
3289 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3290 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3291 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3292 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3293 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3294 nir_dest new_dest);
3295
3296 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3297 unsigned num_components, unsigned bit_size,
3298 const char *name);
3299 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3300 unsigned num_components, unsigned bit_size,
3301 const char *name);
3302 static inline void
3303 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3304 const struct glsl_type *type,
3305 const char *name)
3306 {
3307 assert(glsl_type_is_vector_or_scalar(type));
3308 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3309 glsl_get_bit_size(type), name);
3310 }
3311 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3312 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3313 nir_instr *after_me);
3314
3315 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3316
3317 /*
3318 * finds the next basic block in source-code order, returns NULL if there is
3319 * none
3320 */
3321
3322 nir_block *nir_block_cf_tree_next(nir_block *block);
3323
3324 /* Performs the opposite of nir_block_cf_tree_next() */
3325
3326 nir_block *nir_block_cf_tree_prev(nir_block *block);
3327
3328 /* Gets the first block in a CF node in source-code order */
3329
3330 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3331
3332 /* Gets the last block in a CF node in source-code order */
3333
3334 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3335
3336 /* Gets the next block after a CF node in source-code order */
3337
3338 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3339
3340 /* Macros for loops that visit blocks in source-code order */
3341
3342 #define nir_foreach_block(block, impl) \
3343 for (nir_block *block = nir_start_block(impl); block != NULL; \
3344 block = nir_block_cf_tree_next(block))
3345
3346 #define nir_foreach_block_safe(block, impl) \
3347 for (nir_block *block = nir_start_block(impl), \
3348 *next = nir_block_cf_tree_next(block); \
3349 block != NULL; \
3350 block = next, next = nir_block_cf_tree_next(block))
3351
3352 #define nir_foreach_block_reverse(block, impl) \
3353 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3354 block = nir_block_cf_tree_prev(block))
3355
3356 #define nir_foreach_block_reverse_safe(block, impl) \
3357 for (nir_block *block = nir_impl_last_block(impl), \
3358 *prev = nir_block_cf_tree_prev(block); \
3359 block != NULL; \
3360 block = prev, prev = nir_block_cf_tree_prev(block))
3361
3362 #define nir_foreach_block_in_cf_node(block, node) \
3363 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3364 block != nir_cf_node_cf_tree_next(node); \
3365 block = nir_block_cf_tree_next(block))
3366
3367 /* If the following CF node is an if, this function returns that if.
3368 * Otherwise, it returns NULL.
3369 */
3370 nir_if *nir_block_get_following_if(nir_block *block);
3371
3372 nir_loop *nir_block_get_following_loop(nir_block *block);
3373
3374 void nir_index_local_regs(nir_function_impl *impl);
3375 void nir_index_ssa_defs(nir_function_impl *impl);
3376 unsigned nir_index_instrs(nir_function_impl *impl);
3377
3378 void nir_index_blocks(nir_function_impl *impl);
3379
3380 void nir_index_vars(nir_shader *shader, nir_function_impl *impl, nir_variable_mode modes);
3381
3382 void nir_print_shader(nir_shader *shader, FILE *fp);
3383 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3384 void nir_print_instr(const nir_instr *instr, FILE *fp);
3385 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3386
3387 /** Shallow clone of a single ALU instruction. */
3388 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3389
3390 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3391 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3392 const nir_function_impl *fi);
3393 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3394 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3395
3396 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3397
3398 void nir_shader_serialize_deserialize(nir_shader *s);
3399
3400 #ifndef NDEBUG
3401 void nir_validate_shader(nir_shader *shader, const char *when);
3402 void nir_metadata_set_validation_flag(nir_shader *shader);
3403 void nir_metadata_check_validation_flag(nir_shader *shader);
3404
3405 static inline bool
3406 should_skip_nir(const char *name)
3407 {
3408 static const char *list = NULL;
3409 if (!list) {
3410 /* Comma separated list of names to skip. */
3411 list = getenv("NIR_SKIP");
3412 if (!list)
3413 list = "";
3414 }
3415
3416 if (!list[0])
3417 return false;
3418
3419 return comma_separated_list_contains(list, name);
3420 }
3421
3422 static inline bool
3423 should_clone_nir(void)
3424 {
3425 static int should_clone = -1;
3426 if (should_clone < 0)
3427 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3428
3429 return should_clone;
3430 }
3431
3432 static inline bool
3433 should_serialize_deserialize_nir(void)
3434 {
3435 static int test_serialize = -1;
3436 if (test_serialize < 0)
3437 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3438
3439 return test_serialize;
3440 }
3441
3442 static inline bool
3443 should_print_nir(void)
3444 {
3445 static int should_print = -1;
3446 if (should_print < 0)
3447 should_print = env_var_as_boolean("NIR_PRINT", false);
3448
3449 return should_print;
3450 }
3451 #else
3452 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3453 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3454 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3455 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3456 static inline bool should_clone_nir(void) { return false; }
3457 static inline bool should_serialize_deserialize_nir(void) { return false; }
3458 static inline bool should_print_nir(void) { return false; }
3459 #endif /* NDEBUG */
3460
3461 #define _PASS(pass, nir, do_pass) do { \
3462 if (should_skip_nir(#pass)) { \
3463 printf("skipping %s\n", #pass); \
3464 break; \
3465 } \
3466 do_pass \
3467 nir_validate_shader(nir, "after " #pass); \
3468 if (should_clone_nir()) { \
3469 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3470 nir_shader_replace(nir, clone); \
3471 } \
3472 if (should_serialize_deserialize_nir()) { \
3473 nir_shader_serialize_deserialize(nir); \
3474 } \
3475 } while (0)
3476
3477 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3478 nir_metadata_set_validation_flag(nir); \
3479 if (should_print_nir()) \
3480 printf("%s\n", #pass); \
3481 if (pass(nir, ##__VA_ARGS__)) { \
3482 progress = true; \
3483 if (should_print_nir()) \
3484 nir_print_shader(nir, stdout); \
3485 nir_metadata_check_validation_flag(nir); \
3486 } \
3487 )
3488
3489 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3490 if (should_print_nir()) \
3491 printf("%s\n", #pass); \
3492 pass(nir, ##__VA_ARGS__); \
3493 if (should_print_nir()) \
3494 nir_print_shader(nir, stdout); \
3495 )
3496
3497 #define NIR_SKIP(name) should_skip_nir(#name)
3498
3499 /** An instruction filtering callback
3500 *
3501 * Returns true if the instruction should be processed and false otherwise.
3502 */
3503 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3504
3505 /** A simple instruction lowering callback
3506 *
3507 * Many instruction lowering passes can be written as a simple function which
3508 * takes an instruction as its input and returns a sequence of instructions
3509 * that implement the consumed instruction. This function type represents
3510 * such a lowering function. When called, a function with this prototype
3511 * should either return NULL indicating that no lowering needs to be done or
3512 * emit a sequence of instructions using the provided builder (whose cursor
3513 * will already be placed after the instruction to be lowered) and return the
3514 * resulting nir_ssa_def.
3515 */
3516 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3517 nir_instr *, void *);
3518
3519 /**
3520 * Special return value for nir_lower_instr_cb when some progress occurred
3521 * (like changing an input to the instr) that didn't result in a replacement
3522 * SSA def being generated.
3523 */
3524 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3525
3526 /** Iterate over all the instructions in a nir_function_impl and lower them
3527 * using the provided callbacks
3528 *
3529 * This function implements the guts of a standard lowering pass for you. It
3530 * iterates over all of the instructions in a nir_function_impl and calls the
3531 * filter callback on each one. If the filter callback returns true, it then
3532 * calls the lowering call back on the instruction. (Splitting it this way
3533 * allows us to avoid some save/restore work for instructions we know won't be
3534 * lowered.) If the instruction is dead after the lowering is complete, it
3535 * will be removed. If new instructions are added, the lowering callback will
3536 * also be called on them in case multiple lowerings are required.
3537 *
3538 * The metadata for the nir_function_impl will also be updated. If any blocks
3539 * are added (they cannot be removed), dominance and block indices will be
3540 * invalidated.
3541 */
3542 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3543 nir_instr_filter_cb filter,
3544 nir_lower_instr_cb lower,
3545 void *cb_data);
3546 bool nir_shader_lower_instructions(nir_shader *shader,
3547 nir_instr_filter_cb filter,
3548 nir_lower_instr_cb lower,
3549 void *cb_data);
3550
3551 void nir_calc_dominance_impl(nir_function_impl *impl);
3552 void nir_calc_dominance(nir_shader *shader);
3553
3554 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3555 bool nir_block_dominates(nir_block *parent, nir_block *child);
3556 bool nir_block_is_unreachable(nir_block *block);
3557
3558 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3559 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3560
3561 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3562 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3563
3564 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3565 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3566
3567 int nir_gs_count_vertices(const nir_shader *shader);
3568
3569 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3570 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3571 bool nir_split_var_copies(nir_shader *shader);
3572 bool nir_split_per_member_structs(nir_shader *shader);
3573 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3574
3575 bool nir_lower_returns_impl(nir_function_impl *impl);
3576 bool nir_lower_returns(nir_shader *shader);
3577
3578 void nir_inline_function_impl(struct nir_builder *b,
3579 const nir_function_impl *impl,
3580 nir_ssa_def **params);
3581 bool nir_inline_functions(nir_shader *shader);
3582
3583 bool nir_propagate_invariant(nir_shader *shader);
3584
3585 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3586 void nir_lower_deref_copy_instr(struct nir_builder *b,
3587 nir_intrinsic_instr *copy);
3588 bool nir_lower_var_copies(nir_shader *shader);
3589
3590 void nir_fixup_deref_modes(nir_shader *shader);
3591
3592 bool nir_lower_global_vars_to_local(nir_shader *shader);
3593
3594 typedef enum {
3595 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3596 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3597 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3598 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3599 } nir_lower_array_deref_of_vec_options;
3600
3601 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3602 nir_lower_array_deref_of_vec_options options);
3603
3604 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3605
3606 bool nir_lower_locals_to_regs(nir_shader *shader);
3607
3608 void nir_lower_io_to_temporaries(nir_shader *shader,
3609 nir_function_impl *entrypoint,
3610 bool outputs, bool inputs);
3611
3612 bool nir_lower_vars_to_scratch(nir_shader *shader,
3613 nir_variable_mode modes,
3614 int size_threshold,
3615 glsl_type_size_align_func size_align);
3616
3617 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3618
3619 void nir_gather_ssa_types(nir_function_impl *impl,
3620 BITSET_WORD *float_types,
3621 BITSET_WORD *int_types);
3622
3623 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3624 int (*type_size)(const struct glsl_type *, bool));
3625
3626 /* Some helpers to do very simple linking */
3627 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3628 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3629 uint64_t *used_by_other_stage,
3630 uint64_t *used_by_other_stage_patches);
3631 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3632 bool default_to_smooth_interp);
3633 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3634 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3635
3636 bool nir_lower_amul(nir_shader *shader,
3637 int (*type_size)(const struct glsl_type *, bool));
3638
3639 void nir_assign_io_var_locations(struct exec_list *var_list,
3640 unsigned *size,
3641 gl_shader_stage stage);
3642
3643 typedef enum {
3644 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
3645 * to 32-bit operations. This is only valid for nir_var_shader_in/out
3646 * modes.
3647 */
3648 nir_lower_io_lower_64bit_to_32 = (1 << 0),
3649
3650 /* If set, this forces all non-flat fragment shader inputs to be
3651 * interpolated as if with the "sample" qualifier. This requires
3652 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3653 */
3654 nir_lower_io_force_sample_interpolation = (1 << 1),
3655 } nir_lower_io_options;
3656 bool nir_lower_io(nir_shader *shader,
3657 nir_variable_mode modes,
3658 int (*type_size)(const struct glsl_type *, bool),
3659 nir_lower_io_options);
3660
3661 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3662
3663 bool
3664 nir_lower_vars_to_explicit_types(nir_shader *shader,
3665 nir_variable_mode modes,
3666 glsl_type_size_align_func type_info);
3667
3668 typedef enum {
3669 /**
3670 * An address format which is a simple 32-bit global GPU address.
3671 */
3672 nir_address_format_32bit_global,
3673
3674 /**
3675 * An address format which is a simple 64-bit global GPU address.
3676 */
3677 nir_address_format_64bit_global,
3678
3679 /**
3680 * An address format which is a bounds-checked 64-bit global GPU address.
3681 *
3682 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3683 * address stored with the low bits in .x and high bits in .y, .z is a
3684 * size, and .w is an offset. When the final I/O operation is lowered, .w
3685 * is checked against .z and the operation is predicated on the result.
3686 */
3687 nir_address_format_64bit_bounded_global,
3688
3689 /**
3690 * An address format which is comprised of a vec2 where the first
3691 * component is a buffer index and the second is an offset.
3692 */
3693 nir_address_format_32bit_index_offset,
3694
3695 /**
3696 * An address format which is a simple 32-bit offset.
3697 */
3698 nir_address_format_32bit_offset,
3699
3700 /**
3701 * An address format representing a purely logical addressing model. In
3702 * this model, all deref chains must be complete from the dereference
3703 * operation to the variable. Cast derefs are not allowed. These
3704 * addresses will be 32-bit scalars but the format is immaterial because
3705 * you can always chase the chain.
3706 */
3707 nir_address_format_logical,
3708 } nir_address_format;
3709
3710 static inline unsigned
3711 nir_address_format_bit_size(nir_address_format addr_format)
3712 {
3713 switch (addr_format) {
3714 case nir_address_format_32bit_global: return 32;
3715 case nir_address_format_64bit_global: return 64;
3716 case nir_address_format_64bit_bounded_global: return 32;
3717 case nir_address_format_32bit_index_offset: return 32;
3718 case nir_address_format_32bit_offset: return 32;
3719 case nir_address_format_logical: return 32;
3720 }
3721 unreachable("Invalid address format");
3722 }
3723
3724 static inline unsigned
3725 nir_address_format_num_components(nir_address_format addr_format)
3726 {
3727 switch (addr_format) {
3728 case nir_address_format_32bit_global: return 1;
3729 case nir_address_format_64bit_global: return 1;
3730 case nir_address_format_64bit_bounded_global: return 4;
3731 case nir_address_format_32bit_index_offset: return 2;
3732 case nir_address_format_32bit_offset: return 1;
3733 case nir_address_format_logical: return 1;
3734 }
3735 unreachable("Invalid address format");
3736 }
3737
3738 static inline const struct glsl_type *
3739 nir_address_format_to_glsl_type(nir_address_format addr_format)
3740 {
3741 unsigned bit_size = nir_address_format_bit_size(addr_format);
3742 assert(bit_size == 32 || bit_size == 64);
3743 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3744 nir_address_format_num_components(addr_format));
3745 }
3746
3747 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3748
3749 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3750 nir_address_format addr_format);
3751
3752 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3753 nir_address_format addr_format);
3754
3755 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3756 nir_deref_instr *deref,
3757 nir_ssa_def *base_addr,
3758 nir_address_format addr_format);
3759 void nir_lower_explicit_io_instr(struct nir_builder *b,
3760 nir_intrinsic_instr *io_instr,
3761 nir_ssa_def *addr,
3762 nir_address_format addr_format);
3763
3764 bool nir_lower_explicit_io(nir_shader *shader,
3765 nir_variable_mode modes,
3766 nir_address_format);
3767
3768 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3769 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3770
3771 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3772
3773 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3774 bool nir_lower_regs_to_ssa(nir_shader *shader);
3775 bool nir_lower_vars_to_ssa(nir_shader *shader);
3776
3777 bool nir_remove_dead_derefs(nir_shader *shader);
3778 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3779 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3780 bool nir_lower_constant_initializers(nir_shader *shader,
3781 nir_variable_mode modes);
3782
3783 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3784 bool nir_lower_vec_to_movs(nir_shader *shader);
3785 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3786 bool alpha_to_one,
3787 const gl_state_index16 *alpha_ref_state_tokens);
3788 bool nir_lower_alu(nir_shader *shader);
3789
3790 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3791 bool always_precise, bool have_ffma);
3792
3793 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
3794 bool nir_lower_bool_to_float(nir_shader *shader);
3795 bool nir_lower_bool_to_int32(nir_shader *shader);
3796 bool nir_lower_int_to_float(nir_shader *shader);
3797 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3798 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3799 bool nir_lower_phis_to_scalar(nir_shader *shader);
3800 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3801 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3802 bool outputs_only);
3803 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3804 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3805 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3806
3807 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3808 void nir_lower_viewport_transform(nir_shader *shader);
3809 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3810
3811 typedef struct nir_lower_subgroups_options {
3812 uint8_t subgroup_size;
3813 uint8_t ballot_bit_size;
3814 bool lower_to_scalar:1;
3815 bool lower_vote_trivial:1;
3816 bool lower_vote_eq_to_ballot:1;
3817 bool lower_subgroup_masks:1;
3818 bool lower_shuffle:1;
3819 bool lower_shuffle_to_32bit:1;
3820 bool lower_quad:1;
3821 } nir_lower_subgroups_options;
3822
3823 bool nir_lower_subgroups(nir_shader *shader,
3824 const nir_lower_subgroups_options *options);
3825
3826 bool nir_lower_system_values(nir_shader *shader);
3827
3828 enum PACKED nir_lower_tex_packing {
3829 nir_lower_tex_packing_none = 0,
3830 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3831 * or unsigned ints based on the sampler type
3832 */
3833 nir_lower_tex_packing_16,
3834 /* The sampler returns 1 32-bit word of 4x8 unorm */
3835 nir_lower_tex_packing_8,
3836 };
3837
3838 typedef struct nir_lower_tex_options {
3839 /**
3840 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3841 * sampler types a texture projector is lowered.
3842 */
3843 unsigned lower_txp;
3844
3845 /**
3846 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3847 */
3848 bool lower_txf_offset;
3849
3850 /**
3851 * If true, lower away nir_tex_src_offset for all rect textures.
3852 */
3853 bool lower_rect_offset;
3854
3855 /**
3856 * If true, lower rect textures to 2D, using txs to fetch the
3857 * texture dimensions and dividing the texture coords by the
3858 * texture dims to normalize.
3859 */
3860 bool lower_rect;
3861
3862 /**
3863 * If true, convert yuv to rgb.
3864 */
3865 unsigned lower_y_uv_external;
3866 unsigned lower_y_u_v_external;
3867 unsigned lower_yx_xuxv_external;
3868 unsigned lower_xy_uxvx_external;
3869 unsigned lower_ayuv_external;
3870 unsigned lower_xyuv_external;
3871
3872 /**
3873 * To emulate certain texture wrap modes, this can be used
3874 * to saturate the specified tex coord to [0.0, 1.0]. The
3875 * bits are according to sampler #, ie. if, for example:
3876 *
3877 * (conf->saturate_s & (1 << n))
3878 *
3879 * is true, then the s coord for sampler n is saturated.
3880 *
3881 * Note that clamping must happen *after* projector lowering
3882 * so any projected texture sample instruction with a clamped
3883 * coordinate gets automatically lowered, regardless of the
3884 * 'lower_txp' setting.
3885 */
3886 unsigned saturate_s;
3887 unsigned saturate_t;
3888 unsigned saturate_r;
3889
3890 /* Bitmask of textures that need swizzling.
3891 *
3892 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3893 * swizzles[texture_index] is applied to the result of the texturing
3894 * operation.
3895 */
3896 unsigned swizzle_result;
3897
3898 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3899 * while 4 and 5 represent 0 and 1 respectively.
3900 */
3901 uint8_t swizzles[32][4];
3902
3903 /* Can be used to scale sampled values in range required by the format. */
3904 float scale_factors[32];
3905
3906 /**
3907 * Bitmap of textures that need srgb to linear conversion. If
3908 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3909 * of the texture are lowered to linear.
3910 */
3911 unsigned lower_srgb;
3912
3913 /**
3914 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3915 * LODs to nir_texop_txl.
3916 */
3917 bool lower_tex_without_implicit_lod;
3918
3919 /**
3920 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3921 */
3922 bool lower_txd_cube_map;
3923
3924 /**
3925 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3926 */
3927 bool lower_txd_3d;
3928
3929 /**
3930 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3931 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3932 * with lower_txd_cube_map.
3933 */
3934 bool lower_txd_shadow;
3935
3936 /**
3937 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3938 * Implies lower_txd_cube_map and lower_txd_shadow.
3939 */
3940 bool lower_txd;
3941
3942 /**
3943 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3944 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3945 */
3946 bool lower_txb_shadow_clamp;
3947
3948 /**
3949 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3950 * with nir_texop_txl. This includes cube maps.
3951 */
3952 bool lower_txd_shadow_clamp;
3953
3954 /**
3955 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3956 * with nir_texop_txl. This includes cube maps.
3957 */
3958 bool lower_txd_offset_clamp;
3959
3960 /**
3961 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3962 * sampler is bindless.
3963 */
3964 bool lower_txd_clamp_bindless_sampler;
3965
3966 /**
3967 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3968 * sampler index is not statically determinable to be less than 16.
3969 */
3970 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3971
3972 /**
3973 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3974 * 0-lod followed by a nir_ishr.
3975 */
3976 bool lower_txs_lod;
3977
3978 /**
3979 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3980 * mixed-up tg4 locations.
3981 */
3982 bool lower_tg4_broadcom_swizzle;
3983
3984 /**
3985 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3986 */
3987 bool lower_tg4_offsets;
3988
3989 enum nir_lower_tex_packing lower_tex_packing[32];
3990 } nir_lower_tex_options;
3991
3992 bool nir_lower_tex(nir_shader *shader,
3993 const nir_lower_tex_options *options);
3994
3995 enum nir_lower_non_uniform_access_type {
3996 nir_lower_non_uniform_ubo_access = (1 << 0),
3997 nir_lower_non_uniform_ssbo_access = (1 << 1),
3998 nir_lower_non_uniform_texture_access = (1 << 2),
3999 nir_lower_non_uniform_image_access = (1 << 3),
4000 };
4001
4002 bool nir_lower_non_uniform_access(nir_shader *shader,
4003 enum nir_lower_non_uniform_access_type);
4004
4005 enum nir_lower_idiv_path {
4006 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4007 * the two but it is not exact in some cases (for example, 1091317713u /
4008 * 1034u gives 5209173 instead of 1055432) */
4009 nir_lower_idiv_fast,
4010 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4011 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4012 * the nv50 path and many of them are integer multiplications, so it is
4013 * probably slower. It should always return the correct result, though. */
4014 nir_lower_idiv_precise,
4015 };
4016
4017 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4018
4019 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
4020
4021 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4022 bool use_vars,
4023 bool use_clipdist_array,
4024 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4025 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4026 bool use_clipdist_array,
4027 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4028 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4029 bool use_clipdist_array);
4030 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4031
4032 void nir_lower_point_size_mov(nir_shader *shader,
4033 const gl_state_index16 *pointsize_state_tokens);
4034
4035 bool nir_lower_frexp(nir_shader *nir);
4036
4037 void nir_lower_two_sided_color(nir_shader *shader);
4038
4039 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4040
4041 bool nir_lower_flatshade(nir_shader *shader);
4042
4043 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4044 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4045 const gl_state_index16 *uniform_state_tokens);
4046
4047 typedef struct nir_lower_wpos_ytransform_options {
4048 gl_state_index16 state_tokens[STATE_LENGTH];
4049 bool fs_coord_origin_upper_left :1;
4050 bool fs_coord_origin_lower_left :1;
4051 bool fs_coord_pixel_center_integer :1;
4052 bool fs_coord_pixel_center_half_integer :1;
4053 } nir_lower_wpos_ytransform_options;
4054
4055 bool nir_lower_wpos_ytransform(nir_shader *shader,
4056 const nir_lower_wpos_ytransform_options *options);
4057 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4058
4059 bool nir_lower_fb_read(nir_shader *shader);
4060
4061 typedef struct nir_lower_drawpixels_options {
4062 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4063 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4064 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4065 unsigned drawpix_sampler;
4066 unsigned pixelmap_sampler;
4067 bool pixel_maps :1;
4068 bool scale_and_bias :1;
4069 } nir_lower_drawpixels_options;
4070
4071 void nir_lower_drawpixels(nir_shader *shader,
4072 const nir_lower_drawpixels_options *options);
4073
4074 typedef struct nir_lower_bitmap_options {
4075 unsigned sampler;
4076 bool swizzle_xxxx;
4077 } nir_lower_bitmap_options;
4078
4079 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4080
4081 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
4082
4083 typedef enum {
4084 nir_lower_int_source_mods = 1 << 0,
4085 nir_lower_float_source_mods = 1 << 1,
4086 nir_lower_triop_abs = 1 << 2,
4087 nir_lower_all_source_mods = (1 << 3) - 1
4088 } nir_lower_to_source_mods_flags;
4089
4090
4091 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4092
4093 bool nir_lower_gs_intrinsics(nir_shader *shader);
4094
4095 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4096
4097 bool nir_lower_bit_size(nir_shader *shader,
4098 nir_lower_bit_size_callback callback,
4099 void *callback_data);
4100
4101 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4102 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
4103
4104 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4105 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4106 nir_lower_doubles_options options);
4107 bool nir_lower_pack(nir_shader *shader);
4108
4109 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4110
4111 typedef enum {
4112 nir_lower_interpolation_at_sample = (1 << 1),
4113 nir_lower_interpolation_at_offset = (1 << 2),
4114 nir_lower_interpolation_centroid = (1 << 3),
4115 nir_lower_interpolation_pixel = (1 << 4),
4116 nir_lower_interpolation_sample = (1 << 5),
4117 } nir_lower_interpolation_options;
4118
4119 bool nir_lower_interpolation(nir_shader *shader,
4120 nir_lower_interpolation_options options);
4121
4122 bool nir_normalize_cubemap_coords(nir_shader *shader);
4123
4124 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4125
4126 void nir_loop_analyze_impl(nir_function_impl *impl,
4127 nir_variable_mode indirect_mask);
4128
4129 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4130
4131 bool nir_repair_ssa_impl(nir_function_impl *impl);
4132 bool nir_repair_ssa(nir_shader *shader);
4133
4134 void nir_convert_loop_to_lcssa(nir_loop *loop);
4135 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4136 bool* nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4137
4138 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4139 * registers. If false, convert all values (even those not involved in a phi
4140 * node) to registers.
4141 */
4142 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4143
4144 bool nir_lower_phis_to_regs_block(nir_block *block);
4145 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4146 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4147
4148 bool nir_lower_samplers(nir_shader *shader);
4149
4150 /* This is here for unit tests. */
4151 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4152
4153 bool nir_opt_comparison_pre(nir_shader *shader);
4154
4155 bool nir_opt_access(nir_shader *shader);
4156 bool nir_opt_algebraic(nir_shader *shader);
4157 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4158 bool nir_opt_algebraic_late(nir_shader *shader);
4159 bool nir_opt_constant_folding(nir_shader *shader);
4160
4161 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4162
4163 bool nir_copy_prop(nir_shader *shader);
4164
4165 bool nir_opt_copy_prop_vars(nir_shader *shader);
4166
4167 bool nir_opt_cse(nir_shader *shader);
4168
4169 bool nir_opt_dce(nir_shader *shader);
4170
4171 bool nir_opt_dead_cf(nir_shader *shader);
4172
4173 bool nir_opt_dead_write_vars(nir_shader *shader);
4174
4175 bool nir_opt_deref_impl(nir_function_impl *impl);
4176 bool nir_opt_deref(nir_shader *shader);
4177
4178 bool nir_opt_find_array_copies(nir_shader *shader);
4179
4180 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4181
4182 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4183
4184 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4185
4186 bool nir_opt_intrinsics(nir_shader *shader);
4187
4188 bool nir_opt_large_constants(nir_shader *shader,
4189 glsl_type_size_align_func size_align,
4190 unsigned threshold);
4191
4192 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4193
4194 typedef enum {
4195 nir_move_const_undef = (1 << 0),
4196 nir_move_load_ubo = (1 << 1),
4197 nir_move_load_input = (1 << 2),
4198 nir_move_comparisons = (1 << 3),
4199 } nir_move_options;
4200
4201 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4202
4203 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4204
4205 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4206
4207 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4208 bool indirect_load_ok, bool expensive_alu_ok);
4209
4210 bool nir_opt_rematerialize_compares(nir_shader *shader);
4211
4212 bool nir_opt_remove_phis(nir_shader *shader);
4213 bool nir_opt_remove_phis_block(nir_block *block);
4214
4215 bool nir_opt_shrink_load(nir_shader *shader);
4216
4217 bool nir_opt_trivial_continues(nir_shader *shader);
4218
4219 bool nir_opt_undef(nir_shader *shader);
4220
4221 bool nir_opt_vectorize(nir_shader *shader);
4222
4223 bool nir_opt_conditional_discard(nir_shader *shader);
4224
4225 typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
4226 unsigned num_components, unsigned high_offset,
4227 nir_intrinsic_instr *low, nir_intrinsic_instr *high);
4228
4229 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
4230 nir_should_vectorize_mem_func callback);
4231
4232 void nir_schedule(nir_shader *shader, int threshold);
4233
4234 void nir_strip(nir_shader *shader);
4235
4236 void nir_sweep(nir_shader *shader);
4237
4238 void nir_remap_dual_slot_attributes(nir_shader *shader,
4239 uint64_t *dual_slot_inputs);
4240 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4241
4242 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4243 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4244
4245 static inline bool
4246 nir_variable_is_in_ubo(const nir_variable *var)
4247 {
4248 return (var->data.mode == nir_var_mem_ubo &&
4249 var->interface_type != NULL);
4250 }
4251
4252 static inline bool
4253 nir_variable_is_in_ssbo(const nir_variable *var)
4254 {
4255 return (var->data.mode == nir_var_mem_ssbo &&
4256 var->interface_type != NULL);
4257 }
4258
4259 static inline bool
4260 nir_variable_is_in_block(const nir_variable *var)
4261 {
4262 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4263 }
4264
4265 #ifdef __cplusplus
4266 } /* extern "C" */
4267 #endif
4268
4269 #endif /* NIR_H */